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I. INTROD)UCTION

Chalcogenidle glasses, depending upon composition, are capable of the ttaonssibbon ')t

electromagnetic radiation from the visible to beytind [5p~m (IlI, including (he aimospheiti

windows of 3-Svam and 8-14,pm. In addition, many of ttieini exhibit a wide varict J~,

photoinduced phenomena. Trhese effects include photobleaching and photoidaikcninig, and

more substantial effe-ts such as photopolymerisation. photocrysallisai~n a n', I K-

photodiffusion of metals 121. Such phenomena, especially phiodiffusion, in cornhinatii,

with the high transmission of the bulk glasses, may he useful in the pioduction ,t

diffractive elements for the infra-red wavebanids.

Diffraction elements have several potential uses 1-01 example, they baseV s(ol11

advaitages over conventional refractive elements (typically gelniariurn doies III the IP

bands), partic ularly where weight and cost are Iniplotatit COnSidtratIN tiot Abs- tile

nay be used as co~mbiners, filters and have other novel applicat[iis

In this mnemro, hulk diffrac tive str UL tUt ", Capable Of being pII ic U, rd

plio)todiffusion ici chalcogenides, will he analysed The treatment is limied 1t hI

gratings and will not consider surface relief gratings - also) capable of being piodUced h

phiotodissolulion A brief descripttun of the effect is used to show hc,. thet simplest

gratings to fabricate are predominantly rectangular in profile In tontrast to the sinusoidal

adse, not a great deal of work has been done on the prOptities Of such gratings. A

niultiwave ccupled wa ve theory is derived, capable of analysing difFactION by tht

rectangular gratings over a wide range of ronditions 1 heiiretical results, derived fim the

model, are then presented, and the limiiting cases of thin and volume (thick) dilhiactioi,

disc ussed . Trhe multivave regime is then investigated hy numerical solution of the Coupled

wave equations. Finally, the likely performance of a typicalchcoedebtd l

metal system is determined and the required miodolations and thicknesses estimated for the

optimum efficiencies.

2 THE PHOTODISSOL 1 ]1TJON LFF-ECTr

The following discussion is intended to give a rough, qualitative explanation of the

phenomenon. For a more detailed treatment, the reader is referred to the literature leg

2 ,41

In simple terms, photodissolooion (also known as photodloping) is an effect wltrie

actinic radiation causes the migration of a n,eial through an amorphous chalcogenide
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Typically the chalcogenide may be one of those in the arsenic/sulphur system, and the

metal silver or copper. A wide range of combinations using other chalcogenides and or

metals are, however, possible [4]. The radiation can be over a wide band, above or

below the band edge of the material. Photodissolution rates tend to increase with photon

energy.

In practice, a chalcogenide film, usually formed by evaporation or spinning [5], is

coated on one side of a thin metallic layer. Initially, radiation of a suitable wavelength is

absorbed at the glass/metal interface. This causes growth of a metal doped region into

the glass. Subsequently, the incoming radiation is absorbed at the undoped/doped glass

boundary, causing further growth of this region and gradually depleting the metal reservoir.

It is important to note that the migration of the metal is only along the direction of the

incoming radiation - there is a distinct boundary between the undoped and the doped

regions. In this way, bands of photodoped material grow into the initially undoped glass.

3. GRATING FORMATION

The photodissolution mechanism can be used to produce gratings. For example,

exposure through a periodic mask will eventually produce a rectangular grating throughout

the thickness of the chalcogenide film (figure 1). Holographic exposure techniques

(interference of two or more wavefronts) can also be used for grating formation [6,7]. In

the latter case, however, the grating structure is more complex with a varying profile

through the depth of the film.

Early work on photodoping has been, to a large extent, driven by the search for

very high resolution photoresists [81 (0.1 .m lines have been produced by chalcogenide

resists [4]). Thus, resolution of the material is more than acceptable for gratings for

visible and infrared diffractive applications.

The differing refractive indices of the photodoped and undoped regions result, in the

simplest case of mask exposure, in a periodic rectangular profile refractive index

modulation, throughout the volume of the material. In this way, a diffractive transmission

element may be produced. Reflective, diffractive elements would require the grating

planes be approximately parallel to the film surface. This would be difficult to achieve

with the recording techniques outlined above. Distributing the metal as small grains

throughout the film and using holographic exposure may overcome this.
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ACTINIC RADIATION

S MASK
77.-UNDOPED CHALCOGENIDE

-PHOTODOPED

. " METAL RESERVOIR

SUBSTRATE

Figure 1. Production of a photodoped rectangular grating by exposure through a mask.

For clarity, the metallic reservoir is shown sandwiched between the substrate and the

chalcogenide. To facilitate removal of the unused metal after exposure, however, the

metal is, in practice, deposited on top of the chalcogenide, and exposure made either

through it, or the substrate.

Initial work is aimed at exploiting bulk rectangular transmission gratings. However,

a surface relief grating can easily be obtained by selective etching of the photodoped. bulk

grating [4]. Such structures will be the subject of a future analysis.

4. THEORETICAL ANALYSIS

In the following, a theoretical model, based on that of Magnusson and Gaylord [91.
is derived. Using this model diffraction by bulk, rectangular profile gratings is analysed.

From this, it should be possible to determine the diffraction efficiency of the grating, as a

function of the grating parameters. In this way the maximum efficiency likely to be

achievable and the feasibility of fabrication of the grating can be estimated.
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Figure 2. The grating system to be analysed.

4.1 The Coupled Wave Model

The diffractive element is bounded in an infinite, parallel sided slab. The

grating characteristics in the slab will generally vary as a function of y, but is

assumed to be locally plane (figure 2). This is a valid assumption if the grating

vector does not change much as a function of 3 1101. The modulation profile can

be written as the Fourier Series:

E(r) - o -to + Y (. - jfi) cos (iK.r)
0o 0t

where the profile is assumed to be an even function. For the rectangular profile:

o min

(2)

- (2/ir) A( sin(ipi)

where
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e is the bulk dielectric constant of the slab

0f is the bulk absorption

ff and f" are the phase and absorption modulation of the ith harmonic of

the grating profile.

K is the grating vector, the direction of which is perpendicular to the grating

fringes,

with IKi = 21/A, where A is the grating period.

and I' = 'max - Emin

t is a fill (mark/space) parameter.

The modulation is taken to be constant throughout the depth of the grating.

Replay is assumed to be with an inifinite, monochromatic plane wave, at angle 0o

to the slab normal. The grating is taken to be index matched to the surrounding

medium. The polarisation of the replay wave is assumed perpendicular to the plane

of the grating - this ensures maximum coupling. The time independent, scala.

wave equation can thus be used

72 E + 8 2 (C/fo) E - 0 (3)

where 0 = 2-./fL/X is the propagation constant in the grating,

X is the free space wavelength of the radiation.

It is assumed that the diffracted waves are such that the electric field in the

grating, on replay, is in the form:

E - A exp (-j kM .r) (4)

where Am is the amplitude of the mth diffraction order having wave vector km and

m = 0 corresponds to the replay wave.

A relationship between these wave vectors is taken to be in the 'k-vector

closure' form:
k - k° + at (5)

Substituting equation (4) into (3), with (1) and (5), and equating coefficients

of exp(-jkm.r), gives a set of differential equations of the form:
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(6)

+j -- (A+ + Am

The approximation is then made that second deriatives in (6) are negligible.

This is valid if the amplitudes A m change relatively slowly with x. From (6), it

can be seen that this situation will arise if the dephasing parameter (2-k2), the

ratio 414 and the modulation ratios ti/to are small. The latter two conditions

can be met if:

fo and f . << (o7

Dropping the second derivatives, equations (6) simplify to become

dk dA Mlkx dx It0m8 m

n d + + j A +i - ] [i A m + , + A m _, - 0

where

" (62 2

2,'
0

and

0 0

The physical interpretation of equations (8) is as follows: Each diffraction

order A m is coupled to the m chng relatively an l with coupling

coefficeints (Ki t and it) In contrast to the coupling mechanisms in a sinusoidal

grating (i = a only), the coupling paths in gratings of more complex profile are

much more numerous. The central terms include absorption losses (o) and the

dephasing term (;-,), a measure of the mismatch in phase velocities of the

diffracted orders.

For significant power transfer from one order to another, three conditions

must be met III1]. Firstly, there must be a coupling path between the two orders

Also their phase velocities must be approximately equal. Final the length of the

k dA



dA 2 A20 d
- 2jk mX X + 2 k2 j20 Adx Jm

0

~ ? j (A. + A., 0

0 0

The approximation is then made that second deriatives in (6) are negligible.

This is valid if the amplitudes Am change relatively slowly with x. From (6). it

can be seen that this situation will arise if the dephasing parameter (13
2 -k2). the

ratio 4/ o and the modulation ratios fi!¢o are small. The latter two conditions

can be met if:

to, and << ( 0

Dropping the second derivatives, equations (6) simrnpfy to become

k dAkmX d m  + + ,, + j -j (Am., +Am i  -0 8
re x m+t i (K

'X (a + ji m) A in _j 0i> ~ .

where

(16 ( 
2  k k

2

o m

22

0

and

K. , K. -
K 1

0 0

The physical interpretation of equations (8) is as follows: Each diffraction

order Am is coupled to the (m ± i) orders (Am+i and Am-i) by the ith coupling

coefficeints (K! and K;'). In contrast to the coupling mechanisms in a sinusoidal

grating (i = I only), the coupling paths in gratings of more complex profile are

much more numerous. The central terms include absorption losses (o) and the

dephasing term (j'm), a measure of the mismatch in phase velocities of the

diffracted orders.

For significant power transfer from one order to another, three conditions

must be met [11]. Firstly, there must be a coupling path between the two orders.

Also their phase velocities must be approximately equal. Finally, the length of the
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interaction region must be correct. Note, however, that indirect coupling can occur

via other diffraction orders.

Let the volume parameter 0 and the parameter P be defined as, respectivels,

Q - K 2/(21K)

and

P - sin(
0  

- t) 28/'K (10)
0

where x1 = Ki - jxr

and t is the grating slant (angle of the grating vector to the slab face),

On the substitution into equations (8).

k dA
m - + _ j m K, Q (m + P)} AmB3 dx i

+ J K . +i + A_ , 0 II

C:-I

Absorption losses are now neglected. For the chalcogenides under

consideration, this is a good approximation over much of their transmission band.

For example, amorphous As2 S3 has an absorption coefficient (I of around 10
-2

cm
- 1 

in the I to l0 m band [12]. The photodoped regions, depending on

composition, may be slightly more absorbing (due to some photodarkening). Note

that the grating structures of interest are ot the order of tens of microns in

thickness. The assumption of no absorption also precludes the existence of

absorption modulation.

Finally, the grating is assumed to be unslanted, ie the grating vector is

parallel to the input and exit boundaries. Such gratings would result, for example,

using a mask with exposure by plane wave, normally incident radiation. Thus the

problem becomes one of analysing a pure phase, lossless, unslanted, transmission

grating. Equations (10) then reduce to the set of coupled equations, for

m = - .... ,- ,0,+ ...... + -:

dAK Ud~r .+A[ - 0 (l2
- j m 0 (m + P) Am + Am+i + Am

-i
i-I

where " = Kjx/cos0, is the modulation parameter.
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These equations obey power conservation. The transmission grating boundzrN

conditions are:

Am(x - 0) - 0 (m * 0)

(13,

and A (x - 0) - 1
0

Solution of equations (12) subject to these boundary conditions will give the

amplitudes of the diffraction orders, Am, as a function of the modulation , for a

given Q. and P.

4.2 Diffraction Regimes

In general, the solution of the infinite set of equations (12) requires numerical

techniques and truncation to a finite number of diffraction orders. However, there

are two limt.'.g cases for which analytic solutioas are possible, These are at

opposite extremes of transmission grating behaviour, and occur when the thickness

parameter f) takes vanishingly small or very large values The former case is

referred to thin grating behaviour (often termed Raman Nath Diffraction after

Raman and Nash's thin, sin-asoidal graling analysis 1131); the latter as volume (or

thick) diffraction.

Thin Gratin?. As 12 tends to very small values, the dephasing term for each

diffraction order becomes very small. Large numbers of orders can have significant

power in them (this can be seen qualitatively from figure 3), and equations (12)

reduce to, for m = ..... + :

dAm

A+ j i + Am_iJ  0 (14

For the sinusoidal case (Ki = 0 for i x 1) the solution is well known, and is

in terms of Bessel functions:

A M() - (-j)
m 

J.(2,) (15)

where Ji(x) is a Bessel function of the first kind, of order i. A thin, sinusoidal

phase grating is unselective, having a maximum efficiency 7m of 33.9%, for

m = ± I at = 1.84, where " m is defined as the ratio of power in the mth

diffraction order to that in the incident, zeroeth order. This low efficiencN,
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combined with the large number of significant orders, generally exclude such gratings

from use in many applications (although there are exceptions).

K

I.K

K

2K

0
K

-2 K

-3 K

Figure 3. Ewald sphere (radius ~3.representation of diffraction by a sinusoidal

grating with some 'thin' behaviour. Many diffraction orders are significant due to

the small size of the dephasing parameters ;,M*

For the thin, rectangular grating case, with the modulation as specified b\

equation (2), then [14]:

no IA (7)12

1 - 4(A-V2).sin 2(,r1/(211 -cos(2irA)))

- 12/(mr) 
2 
HI - cos(ns27rp)1.sin 

2 
(ir/(2(1 - cos(2rp))) j (m~fO)
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Maximum efficiency is 40.5% for the ± 1 orders. As in the sinusoidal case,

such thin, rectangular phase gratings have, generally, limited use in diffractive

elements (computer generated holograms are often of this type, but in their case.

efficiency can be increased by copying into a volume mediur.).

The thin grating regime is found, typically, for Q < 0.01 . As Q increases

much above this value, then equations (13) become less accurate, as the dephasing

terms start to become significant.

Volume Grating. At large values of fl, Bragg effects become dominant. Diffraction

orders, other than the on-Bragg order, have such a large mismatch in phase

velocities that very little power is coupled to them. This is illustrated in figure 4.

In the limiting case then, for replay of the grating in the vicinity of the m = i

on-Bragg condition, the infinite set of coupled wave equations (12) reduce to onIk

two in number - provided i' is a harmonic of the grating profile:

dA K.
+ j-A. - 0
+d7 K Ai

and

dA. K_

- j 1 0 (i + P) A. + j - A - 0 (17)
d K 10

Analytic solutions are possible. When fully on Bragg, these reduce to:

77° - cos 2 Ki/K 1 )

and

77i - sin2 (18)

The solutions in (18) agree with Kogelnik's analysis [15], when i= 1. Thus,

for large enough Q, 100% conversion to the ith order is achievable. This occurs

when replay is on Bragg for the ith harmonic of the grating, at:

I" - (2n + 1)v K 1/2K. (n - 0,1,2,3 .... ) (19)

The high efficiencies of these volume, phase gratings mean that they have

many applications. In particular, they find use in diffractive optical elements - eg

supermarket scanners, head-up displays. To the author's knowledge, all the bulk

grating volume elements use sinusoidal modulation. This is because most practical

11



recording media respond in this way. However, as seen above, there is no reason

why volume, rectangular gratings cannot be used to similar effect.

Figure 4. Ewald sphere representation of diffraction by a grating with significant

volume behaviour. Only the zero and first diffraction orders are present. Other

orders do not carry significant power as im (m * -1) are too large.

Multiwave Grating. Between thin and volume regimes, there is an intermediate

region of grating behaviour. In practice, many gratings may not have large enough

values of fQ to guarantee that they will operate in the volume region. Investigation

of the multiwave regime is therefore necessary to determine if acceptable grating

behaviour is possible. For example, it may be feasible to achieve high enough

efficiencies, for a particular application, without wasting unnecessary effort to

increase the Q value of the grating.

In the multiwave regime, the number of significant diffraction orders is

generally large but finite. Recourse to numerical solution of a truncated set of

equations (12) is therefore necessary. Thus, for m = -N,... -,,+I. N:

12



dA 2N .d-m (A . m0(0
m - j m P7 (m + P) Am  + j (AM+ I

where N is the number of the highest diffraction order containing significant power.

Generally speaking, if V7 is small, N will be large and as 17 increases. N will

decrease accordingly. This reflects the grating's performance as it changes between

the two limiting cases of thin and volume behaviour.

5. NUMERICAL RESULTS

The coupled wave equations (20), subject to the boundary conditions (13). were

solved using a Runge Kutta technique. The diffracted amplitudes from various grating

profiles were calculated as a function of the thickness parameter P. and the modulation

for on-Bragg replay of the first diffraction order.

The following grating profiles were investigated in some detail:

i) Sinusoidal

ii) Rectangular, with the fill parameter, equation (2), p = 0.1

iii) Rectangular, p = 0.25

iv) Rectangular, p = 0.5

v) Rectangular, p = 0.75

vi) Rectangular, p = 0.9.

The sinusoidal case (K i = 0, i * 1) is the simplest. It is included to investigate the

relative merits of sinusoidal and rectangular modulation gratings - a question of importance

for a wide range of grating applications. Case (iv) corresponds to a square wave grating.

The results of the analyses ate shown in Figures 5 to 10, in the form of contour

plots. The height of the contours represent the efficiency of diffraction into the +1 order

(v~i). Note the logarithmic scale for the thickness parameter 1-2. Figures 11 and 12 show,

perspective views of the efficiency variation for the sinusoidal and square wave cases

respectively.

13



to -I

Figure 5 Sinuoid l FT ai. +1dffracted ntensty safto of ther~ mouato

parmeer ad te olue araetr 0 Te higt o te cntur s roprtona t
th diface effciecy Cotu H 0 ,2=2% ec

14,



b 
, ULTIFIT3 DiffrOCted ifensUt of on-6r~a or er

a.. 3 1'*
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Figure 7. Rectangular grating, it= 0.25. Otherwise, as in Figure S.
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Figure 8. Rcaglrgrating, p* 0.5. Otherwise, as in Figure 5.
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Figure 9. Rectanouar grating, pi 0,75. Otherwise, as in Figure 5.
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Figure I I. Perspective view of Figure 5 (sinusoidal grating).
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Figure 12. Perspective view of Figure 8 (square wave grating).
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5.1 Analysis of Results

Several observations can be made from the plots.

i) For low values of P., in all cases, the results agree closely with the

appropriate analytic expressions (equations (15) and (16)) for thin grating behaviour.

ii) At high values of P., the diffraction efficiencies all converge to the same

values, irrespective of the grating profile. These values are those derived for the

volume sinusoidal case, given by equations (18) and (19). This seems a reasonable

result and can be explained by noting that the diffraction orders, other than the -1,

are so far off Bragg that there is no power coupled in to them. Thus the

behaviour of all grating profiles converges to the sinusoidal case under these

conditions.

iii) High efficiencies in all cases can occur in several areas in the multiwave

regime - for example, over 910
/o at (',P) = (2.97,0 5) for the square wave profile

(p = 0.5). This can be important for practical devices in that gratings can be

fabricated that are not 'volume', yet are of high efficiency. This enables a much

wider choice in grating thickness, modulation, and grating vector size. The lower

the value of Q required, for example, the less off-axis a transmissive. diffractive

element would have to be.

iv) In terms of the maxima of the diffraction efficiency r 1, the square w.ave

grating is equal or superior to the sinusoidal case. This is true in the th:n.

multiwave and volume regions. Thus square wave modulation should not te

regarded as a limitation in a bulk moduji ed recording medium.

v) There is a progression in the efficiency characteristics of the rectangular

gratings with increasing p. At low values of p, the size of the modulation , for

high efficiency in the multiwave regime is small. As p increases, so does the

required modulation 1. In the table below, the minimum modulations for the first

peak in 77l over 90% are shown with various (. ,. values for these peaks are also

listed.
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TABLE 1

S 0.05 0.10 0.25 0.30 0.35 0.40 0.45 0.50

0.88 0.92 1.147 1.34 1.43 1.46 1.53 T/
2

Q 2.3 2.2 2.0 3.9 3.5 3.3 2.9 4.9

6. SIGNIFICANCE OF THE RESULTS IN RELATION TO THE PHOTODOPED As

SYSTEM

In this section the numerical results will be considered in the light of the kno,:r

physical properties of the photodoped chalcogenides. The optimum grating structure will

be calculated, and the required physical grating parameters (thickness, frequency, etc.

estimated. Practical grating efficiency will be predicted.

Two cases will be considered. These will be gratings designed for operation at

632.8nm and at 10.6pm. The former corresponds to the HeNe laser line. Gratings at

this wavelength will he easy to assess and characterise. The latter is the CO 2 laser line,

and lies near the centre of the 8-14pm infra-red atmospheric window.

The refractive indices of the undoped and photodoped materials depend cn the

composition of the AsS 1 - x .  This can be varied over a wide range. For As3(-S7

photodoped with silver, the following values have been reported [16]:

Undoped Phot odoped

Refractive index at 632.8rm 2.36 2.71

Refractive index at 10.6pm 2.22 2.42

These figures are preliminary. Detailed material characterisation is currently underva 3 .

6.1 Validity of the Theoretical Analysis

An important step in the derivation of equations (20) was the neglect of

second derivatives. The validity of this assumption depends on the ratio of the first

23



r R.

harmonic phase modulation to the bulk dielectric constant (ie, e'/l(). The smaller

this quantity, the more accurate the assumption. From equations (2)

1 2 Af sin (.iw) (21)- ( . + 2)
0 n

This expression is a maximum (equivalent to the worst case) when p is given

by:

(f min/,A + p) - tan(pr) - 0 (22)

Solving this gives a maximum of (/1,6 at 632.Snm of 0.176 ( = 0.472) and

of 0.110 (p = 0.483) at 10.6pLm.

According to a rigorous analysis of a sinusoidal grating [17], a value of

f/le6 = 0.12 gives less than 1% error on rl for P = 2 and negligible error for

Q = 10. Thus, for the material in question, neglect of second derivatives is likely

to be a valid approximation.

It is appropriate here to digress briefly, and consider a surface relief, as

opposed to bulk, rectangular grating. At 632.8mn, maximum q'Ie6 = 1.13

(p = 0.310) and at 10.6pum, maximum (/r6 = 1.02 (p = 0.32). Thus, prediction

of n, for surface relief, photodoped gratings, requires second order theory.

6.2 Minimisation of Grating Thickness

One practical problem associated with photodoping is concerned with grating

thickness. This is for two reasons. Firstly, a layer of suitable thickness must be

evaporated or spun onto a supporting substrate, Thicknesses of greater than a few
hundred nanometers are more awkward in this respect. More significantly however.

the rate of migration of the photodoped region through the chalcogenide layer is

relatively slow. Migration rates vary considerably, depending upon metal [18] and

chalcogenide composition [19], the wavelength of the actinic radiation and its

intensity [20]. If the thickness requirements for the grating are too large, migration

time will be large, and holographic exposure would require a very stable

environment. Mask exposure would circumvent stability problems, but long exposure

times would still increase costs.

The thickness of the photodoped layer d, is related to the exposure time t by

d = k /t (23)
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- , _ _ - _ _p u . _ - - - -" * - •,

where k is a rate constant. For an intensity of 75 mW cm- 2 , from a tungsten

lamp, and silver doping of As 3 3S6 7 , k = 0.015pm s- [19]. k increases rapidly

with decreasing wavelength.

For the above reasons, minimisation of grating thickness is of prime

importance. From the numerical calculations, it was seen that the required

modulation for high efficiency, decreased with decreasing A. Since

K1d

- cos 0(24)Cos

it might be thought that a low value of " would minimise d, the grating thickness

However, Ki is also a function of p. Rearranging (24) and using (2) gives

, cos 0 0 in/.A( + 2)"
d-o m ( 25)

(,( ) sin (pi)

Let

( min/Ae + ti)"

d o d' - cos 0o i (26)
o sin (pi)

In the table below d' is calculated, using the above equation and the results

from Table 1.

TABLE 2

p value 0.05 0.1 0,3 0.35 0.4 0.45 0.5

d' at 632 .8run 10.00 5.31 2.96 2.88 2.79 2.84 2.83

d' at 10.6pm 12.99 6.90 3.83 3.74 3.59 3.65 3.66

From the table, minimum d' occurs at about p = 0.4, for both wavelengths.

This value of p should, therefore, be used to minimise the required grating

thicknesses. Howcver, the variation in d' with pu is slight for p = 0.35 to 0.5.

Any value in this range should be acceptable.
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Figure 13. Contour plot for the diffraction efficiency for rectangular grating

p = 0.4 case. This corresponds to the near optimum value of p required to

minimise grating thickness. The two potential operating points, A and B, are

shown.

6.3 Physical Parameters and the Predicted Performance of the Gratings

Bearing in mind the requirement for high efficiency and for the physical

thickness of the grating to be a minimum, several options are available. These can

be seen with the aid of figure 13 which shows a region of the ,..r1 contour plot

for p = 0.4. Operation in the volume regime (Q - 10 or greater) is a conventional

choice for diffraction elements. Here, near 100% efficiency is achievable. An

alternative to this is operating at one of the maxima in the multiwave regime.

These options will be evaluated and compared.

Multiwave regime operation. A suitable 'operating point' (labelled 'A'), in the

multiwave regime, occurs at = 1.46, (2 = 3.30. At this position, an efficiency of
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greater than 97% is possible. Using equations (2) and (9), the grating constants can

be specified fully. The parameters for operation at a wavelength of 4pm are also

shown:

TABLE 3

Parameter to K Ki/m - 1  K/m-1  A/pm e/ d/pm

X-632.8nm 6,28 1.07 1.06E6 13.2E6 0.475 15-41 1.32

4.0pm 5.30 0.562 95.8E3 1.51E6 4.15 12.07 14 90

10 .6pm 5.30 0.562 36.2E3 570E3 11.01 12.07 39.

The grating period of 0.475pm for the 632.8nm case is close to the limits of

mask exposure technology, so a holographic recording technique might be more

applicable. Conversely, the 4.0 and 10.6pm cases are certainly promising candidates

for mask exposure, although it remains to be seen whether the exposure times for

the thicknesses required by them will be acceptably short.

However, there are alternative operating points that could be of use for the

632.8nm grating. One of particular interest occurs at = 3.02, 0 = 0.319 (labelled

'B' in the figure), with a peak efficiency of 92%. Again, this is the multiwave

regime. Since (2 is lower for this point, the grating period will be increased,

although at the expense of a corresponding increase in thickness. Operation at IR

wavelengths for this point is not advantageous, as the grating periods are alread\

large (Table 3) and any further increase in thickness would be highly undesirable.

The parameters calculated for replay at 632.8nm, at B, are shown below.

TABLE 4

Parameter (6 i Kj/M
-1  

K/M
- 1  

A/JM / d/jim

X-632.8nm 6.28 1.07 1.06E6 4.11E6 1.530 4.735 2.85

It can be seen that there is a reduction in the resolution requirements of over

a factor of 3, at the expense of a roughly doubling the required thickness.

Volume regime operation. At large values of D (- 10 or greater), the analytic

solutions to the coupled wave equations can be used to predict the required grating
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parameters. 100% efficiency first occurs when (equation 19):

tkI d
i i___(27)

cos 8
0

Combining this with the definition of the volume parameter . (equation (9)),

yields the relation, for on-Bragg replay:

P n cos 0do (28)

), 8 sin 20

where 6 is the replay angle, measured in air, and 6o is the internal Bragg angle~

Thus the normalised grating thickness d/X is large for small replay angles, but

decreases rapidly as the Bragg angle increases. Equation (28) is shown plotted in

figure 14.

i0

Qt 15 10 20o l NREASING

0 10 20 30 40 50 60 70 80

Figure 14. Variation of the normalised grating thickness d/X as a function of the

on-Bragg replay angle 6, measured in air. Volume replay (continuous curves) is

compared with multiwave replay (A and B). Refractive index n is assumed to be 2.32.
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A comparison of the grating thicknesses in the multiwave and volume regimes

can now be made. The plot clearly shows that, if large replay angles can be

tolerated (> 60), then volume regime behaviour is preferable. If smaller incident

angles are required, then operation in the multiwave regime is necessary. Such

considerations will be important, for example, in deciding how for off-axis a

diffractive lens would operate.

6.4 Angular Response

It has been shown above, that at both the operating points A and B and in

the volume region 'figure 13), diffraction efficiencies of greater than 90% should be

achievable. So far, the emphasis has been placed on high efficiency for minimum

physical thickness. Depending upon the application, other factors may be important.

One of these is the behaviour of the grating when it is off the Bragg condition,

due to a move away from the design replay angle and/or wavelength. For a

volume grating, the efficiency will fall, as the power in the ith on-Bragg order

decreases. However no other orders, other than the zero and the ith, will be

present.

This contrasts with the behaviour of non-volume gratings, where many

diffraction orders can have significant amplitudes when off-Bragg replay occurs.

These other orders may be highly undesirable, due to their ability to give spurious

foci or images, for example.

To illustrate the presence of such orders, calculations were performed,

simulating off-Bragg replays by angular dephasing. Figures 15 and 16 show the

theoretical output intensities from non-volume gratings, under index matched

conditions, as a function of the replay wave angle. The first figure corresponds to

operating point A, at 10.61m, the second at operating point B, at 632.8nm. In

both cases, the peak in the +1 diffracted intensity corresponds to replay being

on-Bragg. Either side of this angle, the gratings become increasingly off-Bragg,

and the efficiency falls. It can be seen that the former (case A) is more of a

volume response, in that the number of significant diffraction orders is relatively

small. Conversely, in the latter case (B), more orders are significant. This would

be expected, as at B the lower value of 17 j0.319 compared to 3.30) results in a

grating with less volume character.
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Figure 15. Angular response of a grating operating at A (Figure 13) at 10.6pm.

Diffraction intensities are plotted as a function of replay angle 00, measured in degrees.
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Figure 16. As in Figure 14, but operating at point B and 632.8nm.
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7. CONCLUSION

It has been shown that the photodoping of chalcogenides may be capable of

producing high efficiency transmission gratings. Such structures may be produced by m.sk

or holographic exposure and require few fabrication steps. Bulk rectangular, phase

gratings (as would be produced by mask exposure) were analysed using a coupled wave

model.

For the first time, the thin, multiwave and volume diffraction regimes of such

gratings have been investigated in some detail. Rectangular gratings were shown to be

capable of high efficiencies (> 90%). Choice of operating point was shown to depend on

angle, resolution and thickness considerations. The importance of minimising the physical

thickness of the gratings was discussed and a mark/space value of p = 0.4 was found to

be near optimum for this purpose. In this case, efficiencies of greater than 97%

(neglecting reflection losses) were found to be possible, in both volume and multiwave

regimes. The grating parameters, based on the supplied material properties of the silver

doped arsenic sulphide chalcogenide glasses, were calculated for optimum operation at the

wavelengths of 632.8nm, 4Am and 10.6pm.

It remains to be st whether the required thicknesses of gratings make fabrication

a practical proposition. This work is currently underway. Surface relief analogues may

prove to be an attractive alternative. These are also being investigated.

In conclusion, the excellent transmission characteristics (red to far infrared), and the

ease of grating fabrication, must make photodoped chalcogenides one of the prime

contenders for infrared diffractive elements.
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