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Significant research was performed under ONR Contract #N00014-84-K-0027
during the period of the contract. As listed in Appendix A, this work
resulted in eight refereed publications and four invited presentations at
International Conferences. The work also resulted in four student theses
listed in Appendix B. In addition, experimental progress was made in
creep fracture testing. As outlined below, this work was has not been
completed due to the lack of continuation of the contract.

The work under this contract was concentrated in three major areas: the
effect of mixed mode loading on fracture characteristics, the nature of
crack tip stress, strain and energy fields in ductile materials and the
nature of crack tip stress strain and energy fields in materials
undergoing rate dependent viscoplastic deformation. In each of these
areas, new insight was obtained and better understanding of the
fundamental physical processes gained. ( .

Early work on this contract focused on mixed mode fracture
characteristics. Experimental studies and finite element modeling
determined specimen characteristics and design modifications for a mode
two fracture specimen. This specimen has the unique capability of
testing from pure mode one to pure mode two without significant crack
face rotation. This work is documented in two student thesis (students
were successful candidates for the Diplome degree through a joint,
cooperative program between the University of Stuttgart and the George
Washington University). In addition, further work developed a
computational procedure based on the nodal force approach for the
determination of stress intensity factor distributions along arbitrary
crack fronts in three dimensions. This work was presented at an ASTM
conference and will appear in ASTM STP #969. This work is also
documented in a student masters thesis (all student theses are listed in
Appendix B).

S Work on ductile fracture was carried out for three dimensional, mode one
crack geometries. The effect of specimen thickness and material
hardening characteristics was studied. In addition to useful

p7 understanding, the thickness range where plane strain and plane stress
are valid assumptions were discovered. Depending on the ductility of the
material, the plane strain thickness did not correspond to the ASTM

* requirement due to the assumptions of elasticity employed. A modified
approach for determination of plane strain thickness was proposed. In
addition to the three dimensional studies involving a stationary mode one
crack, further research was performed in the areas of mixed mode ductile
fracture and ductile crack growth. The mixed mode ductile fracture
studies demonstrated the crack opening characteristics as a function of

0 mo - ratio. It wa- demonstrated that for dominant mode one, a distinct
notch effect is observed. This notch opening removes the HRR singularity
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and produces a ductile zone which is characterized by a weaker energy
Ssingularity than was previously known. In addition, as mode two becomes

more dominant, the deformed crack remains sharper and the local HRR
characteristics return. In addition, the significant rotation occurs at
the crack tip altering the amplitude of the local field. Mode one crack
growth studies were performed. This work demonstrated a computational
approach for accurately modeling stable crack growth with a commercial
finite element code. The physical results demonstrate the disappearance
of the HRR zone due to notch opening and the appearance of a significant
transition zone which dominates the local fracture zone. This zone is
characterized by an energy singularity which is weaker than i/r. This is
a new result which is under further investigation. The two dimensional
studies are documented in student theses listed in Appendix B. To date,
work is continuing on this problem and the results are not yet available
in the open literature. The student theses, therefore, are inclided as
Appendices D and E.

Studies on creep fracture characteristics were the focus of significant
study under this contract. Experimental work focused on crack growth
studies on IN 718 at 650 degrees C. At this temperature, significant
constituitive data was available. These results demonstrated that the C*

* integral was not employable as a crack driving force measure. In
addition, it was determined that experimental scatter was due to crack
front curvature effects which could be minimized through careful
experimental technique. The final results demonstrated a two stage
growth regime which was numerically fit to explicit time functions for
crack growth simulation. This work was part of an ONR progress report
and is included as Appendix E. Finite element studies of creep crack
growth were performed and the results are part of a recent publication
included as Appendix F. This study demonstrated the influence of finite
strains in the crack region and the inability of local asymptotic
solutions to characterize the stress fields near stationary and growing
cracks. In addition, convergence and accuracy of the numerical approach
was studied extensively. New understanding of convergence
characteristics was obtained.

Experiments were initiated at 550 degrees C to determine if the results
at 650 degrees were characteristic of creep crack growth in general or
were a qualitative function of temperature. Unfortunately, insufficient

4 constituitive data was available at 550 degrees and the data was not able
to be analyzed. Constituitive tests were initiated, however, the
contract resources were not sufficient to complete the work. If future
funding is available for this work, the tests will be completed and the
results will be forwarded to ONR.

The appendices of this work document the significant research
contribution that was made under ONR contract #NO004-84-K-0027L All
publications cited in the appendices were forwarded to ONR at publication
and were included in the quarterly progress reports. In addition, all
publications have been sent to the ONR distribution list at the time of
publication.
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'-. APPENDIX A - PUBLICATIONS FROM ONR CONTRACT #N00014-84-K-0027

1] "Creep Crack Growth Modeling and Near Tip Stress Fields"
E. Thomas Moyer Jr. and Harold Liebowitz, Engineering Fracture

Mechanics, Vol. 28, pp. 601, 1987.

2] "Finite Element Methods in Fracture Mechanics"
.. Harold Liebowitz and E. Thomas Moyer Jr., Proc. 5th International

Conference in Australia in Fracture Mechanics, University of

Melbourne, Australia, 1987.

3] "Finite Element Modeling for Elastic-Plastic Fracture Problems in
Three Dimensions", International Journal for Numerical Methods in
Engineering, Vol. 22, pp. 289, 1986.

4] "Prediction of Plasticity Characteristics for Three-Dimensional

Fracture Specimens: Comparison with Experiment"
E.T. Moyer Jr., H. Liebowitz and P.K. Poulose, Engineering Fracture
Mechanics, Vol. 24, pp. 677, 1986.

5] "Accurate Modeling of Ductile and Creep Fracture Specimens and
* Processes", E. Thomas Moyer Jr., Proc. of the ASM Conference on

IFatigue, Corrosion Cracking, Fracture Mechanics and Failure Analysis,
ASM publications, 1985.

6] "Methodology for Mixed Mode Stress Intensity Factor Calculations"

E. Thomas Moyer Jr., ASTM STP #969, to appear, July 1988.

-. 7] "An Overview of the Finite Element Method for the Analysis of

Engineering Metals", E. Thomas Moyer Jr., in Computer Simulation in
Materials Science, ASM International, 1988.

8] "Effect of Specimen Thickness on Crack Front Plasticity
Characteristics in Three Dimensions", E. Thomas Moyer Jr., Proc. 6th

Intl. Congress on Fracture, New Delhi, 1984.

-'7, 9] "Biaxial Load Effects in the Mechanics of Fracture"
E. Thomas Moyer Jr. and Harold Liebowitz, Journal of the Aeronautical
Society of India, Vol. 36, pp. 17, 1984.
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APPENDIX B - STUDENT THESES UNDER ONR CONTRACT #N00014-84-K-0027

. 1] Determination of Two Dimensional Stress Intensity
By: Peter Bauerle, 1985, Diplome Thesis.

2] Fracture Under Mixed Mode Loading
By: Roland Gerstner, 1985, Diplome Thesis.

3] The Nodal Force Aproach for Mixed Mode Stress Intensity Factor
Calculations in Three Dimensions

By: Kornelius Hengle, 1987, Master of Science Thesis.

4] Ductile Crack Growth Simulation - Local Deformation and Field
Variable Analysis
By: Kurt Kunze, 1987, Master of Science Thesis.

5] Local Crack Tip Field Quantities with Ductile Material Behavicr for
General Mixed Mode Problems
By: Martin Haegele, 1988, Master of Science Thesis.
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FRACTURE TESTS ON IN 718 -

INSIGHT INTO CREEP FRACTURE PHENOMENA

E. T. Moyer, Jr. and H. Liebowitz

The George Washington University

ABSTRACT

Fracture tests on IN 718 superalloy demonstrate that the

C fracture parameter is not a sufficient quantity for the

quantitative description of creep crack growth. The results

contained in this communication show that the crack velocity is

not uniquely predicted by C but is also a function of test

(load. In addition, the results indicate that the crack

* - velocity would also be affected by geometry changes (e.g.,

specimen size).

The results presented in this communication also demon-

strate that crack growth initiates extremely early in the test

history. No unique initiation time was identifiable. Also

evident is a two stage growth process with stage 1 (charac-

* terized by constant crack velocity) contributing significantly

to the total useful life even at relatively high initial crack

velocities (on the order of 0.001 inches/minute).

Investigation was made into the widely observedscatter in

creep fracture data reported in the literature. This scatter

is often suggested to be due to crack tunneling, material

0
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L L' variability, etc. The results presented in this work show that

initial crack front curvature, irregular geometries, forming

inconsistencies (e.g., rolling irregularities) cause extreme

scatter in experimental results. These irregularities,

however, are observable continuum phenomena which are incon-

sistent with the assumptions inherent in the analysis of the

test data. When specimens exhibiting these irregularities are

removed from the data base, scatter is reduced to acceptable

-, levels (e.g., less than 10% in measured quantities). The
%1

fracture surfaces also indicate that tunneling does not occur

for the geometry, loading, temperature and material conditions

studied.
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. .FRACTURE TESTS ON IN 718.i

INSIGHT INTO CREEP FRACTURE PHENOMENA

E. T. Moyer, Jr. and H. Liebowitz

The George Washington University

A series of constant load creep fracture tests were

performed on IN 718 specimens at 6500 C. The specimen geometry

was standard compact tension with dimensions (a = 1.0 in.,

W = 2.0 in., B = 0.4 in.). Tests were run for load levels

*e between 1000-1500 lb. Mouth opening displacement and crack

length were monitored continuously during the test. To

establish a sharp initial crack, the specimens were fatigue

precracked at room temperature at 15 Ksi - rTff. Crack length

is measured optically to a precision of 0.0015 in.

The first Figure is a plot of the crack length vs time at

five different load levels. All the data indicates a two stage

crack growth process. The first stage is characterized by

essentially constant crack velocity (the linear. portion of the

crack length vs time curve) and the second stage is character-

ized by continuous acceleration. For the growth range studied,

stage 1 crack growth accounts for a significant portion of the

growth history (at 1000 lb., stage 1 accounts for approximately

65% of the time required to increase the crack length 40%; at

* 1500 lb., stage 1 accounts for approximately 40% of this time

history). At the load levels tested, crack growth was observed

%*K
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very early in the history. A unique "initiation" time was not

identifiable.

The crack length vs time curves clearly indicate that

stage 1 growth is evident even when initial crack velocities

are of a "average" magnitude. Previous studies have indicated

that stage 1 is present only for very slowly growing cracks

[1]. In the data presented here, initial crack velocities

varied by almost an order of magnitude and all tests exhibit

stage 1 behavior for significant portions of the growth history.

The second Figure is a plot of crack velocity (da/dt) vs

C The formulation of Kumar and Shih (K-S) is used for the

calculation of C [2]. This formulation is to be preferred to

the Harper and Ellison (H-E) formulation for two reasons:

first, the assumptions made in the derivation are less restric-

tive (e.g., zone size requirements in the H-E formulation,

proportioning of deformation due to crack growth and creep,

etc.) and second, because the K-S formulation requires only a

knowledge of the geometry and loading and not the load line

displacement rate (which is measured less accurately). Indeed,

for reasonable crack velocities, the H-E formulation can be

shown to be a measure of da/dt and not C (3].

The da/dt vs C plot deMinstrates that the C is not a

sufficient parameter to describe crack growth. It has been

postulated in the literature that da/dt can be uniquely related

to C , independent of loading and geometry (see, For" example,

[4,5). The results presented by the authors demonstrate that

-
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da/dt is a Function of the test loading in addition to the

parameters involved in calculating C This is understand-

able as during stage 1 growth, C is steadily increasing while

da/dt remains constant. In addition, convergence toward a

unique da/dt vs C relationship is not evident until the crack

velocity and length have grown appreciably. At the larger

da/dt values, many of the assumptions required for the

application of the K-S formula become dubious. In the region

in which the K-S assumptions are valid, the results demonstrate

that C is not a sufficient correlating parameter.

For the range of geometry and loading presented in this

work, K is not a viable fracture parameter. At 1000 lb.

(loading, the stress intensity factor calculated from the mouth

opening displacement reached a value of 27 Ksi - i-h. prior to

crack growth where the linear elastic K value was 17 Ksi - in.

corresponding to the load. It was evident, therefore, that the

creep deformation exceeded the K controlled region from the

start of the test. K, therefore is not a viable fracture

parameter for this data.

Creep fracture studies often exhibit much experimental

scatter. Many reasons are proposed including environmental

effects, deformation transitions, tunneling, mechanism transi-

tions, etc. Data which exhibits large scatter cannot be used

to establish or reject the validity of any theoretical model as

the error in the data can be on the order of the phenomena

being described. To minimize scatter in our results, data was

1oe "
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!\ only taken in the range where oxidation effects are small.

Oxidation influences are a function of the test duration and

the local strain state near the crack [6]. The presence of

oxidation can be seen on the fracture surface as a change in

color from the standard metallic color to a blue color. Only

data obtained before the color change became appreciable was

used in the analysis.

In addition to avoiding oxidation driven growth data,

closer examination of the fracture specimens revealed observ-

able causes for the scatter observed. Several specimens which

exhibited data far from the mean had extensively curved crack

fronts after fatigue precracking. These specimens tended to.1.

exhibit much slower crack growth than those with relatively

straight crack fronts. If extreme curvature was exhibited in

the fatigue crack (greater than approximately 1/16 in.) the

data was rejected.

Photo 1 and Photo 2 show fracture specimens whose data

were excepted (number 1 was loaded at 1000 lb. and number 2 was

loaded at 1500 lb.). Both exhibit typical fatigue cracks which

produced consistent data. Photo 3 shows a specimen which was

*..- loaded at 1000 lb. The data from that test exhibit twice the

lifetime of the mean at that load. The geometric discontinuity

"" introduced by a machining error (the kink in the notch) caused

S.. the crack to grow in a uneven manner prolonging life.

"- ."Other scatter occurred due to discontinuities in the

material. Photo 4 shows a specimen which was loaded at

6-$
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1500 lb. The fracture surface discontinuity again prolonged

the life of the specimen. This discontinuity is believed to be

S caused by imprecision in the rolling process during forming.

None of the sources of scatter described could have been pre-

dicted without examination of the fracture surface. These

phenomena, however, are not due to material variability or

microstructure. All the observations are continuum irregu-

larities which are inconsistent with the analytical assumptions

of continuum crack growth.

After discarding the specimens with continuum diSconti-

nuities, the data exhibited very little scatter from test to

test. The data presented in this work is the average of that

."obtained from multiple tests. The test to test differences in

crack length was less than 5% and the difference in crack

velocities was less than 10%. Mouth opening displacements were

contained within a scatter band of approximately 3% with

deviations in opening rate of approximately 7%. It is felt

V that these numbers accurately represent the "scatter" which is

due to testing configuration, material variability (which

should be small since all specimens are from a single batch of

material, were heat treated identically and were cut in the
same direction relative to the rolling) and microstructure.

- The data presented demonstrate the inability of either C

or K to be a valid constitutive parameter for creep crack

growth in IN 718 at 650 0C. In addition, these results viewed

with other investigators' work (for various materials, e.g.,
' .

'p..
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(1,3,6]), demonstrate that a valid fracture parameter charac-

terizing creep crack growth behavior for a realistic range of

geometry and loading has yet to be found. In addition, new

insight into the "Sources of Scatter" have been identified.

This testing sequence suggests that continuum reasons for

observed scatter can often be identified which violate the

continuity assumptions inherent in the test procedure and

analysis.

(
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.".,>"In the present work, local crack-tip field quantities under ductile material behavior
,were stde o ie-oeloading ranging frmpure mode I to pure mode 11 under the

-'i assumption of plane strain. In order to become independent of a specific specimen, the local

.- , crack-tip region was modeled as a disk with the crack tip at its center. Based on the
assumption of small scale yielding, displacements evaluated from the linear elastic solution

~were applied on the model boundary. For ten comparable cases of mixed-mode loading the

.,-.-body response was calculated using the J2 flow theory of incremental plasticity employing

,.,..-small strain theory. The finite element mesh employed consisted of 1178 eight node plane

i • strain elements and 3643 nodes.

-..-. In the evalution of the results emphasis was placed on •

-o -

,. qLi) The investigation of field quantities in terms of their exposed singular behavior,

f ,.%magnitude and distribution inside the plastic zone

i i i) The examination of the influence of mixed-mode loading on the singular behavior of the

] field quantities and the validity of the HRR singular field for mixed modes

",''."i ii) The discussion of the strain energy density as a criterion predicting onset and direction

.%I % .

nt pstoof crack growth for mixed mode loading with ductile material behavior and

ssuiv) The determination of the stress functions from the finite element results and their
ascomparison with the numerical calculation of an asymptotic solution.

w . o m b a o c r c o ea

.'%A 
e r+

- oyrsos a acltduigteJ lwter ficeetlpatct mlyn

smlItanter.Tefnt lmn eh mlydcnitdo 18egtnd ln



TABLE OF CONTENTS

V

ACKNOWLEDGMENTS

ABSTRACT

TABLE OF CONTENTS

V. UST OF FIGURES

UST OF TABLES

NOMENCLATURE

1, INTRODUCTION

Z2 STRESS AND DISPLACEMENT FIELDS IN LINEAR ELASTIC

FRACTURE MECHANICS 5

1.MIXED-MODE FRACTURE CRITERIA 8

3.1 THE STRAIN ENERGY DENSITY CONCEPT AS A FRACTURE CRITERION 9

4, INCREMENTAL PLASTICITY 12

5. THE FINITE ELEMENT METHOD 17

5.1 THE FINITE ELEMENT FORMULATION FOR UNEAR MATERIAL BEHAVIOR 22

"-" 5.2 THE FINITE ELEMENT FORMULATION FOR NONLINEAR MATERIAL BEHAVIOR 24

-- MODEL CREATION AND SOLUTION 26

S iv



6.1 CREATION OF THE FINITE ELEMENT MESH OF THE EMPLOYED SPECIMEN 26

6.2 MATERIAL 27

6.3 USING THE FINITE ELEMENT SOLVER 'ABAQUS' 28

7 THE J-INTEGRAL 31

7.1 DEFINITION AND PROPERTIES 31

7.2 CALCULATION OF THE J-INTEGRAL VALUE 34

7.3 RESULTS OF THE Jj- AND J2-INTEGRAL CALCULATIONS 36

8 FIELD QUANTITIES 38

* 8.1 THE FAR TIP FIELD 38

8.2 THENEARTIP FIELD 39

8.3 THE INTERMEDIATE ZONE 42

-9 DISCUSSION OF THE FIELD VARIABLES 43

9.1 THE STRESS FIELDS 43

9.2 STRESS AND STRAIN DISTRIBUTION, PLASTIC ZONE AND CRACK BLUNTING 45

9.3 THE STRAIN ENERGY DENSITY 46

LL RESOLVING THE STRESS FUNCTIONS FROM FINITE ELEMENT RESULTS 49

11. CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER RESEARCH 52

k V



REFERENCES

FIGURES

'- TABLES

,%

V

0N

&e--

• -,t . -,,

0¢,

*,vi



LIST QF FIGURES

Figure 1 • Definition of the three modes of fracture.

Figure 2 Definition of the crack-tip stresses, showing rectangular and polar

coordinate components.

Figure 3 Definition of crack angle and fracture angle in the center cracked panel
with slanted crack under uniaxial tensile stress.

Figure 4 KI - KII curve according to the fracture criterion due to Sih [29].

Figure 5 Idealized constitutive material behavior of (i) incrementally elastic-
plastic material conforming to incremental theory of plasticity, (ii)
incrementally elastic-plastic material conforming to deformation
theory of plasticity.

. Figure 6 Mapping of the eight-node prabolic element from spatial coordinates
(x, y) to local coordiantes (e, n). Definition of the node and integration
point numbering.

- Figure 7 Contour Plots of the von Mises yield stress for selected cases of mixed-
mode loading.

Figure 8 Generation of the eight-node collapsed element: (i) rectangular eight -
node element, (ii) degenerated triangular eight-node element.

Figure 9 : Configuration of the degenerated crack-tip elements.

Figure 10 : Main fan of the finite element model of the specimen, inner radius : 1mm,
outer radius : 10 mm.

Figure 11 • Boundary of the finite element mesh of the specimen, inner radius • 5mm,
* outer radius : 100 mm.

Figure 12 Stress - strain curve of the steel A304.

Figure 13 A contour r around the crack tip and parameters defining the J-integral.

Figure 14 Jj- and J2-integral values for all mixed-mode cases considered.

Figure 15 • Illustration of the crack tip region under small scale yielding condition.

Figure 16 Effective von Mises stresses along line e 00 for all mixed-modes cases
* considered.

vii



Figure 17 Effective von Mises stresses around crack tip. Radius r = 0.4 mm for
selected mixed-mode cases.

Figure 18 Full logarithmic representation of effective von Mises stresses along line
e = 00 for all mixed-mode cases considered.

Figure 19 O'yy - stresses along line 9 = 00 for selected mixed-mode cases.

Figure 20 Equivalent von Mises stress around crack tip. Radius r= 1 mm.
Stress intensity factor ratio : KI/KII = 2230/0.

Figure 21 Equivalent von Mises stress around crack tip. Radius r= 1 mm.
Stress intensity factor ratio : Kl/KII = 1927/987.

Figure 22 Equivalent von Mises stress around crack tip. Radius r= 1 mm.
Stress intensity factor ratio : KI/KII = 1683/1252.

Figure 23 Equivalent von Mises stress around crack tip. Radius r= 1 mm.
Stress intensity factor ratio : K1/KII = 1405/1462.

Figure 24 Equivalent von Mises stress around crack tip. Radius r= 1 mm.
--' (- Stress intensity factor ratio : KI/KII = 772/1774.

Figure 25 Equivalent von Mises stress around crack tip. Radius r= 1 mm.
Stress intensity factor ratio : KI/KII = 396/1903.

Figure 26 Equivalent von Mises stress around crack tip. Radius r= 1 mm.
Stress intensity factor ratio : KI/KII = 0/2018

Figure 27 Equivalent von Mises stress around crack tip. Inner radius 1 mm, outer
radius 10 mm. Stress intensity factor ratio : KI/KII = 2230/0.

* Figure 28 Equivalent von Mises stress around crack tip. Inner radius 1 mm, outer
radius 10 mm. Stress intensity factor ratio : KI/KII = 1927/987.

Figure 29 Equivalent von Mises stress around crack tip. Inner radius 1 mm, outer
-radius 10 mm. Stress intensity factor ratio : KI/KII = 1683/1252.

Figure 30 Equivalent von Mises stress around crack tip. Inner radius 1 mm, outer
radius 10 mm. Stress intensity factor ratio : KI/K 1I = 1098/1633.

.Figure 31 Equivalent von Mises stress around crack tip. Inner radius 1 mm, outer
radius 10 mm. Stress intensity factor ratio K1/KII = 772/1774.
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Figure 32 Equivalent von Mises stress around crack tip. Inner radius 1 mm, outer
radius 20 mm. Stress intensity factor ratio : KI/KII = 396/1903.

Figure 33 Equivalent von Mises stress around crack tip. Inner radius 1 mm, outer
radius 20 mm. Stress intensity factor ratio :K/KII = 0/2018.

Figure 34 Equivalent plastic strain around crack tip. Radius r= 1 mm.
Stress intensity factor ratio : KI/KII = 2230/0.

Figure 35 Equivalent plastic strain around crack tip. Radius r= 1 mm.
Stress intensity factor ratio : KI/KII = 1927/987.

'- Figure 36 Equivalent plastic strain around crack tip. Radius r= 1 mm.
Stress intensity factor ratio : KI/KII - 1098/1633.

Figure 37 Equivalent plastic strain around crack tip. Radius r= 1 mm.
Stress intensity factor ratio : KI/KII = 0/2018.

Figure 38 Equivalent plastic strain around crack tip. Inner radius 1 mm, outer
radius 10 mm. Stress intensity factor ratio KI/Kj1 = 2230/0.

k Figure 39 Equivalent plastic strain around crack tip. Inner radius I mm, outer
radius 10 mm. Stress intensity factor ratio KI/KII = 1927/987.

Figure 40 Equivalent plastic strain around crack tip. Inner radius 1 mm, outer
radius 10 mm. Stress intensity factor ratio KI/KII = 1405/1462.

Figure 41 Equivalent plastic strain around crack tip. Inner radius 1 mm, outer
radius 10 mm. Stress intensity factor ratio KI/K 1, = 772/1774.

Figure 42 Equivalent plastic strain around crack tip. Inner radius 1 mm, outer
radius 20 mm. Stress intensity factor ratio KI/KII = 396/1903.

Figure 43 Equivalent plastic strain around crack tip. Inner radius 1 mm, outer
radius 20 mm. Stress intensity factor ratio KI/KII = 0/2018.

* Figure 44 Deformed Mesh, outer radius r= 1mm.
Stress intensity factor ratio KI/KII = 2230/0.

Figure 45 Deformed Mesh, outer radius r= 1 mm.
1v. Stress intensity factor ratio KI/KII= 1927/987.

1. - Figure 46 Deformed Mesh, outer radius r= 1mm.
, Stress intensity factor ratio KI/KII 1405/1462.
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Figure 47 Deformed Mesh, outer radius r= 1mm.
Stress intensity factor ratio KI/KII = 1098/1633.

Figure 48 Deformed Mesh, outer radius r= 1mm.
. Stress intensity factor ratio KI/KII = 0/2018.

Figure 49 Crack deformation. Plotted crack length 10 mm.
Stress intensity factor ratio : KI/KII = 2230/0.

Figure 50 Crack deformation. Plotted crack length 10 mm.
Stress intensity factor ratio : KI/KII = 1927/987.

Figure 51 Crack deformation. Plotted crack length 10 mm.
Stress intensity factor ratio : KI/KI = 1098/1633.

Figure 52 Crack deformation. Plotted crack length 10 mm.
Stress intensity factor ratio : KI/KII = 0/2018.

Figure 53 Deformed and undeformed meshes. Inner radius 1 mm, outer radius 10 mm.
Stress intensity factor ratio : KI/KII = 2230/0.

Figure 54 Deformed and undeformed meshes. Inner radius 1 mm, outer radius 10 mm.
Stress intensity factor ratio : KI/KIl = 1683/1252.,p

Figure 55 Deformed and undeformed meshes. Inner radius 1 mm, outer radius 10mm.
Stress intensity factor ratio :K/KII = 1098/1633.

Figure 56 Deformed and undeformed meshes. Inner radius 1 mm, outer radius 10mm.
Stress intensity factor ratio : KI/KII = 0/2018.

Figure 57 Strain energy density along a circular path around the crack tip for
* selected cases of mixed-mode loading. Radius r= 1 mm from crack tip.

Figure 58 Full logarithmic representation of the strain energy density along the

ine 9 = 00 for selected mixed-mode cases.

Figure 59 Graphical illustration of the interval halving method.

% Figure 60 Angular variation of the stress functions O'rr O'ee ae and 5're.

Stress intensity factor ratio : KI/KII = 2230/0.

• Figure 61 Angular variation of the stress functions Qrr ,See ,ae and re.
Stress intensity factor ratio KI/KI 2222/175..i P 
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Figure 62 Angular variation of the stress functions rr , 0 ee ,Ee and 0re.

Stress intensity factor ratio : KI/KII = 2107/670.

Figure 63 Angular variation of the stress functions 0rr LTee ,&'e and &'re.
Stress intensity factor ratio : KI/KII = 1927/987.

Figure 64 Angular variation of the stress functions crr TOe ,&e and CTre.

Stress intensity factor ratio : K1/KII = 1683/1252.

Figure 65 Angular variation of the stress functions &rr , 0ee 'e and 0're.

%. . Stress intensity factor ratio : KI/KII = 1405/1462.

Figure 66 Angular variation of the stress functions O'rr '0ee ,0 e and C're.

Stress intensity factor ratio : K1/KII = 1098/1633.

Figure 67 Angular variation of the stress functions Orr ,-ee ,0 e and L're.

Stress intensity factor ratio : KI/KII = 772/1774.

- ( Figure 68 Angular variation of the stress functions Orr (Tee &e and 0 re

Stress intensity factor ratio : K1/KlI = 396/1903.

Figure 69 Angular variation of the stress functions 0 rr ,ee ,CT and O're.

Stress intensity factor ratio :K/KII = 0/2018.

Figure 70 Ratio of o-E/O-re along the line 6 =00 for selected mixed-mode cases.

.,, Figure 71 In versus plastic mixity parameter MP I for all mixed-mode cases

4 , considered. Comparison with the values of In obtained by Shih [27].
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NOMENCLAIURE

a crack length

a °  flow vector

nodal displacement vector

A slope of the uniaxial stress-strain curve

vector of body forces

strain-displacement matrix

element mapping matrix

C constant term

D radius of the HRR field
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E Young's modulus

fij I ,  fij II  stress functions for linear elastic material behavior
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t nodal force vector
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" INTRODUCTION

Historically, conventional stress analysis was based on the assumption of flawless

material behavior. Since the existence of crack-like flaws cannot be precluded in any

engineering material, fracture theories had to be developed which account for local stress

concentrations.

The significance of intense and localized concentration of stresses around sharp notches

was first emphasized by Inglis [1]. He realized through considerations of the stress

concentration around an elliptical hole that the stress becomes infinitely large at the tip of a

sharp crack. Based on the ultimate stress concept, this would indicate that a cracked

component cannot sustain any loading.

Griffith [2,31 applied energy conservation principles to the problem of a cracked glass

6 plate. This work set the theoretical foundation for the field of continuum fracture mechanics.

Irwin [41 and Orowan [5] subsequently modified the original Griffith theory so that it could

be applied to metals by adding a term involving the plastic energy dissipation rate in the

plastically deformed region near the crack tip. Due to difficulties in the practical

application of the energy balance concept, new approaches had to be found to characterize the

material behavior under the influence of a sharp crack. Irwin [6] was able to utilize the

cracked body solutions of Westergaard [71 to establish a relation between the strain energy

release rate G, (a global parameter) and the stress intensity factor K (a local crack tip

parameter). These stress intensity factors can be related to three independent local

movements as shown in Figure 1. These are categorized as:

- Mode 1, or opening mode

- Mode II, or sliding mode

Mode Ill, or tearing mode.

* Any crack deformation in the case of linear elastic material behavior can be idealized by the

appropriate superposition of theses cases. Unlike the brittle glass considered by Griffith,
most metals exhibit the phenomenon of ductility. Crack tips are, therefore, engulfed by

plastic yield zones with finite stresses.

* Early attempts to model the plastic deformation surrounding the crack tip were based

..,......•-...-..-..
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upon extensions of the linear elastic fracture mechanics (LEFM). Irwin [8] broadened the

applicability of LEFM by introducing a modified stress intensity factor KI. At the same time

Wells [9] established the crack opening displacement (COD) as a parameter governing crack

extension even beyond general yielding. Dugdale [101 extended the COD approach and

established a relation between a plastic zone estimate around the crack tip and the crack

opening displacement in thin sheets.

A significant contribution to the field of elastic-plastic fracture mechanics (EPFM) was

the introduction of the path independent J-integral. This integral (originally derived by

Eshelby [11] and Cherepanov [121) was introduced into the field of fracture mechanics by

Rice [13]. Begley and Landes [14] showed its applicability as a parameter describing the

stress concentration at the crack tip and suggested the use of a critical J-integral value JIG

to predict the onset of stable crack growth.

Several attempts have been made in recent years to arrive at a more general definition of

the J-integral which would minimize the assumption of elastic material behavior and the

absence of body forces while still retaining its desirable features. Some of the proposed

formulations extend the definition of J to axisymmetric three dimensional problems, others

:-, consider more general loading conditions [15-20].

Hutchinson [211 and Rice and Rosengren [22] independently determined the

characteristic singular behavior of stresses and strains inside the plastic zone (using

deformation theory of plasticity) where elastic strains are negligible compared to plastic

strains. This zone is commonly referred to as the HRR singular field due to its distinct

singular character in terms of stresses and strains. In their analysis, which took full

advantage of the path independence of the J-integral, they showed that stress, strain and

displacement components can be related to dimensionless functions. These functions are only

dependent on the hardening characteristics of the material and whether the material is in a

state of plane stress or plane strain. Stress, strain and displacement components inside the

HRR field are, therefore, determined by an appropriate stress, strain or displacement
function and a singular term involving the J-integral value which characterizes the

amplitudes of these fields. The validity of expressing crack-tip quantities in terms of the

HRR singular solution has been shown by a number of scientists [23-261. Shih [24]

* ,established (through considerations of the displacement function of the HRR-theory) a
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relationship between the J-integral and the COD-concept and proved the similarity of both

concepts. This analysis assumes that the HRR field dominate the region around the crack tip

having a size of at least ten times larger the crack-tip opening displacement.

Shih [27,281 applied the HRR singular field solution to the case of a body under mixed-

mode loading. The stress, strain and displacement functions in this case depend on the

relative composition of mode I and mode II directly ahead of the crack. The J-integral, in

combination with a parameter sensitive to the composition of mode I and mode II, governs the

amplitude of the singular field.

Though many cracks in structures may be initially under mixed-mode conditions, most

research in the field of fracture mechanics is focused on the study of fracture behavior

under pure mode I conditions. The major reason for this is the general observation that a

crack subjected to mixed-mode loading tends to grow toward a mode I condition. The main

interest in mixed-mode fracture mechanics, therefore, is focused on determining criteria

which predict the onset of crack growth and the angle of crack extension in relation to the

existing crack. In contrast to pure mode I where the critical value J1C has been employed to

predict the onset of crack growth, this quantity is no longer valid for mixed-mode conditions

since the crack usually does not extend in its own plane. The most promising concepts of

mixed-mode fracture criteria are therefore based on energy principles, i.e. the maxima or

minima of either the total strain energy density or of its components [29-32]. Both the

concept of the strain energy criterion, introduced by Sih [29] and the T-criterion suggested

by Theocaris (33] have been extended for use in the elastic-plastic regime. Since these

criteria are of local nature, they depend on the local stress and strain response of the

material.

In the analysis of cracked bodies, the finite element method has become the major

numerical technique for the solution of fracture problems (both linear and nonlinear). The

theory of incremental plasticity, which is usually incorporated in modern finite element

programs, relates incren its of stress to increments of strain. The formulation of the

incremental theory of plasticity accounts for elastic unloading effects and has been very

successful in simulating ductile material behavior.

In the present investigation local crack-tip field quantities were examined for mixed-

mode loading ranging from pure mode I to pure mode II. A ductile material was modeled and

the commercial finite element package ABAQUS was employed to perform the calculation. All
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considerations were based on the assumption of small scale yielding which requires the

plastic zone to be small relative to other dimensions (i.e. crack length or specimen size).

Although a variety of mixed-mode fracture specimens have been suggested in the past

[34,35], there is still no universally accepted standard mixed-mode specimen. In this
work, therefore, the local crack-tip region is modeled without employing a mixed mode

fracture specimen. Displacements on the boundary are calculated by assuming elastic stress

intensity factors for both mode I and mode II a priori. These displacements are applied to the

boundary of the local crack-tip region.

Ten loading combinations which span the range from pure mode I to pure mode II were

investigated. The J-integral values were calculated to measure the strength of the field

singularities. Stresses, strains and both total and elastic strain energies were examined

with respect to their singular behavior and angular variation within the plastic zone.

;0 Details of plastic zone sizes and shapes as well as the crack blunting under varying mixed

mode I and II contributions were investigated. The stress functions for all investigated cases

were determined as well as parameters describing the amplitude of the plastic near-tip

i -field.
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2. STRESS AND DISPLACEMENT FIELDS IN LINEAR ELASTIC FRACTURE MECHANICS

The stress and displacement fields around a crack in a linear elastic material have been

investigated by a number of scientists. Although a basic solution was worked out by

Muskhelishvili [361, Westergaard [71, Williams [37], Irwin [6] and Sih [38] solved the

same problem using different approaches. A decisive step in linear elastic fracture

mechanics (LEFM) was the introduction of the stress intensity factor K by Irwin [6]. His

work employed using Westergaard's solution for the near-tip stress field of a cracked body.

If the elastic solution for a cracked body is available, the stress intensity factors, KI and KII,

can be defined as:

KI - lim o'w(r,e 0)(21r)l/2
r- 0

(2.1)

KII lim oxy(re=O)(2nr)1/2.
r-0

Both stress and displacement fields are based on the linear theory of elasticity and may,

therefore, be superimpos" 1. The stresses and displacements under combined mode I and mode

II can be written as for the coordinate system (given in Figure 23 _ _ - 3
0' 1-sin'i e esint[ 2+osycos"]
" KC 1 +sin sin 2i 0os Fe Cos 'T

YY , 2,r 2 2 2 42 nr 2 2

;sin- sin cos 1-sin- sin

(2.2)

u KI  r 1 + u) [(2 K-1) cos- cos-II -- J 2 2

TE21[ 3 I..- ';( C~+ u)[( 2 K+1 )sin y. - si3n. ]T

3 * 1
: I l u) [(2 K +3) s in -+ si n ]
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where E is Young's modulus,

u is Poisson's ratio and

K is given for the case of plane strain as K = 3-4u

By expressing equation (2.2) in the form

, 'ij I fIj( ) + K II f il (e)

42nr gi-e 2"t r
,.. I(2.3)

K.,I r Kfl r 1i1(O
2-... Ei 4 2 .r gli(e ) + 1 n g e-" *K2 E .12 .

several characteristics of these solutions can be observed. The stress intensity factors

depend only on the applied loading and consequently determine the intensity of the local field.

( The remaining terms depend on the spatial coordinates around the crack tip and determine

the distribution of the field. These subdivide into a singular l/1r component and an angular

component expressed by the geometric functions fijI, fijII, gil and gill .

Higher order terms of the actual series solution have been neglected. More higher

ordered terms need to be included if the field had to match outer boundary conditions. Eftis et

al. [39,40], in revisiting the stress and displacement fields of the one parameter

representation given in equation (2.2), proved the inaccuracy of these relations for the

case of biaxial loading. This stems from the arbitrary omission of the second term of the

c-- series expansion for the stress components which contain a term independent of the distance

from the crack but dependent of tne angular position around the crack tip. Eftis improved the

singular solution for the inclined crack under biaxial tensile load by including this term

* which finally affects only the x-component of the stress field. Theocaris et al. [411

developed a closed form solution solution of stresses and displacements of a slant crack under

biaxial tensile loading for arbitrary radius (r) away from the crack tip.

S * Irwin [42] derived the relationship between the stress intensity factors and the energy
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release rate (G) for cracks extending in their original plane. For pure mode I and pure mode

II (under plane strain conditions) these relations are given as :

GI I - 2  GI= "-K (11  - 2 (2.4)

Energy release rates can be added for a crack remaining in its plane according to

G =G I+ Gil (2.5)

For a linear elastic material subjected to pure mode I loading conditions the energy

available to create a unit surface is G,. The critical strength parameter governing failure,

therefore, can be expressed as GIC. This parameter can be related to the critical stress

( intensity factor KIC by equation (2.4).
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3. MIXED MODE FRACTURE CRITERIA

In order to assure a comparison of field quantities for arbitrary ratios of stress intensity

factors, a criterion had to be applied which relates Kil-values to a given KI-value. In

contrast to a pure mode I Griffith crack, a mixed mode crack does not necessarily extend in

its own plane. Since the direction of crack extent is not known a priori it would be incorrect

to obtain the mixed mode energy release rate by adding G, and G11. In contrast to pure mode I

fracture analysis where the fracture criterion is founded on a given KIC-value, there is sill

no well established criterion for the case of mixed-mode fracture. The most widely used

mixed mode fracture criteria are [33,43-45]

criterion of maximal tangential stress
various criteria based on the energy release rate

various criteria based on the energy density

S( -criterion according to DiLeonardo

- principal strain criterion

~ -J-integral criterion

",modified T-criterion and

- various empirical criteria based on experimental KI-K11 failure curves.

The energy density criterion introduced by Sih [29] was chosen for two reasons:

, it is generally in good agreement with experimental results [29,47] and

" it provides a concise relationship between the critical energy density factor and the

stress intensity factors for mode I and II.
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3.1 THE STRAIN ENERGY DENSITY CONCEPT AS A FRACTURE CRITERION

Sih [29] proposed a criterion based on the strain energy density in the vicinity of a

crack tip. For an elastic material the strain energy density is given in its general form as

(''"- (°.2+y2+0-z2)- L (0'x°'y+0,y°'z+'zo"x)+ -L (,r 2 v 2 +r ' 2)
dW 2E E (3.1)

where E is Young's modulus,

u is Poisson's ratio and

LL is the shear modulus.

Substituting the stress components from the asymptotic linear elastic two dimensional

stress solutions given in equation (2.2), the strain energy density can be obtained as:

I . I (allk 2 + 2a 2 kjk 2 + a2 2 k2 2) (3.2)

The coefficienjs aij are given as:
p1.

1. a 1 " - [( 3-4u-cose) (1+cose)1
", 16

a 12 - -sine [cose-(1-2u)]
8

a22 - - [4 (1-u) (1-cose) + (1 +cose ) (3 cose -1)]a22=-
*, 1 6LJ.

It can be seen that the strain energy density is characterized by a 1/r singular term

S where r is the distance from the crack. The quadric term, S, in equation (3.2) can be

considered as a material constant [29] and varies only in the angle e around the crack tip,

Figure 2.

Determination of pairs of KI- KII - values with respect to an assumed maximum value of
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Determination of pairs of KI- KII - values with respect to an assumed maximum value of

KIC is based on taking advantage of two hypothesis formulated by Sih [291:

1. A crack will extend in the direction of maximal potential energy.

2. The critical intensity Scr of this potential field governs the onset of crack

propagation

The potential energy per unit volume, P, is defined as:

S
Pm, -" (3.3)

Therefore, P assumes a maximum if the following relations hold:

a' a2 o.2p at 1e- 0 . (3.4)

The formulation of the stress intensity factors k1 and k2 for a crack inclined by an angle 6,

and of length 2a under tensile stress o" ( see Figure 3) is given as:

.,

k1 - "oa- sin2 S
' "(3.5)

k2 -(T la sin 3 cosB

Substituting these expressions into equation (3.2) yields an expression for S

S-k 2 (all sin 0 +2a 1 2 sin Ocos 0 +a22cos 28)sin0 . (3.6)

Again, according to the first hypothesis and equation (3.3), S has to be a minimum if P

shows a maximum. Differentiating equation (3.6) with respect to 0 and setting the result to

10
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2 (1-2u) sin (00 - S) - 2 sin [2 (9 0 - 6)] - sin 290  0 (3.7)

The critical values of K, and KI lie on a curve in the KI-KII plane determined from equations

(3.5) and (3.7).

A FORTRAN program has been written to perform the outlined procedure to find pairs of

KI-KII values for a given pure mode stress intensity factor KI. The material data are

presented in chapter 6.2. For values of 8 ranging from 0 to rr/2 equation (3.7) was solved
,V, numerically using the Newton-Raphson Method. Figure 4 shows the plot of KII values over K

for an assumed pure mode I value of K, - 2230 N/,/mm 3/2 .

*. Ten pairs of stress intensity factors which span the range from pure mode I to pure mode

II are given in Table 1 and will be referred to in all further considerations. These pairs of

stress intensity factors represent points on the KI-KI, curve which are the endpoints of

equal length curve segments.
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4. INCREMENTAL PLASTICITY

,,.

A characteristic of plastically deformable materials is that a particular material can

undergo different histories of response prior to the body reaching its end state.

Reversibility, therefore, cannot be guaranteed after load removal. The final strain is found

to be dependent on the history of loading, in addition to the beginning and final loading. This

means that plastic behavior is a path function and requires the use of an incremental theory

where strains are integrated over the strain path whenever the total induced strain is to be

determined. A common approach (employed in this work) is the incremental theory of

- - plasticity.

_ The deformation theory of plasticity is based on an assumed nonlinear elastic material
* response. Plastic strains depend only on the current state of stress and are independent of

the path leading to this state. This theory (though contrary to the observed nature of plastic

behavior) is computationally far less expensive than the incremental theory and Is
- ~ therefore widely used. Figure 5 depicts the basic difference between these two basic

approaches in elastic-plastic modeling.

The incremental stress-strain relationship of an isotropic strain hardening material

can be derived on the basis of the following relations

* -- a yield criterion

- a yield function

- a flow rule

- the assumption of strain rate decomposition and

- the linear-elastic constitutive relation.

4:

* i) Yield Criterion

Various criteria have been suggested in the past to predict the onset of yielding in a

material subjected to loading. The Von Mises yield criterion, which is widely used, is

* based on the assumption that yielding occurs when the second invariant, J2 , of the

12
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deviatoric-stress lensor reaches a critical value, J2 = 2/3 o'y2. With the deviatoric

stress tensor sij defined as
V,.

S.. =(4 1)

ij ij 6 ij O'kk

The critical value of J2 is given as:

s = 2 (4.2)
., s ij 3 y

The effective stress may be written as

o=1 [( 0x '0y) 2 +(0yY0'z) 2 +(°'z'°Y)2 + 6"xy + 6x + 61"xz 2 ] (4.3)

ii) The Yield Function

The amount of hardening of an isotropic strain hardening material can be expressed by

the amount of plastic work which is

'"Wp f 0" 'ij (de ij)p - K (4.4)

where (deij)p is the plastic components of the strain differential and

K is the strain hardening parameter.

,". The integral is path (history) dependent. Like the equivalent von Mises stress given by

equation (4.3), the equivalent plastic strain increment (de)p can also be obtained from

, , .the second invariant of its incremental strain tensor (dEij)p as

1 3
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(dE)p = ... { (dEij')p (dEij')p }p. (4.5)3

1%,

iii) The Flow Rule.:

The flow rule governs the plastic flow after yielding and can be derived from various

yield criteria by using the concept of a plastic potential (f). This method proposes that

the incremental strains resulting from a stress tensor 'ij are found by using

a f,,-(dEij)p= - a0 (4.6)

where f is termed the yield function and

( X is a constant.

The strain history and its current magnitude can be determined by the yield function (f).

If the J2 flow rule is used, (see equation (4.3)) the yield function can be expressed as

f(o"ij) = (sij sij)= const (4.7)

and

aa.

df= do (4.8)

Three cases of (df) are possible

* df < 0 elastic unloading of an elastic plastic material occurs

-'I
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df - 0 neutral loading of an elstic-plastic material and

df > 0 plastic loading of an elastic-plastic material.

For the case where (f) is taken as the Mises criterion, given in equation (4.2), taking

the derivative yields :

," a af a J2

5= 7;7 =  sij (4.9)

and equation (4.6) simplifies to

(deij)p - Sij (4.10)

Fquations (4.9) and (4.10) are referred to as the Prantl-Reuss equations.

.v )The Strain Rate Decomposition

During an stress increment the resulting strain increments can be split into their

elastic and plastic part

,,df -d. d4 (4.11)

v) Elasticity

The elastic strains can be related to the deviatoric and hydrostatic stress components by

* the relations

(l 1 l-2u - (4.12)

Sj +U Skk ii' (ej~e=E J 3 E
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Elastic and plastic parts can be added and the complete incremental relationship between

stress and strain for elastic-plastic deformation can be obtained as

,(dE i) e _= - t

( e ) . I - u d'ijdo'kk+ X sij (4.13),2 -i d

4. It can be shown that the complete incremental elastic-plastic stress-strain relation can

be written as derived in [48,49] :

g- d"=epde (4.14)

The elastic-plastic matrix Dep is given as

dT
Tep- ; DDd'D 2a (4.15)

( A+ d a

where A is the local slope of the uniaxial stress-strain curve and can be gained

from the stress- strain curve of the given material,

a is the flow vector which is a partial differential of the yield criterion

with respect to its components and is given in equation (4.9).

12 is the elasticity matrix having the form for the case of plane strain

1 i-u u 0

-. E2. U i U-
A.. (1-2u) (1+2u) 1 2 u

00
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5. THE FINITE ELEMENT METHOD

5.1 THE FINITE ELEMENT FORMULATION FOR LINEAR MATERIAL BEHAVIOR

Today the finite element method is firmly established as a standard numerical procedure

for the solution of engineering problems. Its versatility is based on the following

characteristics:

i irregular geometries can be modeled

",any kind of boundary condition can easily be formulated and

- it provides sufficient accuracy for many engineering purposes.

* Especially in the field of fracture mechanics, the finite element method has been proven

-." to be an efficient numerical method to model the response of a body under the influence of a

.. .sharp crack.

The basic idea behind the finite element method is to divide a given structure, body or

region into a number of elements. The elements can be two or three dimensional. A discrete

number of nodes situated on the element boundaries connect the elements. In structural

problems, the finite element method solves the response of a model which is subjected to a

given load by determining the nodal displacements. A set of interpolation functions (which

are referred to as shape functions) uniquely define the displacement state within each

element. The formulation of the shape function depends on:

- the number of nodes in each element (order of element) and

- the number of independent degrees of freedom in the problem considered.

The finite element formulation for a continuum can be obtained by taking advantage of the

* formulation of the principle of virtual displacement (which is a special case of the principle

of virtual work) or of the principle of minimum potential energy (which assumes elastic

body behavior).

In the following very brief introduction of the basic finite element formulation, only the

* two dimensional case will be considered.

.. 17
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The principle of virtual displacement states that equilibrium is obtained if the work

done by external forces W. on an arbitrary virtual displacement field equals the increase in

strain energy (W I) of the system [481. This relation can be expressed in a variational form:

,~~, dwwe. (5 .1)

The principle of virtual work can be formulated as the volume integrals of the variations

in strain energy density and the sum of variations of external energies resulting from body

forces, surface tractions and point loads. Employing matrix notation, the variation in

,internal strain energy density is given as:

dW= f (61 )T o dV (5.2)

( where 6 .T represents the variation of the strain vector e - [ x, Ey, xy T

and

a' is the stress vector o"- c-x, a-y, xy T.

The variation of the external work can be expressed as:

4)."

-, +We z J" (6u)T ti dv + f (6U )T)T fp (5.3)

-.
0

- where Ju is the variation of the displacement vector A = [ u1 , u2 IT

1 is the vector of body forces [2= [b,, b2 IT

0
. is the vector of surface tractions s = I sl s2 IT,

F is the boundary where surface tractions are applied and

f are nodal forces.

0
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The finite element approach is based on the assumption that displacements within an

element are adequately described by a polynomial. The second order rectangle has eight nodes

and its interpolation polynomial approximation to the displacement field is assumed in the

form

,. - a.I + a2 x + :3y + .4 x2 + a 5xY + CL6y2 + a 7 xy2 +CL8 x2 y (5.4)

In order to assure interelement compatibility, equation (5.4) must be complete in

terms of a specific power. The eight constants, aj, can be evaluated by solving a set of eight

simultaneous equations if the nodal coordinate are inserted into equation (5.4) and the

displacements equated to the appropriate nodal displacements. Performing this operation,

equation (5.4) becomes

U1  Xi [1 , yj , x,2 , xjyi , 2  , yj2  , 2y1J (5.5)

i] or•

.- (5.6)

Swhere 6is the vector of u displacements of an element [u1, u2 ,u3-....U8 IT.

a,.; -;

'-Z-'Solving equation (5.6) the vector of constants cL can be obtained in terms of nodal
.'displacements by

(5.7)

The vector r can be substituted back into equation (5.6) and

Q Q. C1 (5.8)

1a9
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is obtained. From this relation, the shape function matrix N can be obtained as

u= NU6 (5.9)

where N is the shape function matrix N [N1 , N2 , . . . , N7 , N8 ]T.

Similarly, equation (5.9) holds for the V component of the displacement vector. Equation

(5.9) can easily be generalized for the displacement vector u by writing

IL N a (5.10)

where a is the nodal displacement vector A [u1 ,V1; U2 ,v2; .. u7 ,v7 ; u8 ,v8 ]T

and

( N is the shape function matrix -[N 1 , IN 2  iN 7 ,. N8 ]T

The isoparametric finite element formulation has proven very effective in structural

analysis. Isoparametric elements are characterized by the transformation of the element

. geometry, into a square in 2 - D problems, using a local coordinate system defined by its

e - -n coordinate axes, see Figure 6. Axes 9 and "n pass through mid points of opposite sides,

so that the edges are defined by e=±1 and "n-±l. If the shape functions used to describe the

geometry and displacements of an element are the same then this element is called

isoparametric. The shape function of the employed isoparametric eight node parabolic

element are given in Table 2.

• The displacement components of any point within the element are defined in terms of

nodal displacements. In equation (5.2) the matrix equation for the strain becomes

..... . ,B (5.11)
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The matrix B is defined as

aNi 0
ax

i = 0 aNi

ay (5.12)

N, aNi
ly ax

Assuming linear elastic behavior, the stress-strain relation is defined through the

generalized Hook's Law :

g" , D£, f.D1a a(5.13)

where D is the linear elasticity matrix given in equation (4.15).

In the isoparametric finite element representation the shape functions Ni, given in local

coordinates e, n, have to be differenciated with respect to global coordinates. The chain rule

must be applied to differentiate

aN aN ae aN anr (5.14a)
a x ax ' an ax

and

aN N a N @e a N qaL1 (5.1 4b)

ay an ay

The derivative (a /x) etc. can be evaluated from the inverse of the Jacobian matrix, j.

Using the Jacobian matrix the volume integral (when setting dz-1 for the case of plane

strain) becomes

..

0 dxdy (detJ)de d'n (5.15)

. . .. 2.
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Equation (5.15) can be substituted into equation (5.2). Employing the stress-strain

relation of equation (5.13) and employing equations (5.10) and (5.11) the finite element

i formulation (5.2),(5.3) can be given as:

{JjBTDB(detJ)dedn } a- fb+fs (5.16)

where fb is the volume integral of the body forces, fb = if NT b det i dE dn and

fs is the integral of the surface tractions, fs - NT I det I. de dir.

"* The first term in (5.16) is referred to as the element stiffness matrix K . Equation

(5.16) can be numerically integrated using the Gauss-Legendre quadrature formula where
nine integration points are defined for the isoparametric plane-strain rectangle, see Figure

5. The integration is performed in the C, -n space where the coordinates of the element side

range from -1 to 1.

5.2 THE FINITE ELEMENT FORMULATION FOR NONLINEAR MATERIAL BEHAVIOR

The described finite element method for linear elastic material behavior can be extended

to materials showing nonlinear behavior. For most problems in material plasticity an
;- incremental algorithm is used. It is based on the incremental theory of plasticity where the

plastic action is followed as it develops, and, therefore, accounts for the path dependence of

plasticity.
0 The initial step of an elastic-plastic finite element calculation assumes linear elastic

behavior. If yielding occurs at one or more nodes a system of residual forces . will exist,

such that:

22
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f a Z dv ( f NTtdv )= 0 (5.17)

where f is the vector of applied external forces. If the effective stress at one or more nodes

exceeds the yield stress, the material stiffness matrix is continually varied. Then

increments of strains are related to increments of stresses according to equation (4.14) :

"d. = Qep dg- (5.18)

where D.p is the elastic-plastic matrix given by equation (4.15). Equation (5.18) can be

substituted into (5.17) and a relation between an incremental load Au and the increments of

the residual vector Al (which is usually not zero) is obtained as

A_ !T AI.-(At + fT At.dv )= 0 (5.19)

where Kt is the tangential element stiffness matrix in the elastic-plastic range and

is given as :

Kt f BT 2ep B dv

Equation (5.19) can only be solved iteratively according to the following steps

1. Employing incremental displacements Au in each iteration step r, an iterative

correction (dUJr is calculated using the Newton Raphson Method

4 (6u)r=[KTr]-I Apr (5.20)

2. At the end of each iteration the improved displacement estimate is:

23
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SAur+ I = A u r + (6,)r (5.21)

This value ,u r+l is substituted in (5.19) to evaluate the residual force vector Aj

which is used in (5.21) to calculate the correction of the displacement.

This algorithm is repeated until the maximum of the residual force vector is smaller

than a user defined number. ABAQUS uses the modified Newton Raphson method where the
stiffness matrix Kt calculated after each convergent solution instead of being modified after

•~ each iteration. This results in a significant decrease in computing time.

"i. ",

5.3 GENERATION OF THE FINITE ELEMENT MESH

A central aspect of the application of the finite element method is the generation of an

k appropriate mesh. The quality of the finite element mesh affects:

- the accuracy of the solution

- the amount of required computing time and

- the convenience of postprocessing the results.

Today, most finite element meshes are generated with the help of a finite element
modeling program. For the present investigation the mesh of the mixed mode fracture model

0 was created on an IBM 5080 workstation using the CAEDS software package (49]. CAEDS is a
computer aided design tool which provides the ability to model and analyze the behavior of
mechanical structures. CAEDS divides this task into three consecutive steps:

1. Geometry definition:
The model geometry is defined by points and their connecting lines. Subareas have to

*. be defined in the model which help control pattern and density of the finite element

*" .. mesh to be generated.

%4". 2 4
*=.
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2. Mesh Generation:

The mesh generation accesses the geometry of the model through defined subareas.

Concentration and configuration of the finite element mesh can be influenced by

defining nodes or a node concentration on the boundary of the subarea. Thus the finite

element mesh for every subarea is generated automatically in an exactly predictable
S-" manner.

3. Model Checking:

This module assures the correctness of the created mesh. Internal free edges, node

and element coincidence and element distortion can easily be detected and corrected.

Furthermore, the bandwidth and the profile of the stored matrix can be optimized and

the nodes of the model renumbered accordingly (which shortens the computing time

significantly).

0-
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6. MODEL CREATION AND SOLUTION

6.1 CREATION OF THE FINITE ELEMENT MESH OF THE EMPLOYED SPECIMEN

For the present investigation, a disk shaped fracture model with a sharp crack was

modeled. The dimensions of the specimen were mainly determined by the definition of small

scale yielding which limits the plastic zone size to approximately 20 percent of the

specimen size [27]. Therefore, for the given sets of KI and KII values, the plastic zone size

was estimated using approximation formulas. Employing the plastic zone size estimation

formula by Irwin [8] yielded a maximum plastic zone size radius of rpm 3.75 mm in the

case of pure mode I (under plane strain conditions). The yield stress contour which is given

in Figure 7 for a selection of mixed modes indicates in the case of pure mode II loading a

plastic zone size radius of approximately rp= 24 mm. The specimen radius was therefore

chosen to be 100 mm. The crack width was modeled as small as possible to produce a sharp

crack.

Conventional elements cannot simulate the singularities in the strain fields which exist

near sharp cracks in the case of elastic and elastic-plastic material behavior. Various

authors, therefore, have suggested finite elements which account for these singularities

without using large numbers of elements.

Henshell and Shaw [50] and Barsoum [51] proposed the use of isoparametric eight node

quadrilateral elements with midsize nodes displaced by a quarter of the edge length towards

the crack tip. This collapsed quarter point element produces a IM/,r singularity in the

elastic strains. Barsoum [51] proposed that, in the case of crack-tip plasticity, eight

isoparametric eight node elements can be degenerated into triangular shape elements by

collapsing the element at their crack-tip nodes without shifting the midsize node, Figure 8.
All collapsed nodes at the crack tip remain unconstrained and have independent degrees of

freedom. It has been shown [52-54] that this causes three effects
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-a singularity of the order of 1/r is simulated in the approximation of the strain

components. This coincides very well with perfectly plastic material behavior in the

near-tip field

- the ability to reproduce large strain gradients is retained and

- spurious numerical unloading often encountered with the collapsed quarterpoint

element is eliminated.

Comparison with analytical results performed by Shih [521 showed that this element

simulates the material response at the crack tip reasonably well. Barsoum [511, however

has shown that this type of element possesses theoretically unbounded terms in the stiffness

o matrix but which are usually suppressed by the smoothing character of the Gauss-Legendre

quadrature.

Figure 9 shows the finite element mesh of the modeled specimen in the vicinity of the

" (- crack tip. A fan of 24 degenerated elements with a side length of 0.04 mm defines the crack

tip. The crack-tip width was modeled as 0.004 mm. Adjacent to this fan is an intermediate

zone which .oiinects the crack-tip fan to the main fan consisting of 23 circumferential

layers of 32 element segments, see Figure 10. Three circumferential element layers are

needed to model the boundary element layer of 16 elements, (Figure 11), where the

displacement components act on the outer nodes. The finite element model of the specimen

*' consists of 1178 elements and 3643 nodes. In order to investigate the accuracy of the finite

element model, the elastic stress intensity factors were calculated. These agreed with the

* input values to within 0.1 percent.

A.?

.

0

6.2 MATERIAL

,.,

The material properties of the stainless steel A304 [55] were used as the material data

, .input in the finite element calculation. This steel finds its main application in pressure
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containments in the high temperature range due to its ability to sustain high plastic

deformation beyond the yield stress. Table 3 lists the material data of the steel A304 and its

chemical composition given by Newman [56]. The stress-strain behavior of the employed

material was modelled using the Ramberg-Osgood relation. In the case of the power

hardening simulation of the material response, the uniaxial stress-strain relation is given

as:

E = 0 for o- < oy

(6.1)
E 'n

S -+ C(L for o" > L'E y C y ' y /

where o" is the uniaxial tensile stress,

r (y is the yield strain,

-' is the yield stress,

a. is a material constant which is given as 0.75 for the steel A304 and

n is the hardening index which is given as 6 for the present material.

Figure 12 shows the modeled stress-strain behavior of the employed steel A304.

.- 4.

6.3 USING THE FINITE ELEMENT SOLVER 'ABAOUS'

The commercially available finite element package ABAQUS [57] was used for model

solution. Nodal coordinates and element connectivity generated by CAEDS can be accessed

through a universal file. A FORTRAN program has been written to both reformat the

universal file for the correct ABAQUS input and to correct the node numbering direction

28
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since CAEDS does not employ a consistent node numbering direction within an element. The

applied boundary displacements for all cases of mixed modes considered were calculated

* according to equation (2.2). The element type CPE8 (eight node parabolic plane strain

isoparametric element) was employed in this model.

Based on the modeled stress strain curve of the employed material, discrete vaiues of

stresses and plastic strains had to be specified in the ABAQUS input. Element sets for both

data output and graphic display of deformed meshes and contours of specified variables were

defined.

For all cases considered, the model response for the elastic-plastic material behavior

was calculated using small strain theory. ABAQUS generates increment sizes automatically

0 and assumes a maximum number of six iterations per increment. This usually assures good

convergence at relatively short computing time.

While good convergence was obtained for cases of mixed modes with either predominant

mode I and mode II contributions, the following four cases of mixed modes had to be

( subdivided into separate steps of increasing pairs of KI - KII values to obtain a convergent

solution

- KI / KII - 2107/670

- K I / KI = 1927/987

. K I/ KII - 1683/1252

" K I/ KII - 1405/1462

.%-
", Four increasing pairs of combinations of KI and KI1 values (of equal ratio) were assumed

which resulted in good convergence for each step. J-integral values, however, cannot be

*. obtained by ABAQUS if a calculation is subdivided into separate steps [57].

" In order to permit an efficient postprocessing of ABAQUS data, a FORTRAN program has

been written which reads any variable from the data output file

-"" - along a line having a specified angle to the x - axis
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7. THE J- INTEGRAL

7.1 DEFINITION AND PROPERTIES

The J-integral, which was originally established by Eshelby [11, was introduced by

Rice (13] into the field of fracture mechanics. Rice showed that the potential energy

release rate for a two dimensional crack extending in its plane in a homogeneous linear or

-' non-linear elastic material was equal to a path independent integral. Its definition is given

in cartesian cuordinates as, (see Figure 13)

J- Wdx2  Ti- a -l ds (7.1)

, where W is the energy density, defined as W =f oij d4Eij
%-

S, r' is an arbitrary path around the crack

Ti is the traction vector defined according to the outward normal n along r

and is given as Ti - oij ni.

The J-integral is well established as a parameter which describes the magnitude of

* near-tip stress and strain fields. Knowles and Sternberg [581 subsequently generalized

-'.4, the J-integral to be a vector, Jk, corresponding to the potential energy release rate in any

coordinate direction of the crack extension. Jk is defined as:

V.- J W n - oi j
° u

1wk (:u s (7.2)

k a n
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where nk denotes the unit outward normal to r', lying in the same plane of the crack.

For the two dimensional combined mode I and mode II fracture, only the Jj" and J2 -

integral definitions need to be considered. Both integrals have the following important

properties:

i ) Path Independence:

A proof of the path independence of the J-integral can be found in [59].

Finite element investigations of J-integral values obtained for paths very close

to the crack tip, however, (assuming elastic-plastic material behavior) sh owed
- ;"  significant path dependence where J-integral values approach zero very rapidly.

-'"-McMeeking [60,61] investigated this behavior systematically and showed that it can

* \'I be related to the large deformations around the blunting crack. The J-integral values

calculated along paths more than 5 to 10 times the crack opening away from the crack

tip can be considered as path independent. Their role as parameter characterizing the

crack-tip field quantities is probably retained.

i) Compatibility with Linear Elastic Fracture Mechanics

For linear elastic behavior J1 and J2 are equivalent to the energy release rate G in x1

and x2 direction, respectively. Hellen et al. [62] and Blackburn [63] related J1 - and

J 2 -integral values to stress intensity factors for a two dimensional crack. The

. relations are given for the case of plane strain as

(7.3)

* 0
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iii)Application in Elastic Plastic Fracture Mechanics:

The J-integral value for two dimensional crack problems has been used by many

authors to predict the onset of crack growth initiation in cracked bodies both for
linear elastic and elastic plastic material behavior. This concept was introduced by

Begley and Landes [14], [641. A critical value of JIc in pure mode I for plane strain

conditions can be determined by a standard test method if the conditions of quasistatic

loading, negligible body forces, monotonic loading and stationary crack are met.

Kishimoto et al. [15], in their interpretation of J1  an J2  as vector quantities

of the strain energy release rate for crack extension in the two dimensional case,

defined a resultant vector Jres• Its magnitude is given as

[~j1 j2..
' 
,j

Jfes= Jj j 2 2 (7.4)

They proposed that failure in mixed mode occurs if the resultant J-integral equals the

critical energy release rate:

Jres - Gcr (7.5)

-, According to Bakker (651 this criterion has found little experimental verification for

the case of mixed mode fracture.

|=,*
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7.2 CALCULATION OF THE J- INTEGRAL VALUEI

Various procedures have been developed in the past to calculate the J-integral value. A

survey of different methods can be found in [66]. In the present investigation the virtual

crack extension method and the direct integration method were employed.

i The Virtual Crack Extension Method

This method originally described by Parks [67] as the stiffness derivative method is

an implemented feature in most commercial finite element programs like ABAQUS. In

this method, the potential energy release rate is evaluated directly in a single finite

element analysis by advancing the crack tip or crack front by a small amount . This

small advance changes the stiffness of some of the elements in the mesh and the change

in potential energy can be calculated. Even for coarse meshes this method yields very

accurate results [53]. According to Nagtegaal [66], the method of virtual crack
4" extension is particularly accurate if collapsed elements at the crack tip are used.

i i) The Direct Integration Method:
4.

- A direct way of calculating both J1 " and J2 .integral values is the numerical

integration of equation (7.1) using discrete data points (e.g. from a finite element

analysis). The circumferentially arranged elements in the present mesh suggested the

* use of circular paths around the tip. The definition of J1 and J2 had to be expressed in

polar coordinates. The transformation of x and y into polar coordinates is given as:

x rcos 19, y r sin e (7.6)
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The path increment ds can be expressed as:

ds . rde (7.7)

The displacement derivatives with respect to x1 and x2 assume the following form,

respectively

a;' u i ou i  - 1 si g u i

a u aui 1 au i  (7.8)

[ sine o-r + r o
K.ay 3r

The traction vector can be expressed along a circular path as

[Ti] [:1 x: (7.9)

T2 o'x y O'y_ _sine

J1 and J2 , calculated along a circular path can now be given as:

1 aui 1 aui
J r T C0 77- -sine-)] de

(7.11)
aui I aui

r f[wsine - Ti (sine -- s"-) de
ar r )]d

Here, For the case of elastic-plastic material behavior, the strain energy density is

*• ,, the sum of its elastic and plastic (dissipative) part:
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W =w e + Wpl (7.10)

A FORTRAN program has been written to perform the numerical calculation. Stress

components, elastic energy density as well as plastic dissipation and displacements were

read from the ABAQUS output file along a defined path by a data post processing program.

All quantities related to an integration point, (e.g. stress components, linear energy

density and plastic dissipation) were interpolated linearly for the adjacent element node.
* The derivatives of the displacement components were computed using a sixth order finite

difference formula. The integration along a path, defined by 65 equally spaced element

nodes, was performed numerically using the Simpson's second order integration rule.

For all mixed mode cases considered both J1 - and J2 -integral values were calculated

for radii ranging from 0.6 to 8.3 mm from the crack tip.

7.3 RESULTS OF THE JtD INTEGRAL CALCULATIONS

Figure 14 depicts the variations of the J1- and J2-integral values for all mixed modes

considered over the radial distance r from the crack tip. Jl -integral values range between

9.8 N/mm for the case of pure mode II to 21.2 N/mm for the case of mixed modes given as

KI/K 11- 2222/172. J2 values are generally negative and range between J2 - 0 for the

cases of both pure modes I and II and -14.9 for the case of KI/KII -1405/1462.

Good path independence was obtained for all cases considered. For increasing mode II

contribution, however, greater variations in the J,-integral values can be observed. The

S ,maximum deviation reaches 9.3 percent for pure mode II loading in comparison to a
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V deviation of 1.12 percent in the case of pure mode I.

J2 -integral values are generally less accurate and therefore show more path

dependence in their results. Hellen et al [621 pointed out that due to higher overall

displacement gradients in the x2 -direction, the associated numerical errors are large.

This can be seen from the deviations of J2 - integral values which range between 9 percent

(for the case of KI/KII - 2222/175) and 17 percent (for the case of KI/KII -

1405/1463).

Both J1 - and J2- integral values show little variation for outer paths between 4.1 and

8.6 mm and, therefore, these values may be viewed as more accurate.

Table 5 lists the J, -integral values for the outermost path from both the direct

integration and the virtual crack extension performed by ABACUS. As pointed out in

-= chapter 6.2, the JI -integral calculations of four cases of mixed modes could not be

calculated by ABAQUS. Deviations of J,-integral values gained from both methods are

within 5.7 percent.

In all further investigations the J1 integral values given in Table 4 will be used.
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8. FIELD QUANTITIES

The dominant singularity solution for a cracked plate in a power law hardening material

has been given independently by Hutchinson [211 and Rice and Rosengren [22] for both mode

I and mode II stress distributions. The solutions which are known as the HRR singular field

were generalized by the solution for the mixed-mode stress distributions presented by Shih

[27]. For the small-scale yielding case, the region around the crack tip can be divided,

(according to the nature of singular material behavior), into three distinct areas [59]

- the far tip field

- the near tip fieid and

- the intermediate zone.

.," Figure 15 identifies these areas.

8.1 THE FAR TIP FIELD

• ,"' At distances large compared to the plastic zone size the stress and strain distribution is

dominated by the 11-4r singularity from the linear elastic solution for the stress and

displacement fields. A measure of the strength of the singularity is the path independent

J-integral which can be related to the stress intensity factors KI and KII according to

equation (2.2). A convenient definition which characterizes the relative strength of K, and

KII in the far tip field was introduced by Shih [27] as

2 .2 -1 KI
Me= e tan limee] = =tan[(8.1)

it"" r-0 O're I

• Me is referred to as the far tip field mixity parameter which ranges from 0 to 1 with Me=1
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for pure mode I and MG =0 for pure mode II.

8.2 THE NEAR TIP FIELD

For a strain hardening material which can be described by a power law, i.e. the

Ramberg- Osgood relation, the stress-strain relation based on the deformation theory of

, . plasticity is given as

l+u 1+ 2 u 3 o nlsij (8.2)
6 J E ' j  3 E 'kkij + 2c r'y(, Ty

- where 0'y is the yield stress,(
Sij is the deviatoric stress tensor given in equation (4.1),

,. is the effective stress given in equation (4.3),

.'- is the yield strain,

u is Poisson's ratio,

*r., E is Young's modulus,
C. is a material constant and

n is the hardening coefficient.

Large plastic strains can be expected in the near field so that (with negligible elastic

strains) equation (8.2) becomes

o'. ni (8.3)Sy ) y

* , It can be assumed that the only singularity contained in this region is associated with the
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crack tip. For a circular path of radius r, where r0 < r < D, enclosing the crack tip (see

Figure 15 ), the J-integral (according to equation (7.11) ) remains path independent.

To ensure the path independence of the J-integral value the integrand must exhibit a 11r

singularity. Since the integrand is essentially a product of stress- and strain-like

components, this product leads to a function (f) which is only dependent on e multiplied by a
11r term (assuming the material behavior satisfies equation (8.3))

o'ij j -ij 11 f (r ) (8.4)

Hutchinson [21] has shown this to be the case for power law hardening materials if the

* stresses and strains are given in polar coordinates. For a power hardening law satisfying

equation (8.3), equation (8.4) implies that the following relations hold

,a'. Cr n 1
Ii

"°° n

c r" n+ ii( )  (8.5)

ui C r n+1 (9)

where o' ij, ei and ui are stress, strain and displacement functions in polar

representation where i and j are radial and angular components and

* C is a material dependent constant term.

Different from the asymptotic s.lution for linear-elastic material behavior, therefore, the

- singular fields ir the elastic-plastic range are dependent on the hardening characteristic of
0 the material.

Rice and Rosengren [22] and Hutchinson [21] solved equation (8.5) for the stress,

strain and displacement functions by introducing an Airy stress function. A partial

differential equation governing the stress function c in be derived from the compatibility

40

. - .-



equation which can be reduced to a fourth order nonlinear differential equation and solved by

a higher order finite difference scheme. A more detailed discussion of the procedure can be

found in [59].

The constant term C can be determined by taking advantage of the path independence of

the J-integral. Substitution of equations (8.5) into the definition of the J-integral

(equation (7.1)) leads to the determination of the constant C as

C - E I )f n'+1 (8.6)

where x is a material constant

YE is the yield strain,

* 0 y is the yield stress,

n is the hardening exponent and

In is a constant given by

In=* & - cosO- [sine( 6-rr( D - L re Or +L' 9-) + r Or +are
0 e) 3se d9

These equations (which were originally formulated for pure mode I) can be extended for

the case of mixed modes. Due to the path independence of the J, -integral (regardless of

mixed-mode contributions), all near tip field quantities remain under the control of the

J 1 -integral value.

In the same manner as the elastic mixity parameter (M8 in equation (8.1)) the plastic

mixity factor M P identifies the relative composition of mode I and mode II directly ahead of

the tip according to

' .
%
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Mpl. 2 -tan' [ lir oee(r, e=0) 2 -1 .ee(e=0,MP') (8.7)
r-0 Ore( r, e=) I Vre (e=o, M0 ) (8.

From equations (8.5 to 8.7) the formulas defining stress, strains and displacements in

the near field of a crack under mixed-mode conditions can now be given as:

iJ n+1 i,j a ( = Y Oy I n r ) ij )

n
,-. Jn+1

.Eij ( ) (8.8)
a.- 4EyO'ylnr

* n'-'.~ ~ un=() + ' 3 1 5i(e)

The stress and displacement fields are therefore characterized by a 1/r(1(n+l)

singularity whereas the strain field assumes a 1/r(n/( n +1 ) singularity. In reality such

large stress components cannot exist since geometry changes modify several aspects of the

tip field and therefore limit the stress concentration at the tip (as indicated in the blunting

analysis of McMeeking [60,61]).

8.3 THE INTERMEDIATE ZONE

Combination of the HRR field and the far field characterizes the stress and strain

distribution and magnitude of the intermediate zone. Whereas its outer border is defined as

6 the transition from the elastic to the plastic zone, its border to the HRR field can not be

distinguished clearly. In general it can be assumed that the powers characterizing the field

singularity of the intermediate zone show a smooth transition into the characteristic

powers of the HRR field. No analytical solution has been found yet to connect near tip field

S ,,and far tip field quantities [27,59].
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.A-9. DISCUSSION OF THE FIELD VARIABLES

Stresses and the strain energy densities around the crack tip of the investigated plane

strain specimen were studied with respect to their singular behavior under varying mixed-

mode conditions. All data were taken from the finite element analysis output.

9.1 THE STRESS FIELDS

Figure 16 shows the plot of the effective stress versus the distance ahead of the crack

tip along the line e - 00 for all mixed-modes cases considered. Four important features

characterize the material response under the influence of mixed modes

i The effective stress increases sharply for higher mode II contributions under

.. comparable loads. This tendency is also observable if the effective stresses around the

crack tip is considered. Figure 17 shows the effective von Mises stress along a circular

path having a radius of r . 0.4 mm away from the crack tip.

i i) For three cases of low mode II contributions there is a distinct transition zone between

the elastic and the elastic-plastic zones. Both zones are separated by the yield stress of

-' - 265 MPa.

i i i The elastic-plastic zone shows in its outer region an increasing influence of the

* intermediate zone. Plastic strains which are of the order of their elastic counterparts

result in a combination of the HRR field and the far field.

iv) At distances very close to the crack, i.e. less than 0.5 mm, the singularity governing

* the effective stress behavior is weaker than the singularity characterizing the elastic

material behavior and can therefore be attributed to the HRR field. In Figure 18, using

,.'.. full !ogarithmic axes, the nature of occurring singularities are shown. For distances

-'- close to the crack tip, the equivalent stresses of all mixed modes are distinguished by

0 . parallel lines before the smooth transition into the intermediate zone which show
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4 particularly weak singular behavior. For four cases of strong mode I contribution the
elastic singularity is sharply separated from the elastic-plastic zone.

Figure 19 shows the y -component of the stress tensor versus the distance from the
crack along a line e - 00 for all mixed-modes cases considered. Increasing mode II
contribution results in a steady decrease in the values of the stress component in

y-direction which approach zero for the case of pure mode I1. For distances less than
approximately 0.2 mm away from the crack tip significant scatter in the y-component of
the stresses for mixed modes of high mode II contribution can be observed. It is assumed that

- this stems from the influence of the badly distorted crack tip which is exposed to an
increased rotation as mode II contributions grow. Since stresses are a second order quantity,
(that means they are calculated from displacement derivatives obtained from the finite

element solution) this effect may be amplified.

The powers of the singularities can easily be determined if the stress is assumed to
follow the form

S( O'e= C ri" o-, (9.1)

In full logarithmic notation of equation (9.1) the parameter ' indicates the slope according to:

log (o'e) = -r log (r) + log (C cre) (9.2)

The extraction of the exponent -r has been performed using a least square approximation for

0. all mixed-modes cases considered. Table 5 lists these powers for distances from the crack
*-.. which contain the characteristic singularity. Compared to a predicted value of the power of

-=-1/7 for the employed material, it can be seen that for increasing mode II contributions

this value is approached. It reaches the predicted value of -" - -0.1428 almost exactly in the
0 case of pure mode II. For overwhelming contributions of mode I the HRR solution

characterizing power was not reached even for closest distances to the crack tip. This is
mainly caused by the distinct crack-tip blunting which results in a decrease in the effective

stress and weakens their singular behavior. The elastic singularity which could be0
. -. determined for four cases showed excellent agreement with the predicted value of -' - -0.5
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9.2 STRESS AND STRAIN DISTRIBUTION. PLASTIC ZONE SIZE AND CRACK BLUNTING

Contour plots of the effective von Mises stress in the vicinity of the crack tip allow a

' good qualitative assessment of the body response under the influence of a crack under mixed-

mode loading.

Figures 20 to 26 display the contours of the effective stress in a zone of 1 mm radius

around the crack tip for a selection of mixed-modes cases (which are identified on each

plot). The typical symmetric butterfly shape of the stress contours in the case of mode I

incline and assume asymmetric shapes through stages of mixed modes with increasing mode

II contributions until the contours show the typical compact and symmetric mode II pattern.
The increasing concentration of the von Mises stresses around the crack tip is

" ..-. significant for higher mode II contributions While for overwhelming mode I contributions

elastic regions can be still observed, the zone considered is entirely plastic in the range of

I"" higher mode II values.

The shapes and magnitudes of the effective stresses and their variations between 1 mm

and 10 mm radii for mixed modes and 2 mm to 20 mm radii for pure mode II around the

"-. crack tip are shown in Figures 27 to 33. Here the influence of mode 11 contributions results

in higher effective stresses and, consequently, in larger plastic zone sizes.

The outermost contours of the equivalent plastic strains represent a good measures of
the plastic zone size. Figures 34 to 37 are contour plots of effective plastic strains for

selected mixed-mode cases in a circular region of 1 mm radius around the crack tip. The

increasing gradient of plastic strains around the crack tip is evident. Figures 38 to 43 show

the effective plastic strains in the region of 1 to 10 mm around the crack tip for all mixed

modes and the region 2 to 20 mm for the case of pure mode II.
-S+.

Figures 44 to 48 show the deformed mesh for a selection of mixed-modes cases in a
* region of 1 mm radius around the tip. The displacements are magnified by a factor of two. In

the case of pure mode I, a parabolic shaped crack blunting can be observed. In chapter 6.1 it

was pointed out that the employed crack tip elements can only approximate the strain

assymptote. For increasing influence of mode II it can be seen that the crack-tip opening

* .decreases with increasing mode II contribution and the crack tip tends to rotate in a
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clockwise direction, which reaches its extremum in the case of pure mode II. In the case of

high mode II values, the extreme hydrostatic state of stress around the tip cannot be relieved

by crack-tip blunting (as in cases with overwhelming mode I contributions) where finite

strains create a relatively sm.th crack tip.

Figures 49 to 52 depict only the upper and lower element layers around the crack tip in

deformed and undeformed states (with a magnification factor of 10) for selected cases of

mixed-mode loading. The influence of the rotation of the crack tip and the deviation from the

center line of the undeformed crack is distinct for cases of high mode II values.

Figures 53 to 56 show deformed versus undeformed meshes of the outer region between

1 and 10 mm radii around the crack.

9.3 THE STRAIN ENERGY DENSITY

The strain energy density criterion, according to Sih [31,321, has not only been

capable of predicting fracture under brittle material behavior, but also fracture in the

elastic-plastic regime.

The strain energy density, using the notation of Sih, is given as

E i

.-"f- Jo-.j de j (9.3)
0 0

where E ij is the strain tensor and

o-i is the stress tensor.

The fact that excessive change in shape can be associated with yielding while excessive

change in volume can be associated with fracture lead to the formulation of the strain energy

• density criterion for elastic plastic material behavior. It is postulated, [31,32], that
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maximum yielding occurs when the strain energy density reaches its maximum value

(dW/dV)max whereas fracture initiation is associated with minimum strain energy density

(dW/dV)min. Chow and Xu [31] investigated the extension of the modification of the strain

energy criterion in the elastic-plastic regime for the case of mixed-mode loading. It was

observed that the strain energy density criterion led to incorrect predictions of the angle of
fracture initiation since two local minima can be observed for some mixed-mode cases.

Figure 57 shows the variation of the strain energy density versus the angle e along a

circle of radius r=0.4 mm around the crack for selected cases of mixed-mode loading. The
minimum strain energy density is located at angles from 1800 for pure mode I to 900 for

pure mode II. This contradicts experimental evidence [68-70]. Therefore the assumption of
the crack growth direction was restated by Sih [71] that the direction of maximum value of

(dW/dV)min governs the onset of crack growth. These values range between e =00 for mode

I to e = -90 ° for the case of of pure mode II and are given in Table 6 for all cases of
mixed-mode loading considered.

- In contrast to the maximum values of the strain energy density, which increase sharply

. (. for growing mode II contribution due to higher stress and strain components around the

crack, the maximum values of (dW/dV)min remain for all cases remarkably constant.

- Very good agreement between the location of (dW/dV)max and the maximum yield can be

] ound by comparing the the angular position of the highest effective stress in Figure 17 and

Figures 20 to 26 with the predicted values by the strain energy density criterion.

The singular behavior of the strain energy density versus the distances ahead of the

crack along the line 9-0 0  is depicted in Figure 58 in full logarithmic representation. In
0 equation (8.5) it has been assumed that the strain energy density is governed by a 1/r
- singualrity inside the HRR field. It is evident that low contributions of mode II values result

in weaker singularities in the strain energy density as the intermediate zone is approached.

Determination of the powers of the singularities which are given in Table 7 demonstrate that

the determined powers are in excellent agreement with the predicted value 'ven for
,... intermediate cases of mixed-mode loading. Cases distinguished by low mode II contribution

show clearly the weak singular behavior inside the intermediate zone. As the crack tip is
approac-ied, it can be seen that the singular behavior of these cases converges towards 1/r.
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This observation reinforces the correctness of the assumption in equation (8.5) that the
HRR field solution is valid if the strain energy density exposes a 1/r singularity inside the
plastic zone around a crack.
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10. RESOLVING THE STRESS FUNCTIONS FROM FINITE ELEMENT RESULTS

The stress functions can be resolved from near tip field stress and displacement

components obtained from the finite element results. All parame!er! required for 65 equally

spaced nodes along a circular path of radius r = 0.4 mm around a crack were read from the

ABAQUS data output file. Figure 18 shows that the selected radius is still within the

dominant crack-tip singular field for all mixed-modes cases. Paths closer to the crack tip

showed significant scatter in the values of (7rr and o'ee components.

Determination of the stress function results in solving the three equations given in equation

(8.8), where the components of o-jand ui are given in polar coordinates

I:"- '',, . ..~C E i o- IZy .y n r) nt 'i
Y. y

n 1 (10.1)

yyn n+ 1 1

f Ios [sin( Or r~U -co~r r se1}do
nI I o n,- & r99

'.,..,

The equivalent stress LT. for the case of negligible elasticity in the case of plane strain is

given as

" " r r e (10.2)

Due to the dependence of In on values of o-ij , ui and its angular derivatives (along a

• circular path taken from -n to it), the solution of this system of equations can only be

accomplished :teratively. In the present case, use of the interval halving method was made

which showed rapid convergence for all cases considered. Figure 59 explains the principle

of the interval halving method.

For an initial estimate of In the stress and displacement functions are calculated
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according to equation (10.1). The derivatives of the nodal displacements with respect to e

are obtained using a sixth order finite difference formula and the integration is performed

using Simpson's second order integration rule. For incrementally increasing values of In,

both stress and displacement components and derivatives are calculated and substituted into

equation (10.2) to gain a new value of In . The calculated value of In approaches the assumed

value of In and finally surpasses it. Since this can be expressed as the difference (F)

between the assumed value Ina and the calculated value Inc

F Ina - Inc , (10.3)

a change of sign in (F) is expected between two incremental values of Ina. The following

interval halving procedure narrows the interval where the change in sign has occurred down

to a specified residual. A numerically accurate value for In can therefore be obtained.

Figures 60 to 69 show the stress functions 0 rr ,'ee, '-re and the effective stress

function o-e which are normalized by setting the maximum value of the l -variation of the
effective stress to unity.

.. For all cases considered, the components oee and O're show the expected value of zero

on the crack surfaces, that is, for angles of ± it. In contrast to pure mode I in the linear

elastic case, cO rr assumes positive values on either side of the crack flank. On opposite

surfaces of the crack Orr is positive for both pure mode I and a mixed-mode case

distinguished by the stress intensity ratio of KI/KlI - 2222/178. This observation

contradicts Shih's statement [27] that for any deviation of mode I, the minus sign holds in:

* rr ( =tn) -O'rr (0 -t) (10.4)

for 0 MP < t."

Also, the equivalence of the magnitudes of radial stress components on the surfaces of the

*: :- crack at equal distance from the crack could not be shown except for the symmetic cases of

A,
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both pure mode I and mode II. This can also be seen from the magnitude of the effective von

Mises stresses on the crack surfaces in Figures 20 to 26. Since the effective stress contains

0-rr as the only component different from zero, their contours had to match up at the crack
flanks. Even though the observation of equal radial stresses on crack surfaces by Rice and

Budiansky [71] seems plausible, no reason for this mismatch could be found. This

phenomenon could also be observed in other studies on mixed-mode fracture 127,72,731.

From equation (8.7) the mixity parameter M P I can be resolved from the stress
components oee and L're of the finite element results. Some scatter in the ratios of o-ee

over L're for distances of less than 0.5 mm from the crack tip was observed and, therefore,

a least square approximation was employed through all datapoints for distances ranging from

0.08 to 1 mm from the crack tip.

* Figure 70 shows the ratios of o-ee over Tre of same integration points along the crack

and their corresponding least square approximations for three mixed-mode cases. The

constant character of the curves is evident.

( The relationship between the calculated values of the mixity parameter M PI and the

constant In given in equation (8.6) is shown in Figure 71. The results compare well with

those generated by Shih [27] for the hardening powers of n - 5 and n - 13.
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11. CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER RESEARCH

In the present study, local crack-tip quantities were investigated for general
mixed-mode crack problems under the condition of plane strain. In order to become

independent of a specific specimen geometry, the local crack-tip region was modeled as a

disk with the crack tip at its center. Displacements on the boundary of the local crack

region were calculated from assumed combinations of stress intensity factors for mode I

and mode II.

The strain energy density criterion, according to Sih, was applied as a fracture

'..V criterion. This provides a concise relationship between a given strain energy density

factor and the stress intensity factors, KI and KII. For ten comparable cases of loading

(which span the range from pure mode I to pure mode II) the body response for

elastic-plastic material behavior was calculated using the finite element package ABAQUS.

The eight node plane strain isoparametric elements employed were degenerated into

triangular shaped elements around the crack tip to produce a 1/r singularity in strains.

( The material data of the stainless steel A304 was used in the finite element calculation.

The path independent J, -integral (which is a governing parameter of the amplitude of

the crack-tip singularities of the stress and strain fields) was calculated according to the
method of virtual crack-tip extension that is available in ABAQUS. The direct integration

method was applied for four cases of mixed-mode loading, which had to be subdivided into

separate consecutive steps to reach convergence. For these cases the virtual crack

extension method could not be applied by ABAQUS. The J1 -integral value was calculated

-* using the direct integration method along nine circular paths whose radii from the crack

tip spanned between 0.6 and 8.3 mm. Generally, very good path independence was observed
which indicated the correctness of the obtained values and justified for their further use.

-- Good agreement between the J1 -integral values obtained by both methods was observed

-. when both were calculated. Deviations between the results obtained by both methods were

within 5.7 percent for all cases considered.

- J 2 -integral values, which have attained limited usage in the field of fracture

mechanics, were also evaluated. Less path independence especially for cases of more

balanced mode I and mode II contributions was observed due to larger numerical errors in
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the evaluation of the displacements which was caused by higher displacement gradients in

the y -direction.
The characteristic singular behavior of stresses and strains within the HRR field, the

intermediate zone, and the far field was best expressed by the dependence of the effective

von Mises stress on the distance from the crack tip, along the line S= 00. Extraction of the
S," powers characterizing the singular behavior of stresses and strains indicated the

dependence of the size of the HRR field on increasing mode II contributions. In the case of

pure mode I, the characteristic exponent of .1/7 (for the given material) in the effective
von Mises stress was never reached due to the distinct influence of crack-tip blunting.

Extreme hydrostatic stresses in the vicinity of the crack tip are reduced by finite strains

and the stress-free crack-tip surfaces. For higher mode II contributions, the crack width

-" decreased significantly to an almost sharp crack in the case of pure mode II. Larger plastic

zone sizes and less crack-tip blunting result, therefore, in a distinct HRR-field of

increasing size which was observed to be valid for a distanco of approximately 25 J/o' in

the case of pure mode II. Accordingly, the effective stress increased sharply for higher

-. / ( nfode I contributions.

The strain energy density was investigated to determine its applicability as a fracture

criterion for elastic-plastic material behavior under mixed-mode loading. It was stated by

Sih [29] that the maximum yield occurs where the strain energy reaches its maximum
which could be verified in this study. The modified formulation of the condition that crack

extension occurs under the angle where the minimum of the strain energy density shows a

maximum seems to be promising. For increasing mode II values the direction of crack

growth initiation could be shown to move from 00 to -900 relative to the crack plane.

0 This is comparable to the results of the linear elastic solution.

An emphasis of the present study was the numerical extraction of the stress functions

from the finite element solution, for a given material with a hardening factor of six. The

stress functions obtained compared reasonably well with those obtained by Shih.
Sa Theoreti!aI considerations suggest radial stresses of equal magnitude for equal distances
".-'- from the crack tip on either crack surface. This would imply that the radial stress

function (which is the only component different from zero on the crack surface) has the

same magnitude at either side of the crack surface. This could only be shown for the

- wo
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- symmetric mode I case and the skew-symmetric mode II case. In all other cases of mixed-

mode loading a deviation in the magnitude of the radial stress component on either side of

the crack could be observed. The effective von Mises stress (which is only dependent on the

radial stress along the surfaces of the crack) showed this mismatch also. For any amount

of mode II contribution, the predicted change in sign of the radial stress acting on opposite

crack surfaces was not verified by the finite element results. One case investigated, where

the specimen was subjected to a load resulting in stress concentration factors of KI - 2222

and KI, - 178 N mm, showed positive radial stresses on either side of the crack surface.

The finite element calculations indicated that the sign of L'rr on the crack surface jumps

suddenly from positive to negative values for a more intermediate mixed-mode

combination.

The investigation of the observed discrepancy between the behavior of theoretical

radial stresses along the crack surface and the finite element solution was not studied in

this thesis. An important extension of this work should include research on this

-< +..: phenomenon.

S. \ An extension of this study should include investigations of the local crack-tip

quantities of a suggested mixed-mode specimen. The mixed-mode fracture specimen (due

to Richard [34]) has been shown to simulate very well arbitrary mixed modes ranging

from pure mode I to pure mode II and should be given consideration. Both numerical and

experimental studies are necessary to further investigate two interesting concepts of

fracture criteria which predict both the onset of crack growth and the direction of crack

extension for ductile materials under mixed-mode loading

i) The strain energy density criterion according to Sih
The modified formulation of the predicted angle of fracture initiation appears to be

promising in the finite element results but needs further experimental confirmation.

Further investigation of crack growth initiation in relation to its asso'iated

strain energy density , especially in the range of high mode II values seems nece:,sary.

i i) The T-criterion according to Theocaris

* * This criterion (which has been extended very recently for mixed-mode loacings
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under ductile material behavior) incorporates the HRR field solution. Experiments
with inclined cracks in a center cracked panel showed good agreement in the prediction

A of the angle of extension versus the crack and failure loads. Both finite element

analysis and experimental investigations with a specimen which can reproduce all
combinations of mode I and II may establish this criterion in the field of fracture

mechanics.
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No. K, - Value Kit - Value Mixity Parameter
[Nlqmm3] [N/'mm3 ] (Me)

*1 2230.0 0. 1 . pure model1

2 2222.9 175.8 0.949

3 2107.7 670.8 0.804

4 1927.0 987.6 0.698

-~5 1683.8 1252.0 0.584

06 1405.6 1462.2 0.487

7 1098.7 1633.8 0.377

8 772.2 1774.5 0.261

9 396.3 1903.8 0.130

10 0. 2018.3 0. pure mode 11

Table 1 K1 - K11 -values according to the fracture criterion by Sih. The

elastic mixity parameter Me is given by equation (8.1)
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N2  ( + ( - 1 n) (-1 + -

N3 21 (1+ ) (1- 3) (-10 + +,)

4

N4  1 (1-- 0 ) (1+1 (-1- +
4

N5 .- (1- 2 ) (1 - n, )
2

40 N6 = (1 + ) (1 -n 2 )

--'- ] . - (1+1 )
(1 + nN7-2

N8 - -n;;.::. N8  2. 11- ) (1.- ,2 )

2

Table 2 Shape functions of the eight-node isoparametric finite element.
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Chemical Composition in Weight Percent

Element: C Mn P S Cu Si Ni Cr Mo Co N
0.03 1.62 0.034 0.015 0.31 0.43 10.04 18.3 0.31 0.15 0.07

Material Data

Property : Symbol Unit Value

Young's modulus : E MPa 203800.

( Yield stress : Ty MPa 265.

Maximal stress : O'max MPa 640.

Poisson's ratio : u 0.3

Critical stress intensity factor : K N/mm3  4300.

Critical J-integral value :Jc N/mm 108.

Table 3 Chemical composition and material data of the stainless steel A304.

.



No. J-Integral Value J-integral Value Deviation
(Vitual Crack Extension) (Direct Integration)

[N/mm] [N/mm] %

1 20.49 20.50 0.05

2 20.97 21.17 0.95

3 20.21

4 18.94

4 5 17.19

.4

6 15.46 -

7 11.57 11.88 2.61

( 8 9.94 10.22 2.74

9 9.28 9.87 5.77

10 9.19 9.73 5.55

),.:

I

Table 4 Comparison oi J-integral values obtained by the virtual crack

extension method and the direct integration method.
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Mixed Modes:

Number: 1 2 3 4 5 6 7 8 9 10

KI: 2230. 2223. 2107. 1927. 1638. 1405. 1098. 772. 396. 0.

KII: 0. 176. 671. 988. 1252. 1462. 1633. 1775. 1904. 2018.

inner radius 0.08 0.08 0.08 0.08 0.1 0.1 0.1 0.1 0.2 0.2
outer radius: 0.12 0.12 0.3 1. 4. 6. 8. 8. 9. 9.

-. power: -0.114 -0.119 -0.134 -0.134 -0.135 -0.140 -0.140 -0.141 -0.142 -0.143

inner radius: 0.15 0.15 0.9 2. 5. 8. -

outerradius: 1. 1. 2.2 5. 10. 12. -

power: -0.0391 -0.041 -0.041 -0.060 -0.041 -0.053

inner radius 2. 5. 6.

outer radius: 12. 12. 12.

power -0.51 -0.499 -0.50

0

Table 5 Powers characterizing singular behavior of the effective von Mises

stress along the line e 00 ahead of the crack tip. (All distances are
* given in mm
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Mixed Mode Cases:

V NO. KI  KII Predicted Fracture Magnitude of Strain

[N/qmm 31  Angle Energy Density

[Mj/m 3
]

1 2230. 0. 0. 1.83

2 2222.9 175.8 -10.48 1.82

3 2107.7 670.8 -21.60 1.71

4 1927.0 987.6 -33.39 2.00

5 1638.8 1252.0 -45.00 2.22

6 1405.6 1462.2 -50.80 2.47

7 1098.7 1633.8 -68.03 1.89

.,o8 772.2 1774.5 -79.15 1.95

9 396.3 1903.8 -84.56 1.82

10 0. 2018.3 -90.00 1 ',925

.1

"able 6 •Fracture angle e and corresponding strain energy density 0.4

mm from the crack tip for all mixed-mode cases considered.
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Mixed Mode Cases:

,"" No. KI  KII Range of Distance from Power of the Correlation
[N/-mm3I Crack Tip Considered [mm] Singularity

1 2230.0 0. 0.04- 0.12 -0.622 -0.9999

2 2222.9 175.8 0.04 - 0.12 -0.699 -0.9996

3 2107.7 670.8 0.04- 0.20 -0.880 -0.9994

0 4 1927.0 987.6 0.04 - 0.40 -0.943 -0.9997

5 1638.8 1252.0 0.04 - 0.80 -0.983 -0.9998

( 6 1405.6 1462.2 0.04- 1.0 -1.030 -0.9999

7 1098.7 1633.8 0.04 - 1.0 -1.029 -0.9999

8 772.2 1774.5 0.04 - 1.0 -1.030 -0.9998

9 396.3 1903.8 0.04 - 1.0 -1.002 -0.9998

10 0. 2018.3 0.04- 1.0 -1.000 -0.9999

Table 7" Powers of the singularity of the strain energy density in the vicinity
*.- of the crack tip along the line 0=00 from least square approximation.

.J.

"pA

"el



S

APPENDIX E: DUCTILE CRACK GROWTrH SIMULATION -

LOCAL DEFORMATION AND FIELD VARIABLE ANALYSIS
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In the present work, slow stable crack growth in a ductile material (A533B steel) is

simulated numerically with a widely used state of the art commercial finite element

code (ABAQUS). The finite element formulation uses the J2 flow rule of incremental

plasticity based on small deformation theory. An experimentally obtained load versus

crack growth relation is employed as input and the finite element mesh models the

upper half of a modified compact tension specimen. The material behavior is modeled
with power law hardening (n - 10). Two meshes are used for the crack growth

simulation: a coarse mesh with 1874 elements and 1946 nodes, and a fine mesh with
2914 elements and 3002 nodes. The finite element meshes consist of four - node

bilinear plane strain isoparametric elements with eight degrees of freedom (type

CPE4). Crack extension of eight millimeters for the coarse mesh and one millimeter

for the fine mesh were simulated. The nodal release technique is used as a numerical

crack growth simulation technique.

N, The evaluation of the results emphasizes two points: (i) to determine how well two

crack growth criteria (J/CTOD and CTOA) characterize mode 1 crack extension under

plane strain conditions and in what interval range they are applicable, and (ii) to

examine the singular field variables at the onset of crack growth and associated with
the quasi - static crack extension. The purpose of the second evaluation is to ;etermine

whether the singularity fields suggested by asymptotic methods exist independently

from each other (whether a transition point between two different singularity fields

can be identified) or whether a superposition of the singularity fields occurs ahead the

stable advancing crack tip.
'./
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NOENLATI IRE

a flow vector

ae  nodal displacement vector
A scalar term in Dep

A displacement - shape function polynomial matrix

a,b,c,d length

b body force vector

B strain - displacement matrix
D elastic constitutive matrix

D_p elastic - plastic constitutive matrix
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f nodal force vector
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1. INTODUCTION

Under normal circumstances, a structural analysis assumes that the materials

involved are ideal homogeneous flawless materials, (i.e. stresses and strains are

uniformly distributed throughout a body). Inglis [11 first emphasized the significance

of intense and localized concentrations of stresses around sharp notches. Neuber (21

resolved this observation of stress concentrations caused by notches by introducing

stress concentration factors.

Griffith contributed pioneering work to this subject in the early 1920's (3,41. He

developed a continuum mechanics based formulation of the change in strain energy due

to the presence of a crack in brittle elastic solid. Often this work is quoted as the

starting point of fracture mechanics as an independent branch of mechanics. Sneddon

(51 deduced expressions for the stress distribution in the neighborhood of a crack in an

elastic solid from complex stress functions developed by Westergaard [61.

The next step in the development of the theory of fracture mechanics was made by

Irwin in the 1950's. He observed that there are three independent local kinematic

movements of the upper and lower crack surfaces with respect to each other (fig.1)

[71.
1) Opening Mode or Mode 1

2) Sliding Mode or Mode 2

3) Tearing Mode or Mode 3

Essentially all stress systems in the near crack - tip region may be derived from these

three modes of loading. Since the opening mode (or mode 1) represents the

predominant stress situation in many practical cases, most of the research is done in

* this area. Building on the associated stress fields in the near crack - tip region of the

three different crack movements, Irwin deduced the stress intensity factor (K)

concept [81, where K describes the intensity of the elastic crack - tip stress field.

*A.
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Previously Orowan recognized that for relatively ductile materials, the work done in

plastic deformation is much larger then the energy required to form new crack surface

[9]. From these observations Irwin defined a material property G which is the total

energy released during crack extension [101. In addition he demonstrated the

equivalence of G and K for linear elastic material behavior. This property is the basis

of brittle fracture mechanics today. Since the stress distribution characteristics

around a crack are always the same, material properties can be found by testing

suitable specimens. Such material properties like G. (critical energy) or Kc (critical

stress intensity factor), once found, can be compared with the G or K value of a body

subjected to a certain load condition and the designed structure simply has to satisfy

the following conditions

iG< eq. 1.01S

Kd eq. 1.02
s

where s is the safety factor. Up to this point, linear elastic material behavior has been

used as basic assumption to develop the theory. Therefore the discipline, using this

principle, is called Unear Elastic Fracture Mechanics (LEFM).

Wells, in the early 1960's [11], introduced the concept of the crack openingI
displacement. This was the first example of a fracture concept developed beyond

general yielding. Wells's work provided the basis for the semi empirical 'COD Design

Curve' approach, used today (especially in the United Kingdom ) for fracture under

contained yielding conditions. Hutchinson [12] and Rice and Rosengren [13) derived

(under the assumption of a power law hardening material in the nonlinear region of

material behavior) solutions for the stresses and strains near a crack - tip using the

deformation theory of plasticity. Rice subsequently [14] deduced an alternative (but

.
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equivalent) approach to the COD Design Curve. He introduced the J - integral, a path

independent contour integral around the crack - tip. Although several path independent

contour integrals have been advanced independently [15, 16, 17], for any fracture

mechanics analysis where significant plasticity occurs, either the COD Design Curve

or the J - integral is used. The approach essentially is the same as in linear elastic

materials shown in eq. 1.01 and eq. 1.02, namely the designed structure has to satisfy

the condition

J eq. 1.03

The discipline of fracture mechanics where elastic - plastic deformation must be taken

into account is called Elastic Plastic Fracture Mechanics (EPFM). Due to the

0 complexity of the problems in EPFM, progress in this discipline is not as advanced as

in LEFM.

( The Finite Element Method (FEM) is a numerical method which provides the

opportunity to simulate elastic and plastic material behavior. By formulating different

types of idealized constitutive behavior (not only nonlinear elastic corresponding to

deformation theory of plasticity, but also incremental plastic corresponding to a flow

theory of plasticity) (fig. 2), it is possible to characterize a fracture within a body

under arbitrary load conditions. With this tool, bodies subjected to complex loading

conditions (in elasticity as well as in plasticity) can be examined.

* In fracture mechanics today, engineering calculations are not limited to the

determination of the combination of the critical crack size - load conditions for

fracture instability. In addition, calculations to determine the rate of progression of a

crack are performed. There are several distinct types of crack growth:

"- - fatigue crack growth,
* ". creep crack growth,

*..
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I.

- environmentally assisted crack growth, and

- stable crack growth.

i• Fatigue crack growth occurs in structures which are operating under alternating loads
sufficiently severe to make fatigue resistance a primary design criterion. The

approach for solving this problem is to relate the change in crack length with the
number of applied load cycles. A widely used equation for this relation is the 'Paris

Law' [18]

da . g(,K) eq. 1.04

-vN
* where Kmaxis the upper load stress intensity factor,

Kmin is the lower load stress intensity factor,

AK is Kmax - Kmin '

da is the crack length,

dN are the load cycles, and

g,m are material dependent constants.

One difficulty encountered is that an exact definition of the transition from initiation to

propagation often is impossible.

Creep crack growth is a very important problem, particularly in the power generating
. industry and aircraft gas turbines. Metals show a creep behavior at temperatures

greater than about thirty percent of their absolute melting temperatures. There are

two competing mechanisms to describe the time dependent crack growth behavior. The
Jfirst mechanism builds upon the blunting of the crack . tip. This phenomenon is

observed experimentally and has been simulated numerically. Due to the crack . tip

blunting, the stress field ahead of the crack relaxes and tends to retard crack growth.

The other mechanism results in an accumulation of creep damage in the form of

* a,

4

-Aw



0

microcracks ahead the crack - tip. These microcracks join each other causing the

crack to extend.

Environmentally assisted crack growth is an extremely complex problem and even

experts in this field cannot always agree on the precise distinction between the

different types of environmental cracking, characterized by corrosion, stress

corrosion, and corrosion fatigue. Environmental effects on fatigue crack growth

strongly depend on specific material - environment combinations, as well as on the

frequency of the stress cycle, the wave form of the stress cycle and the temperature. In

the case of high crack growth rates the environmental effects are often negligible.

In ductile materials (like A533B steel), slow stable crack growth is observed after

the onset of crack growth due to extensive plastic deformation, although the structure

may still remain in service. A fracture analysis Iased on the onset of crack growth,

therefore, would lead to an overly conservative estimation and the structure would be

(.-prematurely removed from service. The problem to solve, is to determine what amount

of stable crack growth is allowable prior to the onset of rapid crack propagation.

Theoretical foundations for this subject are based on Elastic Plastic Fracture

Mechanics (EPFM). Different approaches exist to solve this problem, but the major

obstacle still is to find a fracture criterion which characterizes stable crack growth

after crack initiation.

Parallel to the macro - description of fracture in structures, a micro - mechanism

approach has been developed. The main disadvantage of this approach is the lack of
0e

experimental verification of proposed solutions. Nevertheless, much research has been

performed in the past. In particular, the ability to relate micro - mechanisms of

cleavage and ductile fracture to the fracture mechanics parameters such as K, J
integral, CTOD and CTOA seems to be the key for a successful application of this

concept.
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The micro - mechanism of fracture itself is divided into fast, uncontrollable crack
extension and slow stable crack growth. Fast crack extension occurs below the cleavage

transition temperature. This cleavage fracture is a brittle fracture but micro -
, plasticity is not excluded. Transgranular cleavage fracture occurs in structural steels

of yield strengths generally less than 500 MPa, while intergranular cleavage occurs
in higher strength alloy steels [19]. Zener [201 suggested that there is an array of

* ,dislocations at the initial stage of crack formation. As more dislocations enter this
array they are squeezed together, producing a local stress concentration. This local

stress concentration increases until a crack nucleus is generated. Stroh [21]

presented an analysis of this approach. This analysis shows that cleavage fracture
would not be predicted using this dislocation model. Since cleavage fracture is observed

., experimentally, the model proposed by Zener appears to be inadequate. Cottrell [23]
. suggested a mechanism which leads to easy nucleation in bc metals. In this rather
* straightforward approach, two dislocations intersect on the cleavage plane and form a

new dislocation. Equation 1.05 describes and fig. 3 shows this mechanism.

(a <7T1>(1 O,+a <1 1 1>(0 0 1) -+ a<0 0 1>(0 0 1) eq. 1.05

The new dislocation has a lower dislocation energy than the initial one, therefore,
crack nucleation will be easy and crack extension is explainable by connecting

- different crack nuclei.

Above the fibrous/cleavage transition temperature materials behave in a fully ductile

manner. This transition temperature for A533B steel is about room temperature.

After reaching the transition temperature the crack advances by the coalescence of

voids. These voids contain inclusions of second - phase as well as nonmetallic particles

[24]. For the initiation of ductile fracture, a simple criterion commonly used is [25

0 to 27]

U. 6ic - (0.5 to 2) dp eq. 1.06

0
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where dic is the critical crack opening displacement and

do is the mean void initiation particle spacing.

Figure 4 shows this microscopic fracture criterion schematically. Unlike cleavage

cracks, this ductile material behavior is based on cracks which are too blunt to be able

to propagate in an uncontrollable, fast way. Local microscopic criteria for void growth

ahead of the crack - tip have been proposed by Green and Knott j291 and Rice and

Sorensen [30].

In the present work a macroscopic crack growth study is performed. Using an elastic -

plastic (small strain) finite element analysis, a crack in a compact tension specimen

is extended quasi statically under plane strain conditions. The material employed is the

bainitic pressure vessel grade steel A533B and a power hardening law is used to

represent the stress - strain relationship. The von Mises equivalent stress is used as a

Cyield criterion. The macroscopic fracture criteria (J /CTOD and CTOA) are examined

as to their usefulness to model slow stable crack growth.

An extended evaluation has been made into the field variables in the vicinity of a crack

tip. In particular the changing nature of the field variables for a growing crack is

examined closely, from the onset of crack growth to eight millimeters of crack

extension.

.
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4' 2. NUMERICAL CRACK GROWTH SIMULATION TECHNIQUES

, A literature survey has shown that three different finite element methods are

commonly used to simulate crack growth:

1) Node shifting,

2) Stiffness reduction,

3) Nodal release.

Node shifting is used particularly to simulate small amounts of crack growth, namely

less than one element size. With this method crack blunting can be simulated very

accurately by using higher order elements. If larger amounts of crack growth are

needed, it is possible to combine node shifting with nodal release. An interesting
* •application is the simulation of local three dimensional crack growth (fig. 5). Neither

the nodal release nor the stiffness reduction methods can perform this simulation

successfully.

( Stiffness reduction conceptually is the same as nodal release, only the release

algorithm is different. To accomplish stiffness reduction, spring or a combination of

spring/gap elements are used (fig. 6). The stiffness in the y -direction is given by the

spring constant of the spring elements. Crack growth is obtained by reducing the

spring constant of the crack - tip element.

The nodal release method is probably the most widely used crack growth simulation

' technique. The crack is extended by releasing the crack - tip node.. At the same time a

.. reaction force is applied to the released node and then incrementally decreased to zero.

The amount of crack growth, therefore, is restricted to the element size per step.

Lamain [311 stated that only minor differences are observed, whether the reaction

force is applied proportionally or nonproportionally. During the releasing process,

the external force can be changed or held constant. It is possible to use higher order

elements for this method, but care must be taken so that crack face overlapping due to

the reaction force cannot occur.

• ..
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3. PREVIOUS INVESTIGATIONS OF NUMERICAL CRACK GROWTH SIMULATION

One of the first numerical crack growth simulations was performed by Anderson [32]
in 1972, in which he introduced the nodal release technique. For the case of plane

stress and under the assumption of a constant crack - tip opening angle as the crack

growth criteria, he released the crack tip node and applied a reaction force to this

node to maintain the initial zero displacement condition. Then he decreased the reaction

force in five equal steps, keeping the external force constant. Although the assumption

of a constant CTOA was quite arbitrary (and incorrect for the first few millimeters of

crack growth), this work can be considered as the beginning of numerically stable

crack growth simulation.

*Sorensen [331 performed crack growth simulations for plane strain using Anderson's

nodal release technique. He modeled crack extension for constant external loads

*between equidistant nodal points. He discussed different possible fracture criteria and
applied "a critical opening at a small characteristic material distance from the crack -

Ctip" as a criterion for stable crack growth.

In the 1970's, Shih et. al. performed extensive experimental and numerical research

to find valid crack growth criteria [34). He used the node shifting technique for the

numerical approach. His basic results showed that the slope of the J resistance curve

for A533B steel was constant for crack extension of approximately six percent of the

remaining ligament. Furthermore he stated that the "COD - based criteria appears to

be valid for larger amounts of crack growth". The tearing modulus proposed by Paris

et. al. [351 based on J (tearing modulus: Tj (E/o70 2 )(dJ/da)) was constant only for

a short range of crack growth. An alternative approach, the tearing modulus based on

COD (tearing modulus: Td - (E/o*02 )(d6/da)) was considered to be an *attractive

* alternative*.

Saka et. al. [36], recognizing the weakness of the tearing modulus concept, introduced

.o'
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in 1983 a new tearing modulus Tw - (1/Rc) (E/o 0
2)(dWp/da). The parameter Tw is

V a dimensionless representation of dW /da, the incremental plastic work done in a

.circular region of characteristic radius Rc " at the growing crack - tip, where Tw is

directly related to the amplitude of the singularity field. Saka determined R.

experimentally to be 0.28 millimeter for A533B steel and performed a numerical
crack growth simulation. The input for the finite element analysis was an

experimental load line displacement versus crack growth curve. Saka compared Tw

with Tj and Te and concluded that Tw is definitely superior.

Hoff [371 modeled crack growth with spring and gap elements. Motivated by results

from Shih, he used the J - integral for only the first four millimeters of crack

0 growth. This number was explicitly given by Kanninen (18] as the limit for J
controlled crack growth for A533B steel. For further crack extension Hoff used a

constant CTOA value, verified by experimental data obtained from Shih [341.
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4. PROCEDURE OF THE PRESENT INVESTIGATION

Although much research has been performed in the numerical simulation of stable

crack growth, up to now an overall criterion that describes the quasi - static extension

of a crack in ductile materials has not be found. The tearing modulus concepts (Tj, Td)

suffer serious limitations, i.e., they show a constant behavior only for a short range of

crack growth. The same appears to be true for the new tearing modulus parameter, TW,

introduced by Saka [361. In his paper he performed a crack growth simulation
controlled by this parameter up to 1.8 millimeter crack extension. His analysis,

unfortunately excluded the prediction of the initiation of crack growth. In addition, his

results showed a deviation of about 20 percent for Tw in this crack growth Interval,

*i which cannot be viewed as an improvement of over existing crack growth criteria.

.. The present work emphasizes two points: (i) to determine how well two crack growth

( criteria (J/CTOD and CTOA) characterize the crack extension in mode 1 under plane

strain conditions and in what interval range they are applicable, and (ii) to examine
the singular field variables for crack growth initiation and subsequent quasi - static
crack extension, since the author believes that any successful crack criterion must be

closely related to the field variables. As input for the finite element analysis, only an

experimentally obtained load versus crack growth curve is used.

The stable crack growth is simulated by using the nodal release technique. The load

versus crack growth curve (fig. 7) is linearly discretized in a such way that, when the

load attains a certain value, the corresponding crack growth is modeled by releasing a

corresponding number of nodes. The node release is accomplished by replacing the

restrained degree of freedom of the crack - tip node by a reaction force, which is then

" gradually reduced to zero. After releasing the current crack - tip node the load again is

increased until the requirement is satisfied for releasing the next node. The relation

-. . used between the applied load and the crack growth for the performed calculations is

listed in table 1.
*'
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Since one could argue that crack growth has been observed to exhibit jumping (pop -
in crack growth) behavior and that the simulation, therefore, essentially is
linearizing the whole process, a second approach has been performed. Here the node is
released at a constant load and the load is increased with the node restrained in the y -
direction. This stepwise or jumping simulation is shown in fig. 8. The main

disadvantage of the latter simulation technique is the required increase in CPU time,
which is nearly doubled in comparison to the first approach.

The crack tip opening displacement for both simulations are compared for 2.25
millimeters of crack growth. The maximum deviation occurred for the y displacement

at the last node that was released and was always less than three percent. For these
* reasons the stepwise approach was not pursued.
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5. FINITE ELEMENT MODELING

5-1 MAIEE1AL

The material used for stable crack growth simulation is the bainitic pressure vessel

grade A533B steel. This steel is representative of ductile materials and is widely used

in pressure vessel applications. The material composition and the stress - strain
properties are shown in table 2 and table 3. Ramberg and Osgood proposed the

following constitutive law for simulating such material behavior

0"n
e+ a eq. 5.01

where a and n are material dependent constants, and

o o,eo are the yield stress and strain.

Since in the crack - tip region the elastic strains are negligible in comparison to the

plastic strains, a simplification of eq. 5.01 yields

n
C• 0 -- eq. 5.02

which is a pure power law representation of the stress - strain curve. Using a - 1 and

n - 10 the material has been modeled with

e o eq. 5.03I - = -
-0

up to the yielding point and

S=E n eq. 5.04

beyond yield.

4
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As input for the finite element program, the stress strain curve has to be

represented in a multilinear discretized form. This has been achieved in 16

discretizations and the actual input stress - strain relation is shown in fig. 9.

5.2 MODEL DEFINITION

A compact tension specimen is chosen to simulate mode 1 stable crack growth. This

specimen is chosen since it is a standard type of fracture specimen that has been

investigated independently by Shih et al [34] and Hoff [37] and approximates plane

strain conditions. The dimensions of the employed model are shown in fig. 10.

Two models are used for the crack growth simulation: one coarse mesh and one fine
* mesh. The coarse mesh (shown in fig. 11a and 11b) has 1874 elements and 1946

nodes. The element size in the region of crack growth is 0.25 millimeter. The fine

mesh shown in fig. 12a to 12c has 2914 elements and 3002 nodes. Here the element

size in the crack growth region is five times smaller than in the coarse mesh

S(0.05 mm). In the case of the coarse mesh, 32 nodes are released which is equivalent

to eight millimeters crack growth. For the fine mesh 21 nodes are released to simulate

one millimeter crack growth. For simplicity, the fine mesh model is created without

loading holes, however, previous work indicates that the load is transfered to the crack

tip region reasonably well [38,391. The boundary conditions are shown in fig. 13.

To avoid rigid body motion the node .q , is restrained in x and y - direction. All other

restrained nodes are restricted from moving only in the y -direction.

5.3 FINITE ELEMENT MESH GENERATION

An important aspect of FEM analysis is the generation of the mesh. The two meshes used

for the finite element analysis, are created with the software package CAEDS -

Graphics on an IBM 5080 terminal. CAEDS ( Computer Aided Engineering Design

System) is a product of SDRC (Structural Dynamics Research Corporation) employed

on a IBM 4341. The strength of this software package is its flexibility in finite

14
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element modeling and finite element solving. Since CAEDS has a direct interface with
CADAM and CATIA (two engineering graphic design systems), it is possible to enter
part geometry directly from either of those systems - entirely bypassing manual
entry of data. After doing that, one can interactively add the load and boundary
conditions and submit the job to the integrated finite element solver. rhe disadvantage
of CAEDS is the restrico*Uon of its solver to linear finite element analysis. Other

-p problems encountered on CAEDS are the limitation of the number of nodes and elements

for a successful analysis and the lack of the support of certain element types (like

plane strain elements) by the finite element solver. For these reasons, only the mesh
creations were performed with CAEDS. One of the major challenges was to put most of

* the elements in the vicinity of the growing crack. This has been accomplished by using
the Free - Mesh - Generator of CAEDS. This mesh generator automatically creates

finite elements via the Triquamesh algorithm.

5.3.1 MODEL CHECKING

After a finite element mesh~ has been created, the necessary mesh checking often is a
time consuming process. CAEDS provides a very powerful series of tools (the Model

Checking Tools), for simplifying the model checking process. The model checking tools
available in CAEDS are:

- free edge checking,

- coincident node checking,
- interior element angle checking,

6- distorted element checking.
,1-/
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5.3.2 BANDWITH AND WAVEFRONT OPTIMIZATION

.N[ In order to obtain improvements in the finite element solution process, CAEDS offers

the ability to optimize the bandwith and wavefront of the finite element mesh. By

working with free mesh generation, it is not possible to number the nodes in an

optimum way. The resulting bandwith and wavefront of the final mesh thus becomes

unacceptably large for meshes having 2000 - 3000 nodes. CAEDS uses the Gibbs -

Poole - Stockmeyer algorithm to optimize either the bandwith or wavefront size by

renumbering the nodes. It is possible to emphasize the optimization either for the

bandwith or for the wavefront profile. After using this optimization tool for the two

meshes created, the estimated CPU time reduction for performing the finite element

* analysis was 97 percent. Without this optimization a finite element analysis would not

have been possible..co
.1',

After the generation and optimization of the two meshes on CAEDS, the geometry and the

connectivity of the elements were transferred by a special FORTRAN subroutine to the

finite element program ABAQUS (401 for solution. This is necessary since the CAEDS

finite element solver does not support plane strain elements (the state of stress within

a compact tension specimen of this size is assumed to be plane strain) and lacks the

ability to solve nonlinear elastic or plastic problems.

16
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'~6. THE FINITE ELEMENT METHOD FOR STRUCTURAL ANALYSIS

Although a considerable amount of work has been performed to develop analytical
methods for solving problems of elasticity [41, 42, 431 and plasticity [44, 45, 46],
these methods are usable only for certain problems and analysis cases. In structures of

arbitrary shape subjected to arbitrary load conditions, analytical methods often fail.
In engineering practice, most problems are too complicated be solved analytically. For
these cases, the finite element method is a very powerful computational tool for

solving continuum mechanics and structural analysis problems with accuracy

acceptable to engineers.

A complete introduction to the finite element method is far beyond the scope of this
* thesis and, therefore, only a brief overview is given. The interested reader is referred

to the book of Zienkiewicz [47] which gives an excellent and complete introduction to

the different approaches in finite element analysis.

C The basic idea behind the finite element method is to divide a body into small

subvolumes or (in two dimensions) a surface into small subregions. These subvolumes
or subregions are called elements and are interconnected at nodal points along their

boundaries. In the field of solid materials, this method is used to find the stresses and
displacements of the structure being analyzed.

In the displacement approach to the finite element method (FEM), the displacements of

the nodal points are the basic unknown parameters. To approximate the displacement
field within each element, a set of functions is chosen. These displacement functions
are called ' shape - functions'. The shape - functions depend largely upon the number

,. of nodes associated to each element and the degrees of freedom. As a basic requirement

they must include all possible rigid body displacements as well as all appropriate

strain states.

If these functions, in addition, satisfy inter - element compatibility (which means that
. the highest derivative in the strain displacement relation must be finite) the

17
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displacement field will minimize the potential energy of the system. Then, the finite

element solution represents an upper bound on total potential, and the solution will

converge to the true solution as the mesh size is decreased. Inter - element

compatibility may be violated to produce reasonable results, but an upper bound on the

total potential is no longer guaranteed.

The strain within an element can be determined in terms of the nodal displacements. As

a final step, the constitutive properties of the material will define the state of stress

throughout the element and on its boundaries.

6.1 THE FINITE ELEMENT FORMULATION

When a body subjected to external forces is in equilibrium, the principle of virtual

work is given by

6W I 6 WE eq. 6 ')1

where 6W, is the total strain energy

and dWE is the external work.

Use of the principle of virtual displacements gives

. WI -f deTo " dV eq. 6.02

6V

and

I ', " k
"T T"f1 eq. 6.03

6: WE f u.b dV+f duTT dr" +1" T -fp
"'" V - -r - - P= - -

where de is the strain vector associated with virtual strains,

a' is the stress vector,

b is the body forces,

.. V is the volume,

18
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r is the boundary where surface tractions are applied,

fP is the load,

du is the virtual displacement vector, and

T is the surface traction vector.

Substituting eq. 6.02 and eq. 6.03 into eq. 6.01 yields

f 66To " dV -( 6u TbdV+ 6uTTdfl+ k 6uTfp 0 eq. 6.04
v LV r p=1 -

In a finite element representation for solid materials the displacements, strains and
their virtual counterparts can be expressed in the following form

u - N aie,  6u - N 49 eqs. 6.05a,6.05b

e - a_ de - B dai_ eqs. 6.06a,6.06b

S-or in a convenient discretized form for finite element applications

u Ni ale, du - .N dae eqs. 6.07a,6.07b

E - _. B aie, de I X Bi dai eqs. 6.08a,6.08b

where i is the ih node,

a e , d.aO are nodal displacements and their virtual counterparts,

.N is the global shape function for node i, and

Bi  is the global strain -displacement matrix.

. The nature of Ni and Bi is explained in more detail in chapter 6.2. Using the principle

of virtual displacement and substituting eq. 6.05b and eq. 606b into eq. 6.04 gives

k
*::'( -T{fB s f NTb dV- NTdr .- NTfp 0 eq. 6.09

SV V
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Swhere the transposes of the virtual strains and displacements are

,6T dae,T BT eq. 6.10

.uT dae T NT eq. 6.11

In addition the stress strain relation is defined as

a* - D (e -6a ) +°'a eq. 6.12

where Ea are the initial strains,
%.

o-a are the initial stresses, and

* D is the constitutive matrix.

In the case of plane strain for linear elastic materials; D can be written as

D E U 1- U 0 eq. 6.13(1-2u ) (1 u)

0 0

where E is the Young's modulus, and

* u is the Poisson's ratio.

For elasto - plastic materials D is no longer a matrix containing only elastic constants.

Basically two new factors must be introduced:

1) a yield criterion (F), and

2) a hardening parameter (K).
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After incorporating F and K into eq. 6.13 it can be shown [48J that the constitutive

matrix, D, for elastic - plastic conditions is

H(D)(Da)T eq. 6.14
__P A+(_Da)T a

where a represents the flow vector (a partial differentiation of the yield

criterion with respect to the stresses)

and A is a scalar term, obtained as the local slope of the uniaxial

stress/ plastic strain curve.

0Thus, by use of eq. 6.14, eq. 6.13 can be rewritten

*-o""-.Pep L -a) +  eq. 6.15

for elasto - plastic conditions. Substituting eq. 6.15 into 6.09 yields

'5~fJ BTD B dV).aO f [BD_ d~fdV f. T.d.- ;; ,T{W _ BT_op dVa - _T.epE a f S T adv " - N b dV
V V V V

k -eq. 6.16

W j..-dr.-7 1 N!f

0 Since ,ae,T is quite arbitrary and not necessarily zero, the term in the brackets must

be zero to satisfy eq. 6.16, or

(f BT-D B d v ae _ f 'f + f fT *q 61

S= - a eq. 6.17

*V

where

_Lea" f BT a dV eq. 6.18
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1,a =JBTadV eq. 6.19
V

f, f NTb dV eq.6.20
V

f.T " TT  d r  eq. 6.21

.. PInp1~! eq. 6.22PM !J
Defining

M ± f"_a- _ + !0 + _'T !p e q. 6.23

and K- f BTD BdV eq. 6.24--ep

allows eq. 6.17 to be written as

Ka - fG, eq. 6.25

where Ke  is the stiffness matrix,

0 are the nodal displacements,

fe are the nodal forces.

Equation 6.25 can be viewed as the final representation of the finite element

.. formulation for a solid material.

6.2 ELEMENT REPRESENTATION

In ABAQUS, elements of the type CPE4 (4 node bilinear plane strain isoparametric

/. elements) were chosen for the model. This eight degrees of freedom (d.o.f.) element

,-(two d.o.f. for each node) has the assumed displacement field [49]
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9, a,

Cu [0xyxyO00 a

v 0 0 0 1 x y eq6.26

a 

,

or

U = a I + a 2 x + a 3Y + a 4xy eq. 6.27

v = oa. + adx + a 7Y + a 8 xy eq. 6.28

where u is displacement in x - direction, and

v is displacement in y - direction

( or in a more succinct form

u - A a n  eq. 6.29

where a n are the constant coefficients of the assumed polynomial.

The displacement field also can be written in the form

u-NaO eq. 6.30

where N are the shape functions, and
ae are the nodal displacements.

V. The desired shape functions can be found directly from Lagrange's interpolation

,' , formula, which leads to

"P23



L N1 0 N2 0 N3 0 N4  u

v:2 eq. 6.31

U4

V4

Inserting the coordinates of the nodes gives the following shape functions for the

rectangular CPE4 element

N, 1 (b - x) (c - y) eq. 6.32

N2 - 1 c y) eq. 6.33

N 3 -4c (b + x) (c.+ y) eq. 6.34( 1

N4 = 4bc (b - x) (c + y) eq. 6.35

where fig. 14 identifies the parameters used.

The shape functions connect the nodal displacements with the displacement field.
Similarly the strain displacement matrix B connects the nodal displacements with the

strain field. In the case of plane elasticity B can be written as

00
":.'.ax

* B- 0 N eq. 6.36

." y a x

* Incorporating eqs. 6.32 - 6.35 into eq. 6.36 gives
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A

.(c -y) 0 etc. |
= - 0 (b - x) etc. eq. 6.37

1 L (b - x) - (c -y) etc..

Use of eqs. 6.32 to 6.36 permits the stiffness matrix to be evaluated as

cb

Kf B_ t d xdy eq. 6.38.- -~c -b -

To evaluate arbitrary quadrilateral CPE4 elements, an intrinsic coordinate system

defined for each element has to be introduced. In fig. 15 a linear element is shown with

such a natural coordinate system. Axes e and "n pass through the mid - points of

opposite sides and the edges are defined by e - ± 1 and in - 1 I regardless of how the

(element is oriented in the global coordinate system x,y. As a result of this definition

node 1 has the intrinsic coordinates e -Ti - -1, node 2 e - I and "f - -1 etc..

Using the discretized form of the displacements and streins eqs. 6.07 to 6.08, allows

the individual shape functions to be written as

N 1 ) (1 - eq. 6.39

1

SN 2. .-- (1 + e) (1 -") eq. 6.40

... N 3 M -- (I + e) (I + "q)eq. 6.41

-*-='g" N4 -- (1 - )(1 +r) eq. 6.42

In general, u is parallel to the x- axis and v is parallel to the y - axis, but they are not

necessarily parallel to e or n.
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6.3 PROCEDURE FOR SOLVING THE FINITE ELEMENT FORMULATION

The evaluation of the formulated finite element problem is done by substituting

eqs. 6.07b and 6.08b into eq. 6.09. Neglecting loads as well as initial strains and

stresses permits eq. 6.16 to be rewritten in the form

1: .~T B dV -J NTb dV -f NT~dr }0 eq. 6.43
V V

Then the element representation developed in chapter 6.2 is used to evaluate all

contributions to eq. 6.43 separately for each element. The displacements for each

element can be obtained from eq. 6.07a as

* ue F Ni a1e. eq.6.44

For an isoparametric element, the x and y coordinates within an element can be

evaluated as

yJL
0.Jeq. 6.45

' ' -y i N eY e

Then the Jacobian matrix may be evaluated as

*N e eNax OY _L1 X Yi

e_ -Ce
• ' == k oeq. 6.46

ax i.- aN ye

- l 11

The volume of each element is given as

, dV - t Det JO dE dn eq. 6.47
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Following the same approach as for the displacements, the strain displacement

relationships for each element can be written

Ee , Bi ai* eq. 6.48

in the case of plane strain

Bi  0 OH eq. 6.49

and thickness,t, is chosen as unity. The chain rule may be used to evaluate

a. N. a N eq. 6.50
- +yax C- a x all ax

and

e e aaN, __,a

ay " a a?, , eq. 6.51

*The derivatives (ae/ax),(an/ax), etc. can be obtained from the inverse of the

Jacobian matrix, and the stress - strain relationship for each element can be written

as
_ .epe e = .e Bje_ ae. eq.6.52

S-p.e

Substituting eq. 6.52 into the first term in the brackets of eq. 6.43, again neglecting

loads and initial strains and stresses, gives as the contribution from element e to the

right side of eq. 6.25

J.
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j, J B _@j eq. 6.53
whereV - J

'where Kj is the submatrix of the element stiffness matrix Ke . The contribution of

element e to the body force term fb is

IN edV eq. 6.54

-- V

and the surface traction term is

f N dr°i N Tdeq. 6.55

"' The actual integrations were evaluated numerically in the intrinsic coordinate system.

The most used widely method (as in ABAQUS), is the Gauss quadrature method. The

submatrix _Kje has the form

e . f 1 f

K.i . P Det Jde dri eq. 6.56
4-4) -1.1-

A-" The nodal forces at node i caused by the body forces and surface tractions are

f bi- + fTi8  eq.6.57

with
,. e j' ,T e j

f f N. b Det J d dnbJJ eq. 6.58

-1-1

. f f f NeT - D etJ e de d -r eq. 6.59
fT. 1- 1

* f.
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The strains and stresses are thus not determined at the nodal points but at the so called

'integration points'. In the CPE4 elements these integration points are marked in fig.

16. The Gauss - Legendre method locates the integration points in a way that the

greatest accuracy is achieved for a given number of them.

6.4 COMPUTATIONAL PROCEDURE FOR THE PLASTICITY PROBLEM

Since large deformations occur during the finite element simulation of the stably

growing crack, a short introduction is given,.about the solution procedure in elastic -

plastic finite element analysis. The form of the stiffness matrix given in eq. 6.24

suggests that a straightforward solution of the finite element formulation may be

possible. This indeed is true for the elastic case where an explicit relationship of the

* form of eq. 6.12 (with a, o-(e) for nonlinear elasticity) is available. On the
contrary, such an explicit relationship is no longer available for the complex nature of

- plasticity.

, ' The approach employed to solve the plasticity problem utilizes the fact that the matrix

.2 p (eq. 6.14) is known for a certain stress value and loading direction, and the

stresses can be integrated as shown in eq. 6.60 from

do - De* dE eq. 6.60

where Dep" is known for a certain stress value and loading direction.

A solution for eq. 6.60 can be obtained with incremental mathematical procedures.

During the iteration process of the elasto - plastic analysis, the equilibrium equation

* (eq. 6.01) cannot be exactly satisfied, thus a system of residual forces %P will exist

such that

f.. -B,_ dV_ (- f bdV *0 eq. 6.61
0 V V
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- where b is the body force vector, and

f the external force vector.

Substituting the incremental forms of eq. 6.06 and 6.60 into 6.61 for an increment of

load gives

&V-Ka___4f+fNa eq. 6.62
V

where Ka is defined as the element stiffness matrix (eq. 6.23). With the help of

incremental displacements __u, an iterative correction of

duk=[Ka,k]"1 &%pk eq. 6.63

* is calculated using the Newton - Raphson method where

.uk is used as a corrective factor.

, After a prescribed number of iterations, the improved displacement is determined by

Auk+l A &uk + 6uk eq. 6.65

Auk+l now is resubstituted into eq. 6.62 and the residual force is calculated. In

ABAQUS the maximum residual force is chosen by the user with the parameter

PTOL/MTOL. If the calculated residual force is too high, the whole iteration process

- must be repeated. The disadvantage of this procedure is that the stiffness matrix Ka

must be calculated during each iteration. Therefore this method is usually avoided in

large finite element codes. An alternative numerical procedure is the modified Newton

Raphson method, where the stiffness matrix is only occasionally recalculated. The

* initial stiffness method is such a modified Newton Raphson method, where, for the the

whole iteration process, the initial elastic stiffness matrix is used.

*
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7, INVESTIGATED CRITERIA FOR STABLE CRACK GROWTH

7.1 J - INTEGRAL INTRODUCTION

The J - integral, which is equal to the strain energy release rate (for elastic

materials), was first introduced by Rice [14] in 1968. Under the assumption of a

linear or nonlinear elastic material free of body forces and subjected to two
dimensional deformation fields (i.e., plane strain or plane stress), the closed line

integral, J, around a notch parallel to the x - axis is path independent (see Fig. 17).
The J - integral is defined by

J f Wy - Ti  J ds eq. 7.01
* r

S-.where
Ef J d~i eq. 7.02

W = W(x,y) =W(e) de
(0
is the strain energy density (equivalent to the area under the nonlinear stress - strain

curve). Also

e - (Eij) eq. 7.03

is the infinitesimal strain tensor,

eT. = o=jnj eq. 7.04

,-. is the traction vector defined according to the outward normal along r,

ui  is the displacement vector, and

ds is an element of arc length along r.
0

The proof of the path independence of J is given in [14] for a notch with a finite radius

r. However, an application of this integration formulation is also possible for sharp

cracks, if an arbitrary small curve r around the crack tip is assumed, which
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reduces to zero in the limit. The crack - tip, therefore, can be interpreted as a

singularity of the deformation field. McMeeking [501 determined the value of J near

crack - tip and found out that the evaluation of J in the vicinity of the crack - tip is

not accurate. A practical limit on the size of the J - integral contour for the mode 1

compact tension specimen has been pointed out by Hoff [371. He suggests that J should

not be calculated along contours closer than 56 from the crack - tip, where 8 is the

crack tip opening displacement.

*. For elastic - plastic calculations in the region of small - scale yielding, the J -

integral now is used extensively in fracture mechanics, instead of the stress -

intensity factor K, which is only valid for linear elastic calculations. In the elastic

case the J - integral is equal to the elastic potential energy release rate, G. By using

the principle of virtual woik, it is possible to derive the relation

SG K2  eq. 7.05C G = as E

where

as  for plane stress,

a. =(11- u2 ) for plane strain,
E is the Young's modulus,

, u is the Poisson's ratio,

and therefore (with J - G in the linear elastic case)

K2

J = K2 eq. 7.06
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7.1.1 J - INTEGRAL DETERMINED BY THE VIRTUAL CRACK EXTENSION METHOD

A second method to evaluate the J - integral is the 'Virtual Crack Extension' method,
first introduced by Parks [511 for the linear elastic case and later extended to non -
linear material behavior [521. Since this method can be implemented very easily in
FEM codes, most commercial codes like ABAQUS and MARC use this technique. The

technique is based on moving nodes a small distance around the crack - tip by and
estimating the energy change. Since the potential energy does not change much with a
slightly different crack - tip configuration, this method works very well. Problems

are encountered, however, when using collapsed elements. In this case only one of the
several existing crack - tip nodes is fixed. The displaced crack configuration is so

different from the original one that the result for the J - integral would be completely
incorrect. This can be avoided by using two rings of elements at some distance away but

enclosing the crack - tip [31].

-.. 7.1.2 J - INTEGRAL AS CRITERION FOR STABLE CRACK -GROWTH

~As discussed earlier, the J - integral is valid (i.e., the J - integral is path

independent) only for elastic materials subjected to two dimensional deformation
fields.

-1' .Goldman and Hutchinson [531 showed that the J - integral formulation may be extended

even to elastic - plastic materials for cases of monotonically increasing load (no
unloading). This implies that J is strictly valid for analyzing only stationary cracks,

since one of the characteristics of crack growth is elastic unloading and non -
proportional plastic deformation near the crack - tip. Nevertheless, the J - integral is

0
also used to analyze crack growth for small amounts of crack extension [18, 34, 371,

"... primarily because of the lack of other reliable crack growth criteria.
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Hutchinson and Paris [541 have examined the necessary conditions for J controlled

crack growth and concluded that the most important consideration for using J as a
crack growth criterion is that nearly proportional plastic deformation occurs. In this
case, the deformation theory of plasticity and the incremental flow theory yield nearly

identical results. Figure 18 shows a typical J - resistance curve for an intermediate

strength steel under plane strain conditions. The dominant strain field as derived in the

deformation theory is

n
j ~n+ -e k Gi j(1 ) eq. 7.07

where kn  is a constant,

, r, e are planar - polar coordinates centered at the

" crack - tip

a.. and Eij is a function which depends on n, the strain

(hardening index, and whether plane stress or

plane strain is involved.

In Fig. 19 the crack - tip conditions are schematically shown. Elastic unloading occurs

only in the direct vicinity of the crack extension zone (aa). However, it is difficult to

define the size of the zone where the loading is nonproportional. Kanninen [181
suggests that this zone size is of the order of ,I, which is shown in Fig. 18. It should be
clear by inspection that one condition for J controlled crack growth is that

Aa << R. eq. 7.08

For mode 1 the crack is assumed to advance by an amount da in the x - direction. The

resulting increment in the strain field is

n Jn-+1d k ' " daa  ' n-+1 eq. 7.09," '" .: d j = nn +--- - -r j (a-k nJ x r i(e )
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. For a coordinate system attached to the crack tip using

.;,. a a si ____

r, _ sie aeq. 7.10.:, X ax r s r

'_. eq. 7.09 becomes

n

where dej k n (19 [-+ j'+(e) ij(e eq. 7.11

n. G-~Tcse a --

(9)_ n coseij ()+ sine - .Ei (e) eq. 7.12

Inspection of eq. 7.11 shows that the first term corresponds to a proportional loading

(for dJ > 0) and therefore d4Eij o Z"j. The second term, however, is nonproportional. It

is easy to see that the second term in the bracket is of the same order of magnitude as

the first term. Therefore, J controlled crack growth should be valid if the proportional
loading term is much larger than the nonproportional loading term, or

P- : d:=. a 'eq.7.13

J r

By definition

"1 .dJ.. .1eq.7.14
I da J

where / again can be viewed as the initial crack growth associated with the doubling of

.,.. J above Jc, fig. 18 (18].
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I f

I<< R eq. 7.15

then there exists an annular region

I< r << R eq. 7.16

in which the plastic loading is predominantly proportional and the singularity field

(ie. Eqs. 7.07 and 7.11) is dominant.

By introducing a nondimensional parameter defined by

b . eq.7.17

-J da I

it is possible to formulate a condition for J controlled growth in a fully yielded
specimen. Here b is the uncracked ligament and R will be a fraction of b. Thus, finally,

w >> 1 can be stated as requirement for J controlled growth.

-" 7.1.3 CALCULATION OF THE J - INTEGRAL

The integration of the J - integral in the CT specimen is performed along a rectangular

path which is divided into six sections. Due to the symmetry of the plate and loading

only the upper half of the integral is evaluated and the result is then multiplied by 2.

The integration paths are shown in fig. 20. By use of eq. 7.01, the J - integral can be

separated into two parts

"J Jw JT ,eq. 7.18

• where

=  Wdy 
eq. 7.19
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and

= f nnL I +!TnLY+yn u

T, x = axx x +. .. Oaxyny . _ + x x. axyn . ds eq . 7 .2 0

r
Equations 7.19 and 7.20 are applied on each path (using the direction of the normal

vector), which leads to

J J J y xWdy. x + y dy eq. 7.21
V Ti 1 ax Y x

a a

,i;"' Pah3 2 2  T2 -' O- o x y. + ry y )dx eq. 7.22
Path 2a

j j fw Y L-o X Ya u L d y eq. 7.22

2 W ' T2 xU ax

J Summing up Eqs. 7.21 to 7.23

a a b

Path 3U

,, CSY- f 2{ d L +L dx

eq. 7.24
d d

yields the final integration formula.
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The actual integration of J was done numerically using the average values of the

stresses, strains and strain energies from the integration points of the participating

elements. Second and fourth order finite difference operators were used for evaluating

aUy/ax.

,, *To verify the path independence, the J - integral was calculated for 4 paths ( see
Fig. 21). The J - integral values of the 4 paths differ by 8.2% which can be viewed as

.'. the deviation from the path independence of J using this numerical approach (Table 4).

For the extension of the crack the J - integral is calculated on path 2 ( Table 5).

Figure 22 shows the J - integral plotted against the crack growth. During the first

millimeter of crack growth J exhibits an unexpected behavior. For the first 0.5

millimeter of crack growth the J value is increasing less than for the next 0.5

millimeter. After 1 millimeter of crack extension the J versus 46a curve shows the

expected behavior. For the first 2.5 millimeters of crack growth the J value increases
nearly linearly; beyond that point the slope is decreasing. An interesting point is that

( the load line - displacement versus crack growth (Aa) curve shows a similar behavior

(fig. 23). By using a linear least square interpolation for the first 2.5 millimeters of

crack growth, a slope of 393.1 MPa is obtained. The initial value of J was 89.878
N/mm at a load of 5300N.

Table 6 shows the results of the finite element analysis compared with the results

from Hoff [371. Hoff's J versus &a curve (which actually was his input for the first

four millimeters crack growth) reproduces the experimental data almost exactly. The
* reason why the initial J values differ so much is easy explained. Hoff's load *ersus Aa

curve (as a result of his calculation) is significantly higher than the experimentally

obtained curve. This however, was the input of the calculation performed in this paper.

Therefore, his load at crack initiation was also higher ( - 7000N ) which explains the

higher value of the initial J - integral. The slopes of the J versus Aa curves agree

very well with Hoff's prediction.

* Using eq. 7.17 to determine whether J controlled crack growth is reasonable leads to
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b dJ =3 7 5

J da

in comparison to -. 150 obtained by Hoff. The difference between these results is

mainly caused by the different J values at crack initiation. Kanninen [18] pointed

out that the question of what is the smallest value of w for which J controlled crack

growth is assured remains unanswered.

7.1.4 DISCUSSION OF THE J - INTEGRAL AS A CRITERION FOR STABLE CRACK GROWTH

Although extensive research has been done to support the use of the J - integral as a

...- crack growth criterion for small amounts of crack growth, the validity of such work is

still doubtful. The W - value (which should be considered as the overall crack growth

criteria) obtained in this research, differs significantly from those reported in [18).
(I A lower bound for j is not known. In addition, the strain hardening exponent n and the

state of stress has a large influence on eq. 7.17. The calculation performed in this

work and its comparison to other results showed that the slope (AJ/Aa) is most

reliable for the use as a crack growth criteria for smaller amounts (&a< 0.036b ) of

crack growth.
.," 5.

72 CRACK PROFILE GEOMETRY

Many authors have employed fracture criteria based on the crack opening profile

geometry. Examples include the COD (Crack Opening Displacement), CTOD (Crack Tip

Opening Displacement) and CTOA (Crack Tip Opening Angle). Unfortunately, the
• critical values of these parameters are highly sensitive to their precise definition.

There is no universal agreement on appropriate definitions for COD, CTOD, or CTOA. In
fact, Schwalbe noted that, at a recent conference, no less than seven different

• .... definitions of CTOD were presented (551. The main objective of using crack profile
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geometry parameters is to describe the conditions at the crack - tip, or to find

r characteristic parameters which describe the crack - tip condition from the beginning

of crack initiation until failure, including stable as well as unstable crack growth.

7.2.1 DEFINITION OF THE CRACK - PROFILE PARAMETERS

.i Two different crack profile parameters are studied in this work:

a) dt - the 'tangent' definition of the crack opening displacement.

*Actually the deformed far field crack front is (in this case) extrapolated

linearly to the original crack - tip (fig. 24). This definition is often

used with FEM calculations when the crack - tip is not modeled

accurately enough to show that the crack tip opening angle at crack

initiation is Tr radians. A necessary condition for the use of dt as crack

tip opening displacement is that the deformed far field crack front be a

straight line. In this analysis this requirement is satisfied for the fine

( as well as for the coarse mesh.

S) act - defined as the crack tip opening angle (CTOA). A commonly used
"hi

representation of act is

act= tan- 1 2 (vt , 1) eq. 7.25
h

SVct is the y -displaement of the first node beyond the crack - tip, and

Sh is the element size.

Since the crack growth is simulated with uniform step size, the

determination of act from this definition can be quite accurate.
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7.22 DISCUSSION OF THE CRACK PROFILE PARAMETER

The deformed crack profiles for the coarse as well as for the fine mesh are shown in

fig. 25 to 28. For better display, the vertical scale is amplified in the figures. The

actual profiles are given for both meshes in fig. 29a to 29q and fig. 30a to 30h. The

fine mesh predicts a blunter crack opening profile than the coarse mesh, which is

L. ,more consistent with experimental observations.

7.2.3 CRACK TIP OPENING DISPLACEMENT (CTOD) - RESULTS

The CTOD versus crack growth (&a) diagram for the coarse mesh is shown in fig. 31.

-• Since the J - integral and the CTOD are similar concepts, both the J - &a and the CTOD

- a curves have the same shape. The slope of the CTOD - &a curve increases for the

the first millimeter of crack extension, although not to the same extent as the J - &a

curve. This behavior is confirmed by fig. 32 which shows the CTOD - &a curve from

the fine mesh for the first millimeter crack extension. After 1 millimeter of crack

extension the slope of the CTOD versus &a curve begins to decrease. The results

* .. demonstrate that the CTOD versus &a curve is approximately linear for crack
extension up to 2.5 millimeters. After 2.5 millimeters of crack growth, however, no

- . linearity is apparent.

7.2.4 CRACK TIP OPENING ANGLE (CTOA -RESULTS

The problem of establishing a standard definition for the CTOA has been examined by

various authors [33, 56]. Rice (57, 58] obtained for stable crack growth (non -

hardening materials) a displacement distribution proportional to ln(l/r). Applying

* this distribution leads to the conclusion that the crack tip opening angle is not defined

for r = 0 since dd/dr - as r -+ 0, a result that has been observed experimentally

[18,361.
The CTOA -Aa curve calculated for the coarse mesh is shown in fig. 33. For the first
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two millimeters of crack growth, the CTOA - aa curve shows a completely unstable

behavior. It should be clear that eq. 7.25 and the given element size h can not simulate

the CTOA very close to the crack - tip. This definition should be considered as a secant

approximation. This is especially true for high strain hardening exponents (n - 10 in
our case). In fig. 34 an attempt is made to show the sensitivity of the CTOA definition to
the onset of crack growth. It can be seen that the angles are smaller when larger

elements are used. However, the inconsistency in these results was the primary reason

for developing the fine mesh (the first CTOA was approximately 0.4 radians in

comparison to a theoretical value of Tr radians). The results of the fine mesh (fig. 35)

show an initial value of one radian at the beginning of the crack growth (which agrees
with the experimentally observed crack blunting much better than the coarse mesh).

After the rapid decrease of the CTOA - &a curve for the first node release (0.05 mm

step width), however, the fine mesh shows the sam,3 trend as the coarse.

Hoff [37] also observed an unstable behavior in the CTOA - &a curve. He stated as

(r reasons the ambiguous definition of a. as well as mesh refinement errors due to his

node release technique with gap and spring elements. This is not true for the

calculation presented in this thesis, since the step - width was constant during node
release. An explanation for the present instability could be that CTOA is not well

defined when r approaches zero. More research is needed to get further information

about the nature of the CTOA for r .- 0.

A constant CTOA - 0.23 radians is achieved after six millimeters of crack extension,

* which is in excellent agreement of the experimental value of 0.22 radians [371.

7.3 RELATION BETWEEN J AND CTOD

• Shih [59] developed a 1-tlationship between the CTOD and the J - integral for a static

crack that exploits the dominance of the HRR - singularity in the crack -tip region.

He obtained
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"4 5 =dn eq. 7.26
0'0

where 645 is the crack tip opening displacement defined in fig. 36, and

dn is a constant.

The constant d. depends mainly on the state of stress and on the strain hardening

coefficient n. Although he used a different definition for the crack tip opening

displacement, a comparison of the results with the results obtained in the fine mesh

calculation is possible. The constant dn was evaluated from fig. 37 which shows the

dependence of d. from n and o-1 E for plane strain.

Use of this diagram as illustrated gives d. = 0.5. The calculation for J at crack

initiation yields 102.53 N/mm in comparison to 88.44 N/mm by direct evaluation of

J with the line integral. Since it can be expected that the 45 degree definition of 6 Shih

(used in deriving eq. 7.28 would lead to a slightly lower value of 6, the results can be

viewed as in good agreement.
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8. INVESTIGATIONS OF THE FIELD VARIABLES FOR STABLE CRACK GROWTH

. " One approach to representing the singular field in the vicinity of the crack - lip is to

- describe it in terms of the strain singularity. For stationary cracks Rice and Rosengren

[13] and Hutchinson [12] developed solutions for the near crack - tip fields using the

, .." deformation theory of plasticity and a power hardening law. The stresses, strains and

displacements are of the form

el~~~C E'j o~ To {o I nr

.eq. 8.01

n

S( ) 1 (en) eq.8.02ei,.- a o C E o '-o n r  fj

n

a. cL E r n + 
e q . 8 .0 3

Ui  = or oO o I nr

where oij, Eij and uij are functions of e and n,

cL is the coefficient of the Ramberg Osgood material description,

- ' In a constant given in [181,

o-.0 ,e o are the yield stress / strain.

A stably growing crack in a ductile material causes large deformations in front of and

elastic unloading behind the crack - tip. Cracks opened by tensile mode 1 loadings are of

particular interest since most fracture failures occur under mode 1 conditions.

* Unfortunately, the mathematical problems are so complex that no general analytical

solutions are available.

The characteristics of the elastic perfectly plastic strain singularity of plane strain
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' ' stable crack growth has been investigated by Rice [57,581, Rice and Sorensen [301 and

Cherepanov [60). In these analyses, the Prandtl slip line theory (a technique where the

stresses are determined by interpreting a slip line diagram according to prescribed

rules) was used to investigate the nature of the elastic - plastic strain singularity in the

centered fan sector moving with a growing crack. The Prandtl field results for a

stationary crack have been modified by introducing an elastic unloading sector for the

advancing crack. It has been found that this sector is approximately between e - 115

and e 2 - 1630 [611. This sector is shown in fig. 38.

For a stationary crack, the elastic - perfectly plastic asymptotic strain singularity is

proportional to (1/r) [12,131. The results of the investigations for plane strain stable

crack growth suggest that the nature of this singularity changes to a weaker In(1/r)

proportionality [591. The reason for this could be that the crack is extending into

material which has already been deformed plastically so that complete refocusing of the

strain field ahead of the crack - tip is prevented [33].

Drugan et al. [621 constructed an exact solution for the plane strain near - tip stress

field of an advancing crack for nonhardening materials by specializing Rice's more

general formula. Sham [63] performed a finite element study to verify this solution and

his results agreed very well with Drugan's analytical predictions.

In a more general investigation of stress - strain fields for stably growing cracks,

Amazigo and Hutchinson [641 examined a linear strain hardening material. Using J2 flow

0o theory of plasticity, they identified a loading and an unloading zone near the crack - tip.

Nevertheless, they did not include a sector of reverse plasticity (fig. 38 sector C) in the

wake of the advancing crack found as a result of Drugan's solution. In deriving their

results, Amazigo and Hutchinson followed a procedure similar to the HRR singularity

approach. A nonlinear stress rate function has been generated to represent the stress -

strain fields and the order of the elastic unloading zone has been determined dependent on

the slope of the linearly simulated plastic part of the stress - strain relation.
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8.1 THE FINITE ELEMENT RESULTS OF THE FIELD VARIABLES

',. As mentioned above, there is no exact solution available to describe the field .'ariables of

a stably growing crack for the general case of a power law hardening material. In the
discussion of the field quantities from the present finite element solution, the emphasis

- is placed on the transition between the different parameter fields displayed by the

curves. The definition of the representation of the curves are given in fig. 39. It is clear
,*"- that for pure mode 1 loading the line e - 00 best shows the phenomena described above

and thus the various quantities are shown along this line.

The strong HRR field strain singularity for the stationary crack is quite evident on the

y - direction strain curve along the line e - 00 of the fine mesh (fig. 40). It is self
* evident that the coarse mesh is not able to simulate this, nearly 1/r singularity for the

* . " stationary crack. As the crack grows larger and larger the predominance of the HRR field
- near the crack - tip decreases. Nevertheless, the characteristics of the y - direction

strain curves change very slowly (fig. 41 to 43). Only after five millimeters of crack

( extension is the strain field singularity observed to be significantly weaker than at the

onset of crack growth (fig. 43). One possible explanation for this strain curve behavior
could be the smoothing effect of the elastic strain component for the first increment of

* icrack extension.

The y - direction stresses relative to the crack - tip along the line G - 0 exhibit little

change for the first millimeter of crack growth, for the fine as well as the coarse mesh
- (fig. 44 to 47). This is not very surprising since the known theories assume only

slightly different singularities for the near - tip field of the advancing crack and the
stationary crack. For larger amount of crack extension the singularity tends to become
stronger. The points marked in fig. 45 could be interpreted as the transition between an

0 intermediate zone, where the plastic strain is comparable in magnitude with the elastic
strain and the K field. The transition between the intermediate zone and the HRR field is

not resolvable. For a crack extension of more than one millimeter the influence of the K

field is diminished and the transition points are no longer identifiable.
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The von Mises stress for the line e - 00 clearly reveals the transition between the

intermediate zone and the K field for both meshes (fig. 48 to 51). The transition points,

which were hardly detectable for the stress in y - direction (fig. 45), are now very

Vs evident. Since the applied external load increases as the crack advances, the transition

points change toward larger r values. The crack growth versus transition point position

is depicted in fig. 52. At the beginning of crack extension the transition points change

very rapidly, while the change decreases as the crack grows larger. For the growing

crack, a resolution of the crack - tip singularity from the HRR field; as well as the HRR

4field from the intermediate zone is not possible even with the fine mesh (fig. 51). For

closer examination, a log/log representation of the von Mises curve is plotted in fig. 53

and 54. Indeed, the changes in slope circled in fig. 53 could be interpreted as the

transition between the HRR field and the intermediate zone.

The elastic strain energy density ( We, ) is shown for the early stages of crack extension

.. in fig. 55 for the fine mesh along the line e - 00 & 1800 (negative values of r represent

i ( e - 1800). After the onset of crack growth, the elastic strain energy density is seen to

decrease dramatically. For the next steps, the magnitude of Wei was nearly constant,

V,, although the applied external load increased significantly during crack extension. This

behavior characterizes in an excellent way the ductile material behavior, namely, if the

the load were to be held constant instead of being increased, the crack would arrest. Due

to the strong gradient of We, for the first step, this behavior could not be resolved with

V. the coarse mesh. Figures 56 and 57 depict the Wel characteristics for subsequent crack

* extension with the coarse mesh, and show that the magnitude of the maximum value of

Wel decreases for the growing crack. The maximum values of We0 plotted in fig. 55 to

". 57 should only be interpreted qualitatively due to the numerical inaccuracy associated

with the elements located directly at the crack - tip.

The plastic strain energy density ( Wp1 ) for the advancing crack is plotted for the line

e 0° & 1800 in fig. 58 to 60. The curves show that the maximum value of WPI is
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-k located behind the crack - tip. It is more important, however, that the energy

dissipation is sharply bordered and, for larger amounts of crack growth, is nearly
constant over a certain length that is extending with the advancing crack, a result which

could possibly be employed in a local crack characterization. As already discussed in
chapter 2, Saka [35] performed detailed research into the feasibility of the plastic

dissipation as a local crack growth criterion. He stated that the intense region of the
plastic dissipation is circular with its origin at the tip. In addition, he determined the

characteristic radius of this circle to be 0.28 millimeter for approximately two
millimeters of crack extension. In contrast, the results of the present analysis indicate

that the intense region of WpI is located behind the crack - tip. The radius of this intense

region (assumed to have a circular shape) has been determined to be approximately one

millimeter for two millimeters crack extension and is clearly a function of the crack

extension.

__4%' For the estimation of the plastic zone size, the von. Mises stress is illustrated for the

( advancing crack in fig. 61a to 61m. In the present analyses the yield stress is 382 MPa.
At the onset of crack extension the plastic zone exhibits the typical butterfly shape, and,

as the crack grows, the plastic zone becomes more characterized by a bending behavior

towards the uncracked ligament. After 0.25 millimeter of crack growth, plastic hinging

occurs at the end of the uncracked ligament due to the moment caused by the applied

external load. At step 4 (&a - 0.75 mm, P - 7650 N) the plastic zone of the crack joins
the plastic hinging region. With increasing crack growth, the crack -tip moves from the

middle of the highest von Mises stress contour to its left border and it seems that for

* further crack growth the crack - tip would restrain the highest von Mises stress

contour. One interesting region of the compact tension specimen is right in front of the
crack - tip. In this region the magnitude of the von Mises stress is decreasing towards

the line e - 00. A reasonable explanation for this could be the superposition of the stress
* parallel to the external load with the stress due to the resulting moment.

.i.
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8.2 DISCUSSION OF THE FIELD VARIABLE RESULTS

The theory of stable crack growth in ductile materials suggests that the region ahead a

crack - tip should be divided into four regions:

1 ) The crack - tip singularity for advancing cracks,

2) the HRR field,

3) an intermediate zone where the plastic strain is comparable in

magnitude with the elastic strain, and

, 3) the K field.

In the present finite element study, only the transitions between the HRR field -

0 Intermediate zone and intermediate zone - K field could be identified. Neither the fine

nor the coarse meshes are able to resolve the crack - tip singularity of the advancing

crack from the HRR field. Although one could argue that the finite element formulation Is

Sl"smoothing the results and, therefore, such a separation may not be observable with this

method, the nature of the obtained stress curves clearly suggest that the crack - tip

,. singularity is superposed onto the HRR field rather than appearing separately.
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" " 9. CONCLUSIONS AND RECOMMENDATQONS FOR FUJTURE- RESEARCH

In the present work, slow stable crack growth in ductile material has been simulated

numerically with a widely used commercial finite element code (ABACUS). An

experimentally obtained load versus crack growth relation was used as input and

J/CTOD and CTOA crack growth criteria in ductile fracture mechanics were

investigated. In addition the field parameters ahead of the tip of the growing crack were

investigated.

Existing theories about the asymptotic fields ahead of a crack - tip for an advancing
crack indicate that there should exist four regions. The results of the finite element

analysis show the near crack - tip field of the advancing crack and the HRR field
* characterizing the stationary crack are superposed on each other and do not appear

independently. The only transitions which are resolvable are the transitions between

the HRR field - intermediate zone (the zone where the plastic strain is comparable in

magnitude with the elastic strain) and the intermediate zone - K field. The strain field

( tends to a significantly weaker singularity as the crack grows larger, whereas the

id stress field remains nearly unchanged even for large amounts of crack growth. In

addition, the plastic dissipation energy field attains its maximum value behind the

crack - tip and, for larger amounts of crack growth, the plastic energy dissipation

possesses a nearly constant value over a certain fixed distance.

% I., The results of the finite element analyses performed in this work show that the J

integral / CTOD concepts do not appear promising as crack growth criteria. This is not

very surprising since the J - integral concept is strictly valid only for stationary
cracks, although the slope of the J resistance curve ( &J/ &a) does appear to be useful

as a crack growth controlling parameter for limited amount of crack growth (&a <

-" 0.036b). This indeed, is a very important result because other crack growth criteria

available are not able to simulate this region of crack growth very well. One of these

criteria is the crack tip opening angle (CTOA), in which a constant CTOA is achieved

after six millimeters of crack extension. Evaluation of the finite element results for
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the advancing crack indicate that the use of the CTOA, as a crack growth criteria, is not

very accurate for small amounts of crack extension. In addition, any definition of the

CTOA fails for r approaching the limit r -+ 0. Obviously there exists a gap between the

region ,.,,here the J - integral is path independent (and tMe slope of the J - resistance

curve characterizes the crack growth) and the region where the CTOA is constant and

therefore applicable as a crack growth criterion. For this reason, a combination of

(aJ/ aa) and the CTOA as the crack growth criteria proposed by Kanninen and Popelar

[18] and recently applied by Hoff [371 is at best, an approximation where the extent

of the error remains to be determined. To make numerical crack growth simulation

techniques applicable for practical problems future research should be focused on

three points:

1) The amount of crack growth for which the J integral is nearly path

independent needs to be known for a much wider range of materials and

geometries. The w approach of Hutchinson and Paris does not seem promising.

( In addition, Kanninen [18] pointed out that the question of determining the

smallest value of w to assure J controlled crack growth remains unanswered.

2) An unambiguous definition of the CTOA needs to be established, and the amount

of crack growth when the CTOA begins to be constant needs to be better
, understood. Since the CTOA appears to be material dependent [331, more

experimental research needs to be done to answer these questions.

* 3) An additional crack growth criterion needs to be developed for the region
between J - and CTOA controlled crack growth. This new criterion could even

replace one or both of the crack growth criteria mentioned above. Two new

energy based crack growth criteria may be able to satisfy the requirement(s)

* mentioned above:

(i) the plastic dissipation energy criteria introduced by Saka 1361. The

idea behind this criterion is that the plastic dissipation energy

'-, 51
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determined in an intense strain region with a characteristic radius Rc and

written in a dimensionless representation causes crack growth when a
critical value is exceeded. As discussed earlier, the results given in Ref. [36]

iffer from the analysis presented in this work. Nevertheless fig. 62 shows

how the characteristic radius Rc for the strain intense region could be defined

from the point of view of this work. An interesting fact is that for larger

amounts of crack growth the characteristic diameter (2Rc) appears to be

approximately of the order of the crack extension &a.

(ii) the strain energy density criterion proposed by Sih (651. The basic

*, hypothesis behind this criterion is that the maximum yielding is assumed

to coincide with maximum strain energy density and the fracture initiation

with minimum strain energy density. Failure occurs now if either the

maximum strain energy density or the minimum strain energy density exceed

= - "*. a critical value. Since the strain energy density is easy to measure ("rea

under the stress/strain curve) this new approach looks promising.
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In the performed calculation the fine mesh has five times smaller elements in the

vicinity of the crack tip than the coarse mesh.
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Fi-ure 3 Schematic representation of the sensitivity of the CTOA dependent on

the element size.
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For larger amounts of crack growth: 2 Rc =a
'.1.

Ficure Behavior of the characteristic radius Rc of the strain intense region

(sharply bordered region where the rate of energy dissipation is

high).
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Table1: Relation between the external (applied) load and the crack growth

(coarse mesh).

coarse mesh fine mesh

F [N] &a (mm] F[N] &a [mm]

5300 0 5300 0
6400 .25 5520 .05
7100 .5 5720 .1
7650 .75 5960 .15
8100 1. 6180 .2
8250 1.25 6400 .25
8400 1.5 6540 .3
8500 1.75 6680 .35
8600 2. 6820 .4
8660 2.25 6960 .45
8690 2.5 7100 .5
8710 2.75 7210 .55
8720 3. 7320 .6
8725 3.25 7430 .65
8729 3.5 7540 .7
8732 3.75 7650 .75
8734 4. 7740 .8
8732 4.25 7830 .85
8725 4.5 7920 .9
8715 4.75 8010 .95
8700 5. 8100 1.
8680 5.25
8650 5.5
8610 5.75

. 8570 6.
" 8530 6.25

8490 6.5
8450 6.75
8410 7.
8370 7.25

* 8330 7.5
-A 8290 7.75

8250 8.
-A,

*.

I" ,:.



i I jj Material composition of A533B steel 1661 (in weight percent).

, C Mn p S Si Ni Mo
0.2 1.22 0.01 0.016 0.15 0.65 0.54

S.,~

p..

4'."

t-

4.',

S'°.
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S
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. = Table 3: Stress - strain properties of A5338 steel.

OoE o  n E a.

382.866 MPa 0.001933 10 197620 MPak'"
V.,

;0

*1o

,' =

4.
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Table 4: J - integral values for different paths.

J - integral value Path

89.88 N/rm 1

88.44 N/mm 2

82.57 N/mm 3

82.48 N/mm 4

..'

N:

% '

%5
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Table 5. J - integral over crack growth.

J - integral a

88.437 0
141.117 .25

193.161 .5

287.161 .75

444.633 1.

536.557 1.25
,- 644.079 1.5

742.951 1.75
* 847.117 2.

1008.026 2.5
1133.745 3.

" ' 1251.212 3.5

1366.434 4.

1469.011 4.5
1554.629 5.

1614.482 5.5

1620.146 6.

1624.624 6.5
1642.07 7.

1618.571 8.
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Table Comparison of the results for the J - integral performed in this work with
the work of Hoff [371.

J at the onset of crack slope of the J - Aa curve
extension, for the first 2,5 mm crack

extension.

I this work 89.878 N/mm 393.1 MPa ,using least
"" square curve fitting

Hoff 200 N/mm 360 MPa
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