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SUMMARY

Gratings produced by the photodoping of chaicogenide glasses are shown 10 have
great promise for use as diffracting elements in the red to far infrared (up to 1Sym). In
principle, they are simple to fabricate - phase gratings being produced by mask exposure
or holographic techniques. The performance of bulk, rectangular phase gratings s
investigated using a coupled wave model and a detailed analysis performed in the thin,
multiwave and volume diffraction regimes. High efficiencies (> 97%) are found to be
achievable in the multiwave regime. Based on available material data for silver doped
arsenic sulphide glasses, the optimum parameters for operation at 632.8nm, 4;m and
10.6um are calculated. The maximum efficiencies likely to be achieved and angular
responses are evaluated.
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1. INTRODUCTION

Chalcogenide glasses, depending upon composition, are capable of the utansnussion of
electromagnetic radiation from (he visible to beyund [Sum {I], including the atmospheri
windows of 3-Sum and 8-14um. In addition, many of them cxhibit a wide varicty of
photoinduced phenomena. These effects include photobleaching and photodarkening, and
more  substantial  effects  such  as  photnpolymerisation.  photocrystallisation  and  the
photodiffusion of metals [2]. Such phenomena, especially photodiffusion, in combination
with the high transmission of the bulk glasses, may be wuseful in the pioducuon ot

diffractive elements for the infra-red wavebands.

Diffraction elements have several potential uses For example, they have sumce
advantages over conventional refractive elements (typically germanum  lenses 1 the IR
bands), particularly where weight and cost are important cansiderations {3} Alst they

may be used as combiners, filters and have other novel applications

In  this memo, bulk diffractive structures, capable of bhang  produced by
photodiffusion  in chalcogenides, will be analysed The treatment s hmited o bulk
gratings and will not consider surface rehief gratings - also capable of being produced by
photodissolution A brief description of the effect is used 10 show huw the siuptest
gratings to fahricate are predominantly rectangular in profile  In contrast 10 the sinusoidal
tase, not a great deal of work has been done on the propeines of such gratings A
multiwave coupled wave theory is derived, capable of analysing diffraction by the
rectangular gratings aver a wide range of conditions  Thearetical results, derived from the
model, are then presented, and the limiting cases of thin and volume (thick) diffiacuon
discussed.  The multiwave regime is then investigated by numerical solution of the toupled
wave equations. Finally, the likely performance of a typical chalcogenidesphotudoped
metal system is determined and the required modulations and thicknesses estumated for the

aptimum efficiencies.

2. THE PHOQTODISSOLUTION EFFECT

The following discussion is intended to give a rough, qualilative explanation of the
phenomenon. For a more detailed treatment, the reader is referred 1o the literature [eg
2.4]

In simple terms, photodissolution (also known as photodoping) is an effect where

actinic radiation causes the migration of a metal through an amorphous chalcogenide




Typically the chalcogenide may be one of those in the arsenic/sulphur system, and the
metal silver or copper. A wide range of combinations using other chalcogenides and or
metals are, however, possible [4]. The radiation can be over a wide band, above or
below the band edge of the material. Photodissolution rates tend to increase with photon
energy.

In practice, a chalcogenide film, usually formed by evaporation or spinning [5]. is
coa;ed on one side of a thin metallic layer. Initially, radiation of a suitable wavelength is
absorbed at the glass/metal interface. This causes growth of a metal doped region into
the glass. Subsequently, the incoming radiation is absorbed at the undoped/doped glass
boundary, causing further growth of this region and gradually depleting the metal reservoir.
It is important to note that the migration of the metal is only along the direction of the
incoming radiation ~ there is a distinct boundary between the undoped and the doped

regions. In this way, bands of photodoped material grow into the initially undoped glass.

3. GRATING FORMATION

The photodissolution mechanism can be used to produce gratings. For example,
exposure through a periodic mask will eventually produce a rectangular grating throughout
the thickness of the chalcogenide film (figure 1). Holographic exposure techniques
(interference of two or more wavefronts) can alsc be used for grating formation [6,7]. In
the latter case, however, the grating structure is more complex with a varying profile
through the depth of the film.

Early work on photodoping has been, to a large extent, driven by the search for
very high resolution photoresists [8] (0.1pum lines have been produced by chalcogenide
resists [4]). Thus, resolution of the material is more than acceptable for gratings for

visible and infrared diffractive applications.

The differing refractive indices of the photodoped and undoped regions result, in the
simplest case of mask exposure, in a periodic rectangular profile refractive index
modulation, throughout the volume of the material. In this way, a diffractive transmission
element may be produced.  Reflective, diffractive elements would require the grating
planes be approximately parallel to the film surface. This would be difficult to achieve
with the recording techniques outlined above.  Distributing the metal as small grains

throughout the film and using holographic exposure may overcome this.




-

T ———— -v ~——— s )

+L ] T ACTINIC RADIATION
( 4 A 4

— B MASK

..l(-UNoopeo CHALCOGENIDE
:A_L protoboPep

METAL RESERVOIR

N

SUBSTRATE

Figure 1. Production of a photodoped rectangular grating by exposure through a mask.
For clarity, the metallic reservoir is shown sandwiched between the substrate and the
chalcogenide.  To facilitate removal of the unused metal after exposure, however, the
metal is, in practice, deposited on top of the chalcogenide, and exposure made either
through it, or the substrate.

Initial work is aimed at exploiting bulk rectangular transmission gratings. However,
a surface relief grating can easily be obtained by selective etching of the photodoped. bulk

grating [4]. Such structures will be the subject of a future analysis.

4. THEORETICAL ANALYSIS

In the following, a theoretical model, based on that of Magnusson and Gaylord [9],
is derived. Using this model diffraction by bulk, rectangular profile gratings is analysed.
From this, it should be possible to determine the diffraction efficiency of the grating, as a
function of the grating parameters. In this way the maximum efficiency likely to be

achievable and the feasibility of fabrication of the grating can be estimated.
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Figure 2. The grating system to be analysed.

4.1 The Coupled Wave Model

The diffractive element is bounded in an infinite, parallel sided slab. The
grating characteristics in the slab will generally vary as a function of y, but is
assumed to be locally plane (figure 2). This is a valid assumption if the grating
vector does not change much as a function of x [10]. The modulation profile can

be written as the Fourier Series:

@
e(r) = €, = deg E ((i - _)(i) cos (iK.r) (1
i-1
where the profile is assumed to be an even function. For the rectangular profile:

€ " fmin+A( [
(2)

¢ - (2/ix) Ac¢ sin(ipux)

where

s




¢/, is the bulk dielectric constant of the slab

¢g is the bulk absorption

e} and ¢ are the phase and absorption modulation of the ith harmonic of
the grating profile.

K is the grating vector, the direction of which is perpendicular to the grating
fringes,
with 1K1 = 2x/A, where A is the grating period.
and  Ae¢ = emax ~ Emin

u is a fill (mark/space) parameter.

The modulation is taken to be constant throughout the depth of the grating.
Replay is assumed to be with an inifinite, monochromatic plane wave, at angle A,
to the slab normal. The grating is taken to be index matched to the surrounding
medium. The polarisation of the replay wave is assumed perpendicular to the plane
of the grating - this ensures maximum coupling. The time independent, scala.

wave equation can thus be used

VzE + 62 (e/eo) E = 0 3
where B = 2xs¢y/ N is the propagation constant in the grating,

N is the free space wavelength of the radiation.

It is assumed that the diffracted waves are such that the electric field in the

grating, on replay, is in the form:

+x

- "y
E DAL e (i ko) 4
me=—co

where Ap, is the amplitude of the mth diffraction order having wave vector kg, and

m = 0 corresponds to the replay wave.

A relationship between these wave vectors is taken to be in the 'k-vector

closure' form:

Ky = k, + K (5)

Substituting equation (4) into (3), with (1) and (5), and equating coefficients

of exp(-jkm.r), gives a set of differential equations of the form:
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* The approximation is then made that second deriatives in (6) are negligible.

This is valid if the amplitudes Ap, change relatively slowly with x.

From (6), i

can be seen that this situation will arise if the dephasing parameter (Bz—k%). the

. LJ . .
ratio (olf;, and the modulation ratios ¢j/e, are small.

can be met if:
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The latter two conditions

Dropping the second derivatives, equations (6) simplify to become
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The physical interpretation of equations (8) is as follows:

order Ap, is coupled to the (m =

coefficeints (x; and «j).
grating (i =
much more numerous.
dephasing term {(rp,),
diffracted orders.

For significant power transfer from one order to another,

must be met [11).

Also their phase velocities must be approximately equal.

a measure of the mismatch

Each diffraction
i) orders {Am4; and Ap_j) by the ith coupling

In contrast to the coupling mechanisms in a sinusoidal

1 only), the coupling paths in gratings of more complex profile are

The central terms include absorption losses (a) and the

in phase velocities of the

three conditions

Firstly, there must be a coupling path between the two orders.

Finally, the length of the




2 "
d”A dA €
m . m 2 2 2
RS L a [[" - k) - 8 —']Am
dx €
[
(6
5 - (. ("
B S i i -
M - T ] [Am+i * A ] 0
i=1 ‘o ‘o

The approximation is then made that second deriatives in (6) are neg]iéible.
This is valid if the amplitudes A, change relatively slowly with x. From (6), it
can be seen that this situation will arise if the dephasing parameter (Bz—k,%). the
ratio £;/e(', and the modulation ratios ¢;/¢, are small.  The latter two conditions

can be met if:
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Dropping the second derivatives, equations (6) simplify to become
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The physical interpretation of equations (8) is as follows: Each diffraction
order Ap, is coupled to the (m * i) orders (A4 and Ay _j) by the ith coupling
coefficeints (xi' and "i")~ In contrast to the coupling mechanisms in a sinusoidal
grating (i = 1 only), the coupling paths in gratings of more complex profile are
much more numerous. The central terms include absorption losses (a) and the
dephasing term (rpy), a measure of the mismatch in phase velocities of the

diffracted orders.

For significant power transfer from one order to another, three conditions
must be met [11]. Firstly, there must be a coupling path between the two orders.

Also their phase velocities must be approximately equal. Finally, the length of the




interaction region must be correct. Note, however, that indirect coupling can occur

via other diffraction orders.

Let the volume parameter ( and the parameter P be defined as, respectively,

Q - K2/(26x1) 9,
and

P = sin(F0 - &) 26/K (10)
where k= «{ - j«I
and ® is the grating slant {angle of the grating vector to the slab face).

On the substitution into equations (8),

5 I +{Q-JmK1Q(m+P)}A

o
Y .
M R [Am+i+Am—i] 0 (11
i=1
Absorption losses are now neglected. For the chalcogenides under

consideration, this is a good approximation over much of their transmission band.
For example, amorphous As;S3 has an absorption coefficient o of around 1072
em™! in the 1 to 10um band [12]. The photodoped regions, depending on
composition, may be slightly more absorbing (due to some photodarkening). Note
that the grating structures of interest are of the order of tens of microns in
thickness. The assumption of no absorption also precludes the existence of

absorption modulation.

Finally, the grating is assumed to be unslanted, ie the grating vector is
parallel to the input and exit boundaries. Such pgratings would result, for example,
using a2 mask with exposure by plane wave, normally incident radiation. Thus the

problem becomes one of analysing a pure phase, lossless, unslanted, transmission

grating. Equations (10) then reduce to the set of coupled equations. for
m = -o,,...,~1,0,+1,..  + «
dAm ? L

- i H —_— - -
aT jmQ (m+ P) Am+J lox [Am+i +Am-i] 0 (1

i=1 1
where £ = «x{x/cosf, is the modulation parameter.
8
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These equations obey power conservation. The trapsmission grating boundary

conditions are:
A(x=0) = 0 (m # 0)
m

(13
and Ao(x -0) = 1

Solution of equations (12) subject to these boundary conditions will give the
amplitudes of the diffraction orders, Ap,. as a function of the modulation ¢, for a

given 1 and P.

4.2 Diffraction Regimes

In general, the solution of the infinite set of equations (12) requires numerical
techniques and truncation to a finite number of diffraction orders. However, there
are two limiting cases for which analytic solutions are possible. These are at
opposite extremes of transmission grating behaviour, and occur when the thickness
parameter ) takes vanishingly small or very large values The former case is
referred to thin grating behaviour (often termed Raman Nath Diffraction after
Raman and Nath's thin, sinusoidal grating analysis {13}); the latter as volume (or
thick) diffraction.

Thin_Grating. As ) tends to very small values, the dephasing term for each
diffraction order becomes very small. Large numbers of orders can have significant

power in them (this can be seen qualitatively from figure 3), and equations (12)

reduce to, for m = =«,....-1,0,+1,+2,.... 4+ @
dAn‘ ? Ki
1 q[Ami+Am—i] -0 (14
i=1

For the sinusoidal case (x; = 0 for i # 1) the solution is well known, and is

in terms of Bessel functions:

. m
A = T an (15

where Ji(x) is a Besse! function of the first kind, of order i. A thin, sinusoidal
phase grating is unselective, having a maximum efficiency np of 33.9%, for
m=2*1 at ¢ = 184, where 7, is defined as the ratio of power in the mth

diffraction order to that in the incident, zeroeth order. This low efficiency,

R
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combined with the large number of significant orders, generally exclude such gratings

from use in many applications (although there are exceptions).

Figure 3. Ewald sphere (radius (3), representation of diffraction by a sinusoidal
grating with some ‘thin' behaviour. Many diffraction orders are significant due to

the small size of the dephasing parameters sp,.

For the thin, rectangular grating case, with the modulation as specified by

equation (2), then [14]:

my = A’

= 1 - 4(p - uz).sinz(xf/(Z(l - cos(qu)))ﬁ)
(16>
2
T, AL

- (2/(m1r)2)(1 - cos(m2w#))‘sin2(1§/(2(l - Cos(Zru)))’) (mz0"




Maximum efficiency is 40.5% for the *+ 1 orders. As in the sinusoidal case,
such thin, rectangular phase gratings have, generally, limited use in diffractive
elements (computer generated holograms are often of this type, but in their case,

efficiency can be increased by copying into a volume mediur).

The thin grating regime is found, typically, for @ ¢ 0.01. As Q increases
much above this value, then equations (13) become less accurate, as the dephasing

terms start to become significant.

Volume Grating. At large values of 0, Bragg effects become dominant. Diffraction
orders, other than the on-Bragg order, have such a large mismatch in phase
velocities that very little power is coupled to them. This is illustrated in figure 4.
In the limiting case then, for replay of the grating in the vicinity of the m = j
on-Bragg condition, the infinite set of coupled wave equations (12) reduce to only

two in number - provided 'i' is a harmonic of the grating profile:

dAo ki
T * ;T Ai = 0
and
dAi Ki
Ef_-jio(i+P>Ai+jx_Ao-0 (17)
) 1

Analytic solutions are possible. When fully on Bragg, these reduce to:

2
n, =~ cos (f xi/xl)

and

n.

.2
; = sin ¢ xi/xl) (18>

The solutions in (18) agree with Kogelnik's analysis [15], when i = 1. Thus,
for large enough (1, 100% conversion to the ith order is achievable. This occurs

when replay is on Bragg for the ith harmonic of the grating, at:
{ = (2n + 1)« Kl/zl(i (n=20,1,23 .. (19)
The high efficiencies of these volume, phase gratings mean that they have
many applications. In particular, they find use in diffractive optical elements - eg

supermarket scanners, head-up displays. To the author's knowledge, all the bulk

grating volume elements use sinusoidal modulation. This is because most practical

11
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recording media respond in this way. However, as seen above, there is no reason

why volume, rectangular gratings cannot be used to similar effect.

Figure 4. Ewald sphere representation of diffraction by a grating with significant
volume behaviour. Only the zero and first diffraction orders are present. Other

orders do not carry significant power as rp (m # -1) are too large.

Multiwave_ Grating. Between thin and volume regimes, there is an intermediate

region of grating behaviour. In practice, many gratings may not have large enough
values of {) to guarantee that they will operate in the volume region. Investigation
of the multiwave regime is therefore necessary to determine if acceptable grating

behaviour is possible. For example, it may be feasible to achieve high enough
j efficiencies, for a particular application, without wasting unnecessary effort to

increase the  value of the grating.

In the multiwave regime, the number of significant diffraction orders is
1 generally large but finite.  Recourse to numerical solution of a truncated set of
equations (12) is therefore necessary. Thus, for m = -N,....-1,0,+1,....N:
4
b 12




dA N

2

m . .
a -JmQ(m+P)Am+J Z
{=

1 |
1-—] (A, * A, ) =0 (20)

x

where N is the number of the highest diffraction order containing significant power.
Generally speaking, if { is small, N will be large and as Q increases, N will
decrease accordingly. This reflects the grating's performance as it changes between

the two limiting cases of thin and volume behaviour.

5. NUMERICAI,_RESULTS

The coupled wave equations (20), subject to the boundary conditions (13). were
solved using a Runge Kutta technique. The diffracted amplitudes from various grating
profiles were calculated as a function of the thickness parameter {? and the modulation ¢,

for on-Bragg replay of the first diffraction order.

The following grating profiles were investigated in some detail:
i) Sinusoidal
i) Rectangular, with the fill parameter, equation (2), a4 = 0.1
iii)  Rectangular, g = 0.25

iv)  Rectangular, g = 0.5
v) Rectangular, u = 0.75
vi)  Rectangular, g = 0.9.

Thz sinusoidal case (x; = 0, i # 1) is the simplest. It is included to investigate the
relative merits of sinusoidal and rectangular modulation gratings - a question of importance

for a wide range of grating applications. Case (iv) corresponds to a square wave grating.

The results of the analyses are shown in Figures 5 to 10, in the form of contour
plots. The height of the contours represent the efficiency of diffraction into the +! order
(n1). Note the logarithmic scale for the thickness parameter {;. Figures 11 and 12 show
perspective views of the efficiency variation for the sinusoidal and square wave cases

respectively.

13
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Figure 5. Sinusoidal grating. +1 diffracted intensity as a function of the modulation
- parameter ¢ and the volume parameter 2. The height of the contour is proportional to
the diffracted efficiency. Contour 1 = 10%, 2 = 20% etc.
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Figure 12. Perspective view of Figure 8 (square wave grating).
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51 Analvsis of Results

Several observations can be made from the plots.

i) For low wvalues of (, in all cases, the results agree closely with the

appropriate analytic expressions {equations (15) and (16)) for thin grating behaviour.

i) At high values of , the diffraction efficiencies all converge to the same
values, irrespective of the grating profile. These values are those derived for the
volume sinusoidal case, given by equations (18) and (19). This seems a reasonable
result and can be explained by noting that the diffraction orders. other than the «i.
are so far off Bragg that there is no power coupled in to them. Thus the
behaviour of all grating profiles converges to the sinusoidal case under these

conditions.

iit)  High efficiencies in all cases can occur in several areas in the multinave
regime - for example, over 91% at (£.,Q) = (2.97,05) for the square wave profiie
(p = 0.5). This can be important for practical devices in that gratings can be
fabricated that are not ‘volume', yet are of high efficiency. This enables a much
wider choice in grating thickness, modulation, and grating vector size. The lower
the value of Q required, for example, the less off-axis a transmissive, diffractive

element would have to be.

iv) In terms of the maxima of the diffraction efficiency 7). the square wave
grating is equal or superior to the sinusoidal case. This is true in the thin,
multiwave and volume regions. Thus square wave modulation should not be

regarded as a limitation in a bulk modula'ed recording medium.

v) There is a progression in the efficiency characteristics of the rectangular
gratings with increasing u. At low values of u, the size of the modulation ¢ for
high efficiency in the multiwave regime is small.  As p increases, so does the
required modulation {. In the table below, the minimum modulations for the first
, peak in n; over 90% are shown with various (. {! values for these peaks are also

listed.

22




TABLE 1

u 0.05 0.10 0.25 1 0.30 | 0.35 0.40 | 0.45 0.50

¢ 0.88 0.92 1.147 1.34 1.43 1.46 1.53 x/2

6. SIGNIFICANCE OF THE RESULTS IN RELATION TO THE PHOTODOPED A<S
SYSTEM

In this section the numerical results will be considered in the light of the known
physical properties of the photodoped chalcogenides. The optimum grating structure will
be calculated. and the required physical grating parameters (thickness, frequency. etc)

estimated. Practical grating efficiency will be predicted.

Two cases will be considered. These will be gratings designed for operation at
632.8nm and at 10.6um. The former corresponds to the HeNe laser line. Gratings at
this wavelength will be easy to assess and characterise. The latter is the CO> laser line.

and lies near the centre of the 8-14um infra-red atmospheric window.

The refractive indices of the undoped and photodoped materials depend cn the
composition of the As,S)_,. This can be varied over a wide range. For As3pS-p

photodoped with silver, the following values have been reported [16]:

Undoped Photodoped
Refractive index at 632.8nm 2.36 2.7
Refractive index at 10.6um 2.22 2.42

These figures are preliminary. Detailed material characterisation is currently underway.

6.1 Validity of the Theoretical Analysis

An important step in the derivation of equations (20) was the neglect of

second derivatives. The validity of this assumption depends on the ratio of the first




ST

harmonic phase modulation to the bulk dielectric constant (ie, e{/(d). The smaller
this quantity, the more accurate the assumption. From equations (2)

‘1 _ 2 4csin (pr) (21
- T (e . + Ade¢ p)
60 min

This expression is a maximum (equivalent to the worst case) when u is given
by:

© (e /A ) - tan(um) = 0 (22)

Solving this gives a maximum of zl'/sd at 632.8nm of 0.176 (px = 0.472) and
of 0.110 (p = 0.483) at 10.6um.

According to a rigorous analysis of a sinusoidal grating [17], a value of
51'/56 = 0.12 gives less than 1% error on n; for 0 = 2 and negligible error for
2 = 10. Thus, for the material in question, neglect of second derivatives is likely

to be a valid approximation.

It is appropriate here to digress briefly, and consider a surface relief, as
opposed to bulk, rectangular grating. At 632.8mn, maximum (l'lfd = 1.13
(4 = 0.310) and at 10.6um, maximum ¢/eq = 1.02 (p = 0.32). Thus, prediction

of ny for surface relief, photodoped gratings, requires second order theory.

6.2  Minimisation of Grating Thickness

One practical problem associated with photodoping is concerned with grating
thickness. This is for two reasons. Firstly, a layer of suitable thickness must be
evaporated or spun onto a supporting substrate. Thicknesses of greater than a few
hundred nanometers are more awkward in this respect. More significantly however,
the rate of migration of the photodoped region through the chalcogenide layer is
relatively slow.  Migration rates vary considerably, depending upon metal [18] and
chalcogenide composition [19], the wavelength of the actinic radiation and its
intensity {20]. If the thickness requirements for the grating are too large, migration
time will be large, and holographic exposure would require a very stable
environment. Mask exposure would circumvent stability problems, but long exposure

times would still increase costs.

The thickness of the photodoped layer d, is related to the exposure time t by

d =k st (23)
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where k is a rate constant. For an intensity of 75 mW cm™2, from a tungsten
lamp, and silver doping of As33Sg7, k = 0.015um s~ [19]). k increases rapidly

with decreasing wavelength.

For the above reasons, minimisation of grating thickness is of prime
importance. From the numerical calculations, it was seen that the required

modulation { for high efficiency, decreased with decreasing p. Since

1

Kl d
| S — (24)
cos @
o

it might be thought that a low value of { would minimise d, the grating thickness

However, «; is also a function of u. Rearranging (24) and using (2) gives

:
A cos 00 (fmin/Ar + p)

d = t - (25)
(A()f sin (ur)

+
((min/A( + u)

d«d = cos 6 ¥ -
o sin (ux)

(26}

In the table below d' is calculated, using the above equation and the results
from Table 1.

TABLE 2

u value 0.05 0.1 0.3 ] 0.35 0.4 | 0.45 0.5

d' at 632.8nm [ 10.00 | 5.31 2.96 } 2.88 | 2.79 | 2.84 | 2.83

d' at 10.6um 12.99 { 6.90 | 3.83 | 3.74 | 3.59 | 3.65 [ 3.66

From the table, minimum d' occurs at about p = 0.4, for both wavelengths.
This value of pu should, therefore, be used to minimise the required grating
thicknesses. Howcver, the variation in d' with u is slight for g = 0.35 10 0.5

Any value in this range should be acceptable.
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Figure 13. Contour plot for the diffraction efficiency for rectangular grating
u = 0.4 case. This corresponds to the near optimum value of u required to
minimise grating thickness. The two potential operating points, A and B, are

shown.

6.3 Physical Parameters and the Predicted Performance of the Gratings

Bearing in mind the requirement for high efficiency and for the physical
thickness of the grating to be a minimum, several options are available. These can
be seen with the aid of figure 13 which shows a region of the (.5 contour plot
for 4 = 0.4, Operation in the volume regime (0 ~ 10 or greater) is a conventional
choice for diffraction elements. Here, near 100% efficiency is achievable. An
alternative to this is operating at one of the maxima in the multiwmave regime.

These options will be evaluated and compared.

Multiwave regime operation. A suitable ‘operating point' (labelled ‘'A'), in the

multiwave regime, occurs at { = 146, 0 = 3.30. At this position, an efficiency of
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greater than 97% is possible. Using equations (2) and (9), the grating constants can
be specified fully. The parameters for operation at a wavelength of 4um are also
shown:

TABLE 3

Parameter €6 €9 xi/m‘1 l(/m'1 A/pm 67 d/um

A=632. 8nm 6.28 1.07 1.06E6 13.2E6 | 0.475 15.41 1.32
4. 0um 5.30 | 0.562 | 95.8E3 1.51E6 | 4.15 12.07 14 .90
10.6um 5.30 | 0.562 36.2E3 | 570E3 11.01 12.07 K

The grating period of 0.475um for the 632.8nm case is close to the limits of
mask exposure technology, so a holographic recording technique might be more
applicable. Conversely, the 4.0 and 10.6um cases are certainly promising candidates
for mask exposure, although it remains to be seen whether the exposure times for

the thicknesses required by them will be acceptably short.

However, there are alternative operating points that could be of use for the
632.8nm grating. One of particular interest occurs at { = 3.02, Q = 0.319 (labelled
'B' in the figure), with a peak efficiency of 92%. Again, this is the multiwave
regime.  Since () is lower for this point, the grating period will be increased,
although at the expense of a corresponding increase in thickness. Operation at IR
wavelengths for this point is not advantageous, as the grating periods are alreads
large (Table 3) and any further increase in thickness would be highly undesirable.

The parameters calculated for replay at 632.8nm, at B, are shown beiow.

TABLE 4

Parameter €0 €] xi/m‘] K/m‘] A/um (‘/' d,/um

A=632.8nm 6.28 1.07 1.06E6 | 4.11E6 1.530 | 4.738 2.85

It can be seen that there is a reduction in the resolution requirements of over

a factor of 3, at the expense of a roughly doubling the required thickness.

Volume regime operation. At large values of () (~ 10 or greater), the analytic

solutions to the coupled wave equations can be used to predict the required grating
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parameters. 100% efficiency first occurs when (equation 19):

kl d *

Cos & 2 @n
o

Combining this with the definition of the volume parameter {? (equation (9)).

yields the relation, for on-Bragg replay:

d 1 n cos 60 |
- (28)
8 sin 6
where @ is the replay angle, measured in air, and fg, is the internal Bragg angle.
Thus the normalised grating thickness d/x is large for small replay angles, but

decreases rapidly as the Bragg angle increases. Equation (28) is shown plotted in

figure 14.
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Figure 14. Variation of the normalised grating thickness d/x as a function of the
on-Bragg replay angle 6, measured in air. Volume replay (continuous curves) is

compared with multiwave replay (A and B). Refractive index n is assumed to0 be 2.32.
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A comparison of the grating thicknesses in the multiwave and volume regimes
can now be made. The plot clearly shows that, if large replay angles can be
tolerated (> 60°), then volume regime behaviour is preferable. If smaller incident
angles are required, then operation in the multiwave regime is necessary.  Such
considerations will be important, for example, in deciding how far off-axis a

diffractive lens would operate.

6.4 Angular Response

It has been shown above, that at both the operating points A and B and in
the volume region ‘figure 13), diffraction efficiencies of greater than 90% should be
achievable. So far, the emphasis has been placed on high efficiency for minimum
physical thickness. Depending upon the application, other factors may be important.
One of these is the behaviour of the grating when it is off the Bragg condition,
due 10 a move away from the design replay angle and/or wavelength. For a
volume grating, the efficiency will fall, as the power in the ith on-Bragg order
decreases. However no other orders, other than the zero and the ith, will be

present.

This contrasts with the behaviour of non-volume gratings, where many
diffraction orders can have significant amplitudes when off-Bragg replay occurs.
These other orders may be highly undesirable, due to their ability to give spurious

foci or images, for example.

To illustrate the presence of such orders, calculations were performed,
simulating off-Bragg replays by angular dephasing. Figures 15 and 16 show the
theoretical output intensities from non-volume gratings, under index matched
conditions, as a function of the replay wave angle. The first figure corresponds to
operating point A, at 10.6um, the second at operating point B, at 632.8nm. In
both cases, the peak in the +1 diffracted intensity corresponds to replay being
on-Bragg. Either side of this angle, the gratings become increasingly off-Bragg.
and the efficiency falls. It can be seen that the former (case A) is more of a
volume response, in that the number of significant diffraction orders is relatively
small. Conversely, in the latter case (B), more orders are significant. This would
be expected, as at B the lower value of 02 (0.319 compared to 3.30) results in a

grating with less volume character.
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Figure 15. Angular response of a grating operating at A (Figure 13) at 10.6um.
Diffraction intensities are plotted as a function of replay angle 6,, measured in degrees.
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7. CONCLUSION

It has been shown that the photodoping of chalcogenides may be capable of
producing high efficiency transmission gratings. Such structures may be produced by mask
or holographic exposure and require few fabrication steps. Bulk rectangular, phase
gratings (as would be produced by mask exposure) were analysed using a coupled wave

model.

For the first time, the thin, multiwave and volume diffraction regimes of such
gratings have been investigated in some detail. Rectangular gratings were shown to be
capable of high efficiencies (> 90%). Choice of operating point was shown to depend on
angle, resolution and thickness considerations. The importance of minimising the physical
thickness of the gratings was discussed and a mark/space value of u = 0.4 was found to
be near optimum for this purpose. In this case, efficiencies of greater than 97%
(neglecting reflection losses) were found to be possible, in both volume and multiwave
regimes. The grating parameters, based on the supplied material properties of the silver
doped arsenic sulphide chalcogenide glasses, were calculated for optimum operation at the

wavelengths of 632.8nm, 4uym and 10.6um.

It remains to be s.  whether the required thicknesses of gratings make fabrication
a practical proposition. This work is currently underway. Surface relief analogues may

prove to be an attractive alternative. These are also being investigated.
In conclusion, the excellent transmission characteristics (red to far infrared), and the

ease of grating fabrication, must make photodoped chalcogenides one of the prime

contenders for infrared diffractive elements.
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