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FINAL REPORT - ONR CONTRACT #N00014-84-K-0027

CREEP AND FRACTURE CHARACTERISTICS OF MATERTALS AND STRUCTURES
AT ELEVATED TEMPERATURES

PRINCIPAL INVESTIGATOR - DEAN HAROLD LIEBOWITZ
TECHNICAL DIRECTOR - ASSOC. PROF. E, THOMAS MOYER JR

Significant research was performed under ONR Contract #N00014-84-K-0027
during the period of the contract. As listed in Appendix A, this work
resulted in eight refereed publications and four invited presentations at
International Conferences. The work also resulted in four student theses
listed in Appendix B. In addition, experimental progress was made in
creep fracture testing. As outlined below, this work was has not been
completed due to the lack of continuation of the contract.

The work under this contract was concentrated in three major areas: the
effect of mixed mode loading on fracture characteristics, the nature of
crack tip stress, strain and energy fields in ductile materials and the
nature of crack tip stress strain and energy fields in materials

i .

undergoing rate dependent viscoplastic deformation. In each of these
areas, new insight was obtained and better wunderstanding of the
fundamental physical processes gained. /. .

- -TD R ’ ~

Early work on this contract focused on mixed mode fracture
characteristics. Experimental studies and finite element modeling
determined specimen characteristics and design modifications for a mode
two fracture specimen. This specimen has the wunique capability of
testing from pure mode one to pure mode two without significant crack
face rotation. This work is documented in two student thesis (students
were successful candidates for the Diplome degree through a joint,
cooperative program between the University of Stuttgart and the George
Washington University). In addition, furcther work developed a
computational procedure based on the nodal force approach for the
determination of stress intensity factor distributions along arbitrary
crack fronts in three dimensions. This work was presented at an ASTM
conference and will appear in ASTM STP #969. This work is also
documented in a student masters thesis (all student theses are listed in
Appendix B).

Work on ductile fracture was carried out for three dimensional, mode one

crack geometries,. The effect of specimen thickness and material
hardening characteristics was studied. In addition to useful
understanding, the thickness range where plane strain and plane stress
are valid assumptions were discovered. Depending on the ductility of the
material, the plane strain thickness did not correspond to the ASTM
requirement due to the assumptions of elasticity employed. A modified
approach for determination of plane strain thickness was proposed. In

addition to the three dimensional studies involving a stationary mode one
crack, further research was performed in the areas of mixed mode ductile
fracture and ductile crack growth. The mixed mode ductile fracture
studies demonstrated the crack opening characteristics as a function of
mode ratio. It wa. dJdemonstrated that for dominant mode one, a distinct
notch effert is observed. This notch opening removes the HRR singularity
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and produces a ductile zone which is characterized by a weaker energy
singularity than was previously known. 1In addition, as mode two becomes
more dominant, the deformed crack remains sharper and the 1local HRR
characteristics return. In addition, the significant rotation occurs at
the crack tip altering the amplitude of the local field. Mode one crack
growth studies were performed. This work demonstrated a computational
approach for accurately modeling stable crack growth with a commercial
finite element code. The physical results demonstrate the disappearance
of the HRR zone due to notch opening and the appearance of a significant
transition zone which dominates the local fracture zone. This zone is
characterized by an energy singularity which is weaker than 1l/r. This is
a new result which 1is under further investigation. The two dimensional
studies are documented in student theses listed in Appendix B. To date,
work is continuing on this problem and the results are not yet available
in the open literature. The student theses, therefore, are inclwuded as
Appeudices D and E.

Studies on creep fracture characteristics were the focus of significant
study under this contract. Experimental work focused on crack growth
studies on IN 718 at 650 degrees C. At this temperature, significant
constituitive data was available. These results demonstrated that the C*
integral was not employable as a crack driving force measure. In
addition, it was determined that experimental scatter was due to crack
front curvature effects which <could be minimized through careful
experimental technique. The final results demonstrated a two stage
growth regime which was numerically fit to explicit time functions for
crack growth simulation. This work was part of an ONR progress report
and is included as Appendix E. Finite element studies of creep crack
growth were performed and the results are part of a recent publication
included as Appendix F. This study demonstrated the influence of finite
strains in the <crack region and the inability of local asymptotic
solutions to characterize the stress fields near stationary and growing
cracks. In addition, convergence and accuracy of the numerical approach

was studied extensively. New understanding of convergence
characteristics was obtained.

Experiments were initiated at 550 degrees C to determine if the results
at 650 degrees were characteristic of creep crack growth in pgeuneral or
were a qualitative function of temperature. Unfortunately, insufficient
constituitive data was available at 550 degrees and the data was not able
to be analyzed. Constituitive tests were initiated, however, the
contract resources were not sufficient to complete the work, If future

funding is available for this work, the tests will be completed and the
results will be forwarded to ONR.

The appendices of this work document the significant research

contribution that was made under ONR contract #N0O0014-84-K-0027. All
publications cited in the appendices were forwarded to ONR at publication
and were included in the quarterly progress reports. In addition, all

publications have been sent to the ONR distribution list at the time of
publication.
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"Creep Crack Growth Modeling and Near Tip Stress Fields"
E. Thomas Moyer Jr. and Harold Liebowitz, Engineering Fracture
Mechanics, Vol. 28, pp. 601, 1987.

"Finite Element Methods in Fracture Mechanics"

Harold Liebowitz and E. Thomas Moyer Jr., Proc. 5th International
Conference in Australia in Fracture Mechanics, University of
Melbourne, Australia, 1987.

"Finite Element Modeling for Elastic-Plastic Fracture Problems in
Three Dimensions", International Journal for Numerical Methods in
Engineering, Vol. 22, pp. 289, 1986.

"Prediction of Plasticity Characteristics for Three-Dimensional
Fracture Specimens: Comparison with Experiment”
E.T. Moyer Jr., H. Liebowitz and P.K. Poulose, Engineering Fracture
Mechanics, Vol. 24, pp. 677, 1986.

"Accurate Modeling of Ductile and Creep Fracture Specimens and
Processes", E. Thomas Moyer Jr., Proc. of the ASM Conference on
Fatigue, Corrosion Cracking, Fracture Mechanics and Failure Analysis,
ASM publications, 1985.

"Methodology for Mixed Mode Stress Intensity Factor Calculations”
E. Thomas Moyer Jr., ASTM STP #969, to appear, July 1988.

"An Overview of the Finite Element Method for the Analysis of
Engineering Metals", E. Thomas Moyer Jr., in Computer Simulation in
Materials Science, ASM International, 1988.

"Effect of Specimen Thickness on Crack Front Plasticity
Characteristics in Three Dimensions", E. Thomas Moyer Jr., Proc. 6th
Intl. Congress on Fracturz, New Delhi, 1984.

"Biaxial Load Effects in the Mechanics of Fracture"

E. Thomas Moyer Jr. and Harold Liebowitz, Journal of the Aeronautical
Society of India, Vol. 36, pp. 17, 1984.
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APPENDIX B_- STUDENT THESES UNDER ONR CONTRACT #N00O14-84-K-0027

1] Determination of Two Dimensional Stress Intensity
By: Peter Bauerle, 1985, Diplome Thesis.

2] Fracture Under Mixed Mode lLoading
By: Roland Gerstner, 1985, Diplome Thesis.

3] The Nodal Force Approach for Mixed Mode Stress Intensity Factor

Calculations in Three Dimensions
By: Kornelius Hengle, 1987, Master of Science Thesis.

4] Ductile Crack Growth Simulation - Local Deformation and Field

Variable Analysis
By: Kurt Kunze, 1987, Master of Science Thesis.

5] Local Crack Tip Field Quantitjes with Ductile Material Behavicr for
General Mixed Mode Problems

By: Martin Haegele, 1988, Master of Science Thesis.
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APPENDIX C: FRACTURE TESTS ON IN 718 -

INSIGHT INTO CREEP FRACTURE BEHAVIOR
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FRACTURE TESTS ON IN 718 -
Q{ INSIGHT INTO CREEP FRACTURE PHENOMENA

E. T. Moyer, Jr. and H. Liebowitz

The George Washington University
ABSTRACT

Fracture tests on IN 718 superalloy demonstrate that the
C* fracture parameter is not a sufficient quantity for the
quantitative description of creep crack growth. The results
contained in this communication show that the crack velocity is

*
not uniquely predicted by C but is also a function of test

—- PR

(: load. In addition, the results indicate that the crack
velocity would also be affected by geometry changes (e.g.,
specimen size).

The results presented in this communication also demon-
strate that crack growth initiates extremely early in the test
history. No unique initiation time was identifiahle. Also
evident is a two stage growth process with stage 1 (charac-
terized by constant crack velocity) contributing significantly
to the total useful life even at relatively high initial crack
velocities (on the order of 0.001 inches/minute).

Investigation was made into the widely observed scatter in
creep fracture data reported in the literature. This scatter

is often suggested to be due to crack tunneling, material

> . _‘ '\ _'. e I
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variability, etc. The results presented in this work show that
initial crack front curvature, irregular geometries, forming
inconsistencies (e.g., rolling irregularities) cause extreme
scatter in experimental results. These irregularities,
however, are observable continuum phenomena which are incon-
sistent with the assumptions inherent in the analysis of the
test data. When specimens exhibiting these irregularities are
removed from the data base, scatter is reduced to acceptable
levels (e.g., less than 10% in measured quantities). The
fracture surfaces also indicate that tunneling does not occur
for the geometry, loading, temperature and material conditions

studied.
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o FRACTURE TESTS ON IN 718 -
INSIGHT INTO CREEP FRACTURE PHENOMENA

E. T. Moyer, Jr. and H. Liebowitz

The George Washington University

A series of constant load creep fracture tests were
performed on IN 718 specimens at 650°C. The specimen geometry
was standard compact tension with dimensions (a = 1.0 in.,
W=2.0 in., B = 0.4 in.). Tests were run for load levels
between 1000-1500 1b. Mouth opening displacement and crack
length were monitored continuously during the test. To

establish a sharp initial crack, the specimens were fatigue

( ; i

precracked at room temperature at 15 Ksi - vin. Crack length

is measured optically to a precision of 0.0015 in.’

The first Figure is a plot of the crack length vs time at
five different load levels. All the data indicates a two stage
crack growth process. The first stage 1is charaétérized by
essentially constant crack velocity (the linear portion of the
crack length vs time curve) and the second stage is character-
ized by continuous acceleration. For the growth range studied,

stage 1 crack growth accounts for a significant portion of the

P
e, .

growth history (at 1000 1b., stage 1 accounts for approximately

e

65% of the time required to increase the crackllength 40%; at

f‘_{ ‘l ‘_f I

1500 1b., stage 1 accounts for approximately 40% of this time

X
h

history). At the load levels tested, crack growth was observed
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5 X very early in the history. A unique '"initiation' time was not
»ﬁ identifiable.
o . Ny
. The crack length vs time curves clearly indicate that

stage 1 growth is evident even when initial crack velocities
are of a '"average' magnitude. Previous studies have indicated
that stage 1 is present only for very slowly growing cracks
{(1]. In the data presented here, initial crack velocities
varied by almost an order of magnitude and all tests exhibit
stage 1 behavior for significant portions of the growth history.
The second Figure is a plot of crack velocity (da/dt) vs
C.. The formulation of Kumar and Shih (K-S) is used for the
calculation of C* {2]. This formulation is to be preferred to
the Harper and Ellison (H-E) Eormulag{on for two reasons:
first, the assumptions made in the derivation are less restric-
tive (e.g., zone size requirements in the H-E formulation,
proportioning of deformation due to crack growth and creep,

etc.) and second, because the K-S formulation requires only a

knowledge of the geometry and loading and not the load line
displacement rate (which is measured less accurately). Indeed,
for reasonable crack velocities, the H-E formulation can be
shown to be a measure of da/dt and not C* [31.

The da/dt vs C* plot 4dcmonstrates that the C* is not a
sufficient parameter to describe crack growth. It has been
postulated in the literature that da/dt can be uniquely related
to C., independent of loading and geometry (see, for example,

(4,5]). The results presented by the authors demonstrate that
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da/dt is a function of the test loading in addition to the
parameters involved in calculating C*. This is understand-
able as during stage 1 growth, C* is steadily increasing while
da/dt remains constant. In addition, convergence toward a
unique da/dt vs C* relationship is not evident until the crack
velocity and length have grown appreciably. At the larger
da/dt values, many of the assumptions required for the
application of the K-S formula become dubious. In the region
in which the K-S assumptions are valid, the results demonstrate
that C* is not a sufficient correlating parameter.

For the range of geometry and loading presented in this
work, K is not a viable fracture parameter. At 1000 1lb.

loading, the stress intensity factor calculated from the mouth

opening displacement reached a value of 27 Ksi - vin. prior to

crack growth where the linear elastic K value was 17 Ksi - vim.

corresponding to the load. It was evident, therefore, that the
creep deformation exceeded the K controlled region from the
start of the test. K, therefore is not a viable fracture
parameter for this data.

Creep fracture studies often exhibit much experimental
scatter. Many reasons are proposed including environmental
effects, deformation transitions, tunneling, mechanism transi-
tions, etc. Data which exhibits large scatter cannot be used
to establish or reject the validity of any theoretical model as
the error in the data can be on the order of the phenomena

being described. To minimize scatter in our results, data was

wRse T EReTR W T TS T A T T T
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only taken in the range where oxidation effects are small.
Oxidation influences are a function of the test duration and
the local strain state near the crack [6]. The presence of
oxidation can be seen on the fracture surface as a change in
color from the standard metallic color to a blue color. Only
data obtained before the color change became appreciable was
used in the analysis.

In addition to avoiding oxidation driven growth data,
closer examination of the fracture specimens revealed observ-
able causes for the scatter observed. Several specimens which
exhibited data far from the mean had extensively curved crack
fronts after fatigue precracking. These specimens tended to
exhibit much slower crack growth than those withnrelatively
straight crack fronts. If extreme curvature was exhibited in
the fatigue crack (greater than approximately 1/16 in.) the
data was rejected.

Photo 1 and Photo 2 show fracture specimens whose data
were excepted (number 1 was loaded at 1000 1lb. and number 2 was

loaded at 1500 1b.). Both exhibit typical fatigue cracks which

produced consistent data. Photo 3 shows a specimen which was
loaded at 1000 1b. The data from that test exhibit twice the
lifetime of the mean at that load. The geometric discontinuity
introduced by a machining error (the kink in the notch) caused
the crack to grow in a uneven manner prolonging life.

Other scatter occurred due to discontinuities in the

material. Photo 4 shows a specimen which was loaded at
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A N 1500 1b. The fracture surface discontinuity again prolonged
fj ‘ the 1ife of the specimen. This discontinuity is believed to be
st
M caused by imprecision in the rolling process during forming.

A/

44

None of the sources of scatter described could have been pre-

- P
»

-

~r dicted without examination of the fracture surface. These
‘Yl

a8
hont phenomena, however, are not due to material variability or
,.\.r
gl . . < .
! microstructure. All the observations are continuum irregu-

& .

PR
"
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larities which are inconsistent with the analytical assumptions

72; of continuum crack growth.
Eéf After discarding the specimens with continuum disconti-
!j nuities, the data exhibited very little scatter from test to
;;ﬁ test. The data presented in this work is the average of that
:H; ( obtained from multiple tests. The test to test differences in
{;5 h  crack length was less than 5% and thé_difference"in crack
:E; velocities was less than 10%. Mouth opening displacements were
;25 contained within a scatter band of approximately 3% with
ﬁé: deviations in opening rate of approximately 7%. It is felt
;ZE: that these numbers accurately represent the '"scatter' which is
2
 %& due to testing configuration, material variability (which
’?i should be small since all specimens are from a single batch of
f%é material, were heat treated identically and were cut in the
ixf same direction relative to the rolling) and microstructure.
:Ef The data presented demonstrate the inability of either C* '
\za or K to be a valid constitutive parameter for creep crack
\i? growth in IN 718 at 650°C. In addition, these results viewed |
'if; :;3 with other investigators' work (for various materials, e.g.,
o, ="
%
a
.
% srieeces
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{1,5,6]), demonstrate that a valid fracture parameter charac-
terizing creep crack growth behavior for a realistic range of
geometry and loading has yet to be found. In addition, new

insight into the '"'Sources of Scatter' have been identified.

This testing sequence suggests that continuum reasons for
observed scatter can often be identified which violate the
continuity assumptions inherent in the test procedure and

analysis.
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vy APPENDIX D: LOCAL CRACK TIP FIELD QUANTITIES WITH DUCTILE

S MATERIAL BEHAVIOR FOR GENERAL MIXED MODE PROBLEMS
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ABSTRACT

In the present work, local crack-tip field quantities under ductile material behavior
were studied for mixed-mode loading ranging from pure mode | to pure mode Il under the
assumption of plane strain. In order to become independent of a specific specimen, the local
crack-tip region was modeled as a disk with the crack tip at its center. Based on the
assumption of small scale yielding, displacements evaluated from the linear elastic solution
were applied on the model boundary. For ten comparable cases of mixed-mode loading the
body response was calculated using the J, flow theory of incremental plasticity employing

small strain theory. The finite element mesh employed consisted of 1178 eight node plane
strain elements and 3643 nodes.

In the evalution of the results emphasis was placed on :

i) The investigation of field quantities in terms of their exposed singular behavior,
magnitude and distribution inside the plastic zone

ii) The examination of the influence of mixed-mode loading on the singular behavior of the
field quantities and the validity of the HRR singular field for mixed modes

iii) The discussion of the strain energy density as a criterion predicting onset and direction
of crack growth for mixed mode loading with ductile material behavior and

iv) The determination of the stress functions from the finite element results and their
comparison with the numerical calculation of an asymptotic solution.
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Figure 17 :  Eftective von Mises stresses around crack tip. Radius r = 0.4 mm for
selected mixed-mode cases.

Figure 18 :  Full logarithmic representation of effective von Mises stresses along line
' 6 = 0° for all mixed-mode cases considered.
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Figure 19 : Tyy - Stresses along line 8 = 0° for selected mixed-mode cases.

Figure 20 :  Equivalent von Mises stress around crack tip. Radius r= 1 mm.
Stress intensity factor ratio : Ki/K) = 2230/0.

Figure 21 :  Equivalent von Mises stress around crack tip. Radius r= 1 mm.
Stress intensity factor ratio : K{/K| = 1927/987.

J,ﬂ
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;: Figure 22 :  Equivalent von Mises stress around crack tip. Radius r= 1 mm.

-1;: Stress intensity factor ratio : Ki/Kj = 1683/1252.

!_ Figure 23 :  Equivalent von Mises stress around crack tip. Radius r= 1 mm.
= Stress intensity factor ratio : Ky/K;; = 1405/1462.

~

_:- Figure 24 :  Equivalent von Mises stress around crack tip. Radius r= 1 mm.

C Stress intensity factor ratio : Ky/Ky = 772/1774.
a C

j_: Figure 25 :  Equivalent von Mises stress around crack tip. Radius r= 1 mm.
R Stress intensity factor ratio : K/K; = 396/1903.

N
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Figure 26 :  Equivalent von Mises stress around crack tip. Radius r= 1 mm.

) Stress intensity factor ratio : KyK; = 0/2018

‘f: Figure 27 :  Equivalent von Mises stress around crack tip. Inner radius 1 mm, outer
o radius 10 mm. Stress intensity factor ratio : Ky/K, = 2230/0.

b .

; Figure 28 :  Equivalent von Mises stress around crack tip. Inner radius 1 mm, outer
radius 10 mm. Stress intensity factor ratio : Ki/K; = 1927/987.
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"‘_- Figure 29 : Equivalent von Mises stress around crack tip. Inner radius 1 mm, outer
b radius 10 mm. Stress intensity factor ratio : K/K; = 1683/1252.

|

0 Figure 30 :  Equivalent von Mises stress around crack tip. Inner radius 1 mm, outer
o radius 10 mm. Stress intensity factor ratio : Ky/K; = 1098/1633.
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S Figure 31 :  Equivalent von Mises stress around crack tip. Inner radius 1 mm, outer
;- radius 10 mm. Stress intensity factor ratio : K/K;; = 772/1774.
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Figure 32 : Equivalent von Mises stress around crack tip. Inner radius 1 mm, outer

radius 20 mm. Stress intensity factor ratio : Ky/K; = 396/1903.

Figure 33 :  Equivalent von Mises stress around crack tip. Inner radius 1 mm, outer
radius 20 mm. Stress intensity factor ratio : K/K; = 0/2018.

Figure 34 :  Equivalent plastic strain around crack tip. Radius r= 1 mm.
Stress intensity factor ratio : Ki/K; = 2230/9.

Figure 35 : Equivalent plastic strain around crack tip. Radius r= 1 mm.
Stress intensity factor ratio : KK = 1927/987.

Figure 36 :  Equivalent plastic strain around crack tip. Radius r= 1 mm.
Stress intensity factor ratio : K¢/K; = 1098/1633.

Figure 37 :  Equivalent plastic strain around crack tip. Radius r= 1 mm.
Stress intensity factor ratio : K\/K; = 0/2018.

Figure 38 : Equivalent plastic strain around crack tip. Inner radius 1 mm, outer
radius 10 mm. Stress intensity factor ratio : Ky/Ky = 2230/0.
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L\ Figure 39 : Equivalent plastic strain around crack tip. Inner radius 1 mm, outer
radius 10 mm. Stress intensity factor ratio : K|/K; = 1927/987.
Figure 40 : Equivalent plastic strain around crack tip. Inner radius 1 mm, outer
radius 10 mm. Stress intensity factor ratio : K/K| = 1405/1462.
Figure 41 : Equivalent plastic strain around crack tip. Inner radius 1 mm, outer
radius 10 mm. Stress intensity factor ratio : K\/K) = 772/1774.
Figure 42 :  Equivalent plastic strain around crack tip. Inner radius 1 mm, outer
radius 20 mm. Stress intensity factor ratio : Ki/K; = 396/1903.
e
. Figure 43 :  Equivalent plastic strain around crack tip. Inner radius 1 mm, outer
oo radius 20 mm. Stress intensity factor ratio : Ky/K; = 0/2018.
Figure 44 : Deformed Mesh, outer radius r= 1mm.
i Stress intensity factor ratio : Ky/Ky = 2230/0.
.€
0 Figure 45 :  Deformed Mesh, outer radius r= tmm.
‘.:j’, Stress intensity factor ratio : K/K) = 1927/987.
v ;‘ Figure 46 : Deformed Mesh, outer radius r= 1mm.
N Stress intensity factor ratio : K|/K| = 1405/1462.
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Figure 47 :  Deformed Mesh, outer radius r= tmm.
Stress intensity factor ratio : K{/K) = 1098/1633.
Figure 48 : Deformed Mesh, outer radius r= 1mm.
Stress intensity factor ratio : Ky/K; = 0/2018.
Figure 49 : Crack deformation. Plotted crack length 10 mm.
Stress intensity factor ratio : Ky/K) = 2230/0.
Figure 50 : Crack deformation. Plotted crack length 10 mm.
Stress intensity factor ratio : Ki/K; = 1927/987.
Figure 51 :  Crack deformation. Plotted crack length 10 mm.
Stress intensity factor ratio : K{/K;; = 1098/1633.
Figure 52 :  Crack deformation. Plotted crack length 10 mm.
Stress intensity factor ratio : K/K|; = 0/2018.
Figure 53 : Deformed and undeformed meshes. Inner radius 1 mm, outer radius 10 mm.
,- Stress intensity factor ratio : K\/Kj = 2230/0.
( Figure 54 : Deformed and undeformed meshes. inner radius 1 mm, outer radius 10 mm.

Stress intensity factor ratio : Ki/K;y = 1683/1252.

Figure 55 : Deformed and undeformed meshes. Inner radius 1 mm, outer radius 10mm.
Stress intensity factor ratio : K/K; = 1098/1633.

| ,.;: Figure 56 : Deformed and undeformed meshes. Inner radius 1 mm, outer radius 10mm.
iy Stress intensity factor ratio : K\/Kj = 0/2018.
» Figure 57 :  Strain energy density along a circular path around the crack tip for

selected cases of mixed-mode loading. Radius r= 1 mm from crack tip.

Figure 58 :  Full logarithmic representation of the strain energy density along the
iine 8 = 0° for selected mixed-mode cases .

Figure 59 :  Graphical illustration of the interval halving method.

Figure 60 :  Angular variation of the stress functions &, .0 gg .0g and &g
Stress intensity factor ratio : K/K; = 2230/0.

Figure 61 ©  Angular variation of the stress functions &, .G gg .0 and T g,
Stress intensity factor ratio : K/K; = 2222/175.




Figure 62 :  Angular variation of the stress functions &, .0 gg .0¢ and &g
Stress intensity factor ratio : K/Ky = 2107/670.

Figure 63 :  Angular variation of the stress functions &, ,0gg .F¢ and T g,
Stress intensity factor ratio : Ky/Ky = 1927/987.

Figure 64 :  Angular variation of the stress functions &, ,0gg .0g and &g
Stress intensity factor ratio : K{/Ky = 1683/1252.

Figure 65 :  Angular variation of the stress functions &, ,0gg .T¢ and T rg.
Stress intensity factor ratio : Ky/K; = 1405/1462.

Figure 66 :  Angular variation of the stress functions & ,0gg .0¢ and o rg.
Stress intensity factor ratio : Ky/K; = 1098/1633.

Figure 67 :  Angular variation of the stress functions & ,Ggg .0 and o ,g.
Stress intensity factor ratio : K(/Ky = 772/1774.

( Figure 68 :  Angular variation of the stress functions &, .0 gg .0 and T g
Stress intensity factor ratio : K|/K; = 396/1903.

Figure 69 :  Angular variation of the siress functions o, .Tgg .Tg and 5',9_
Stress intensity factor ratio : K/K|; = 0/2018.

Figure 70 :  Ratio of o gg/0 g along the line 6 =0° for selected mixed-mode cases.

Figure 71 : |, versus plastic mixity parameter MP! for all mixed-mode cases
considered. Comparison with the values of |, obtained by Shih [27].
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Table 1 : K - Kj; -values according to the fracture criterion by Sih.
Table 2 : Shape functions of the eight node isoparametric plane strain element.
Table 3 : Chemical composition and material data of the stainless steel A304.
Table 4 : Comparison of J-integral values obtained by the virtual crack extension

method and the direct integration method.

Table 5 : Powers characterizing singular behavior of the effective von Mises stress

along the line 8 = 0° ahead of the crack tip.

( Table 6 : Fracture angle 6 and corresponding strain energy density 0.4 mm from the
crack tip for all cases of mixed-mode cases considered.
Table 7 : Powers of the singularity of the strain energy density in the vicinity
of the crack tip along the line 6=0° from least square approximation.
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LY a crack length
2 . engt
4 X a flow vector

) 3 nodal displacement vector

-,
:& A slope of the uniaxial stress-strain curve
BN
oy o] vector of body forces
o

:: B strain-displacement matrix
( ‘ @ element mapping matrix
o C constant term
i D radius of the HRR field
t
:& D linear elastic constitutive matrix

. Dep elastic-plastic constitutive matrix
j E Young's modulus

5 Bl gl stress functions for linear elastic material behavior
{ ‘ ( f yield criterion

52 £ nodal force vector
7
‘ *.{-: fo nodal force vector caused by body forces
B fs nodal force vector caused by surface tractions

e F function
o gil. g displacement functions for linear elastic material behavior
o
- G global energy release rate
'-_; G, Gy energy release rate in x - and y -direction
::: |
oo n constant
-
::I- Jy, Ja J-integral refering to crack extentions in x - and y -direction
Q. Jk J-integral vector

e Jres resultant J-integral value of the J-integral vector
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?ln, \ N . .
H Ky, ko stress intensity factor refering to mode | and mode |
.
j%:_ K| = kyVr stress intensity factor, mode 1
R4
Y . .
i~ K\ = koVm stress intensity factor, mode Il
e’ N\
-
;\-3 K element stiffness matrix
it Kt tangential stiffness matrix
[ ¥
;:'.. [ length
W n strain hardening index
_’ ' N; shape fanctions for element nodes
« ) ‘n‘
oo N shape function matrix
-Jl,‘_"» .
) r radius
o
e ro inner radius of the HRR field
i s distance
-2 s vector of surface forces
O S quadric strain energy density functional
' ( I vector of surface tractions
l\.‘. N N .
- u, v displacement components in x - and y -direction
-)'._-' .
o~ u displacement vector
}':-}' u displacement function
;) S quadric strain energy density functional
W,
:.::.: v volume
~j.':: w strain encrgy density (general)
) Chd
J A
N We external work
L.
‘1\ W, internal strain energy density
o X, ¥, 2 cartesian coordiantes
s
o)
?.~‘ a material constant
, a vactor of polynoial coefficients
" . .
. -’-.:, B angle of crack inclination
.'" - 7 exponent
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w0
N
s
. \Q"
¢ r boundary
S . . .
e interpolation polynomial
1‘ ')-.‘ .
b é vector of u; displacements of an element
p .\1.‘
o € strain
)
: [ vector of strain components
4 \"\
3 ~
E:“ 8 angle (general)
)
o ] angle of crack extention
e 0 g .
( ‘ K hardening parameter
34
g - »
o w shear modulus
o
e .
) ¥ residual force vector
‘X
“hY}
'S o stress
i fed vector of stress components
s
ot o stress functions
SO
RN T shear stress
A
( N X u Poisson's ratio
P ~.!:J
) €.n intrinsic coordinates
b
e
uy .
0) Subscripts
v
Lo R . .
_e,j o components referring to cartesian or polar coordinate system
.--
LR cr critical
LN
° 8 elastic
A .
TN pl plastic
'-:::: min, max maximum, minimum
55 .
SON y yield
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o Superscripts
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Historically, conventional stress analysis was based on the assumption of flawless
material behavior. Since the existence of crack-like flaws cannot be preciuded in any
engineering material, fracture theories had to be developed which account for local stress
concentrations.

The significance of intense and localized concentration of stresses around sharp notches
was first emphasized by Inglis [1]. He realized through considerations of the stress
concentration around an elliptical hole that the stress becomes infinitely large at the tip of a
sharp crack. Based on the ultimate stress concept, this would indicate that a cracked
component cannot sustain any loading.

Griffith [2,3] applied energy conservation principles to the problem of a cracked glass
plate. This work set the theoretical foundation for the field of continuum fracture mechanics.
Irwin [4] and Orowan [5] subsequently modified the original Griffith theory so that it could
be applied to metals by adding a term involving the plastic energy dissipation rate in the
plastically deformed region near the crack tip. Due to difficuities in the practical
application of the energy balance concept, new approaches had to be found to characterize the
material behavior under the influence of a sharp crack. Irwin [6] was able to utilize the
cracked body solutions of Westergaard [7] to establish a relation between the strain energy
release rate G, (a global parameter) and the stress intensity factor K (a local crack tip
parameter). These stress intensity factors can be related to three independent local
movements as shown in Figure 1. These are categorized as :

- Mode |, or opening mode
- Mode i, or sliding mode

- Mode lll, or tearing mode.

Any crack deformation in the case of linear elastic material behavior can be idealized by the
appropriate superposition of theses cases. Unlike the brittle glass considered by Griffith,
most metals exhibit the phenomenon of ductility. Crack tips are, therefore, engulfed by
plastic yield zones with finite stresses.

Early attempts to model the plastic deformation surrounding the crack tip were based
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{ upon extensions of the linear elastic fracture mechanics (LEFM). Irwin [8] broadened the
'\:E applicability of LEFM by introducing a modified stress intensity factor Kp. At the same time
’ ':: Wells [9] established the crack opening displacement (COD) as a parameter governing crack
N extension even beyond general yielding. Dugdale [10] extended the COD approach and
"‘) established a relation between a plastic zone estimate around the crack tip and the crack
\2\ opening displacement in thin sheets.
E.::S A significant contribution to the field of elastic-plastic fracture mechanics (EPFM) was
s the introduction of the path independent J-integral. This integral (originally derived by
o Eshelby [11] and Cherepanov [12]) was introduced into the field of fracture mechanics by
'_CE: Rice [13]. Begley and Landes [14] showed its applicability as a parameter describing the
:'.:E\ stress concentration at the crack tip and suggested the use of a critical J-integral value J)¢
." to predict the onset of stable crack growth.
\ Several attempts have been made in recent years to arrive at a more general definition of
: the J-integral which would minimize the assumption of elastic material behavior and the
\ absence of body forces while still retaining its desirable features. Some of the proposed
i‘{. formulations extend the definition of J to axisymmetric three dimensional problems, others
:J_ consider more general loading conditions [15-20].
: S’ Hutchinson [21] and Rice and Rosengren [22] independently determined the
.‘TZE characteristic singular behavior of stresses and strains inside the plastic zone (using
. ) deformation theory of plasticity) where elastic strains are negligible compared to plastic
\\ strains. This zone is commonly referred to as the HRR singular field due to its distinct
N singular character in terms of stresses and strains. In their analysis, which took full
~. advantage of the path independence of the J-integral, they showed that stress, strain and
,.- displacement components can be related to dimensioniess functions. These functions are only
::';E dependent on the hardening characteristics of the material and whether the material is in a
‘* state of plane stress or plane strain. Stress, strain and displacement components inside the
E" HRR field are, therefore, determined by an appropriate stress, strain or displacement
oo function and a singular term involving the J-integral value which characterizes the
amplitudes of these fields. The validity of expressing crack-tip quantities in terms of the |
-I:_j:? HRR singular solution has been shown by a number of scientists [23-26]. Shih [24] ‘
. - established (through considerations of the displacement function of the HRR-theory) a
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relationship between the J-integral and the COD-concept and proved the similarity of both
concepts. This analysis assumes that the HRR field dominate the region around the crack tip
having a size of at least ten times larger the crack-tip opening displacement.

Shih [27,28] applied the HRR singular field solution to the case of a body under mixed-
mode loading. The stress, strain and displacement functions in this case depend on the
relative composition of mode | and mode Il directly ahead of the crack. The J-integral, in
combination with a parameter sensitive to the composition of mode | and mode II, governs the
amplitude of the singular field.

Though many cracks in structures may be initially under mixed-mode conditions, most
research in the field of fracture mechanics is focused on the study of fracture behavior
under pure mode | conditions. The major reason for this is the general observation that a
crack subjected to mixed-mode loading tends to grow toward a mode | condition. The main
interest in mixed-mode fracture mechanics, therefore, is focused on determining criteria
which predict the onset of crack growth and the angle of crack extension in relation to the
existing crack. In contrast to pure mode | where the criticai value Jic has been employed to

predict the onset of crack growth, this quantity is no longer valid for mixed-mode conditions
since the crack usually does not extend in its own plane. The most promising concepts of
mixed-mode fracture criteria are therefore based on energy principles, i.e. the maxima or
minima of either the total strain energy density or of its components {29-32]. Both the
concept of the strain energy criterion, introduced by Sih [29] and the T-criterion suggested
by Theocaris [33] have been extended for use in the elastic-plastic regime. Since these
criteria are of local nature, they depend on the local stress and strain response of the
material.

In the analysis of cracked bodies, the finite element method has become the major
numerical technique for the solution of fracture problems (both linear and noniinear). The
theory of incremental plasticity, which is usually incorporated in modern finite element
programs, relates incren 1ts of stress to increments of strain. The formulation of the
incremental theory of plasticity accounts for elastic unloading effects and has been very
successful in simulating ductile material behavior.

In the present investigation local crack-tip field quantities were examined for mixed-
mode loading ranging from pure mode ! to pure mode Il. A ductile material was modeled and

the commercial finite element package ABAQUS was employed to perform the calculation. All
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considerations were based on the assumption of small scale yielding which requires the
plastic zone to be small relative to other dimensions (i.e. crack length or specimen size).

Although a variety of mixed-mode fracture specimens have been suggested in the past
{34,35], there is still no universally accepted standard mixed-mode specimen. In this
work, therefore, the local crack-tip region is modeled without employing a mixed mode
fracture specimen. Displacements on the boundary are calculated by assuming elastic stress
intensity factors for both mode | and mode Il a priori. These displacements are applied to the
boundary of the local crack-tip region.

Ten loading combinations which span the range from pure mode | to pure mode I were
investigated. The J-integral values were calculated to measure the strength of the field
singularities. Stresses, strains and both total and elastic strain energies were examined
with respect to their singular behavior and angular variation within the plastic zone.
Details of plastic zone sizes and shapes as well as the crack blunting under varying mixed
mode | and I contributions were investigated. The stress functions for all investigated cases

were determined as well as paramelers describing the amplitude of the plastic near-tip -
field.
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The stress and displacement fields around a crack in a linear elastic material have been
investigated by a number of scientists. Although a basic solution was worked out by

Muskhelishvili [36], Westergaard (7], Williams {37],

Irwin [6] and Sih [38] solved the

same problem using different approaches. A decisive step in linear elastic fracture
mechanics (LEFM) was the introduction of the stress intensity factor K by lrwin [6]. His
work employed using Westergaard's solution for the near-tip stress field of a cracked body.

If the elastic solution for a cracked body is available, the stress intensity factors, K; and K,
can be defined as :

K, = lim o (r.8=0)(2nr 172
| = lim &y (,0=0)(2m)

K" = lim O'XY(I’.G-O)(ZII')VZ.
r—=0

(2.1)

Both stress and displacement fields are based on the linear theory of elasticity and may,

therefore, be superimpos~ 1. The stresses and displacements under combined mode | and mode

Il can be written as for the coordinate system (given in Figure 2 ) :

O’X X
(e
yy
(o8
Xy
Rt
oy
J_x . '\. .'),ﬂ. 4

L o o o
"\-'\\-."‘J.r.‘._,_’. ..)

., .8 3g ] B 6 38
1'5 n— | [} ca— - — — —
'251n2 sm [stzcos ]
K 9 .8 . 3¢ K 8 6 39
- ——l-cos=| 1+sin= sin'= 1 = —
~/2nr°°52 + 2 +42nr sm2 oos2 0052
.9 .39 ) . .38
sm2 sin-3 °°52[ 1-sm2 sin3 )|
e —d . —
(2.2)
3
u Ky o« (1+U)[(2x-1)cos§-cos—29-
= 2_§‘j 2r ) 3 +
v (14 u)[(2K+1)sm-2-- sin=Z ]
1+U 2 3)sin = in3.8
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where E is Young's modulus,
v is Poisson's ratio and

Kk is given for the case of plane strain as x = 3-4u .

By expressing equation (2.2) in the form :

K K T
Tija L ¢! ¢
: Nanr fii(e)"'\IZﬂ:r ”(6)
(2.3)
K Kiy
Ui = —'- L I S — — “
! 25‘12“ g|(6)+ E\lzﬂ g|(e)
several characteristics of these solutions can be observed. The stress intensity factors
jf-f'-j depend only on the applied loading and consequently determine the intensity of the local field.
- ( The remaining terms depend on the spatial coordinates around the crack tip and determine
-:'.:- the distribution of the field. These subdivide into a singular 1/vr component and an angular
N component expressed by the geometric functions t;!, f;ll, gi! and g;ll.
>
Ve Higher order terms of the actual series solution have been neglected. More higher
o ordered terms need to be included if the field had to match outer boundary conditions. Eftis et
';;:: al. [39,40], in revisiting the stress and displacement fields of the one parameter
-\'
',::j representation given in equation (2.2), proved the inaccuracy of these relations for the
g
. case of biaxial loading. This stems from the arbitrary omission of the second term of the
P series expansion for the stress components which contain a term independent of the distance
1 E;f::; from the crack but dependent of the angular position around the crack tip. Eftis improved the
ﬁ::'j singular solution for the inclined crack under biaxial tensile load by including this term
' -
~d which finally affects only the x-component of the stress field. Theocaris et al. [41]
:-'I:j: developed a closed form solution solution of stresses and displacements of a slant crack under
:f:f-f biaxial tensile loading for arbitrary radius (r) away from the crack tip.
_o'. - lrwin [42] derived the relationship between the stress intensity factors and the energy
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release rate (G) for cracks extending in their original plane. For pure mode | and pure mode
Il (under plane strain conditions) these relations are given as :

- Ku
G= = - v) G =—0-d (2.4)

Energy release rates can be added for a crack remaining in its plane according to :

G =G|+ Gy (2.5)

For a linear elastic material subjected to pure mode | loading conditions the energy

available to create a unit surface is G;. The critical strength parameter governing failure,
therefore, can be expressed as Gig. This parameter can be related to the critical stress

intensity factor K;c by equation (2.4).
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In order to assure a comparison of field quantities for arbitrary ratios of stress intensity
factors, a criterion had to be applied which relates K;-values to a given K;-value. In
contrast to a pure mode | Griffith crack, a mixed mode crack does not necessarily extend in
its own plane. Since the direction of crack extent is not known a priori it would be incorrect

to obtain the mixed mode energy release rate by adding Gy and Gy;. In contrast to pure mode |

fracture analysis where the fracture criterion is founded on a given K,g-value, there is sill

no well established criterion for the case of mixed-mode fracture. The most widely used
mixed mode fracture criteria are [33,43-45] :

SN

- criterion of maximal tangential stress

. A

- various criteria based on the energy release rate

RAMOFRE
f a4 R £

- various criteria based on the energy density

r~

- criterion according to DiLeonardo
- principal strain criterion

- J-integral criterion

- modified T-criterion and

- various empirical criteria based on experimental K;-K;; failure curves.

The energy density criterion introduced by Sih [29] was chosen for two reasons:

- it is generally in good agreement with experimental results [29,47] and
- it provides a concise relationship between the critical energy density factor and the
stress intensity factors for mode | and |l
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3.1 THE STRAIN ENERGY DENSITY CONCEPT AS A FRACTURE CRITERION

Sih [29] proposed a criterion based on the strain energy density in the vicinity of a
. crack tip. For an elastic material the strain energy density is given in its general form as :

: aw, _ 1 J 1

. ) = (0240240 ,2) = (T T\ +TyT 2+ 20 )+ —= (T yy 24 Ty 2+ T, 52

; (dv) 2E(x y z)E(xy yTz+T 20x) zu(xy xy+Ty2%) @3.1)
".|

2.1
_ where E is Young's modulus,

Vol

- U is Poisson's ratio and

o

> W is the shear modulus.

-

°

- Substituting the stress components from the asymptotic linear elastic two dimensional
L

. stress solutions given in equation (2.2), the strain energy density can be obtained as:
(] ( dWy . S L1 (a0 .k42 & 220 ok Ko + apoks2) (3.2)
_ (57)= T =7@nk 12K1k2 + az2kz :
[

"

- The coefficients a;; are given as:

e

A
'~ a4q = ——[( 3-4u-cos6) (1+cosé )]

A 161
b

) ajp= 1_sine [cos@-(1-2u)]

8u

°

";I: gy = % [4 (1-u ) (1-cosB) + (1 +cos8 ) (3 cos8 -1)] .
::{ H

- It can be seen that the strain energy density is characterized by a 1/r singular term
e where r is the distance from the crack. The quadric term, S, in equation (3.2) can be
-

:: considered as a material constant [29] and varies only in the angle © around the crack tip,
:'_ Figure 2.

N.

.' . Determination of pairs of K|- K|, - values with respect to an assumed maximum value of
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Determination of pairs of K|- K|, - values with respect to an assumed maximum value of

K|c is based on taking advantage of two hypothesis formulated by Sih [29]:

1. A crack will extend in the direction of maximal potential energy.
2. The critical intensity S, of this potential field governs the onset of crack

propagation

The potential energy per unit volume, P, is defined as:

S
Pa-— | (3.3)

Therefore, P assumes a maximum if the following relations hold:

® 4. 3%, at @ =6g. (3.4)
96 BFT-L

The formulation of the stress intensity factors ky and ko for a crack inclined by an angle 8,

and of length 2a under tensile stress o ( see Figure 3 ) is given as:

ky =0 va sin2 g

(3.5)
ko=0c YasinBcosB .
Substituting these expressions into equation (3.2) yields an expression for S :
Saky2(ayysinB +2aypsin B cos B +ayycosB)sing . (3.6)

Again, according to the first hypothesis and equation (3.3), S has to be a minimum if P

shows a maximum. Differentiating equation (3.6) with respect to 6 and setting the result to
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b 3

N
A

iy 2 (1-2vu) sin (89 - B) - 2'sin [2 (69 - B)] - sin 284 = 0. (3.7)

Z

v
Ll

3

The critical values of K and K lie on a curve in the K|-K|; plane determined from equations

e

o (3.5) and (3.7).

qjs A FORTRAN program has been written to perform the outlined procedure to find pairs of
(‘ y K)-K  values for a given pure mode stress intensity factor K,. The material data are
-.:;:: presented in chapter 6.2. For values of 8 ranging from 0 to 1/2 equation (3.7) was solved
"'E';? numerically using the Newton-Raphson Method. Figure 4 shows the plot of K, values over Ki
: *t for an assumed pure mode | value of K; = 2230 N/V/mm372

_.:~.': Ten pairs of stress intensity factors which span the range from pure mode | to pure mode
-_:-Sf_: Il are given in Table 1 and will be referred to in all further considerations. These pairs of
‘5' stress intensity factors represent points on the K;-K;; curve which are the endpoints of

equal length curve segments.
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A characteristic of plastically deformable materials is that a particular material can
undergo different histories of response prior to the body reaching its end state.
Reversibility, therefore, cannot be guaranteed after load removal. The final strain is found
to be dependent on the history of loading, in addition to the beginning and final loading. This
means that plastic behavior is a path function and requires the use of an incremental theory
where strains are integrated over the strain path whenever the total induced strain is to be
determined. A common approach (employed in this work) is the incremental theory of
plasticity.

The deformation theory of plasticity is based on an assumed nonlinear elastic material
response. Plastic strains depend only on the current state of stress and are independent of
the path leading to this state. This theory (though contrary to the observed nature of plastic
behavior) is computationally far less expensive than the incremental theory and is
therefore widely used. Figure 5§ depicts the basic difference between these two basic
approaches in elastic-plastic modeling.

The incremental stress-strain relationship of an isotropic strain hardening material
can be derived on the basis of the following relations :

a yield criterion

- a yield function

- a flow rule

- the assumption of strain rate decomposition and
- the linear-elastic constitutive relation.

i ) Yield Criterion :

Various criteria have been suggested in the past to predict the onset of yielding in a
material subjected to loading. The Von Mises yield criterion, which is widely used, is

based on the assumption that yielding occurs when the second invariant, Jp, of the
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deviatoric- stress tensor reaches a critical value, Jy = 2/3 cryz. With the deviatoric

stress tensor s;; defined as :
L (4.1
The critical value of J, is given as:

(4.2)

The effective stress may be written as :

o=V %_[( Tx-Ty)2+(0 -T2 +(T 012 + 67,,2 + 67,2+ 67,,2]. (4.3)

ii) The Yield Function :

The amount of hardening of an isotropic strain hardening material can be expressed by
the amount of plastic work which is :

Wp=JUij (deij)paK (4.4)

where (deij)p is the plastic components of the strain differential and

kK is the strain hardening parameter.

The integral is path (history) dependent. Like the equivalent von Mises stress given by

equation (4.3), the equivalent plastic strain increment (ci<=.)p can also be obtained from

the second invariant of its incremental strain tensor (deij)p as :
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(de)p = ¥ Z{ (deij)p ([dei)p Jp - (4.5)

iii) The Flow Rule :

The flow rule governs the plastic flow after yielding and can be derived from various
yield criteria by using the concept of a plastic potential (f). This method proposes that

the incremental strains resuiting from a stress tensor O'ij are found by using :

df
A - ——
(deljlp A aa,u (4.6)
where f is termed the yield function and
x ( A is a constant.
'{:j: The strain history and its current magnitude can be determined by the yield function (f).
‘v._‘
' If the Jo flow rule is used , (see equation (4.3)) the yield function can be expressed as :
i
::'::: f(O’ij) = (sij Sij)a const - (4.7)
o
S
. 7. and
o
s
\.F' a f
-
7 3y, (48)
e iJ
4
, ~.::: Three cases of (df) are possible : s
o5
p Pl
Ov R df <0 : elastic unloading of an elastic plastic material occurs
o, e
4 -'.'I -
‘-‘:_.
o
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o df = 0 : neutral loading of an elstic-plastic material and
D)

(: df >0 : plastic loading of an elastic-plastic material.

For the case where (f) is taken as the Mises criterion, given in equation (4.2), taking
ALY the derivative yieids :

Y at 3y

FU= = Sjj (4.9)

:Ij and equation (4.6) simplifies to :
P (deij)p=)\ sij (4.10)

o Fquations (4.9) and (4.10) are referred to as the Prantl-Reuss equations.

ey
7N

st iv) The Strain Rate Decomposition :

During an stress increment the resulting strain increments can be split into their
elastic and plastic part :

a_x '.-
"-\,

Y4y

dg = dgg +dSp (4.11)

. [
LI S

W4

v) Elasticity :

e %
s 2]
£l

« 0 l‘
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The elastic strains can be related to the deviatoric and hydrostatic stress components by
the relations :

LI

1+y 1-2y
(e.) S + Tl (4.12)
ij 3 E kk™ij
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RN Elastic and plastic parts can be added and the complete incremental relationship between
stress and strain for elastic-plastic deformation can be obtained as :

7 SeT eyt TE

ddijdo'kk* 7\Sij (4.13)

e It can be shown that the complete incremental elastic-plastic stress-strain relation can
be written as derived in [48,49] :

Nod dg = Depds (4.14)

. The elastic-plastic matrix Dep is given as :

oaew
T NS

ol Wb

o >

dpdp
A+ dTa'

Dep=R- ; dp=D a (4.15)

7™\

454

where A is the local slope of the uniaxial stress-strain curve and can be gained

222

=7 i) ‘n“‘.'; )

from the stress- strain curve of the given material,

[ V)

is the flow vector which is a partial differential of the yield critarion
with respect to its components and is given in equation (4.9).
is the elasticity matrix having the form for the case of plane strain :
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&1 THE FINITE ELEMENT FORMULATION FOR LINEAR MATERIAL BEHAVIOR

Today the finite element method is firmly established as a standard numerical procedure
for the solution of engineering problems. Its versatility is based on the following
characteristics:

- irreguiar geometries can be modeled
- any kind of boundary condition can easily be formulated and
- it provides sufficient accuracy for many engineering purposes.

Especiaily in the field of fracture mechanics, the finite element method has been proven
to be an efficient numerical method to model the response of a body under the influence of a
sharp crack.

SR The basic idea behind the finite element method is to divide a given structure, body or
X region into a number of elements. The elements can be two or three dimensional. A discrete
number of nodes situated on the element boundaries connect the elements. In structural
problems, the finite element method solves the response of a model which is subjected to a
given load by determining the nodal displacements. A set of interpolation functions (which
are referred to as shape functions) uniquely define the displacement state within each

element. The formulation of the shape function depends on:

- the number of nodes in each element (order of element) and
- the number of independent degrees of freedom in the problem considered.

The finite element formulation for a continuum can be obtained by taking advantage of the
formulation of the principle of virtual displacement (which is a special case of the principle
ot virtual work) or of the principle of minimum potential energy (which assumes elastic
body behavior).

In the following very brief introduction of the basic finite element formulation, only the

o two dimensional case will be considered.
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The principle of virtual displacement states that equilibrium is obtained if the work

done by external forces Wq on an arbitrary virtual displacement field equals the increase in

strain energy (W,) of the system [48]. This relation can be expressed in a variational form:

SWi = Wy . (5.1)

The principle of virtual work can be formulated as the volume integrals of the variations
in strain energy density and the sum of variations of external energies resulting from body

forces, surface tractions and point loads. Employing matrix notation, the variation in
internal strain energy density is given as:

SW,=[(6e)T g av (5.2)
( where ST represents the variation of the strain vector € = [ €x, €y, Txy 1T
and
o is the stress vector o = [ oy Ty Tyey JT.

The variation of the external work can be expressed as:
6We =/ (su)Thav+[(su)Tsdr + = (6u)T 1, (5.3)

where Sy is the variation of the displacement vector y = [ uy, up |7,
b is the vector of body forces b = [ by, by ]T ,
s is the vector of surface tractions s = [ sy, 52 )7,

[" is the boundary where surface tractions are applied and

fp are nodal forces.
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{ The finite element approach is based on the assumption that displacements within an
:'_-,:Z element are adequately described by a polynomial. The second order rectangle has eight nodes
SN . ) . . .
:j and its interpolation polynomial approximation to the displacement field is assumed in the
‘ ).
'~ form :
D)
i 2 2 2 2
bl P =y ¢+ A X + AJY * A4XS+ AgXY *+ AgyS + A7xy< +agxy  (5.4)
B, o
B
Lo
oy
__ In order to assure interelement compatibility, equation (5.4) must be complete in
PR
o,
.':;‘{ terms of a specific power. The eight constants, a;, can be evaluated by solving a set of eight
~
"{: simultaneous equations if the nodal coordinate are inserted into equation (5.4) and the
".! displacements equated to the appropriate nodal displacements. Performing this operation,
K < -
o equation (5.4) becomes :
b
N
o [

. E
Pl

~ ui= 00 X i 52, xyi vi2, xyi2 s x2yil . (5.5)
o we

o

J'_:-

. or :

)
o g=Ca (5.6)
\‘. .

o -
? ;\, where & is the vector of u displacements of an element & = [ uy, us , u3.. .,ug]T.
o

..
-:.f:-.f Solving equation (5.6) the vector of constants a can be obtained in terms of nodal

v

- displacements by :

e
ot a=C'g. (5.7)
L

) The vector g can be substituted back into equation (5.6) and :

:-.'ZZ u=CClg (5.8)
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is obtained. From this relation, the shape function matrix N can be obtained as :
U=N¢ (5.9)
where N is the shape function matrix N = [Ny, Np, ..., N7, Ng]T .

Similarly, equation (5.9) holds for the v component of the displacement vector. Equation
(5.9) can easily be generalized for the displacement vector y by writing :

u= Na (5.10)
where 2 is the nodal displacement vector a = [uy.vy, Ua,Vp. ... U7,v7. ug,vg|T
and
N is the shape function matrix N = [ [ Ny, I Np, ..., I Ns, | NS]T .

The isoparametric finite element formulation has proven very effective in structural
analysis. Isoparametric elements are characterized by the transformation of the element
geometry, into a square in 2 - D problems, using a local coordinate system defined by its
€-n coordinate axes, see Figure 6 . Axes € and n pass through mid points of opposite sides,
so that the edges are defined by €=t1 and n=t1. If the shape functions used to describe the
geometry and displacements of an element are the same then this element is cailed
isoparametric. The shape function of the employed isoparametric eight node parabolic
element are given in Table 2.

The displacement components of any point within the element are defined in terms of
nodal displacements. In equation (5.2) the matrix equation for the strain becomes :
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A

e
The matrix B is defined as :
™ 3N 7
ax 0
dN;
g - Y (5.12)
dN; oN;
| Ty x |

Assuming linear elastic behavior, the stress-strain relation is defined through the

generalized Hook's Law :
g=De=DBa (5.13)

where D is the linear elasticity matrix given in equation (4.15).

In the isoparametric finite element representation the shape functions N;, given in local
coordinates §, m, have to be differenciated with respect to global coordinates. The chain rule
must be applied o differentiate :

N _aN & N N dn (5.14a)
N ax & ox an dx
: '_., _: and
.,
f'!
N aN dN o€ dN dn
; = + 5.14b
3’,;:: dy & 9  In Jy ( )
'\,,,\-'
S
B
.’ The derivative (3€/9x) etc. can be evaluated from the inverse of the Jacobian matrix, J1
:,'r Using the Jacobian matrix the volume integral (when setting dz=1 for the case of plane
- - strain) becomes :
S g dxdy = (detd)d€ dn (5.15)
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Equation (5.15) can be substituted into equation (5.2). Empioying the stress-strain
relation of equation (5.13) and employing equations (5.10) and (5.11) the finite element
formulation (5.2).(5.3) can be given as :

{IBTDB(dety)dedn } a= fy+tg (5.16)

where fp is the volume integral of the body forces, f, =/ NT b det)de dn and

fs is the integral of the surface tractions, fs =J/NT 5 det ] d& dn.

The first term in (5.16) is referred to as the element stiffness matrix K . Equation
(5.16) can be numerically integrated using the Gauss-Legendre quadrature formula where
nine integration points are defined for the isoparametric plane-strain rectangle, see Figure

(i‘_-; 5. The integration is performed in the €, m space where the coordinates of the element side
< range from -1 to 1.

F | Vi

,;.: The described finite element method for linear elastic material behavior can be extended
'
to materials showing nonlinear behavior. For most problems in material plasticity an

N incremental algorithm is used. It is based on the incremental theory of plasticity where the
: plastic action is followed as it develops, and, therefore, accounts for the path dependence of i
plasticity.
The initial step of an elastic-plastic finite element calculation assumes linear elastic

< behavior. If yielding occurs at one or more nodes a system of residual forces W will exist,
. such that:
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v=/Bgav-(f+/NTbav)=0 (5.17)
where f is the vector of applied external forces. If the effective stress at one or more nodes

exceeds the yield stress, the material stiffness matrix is continually varied. Then
increments of strains are related to increments of stresses according to equation (4.14) :

dg=erdz (5.18)
where er is the elastic-plastic matrix given by equation (4.15). Equation (5.18) can be

substituted into (5.17) and a relation between an incremental load Ay and the increments of

the residual vector AY (which is usually not zero) is obtained as :

AY = Krau-(at+/NTabdv )= 0 (5.19)

where K; is the tangential element stiffness matrix in the elastic-plastic range and

is given as :
Ki=/BTDgpBav.
Equation (5.19) can only be solved iteratively according to the following steps :

1. Employing incremental displacements Ay in each iteration step r, an iterative

correction (&y)" is calculated using the Newton Raphson Method :
(W' =(Kr']"' ay’ (5.20)

2. At the end of each iteration the improved displacement estimate is:
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AU = Ayt + (Sw)f (5.21)

This value Au'+! is substituted in (5.19) to evaluate the residual force vector AY.
which is used in (5.21) to calculate the correction of the displacement.

This algorithm is repeated until the maximum of the residual force vector is smaller
than a user defined number. ABAQUS uses the modified Newton Raphson method where the

stiffness matrix K, calculated after each convergent solution instead of being modified after

each iteration. This results in a significant decrease in computing time.

2.3 GENERATION OF THE FINITE ELEMENT MESH

A central aspect of the application of the finite element method is the generation of an
appropriate mesh. The quality of the finite element mesh affects:

- the accuracy of the solution
- the amount of required computing time and
- the convenience of postprocessing the results.

Today, most finite element meshes are generated with the help of ‘a finite element
modeling program. For the present investigation the mesh of the mixed mode fracture model
was created on an IBM 5080 workstation using the CAEDS software packége [49]. CAEDS is a
computer aided design tool which provides the ability to model and analyze the behavior of
mechanical structures. CAEDS divides this task into three consecutive steps:

1. Geometry definition:
The model geometry is defined by points and their connecting lines. Subareas have to
¥
be defined in the model which help control pattern and density of the finite element

mesh to be generated.
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\ 2. Mesh Generation:
:‘c 5§ The mesh generation accesses the geometry of the model through defined subareas.
! N Concentration and configuration of the finite element mesh can be influenced by
! defining nodes or a node concentration on the boundary of the subarea. Thus the finite
::5 element mesh for every subarea is generated automatically in an exactly predictable
’,S manner.

Model Checking:

~ﬂ-
w

'f,'.:.‘: This module assures the correctness of the created mesh. Internal free edges, node
.i:; and element coincidence and element distortion can easily be detected and corrected.
::' Furthermore, the bandwidth and the profile of the stored matrix can be optimized and
the nodes of the model renumbered accordingly (which shortens the computing time
D significantly).
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For the present investigation, a disk shaped fracture model with a sharp crack was
modeled. The dimensions of the specirhen were mainly determined by the definition of small
scale yielding which limits the plastic zone size to approximately 20 percent of the
specimen size [27]. Therefore, for the given sets of K| and K|, values, the plastic zene size
was estimated using approximation formulas. Employing the plastic zone size estimation
formula by lrwin [8] yielded a maximum plastic zone size radius of o= 3.75 mm in the

case of pure mode ! (under plane strain conditions). The yield stress contour which is given
in Figure 7 for a selection of mixed modes indicates in the case of pure mode !l loading a

plastic zone size radius of approximately fo= 24 mm. The specimen radius was therefore

chosen to be 100 mm. The crack width was modeled as small as possible to produce a sharp
crack.

Conventional elements cannot simulate the singularities in the strain fields which exist
near sharp cracks in the case of elastic and elastic-plastic material behavior. Various
authors, therefore, have suggested finite elements which account for these singularities
without using large numbers of elements.

Henshell and Shaw [50] and Barsoum [51] proposed the use of isoparametric eight node
quadrilateral elements with midsize nodes displaced by a quarter of the edge length towards
the crack tip. This collapsed quarter point element produces a 1/Nr singularity in the
elastic strains. Barsoum [51] proposed that, in the case of crack-tip plasticity, eight
isoparametric eight node elements can be degenerated into triangular shape elements by
collapsing the element at their crack-tip nodes without shifting the midsize node, Figure 8.
All collapsed nodes at the crack tip remain unconstrained and have independent degrees of
freedom. It has been shown [52-54] that this causes three effects :

26

S AR NS LAY O N NN W
CORGHO R TR N, .:.I.., h -n A "*' MU AR N LN

ALAT RN ,""\""\.

W’ = W3
n l‘u l‘,.l'.}



. s N I . N L >
LASAAT Aad Ma¥ B dia g s - PO L oa. o N ——

.

A
o

R

, )
!'M, (

>
::;,’ - a singularity of the order of 1/r is simulated in the approximation of the strain
7“3 components. This coincides very well with perfectly plastic material behavior in the
! near-tip field
:1'. : - the ability to reproduce large strain gradients is retained and
:ﬁ - spurious numerical unloading often encountered with the collapsed quarterpoint
3'_ element is eliminated.
(
:'. Comparison with analytical results performed by Shih [52] showed that this element
5: simulates the material response at the crack tip reasonably well. Barsoum {51], however
ﬂ\" has shown that this type of element possesses theoretically unbounded terms in the stiffness
'?r matrix but which are usually suppressed by the smoothing character of the Gauss-Legendre
'{;' quadrature.
'_:f.‘ Figure 9 shows the finite element mesh of the modeled specimen in the vicinity of the
"‘: crack tip. A fan of 24 degenerated elements with a side length of 0.04 mm defines the crack
( tip. The crack-tip width was modeled as 0.004 mm. Adjacent to this fan is an intermediate
-.‘ zone which connects the crack-lip fan to the main fan consisting of 23 circumferential
::: layers of 32 element segments, see Figure 10. Three circumferential element layers are
B

needed to model the boundary element layer of 16 elements, (Figure 11), where the
displacement components act on the outer nodes. The finite element model of the specimen
consists of 1178 elements and 3643 nodes. In order to investigate the accuracy of the finite

-~

element model, the elastic stress intensity factors were calculated. These agreed with the
input values to within 0.1 percent.
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8.2 MATERIAL
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The material properties of the stainless steel A304 [55] were used as the material data

input in the finite element calculation. This steel finds its main application in pressure
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containments in the high temperature range due to its ability to sustain high plastic
deformation beyond the yield stress. Table 3 lists the material data of the steel A304 and its
chemical composition given by Newman [56]. The stress-strain behavior of the employed
material was modelled using the Ramberg-Osgood relation.

In the case of the power
hardening simulation of the material response, the uniaxial stress-strain relation is given
as:

o
e=E for o < Ty

(6.1)
€ o (0')” .
— = — 4+ g(— oro > o
€y Iy Ty y

where o is the uniaxial tensile stress,

€y is the yield strain,
oy is the yield stress,

@ is a material constant which is given as 0.75 for the steel A304 and

n is the hardening index which is given as 6 for the present material.

Figure 12 shows the modeled stress-strain behavior of the employed steel A304.

rA '

The commercially available finite element package ABAQUS [57] was used for model
solution. Nodal coordinates and element connectivity generated by CAEDS can be accessed
through a universal file. A FORTRAN program has been written to both reformat the
universal file for the correct ABAQUS input and to correct the node numbering direction
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since CAEDS does not employ a consistent node numbering direction within an element. The
applied boundary displacements for all cases of mixed modes considered were calculated
according to equation (2.2). The element type CPES8 (eight node parabolic plane strain
isoparametric element) was employed in this model.

Based on the modeled stress strain curve of the employed material, discrete vaiues of
stresses and plastic strains had to be specified in the ABAQUS input. Element sets for both
data output and graphic display of deformed meshes and contours of specified variables were
defined.

For all cases considered, the model response for the elastic-plastic material behavior
was calculated using small strain theory. ABAQUS generates increment sizes automatically
and assumes a maximum number of six iterations per increment. This usually assures good
convergence at relatively short computing time.

While good convergence was obtained for cases of mixed modes with either predominant
mode | and mode |l contributions, the following four cases of mixed modes had to be

( subdivided into separate steps of increasing pairs of K- K values to obtain a convergent
solution :
- K|/ Ky= 2107/670
- K|/ Ky= 1927/987
- K/ K= 1683/1252
- K/ Ky= 1405/1462

Four increasing pairs of combinations of K| and K, values (of equal ratio) were assumed
which resulted in good convergence for each step. J-integral values, however, cannot be
obtained by ABAQUS if a calculation is subdivided into separate steps [57].

In order to permit an efficient postprocessing of ABAQUS data, a FORTRAN program has
been written which reads any variable from the data output file : ‘

along a line having a specified angle to the x - axis
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The J-integral, which was originally established by Eshelby [11], was introduced by
Rice [13] into the field of fracture mechanics. Rice showed that the potential energy

’?“"r[. £

release rate for a two dimensional crack extending in its plane in a homogeneous linear or
non-linear elastic material was equal to a path independent integral. Its definition is given
in cartesian cuordinates as, (see rigure 13) :
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S5 where W is the energy density, defined as W = | o dejj |
' is an arbitrary path around the crack ,

. T; is the traction vector defined according to the outward normal n along I

oN and is given as Tj= o n;.

N The J-integral is well established as a parameter which describes the magnitude of
near-tip stress and strain fields. Knowies and Sternberg [S58] subsequently generalized

4y

the J-integral to be a vector, Ji, corresponding to the potential energy release rate in any

LLLUSY

coordinate direction of the crack extension. Ji is defined as:

o X . '.‘-‘:t."\','t')\ -“ L '
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Q
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where ny denotes the unit outward normal to T', lying in the same plane of the crack.

For the two dimensional combined mode | and mode I fracture, only the Jy- and Jo-

integral definitions need to be considered. Both integrals have the following important
properties:

i} PathIndependence :

A proof of the path independence of the J-integral can be found in [59).
Finite element investigations of J-integral values obtained for paths very close
to the crack tip, however, (assuming elastic-plastic material behavior) stowed
significant path dependence where J-integral values approach zero very rapidly.
McMeeking [60,61] investigated this behavior systematically and showed that it can
be related to the large deformations around the blunting crack. The J-integral values
calculated along paths more than 5 to 10 times the crack opening away from the crack
tip can be considered as path independent. Their role as parameter characterizing the
crack-tip field quantities is probably retained.

Fe,
'y

ii) Compatibility with Linear Elastic Fracture Mechanics :

For linear elastic behavior J1 and J, are equivalent to the energy release rate G in x,
and x5 direction, respectively. Hellen et al. {62] and Blackburn (63} related J4- and

Jp-integral values to stress intensity factors for a two dimensicnal crack. The

relations are given for the case of plane strain as :

(7.3)
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iii) Application in Elastic Plastic Fracture Mechanics:

The J-integral value for two dimensional crack problems has been used by many
authors to predict the onset of crack growth initiation in cracked bodies both for
linear elastic and elastic plastic material behavior. This concept was introduced by

Begley and Landes [14], [64]. A critical value of J;c in pure mode | for plane strain

conditions can be determined by a standard test method if the conditions of quasistatic
loading, negligible body forces, monotonic loading and stationary crack are met.

Kishimoto et al. [15], in their interpretation of J; an Jo as vector gquantities

L 2N

L5 of the strain energy release rate for crack extension in the two dimensional case,
v ) ) o

2 defined a resuitant vector J . Its magnitude is given as :

G4

.

[
v ’.‘-
4 5 "‘

d
P

”’

‘o J(es.’\[J\T*'J_zz (7.4)
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They proposed that failure in mixed mode occurs if the resultant J-integral equals the

N

critical energy release rate:

According to Bakker {65] this criterion has found little experimental verification for

the case of mixed mode fracture.

33

.
- e e e . - . R S ATt et e et s LR
B R I L ATIE AON S R S T T e et . T T I S S IR I A
: . . - P T T e A A LN . PR IR
. . ST . RN R S R I T . R A R -

- l" - .,."-.- r S - » v PR T
et - L AT e A
L A Wiy SRS SRR PV T P .y,




ad e heauhlbinndbidd TW PR TR VT N T e mm——————————my
oy

z A TION QF THE J - INTEGRAL VA

Various procedures have been developed in the past to calculate the J-integral value. A
survey of different methods can be found in [66]. In the present investigation the virtual
crack extension method and the direct integration method were empioyed.

i
‘l
e T
A}

't'l“l
N
,

i} The Virtual Crack Extension Method :

R
,"'.'l

VS
AN

This method originally described by Parks [67] as the stiffness derivative method is
an implemented feature in most commercial finite element programs like ABAQUS. In

i4e

A
Pl

»

this method, the potential energy release rate is evaluated directly in a single finite

bl

A

~ element analysis by advancing the crack tip or crack front by a small amount . This
¢ small advance changes the stiffness of some of the elements in the mesh and the change
in potential energy can be calculated. Even for coarse meshes this method yields very
accurate results [53]). According to Nagtegaal [66], the method of virtual crack
extension is particularly accurate if collapsed elements at the crack tip are used.
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The Direct Integration Method :

2@,

S
1]

A direct way of calculating both Jy- and Jp-integral values is the numerical

b
»
LLY

integration of equation (7.1) using discrete data points (e.g. from a finite element

«
L4
y £ a

"'\’

analysis). The circumferentially arranged elements in the present mesh suggested the

x
< a
» 4y 4y

L )

use of circular paths around the tip. The definition of Jy and J; had to be expressed in

polar coordinates. The transformation of x and y into polar coordinates is given as:

b

X =rcos 9, y =rsin 8 (7.6)
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The path increment ds can be expressed as :

[
.
ds =rde (7.7)
o
O
W
LY . . . .
f,. The displacement derivatives with respect to x, and x, assume the following form,
s
( 1 respectively :
heR
o du QUi 1o Ui
b FE R TAR A Ty
'1 ’-I
N u sine Ui, L cogg AU (7.8)
“.',; dy ar r )
o
f,j The traction vector can be expressed along a circular path as :
b
K3
T Tx x Oxy s 6
o - (7.9)
:v T2 Oxy a'yy sing
o Jy and J,, calculated along a circular path can now be given as :
i
o Jymt (W T (coso 2. Laing iy g
= cosg -T. (c0s@ —- —sing —
L 1 K 9 -1 TR 6 I'de
D, ~ '\-‘ -
o (7.11)
P,
P J rf‘[Wsin T (s'neaui«»1 ooseaui)]d
. - “T (sine it aui
2= " X o - ar a6 °
:»""-
.-'-:.
-u"\-'
A
SES) Here, For the case of slastic-plastic material behavior, the strain energy density is
~\'~-
'.‘ ' - the sum of its elastic and piastic (dissipative) part :
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W=W9+Wp| (7.10)

A FORTRAN program has been written to perform the numerical calculation. Stress
components, elastic energy density as well as plastic dissipation and displacements were
read from the ABAQUS output file along a defined path by a data post processing program.
All quantities related to an integration point, (e.g. stress components, linear energy
density and plastic dissipation) were interpolated linearly for the adjacent element node.
The derivatives of the displacement components were computed using a sixth order finite
difference formula. The integration along a path, defined by 65 equally spaced element
nodes, was performed numerically using the Simpson's second order integration rule.

For all mixed mode cases considered both J- and Jo-integral values were calculated

for radii ranging from 0.6 to 8.3 mm from the crack tip.

Z.3 RESULTS OF THE J; AND"J> INTEGRAL CALCULATIONS

Figure 14 depicts the variations of the Jy- and Jp-integral values for all mixed modes
considered over the radial distance r from the crack tip. Jy-integral values range between
9.8 N/mm for the case of pure mode Il to 21.2 N/mm for the case of mixed modes given as
KyKp= 2222/172. Jp values are generally negative and range between J, = 0 for the
cases of both pure modes | and Il and -14.9 for the case of KyK; =1405/1462.

Good path independence was obtained for all cases considered. For increasing mode !l
contribution, however, greater variations in the Ji-integral values can be observed. The

maximum deviation reaches 9.3 percent for pure mode |l loading in comparison to a




LN
'\,".
ey
'.}:_: deviation of 1.12 percent in the case of pure mode .
19
‘-‘ Jo-integral values are generally less accurate and therefore show more path
:; dependence in their results. Hellen et al [62] pointed out that due to higher overall
1 ]
::: displacement gradients in the x5 -direction, the associated numerical errors are large.
o™
- My .'
( R This can be seen from the deviations of J, - integral values which range between 9 percent
< (for the case of K{/K| = 2222/175) and 17 percent (for the case of K|/K; =
h\:l
G 1405/1463).
o
o Both Jy- and J- integral values show little variation for outer paths between 4.1 and
‘_ 8.6 mm and, therefore, these values may be viewed as more accurate.
v, -
oY Table 5 lists the Jq-integral values for the outermost path from both the direct
rle
| ’: integration and the virtual crack extension performed by ABAQUS. As pointed out in
'(‘ j ( chapter 6.2, the Jq-integral calculations of four cases of mixed modes could not be
13 A . .
\ o calculated by ABAQUS. Deviations of Jq-integral values gained from both methods are
J‘,\
‘,ﬁ? within 5.7 percent.
L
SN in all further investigations the Jy integral values given in Table 4 will be used.
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The dominant singularity solution for a cracked plate in a power law hardening material
has been given independently by Hutchinson [21] and Rice and Rosengren [22] for both mode
| and mode |l stress distributions. The solutions which are known as the HRR singular field
were generalized by the solution for the mixed-mode stress distributions presented by Shih
[27]. For the smalil-scale yielding case, the region around the crack tip can be divided,
(according to the nature of singular material behavior), into three distinct areas [59] :

- the far tip field
- the near tip fieid and
- the intermediate zone.

Figure 15 identifies these areas.

8.1 THEFARTIP FIELD

At distances large compared to the plastic zone size the stress and strain distribution is
dominated by the 1/Nr singularity from the linear elastic solution for the stress and
displacement fields. A measure of the strength of the singularity is the path independent

J-integral which can be related to the stress intensity factors K, and K;; according to
equation (2.2). A convenient definition which characterizes the relative strength of K; and

Ky in the far tip field was introduced by Shih [27] as :

M® 2 -2—tan [I|m ]=—tan [5‘] (8.1)
n r-0 re K .

Me is referred to as the far tip field mixity parameter which ranges from 0 to 1 with M®=a1
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for pure mode | and M® = 0 for pure mode |l.

8.2 THENEAR TIP FIELD

For a strain hardening material which can be described by a power law, i.e. the
Ramberg- Osgood relation, the stress-strain relation based on the deformation theory of
plasticity is given as :

1+y 1+2 vy 3 o n'15ij 8.2

oy is the yield stress,

~

Sij is the deviatoric stress tensor given in equation (4.1),

o is the effective stress given in equation (4.3),

€y is the yield strain,

is Poisson's ratio,

is Young's modulus,

is a material constant and
is the hardening coefficient.

Large plastic strains can be expected in the near field so that (with negligible elastic
straing) equation (8.2) becomes :

CSij (8.3)

it can be assumed that the only singularity contained in this region is associated with the
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crack tip. For a circular path of radius r, where ry < r < D, enclosing the crack tip (see

Figure 15 ), the J-integral (according to equation (7.11) ) remains path independent.

To ensure the path independence of the J-integral value the integrand must exhibit a 1/r
singularity. Since the integrand is essentially a product of stress- and strain-like
components, this product leads to a function (f) which is only dependent on 6 multiplied by a
1/r term (assuming the material behavior satisfies equation (8.3)) :

Hutchinson [21] has shown this to be the case for power law hardening materials if the
stresses and strains are given in polar coordinates. For a power hardening law satisfying
equation (8.3), equation (8.4) implies that the following relations hold :

I-J

0’.[.]: Cr n+l O'l]( 9)
LU

€= cr n+l eij(e) (8.5)
1

up= Cr o+l G (8)

where o ij. €jj and ujare stress, strain and disptacement functions in polar

representation where i and j are radial and angular components and
C is a material dependent constant term.

Ditferent from the asymptotic s:lution for linear-elastic material behavior, therefore, the
singular fields ir; the elastic-plastic range are dependent on the hardening characteristic of
the material.

Rice and Rosengren [22] and Hutchinson [21] solved equation (8.5) for the stress,
strain and displacement functions by introducing an Airy stress function. A partial
differential equation governing the stress function ¢in be derived from the compatibility
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equation which can be reduced to a fourth order nonlinear differential equation and solved by
a higher order finite difference scheme. A more detailed discussion of the procedure can be
found in [59].

The constant term C can be determined by taking advantage of the path independence of
the J-integral. Substitution of equations (8.5) into the definition of the J-integral
(equation (7.1)) leads to the determination of the constant C as :

1
J e (8.6)

- (

where a is a material constant ,

€y is the yield strain,
Ty is the yield stress,

n is the hardening exponent and

ln is a constant given by :

n
Inaj'{ﬁrlﬁ'a'e - [sing( &y (Ug- -aa—) Grg T+ 99)) n4_1(0'”01"" Ge)oose]}ds
-

These equations (which were originally formulated for pure mode [) can be extended for

the case of mixed modes. Due to the path independence of the Jq-integral (regardiess ot w
mixed-mode contributions), all near tip field quantities remain under the control of the
Jy-integral value.

In the same manner as the elastic mixity parameter (M@ in equation (8.1) ) the piastic

mixity factor MP identifies the relative composition of mode | and mode Il directly ahead of
the tip according to :
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"%
t
::E From equations (8.5 to 8.7) the formulas defining stress, strains and displacements in
; i the near field of a crack under mixed-mode conditions can now be given as :
4 ::' J _1_
( oo )
ae,o.ln
o J L
<. n+
- €ij= , r) &;i(e) (8.8)
A aey oty
° J =
e uj = ( )T G (o)
Ey; ae, o, | !
0N Yoy
oS
o™
o The stress and displacement fields are therefore characterized by a 1/r(1/(n+1)
‘ ( singularity whereas the strain field assumes a 1/r(n/(n+1) singularity. In reality such
18"
o large stress components cannot exist since geometry changes modify several aspects of the
M
‘ : tip field and therefore limit the stress concentration at the tip (as indicated in the blunting
analysis of McMeeking [60,61]).
M
o
_&2
I:J
N 83 THE INTERMEDIATE ZONE
®
p
‘- Combination of the HRR field and the far field characterizes the stress and strain
distribution and magnitude of the intermediate zone. Whereas its outer border is defined as
“- the transition from the elastic to the plastic zone, its border to the HRR field can not be
-" distinguished clearly. In general it can be assumed that the powers characterizing the field
::: singularity of the intermediate zone show a smooth transition into the characteristic
f‘. powers of the HRR field. No analytical solution has been found yet to connect near tip field !
3 .
e - and far tip field quantities (27,59]. i
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. N OF THE F! VARIA

Stresses and the strain energy densities around the crack tip of the investigated plane
strain specimen were studied with respect to their singular behavior under varying mixed-
mode conditions. All data were taken from the finite element analysis output.

H Fl

Figure 16 shows the plot of the effective stress versus the distance ahead of the crack
tip along the line & = 0° for all mixed-modes cases considered. Four important features
characterize the material response under the influence of mixed modes :

i) The effective stress increases sharply for higher mode Il contributions under
comparable loads. This tendency is also observable if the effective stresses around the
crack tip is considered. Figure 17 shows the effective von Mises stress along a circular

)

path having a radius of r « 0.4 mm away from the crack tip.

ii) For three cases of low mode Il contributions there is a distinct transition zone between
the elastic and the elastic-plastic zones. Both zones are separated by the yield stress of
oy =265 MPa.

iii) The elastic-plastic zone shows in its outer region an increasing influence of the
intermediate zone. Plastic strains which are of the order of their elastic counterparts

o

o

result in @ combination of the HRR field and the far field.

Al
ALLI SO

e

[}
l'l'

L s
1 4

iv) At distances very close to the crack, i.e. less than 0.5 mm, the singularity governing

4
-

the effective stress behavior is weaker than the singularity characterizing the elastic
material behavior and can therefore be attributed to the HRR field. In Figure 18, using
full logarithmic axes, the nature of occurring singularities are shown. For distances
close to the crack tip, the equivalent stresses of all mixed modes are distinguished by
o . parallel lines before the smooth transition into the intermediate zone which show
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particularly weak singular behavior. For four cases of strong mode | contribution the
elastic singularity is sharply separated from the elastic-plastic zone.

Figure 19 shows the y -component of the stress tensor versus the distance from the
crack along a line 8 = 0° for all mixed-modes cases considered. Increasing mode Il
contribution results in a steady decrease in the values of the stress component in
y-direction which approach zero for the case of pure mode Il. For distances less than
approximately 0.2 mm away from the crack tip significant scatter in the y-component of
the stresses for mixed modes of high mode 1l contribution can be observed. It is assumed that
this stems from the influence of the badly distorted crack tip which is exposed to an
increased rotation as mode Il contributions grow. Since stresses are a second order quantity,
(that means they are calculated from displacement derivatives obtained from the finite
element solution) this effect may be amplified.

The powers of the singularities can easily be determined if the stress is assumed to
follow the form :

0g=CrTog (9.1)
In full logarithmic notation of equation (9.1) the parameter ¥ indicates the slope according to :
log (gg) = Y log (r) + log (C ) (9.2)

The extraction of the exponent T has been performed using a least square approximation for
all mixed-modes casas considered. Table 5 lists these powers for distances from the crack
which contain the characteristic singularity. Compared to a predicted value of the power of
T=-1/7 for the employed material, it can be seen that for increasing mode |l contributions
this value is approached. It reaches the predicted value of Y = -0.1428 almost exactly in the
case of pure mode Il. For overwhelming contributions of mode | the HRR solution
characterizing power was not reached even for closest distances to the crack tip. This is
mainly caused by the distinct crack-tip blunting which results in a decréase in the effective

stress and weakens their singular behavior. The elastic singularity which could be

determined for four cases showed excellent agreement with the predicted value of ¥ = -0.5 .
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2.2 STRESS AND STRAIN DISTRIBUTION, PLASTIC ZONE SIZE AND CRACK BLUNTING

Contour plots of the effective von Mises stress in the vicinity of the crack tip allow a

[}

::.j,: good qualitative assessment of the body response under the influence of a crack under mixed-
‘_ﬁ:ﬁ mode loading.

?_‘;E Figures 20 to 26 display the contours of the effective stress in a zone of 1 mm radius
( around the crack tip for a selection of mixed-modes cases (which are identified on each
X Z’-;:Z plot). The typical symmetric butterfly shape of the stress contours in the case of mode |

&w_\ incline and assume asymmetric shapes through stages of mixed modes with increasing mode
J‘-::. [l contributions until the contours show the typical compact and symmetric mode 1l pattern.
'0.s The increasing concentration of the von Mises stresses around the crack tip is
.::'f-_ij significant for higher mode Il contributions. While for overwhelming mode | contributions
\_,E elastic regions can be still observed, the zone considered is entirely plastic in the range of
N higher mode I1 values.

2 ( The shapes and magnitudes of the effective stresses and their variations between 1 mm
:;: and 10 mm radii for mixed modes and 2 mm to 20 mm radii for pure mode Il around the
Sj; crack tip are shown in Figures 27 to 33. Here the influence of mode Il contributions resuits
o8

in higher effective stresses and, consequently, in larger plastic zone sizes.

The outermost contours of the equivalent plastic strains represent a good measures of

B

.-;Z- the plastic zone size. Figures 34 to 37 are contour plots of effective plastic strains for
: selected mixed-mode cases in a circular region of 1 mm radius around the crack tip. The
'."‘ increasing gradient of plastic strains around the crack tip is evident. Figures 38 to 43 show
;_-;:Z the effective plastic strains in the region of 1 to 10 mm around the crack tip for all mixed
: modes and the region 2 to 20 mm for the case of pure mode |l.
:::-f Figures 44 to 48 show the deformed mesh for a selection of mixed-modes cases in a
; region of 1 mm radius around the tip. The displacements are magnified by a factor of two. In
_;:«; the case of pure mode |, a parabolic shaped crack blunting can be observed. In chapter 6.1 it
‘:E' was pointed out that the employed crack tip elements can only approximate the strain
j;:ji assymptote. For increasing influence of mode Il it can be seen that the crack-tip opening
. <. decreases with increasing mode |i contribution and the crack tip tends to rotate in a
S
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clockwise direction, which reaches its extremum in the case of pure mode Il. In the case of
high mode Il values, the extreme hydrostatic state of stress around the tip cannot be relieved
by crack-tip blunting (as in cases with overwhelming mode | contributions) where finite
strains create a relatively smo.th crack tip.

Figures 49 to 52 depict only the upper and lower element layers around the crack tip in
deformed and undeformed states (with a magnification factor of 10) for selected cases of
mixed-mode loading. The influence of the rotation of the crack tip and the deviation from the
center line of the undeformed crack is distinct for cases of high mode Il values.

Figures 53 to 56 show deformed versus undeformed meshes of the outer region between
t and 10 mm radii around the crack.

2.3 THE STRAIN ENERGY DENSITY

The strain energy density criterion, according to Sih [31,32], has not only been
ca\pable of predicting fracture under brittle material behavior, but also fracture in the
elastic-plastic regime.

The strain energy density, using the notation of Sih, is given as :

aw i
(%) = [ o de.. (9.3)

where  €;; is the strain tensor and

Tjj is the stress tensor.

The fact that excessive change in shape can be associated with yielding while excessive
change in volume can be associated with fracture lead to the formulation of the strain energy
density criterion for elastic plastic material behavior. It is postulated, [31,32], that
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maximum yielding occurs when the strain energy density reaches its maximum value

(dW/dV)may whereas fracture initiation is associated with minimum strain energy density

(dW/dV)min- Chow and Xu [31] investigated the extension of the modification of the strain

energy criterion in the elastic-plastic regime for the case of mixed-mode loading. It was
observed that the strain energy density criterion led to incorrect predictions of the angle of
fracture initiation since two local minima can be observed for some mixed-mode cases.
Figure 57 shows the variation of the strain energy density versus the angle 6 along a
circle of radius r=0.4 mm around the crack for selected cases of mixed-mode loading. The
minimum strain energy density is located at angles from 180° for pure mode | to 90° for
pure mode Il. This contradicts experimental evidence [68-70]. Therefore the assumption of
the crack growth direction was restated by Sih [71] that the direction of maximum vatue of

(dW/dV)min governs the onset of crack growth. These values range between 6 =0° for mode

1to 8 = -90° for the case of of pure mode Il and are given in Table 6 for all cases of
mixed-mode loading considered.

In contrast to the maximum values of the strain energy density, which increase sharply
for growing mode ! contribution due to higher stress and strain components around the

crack, the maximum values of (dW/dV)n, remain for all cases remarkably constant.

Very good agreement between the location of (dW/dV)qa, arid the maximum yield can be

found by comparing the the angular position of the highest effective stress in Figure 17 and
igures 20 to 26 with the predicied values by the strain energy density criterion.
The singular behavior of the strain energy density versus the distances ahead of the

crack along the line 8=0° is depicted in Figure 58 in full logarithmic representation. In
equation (8.5) it has been assumed that the strain energy density is governed by a 1/r
singualrity inside the HRR field. It is evident that low contributions of mode !l values result
in weaker singularities in the strain energy density as the intermediate zone is approached.
Determination of the powers of the singularities which are given in Table 7 demonstrate that
the determined powers are in excellent agreement with the predicted value aven for
intermediate cases of mixed-mode loading. Cases distinguished by low mode Il contribution
show clearly the weak singular behavior inside the intermediate zone. As tha crack tip is

approacned, it can be seen that the singular behavior of these cases converges towards 1/r.
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fu \ This observation reinforces the correctness of the assumption in equation (8.5) that the
i‘

HRR field solution is valid if the strain energy density exposes a 1/r singularity inside the
plastic zone around a crack.
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Vi HE STR FROM FINI MENT R

The stress functions can be resolved from near tip field stress and displacement

components obtained from the finite element results. All parameters required for 65 equally

spaced nodes along a circular path of radius r = 0.4 mm around a crack were read from the

ABAQUS data output file. Figure 18 shows that the selected radius is still within the

dominant crack-tip singular field for all mixed-modes cases. Paths closer to the crack tip

showed significant scatter in the values of o, and o gg components.

Determination of the stress function results in solving the three equations given in equation

(8.8), where the components of ojj and u; are given in polar coordinates :

~ J - —

.. = nel g .
] (aeyay'nf) |
(10.1)
.
G' a( J |) n+t n—-ﬂ ui
( aeyo'y n
N r
n—~ . H -~ -~ aa -~ au 1 ~ ~ -~
|nf7{{n+1a'e°°59 [5‘”6( O'rr(Ue' —a—er-)' Ure(ﬂr*a—ee))*ﬁ(o'”ﬂr +o’r9u9) me]}de

The equivalent stress o g for the case of negligible elasticity in the case of plane strain is

JI‘ .
o given as :
.

> Go=N3(35, - Gog)* Trg . (10.2)

- Due to the dependence of I, on values of ojj, uj and its angular derivatives (along a
e circular path taken from -m to =), the solution of this system of equations can only be

accomplished .teratively. In the present case, use of the interval halving method was made
which showed rapid convergence for all cases considered. Figure 59 eéxplains the principle

of the interval halving method.

W T For an initial estimate of 1, the stress and displacement functions are calculated
e '
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according to equation (10.1). The derivatives of the nodal displacements with respect to 8
are obtained using a sixth order finite difference formula and the integration is performed

using Simpson's second order integration rule. For incrementaily increasing values of 15,
both stress and displacement components and derivatives are calculated and substituted into

equation (10.2) to gain a new value of |,. The calculated value of |, approaches the assumed
value of I, and finaily surpasses it. Since this can be expressed as the difference (F)

hetween the assumed value |, and the calculated value I,

F=|na'|ncy (103)

a change of sign in (F) is expected between two incremental values of |,;. The following
interval haiving procedure narrows the interval where the change in sign has occurred down
to a specified residual. A numerically accurate value for |, can therefore be obtained.

Figures 60 to 69 show the stress functions o, ,0gg , 0 g and the effective stress
function o ¢ which are normalized by setting the maximum value of the 8 -variation of the
effective stress to unity.

For all cases considered, the components o gg and o ,g show the expected value of zero
on the crack surfaces, that is, for angles of 8 = £ n. In contrast to pure mode i in the linear
elastic case, o, assumes positive values on either side of the crack flank. On opposite
surfaces of the crack o, is positive for both pure mode | and a mixed-mode case

distinguished by the stress intensity ratio of Ky/K; = 2222/178. This observation

contradicts Shih's statement [27] that * for any deviation of mode |, the minus sign holds in:
T (Bam)= -0 (O=-1t) (10.4)
for 0 < MP < n.”

Also, the equivalence of the magnitudes of radial stress components on the surfaces of the

crack at equal distance from the crack could not be shown except for the symmetic cases of
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both pure mode | and mode II. This can also be seen from the magnitude of the effective von
Mises stresses on the crack surfaces in Figures 20 to 26. Since the effective stress contains
o as the only component different from zero, their contours had to match up at the crack
flanks. Even though the observation of equal radial stresses on crack surfaces by Rice and
Budiansky [71] seems plausible, no reason for this mismatch could be found. This
phenomenon could also be observed in other studies on mixed-mode fracture [27,72,73].
From equation (8.7) the mixity parameter MP! can be resolved from the stress

components o gg and o ,g of the finite element results. Some scatter in the ratios of o gg

over o ,g for distances of less than 0.5 mm from the crack tip was observed and, therefore,

a least square approximation was employed through ail datapoints for distances ranging from
0.08 to 1 mm from the crack tip.
Figure 70 shows the ratios of o gg over o g of same integration points along the crack

and their corresponding least square approximations for three mixed-mode cases. The
constant character of the curves is evident.

The relationship between the calculated values of the mixity parameter MP! and the
constant |, given in equation (8.6) is shown in Figure 71. The results compare well with

those generated by Shih (27] for the hardening powers of n = 5 and n = 13.
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11, CONCLUSIONS ANO RECOMMENDATIONS FOR FURTHER RESEARCH

In the present study, local crack-tip quantities were investigated for general
mixed-mode crack problems under the condition of plane strain. In order to become
independent of a specific specimen geometry, the local crack-tip region was modeled as a
disk with the crack tip at its center. Displacements on the boundary of the local crack
region were calculated from assumed combinations of stress intensity factors for mode |
and mode |I.

The strain energy density criterion, according to Sih, was applied as a fracture
criterion. This provides a concise relationship between a given strain energy density
factor and the stress intensity factors, K| and K. For ten comparable cases of loading

(which span the range from pure mode | to pure mode II) the body response for
elastic-plastic material behavior was caiculated using the finite element package ABAQUS.
The eight node plane strain isoparametric elements employed were degenerated into
triangular shaped elements around the crack tip to produce a 1/r singularity in strains.
The material data of the stainiess steel A304 was used in the finite element calculation.
The path independent Jq-integral (which is a governing parameter of the amplitude of

the crack-tip singularities of the stress and strain fields) was calculated according to the
method of virtual crack-tip extension that is available in ABAQUS. The direct integration
method was applied for four cases of mixed-mode loading, which had to be subdivided into
separate consecutive steps to reach convergence. For these cases the virtual crack
extension method could not be applied by ABAQUS. The Jy-integral value was calculated
using the direct integration method along nine circular paths whose radii from the crack
tip spanned between 0.6 and 8.3 mm. Generally, very good path independence was observed
which indicated the correctness of the obtained values and justified for their further use.
Good agreement between the J4-integral values obtained by both methods was observed
when both were caliculated. Deviations between the results obtained by both methods were
within 5.7 percent for all cases considered.

Jo-integral values, which have attained limited usage in the field of fracture
mechanics, were aiso evaluated. Less path independence especially for cases of more
balanced mode | and mode |i contributions was observed due 1o larger numerical errors in
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the evaluation of the displacements which was caused by higher displacement gradients in
the y -direction.

The characteristic singular behavior of stresses and strains within the HRR field, the
intermediate zone, and the far field was best expressed by the dependence of the effective
von Mises stress on the distance from the crack tip, along the line 8= 0°. Extraction of the
powers characterizing the singular behavior of stresses and strains indicated the
dependence of the size of the HRR field on increasing mode |l contributions. In the case of
pure mode |, the characteristic exponent of -1/7 (for the given material) in the effective
von Mises stress was never reached due to the distinct influence of crack-tip blunting.
Extreme hydrostatic stresses in the vicinity of the crack tip are reduced by finite strains
and the stress-free crack-tip surfaces. For higher mode !l contributions, the crack width
decreased significantly to an aimost sharp crack in the case of pure mode Il. Larger plastic
zone sizes and less crack-tip blunting result, therefore, in a distinct HRR-field of

increasing size which was observed to be valid for a distance of approximately 25 J/O'y in

the case of pure mode Il. Accordingly, the effective stress increased sharply for higher
riode I} contributions.

The strain energy density was investigated to determine its applicability as a fracture
criterion for elastic-plastic material behavior under mixed-mode loading. It was stated by
Sih [29] that the maximum yield occurs where the strain energy reaches its maximum
which could be verified in this study. The modified formulation of the condition that crack
extension occurs under the angle where the minimum of the strain energy density shows a
maximum seems to be promising. For increasing mode Il values the._'q[rection of crack
growth initiation could be shown to move from 0° to -90° relative to the crack plane.
This is comparable to the results of the linear elastic solution. '

An emphasis of the presant study was the numerical extraction of the stress functions
from the finite element solution, for a given material with a hardening factor of six. The
stress functions obtained compared reasonably well with those obtained by Shih.
Theoretical considerations suggest radial stresses of equal magnitude for equal distances
from the crack tip on either crack surface. This would imply that. the radial stress
function (which is the only component different from zero on the crack surface) has the
same iagnitude at either side of the crack surface. This could only be shown for the
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= \ symmetric mode | case and the skew-symmetric mode Il case. In all other cases of mixed-
mode loading a deviation in the magnitude of the radial stress component on either side of
the crack could be observed. The effective von Mises stress (which is only dependent on the
radial stress along the surfaces of the crack) showed this mismatch aiso. For any amount
of mode Il contribution, the predicted change in sign of the radial stress acting on opposite
crack surfaces was not verified by the finite element results. One case investigated, where

the specimen was subjected to a load resulting in stress concentration factors of K| = 2222
and K = 178 NVmm3, showed positive radial stresses on either side of the crack surface.

The finite element calculations indicated that the sign of o, on the crack surface jumps

suddenly from positive to negative values for a more intermediate mixed-mode
combination.

The investigation of the observed discrepancy between the behavior of theoretical

7,4

radial stresses along the crack surface and the finite element solution was not studied in

2
e,

g
e

this thesis. An important extension of this work should include research on this

x
[}
Iy
) ]
¥

- phenomenon.

2 An extension of this study should include investigations of the local crack-tip

()
")

o

quantities of a suggested mixed-mode specimen. The mixed-mode fracture specimen (due

»

5

[ T T ]

to Richard [34]) has been shown to simulate very well arbitrary mixed modes ranging

2 x

e,

P
s

from pure mode ! to pure mode Il and should be given consideration. Both numerical and

2\

experimental studies are necessary to further investigate two interesting concepts of
fracture criteria which predict both the onset of crack growth and the direction of crack
extension for ductile materials under mixed-mode loading : .

,:" i) The strain energy density criterion according to Sih

: The modified formulation of the predicted angle of fracture initiation appears to be
* promising in the finite element resuits but needs further experimental confirmation.

Further investigation of crack growth initiation in relation to its assoviated

strain energy density , especially in the range of high mode Il values seems nece:isary.

ii) The T-criterion according to Theocaris
- This criterion (which has been extended very recently for mixed-mode loacings
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under ductile material “ehavior) incorporates the HRR field solution. Experiments
with inclined cracks in a center cracked panel showed good agreement in the prediction
of the angle of extension versus the crack and failure loads. Both finite element
analysis and experimental investigations with a specimen which can reproduce all
combinations of mode | and Il may establish this criterion in the field of fracture
mechanics.
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Eigure 2 : Definition of the crack tip stresses, showing rectanguliar and poiar
coordinate components.
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Eiguire 3 Definition of crack angle and fracture angie in th. center cracked panel
with slanted crack under uniaxiai iensile stress.
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Eigure 8 : Idealized constitutive material behavior :

(a) incrementally elastic-plastic material conforming 1o incremental
theory of plasticity,
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(b) incrementally elastic-plastic materiali conforming to deformation
theory of plasticity.
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Eigura 6 : Mapping of the eight-ncde prabolic element from spacial coordinates
(x, y) to local coordiantes (€, n).
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(b)

Generation of the eight-node collapsed element :
(a) rectangular eight-node element, !
(b) degenerated triangular eight-node element.
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Figure 11 : Boundary of the finile element maesh of the specimen, inner radius : Smm,
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Figure 13 : A contour I' around the crack tip and parameters defﬁu‘nq the J-integral.
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Figure 13 : iilustration of the
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Delormed Mesh, outer radius r= tmm.

Figure 47 :

1098/1633.

intensity factor ratio : KyK, =

Siress
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K| - Value K - Value Mixity Parameter

INVmm3) [N/Ymm3] (Me)
2230.0 0. 1. pure mode |
2222.9 175.8 0.949
2107.7 6A70.8 0.804
1927.0 987.6 0.698
1683.8 1252.0 0.584
1405.6 1462.2 0.487
1098.7 1633.8 0.377
772.2 1774.5 0.261
396.3 1903.8 0.130
0. 2018.3 0. pure mode |l

Ki - Ky -values according to the fracture criterion by Sih. The

elastic mixity parameter M® is given by equation (8!:1)
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N1=l—(1-€)(1-n)(-1-e-n)

Ny = l_(1+e )(1-m.)(-1-+€-7m)
Ns.%.(1+e)(1+n)(-1+e+n)
Ne= (1-6)(1+n)(-1-§4+m)
Ns= = (1-82)(1-n )
Ng = 12.(1+e)(1-n2)
N7'1?(1'e2)(1+n)

Ng= 2 (1-€)(1-n2)

Shape functions of the eight-node isoparametric finite element.
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Chemical Composition in Weight Percent :

Element: C Mn P S Cu Si Ni Cr Mo Co N
0.03 1.62 0.034 0.015 0.31 0.43 10.04 18.3 0.3t 0.15 0.07

Material Data :

Property : Symbol Unit Value
Young's modulus . E MPa 203800.
Yield stress POy MPa 265.
Maximal stress ! Omax MPa 640.
Poisson's ratio Pu - 0.3
Critical stress intensity factor : Kie N/Ymm3 4300.
Critical J-integral value 1 die N/mm 108.
Jable 3: Chemical composition and material data of the stainless steel A304.
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e
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A
X
w No. J-Integral Value J-integral Value Deviation
W (Vitual Crack Extension) (Direct Integration)
" [N/mm] [N/mm] %
7
v
A
AL
e 1 20.49 20.50 0.05
Lo
" 2 2097 2117 0.95
g 3 - 20.21 -
: 4 . 18.94 .
i 5 - 17.19 -
- 6 - 15.46 -
: 7 11.57 11.88 2.61
{ ( 8 9.94 10.22 2.74
: 9 9.28 9.87 5.77
; 10 9.19 9.73 5.55
-0
N
K'
. )
N
q
::D
1
q
_.’- Iable 4: Comparison oi J-integral values obtained by the virtuat crack
y extension method and the direct integration method. '
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Mixed Modes :

Number : 1 2 3 4 5 6 7 8 9 10
K. 2230. 2223, 2107. 1927. 1638. 1405. 1098, 772. 396. 0.
K : 0. 176. 671. 988. 1252. 1462. 1633. 1775, 1904. 2018.
R-Zon
inner radius : 0.08 0.08 0.08 0.08 0.1 0.1 0.1 0.1 0.2 0.2
outer radius : 0.12 0.12 0.3 1. 4, 6. 8. 8. 9. 9.
power : -0.114 -0.119 -0.134 -0.134 -0.135 -0.140 -0.140 -0.141 -0.142 .0.143
Interm, Zone
inner radius : 0.15 0.15 0.9 2. 5. 8. - - - -
outer radius : 1. 1. 22 5. 10. 12. - - - -
power : -0.0391 -0.041 -0.041 -0.060 -0.041 -0053 - - - -
Elastic Zone:
inner radius : 2. 5, 6. - - - - - - -
outer radius : 12, 12. 12. - - - - - - -
power : -0.51 -0.499 -0.50 - - - - - - -

. -
DY
o v
e

R
.'.w..l'-..-

AN
AR

ol
,-

Powers characterizing singular behavior of the effective von Mises

stress along the line 8 = 0° ahead of the crack tip. ( All distances are
given in mm )
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Mixed Mode Cases :
No. K Kin Predicted Fracture Magnitude of Strain
[NNmm3] Angle Energy Density
(MJ/m3)
1 2230. 0. 0. 1.83
2 2222.9 175.8 -10.48 1.82
3 2107.7 670.8 -21.60 1.71
4 1927.0 987.6 -33.39 2.00
S 1638.8 1252.0 -45.00 2.22
6 1405.6 1462.2 -50.80 2.47
7 1098.7 1633.8 -68.03 1.89
8 772.2 1774.5 -79.15 1.95
= 9 396.3 1903.8 -84.56 1.82
bt 10 0. 20183 -90.00 1:925
i
.ﬁA:.r
v
J
Y
-:::-:
-
>
e
'.':-'.‘ Iable 6 : Fracture angle 8 and corresponding strain energy density 0.4
NS mm from the crack tip for all mixed-mode cases considered.
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Mixed Mode Cases :

No. Ki Kiy Range of Distance from Power of the Correlation

(NWmm3] Crack Tip Considered [mm]  Singularity

1 2230.0 0. 0;04 - 012 -0.622 -0.9999
2 22229 175.8 0.04- 0.12 -0.699 -0.9996
3 21077 670.8 0.04- 0.20 -0.880 -0.9994
4 1927.0 987.6 0.04 - 0.40 -0.943 -0.9997
5 1638.8 1252.0 0.04 - 0.80 -0.983 -0.9998
6 14056 1462.2 0.04- 10 -1.030 -0.9999
7 1098.7 1633.8 0.04- 10 -1.029 -0.9999
8 772.2 17745 0.04- 1.0 -1.030 -0.9998
9 356.3 1903.8 0.04- 1.0 -1.002 -0.9998
10 0. 2018.3 0.04- 1.0 -1.000 -0.9999
Jable 7: Powers of the singuiarity of the strain energy density in the vicinity

of the crack tip along the line §=0° from least square approximation.
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APPENDIX E: DUCTILE CRACK GROWTH SIMULATION -

LOCAL DEFORMATION AND FIELD VARIABLE ANALYSIS
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4 In the present work, slow stable crack growth in a ductile material (A533B steel) is
simulated numerically with a widely used state of the art commercial finite element
‘, code (ABAQUS). The finite element formulation uses the Jo flow rule of incremental
U,, plasticity based on smail deformation theory. An experimentally obtained load versus

] crack growth relation is employed as input and the finite element mesh models the

Y upper half of a modified compact tension specimen. The material behavior is modeled
( with power law hardening (n = 10). Two meshes are used for the crack growth
K simulation: a coarse mesh with 1874 elements and 1946 nodes, and a fine mesh with
g 2914 elements and 3002 nodes. The finite element meshes consist of four - node
bilinear plane strain isoparametric elements with eight degrees of freedom (type
CPE4). Crack extension of eight millimeters for the coarse mesh and one millimeter
for the fine mesh were simulated. The nodal release technique is used as a numerical
crack growth simulation technique.

The evaluation of the resuits emphasizes two points: (i) to determine how well two
' crack growth criteria (J/CTOD and CTOA) characterize mode 1 crack extension under
' plane strain conditions and in what interval range they are applicable, and (ii) to

examine the singuiar field variabies at the onset of crack growth and associated with
b the gquasi - static crack extension. The purpose of the second evaluation is to Jetermine
N whether the singularity fields suggested by asymptotic methods exist independently
from each other (whether a transition point between two different singularity fields
can be identified) or whether a superposition of the singularity fields occurs ahead the

stable advancing crack tip.
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Figure 41: Strain in y - direction along the line & = 0° for the advancing crack

P (coarse mesh, 0 - 1 mm crack extension).

ﬂ-_,

:"’ Figure 42: Strain in y - direction along the line & = 0° for the advancing crack
s (coarse mesh, 1.5 - 4 mm crack extension).

! Figure 43: Strain in y - direction along the line © = 0° for the advancing crack
(coarse mesh, 5 - 8 mm crack extension).

) |
™
0
o Figure 44: Stress in y - direction along the line © = 0° for the advancing crack
vl (fine mesh, 0 - 1 mm crack extension).
v-. Figure 45: Stress in y - direction along the line © = 0° for the advancing crack
"_3, (coarse mesh, 0 - 1 mm crack extension).
o
' Figure 46: Stress in y - direction along the line © = 0° for the advancing crack
i (coarse mesh, 1.5 - 4 mm crack extension).
®
3 Figure 47: Stress in y - direction along the line © = 0° for the advancing crack
,' (coarse mesh, 5 - 8 mm crack extension).
L
i Figure 48: Von Mises equivalent stress along line © = 0° for the advancing crack
; ‘* ( (coarse mesh, 0 - 1 mm crack extension).
Jf; Figure 49: Von Mises equivalent stress along line © = 0° for the advancing crack
e (coarse mesh, 1.5 - 4 mm crack extension).
'.‘:~
'.f-:' Figure 50: Von Mises equivalent stress along line © a 0° for the advancing crack
) (coarse mesh, 5 - 8 mm crack extension).
‘I
\'J Figure 51: Von Mises equivalent stress along line © = 0° for the advancing crack
o (fine mesh, 0 - 1 mm crack extension).
'~
= Figure 52: Transition point position versus crack growth .
°
"::_\ Figure 53: Log / log representation of the von Mises equivalent stress along line
::3. © = 0° for the advancing crack (coarse mesh, 0 - 1 mm crack
=2 extension).
oS
= Figure 54: Log / log representation of the von Mises equivalent stress alorg line
! e = 0° for the advancing crack (coarse mesh, 4 and 8 mm crack
oo extension).
.::f.; Figure 55: Elastic strain energy density along line & = 0° - 180° for the advancing
- crack (fine mesh, 0 - .75 mm crack extansion).
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Figure 59:

Figure 60:
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Elastic strain energy density along line © = 0° - 180° for the advancing
crack (coarse mesh, 1 - 3 mm crack extension).

Elastic strain energy density along line © = 0° - 180° for the advancing
crack (coarse mesh, 4 - 8 mm crack extension).

Plastic strain energy density along line © = 0° - 180° for the advancing
crack (coarse mesh, 0 - 1 mm crack extension).

Ptastic strain energy density along line © = 0° - 180° for the advancing
crack (coarse mesh, 1.5 - 4 mm crack extension).

Plastic strain energy density along line © = 0° - 180° for the advancing
crack (coarse mesh, 5 - 8 mm crack extension).

Figure 61a - 61m:iso contours of the von Mises equivalent stress for the advancing

crack (coarse mesh).

Figure 62: Behavior of the characteristic radius R, of the strain intense region

(sharply bordered region where the rate of energy dissipation is high).
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Table 1:  Relation between the external (applied) load and the crack growth (coarse
mesh).

Table2: Material composition of AS33B steel [66] (in weight percent).
Table 3:  Stress - strain properties of A533B steel.

Table 4: J - values for different paths.

Table 5: J - integral values over crack extension.

Table 6:  Comparison of the results for the J - integral performed in this work with
the work of Hoff [37].

LA 4
y

X

X. l' l‘ ."
PR &2
PR e

I's

v
".ll""l L]
PP

.

x

f o 4

I
L'J.x!x.t-»'.

y
y

. " ’
s 'l'l’l:’l.‘. o,
Al

o
R
ST

L

e
Fn’n

7, PR R - P, S Ly
~ T ""\‘ﬂ L, "-" -_’-'--‘;-”-“fh_ LY f"-x‘\q"\

—'fﬂ.’—"f " g vy . [
NI G M(Ji AN N A




L L T T BT ey - —_——
WVUFT W T TR Y ¥ T W wY v - b a4 T VI T T L L4 —1

)
VN -,
:::: oy
»
‘ NOMENCLATURE
a flow vector
a8 nodal displacement vector
A scalar term in Dep
A displacement - shape function polynomial matrix
ab,.cd length
b body force vector
B strain - displacement matrix
o D elastic constitutive matrix
W Dep elastic - plastic constitutive matrix
| : Dep’ Dgp known for a certain stress value
3 dy mean void initiation particle spacing
4 dr, constant dependent on n and the state of stress
E Young's modulus
1 nodal force vector
fo nodal force vector caused by surtace traction
fol nodal force vector caused by load
s fea nodal force vector caused by initial strains
, f_cra nodal force vector caused by initial stresses
o
[ F yield criterion
® g material constant
. G strain energy release rate
b h element size
" I constant given in fig. 37
3 J J - integral
N J Jacobian matrix
" .
< Jw part of J - ‘ntegral caused by strain energy density
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part of J - integral caused by surface traction

integer

constant

stress intensity factor
element stiffness matrix
assembilage stiffness matrix
length

material constant

strain hardening exponent
shape function

shape function matrix
radius of polar coordinates
order of the nearly proportional loading zone
characteristic radius

safety factor

tearing modulus

surface traction vector
thickness

displacement vector
displacement in x,y direction
strain energy density

strain energy

external work

cartesian coordinates

material dependent constant
crack tip opening angle
constant coefficient ot assumed polynomial
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i LINTRODUCTION

’

é Under normal circumstances, a structural analysis assumes that the materials

E::: involved are ideal homogeneous flawless materials, (i.e. stresses and strains are

i uniformly distributed throughout a body). Inglis {1] first emphasized the significance

:3":3 of intense and localized concentrations of stresses around sharp notches. Neuber (2]

'.::\ resoived this observation of stress concenirations caused by notches by introducing

:C-;: stress concentration factors.

q

::.» Griffith contributed pioneering work to this subject in the early 1920's (3,4]. He

fc:‘} developed a continuum mechanics based formulation of the change in strain energy due

E: to the presence of a crack in brittle elastic solid. Often this work is quoted as the
- starting point of fracture mechanics as an independent branch of mechanics. Sneddon
2 (5] deduced expressions for the stress distribution in the neighborhood of a crack in an
-: elastic solid from complex stress functions developed by Westergaard [6].

( The next step in the development of the theory of fracture mechanics was made by
lrwin in the 1950's. He observed that there are three independent local kinematic
movements of the upper and lower crack surfaces with respect to each other (fig.1)
{7].

b 1) Opening Mode or Mode 1

- 2) Sliding Mode or Mode 2

E'.':'_'. 3) Tearing Mode or Mode 3

o

1 Essentially all stress systems in the near crack - tip region may be derived from these
g three modes of loading. Since the opening mode (or mode 1) represents the
K predominant stress situation in many practical cases, most of the research is done in
15 this area. Building on the associated stress fields in the near crack - tip region of the
::f: three different crack movements, lrwin deduced the stress intensity factor (K)
E:J concept (8], where K describes the intensity of the elastic crack - tip stress field.
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Previously Orowan recognized that for relatively ductile materials, the work done in
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plastic deformation is much larger then the energy required to form new crack surface
[8]. From these observations irwin defined a material property G which is the total #
energy released during crack extension [10]. In addition he demonstrated the
equivalence of G and K for linear elastic material behavior. This property is the basis
of brittle fracture mechanics today. Since the stress distribution characteristics
around a crack are always the same, material properties can be found by testing

suitable specimens. Such material properties like G (critical energy) or K. (critical

n stress intensity factor), once found, can be compared with the G or K value of a body
subjected to a certain load condition and the designed structure simply has to satisfy
the following conditions

G< % eq. 1.01
K < % eq. 1.02

whers s is the safety factor. Up to this point, linear elastic material behavior has been
used as basic assumption to develop the theory. Therefore the discipline, using this
principle, is called Linear Elastic Fracture Mechanics (LEFM).

Wells, in the early 1960Q's [11], introduced the concept of the crack opening
displacement. This was the first example of a fracture concept developed beyond

general yielding. Wells's work provided the basis for the semi empirical '‘COD Design
Curve' approach, used today (especially in the United Kingdom ) for fracture under
contained yielding conditions. Hutchinson [12]} and Rice and Rosengren [13] derived
(under the assumption of a power law hardening material in the nonlinear region of
material behavior) solutions for the stresses and strains near a crack - tip using the
deformation theory of plasticity. Rice subsequently [14] deduced an alternative (but
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equivalent) approach to the COD Design Curve. He introduced the J - integral, a path
independent contour integral around the crack - tip. Although several path independent
contour integrals have been advanced independently {15, 16, 17), for any fracture
mechanics analysis where significant plasticity occurs, either the COD Design Curve
or the J - integral is used. The approach essentially is the same as in linear elastic

materials shown in eq. 1.01 and eq. 1.02, namely the designed structure has to satisfy
the condition

J< =5 eq. 1.03

The discipline of fracture mechanics where elastic - plastic deformation must be taken
into account is called Elastic Plastic Fracture Mechanics (EPFM). Due to the

complexity of the problems in EPFM, progress in this discipline is not as advanced as
in LEFM.

The Finite Element Method (FEM) is a numsrical method which provides the
opportunity to simulate elastic and plastic material behavior. By formulating different
types of idealized constitutive behavior (not only nonlinear elastic corresponding to
deformation theory of plasticity, but also incremental plastic corresponding to a flow
theory of plasticity) (fig. 2), it is possible to characterize a fracture within a body
under arbitrary load conditions. With this tool, bodies subjected to complex loading
conditions (in elasticity as well as in plasticity) can be examined. '

In fracture mechanics today, engineering calculations are not limited to the
determination of the combination of the critical crack size - load conditions for
fracture instability. In addition, calculations to determine the rate of progression of a
crack are performed. There are several distinct types of crack growth:

- fatigue crack growth,

- creep crack growth,




( - environmentally assisted crack growth, and

K - stable crack growth.

L) )(n..:

X
5,;? Fatigue crack growth occurs in structures which are operating under alternating loads
S thl ..

D) sufficiently severe to make fatigue resistance a primary design criterion. The
}}_: approach for solving this problem is to relate the change in crack length with the
\::Z:: number of applied load cycles. A widely used equation for this relation is the ‘Paris
AN Law' [18]
L da _ oaky" eq. 1.04
1N

CaWs

bl _ where  Knayis the upper load stress intensity factor,

Kmin is the lower load stress intensity factor,
AK iS Kma‘ - Kmin'

da is the crack length,

>

- s o
A~

:;1 dN are the load cycles, and

;:\ g.m are material dependent constants.

s

S )‘ One difficulty encountered is that an exact definition of the transition from initiation to
-»-, propagation often is impossible.

:'-::-‘; Creep crack growth is a very important problem, particularly in the power generating
: industry and aircraft gas turbines. Metals show a creep behavior at temperatures
’ greater than about thirty percent of their absolute melting temperatures. There are
! two competing mechanisms to describe the time dependent crack growth behavior. The
:‘f" first mechanism builds upon the blunting of the crack - tip. This phenomenon is
((_.,F observed experimentally and has been simulated numerically. Due to the crack - tip
'_-jl:-f blunting, the stress field ahead of the crack relaxes and tends to retard crack growth.
::f- The other mechanism resuits in an accumulation of creep damage in the form ot
U 4
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microcracks ahead the crack - tip. These microcracks join each other causing the
crack to extend.

Environmentally assisted crack growth is an extremely complex problem and even
experts in this field cannot always agree on the precise distinction between the
different types of environmental cracking, characterized by corrosion, stress
corrosion, and corrosion fatigue. Environmental effects on fatigue crack growth
strongly depend on specific material - environment combinations, as well as on the
frequency of the stress cycle, the wave form of the stress cycle and the temperature. In
the case of high crack growth rates the environmental effects are often negligible.

In ductile materials (like AS33B steel), slow stable crack growth is observed after
the onset of crack growth due to extensive plastic deformation, although the structure
may still remain in service. A fracture analysis tased on the onset of crack growth,
therefore, would lead to an overly conservative estimation and the structure wouid be
prematurely removed from service. The problem to solve, is to determine what amount
of stable crack growth is allowable prior to the onset of rapid crack propagation.
Theoretical foundations for this subject are based on Elastic Plastic Fracture
Mechanics (EPFM). Different approaches exist to solve this problem, but the major
obstacle still is to find a fracture criterion which characterizes stable crack growth
after crack initiation.

Parallel to the macro - description of fracture in structures, a micro - mechanism
approach has been developed. The main disadvantage of this approach is the lack of
experimental verification of proposed solutions. Nevertheless, much research has been
performed in the past. In particular, the ability to relate micro - mechanisms of
cleavage and ductile fracture to the fracture mechanics parameters such as K, J -

integral, CTOD and CTOA seems to be the key for a successful application of this
concept.
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'! The micro - mechanism of fracture itself is divided into fast, uncontrollable crack
;n ) extension and slow stable crack growth. Fast crack extension occurs below the cleavage
:,:E transition temperature. This cleavage fracture is a brittle fracture but micro -
.:: plasticity is not excluded. Transgranular cleavage fracture occurs in structural steels
._’) of yield strengths generally less than 500 MPa, while intergranular cleavage occurs
":': in higher strength alloy steels [19]. Zener [20] suggested that there is an array of
jj:}'. dislocations at the initial stage of crack formation. As more dislocations enter this
;‘ array they are squeezed together, producing a local stress concentration. This local
(_ ‘ stress concentration increases until a crack nucleus is generated. Stroh [21]
:: presented an analysis of this approach. This analysis shows that cleavage fracture
.,_: would not be predicted using this dislocation model. Since cleavage fracture is observed
A\ experimentally, the model proposed by Zener appears to be inadequate. Cottrell [23]

—— suggested a mechanism which leads to easy nucleation in bcc metals. In this rather
straightforward approach, two dislocations intersect on the cleavage plane and form a
new dislocation. Equation 1.05 describes and fig. 3 shows this mechanism.

a ,=-= a

. = = a{ 001 eq. 1.05
s 2 ST 0yt 2 <111y 2 <0100 g
i
e

f-}f The new dislocation has a lower dislocation energy than the initial one, therefore,
:")" crack nucleation will be easy and crack extension is explainable by connecting
P different crack nuclel.
N
A_:.'\,'
'.‘_-:Z: Above the fibrous/cleavage transition temperature materials behave in a fully ductile
. manner. This transition temperature for A533B steel is about room temperature.
- ;C;f After reaching the transition temperature the crack advances by the coalescence of
T::'.: voids. These voids contain inclusions of second - phase as well as nonmetallic particles
J.-,'. . « .
O [24]. For the initiation of ductile fracture, a simple criterion commoniy used is [25
. to 27]

o
i Sic ~ (0510 2) dp eq. 1.06
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where Jic is the critical crack opening displacement and

dy is the mean void initiation particle spacing.

Figure 4 shows this microscopic fracture criterion schematically. Unlike cleavage
cracks, this ductile material behavior is based on cracks which are too blunt to be able
to propagate in an uncontroliable, fast way. Local microscopic criteria for void growth
ahead of the crack - tip have been proposed by Green and Knott {29} and Rice and
Sorensen [30].

In the present work a macroscopic crack growth study is performed. Using an elastic -
plastic (small strain) finite element analysis, a crack in a compact tension specimen

@ WA

is extended quasi statically under plane strain conditions. The material employed is the
‘.;: bainitic pressure vessel grade steel A533B and a power hardening law is used to
2l . . .

. represent the stress - strain relationship. The von Mises equivalent stress is used as a

( yield criterion. The macroscopic fracture criteria (J /CTOD and CTOA) are examined

AN
as to their usefulness to model slow stable crack growth.
An extended evaluation has been made into the field variables in the vicinity of a crack
- lip. In particular the changing nature of the fieid variables for a growing crack is
examined closely, from the onset of crack growth to eight millimeters of crack
extension.
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2. NUMERICAL CRACK GROWTH SIMULATION TECHNIQUES

A literature survey has shown that three different finite element methods are
commonly used to simulate crack growth:

1) Node shifting,

2) Stiffness reduction,

3) Nodal release.

Node shifting is used particularly to simulate smail amounts of crack growth, namely
less than one element size. With this method crack blunting can be simulated very
accurately by using higher order elements. If larger amounts of crack growth are
needed, it is possible to combine node shifting with nodal release. An interesting
application is the simulation of local three dimensional crack growth (fig. 5). Neither
the nodal release nor the stiffness reduction methods can perform this simulation
successfuily.

Stiftness reduction conceptually is the same as nodal release, only the release
algorithm is different. To accomplish stiffness reduction, spring or a combination of
spring/gap elements are used (fig. 6). The stiffness in the y - direction is given by the
spring constant of the spring elements. Crack growth is obtained by reducing the
spring constant of the crack - tip element.

The nodal release method is probably the most widely used cracklgrowth simulation
technique. The crack is extended by releasing the crack - tip node. At the samae time a
reaction force is applied to the released node and then incrementally decreased to zero.
The amount of crack growth, therefore, is restricted to the element size per step.
Lamain [31] stated that only minor differences are observed, whether the reaction
force is applied proportionally or nonproportionally, During the releasing process,
the external force can be changed or held constant. it is possible to use higher order
elements for this method, but care must be taken so that crack face overlapping due to
the reaction force cannot occur.
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X 3. PREVIOUS INVESTIGATIONS OF NUMERICAL CRACK GROWTH SIMULATION

One of the first numerical crack growth simulations was performed by Anderson [32)
in 1972, in which he introduced the nodal release technique. For the case of plane
stress and under the assumption of a constant crack - tip opening angle as the crack
growth criteria, he released the crack - tip node and applied a reaction force to this
node to maintain the initial zero displacement condition. Then he decreased the reaction
force in five equal steps, keeping the external force constant. Although the assumption
of a constant CTOA was quite arbitrary (and incorrect for the first few millimeters of
crack growth), this work can be considered as the beginning of numerically stable
crack growth simulation.

Sorensen [33] performed crack growth simulations for plane strain using Anderson's

nodal release technique. He modeled crack extension for constant external loads

between equidistant'nodal points. He discussed different possible fracture criteria and

applied "a critical opening at a small characteristic .materlal distance from the crack -
( tip" as a criterion for stable crack growth.

In the 1970's, Shih et. al. performed extensive experimental and numerical research
to find valid crack growth criteria [34]. He used the node shifting technique for the
numerical approach. His basic resuits showed that the slope of the J resistance curve
for AS33B steel was constant for crack extension of approximately six percent of the
remaining ligament. Furthermore he stated that the "CQOD - based criteria appears 1o

be valid for larger amounts of crack growth". The tearing modulus proposed by Paris
et. al. [35) based on J (tearing modulus: T = (E/o 42)(dJ/da)) was constant only for
a short range of crack growth. An alternative approach, the tearing modulus based on
COD (tearing modulus: T4 = (E/T 42)(dS/da)) was considered to be an “attractive

alternative”.

Saka et. al. [36], recognizing the weakness of the tearing modulus concept, introduced
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\ AN in 1983 a new tearing modulus Ty = (1/R;) (E/c42)(dWp/da). The parameter Ty is
tl: a dimensionless representation of dwp/da, the incremental plastic work done in a
oA

": “circular region of characteristic radius R." at the growing crack - tip, where Ty is
o
S directly related to the amplitude of the singularity field. Saka determined R,

o experimentally to be 0.28 millimeter for A533B steel and performed a numerical
s
tﬁ crack growth simulation. The input for the finite element analysis was an

N experimental load line displacement versus crack growth curve. Saka compared Ty

with T, and Ts and concluded that Ty is definitely superior.

Hoff [37] modeled crack growth with spring and gap elements. Motivated by results
from Shih, he used the J - integral for only the first four millimeters of crack
growth. This number was explicitly given by Kanninen (18] as the limit for J
controlled crack growth for A533B steel. For further crack extension Hoff used a
constant CTOA value, verified by experimental data obtained from Shih {34].
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{ . 4, PROCEDURE OF THE PRESENT INVESTIGATION
Gy
E}E Although much research has been performed in the numerical simulation of stable
:}E crack growth, up to now an overall criterion that describes the quasi - static extension
v of a crack in ductile materials has not be found. The tearing modulus concepts (Ty, T4)
:;‘, suffer serious limitations, i.e., they show a constant behavior only for a short range of
".::;E crack growth. The same appears to be true for the new tearing modulus parameter, Ty,
; . introduced by Saka [36]. In his paper he performed a crack growth simulation
" . controlled by this parameter up to 1.8 millimeter crack extension. His analysis,
i'-_r:\ unfortunately excluded the prediction of the initiation of crack growth. In addition, his
:Z;_ resuits showed a deviation of about 20 percent for Tyy in this crack growth interval,
5 which cannot be viewad as an improvement of over existing crack growth criteria.
k2
':::.‘, The present work emphasizes two points: (i) to determine how weil two crack growth
'-?-’-"- criteria (J/CTOD and CTOA) characterize the crack extension in mode 1 under plane
R ( strain conditions and in what interval range they are applicable, and (ii) to examine
J_:Z: the singular field variables for crack growth initiation and subsequent quasi - static
:::E,‘: crack extension, since the author believes that any succassful crack criterion must be
#'.":: closely related to the field variables. As input for the finite element analysis, only an
., experimentally obtained load versus crack growth curve is used.
KZ ‘ The stable crack growth is simulated by using the nodal release technique. The load
: versus crack growth curve (fig. 7) is linearly discretized in a such way that, when the
?_}:ﬁ load attains a certain value, the corresponding crack growth is modeled by releasing a
_;: corresponding number of nodes. The node release is accomplished by replacing the
e restrained degree of freedom of the crack - tip node by a reaction force, which is then
'; - gradually reduced to zero. After releasing the current crack - tip node the load again is
increased until the requirement is satisfied for releasing the next node. The relation
used between the applied load and the crack growth for the performed calculations is
7 listed in table 1.
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Since one could argue that crack growth has been observed to exhibit jumping (pop -
in crack growth) behavior and that the simulation, therefore, essentially is
linearizing the whole process, a second approach has been performed. Here the node is
released at a constant load and the load is increased with the node restrained in the y -
direction. This stepwise or jumping simulation is shown in fig. 8. The main
disadvantage of the latter simulation technique is the required increase in CPU time,
which is nearly doubled in comparison to the first approach.

The crack tip opening displacement for both simulations are compared for 2.25
millimeters of crack growth. The maximum deviation occurred for the y displacement
at the last node that was released and was always less than three percent. For these
reasons the stepwise approach was not pursued.
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2, FINITE ELEMENT MODELING
5.1 MATERIAL

The material used for stable crack growth simulation is the bainitic pressure vessel
grade A533B steel. This steel is representative of ductile materials and is widely used
in pressure vessel applications. The material composition and the stress - strain
properties are shown in table 2 and table 3. Ramberg and Osgood proposed the
following constitutive law for simulating such material behavior

n
_E; - _(OJ_'-; . Q (%) eq. 5.01

whaere a and n are material dependent constants, and

0 0,€0 are the yield stress and strain.

Since in the crack - tip region the elastic strains are negligible in comparison to the
plastic strains, a simplification of eq. 5.01 yields

_‘:_o -a (—go—)n eq. 5.02

which is a pure power law representation of the stress - strain curve. Using a = 1 and
n = 10 the material has been modeled with '

I © A ' eq. 5.03
€

up to the yielding point and

n

_Z'; - (%_0_) eq. 5.04

beyond yield.




-

\ As input for the finite element program, the stress - strain curve has to be
represented in a multilinear discretized form. This has been achieved in 16
discretizations and the actual input stress - strain relation is shown in fig. 9.

2.2 MODEL DEFINITION

A compact tension specimen is chosen to simulate mode 1 stable crack growth. This
specimen is chosen since it is a standard type of fracture specimen that has been
investigated independently by Shih et al [34] and Hoft [37] and approximates plane
strain conditions. The dimensions of the employed model are shown in fig. 10.

Two models are used for the crack growth simulation: one coarse mesh and one fine
mesh. The coarse mesh (shown in fig. 11a and 11b) has 1874 elements and 1946
nodes. The element size in the region of crack growth is 0.25 millimeter. The fine
mesh shown in fig. 12a to 12c has 2914 elements and 3002 nodes. Here the slement
size in the crack growth region is five times smaller than in the coarse mesh
X (0.05 mm). In the case of the coarse mesh, 32 nodes are released which is equivalent
to eight millimeters crack growth. For the fine mesh 21 nodes are released to simulate
one millimeter crack growth. For simplicity, the fine mesh model is created without
loading holes, however, previous work indicates that the load is transfered to the crack
- tip region reasonably well [38,39]. The boundary conditions are shown in fig. 13.
To avoid rigid body motion the node .q , is restrained in x and y - direction. All other
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restrained nodes are restricted from moving only in the y - direction.
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2.3 FINITE ELEMENT MESH GENERATION

An important aspect of FEM analysis is the generation of the mesh. The two meshes used
for the finite element analysis, are created with the software package CAEDS -
Graphics on an IBM 5080 terminal. CAEDS ( Computer Aided Engineering Design
System) is a product of SDRC (Structural Dynamics Research Corporation) employed
on a |BM 4341. The strength of this software package is its flexibility in finite
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element modeling and finite element solving. Since CAEDS has a direct interface with
CADAM and CATIA (two engineering graphic design systems), it is possible to enter
part geometry directly from either of those systems - entirely bypassing manual
entry of data. After doing that, one can interactively add the load and boundary
conditions and submit the job to the integrated finite element solver. The disadvantage
of CAEDS is the restriction of its solver to linear finite element analysis. Other
problems encountered on CAEDS are the limitation of the number of nodes and elements
for a successful analysis and the lack of the support of certain element types (like
plane strain elements) by the finite element solver. For these reasons, only the mesh
creations were performed with CAEDS. One of the major challenges was to put most of
the elements in the vicinity of the growing crack. This has been accomplished by using
the Free - Mesh - Generator of CAEDS. This mesh generator automatically creates
finite elements via the Triquamesh algorithm.

2.3.1 MODEL CHECKING

After a finite element mesh has been created, the necessary mesh checking often is a
time consuming process. CAEDS provides a very powerful series of tools (the Modei
Checking Tools), for simplifying the model checking process. The model checking toois
available in CAEDS are:

- free edge checking,

- coincident node checking,

- interior element angle checking,
- distorted element checking.

With this checking series, not only are modeling errors (which would make a finite

element analysis impossible) identified, but the elements are also checked to
determine, whether some modeling rules (aspect ratio, element angles) are violated. A

violation of these modeling rules may introduce erroneous results.
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{ 5.3.2 BANDWITH AND WAVEFRONT OPTIMIZATION
.
N
o In order to obtain improvements in the finite element solution process, CAEDS offers
2 the ability to optimize the bandwith and wavefront of the finite element mesh. By
1
. working with free mesh generation, it is not possible to number the nodes in an
'::: optimum way. The resulting bandwith and wavefront of the final mesh thus becomes
unacceptably large for meshes having 2000 - 3000 nodes. CAEDS uses the Gibbs -
B, .
] Poole - Stockmeyer algorithm to optimize either the bandwith or wavefront size by
7 renumbering the nodes. It is possible to emphasize the optimization either for the
4 .':: bandwith or for the wavefront profile. After using this optimization tool for the two
; meshes created, the estimated CPU time reduction for performing the finite element
PY analysis was 97 percent. Without this optimization a finite element analysis would not
o have been possible.
N
‘\-J.'
‘:_'2 R After the generation and optimization of the two meshes on CAEDS, the geometry and the
A g connectivity of the elements were transferred by a special FORTRAN subroutine to the
= finite element program ABAQUS [40] for solution. This is necessary since the CAEDS
"“ finite element solver does not support plane strain elements (the state of stress within
::: a compact tension specimen of this size is assumed to be plane strain) and lacks the
s ability to soive nonlinear elastic or plastic problems.
o
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6. THE FINITE ELEMENT METHOD FOR STRUCTURAL ANALYSIS

Although a considerable amount of work has been performed to develop anaiytical
methods for solving problems of elasticity [41, 42, 43] and plasticity [44, 45, 46],
these methods are usable only for certain problems and analysis cases. In structures of
arbitrary shape subjected to arbitrary load conditions, analytical methods often fail.
In engineering practice, most problems are too complicated be solved analytically. For
these cases, the finite element method is a very powerful computational tool for
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solving continuum mechanics and structural analysis problems with accuracy

Lo N

-;:.'; acceptable to engineers.
R

j‘:{-: A complete introduction to the finite element method is far beyond the scope of this
| :: thesis and, therefore, only a brief overview is given. The interested reader is referred
f- to the book of Zienkiewicz [47] which gives an excellent and complete introduction to
E‘ the different approaches in finite element analysis.

o
\)__ ( The basic idea behind the finite element method is to divide a body into small
~ _Z;: subvolumes or (in two dimensions) a surface into small subregions. These subvolumes
:'-:C or subregions are called elements and are interconnected at nodal points along their
A

boundaries. In the field of solid materials, this method is used to find the stresses and
displacements of the structure being analyzed.
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In the displacement approach to the finite element method (FEM), the displacements of

-
£
5,
P
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" the nodal points are the basic unknown parameters. To approximate the displacement
®

o field within each element, a set of functions is chosen. These displacement functions
-’:“ are called ' shape - functions'. The shape - functions depend largely upon the number
.Q,': of nodes associated to each element and the degrees of freedom. As a basic requirement
j v

'.'" they must include all possible rigid body displacements as well as all appropriate
=y strain states.

= S

NG If these functions, in addition, satisfy inter - element compatibility (which means that
TS . o : -

PY - the highest derivative in the strain displacement relation must be finite) the
we
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displacement field will minimize the potential energy of the system. Then, the finite
element solution represents an upper bound on total potential, and the solution will
converge to the true solution as the mesh size is decreased. Inter - element
compatibility may be violated to produce reasonable results, but an upper bound on the

total potential is no longer guaranteed.

The strain within an element can be determined in terms of the nodal displacements. As
a final step, the constitutive properties of the material will define the state of stress
throughout the element and on its boundaries.

6.1 THE FINITE ELEMENT FORMULATION

When a body subjected 1o external forces is in equilibrium, the principle of virtual
work is given by

SW| = SWg eq. 6.1
where dW; is the total strain energy
and SWg is the external work.

Use of the principle of virtual displacements gives

SW, -I deTodv eq. 6.02
v - -
and
k
T
W =J’ dudeV+J‘ Su'Tdr+y dufp eq. 6.03
E vy T~ r p=t = =
where e is the strain vector associated with virtual strains,
g is the stress vector,
b is the body forces,
v is the volume,
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{ r is the boundary where surface tractions are applied,
»\. i
OO f_p is the load,
I A
NN du  is the virtual displacement vector, and
"" T is the surface traction vector.
"
3 ! Substituting eq. 6.02 and eq. 6.03 into eq. 6.01 yields
W
& k
2183
- AT, { J subdv+) suTTdr .3 6Q_Tfp} =0 eq. 6.04
v © T v T r p=1 T = .
b
Lon , . . , ,
Ls In a finite element representation for solid materials the displacements, strains and
h) \'.-
.},;.- their virtual counterparts can be expressed in the foilowing form
oo
o
S5
i u=N a®e, Su=NdJda® egs. 6.05a,6.05b
1Y T - t
".. =
0 €=Bap, de=Bsa® eqs. 6.062,6.06b
‘ l_' - (
N ~ or in a convenient discretized form for finite element applications
- J-
.t u= X N;a®, du=XN;da® egs. 6.07a,6.07b
0 €=283° se=1B;dae eqgs. 6.08a,6.08b
o
(A \'.l
S where i is the 1 (h node,
2,
o a®, sa® are nodal displacements and their virtual counterparts,
:.'_', N; is the global shape function for node i, and
o
s B; is the globai strain - displacement matrix.
Oy
=
9 The nature of N; and B; is explained in more detail in chapter 6.2. Using the principle
12
oy of virtual displacement and substituting eq. 6.05b and eq. 606b into eq. 6.04 gives
o ]
o s {J'BR v - [N av -] NTTar -2 NTfp} -0 eq. 6.09
o - - o P - p=1 = =
i" Q‘ r‘_ V V
. .;{:, "
R
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xj,;
g seT = ga0T BT eq. 6.10
L

0% suT = ga® T NT eq. 6.11
‘ .
Q".::. In addition the stress strain relation is defined as
A
E?;

)

'3:3{ o =D(e-€;)+0, eq. 6.12
e

Y

N where €a are the initial strains,

s

AN o,  are the initial stresses, and

LA D is the constitutive matrix.

-“"J
3 ".'d
] .qu

_"“C in the case of plane strain for linear elastic materials, D can be written as

\'

,~ O 1-u Vv 0

) ‘}"-

2 E 0 6.13
AN D= u 1-u eq. 6.1
o (1-2u) (1+0) g

1-2vy
0 0

A2 2

; :-.::’ L el

e

o

Z:;'_'.: where E is the Young's modulus, and

n'._-l:

'. u is the Poisson’s ratio.
B .'C

0

'_’.C’ For elasto - plastic materials D is no longer a matrix containing only elastic constants.

“

-'.::: Basically two new factors must be introduced:
.j',

o 1) a yield criterion (F), and

E'.:j;i 2) a hardening parameter (k).
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After incorporating F and x into eq. 6.13 it can be shown [48] that the constitutive
matrix, D, for elastic - plastic conditions is

=T T A (QQ)T_.

where a represents the flow vector (a partial differentiation of the yield

criterion with respect to the stresses)
and A is a scalar term, obtained as the local slope of the uniaxial

stress/ plastic strain curve.
Thus, by use of eq. 6.14, eq. 6.13 can be rewritten

T =Dep(€ -€a)+ T : eq. 6.15
for elasto - plastic conditions. Substituting eq. 6.15 into 6.09 yields

°d 'T{(f éTpapng)a" - [E D eadV +[8T guav- [N"B AV
\" v v v
eq. 6.16

I ri }

F 1 e B

Since d_a_e-T is quite arbitrary and not necessarily zero, the term in the brackets must

be zero to satisfy eq. 6.16, or

e
(IETDGPEdV)a P L L eq. 6.17
v
where
T . 6.18
. ey = | BTO€a 0V eq. 6
~ v
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T
fra -8 g,av eq. 6.19
\"
T
'b = jﬁ bav eq.6.20
- vV
T
tr - IFN Idr eq. 6.21
k
T
for= 2 Ntp eq. 6.22
Defining
(-]
i-fea_ a.a+f +f_T+Ipl eq. 6.23
and 87p,,84 6q. 6.24
Vv
allows eq. 6.17 to be written as
Ke a° = f8, eq. 6.25

where K¢ is the stiffness matrix,

as are the nodal displacements,

fe are the nodal forces.

Equation 6.25 can be viewed as the final representation of the finite element
formulation for a solid material.

6.2 ELEMENT REPRESENTATION
In ABAQUS, elements of the type CPE4 (4 node bilinear plane strain isoparametric

elements) were chosen for the model. This eight degrees of freedom (d.o.f.) element
(two d.o.f. for each node) has the assumed displacement field [49]
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f.u1
1 0000
un u . Xy xy ap
- v 00001 xyxy eq 6.26

4 @
Lo

or
U=Qq+ QX + Agy + Q4Xxy eq. 6.27
V=ag+QgXx + a7y + Agxy eq. 6.28
where u is displacement in x - direction, and

v is displacement in y - direction
or in a more succinct form

u=Agn, eq. 6.29

where a, are the constant coefficients of the assumed polynomial.

The displacement field also can be written in the form

g-ﬂi‘ ' eq‘ 630

where N are the shape functions, and
a® are the nodal displacements.

The desired shape functions can be found directly from Lagrange's interpolation
formula, which leads to :
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2 v 0 NyO NpO NjO Nyf |,
% V2 eq. 6.31
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Inserting the coordinates of the nodes gives the following shape functions for the
b rectangular CPE4 element
4

eq. 6.32

3 Ny= 255 6 - % (¢ - y)

-t i eq. 6.33
Ny= 255 0 + %) (c - y)

” 1
Y 2 —— ) eq. 6.34
ru’ N, 3bo b+ x)(c-+y) q

N
; 1
- ( N385 ®-X(c+y eq. 6.35

’J where fig. 14 identifies the parameters used .

The shape functions connect the nodal displacements with the displacement field.

K Similarly the strain displacement matrix B connects the nodal displacements with the
o

° strain field. In the case of plane elasticity B can be written as

p— —

)
= 0

RS g ,' RIS
_,S_,'x"‘-{ @

o
g gy

el

a8

e
T

.

-
" @

¥

LS
,‘- &%

PR
P

Ty

s
X A

ra
‘y

S -

[r:]
'}

0

-2
ay

24

£

]
ax

—

Incorporating eqs. 6.32 - 6.35 into eq. 6.36 gives
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\ L =
-(c -y 0 etc.
3 1
::: 8= Y 0 - (b - x) etc. eq. 6.37
3 -b-x} -(c-y etc..
59
; ! Use of egs. 6.32 to 6.36 permits the stiffness matrix to be evaluated as
i
(
c
X 9 T
% ®-] ] 8Tggs taxey . 6.38
~ -Cc -b .
: To evaluate arbitrary quadrilaterai CPE4 elements, an intrinsic coordinate system
o defined for each element has to be introduced. In fig. 15 a linear element is shown with
E such a natural coordinate system. Axes &€ and n pass through the mid - points of
L
_5 opposite sides and the edges are defined by § = + 1 and n = &+ 1 regardless of how the
. ( element is oriented in the global coordinate system x,y. As a result of this definition
) node 1 has the intrinsic coordinates § = =-1,node2 §€ = 1 and n = -1 etc..
W
o Using the discretized form of the displacements and streins eqs. 6.07 to 6.08, allows
\ the individual shape functions to be written as
"
o 1 B 6.39
N1-—4—(1'E) (1-mn) €q. ©.
it , .
L] Nom— (1 +€)(1-M) eq. 6.40
3 2" 4
& 1
> Ny=—7— (1+€) (1 +M) eq. 6.41
- N 1
e 4" (1-8 0 +Mm) eq. 6.42
“
:I.' In general, u is parallel to the x- axis and v is parallel to the y - axis, but they are not
- necessarily parallel to € or n.
L
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6.3 PROCEDURE FOR SOLVING THE FINITE ELEMENT FORMULATION

The evaluation of the formulated finite element problem is done by substituting
egs. 6.07b and 6.08b into eq. 6.09. Neglecting loads as weil as initial strains and
stresses permits eq. 6.16 to be rewritten in the form

Z"ﬁe'T {J.§TE dv - I.UiTQ dv 'I#{Idr } -0 eq. 6.43
v v ’

Then the element representation developed in chapter 6.2 is used to evaluate all
contributions to eq. 6.43 separately for each element. The displacements for each
element can be obtained from eq. 6.07a as

u® =T N af. 6q.6.44

For an isoparametric element, the x and y coordinates within an element can be
evaluated as

K :
= z eq. 6.45
ye =1 0 NB y$

—; (] K (-] —T

ax oN; 2 oN; o

L I S A
_J- = = k -] k ] eq. 646

ax ay zaN- @ aN; ve

aﬂ an I = 1an ! | = 1an !

The volume of each element is given as

dVe = t Det J° d§ dn eq. 6.47

S
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Following the same approach as for the displacements, the strain displacement
relationships for each element can be written

€% =3 B®°a® , eq. 6.48

in the case of plane strain

aN; \°
(=) 0
e IN..®
B - 0 (&) 6q. 6.49
INy® N °
Tn
(&) &)
and thickness.t, is chosen as unity. The chain rule rmay be used to evaluate
3N, _ N % AN} on 5.50
ax & dx an odx eq. ©.
and
ONT _ aND & N an

The derivatives (d§€/dx),(omn/dx), etc. can be obtained from the inverse of the
Jacobian matrix, and the stress - strain relationship for each element can be written

as
Ee ’ereie =_Depe ZE;"_@;“- eq.6.52

Substituting eq. 6.52 into the first term in the brackets of eq. 6.43, again neglecting
loads and initial strains and stresses, gives as tha contribution from element e to the
right side of eq. 6.25
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eq. 6.53

where K;® is the submatrix of the element stiffness matrix K®. The contribution of

element e to the body force term fy is

e a,T o
£ i:IN. b dv eq. 6.54
and the surface tracticn term is

- eq. 6.55

The actual integrations were evaluated numerically in the intrinsic coordinate system.
The most used widely method (as in ABAQUS), is the Gauss quadrature method. The
submatrix K;® has the form

11

8 aT e e
K = I1I1_Bi O 3" Dot dedn eq. 6.56

The nodal forces at node i caused by the body forces and surface tractions are

O = fp;® + 11,0 eq.6.57
with
11 9T
e e ]
= d
lo. LL‘Ni b Detd dedn eq. 6.58
and
o
°= [ [ N'"1° Det 4% an eq. 6.59
T, T T - .
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The strains and stresses are thus not determined at the nodal points but at the so called
'integration points'. In the CPE4 elements these integration points are marked in fig.
16. The Gauss - Legendre method locates the integration points in a way that the
greatest accuracy is achieved for a given number of them.

6.4 COMPUTATIONAL PROCEDURE FOR THE PLASTICITY PROBLEM

Since large deformations occur during the finite element simulation of the stably
growing crack, a short introduction is given -about the solution procedure in elastic -
plastic finite element analysis. The form of the stiffness matrix given in eq. 6.24
suggests that a straightforward solution of the finite element formulation may be
possible. This indeed is true for the elastic case where an explicit relationship of the
form of eq. 6.12 (with g = g (€) for nonlinear elasticity) is available. On the
contrary, such an explicit relationship is no longer available for the complex nature of
plasticity.

7N\

The approach employed to soive the plasticity problem utilizes the fact that the matrix
Dgp (eq. 6.14) is known for a certain stress value and loading direction, and the

stresses can be integrated as shown in eq. 6.60 from

do = Dgp d€ eq. 6.60

NIV N RN
el ey

where [_Dep' is known for a certain stress value and loading direction.

PAEA

.\‘:. x

A solution for eq. 6.60 can be obtained with incremental mathematical procedures.

00
;:s::.r

Ouring the iteration process of the elasto - plastic analysis, the equilibrium equation

2

(eq. 6.01) cannot be exactly satisfied, thus a system of residual forces ¥ will exist

v
B

such that

k4 -I_Eing— (L+ ET_b_dV) 20 6q. 6.61
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AN where b is the body force vector, and
L0 1 the external force vector.
1Y
.
e
:::;‘ Substituting the incremental forms of eq. 6.06 and 6.60 into 6.61 for an increment of
’; load gives
T
b a¥ = Koy - (af +] Nlabay) =0 q. 6.2
v v
N
st where K2 is defined as the element stiffness matrix (eq. 6.23). With the help of
K incremental displacements au, an iterative correction of
A n, ‘
i
b "_lik - [ia.k]d _A_Wk eq. 6.63
L.
o is calculated using the Newton - Raphson method where
-’..:-:' K: .
- Su” is used as a corrective factor.

7™

After a prescribed number of iterations, the improved displacement is determined by

“w ‘\

Auk*T = auk + suk eq. 6.65
)

s auk+! now is resubstituted into eq. 6.62 and the residual force is calculated. In

;-Z-_; ABAQUS the maximum residual force is chosen by the user with the parameter

;'-}:Z'- PTOUMTOL. If the calculated residual force is too high, the whole iteration process

must be repeated. The disadvantage of this procedure is that the stiffness matrix K3
must be calculated during each iteration. Therefore this method is usually avoided in

large finite element codes. An alternative numerical procedure is the modified Newton
Raphson method, where the stiffness matrix is only occasionally recalculated. The
initial stiffness method is such a modified Newton Raphson method, where, for the the

o
EAEN

whole iteration process, the initial elastic stiffness matrix is used.
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LINVESTIGATED CRITERIA FOR STABLE CRACK GROWTH
Z1.J - INTEGRAL INTRODUCTION

The J - integral, which is equal to the strain energy release rate (for elastic
materials), was first introduced by Rice [14] in 1968. Under the assumption of a
linear or nonlinear elastic material free of body forces and subjected to two
dimensional deformation fields (i.e., plane strain or plane stress), the closed line
integral, J, around a notch parallel to the x - axis is path independent (see Fig. 17).
The J - integral is defined by

ou,
J= ( Wdy - Ty —;— ds ) eq. 7.01
P .
where c
W = W(xy) = W(e) = 7, de. eq. 7.02
0

7™\

is the strain energy density (equivalent to the area under the nonlinear stress - strain
curve). Also

€ = (eij) eq. 7.03
is the infinitesimal strain tensor,

Ti = crijnj eq. 7.04

is the traction vector defined according to the outward normal along I',

[]
h ik

-7 Y is the displacement vector, and

::Iai ds is an element of arc length along I

4';1'.

f:-:. The proof of the path independence of J is given in [14] for a notch with a finite radius
-;r_:j:; r. However, an application of this integration formulation is also possible for sharp
1N cracks, if an arbitrary smail curve I' around the crack - tip is assumed, which
L
AR

w T 31

J‘."-(

o

o~

AL

R
&, -

o R Y
.\\J‘\‘\I,&ﬂ.‘




WO WA S R
b i aia B _ah o ua oo e T

S
“y ™
:: N ft-’
( ' reduces to zero in the limit. The crack - tip, therefore, can be interpreted as a
}_ singularity of the deformation field. McMeeking {50} determined the value of J near
e
o crack - tip and found out that the evaluation of J in the vicinity of the crack - tip is
N
e not accurate. A practical limit on the size of the J - integral contour for the mode 1
\ compact tension specimen has been pointed out by Hoff [37]. He suggests that J should
A
"
[, not be calculated along contours closer than 5§& from the crack - tip, where & is the
R~ , L
' crack tip opening displacement.
=
™ For elastic - plastic calculations in the region of small - scale yielding, the J -
~
o integral now is used extensively in fracture mechanics, instead of the stress -
'?:: intensity factor K, which is only valid for linear elastic calculations. In the elastic
1 .\' . . . .
.' case the J - integral is equal to the elastic potential energy release rate, G. By using
o the principle of virtual woik, it is possible to derive the relation
<
i ~-
~ R K2 7.05
( _ (N G=as E °9- 7
- where
Qg =1 for plane stress,
)
7 ag = (1- u2) for plane strain,
s
< E is the Young's modulus,
p s
K U is the Poisson’s ratio,
*
.j:; and therefore (with J = G in the linear elastic case)
"
- 2
K
= —_— .7.06
° J=ag E eq
.':('
:?.
7
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Z1.1J - INTEGRAL DETERMINED BY THE VIRTUAL CRACK EXTENSION METHOD

A second method to evaluate the J - integral is the ‘Virtual Crack Extension' method,
first introduced by Parks [51] for the linear elastic case and later extended to non -
linear material behavior [52]. Since this method can be implemented very easily in
FEM codes, most commercial codes like ABAQUS and MARC use this technique. The
technique is based on moving nodes a small distance around the crack - tip by and
estimating the energy change. Since the potential energy does not change much with a
slightly different crack - tip configuration, this method works very well. Problems
are encountered, however, when using collapsed elements. In this case only one of the
several existing crack - tip nodes is fixed. The displaced crack configuration is so
different from the original one that the result for the J - integral would be compietely
incorrect. This can be avoided by using two rings of elements at some distance away but
enclosing the crack - tip [31].

2.1.24 - INTEGRAL AS CRITERION FOR STABLE CRACK - GROWTH

As discussed earlier, the J - integral is valid (i.e., the J - integral is path
independent) only for elastic materials subjected to two dimensional deformation
fields.

Goldman and Hutchinson [53] showed that the J - integral formulation may be extended
even to elastic - plastic materials for cases of monotonically increasing load (no
unioading). This implies that J is strictly valid for analyzing only stationary cracks,
since one of the characteristics of crack growth is elastic unloading and non -
proportional plastic deformation near the crack - tip. Nevertheless, the J - integral is
also used to analyze crack growth for small amounts of crack extension [18, 34, 37],
primarily because of the lack of other reliable crack growth criteria.
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Hutchinson and Paris [S4] have examined the necessary conditions for J controlled
crack growth and concluded that the most important consideration for using J as a
crack growth criterion is that nearly proportional plastic deformation occurs. In this
case, the deformation theory of plasticity and the incremental fiow theory yield nearly
identical results. Figure 18 shows a typical J - resistance curve for an intermediate
strangth steel under plane strain conditions. The dominant strain field as derived in the

deformation theory is

J \ N+t~
€ kn(T-) € (e) eq. 7.07
where Kn iS a constant,
r,© are planar - polar coordinates centered at the
crack - tip
and €jj is a function which depends on n, the strain

hardening index, and whether plane stress or
plane strain is involved.

In Fig. 19 the crack - tip conditions are schematically shown. Elastic unloading occurs
only in the direct vicinity of the crack extension zone (aa). Howaever, it is difficult to
define the size of the zone where the loading is nonproportional. Kanninen [18]
suggests that this zone size is of the order of ,/, which is shown in Fig. 18. It should be
clear by inspection that one condition for J controlled crack growth is that

Aa << R. eq. 7.08

For mode 1 the crack is assumed to advance by an amount da in the x - direction. The
resulting increment in the strain field is

n n n

D (@A 2 (o) K T (1T g °q.7.09
9 = knmr () FEE ) K 5 (77 Ejle)

34

---------
.....

A v



R

o&"r‘r—"‘u-‘

AOA

eSS
L

b

AR

o,

A% o '

VRS

P
AN
RAAAKAALL AR

P

~

For a coordinate system attached to the crack tip using

d 3 sine 23
x e - ® eq. 7.10
eq. 7.09 becomes
o
J \ n+l n - -
deij'kn('r—) + [m%ieij(e)-b-?:a' a;j(e)], eq. 7.11

where

d

§; (@)= = s & (0)+ sine —==§; (@) 6q. 7.12

Inspection of eq. 7.11 shows that the first term corresponds to a proportional loading
(for dJ > 0) and therefore deij oc 'e",l The second term, however, is nonproportional. It

is easy to see that the second term in the bracket is of the same order of magnitude as
the first term. Therefore, J controlled crack growth should be valid if the proportional
loading term is much larger than the nonproportional loading term, or

d4) , da L eq.7.13
J ro. '
By definition
L - VI B 714
I da J &q

where / again can be viewed as the initial crack growth associated with the doubling of
J above J, fig. 18 {18].
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‘A l<<R eq. 7.15

o then there exists an annular region
! l<<t<<R eq.7.16

" in which the plastic loading is predominantly proportional and the singularity field
{ (ie. Eqs. 7.07 and 7.11) is dominant.
By introducing a nondimensional parameter defined by

x

¥
P4
.

a
- "- ,‘ ,- ,l

AR

b d 717
W=7 da, “

s @

it is possible to formulate a condition for J controlled growth in a fully yielded
specimen. Here b is the uncracked ligament and R will be a fraction of b. Thus, finally,

»
L4

o
‘i"\"s’\ N,

)

( w >> 1 can be stated as requirement for J controlled growth.

o P k 4
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Z13 CALCULATION OF THE J - INTEGRAL

-

= P

PP 'y
“

o

.
o)

The integration of the J - integral in the CT specimen is performed along a rectangular
path which is divided into six sections. Due to the symmetry of the plate and loading
only the upper half of the integral is evaluated and the result is then muitiplied by 2.

The integration paths are shown in fig. 20. By use of eq. 7.01, the J - integral can be
separated into two parts

O

DORS008
%N "i)‘l.:-"i‘:l..

sl A
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J=dw -7 . eq.7.18 |
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ou u duy
JT=I (a.xxnx axx +O.XY y axx + yxnx ax + wa ax ) ds eq. 7.20
r

-
sy

Equations 7.19 and 7.20 are applied on each path (using the direction of the normal
vector), which leads to

L Ve o i

1
O

s
»

.'A. ’ .'5.'..."‘-'?- ® “sz"l."A.'

au ou
‘- ) -0.{c..x o XY dx .7.22
y . J2=JW2 JT2 0 fb( Xy X + Yy ax ) eq

Summing up Egs. 7.21 10 7.23

duy f ou, duy
s of [uar j( FPR- AT FE R
b

E St N
h

* Jdey J %xx aaux M Y"aauxy)dy}

c

-.(l‘ . ;. 'sl'i."ll'.“. ISAJ.

yields the final integration formula.
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The actual integration of J was done numerically using the average values of the
stresses, strains and strain energies from the integration points of the participating
elements. Second and fourth order finite difference operators were used for gvaluating
Juy/ox.

To verify the path independence, the J - integral was calculated for 4 paths ( see
Fig. 21). The J - integral values of the 4 paths differ by 8.2% which can be viewed as
the deviation from the path independence of J using this numerical approach (Table 4).
For the extension of the crack the J - integral is calculated on path 2 ( Table 5).
Figure 22 shows the J - integral plotted against the crack growth. During the first
millimeter of crack growth J exhibits an unexpected behavior. For the first 0.5
millimeter of crack growth the J value is increasing less than for the next 0.5
millimeter. After 1 millimeter of crack extension the J versus Aa curve shows the
expected behavior. For the first 2.5 millimeters of crack growth the J value increases
nearly linearly; beyond that point the slope is decreasing. An interesting point is that
the load line - displacement versus crack growth /Aa) curve shows a similar behavior
(fig. 23). By using a linear least square interpolation for the first 2.5 millimeters of
crack growth, a slope of 393.1 MPais obtained. The initial value of J was 89.878
N/mm at a load of S300N.

Table 6 shows the results of the finite element analysis compared with the results
from Hoff [37]. Hoff's J versus Aa curve (which actually was m_’s'; ihput for the first
four millimeters crack growth) reproduces the experimental data almost exactly. The
reason why the initial J values differ so much is easy explained. Hoff's load .arsus Aa
curve (as a resuit of his calculation) is significantly higher than the experimentaily
obtained curve. This however, was the input of the calculation performed in this paper.

Therefore, his load at crack initiation was also higher ( ~ 7000N ) which explains the

higher value of the initial J - integral. The slopes of the J versus Aa curves agree
very well with Hoff's prediction.

Using eq. 7.17 to determine whether J controlled crack growth is reasonable leads to
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"- in comparison to ~ 150 obtained by Hoff. The difference between these results is
.'.‘3 mainly caused by the different J - values at crack initiation. Kanninen [18) pointed
’ out that the question of what is the smallest value of w for which J controlled crack
:’;s.j growth is assured remains unanswered.
‘A

5‘ s

Wy
:' Although extensive research has been done to support the use of the J - integral as a
” crack growth criterion for small amounts of crack growth, the validity of such work is
E’*' still doubtful. The w - value (which should be considered as the overall crack growth
;f criteria) obtained in this research, differs significantly from those reported in [18].
( i ( A lower bound for w is not known. In addition, the strain hardening exponent n and the
:}’. state of stress has a large influence on eq. 7.17. The calculation performed in this
i' -:.E work and its comparison to other results showed that the slope (AJ/Aa) is most

b

reliable for the use as a crack growth criteria for smaller amounts (Aa< 0.036b ) of
crack growth,

O

N

S
<
‘'
S 22 CRACK PROFILE GEOMETRY

s

. . . .
' ?-; Many authors have employed fracture criteria based on the crack opening profile
o ‘,t§ geometry. Examples include the COD (Crack Opening Displacement), CTOD (Crack Tip
:: Opening Displacement) and CTOA (Crack Tip Opening Angle). Unfortunately, the
.M. e . . . o
‘.‘ critical values of these parameters are highly sensitive to their precise definition.
N There is no universal agreement on appropriate definitions for COD, CTOD, or CTOA. In
LY

NN fact, Schwalbe noted that, at a recent conference, no less than seven different
e i ,
-Z-j: definitions of CTOD were presented (55]. The main objective of using crack profile
T
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geometry parameters is to describe the conditions at the crack - tip, or to find

N characteristic parameters which describe the crack - tip condition from the beginning
) »
) .4'!‘ of crack initiation until failure, including stable as well as unstable crack growth.
) [
f
) 2.2.1 DEFINITION OF THE CRACK - PROFILE PARAMETERS
v
W . ’ c . .
H N i: Two different crack profile parameters are studied in this work:
. »
*., a) &, - the 'tangent’ definition of the crack opening displacement.
) Actually the deformed far field crack front is (in this case) extrapolated
i
r,":: linearly to the original crack - tip (fig. 24). This definition is often
k)
| “j used with FEM calculations when the crack - tip is not modeled
.f accurately enough to show that the crack tip opening angle at crack
*: initiation is 1 radians. A necessary condition for the use of &, as crack
2 : tip opening displacement is that the deformed far field crack front be a
straight line. In this analysis this requirement is satisfied for the fine
( as well as for the coarse mesh.
K
1{;: B) a . - defined as the crack tip opening angle (CTOA). A commonly used
ey
,J: representation of ac; is
)
l. -
)
w -1 2(Ver g 9) :
\?.: a.,=tan . eq. 7.25
e
&,
",‘.:'- vt IS the y - displacement of the first node beyond the crack - tip, and
Rt
o h is the element size.
e
:::'.:j Since the crack growth is simulated with uniform step size, the
j:I;' determination of ac, from this definition can be quite accurate.
s
o
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222 DISCUSSION OF THE CRACK PROFILE PARAMETER

The deformed crack profiles for the coarse as well as for the fine mesh are shown in
fig. 25 to 28. For better display, the vertical scale is amplified in the figures. The
actual profiles are given for both meshes in fig. 29a to 29q and fig. 30a to 30h. The
fine mesh predicts a blunter crack opening profile than the coarse mesh, which is
more consistent with experimental observations.

223 CRACK TIP QPENING DISPLACEMENT (CTOD) - RESULTS

The CTOD versus crack growth (Aa) diagram for the coarse mesh is shown in fig. 31.

Since the J - integral and the CTOD are similar concepts, both the J - aAa and the CTOD
- Aa curves have the same shape. The slope of the CTOD - Aa curve increases for the
the first millimeter of crack extension, although not to the same extent as the J - aa
curve. This behavior is confirmed by fig. 32 which shows the CTOD - Aa curve from
the fine mesh for the first millimeter crack extension. After 1 millimeter of crack
extension the slope of the CTOD versus Aa curve begins to decrease. The results
demonstrate that the CTOD versus aa curve is approximately linear for crack
extension up to 2.5 millimeters. After 2.5 millimeters of crack growth, however, no
linearity is apparent.

12,4 CRACK TIP OPENING ANGLE (CTOA) - RESULTS

The problem of establishing a standard definition for the CTOA has been examined by
various authors [33, 56]. Rice [57, 58] obtained for stable crack growth (non -
hardening materials) a displacement distribution proportional to In(1/r). Applying
this distribution leads to the conclusion that the crack tip opening angle is not defined
forr = 0 since dd/dr - = asr — 0, a result that has been observed experimentally
(18,36].

The CTOA - aa curve calculated for the coarse mesh is shown in fig. 33. For the first
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two millimeters of crack growth, the CTOA - aa curve shows a completely unstable
behavior. It should be clear that eq. 7.25 and the given element size h can not simulate
the CTOA very close to the crack - tip. This definition should be considered as a secant
approximation. This is especially true for high strain hardening exponents (n = 10 in
our case). In fig. 34 an attempt is made to show the sensitivity of the CTOA definition to
the onset of crack growth. It can be seen that the angles are smaller when larger
elements are used. However, the inconsistency in these resuits was the primary reason
for developing the fine mesh (the first CTOA was approximately 0.4 radians in
comparison to a theoretical value of n radians). The resuits of the fine mesh (fig. 35)
show an initial value of one radian at the beginning of the crack growth (which agrees
with the experimentally observed crack blunting much better than the coarse mesh).
After the rapid decrease of the CTOA - aa curve for the first node release (0.05 mm
step width), however, the fine mesh shows the sama trend as the coarse.

Hoff [37] also observed an unstable behavior in the CTOA - Aa curve. He stated as
reasons the ambiguous definition of @ as well as mesh refinement errors due to his
node release technique with gap and spring elements. This is not true for the
calculation presented in this thesis, since the step - width was constant during node
release. An explanation for the present instability could be that CTOA is not well
defined when r approaches zero. More research is needed to get further information
about the nature of the CTOA forr — 0.

A constant CTOA ~ 0.23 radians is achieved after six millimeters of crack extension,
which is in excellent agreement of the experimental value of 0.22 radians [37)].

L3 RELATION BETWEEN J AND CTOD

Shih [59] developed a iclationship between the CTOD and the J - integral for a static

crack that exploits the dominance of the HRR - singularity in the crack - tip region.
He obtained




| § J
.54 5=dy T': eq. 7.26
where d4s is the crack tip opening displacement defined in fig. 36, and

dn is a constant.

The constant d, depends mainly on the state of stress and on the strain hardening

coefficient n. Although he used a different definition for the crack tip opening
displacement, a comparison of the results with the resuits obtained in the fine mesh

calculation is possible. The constant d, was evaluated from fig. 37 which shows the

dependence of d, from n and o 4 E for plane strain.

Use of this diagram as illustrated gives d, = 0.5. The calculation for J at crack
initiation yields 102.53 N/mm in comparison to 88.44 N/mm by direct evaluation of
J with the line integral. Since it can be expected that the 45 degree definition of 4 Shih

( used in deriving eq. 7.28 would lead to a slightly lower value of &, the results can be
viewed as in good agreement.
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8 INVESTIGATIONS OF THE FIELD VARIABLES FOR STABLE CRACK GROWTH
One approach to representing the singular field in the vicinity of the crack - tip is to
describe it in terms of the strain singularity. For stationary cracks Rice and Rosengren
(13] and Hutchinson [12] developed solutions for the near crack - tip fieids using the
d deformation theory of plasticity and a power hardening law. The stresses, strains and
’*Z::I displacements are of the form
N
> 1
J nel >
%= % (o) | Giem
o¥o'n eq. 8.01
y J n+1 .
- Iy i epn 6 -8.02
N €ij aeo( QA €qTolnr ) e”( ) q
n
( J —T . eq. 8.03
) Uj= Q €yf (m) ui(e.n)
. where o jj, €;j and u; are functions of © and n,
1 a is the coefficient of the Ramberg Osgood material description,
- In a constant given in [18],

T o.€q ara the yield stress / strain.

.
»

A stably growing crack in a ductile material causes large deformations in front of and -
elastic unloading behind the crack - tip. Cracks opened by tensile mode 1 loadings are of
particular interest since most fracture failures occur under mode 1 conditions.
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Unfortunately, the mathematical problems are so complex that no general analytical
solutions are available.
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The characteristics of the elastic - perfectly plastic strain singularity of plane strain

i
o« .‘
n'r‘. 1
LI L
e

44

PR

LA T

P

G
@ e

RN . %

L,

et e e e ALt Ml e C T TS UL AT S - Ul SN SUT U R L] N e T Sl P P -,'-".-v'-
e L T U R e M A A R
* v - N N » . ) . E N i i 3 » A e s 0 " e o A A A A A . a1

St A AT




.' .IJ" L
COC e

ey

7\

stable crack growth has been investigated by Rice (57,58], Rice and Sorensen [30] and
Cherepanov [60]. In these analyses, the Prandtl slip line theory (a technique where the
stresses are determined by interpreting a slip line diagram according to prescribed
rules) was used to investigate the nature of the elastic - plastic strain singularity in the
centered fan sector moving with a growing crack. The Prandtl field results for a
stationary crack have been modified by introducing an elastic unloading sector for the

advancing crack. It has been found that this sector is approximately between & = 115°

and ©, = 163° [61]. This sector is shown in fig. 38.

For a stationary crack, the elastic - perfectly plastic asymptotic strain singularity is
proportional to (1/r) [12,13]. The results of the investigations for plane strain stable
crack growth suggest that the nature of this singularity changes to a weaker In(1/r)
proportionality (59]. The reason for this could be that the crack is extending into
material which has already been deformed plastically so that complete refocusing of the
strain field ahead of the crack - tip is prevented [33].

Drugan et al. [62) constructed an exact solution for the plane strain near - tip stress
field of an advancing crack for nonhardening materials by specializing Rice's more
general formula. Sham [63] performed a finite element study to verify this solution and
his results agreed very well with Drugan's analytical predictions.

In a more general investigation of stress - strain fields for stably growing cracks,
Amazigo and Hutchinson [64] examined a linear strain hardening material. Using Jp flow

theory of plasticity, they identified a loading and an unloading zone near the crack - tip.
Nevertheless, they did not include a sector of reverse plasticity (fig. 38 sector C) in the
wake of the advancing crack found as a resuit of Drugan's solution. In deriving their
results, Amazigo and Hutchinson followed a procedure similar to the HRR singularity
approach. A nonlinear stress rate function has been generated to represent the stress -
strain fields and the order of the elastic unioading zone has been determined dependent on
the slope of the linearly simulated plastic part of the stress - strain relation.
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As mentioned above, there is no exact solution available to describe the field -ariables of
a stably growing crack for the general case of a power law hardening material. In the
discussion of the field quantities from the present finite element solution, the emphasis
is placed on the transition between the different parameter fields displayed by the
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‘: curves. The definition of the representation of the curves are given in fig. 39. It is clear

: that for pure mode 1 loading the line © = 0° best shows the phenomena described above

a and thus the various quantities are shown along this line.

=

;;’ The strong HRR field strain singularity for the stationary crack is quite evident on the

o y - direction strain curve along the line © = 0° of the fine mesh (fig. 40). It is self
A evident that the ccarse mesh is not able to simulate this, nearly 1/r singularity for the

TR
i

'@
.

stationary crack. As the crack grows larger and larger the predominance of the HRR field
near the crack - tip decreases. Nevertheless, the characteristics of the y - direction
strain curves change very slowly (fig. 41 to 43). Only after five millimeters of crack
extension is the strain field singularity observed to be significantly weaker than at the
onset of crack growth (fig. 43). One possible explanation for this strain curve behavior
e could be the smoothing effect of the elastic strain component for the first increment of
crack extension.

7™

'\ﬁ: The y - direction stresses relative to the crack - tip along the line & = 0° exhibit little

¢ i: change for the first millimeter of crack growth, for the fine as well as the coarse mesh

.5‘\ (fig. 44 to 47). This is not very surprising since the known theories assume only

oy slightly ditferent singularities for the near - tip field of the advancing crack and the

::'_.'_ii stationary crack. For larger amount of crack extension the singularity tends to become

’i stronger. The points marked in fig. 45 could be interpreted as the transition between an

." intermediate zone, where the plastic strain is comparable in magnitude with the elastic

- strain and the K field. The transition between the intermediate zone and the HRR field is
not resolvable. For a crack extension of more than one millimeter the influence of the K

, field is diminished and the transition points are no longer identifiable.
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The von Mises stress for the line © = 0° clearly reveals the transition between the
intermediate zone and the K field for both meshes (fig. 48 to 51). The transition points,
which were hardly detectable for the stress in y - direction (fig. 45), are now very
evident. Since the applied external load increases as the crack advances, the transition
points change toward larger r values. The crack growth versus transition point position
is depicted in fig. 52. At the beginning of crack extension the transition points change
very rapidly, while the change decreases as the crack grows larger. For the growing
crack, a resolution of the crack - tip singularity from the HRR field; as well as the HRR
field from the intermediate zone is not possible even with the fine mesh (fig. 51). For
closer examination, a log/log representation of the von Mises curve is plotted in fig. 53
and 54. Indeed, the changes in slope circled in fig. 53 could be interpreted as the
transition between the HRR field and the intermediate zone.

The elastic strain energy density ( W, ) is shown for the early stages of crack extension

in fig. 55 for the fine mesh along the line © = 0° & 180° (negative values of r represent
© = 180°). After the onset of crack growth, the elastic strain energy density is seen to

decrease dramatically. For the next steps, the magnitude of Wg was nearly constant,

although the applied external load increased significantly during crack extension. This
behavior characterizes in an excellent way the ductile material behavior, namely, if the
the load were to be held constant instead of being increased, the crack would arrest. Due

to the strong gradient of Wy, for the first step, this behavior could not be resoived with
the coarse mesh. Figures 56 and 57 depict the W characteristics for subsequent crack
extension with the coarse mesh, and show that the magnitude of the maximum value of
W, decreases for the growing crack. The maximum values of W, plotted in fig. 55 to

57 should only be interpreted qualitatively due to the numerical inaccuracy associated
with the elements located directly at the crack - tip.

The plastic strain energy density ( Wp, ) for the advancing crack is plotted for the line

© = 0° & 180° in fig. 58 to 60. The curves show that the maximum value ot W, is
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located behind the crack - tip. It is more important, however, that the energy
dissipation is sharply bordered and, for larger amounts of crack growth, is nearly
constant over a certain length that is extending with the advancing crack, a result which
could possibly be employed in a local crack characterization. As already discussed in
chapter 2, Saka [35] performed detailed research into the feasibility of the plastic
dissipation as a local crack growth criterion. He stated that the intense region of the
plastic dissipation is circular with its origin at the tip. In addition, he determined the
characteristic radius of this circle to be 0.28 millimeter for approximately two
millimeters of crack extension. In contrast, the results of the present analysis indicate

that the intense region of Wp| is located behind the crack - tip. The radius of this intense

region (assumed to have a circular shape) has been determined to be approximately one
millimeter for two millimeters crack extension and is clearly a function of the crack
extension.

For the estimation of the plastic zone size, the von. Mises stress is illustrated for the
advancing crack in fig. 61a to 61m. in the present analyses the yield stress is 382 MPa.
At the onset of crack extension the plastic zone exhibits the typical butterfly shape, and,
as the crack grows, the plastic zone becomes more characterized by a bending behavior
towards the uncracked ligament. After 0.25 millimeter of crack growth, plastic hinging
occurs at the end of the uncracked ligament due to the moment caused by the applied
external load. At step 4 (Aa = 0.75 mm, P = 7650 N) the plastic zone of the crack joins
the plastic hinging region. With increasing crack growth, the crack -'.-,tip moves from the
middle of the highest von Mises stress contour to its left border and it seems that for ‘
further crack growth the crack - tip would restrain the highest von Mises stress |

7N

contour. One interesting region of the compact tension specimen is right in front of the
-_Z:: crack - tip. In this region the magnitude of the von Mises stress is decreasing towards
:Zij the line © = 0°. A reasonable explanation for this could be the superposition of the stress
:. parallel to the external load with the stress due to the resuiting moment.
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8.2 DISCUSSION OF THE FIELD VARIABLE RESULTS

The theory of stable crack growth in ductile materials suggests that the region ahead a
crack - tip should be divided into four regions:

1) The crack - tip singularity for advancing cracks,

2) the HRR field,

3) an intermediate zone where the plastic strain is comparable in
magnitude with the elastic strain, and

3) the K field.

In the present finite element study, only the transitions between the HRR field -
intermediate zone and intermediate zone - K field could be identified. Neither the fine
nor the coarse meshes are able to resolve the crack - tip singularity of the advancing
crack from the HRR field. Although one could argue that the finite element formulation is
smoothing the results and, therefore, such a separation may not be observable with this
method, the nature of the obtained stress curves clearly suggest that the crack - tip
singularity is superposed onto the HRR field rather than appearing separately.
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In the present work, slow stable crack growth in ductile material has been simulated
numerically with a widely used commercial finite element code (ABAGUS). An
experimentally obtained load versus crack growth relation was used as input and
J/ICTOD and CTOA crack growth criteria in ductile fracture mechanics were
investigated. In addition the field parameters ahead of the tip of the growing crack were
investigated.

Existing theories about the asymptotic fieids ahead of a crack - tip for an advancing
crack indicate that there should exist four regions. The results of the finite element
analysis show the near crack - tip field of the advancing crack and the HRR field
characterizing the stationary crack are superposad on each other and do not appear
independently. The only transitions which are resolvable are the transitions between
the HRR field - intermediate zone (the zone where the plastic strain is comparable in
magnitude with the elastic strain) and the intermediate zone - K field. The strain field
lends to a significantly weaker singularity as the crack grows larger, whereas the
stress field remains nearly unchanged even for large amounts of crack growth. In
addition, the plastic dissipation energy field attains its maximum value behind the
crack - tip and, for larger amounts of crack growth, the plastic energy dissipation
possesses a nearly constant value over a certain fixed distance.

The results of the finite element analyses performed in this work show that the J -
integral / CTOD concepts do not appear promising as crack growth criteria. This is not
very surprising since the J - integral concept is strictly valid only for stationary
cracks, although the slope of the J resistance curve ( AJ/ aa) does appear to be useful
as a crack growth controlling parameter for limited amount of crack growth (Aa <
0.036b). This indeed, is a very important result because other crack growth criteria
available are not able to simulate this region of crack growth very well. One of these
criteria is the crack tip opening angle (CTOA), in which a constant CTOA is achieved
after six millimeters of crack extension. Evaluation of the finite element resulits for
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the advancing crack indicate that the use of the CTOA, as a crack growth criteria, is not
very accurate for small amounts of crack extension. In addition, any definition of the
CTOA fails for r approaching the limit r - 0. Obviously there exists a gap between the
region where the J - integral is path independent (and the slope of the J - resistance
curve characterizes the crack growth) and the region where the CTOA is constant and
theretore applicable as a crack growth criterion. For this reason, a combination of
(aJ/ aa) and the CTOA as the crack growth criteria proposed by Kanninen and Popelar
(18] and recently applied by Hoff [37] is at best, an approximation where the extent
of the error remains to be determined. To make numerical crack growth simulation
techniques applicable for practical problems future research should be focused on
three points:

1) The amount of crack growth for which the J - integral is nearly path
independent needs to be known for a much wider range of materials and
geometries. The w approach of Hutchinson and Paris does not seem promising.
In addition, Kanninen [18] pointed out that the question of determining the

smallest value of w to assure J controlled crack growth remains unanswered.

2) An unambiguous definition of the CTOA needs to be established, and the amount
of crack growth when the CTOA begins to be constant needs to be better
understood. Since the CTOA appears to be material dependent [33], more
experimental research needs to be done to answer these questions.

3) An additional crack growth criterion needs to be developed for the region
between J - and CTOA controlled crack growth. This new criterion could even
replace one or both of the crack growth criteria mentioned above. Two new
energy based crack growth criteria may be able to satisfy the requirement(s)
mentioned above:

(i} the plastic dissipation energy criteria introduced by Saka [36]. The
idea behind this criterion is that the plastic dissipation energy
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determined in an intense strain region with a characteristic radius R. and

written in a dimensionless representation causes crack growth when a
critical value is exceeded. As discussed earlier, the results given in Ref. [36]
aiffer from the analysis presented in this work. Nevertheless fig. 62 shows

how the characteristic radius R, for the strain intense region could be defined

from the point of view of this work. An interesting fact is that for larger
amounts of crack growth the characteristic diameter (2R_) appears to be

approximately of the order of the crack extension aa.

(i) the strain energy density criterion proposed by Sih [65]. The basic
hypothesis behind this criterion is that the maximum yielding is assumed
to coincide with maximum strain energy density and the fracture initiation
with minimum strain energy density. Failure occurs now if either the
maximum strain energy density or the minimum strain energy density exceed
a critical value. Since the strain energy density is easy to measure (irea
under the stress/strain curve) this new approach looks promising.
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Schematic of the fields surrounding a growing crack [34].
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In the performed calculation the fine mesh has five times smaller elements in the

vicinity of the crack tip than the coarse mesh.
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Eigure 34; Schematic representation of the sensitivity of the CTOA dependent on

I'II"

the element size.
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Eigure 36: "45° definition of the crack opening displacement.
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Zone B: Elastic unloading.

advancing crack tip
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Zone C: Reverse plasticity.

Prandtl slip - line fields for steadily growing crack

Figure 38:
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Eigure 39: Cartesian stress components at the crack tip.
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Aa = 0.25 mm
Aa = 0.5 mm
Aa = 0.75 mm

Aa = 0. mm
Aa =1.mm
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For larger amounts of crack growth: 2R, =4a
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Figure 62: Behavior of the characteristic radius R, of the strain intense region
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TRAN
X Iable 1 Relation between the external (applied) load and the crack growth
(coarse mesh).
coarse mesh fine mesh
F [N] Aa [mm] FiN] Aa [mm]
5300 0 5300 0
6400 .25 §520 .05
7100 .5 5720 A
7650 .75 5960 .18
8100 1. 6180 .2
8250 1.25 6400 .25
8400 1.5 6540 .3
8500 1.75 6680 .35
8600 2. 6820 .4
8660 2.25 6960 .45
8690 2.5 7100 .5
8710 2.75 . 7210 .55
8720 3. 7320 .6
( 8725 3.25 7430 .65
8729 3.5 7540 7
8732 3.75 7650 .75
8734 4. 7740 .8
8732 4.25 7830 .85
8725 4.5 7920 .9
8715 4.75 8010 .95
8700 5. 8100 1.
8680 5.25 -
8650 5.5
8610 5.75
8570 6.
8530 6.25
8490 6.5
8450 6.75
8410 7.
8370 7.25
8330 7.5
8290 7.75
8250 8.
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Ni

Si

0.65 0.54

0.1§

Mn
0.01 0.016

1.22

Iable2: Material composition of A5338 steal {66] (in weight percent).
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Jable 3: Stress - strain properties of A5338B steel.

%o €9 n E a
382.866 MPa 0.001933 10 197620 MPa 1
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" T - 1

k Iable 4:; J - integral values for different paths.

J - integral value Path

| 89.88 N/mm

- 88.44 N/mm
! E 82.57 N/mm
) 82.48 N/mm

& W =
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Lo A\ TableS: J-integral over crack growth.

: 1%

L ,

Wy J - integral Aa

TN

i

.;) 88.437 0

o 141.117 25

:n.,‘. 193.161 5

e 287.161 .75

( 444,633 1.

T 536.557 1.25
"2: 644.079 1.5

) '

) :f_. 742.951 1.75
P 847.117 2.
7

e 1008.026 25

T
’ :; 1133.745 3.

S 1251.212 35

A}
RN 1366.434 4.

Lo,

A 1469.011 4.5

B,

% 1554.629 5.

wh 1614.482 5.5

)

b 1 .146 .
:::t', 620.1 6
' 1624.624 6.5

o 1642.07 7.
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1618.571
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Table 6. Comparison of the results for the J - integral performed in this work with
ot the work of Hoff [37].

J at the onset of crack slope of the J - Aa curve
extension. for the first 2,5 mm crack
axtension.
this work 89.878 N/mm 393.1 MPa ,using least
;x:I square curve fitting
o
e
5-& Hoff 200 N/mm 360 MPa
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