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PREFACE

The numerical model investigation of the Red River downstream from Lock
and Dam No. 1, reported herein, was conducted at the US Army Engineer
Waterways Experiment Station (WES) at the request of the US Army Engineer
District, Vicksburg (LMK).

The investigation was conducted during the period October 1984 to August
1985 by personnel of the Hydraulics Laboratory at WES under the direction of
Mr. F. A. Herrmann, Jr., Chief of the Hydraulics Laboratory, and Mr. M. B.
Boyd, Chief of the Hydraulic Analysis Division (HAD). Mr. W. A. Thomas of the
Math Modeling Group (MMG), HAD, provided general guidance and review. The
Project Engineer and author of this report was Mr. R. R. Copeland, MMG,

Mr. Thomas assisted in the report preparation. This report was edited oy
Mrs. Marsha Gay, Information Technology Laboratory.

During the course of this study, close working contact was maintained
with Messrs., Nolan Raphelt and Charles Little of the Engineering Division,
LMK, who were conducting a numerical model investigation upstream from Lock
and Dam No, 1, to ensure consistency in assumptions and modeling technique for
the two studies. Mr., Raphelt also served as the coordinating engineer for
LMK, providing required data and technical assistance. During this investi-
gation, many representatives from both engineering staffs attended several
meetings at WES and LMK to discuss progress of this investigation and others
related to the Red River Waterway.

COL Dwayne G. Lee, CE, is the Commander and Director of WES.
Dr. Robert W. Whalin is the Technical Director.
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/ 1
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"‘. inches 2.54 centimetres O
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4 RED RIVER WATERWAY SEDIMENTATION STUDY DOWNSTREAM
o FROM LOCK AND DAM NO. 1

Numerical Model Investigation

R

gg PART I: INTRODUCTION

oy

3 The Prototype

:

;ﬁ 1. The Red River Waterways Project will provide a navigation route from

;d the Mississippi River at its junction with 0ld River to Shreveport, Louisiana,

i. via the O0ld and Red rivers. The project will provide a channel 236 miles*
long, 9 ft deep, and 200 ft wide, and will include a system of 5 locks and

& dams to control water levels. The existing river will be realigned as neces-

B! sary to develop an efficient channel, and bank stabilization and training

s; works will be constructed to hold the newly developed channel in position.

E“ 2. Lock and Dam No. 1, the downstream navigation structure on the Red

a River, is located in a river cutoff approximately 43.7 miles above the conflu-

,3 ence with the Mississippi River (Figure 1). It consists of a single lock on

'i the left descending side of the cutoff and a 640-ft-long dam with eleven

g‘ 50-ft-wide gates (Figure 2). The channel downstream from the lock and dam has

N a design invert elevation of 0,0.** The invert elevation in the downstream

‘ﬂ lock approach channel is -7.0 dropping to -11.0 just upstream from the lock

M miter gate, which has a sill elevation of -9.0. The floor elevation in the

N 84—~ by 785-ft lock chamber is -11.0. A 1,300-ft-long dike and I-wall with a

crest elevation of 38.0 separate the downstream lock approach channel from the
] spillway exit channel. This I-wall was designed to overtop during high flows.
A 700-ft-long floating guide wall runs parallel to the I-wall., The dam is
! designed to maintain a normal pool elevation of 40 and to pass the project
:; flood of 255,000 cfs, which is the 100-year frequency flood.
¥

3. Downstream from Lock and Dam No. 1 the Red River traverses the

{? Mississippi River floodplain. The river is characterized by large

K]

Iy

3 * A table of factors for converting non-SI units of measurement to SI

» (metric) units of measurement is presented on page 3.

i *% All elevations (el) and stages cited herein are in feet referred to the
v National Geodetic Vertical Datum (NGVD).
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"
fluctuations in stage, shifting bed and banks, and unpredictable shoaling. w
The water stage in this reach is dependent not only on flow magnitude in the g
Red River but also on the backwater effects of flows from the Mississippi ",
River through the 01d River Diversion Channel.
%
Purpose *}
4
4, The purpose of this study was to evaluate the effects of channel }
improvements on sedimentation between Lock and Dam No. 1 and the confluence .:
with the Black River. The effect of contracting the channel to increase sedi- !
ment transport and reduce dredging requirements was studied. Design modifica- A
tions to the downstream lock approach channel were studied and their effect on ﬂ
sediment disposition evaluated. :
g
]
5. Two numerical model studies were conducted. A one-dimensional (1-D) i
sediment transport model, HEC-6, was used to calculate deposition, scour, and 4
dredging quantities for various trace widths. A trace width is a designated )
river width that is assumed to convey all the flow. When training dikes are v
present, trace width is taken as the distance between the outer ends of the &‘
dikes on opposite banklines. Trace widths of 200, 300, 400, and 500 ft were ﬁ
tested with a 7-year hydrograph. The model calculated dredging requirements ;
necessary to maintain a 200-ft-wide navigation channel with a 9-ft draft. The !
model also calculated average velocities in the contracted channel. A two- %
dimensional (2-D) numerical model (TABS-2) was used to evaluate possible proj- 5
ect modifications to reduce dep~sition in the downstream lock approach k
channel. This model extended downstream from Lock and Dam No. 1 for about :?
15 miles. The model simulated the as-built spillway exit and lock approach g
. channels and the I-wall between them. The effect of raising various lengths ﬁ
’ of the I-wall above the water-surface elevation was tested. ;
o )
‘rj "
fx: §
Ch
o :
L )
L ;
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0N PART II: 1-D MODEL ,
1‘ \‘.\- \
;ﬁtm Description :
i !
4 6g
r"‘t
ﬂ%‘ 6. The NETWORK version of the HEC-6 computer program was used to de-
’.h velop the 1-D numerical model. The HEC-6 program (US Army Hydrologic Engi-
iy neering Center 1977) produces a 1-D model that simulates the response of the
t
K riverbed profile to sediment inflow, bed material gradation, and hydraulic !
! :' parameters., The model simulates a series of steady-state discharge events,
‘n\ s t
)ﬂg their effect on the sediment transport capacity at cross sections, and the ‘
il resulting degradation or aggradation which is assumed to occur uniformly s
( " across the entire channel cross section. The NETWORK version incorporates 4
S
:j{: several modifications and expanded capabilities that have been developed at )
_\;: the US Army Engineer Waterways Experiment Station. A new dredging routine was ]
s
) added to the program to accommodate the dredging specifications for this
o
FaT: study.
N
nLI‘
YA )
a Channel Geometry :
3
-~
Lo
A 7. Cross sections for the 1-D numerical model were taken from the 1967- .
:::‘ 1968 hydrographic survey of the Red River. The primary area of interest in :
'y A
,‘: this study extended from Lock and Dam No. 1 (river mile 46) to the confluence :
Tl
-

of the Red and the Black rivers (river mile 34). 1In this reach, cross sec-

9,

!:‘$ tions were located at approximately one-half-mile intervals. The model was

t$E§ extended to Shreveport (river mile 277) to account for possible channel stor- !
fﬁ\j age and supply downstream from the Shreveport sediment gage, and to make use )
. 3? of sediment measurements at Alexandria (river mile 105) to adjust the model. i
,3{4 Between Lock and Dam No. 1 and river mile 140, cross sections were located at »
-ﬁ? approximately 2-mile intervals. Upstream from river mile 140, cross-section f
t;f intervals averaged 14 miles. This geometry was used in the adjustment phase X
;:: of the study in which roughness coefficients and bed material gradation were '
?—,—_- determined,

'23 8. The model geometry was revised to represent design channel condi-

v
LI

tions with Locks and Dams Nos. 1 and 2 in place. This revision amounted to

iy

eliminating cross sections and reducing reach lengths to account for proposed

o
@

¥
4

cutoffs and cutoffs constructed since 1968 (US Army Engineer District (USAED),
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New Orleans, 1982). No changes were made in the reach downstream from Lock

. ; and Dam No. 1 because information defining the new cross-section geometry was
fuJ not available, and because the proposed cutoffs were deemed relatively insig- )
:’%g nificant with respect to change in total reach length. Cross sections just
: : upstream from the locks and dams were taken from design drawings and represent
§;ﬁ channel geometry upstream from the lock walls, This revised geometry was used
) to determine the aggradation and degradation potential of the river without
i;ﬁ: any contraction works.
ji:: 9. The effect of various trace widths downstream from Lock and Dam
;Q:X No. 1 on aggradation and degradation was evaluated by restricting flow and
iﬁg sediment movement to the specified width, ignoring dike overtopping and over-
;::: bank flows. This channel configuration was simulated in the model with
o frictionless vertical walls. Trace widths of 200, 300, 400, and 500 ft were
izg tested. A more detailed study would include an accurate definition of the
.‘J dikes including the sloping crest elevations and the area between dikes,

3‘ : accounting for deposition and increase of roughness due to vegetation. It
:\E; would also include overbank areas for conveyance of flood flows.

!

e

L Stage and Discharge

o

;’i: 10. The water-surface elevation at the downstream boundary is con-

;ﬁ trolled by flows in the Atchafalaya River and the 0ld River Control Structure
: Outflow Channel, and is not directly a function of discharge in the Red
o River. Starting water-surface elevations in the numerical model were there-
:,Hﬁ fore determined from the stage hydrograph at Acme, Louisiana (Black River
?;g mile 0.1). In the steady-state numerical simulations, stages at Acme for a

specific day were assumed to correspond to the discharge at Alexandria for the
Ei;? same day, ignoring possible attenuation of the hydrograph due to storage and

k{: routing in the 71 miles between the gages.

'Eg: 11. Minimum pool elevations of 40 and 64 ft were assigned upstream from

(N Locks and Dams Nos. 1 and 2, respectively. When the downstream water-surface
,;iﬁ elevation exceeded the minimum pool elevation, a head loss of 1 ft was arbi-
Pi;' trarily assigned between the upstream and downstream cross sections.

L:&: 12. A 7-year hydrograph (1975-1981) was used to evaluate the base con-
"' dition and various trace widths. This hydrograph represents the most recently

:?; available data but does not necessarily represent the long-term flow or stage
Wod
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averages. The maximum daily discharge in the 1975-1981 hydrograph was

124,000 cfs, which is less than a 5-year frequency event. The effect of major
flood events is therefore not included. Figure 3 compares the flow durations
for the 1975-1981 hydrograph and the 1938-1976 period of record (adjusted to
account for construction of upstream dams). Stages at Acme were significantly
lower during the 1975-1981 period than during the 1938-1976 period of record
(Figure 4). This difference can be accounted for by the general degradation
of the Atchafalaya River, which controls water~-surface elevations at Acme.
Results using the 1975-1981 hydrograph should therefore be considered rela-
tive, and not taken to represent long-term average conditions. Average annual
quantities could better be determined using a long-~term hydrograph (50 years)

that includes extreme events and hypothetical floods.
Bed Material

13. Surface bed material gradation measurements were available at
Shreveport (1977-1979), Alexandria (1971-1972; 1975-1981), and above 0ld River ﬂ
Outflow Channel and river mile 13.1 (1974). The measurements indicate that
the surface bed material is highly variable. Average annual data at Alexan-
dria are shown in Table 1. These data indicate that the bed surface generally
became finer from 1971 to 1977 and then coarsened through 1981, Measurements
at Shreveport (Figure 5) show significant variations in the bed surface grada-
tions, which appear to have little or no correlation to discharge. )

14, The gradation of the bed material reservoir is an input requirement 3
for the numerical model. This reservoir represents the average gradation of ¢
the bed material to the depth of reasonably expected scour. This depth was "
set at 10 ft upstream from Lock and Dam No. 1 and 20 ft downstream. The model
calculates an active layer thickness that is dependent on the hydraulic param-
eters, the gradation of the previous active layer, and the gradation of the
reservoir. It is the gradation of the active layer that determines sediment :
transport past a cross section with respect to scour or deposition. This
active or surface layer gradation may be considerably different from that of
the bed material reservoir. Available bed material measurements correspond to
this active layer. Measurements of the bed material reservoir were not avail-
able; therefore, the gradation was used as an adjustment parameter in the

numerical model study.
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Sediment Inflow

15. A summary of average annual suspended sand concentrations at

Alexandria (USAED, New Orleans, 1980b) indicates that a significant decrease

% % S

in sediment transport occurred on the Red River after 1975 (Figure 6). For

-

this reason, the sediment inflow rating table used in a previous New Orleans

District model, which was based on sediment measurements taken at Shreveport
between 1965 and 1970 (USAED, New Orleans, 1980a), was not used in this

study. The only suspended sediment measurements available at Shreveport after

- A W

1975 were in 1977 and 1978, A regression analysis of these data was useu to

develop a sediment inflow rating curve for very fine, fine, medium, and coarse
sands. Measurements taken at discharges greater than 20,000 cfs were analyzed
separately to obtain the upper portion of the rating curves, Suspended mate-

rials finer than sand were not considered in this study due to the inability

S Tl -

O
{;* of the 1-D model (which uses average values for hydraulic parameters at each |
&;g cross section) to account for their deposition or scour in slack-water areas. ]
;ﬁ 16. The effect of bank erosion between Shreveport and Alexandria on the {
.:j sediment discharge at Alexandria was investigated. Suspended sediment mea- t
b surements at Shreveport and Alexandria for 1977-1978 were compared (Figure 7). :
E‘X. This comparison showed that there was actually a decrease in sand load at {
5%\ Alexandria. This decrease is attributed to hydraulic parameters. This analy-

sis did not support the notion that the sand load at Alexandria should be in-

creased due to contributions from bank erosion.
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Wi PART III: 1-D MODEL ADJUSTMENT

Water-Surface Adjustment

-~
Wl = = e -

¢
E : 17. Roughness coefficients were adjusted in the numerical model until X
A calculated water-surface profiles corresponded to measured stages at five )
ﬂgﬁ gages: Moncla (river mile 67.7), Alexandria (river mile 104.9), Boyce (river '
S‘?; mile 125.4), Colfax (river mile 140.5), and Shreveport (river mile 277). The )
?\\ 3 April 1968-30 August 1969 hydrograph was used to develop a rating curve of f
{ig Manning's n versus discharge. A hydrograph was used so that bed changes E
[ X

that occur with the rising and falling of flood stages would be considered.

""’"‘

These changes are especially important when considering low flow discharges

where the water-surface elevation is influenced by the bed elevation of river

L&

crossings. Initial bed gradations in the numerical model were taken from a ¢

- e i e

to b

previous study (USAED, New Orleans, 1980a). After a new bed material grada-

tion was determined in this study, the water-surface profile adjustment was

\ !
\§~ repeated and the final roughness coefficients determined (Table 2). Adjusted
;:iw roughness coefficients upstream from river mile 182 were significantly lower

than downstream values. This difference is attributed to a generally wider

2ﬁu channel and to the increased reach lengths between cross sections in the ]
P (
ﬂ;ﬁ numerical model. In this reach, the n values include a geometry adjustment <
-~ \
:k:: factor and should not be considered transferable to more detailed studies.
%Sf Calculated water-surface elevations are compared to measured stages in
L
Tuw Figure 8.
Al
ne.
;i{ Sediment Transport Adjustment
&
o
ﬁqq 18. The bed material gradation in the numerical model was adjusted so
\ ;
:qﬁ that the calculated sediment transport at Alexandria corresponded to measured )
{ )
:ﬁ ) data. This process also served as an adjustment of the transport function, f
z;f which in this model was that developed by Toffaleti. This function is deemed .
,
"SE appropriate because Toffaleti used data at Alexandria in the derivation of his ]
ﬂﬁ equations. :
5
a 2 19. 1Initially, an iterative process was used to estimate an appropriate :
s {
»;r? bed material gradation. Measured bed data at Shreveport and Alexandria were :
" used to develop an initial bed gradation. After a 7-year hydrograph was run, 3
i :
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' J
‘ initial conditions. This process was repeated until a stable gradation was $
‘ Ny
!) determined. Using this technique produced a calculated sand transport at ’
P Alexandria that was too high. It was concluded that this process would be m
4
‘.: N successful only if percentages of medium and coarse sand were essentially cor- :‘,
& \
n‘, rect in the beginning. These size classes move too slowly to produce a sig-
. .
.ﬁ nificant change in the bed material reservoir in a reasonable time period. 5
B 20. A second procedure was used in which the bed material measurements 3
" taken during high flows at Shreveport and above 0ld River Outflow Channel were :
.:-: used to develop a single gradation for the entire reach (Figure 9). The )
LY \]
:‘ Alexandria station is located in a pool with a revetted bank. Pools are *
ui:'u characterized by highly variable lateral velocity distributions and therefore
) !
:q: variable lateral bed material gradations. Measurements taken from the bar :
)
;:::' adjacent to the pool would be expected to be finer than measurements taken at ::
s '
5' the Shreveport and above 0ld River Outflow Channel gages, which are not :i
g;:; located in pools. Data from crossings where lateral velocity distribution is
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more constant give a better representation of bed material for purposes of the W
model because average velocities are used in the model to determine transport. 3t
High flow measurements are expected to represent the gradation of the bed
material reservoir more accurately because more mixing occurs during highly
turbulent flows. Calculated sediment transport at Alexandria, using this bed
material gradation, satisfactorily reproduced measured data (Figure 10). Sim-
ulation of the sediment discharge at Alexandria and water-surface elevations

constituted successful adjustment of the numerical model.
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' _‘): PART IV: 1-D MODEL RESULTS N
i :
i <
34% Base Conditions Ny
A

an

21. Channel improvements were Incorporated into the adjusted numerical

Z2A

model to establish a base condition for the trace width tests. The improve- A

ments included Locks and Dams Nos. 1 and 2 and existing and proposed cutoffs

-
J

-
» -
- -

X

upstream from Lock and Dam No. 1. Dredging in the model occurred once a year

P/ v.
a?f during the lowest stage at Acme. A cross section was dredged if the water f
&{ depth anywhere in the designated 200-ft-wide navigation channel was less than

;b_ 9 ft. A new-dredging routine was incorporated into HEC-6 to meet this speci- :
{?F fication. Two feet of overdredging was specified. Dredged material was

?; removed from the river. During the 7-year simulation, approximately 4 million

ﬁk- cu yd of material were dredged from the study reach downstream from Lock and :
;gé Dam No. 1. ﬁ
®

:\3. Trace Widths :
B :
;'k 22, Dredging requirements with 200-, 300-, 400~ and 500-ft trace widths ?
;'J were compared., Dredging would be relatively insignificant with a 200-ft trace y
l'. width. With a 300-ft trace width, most of the dredging requirements were met :
ﬂ\ early (during the first 2 years) as existing crossings were removed. After :
3‘§ this initial clearing, average annual dredging was estimated at 84,000 cu yd. g
S Average annual dredging during the last 5 years was calculated to be 318,000

f): and 393,000 cu yd for the 400-ft and 500-ft trace widths, respectively. ;
ffé Compared to the base (no-dikes) condition, dredging was reduced in all the 5
iﬁis contracted channels except the 500-ft trace width. The slight increase in %
‘ﬁ dredging with the 500-ft trace width, which is closest to the natural river 3
o width, is attributed to a decrease in sediment transport capacity caused by a :
L ‘ decrease in channel width, which is not compensated for by an increase in !
S?% velocity. Calculated dredging quantities are shown in Table 3, and total 4
; accumulated dredging is shown in Figure 11. :
s 23. The effectiveness of the various trace widths in moving sediment ‘
}Ea through the study reach can be evaluated by comparing the sums of dredging and E
?t& accumulated deposition. Accumulated deposition within the trace width can '
t;é occur because only a 200-ft-wide navigation channel is dredged and because )
g deposition in the navigation channel can occur below the authorized 9-ft ;
o :
o 21 :
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depth. Dredging and accumulated deposition were calculated to be about

6 million cu yd in 7 years without constrictive works. Results with various
trace widths are shown in Figure 12, With a 200-ft trace width, 3.8 million
cu yd of material were removed from the study reach primarily because of
scour. The effect of this scour on thalweg elevations is demonstrated in
Figure 13. With a 300-ft trace width, deposition and dredging are essentially
balanced and the thalweg profile is determined primarily by dredging
requirements.

24, Contracting the river channel will generally result in an increase
in velocity and depth. The effect of the trace widths on these hydraulic
parameters was determined using the numerical model. Several discharges,
ranging from 25,000 cfs to 142,000 cfs (navigation design flow), were tested.
In these tests, starting water-surface elevations at Acme were assigned the
same percent exceedance value as the discharge. (Stages and discharges were
taken from Plates 22 and 4, USAED, New Orleans, 1980a.) Average channel
velocity between Acme and Lock and Dam No. 1 was determined from the calcu-
lated channel velocities at 13 cross sections (Figure 14). At the navigation
design flow, the 200-ft trace width increased average velocity over 100 per-
cent to about 10 fps. The 300-ft trace width increased average velocity
60 percent to 7.6 fps. These increases may affect the navigability of the
river. Changes in water-surface elevation with the constricted channel were

relatively minor as shown in Table 4.
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PART V: 2-D MODEL

25. The 2-D numerical model study was conducted using the TABS-2 model-
ing system (Thomas and McAnally 1985). This system, which consists of more
than 40 computer programs to perform modeling and related tasks, provides 2-D
solutions to open channel and sediment problems using finite element tech-
niques. The major modeling components used in this study were RMA-2V and
STUDH, which calculate 2-D depth-averaged flows and sedimentation, respec-
tively. The other programs in the system perform digitizing, mesh generation,
data management, graphical display, output analysis, and model interfacing
tasks. Although TABS-2 may be used to model unsteady flow, in this study only
steady-state conditions were simulated. Input data requirements for the
hydrodynamic model (RMA-2V) include channel geometry, Manning's roughness
coefficients, turbulent exchange coefficients, and boundary flow conditions.
The sediment model (STUDH) requires hydraulic parameters from RMA-2V, sediment
characteristics, inflow concentrations, and sediment diffusion coefficients.
Sediment is represented by a single grain size, and transport is calculated
using the Ackers-White equation (Ackers and White 1973), Due to the uncer-
tainty related to the diffusion and exchange coefficients in the two models,
prototype data for adjustment purposes are highly desirable.

Grid Generation

26. A finite element grid was developed to simulate about 1.5 miles
of the Red River downstream from Lock and Dam No. 1 (Figure 15). The grid

contained 931 elements and included the lock approach channel, I-wall, and
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Figure 15. Finite element grid of reach dovnstream from Lock and Dam 1

25

Yhans N A

WA '\{,,\ Y

WS,

, , N
AW, b 2 ot P U S A P R X A -l‘.‘l

!‘l‘. ‘h!h. x ‘?'n..a!'.v

-
-

e had

I e

- - -

-

P it g




s g s gy o b A g Y

exit channel. The floating guide wall was simulated by increasing the bottom
‘ﬂs elevation by 5.33 ft, which is the guide wall's submerged depth. Additional

A energy losses were accounted for by assigning a relatively high roughness

coefficient (0.05). Initial bed elevations, which were obtained from con-

prrAds
'

struction drawings, represent conditions prior to opening of the structure.

o

Slip boundaries were specified for most of the grid, allowing velocities to be

.

N calculated along the boundary. This method eliminates the need for an ex-
"‘
_A: 3 tremely fine grid adjacent to the boundary where the lateral velocity gradient
%“. is steep. Some of the boundary nodes were specified as stagnation points,
f
gga i.e., locations of zero velocity. These specifications are generally located
a1t
rr in corners of the grid and are employed to ease calculation of slopes for the
'\ slip boundaries. The tailwater at the downstream boundary and inflow at the
ey
f&ﬁ upstream boundary were defined for each steady-state run. Boundary specifica-~
1Yy
S tions used in the study are shown in Figure 16.
y )
&
®
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L ,
D
‘fa Figure 16. Boundary specifications
’n: Hydrodynamic Boundary Conditions
AN
RN
mir 27. The inflow distribution to the numerical model was based on the
1- ﬂ
o results of TABS-2 numerical model work upstream from Lock and Dam No. 1l con-
e ducted by USAED, Vicksburg (Little 1985). The calculated distribution per-~
1
:}k centage over the spillway for a discharge of 92,000 cfs was used for all flows
‘J‘
:{{. in this study. The inflow velocity distribution is shown in Plate 1. These
L
‘.P values were used to calculate unit discharges, which were then used as input
RLts for RMA-2V.
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R :
;? 28. The model tailwater was determined using the backwater routine in %
fa; HEC-6. Three cross sections were added to the previously developed 1-D model. ﬁ
" Stages at Acme were used for the downstream tailwater, and the water-surface L
:*f: elevation calculated at river mile 42.65 was used as the tailwater for RMA-2V. ﬁ
-% 3
o Roughness Coefficients A
) _‘
? ? 29. Manning's roughness coefficients were determined using predictive §
; : equations that include relative roughness as a variable and comparisons with k
; N measured data. The roughness coefficient for the channel sand bottom was set a
('\ at 0.017. This value was used by the Vicksburg District in their study up- -
'»: stream from Lock and Dam No. 1 (Little 1985) and is based on grain size and ‘E
3‘1 water-surface elevation adjustment. Riprap placed on side slopes, downstream ﬁ
ig. from the spillway, and in the lock approach channel has a D50 which varies ;
PS between 24 and 36 in. The following equation (Anderson, Paintal, and
%7. Davenport 1970) defines n : s
'3’3 n = 0.0395 p, 0+ 1¢7 '{
"Zd 3§
° where D50 is the grain size in feet of which 50 percent of the bed is finer.
?§ Roughness coefficients for the riprap vary between 0.039 and 0.041. The Lim~ ﬁ
qs: erinos equation (1970), an equation that considers the effect of relative i
% roughness, E:
o L __0.09%R 0'1627 :‘
o 1.16 + 2.0 1ogzl—)- ) 3
" 84 N
i ‘

e

where R 1is the hydraulic radius in feet, yielded the same values for rough- '

-
.-

ness coefficients when the depth exceeded 20 ft. The roughness coefficient

e for the channel riprap bottom was set at 0.040. The Limerinos equation ¥
® increased the roughness coefficient to 0.045 at a depth of 10 ft and to 0.085 |
e at a depth of 1 ft. These results were found to be similar to calculations y
1'% using equations by Chow (1959) and Leopold, Wolman, and Miller (1964). Calcu- E
bég lated velocity distributions, using roughness coefficients within the range of \
® predicted values, were compared to measured velocity distributions taken in i
3% the exit channel about one-half mile downstream from the spillway. The :
% i
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channel cross section was modified in the numerical model to account for bank

erosion (Figure 17). Separate roughness coefficients were assigned to the

-

side slopes and the boundary elements. To maintain numerical stability,

s boundary elements were designed to be submerged in the numerical model and

% therefore require a somewhat greater roughness value to balance conveyance.

()
g Roughness coefficients of 0.040 for the side slopes and 0,050 for the boundary

) elements were found to reproduce the measured velocity distributions

(M3 adequately (Plate 2).
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. Turbulent Exchange Coefficients )
. 1
) K]
1:.5. 30. Momentum exchanges due to velocity gradients are approximated by "
LX) 4
‘: multiplying a turbulent exchange coefficient times the second derivative of ‘:
:..., plying /
“' the velocity with respect to the x and y directions, Exx and Eyx ; and y
b
o Exy and Eyy , respectively. A sensitivity study was conducted to test the !:
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influence of the turbulent exchange coefficients on flow patterns in the num-

erical model. Coefficients between 10 and 50 1b-sec/ft2 were tested with a

E 3 e e )

discharge of 92,000 cfs and a tailwater of 44.5 ft. The magnitude of the ex-

a3

'::;li: change coefficients did not appear to have any significant effect on general ;
;E Yy flow patterns (Plates 3-6). In all cases, an eddy developed on the left :
:::::‘I descending bank of the lock approach channel. The strength of the eddy into :
:"‘)“ the lock chamber itself is compared in Plates 7-11. The strongest eddy oc- !
;;&: curred with coefficients of 15, but differences were small, Similar flow pat- :
::E’t‘ terns were observed in the prototype, but there were no measurements to f
ii:i? compare with calculated results.

yh.?" 31. The effect of the turbulent exchange coefficient on velocity dis- N
‘ tribution in the exit channel was also tested. Velocities calculated at a Y
,::'.:. discharge of 92,000 cfs and a tailwater of 44.5 ft with coefficients ranging

:‘::':::: between 5 and 50 1b-—sec/ft:2 were compared with measured velocities (Plate 12). :
“'. There 1s more Zlow in the center of the channel with the lower exchange coef-
'S ficients, but all of the calculated velocity distributions fit withia the j
;c,: N measured data scatter. _
> < 32. A turbulent exchange coefficient of 25 lb-sec/ft:2 has provided '
K 2 satisfactory results in previous numerical model investigations. The ;_
::E::. Vicksburg District determined that this value produced reasonable flow pat- 0
:::::, terns in the numerical model study upstream from Lock and Dam No. 1. The ’,
:E:E:E numerical solution converges fairly well with a coefficient of 25. Conver- (
:3. gence is more difficult with lower exchange coefficients. Due to the apparent ;
;::v;' lack of sensitivity of the hydrodynamics to the turbulent exchange coeffi- "
%:,.‘ cients tested, turbulent exchange coefficients of 25 1b-sec/ft2 were used in '
:5:. this study. ;
W

," Bed Material

3 o
:q: 33. The TABS-2 system analyzes sediment movement using a representative :
."‘ grain size. This technique works well when the bed material is fairly uni- '
i::' form. Unfortunately, bed material size varies considerably around the struc-

:::Q ture and laterally across the channel., Upstream from Lock and Dam No. 1 at

?:5:: river mile 51.5, the median bed material size varied between 0.13 mm at the

® point bar and 0.65 mm at the thalweg during measurements taken in April and

.\-". May 1985. Bed samples from deposits in the upstream and downstream lock

),
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approach channels had D50 values between 0.07 and 0.04 mm. Inside the lock
chamber itself, a sample near the upstream gate had a median size of 0.028 mm,
and a sample near the downstream gate had a median size of 0.055 mm. In addi-
tion, bed material size was observed to vary with depth in the deposit. This
variation with depth is due to layering of different sizes of fairly uniform
material and is attributed to changes in flow patterns at different discharges
and stages. Since the complex variation of bed material size cannot be ac-
counted for in the numerical model, a representative size must be selected for
the area of primary interest. An approximation of the bed material size was
sufficient, because appropriate response in the numerical model was adjusted
using the sediment diffusion coefficients.

34, Based on a sample taken from the deposit in the upstream lock ap-
proach channel in November 1984, the Vicksburg District chose an average grain
size of 0.07 mm for its numerical model study upstream from Lock and Dam
No. 1. Material taken from a bucket dredge just downstream from the down-
stream miter gate in March 1985 was slightly finer with a D50 of 0.065 mm,
The total deposit depth was about 30 ft at this location. Gradation curves
for these samples are shown in Plate 13. Differences between the upstream and
downstream sample gradations were not considered great enough to require dif-
ferent values in the two numerical models; therefore, for the sake of consis-
tency, an average grain size of 0.07 mm was used in the numerical model study

downstream from Lock and Dam No. 1.

Sediment Concentration

35. The sediment inflow concentration for the numerical model is a
function of the representative grain size used in the study. Only the portion
of the total sediment load that contributes to bed changes in the primary area
of interest is included. Based on a bed material gradation with a median
diameter of 0.07 mm in the upstream lock approach channel, it was determined
that material greater than 0.03 mm would be considered in determining sediment
inflow, This includes 90 percent of the material found in the bed. The re-
maining 10 percent can be considered wash load (Einstein 1950).

36. Since most of the bed material was very fine sand and very coarse
silt (0.125-0.031 mm), suspended sediment data with size class breakdowns in

both the sand and silt ranges were required to determine the appropriate

30
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p
o sediment inflow concentration. The Vicksburg District made suspended sediment
L Y
ﬁé? measurements upstream from Lock and Dam No., 1 at river mile 51,5 in April and
t
R May 1985. At a discharge of 59,500 cfs, a total suspended sediment concentra-
ﬁgﬁ tion of 771 mg/% was measured; and at 93,000 cfs, the concentration was
e
w&* 1,525 mg/%. These concentrations are compared with concentrations at Alexan-
1%
Qﬁ dria for 1971, 1972, and 1975-1981, in Figure 18. The 1985 concentrations are
Wiy
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»
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j WATER DISCHARGE, 1,000 CFS
e
,52 Figure 18. Comparison of measured suspended sediment concentration
ks at Alexandria and upstream from Lock and Dam No. 1
848
o
° within the range of data, but at the lower end. This distribution may have
{5! occurred because the 1985 data were taken well into the runoff season when
o
5 . concentrations typically decline. The 1985 data did have size class analyses
\
kﬂ: in the silt range so that appropriate sediment concentrations could be deter-
)
" mined. An additional 20 percent reduction in the measured sediment concentra- |
;ﬁi tion was made to account for the calculated sediment concentration reduction ;
:? . between the measurement site and the dam determined by the Vicksburg District :
2igh i
g ’ in their upstream model study. Extrapolation and interpolation from these two :
‘ 1
; . data points were used to determine sediment inflow concentration at the up~ !
|
?;f stream boundary of the model for various discharges (Figure 19).
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vkh: for D50 of 0.07 mm

X 37. Steady-state or equilibrium sediment concentrations are calculated
'%k' at each node during a spinup run with the STUDH program. These calculations
;ﬁﬁ can be accomplished within a few time-steps at a constant discharge. These
equilibrium concentrations are then used as initial conditions in the normal
IR STUDH run. This procedure eliminates the problem of assuming a constant

R initial concentration for the entire grid, which results in rapid deposition

o in slack-water areas.

X5 Sediment Diffusion Coefficients

B 38. A sensitivity study was conducted to determine the influence of the
Vi, sediment diffusion coefficients on sediment deposition in the numerical model.

o Deposition was calculated for a 5-day period with a discharge of 92,000 cfs
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:ﬁ:' and an inflowing sediment concentration of 670 mg/%. Initial concentrations
g: throughout the grid were calculated using spinup runs. Sediment diffusion co-
ey efficients between 25 and 0.1 mzlsec were calculated. Sediment deposition

33{ during the 5-day simulation at four locations in the grid is compared in

:ﬁg Table 5. 1In the lock approach and spillway exit channels, the calculated sed-
:kﬁ iment deposition does not appear to be sensitive to the magnitude of the sedi-
fﬁ? ment diffusion coefficients. In these areas, flow is moving generally in a
é?i downstream direction and conveyance is the primary driving force affecting
:sa sediment movement. However, at the lock gate, the magnitude of the sediment
%ﬁ deposition is significantly influenced by the sediment diffusion coefficients.
a' The lock gate is essentially in a dead-water area where sediment deposition is
}? primarily a function of diffusion. The sensitivity study demonstrated the
ﬁga critical importance of the coefficients for predicting deposition in the vi-
5&: cinity of the lock gate.
,,, 39, Hydrographic survey data in the downstream lock approach channel
:“ ) taken on 1 May 1985 were used to adjust the numerical model. Prior to this
:*: survey, about 52,000 cu yd were dredged between the end of the floating guide
;*; wall and 400 ft downstream. This amount represents about 17 percent of the
. material deposited in the approach channel, Deposition recorded by this
Eys survey includes the sediment accumulated since the structure was opened just
gaﬁ prior to the 1984-1985 runoff season.
%s 40. Boundary conditions for an October 1984-May 1985 simulation period
f)f were determined for the numerical model. A discharge histograph* was devel-
,Eﬁ oped from daily discharge measurements at Alexandria and Lock and Dam No. 1
335 (Plate 14). Daily discharge measurements at Alexandria were used prior to

:; 12 December 1984, when daily measurements at Lock and Dam No. 1 were started.
‘g_ A stage histograph was developed from daily stage measurements downstream from
:ﬁk Lock and Dam No. 1 supplemented by daily stage records at Acme (Plate 15).
gég The Acme record was adjusted for head losses between the two gages and used to
e f111 gaps in the Lock and Dam No. 1 record. Sediment concentrations at the
_. upstream boundary were assigned from the rating curve developed from suspended
q:; sediment measurements taken upstream from Lock and Dam No. 1 (river mile 51.3)
,§E: in April and May 1985 (Figure 19). Input for the histograph simulation is
:J:- listed in Table 6.
.ﬁ
;:E * dA hydrograph simulated by a series of steady-state events of varying
N urations is called a histograph.
s 33
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J’ 41. A preliminary sediment diffusion coefficient was selected using an !
$' approximate technique for simulating deposition between October 1984 and May )
?f 1985. Deposition at selected elements in the lock approach channel was calcu- ,:
:ii lated for a high-water condition (92,000 cfs, stage = 44.5 ft) and a low-water a
3: condition (78,000 cfs, stage = 36.2 ft)., Histograph events were categorized ‘§
;r' as either high- or low-water events depending on whether their stage exceeded .ﬁ
}‘ the top of the iI-wall (el 38). The product of duration, discharge, and inflow 3
‘i: concentration for each histograph event was divided by the same product for '{
&: either the high- or low-water base condition to establish a correction fac- !;
:. tor. This factor was multiplied by the deposition that occurred during the .g
(. base condition to determine an estimated deposition for that histograph |
aﬁ event. Total deposition for the period was calculated by adding deposition 2
?f from each event. 3
$~ 42. The approximate technique was used to estimate sediment deposition ',
® with sediment diffusion coefficients of 5 and 2. With a coefficient of 5, ]
é\ calculated sediment deposition between the lock gate and the end of the float- a%
&, ing guide wall (800 ft) was 125 percent of the measured deposition; and be- A
3 tween the lock gate and the end of the lock approach chamnel (1,800 ft), b
! 84 percent of the measured deposition. With a coefficient of 2, calculated @
;F sediment deposition between the lock gate and the end of the floating guide gg
1;{ wall was 104 percent of the measured deposition; to the end of the approach .g
¥ channel, 79 percent of the measured deposition was calculated. A sediment ﬂ&
f diffusion coefficient of 2 was selected for a detailed simulation.

és 43, The numerical model was used to make a detailed simulation of depo-

f: sition and scour in the lock approach channel. Hydrodynamic calculations were :#f
EE made for each steady-state event in the October 1984 to May 1985 histograph. ‘i
[ ) Channel geometry was updated at the end of each event to account for scour or

4+
57

deposition. Steady-state sediment concentrations were calculated and used as

?} initial conditions before each sediment run., Results of the simulation are -
;i shown in Figure 20. The simulation was especially good for the first 500 ft &t
o downstream from the lock gate. For the next 1,000 ft, the model predicted ®
;T. about 75 percent of the measured deposition. The numerical model was deemed Eﬂ
% to have successfully simulated the prototype in the primary area of interest-- “&
ﬁg downstream from the lock gate--and could be used to evaluate design ‘5&
[ alternatives.
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PART VI: MODEL RESULTS

Inicial Desigg Alternatives

44, Two design changes were initially proposed to decrease the strength
of the eddy, and thereby the quantity of sediment, into the lock chamber.
Alternative 1 consisted of raising the I-wall to el 60 for 300 ft. This al-
ternative would provide a barrier between the lock approach and spillway exit
channels for a total of 450 ft downstream from the lock gate. Alternative 2
included the 300-ft-long extension of the I-wall and a 250-ft-long longitudi-
nal dike on the left descending bank downstream from the lock wing wall
(Figure 21).

45. Alternatives 1 and 2 were tested with a discharge of 92,000 cfs and
a tailwater of 44.5 ft. Velocity vectors are compared with the existing con-

ditions in Plates 16-18, The 300-ft-long extension reduced the strength of
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the eddy into the lock chamber. There was no apparent additional benefit from
the dike.

46. The effect of Alternatives 1l and 2 on sediment deposition at the
lock gate was tested with a discharge of 92,000 cfs, a tailwater of 44.5 ft,
an inflowing sediment concentration of 670 mg/%, and a duration of 10 days. A
comparison of Alternatives 1 and 2 with existing conditions showed that a
45 percent reduction was achieved with both alternatives. With no apparent ad-

ditional benefit from the dike, Alternative 2 was dropped from consideration.

Additional Raising of the I-wall

47, Alternatives 3 and 4 called for raising the I-wall for a total of
400 ft and 1,300 ft, respectively (Figure 21). With Alternative 4 the entire
I-wall would be raised to el 60. Using the same flow conditions in the nu-
merical model as before, it was determined that Alternative 3 would provide a
72 percent reduction in existing deposition at the lock gate and Alternative 4
would provide a 97 percent reduction. A deposition profile in the lock ap-
proach channel for the simulated period is shown in Figure 22. This figure

4
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Figure 22. Effect of raising I-wall on deposition in back approach channel
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demonstrates that the percentage reduction in deposition at the lock gate is
not representative of the rest of the approach channel. There will still be
significant deposition in the lock approach channel with any of the alterna-

tives tested. Deposition contour maps are shown in Plates 19-21.
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PART VII: CONCLUSIONS AND RECOMMENDATIONS

48, The results of the 1-D numerical model study can be used to evalu-
ate alternative trace widths for the Red River downstream from Lock and Dam
No. 1. Calculated quantities of dredging depend on the sediment inflow, bed
material gradation assumptions, hydrograph characteristics, and the assumption
that all flow is confined to the trace width being tested. The 1-D numerical
model does not produce the pool crossing sequence ncr does it include deposi-
tion of fine material that would be expected between dikes or in other slack-
water areas. For these reasons, calculated dredging and deposition quantities
should be considered relative and not as quantitative estimates or long-term
average annual values. Model study results suggest that excessive scour would
occur with a 200-ft trace width, that a 500-ft trace width would have no sig-
nificant effect, and in terms of maintenance, that a 300-ft trace width would
be appropriate.

49. This study has evaluated the effectiveness of various trace widths
on sediment movement through the study reach, It is also necessary to con-
sider the possible effect of the contraction works on design flood flows and
navigability. This question could be addressed in a more detailed study that
incorporates the following: (a) better definition of the dikes, including the
top elevation and sloping dike faces; (b) inclusion of areas between dikes
accounting for deposition and increase of roughness due to vegetation; and
(c) inclusion of overbank areas for flood flow conveyance. To define long-
term dredging quantities more accurately, a long-term hydrograph, i.e.,

50 years, should be run with extreme events including hypothetical floods
included.

50. The 2-D model study demonstrated that significant deposition prob-
lems in the downstream lock approach channel will continue with the existing
design. Deposition against the downstream lock miter gate can be reduced by
raising the I-wall above the water level. Deposition at the gate will de-
crease as the distance between the end of the raised I-wall and the lock gate

increases.
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Table 1 o
Average Annual Bed Material Gradation, Alexandria "

“Percent in Size Class

Very Very 2

Fine Fine Medium Coarse Coarse )

Year Silt Sand Sand _Sand _Sand Sand o

1971 1.6 15.9 59.9 18.8 3.4 0.2 2
1972 8.2 46.3 29.6 13.8 2.0 0.1

1975 8.9 44 .4 38.1 8.0 0.5 0.1 .

1976 26.0 47.7 20.6 4.6 1.0 0.2 W
1977 34.5 32.0 16.9 15.7 0.7 0.2

1978 17.8 43.0 35.4 2.9 0.6 0.1 | 4
1979 10.2 42.8 30.2 12.7 3.0 0.6
1980 3.0 39.7 48.0 8.8 0.4 0.1

1981 2.8 24,2 57.4 15.5 0.1 - W
Average 12.6 37.3 37.3 11.2 1.3 0.2

Table 2
Manning's Roughness Coefficients ‘

Discharge in 1,000 cfs

River Mile 200 125 90 30 _4
34.31 0.017 0.017 0.021 0.021 0.022
69.02 0.021 0.023 0.024 0.024 0.024
103.02 0.020 0.021 0.023 0.029 0.031 )
127.03 0.024 0.026 0.027 0.030 0.032 R
156.81 0.025 0.025 0.026 0.032 0.032 N
181.99 0.015 0.016 0.016 0.024 0.032 3
- ¢
P .
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Table 3
Calculated Dredging Quantities

W LA e ]

Dredging, 1,000 cu yd

,qﬁi No Trace Widths, ft :
,p& Hydrograph Contraction 500 400 300 200 3
5‘ 1975 900 904 677 193 28 ;
R 1976 954 911 739 590 71 '
{.? 1977 457 455 195 78 9 :
% 1978 529 544 649 159 - )
a..:l.

o 1979 - - - - -- \
e :
M 1980 770 900 634 131 -
o 1981 67 68 110 54 - :

Vg !
f. Total 3,667 3,782 3,004 1,205 108 i
s
® '
s i
‘- :
3 § !
o ‘
p
o *
i '?
MR )
By s
:&:l‘ 'C
Rt Table 4 .
;.) Water-Surface Elevation at River Mile 41 :
‘¥ )

i §
’3‘7' ¢
;“ﬁ Discharge No Trace Width, ft ¢

W :
;. n:: cfs Contraction 200 300 400 500 "

t. - —_— - - - "
A 25,000 29.8 29.9 29.9 29.8 29.8 ;
;::i‘ 50,000 40.0 40.3 40.1 40.0 40.0 ;

)

3 75,000 46.6 47.2 46.8 46.6 46.6 ;;
' g
/ 100,000 52.1 52.9 52.5 52.2 52.1 '
- s
. 125,000 564.1 54.9 54.5 54.2 54.1 )
Sy 142,000 57.1 58.1 57.6 57.3 57.1 )
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Table 5
Sensitivity of Deposition to Sediment Diffusion Coefficients

Deposition, ft

V?Q Sediment Lock Approach Lock Approach Spillway Exit X
mr Diffusion Channel 1,000 ft Channel 1,400 ft Channel 600 ft :é
;?.‘ Coefficient Lock Downstream Downstream Downstream ﬁ
:4? m?/sec Gate from Gate from Gate from Dam i
'n :
' 25.0 1.9 1.9 2.0 2.3
L) 1
ik 15.0 1.9 1.9 1.9 2.3 ]
A (]
e 5.0 1.5 1.9 2.0 2.3 "
WG
o 2.0 1.1 1.8 2.0 2.4 v
’!'ﬂ o
0.5 0.3 1.9 2.2 2.4 »
. 0.1 0.1 2.1 2.2 2.4 A
)
(
3 g
p# Note: Original (Type 1) design; discharge = 92,000 cfs for 5 days; sediment ';
:i‘ inflow concentration = 670 mg/L; representative grain size = 0.07 mm. \
3 :
e Table 6 ‘e
i #
,3 Adjustment Simulation Histograph '#
N ]
. Inflow
f¢5 Simulation Period Time Discharge Tailwater Concentration :ﬁ
e No. Start Finish days cfs ft mg/ L "
k N
. 1 20 Oct 26 Oct 7 42,000 28.0 220 N
N v
2 27 Oct 04 Nov 9 71,000 37.0 460 X!
;;.-; 3 05 Nov 08 Nov 4 82,000 39.0 560 3
. Ly
B 4 09 Nov 12 Dec 34 58,000 37.0 350 i
h Y,
A 5 13 Dec 21 Dec 9 39,000 31.5 200 3
‘ M
, 6 22 Dec 30 Dec 9 74,000 37.0 470 !
wa 7 31 Dec 06 Jan 7 57,000 37.0 370 o
K, 8 07 Jan 15 Jan 9 68,000 40.0 430 4
" 9 16 Jan 23 Jan 8 38,000 37.5 190 1
\ 10 24 Jan 11 Feb 19 38,000 28.0 190
:w, 11 12 Feb 01 Mar 18 48,000 35.0 280 3
B '
oy 12 02 Mar 13 Mar 12 92,000 44.5 670 ¢
B '1
8 13 14 Mar 25 Mar 12 62,000 44.5 380
e \
.} 14 26 Mar 14 Apr 21 92,000 44.5 670 ‘
% Y 15 15 Apr 30 Apr 15 43,000 39.5 230 v
" :
',: 1 :l
1’.‘: ':
£ Y
Q' >
% :
i Y
04 l. () W
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