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ABSTRACT

'fhe periodic shedding of vortices from bluff bodies was first recognized in the
late 1800’s. Currently, there is great interest concerning the effect of vortex shedding
on structures and on vehicle stability. In the design of bluff structures which will be
exposed to a flow, knowledge of the shedding frequency and the amplitude of the
aerodynamic forces is critical. The ability to computationally predict parameters
associated with periodic vortex shedding is thus a valuable tool.

In this study, the periodic shedding of vortices from several bluff body geoine-
tries is predicted. The study is conducted with a two—dimensional finite-diflerence
code employed on various grid sizes. The effects of the grid size and time step on
the accuracy of the solution are addressed. Strouhal numbers and aerodynamic
force coefficients are computed for all of the bodies considered and compared with
previous experimental results.

Results indicate that the finite—diflerence code is capable of predicting periodic

vortex shedding for all of the geometries tested. Refinement of the finite—difference

grid was found to give little improvement in the prediction; however, the choice of

time step size was shown to be critical. Predictions of Strouhal numbers were gen-
erally accurate, and the calculated aerodynamic forces generally exhibited behavior

consistent with previous studies. N 5
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ABSTRACT

The periodic shedding of vortices from bluff bodies was first recognized in the
late 1800’s. Currently, there is great interest concerning the effect of vortex shedding
on structures and on vehicle stability. In the design of bluff structures which will be
exposed to a flow, knowledge of the shedding frequency and the amplitude of the
aerodynamic forces is critical. The ability to computationally predict parameters
associated with periodic vortex shedding is thus a valuable tool.

In this study, the periodic shedding of vortices from several bluff body geome-
tries is predicted. The study is conducted with a two—dimensional finite—difference
code employed on various grid sizes. The effects of the grid size and time step on
the accuracy of the solution are addressed. Strouhal numbers and aerodynamic
force coeflicients are computed for all of the bodies considered and compared with
previous experimental results.

Results indicate that the finite-difference code is capable of predicting periodic
vortex shedding for all of the geometries tested. Refinement of the finite-difference
grid was found to give little improvement in the prediction; however, the choice of
time step size was shown to be critical. Predictions of Strouhal numbers were gen-
erally accurate, and the calculated aerodynamic forces generally exhibited behavior

consistent with previous studies.
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NOMENCLATURE

a; constants

ag, an, as, aw finite-difference coefficients

A frontal area

b source term

c length of rectangular cylinder

Cp nondimensional drag coefficient

CL nondimensional lift coefficient

o pressure coefficient

Cps base pressure coefficient

d characteristic length

d wake width
'E D drag force
; Er internal energy
E? gr function dependent on A
E: h height of plate above the ground plane
E\’E k kinetic energy of turbulence

l plate or cylinder height

L lift force
»
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St
Stoo

At

Urel

U,

X

number of cells in a horizontal wall
shedding frequency
number of cells in a vertical wall
static pressure

freestream static pressure
shedding period

dynamic pressure

added heat

specific gas constant
Reynolds number

Strouhal number

function dependent on Re
time

time step

temperature

z component of velocity
relative velocity of vortices
separation velocity
freestream velocity

y component of velocity
velocity vector

z component of velocity
work done by the system

z direction body force

xili



Y y direction body force J
Z z direction body force
! relaxation factor \
I¢] aspect ratio of rectangular cylinder
€ dissipation rate of turbulence energy o
K ratio of U, to Uq W
A ratio of h to [

7 dynamic viscosity
P density N
T shear stress )

¢ general variable
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CHAPTERI :
INTRODUCTION -
. ‘
Formal recognition of the periodic structures existing in the wakes of bluff ?‘
bodies is credited to Strouhal. In his now famous work of 1878, Strouhal determined .
>
that the shedding of vortices behind a body occurred periodically, and he also gave L
" Iy
a crude approximation for the frequency of the vortex shedding. Soon after in 1879, v
t
Rayleigh discovered a relationship between the shedding frequency and the flow I
o4
Reynolds number. However, the most famous contributions to the field of periodic .
ul
Y
structures in bluff body wakes is credited to von Karman. Von Karman formulated ::
:
a theory on the flow pattern that occurs in the wakes of bluff bodies, that pattern 3
being the familiar Karman vortex street (Figure 1.1). His theory attempted to '
b,
! predict the geometry of the flow pattern in the wake behind a body as well as other N
vital parameters, such as the velocity of the vortices and the drag on the body. : f
i
Though his theory is not complete in that it concentrates only on the wake region -
and subsequently ignores the exterior potential flow, it is nonetheless a significant 2
contribution to the study of coherent structures in bluff body wakes. ‘
Importance of Vortex Shedding
f These pioneering efforts in the study of periodic structures in wakes have many
4
valuable applications. Though the study of the vortex street is essentially a problem

1
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in fluid dynamics, its primary applications are related to structural mechanics. Since

the vortex street is periodic in nature, the aerodynamic loads on a body which
is shedding vortices are also periodic. The frequency of the vortex shedding is a
critical parameter, for if the shedding frequency approaches a natural frequency
of the structure, potentially damaging large amplitude oscillations can occur. A
vivid demonstration of the damaging effects of vortex shedding was provided by
the destruction of the Tacoma Narrows Bridge in 1940 (Polodny and Scalzi 1976).
In a matter of hours, this bridge was destroyed by the oscillations induced by the
periodic shedding of vortices from the bridge’s surface.

In line with this example, the study of vortex shedding is important in the
design of structures that will be subjected to wind loadings. Also, there is an analog
in marine structures, where vortex shedding is a matter of considerable interest.
Another field of recent interest is the effect of vortex shedding on the stability of
motor vehicles with bluff tail sections. In general, any bluff body subjected to a
fluid flow can potentially shed vortices; knowledge of the frequency and amplitude

of the associated loading can be vital to stability and structural integrity.

Value of Computational Analysis

The ability to predict various parameters associated with vortex shedding can
be of great value. For structures which will be subjected to fluid flow, the possibility
of damage due to vortex—induced loading must be considered. Though one could
attempt to measure the vortex shedding characteristics experimentally, the ability
to do so computationally has many advantages.

The advantages of computational studies are often based on monetary consid-

erations. One fundamental advantage of computational methods is the ability to
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construct and test many configurations relatively quickly and inexpensively. The
use of fine grids in calculations allows one to achieve a highly detailed picture of
the flow field, and greater detail can be achieved by simply refining the grid. In an
experimental study, determining complex flow fields may require time consuming
testing, which inevitably leads to great expense. In many cases, computer codes
have the ability to predict flow in regions of a flow field that are inaccessible by ex-
perimental methods.

This study treats the problem of vortex shedding with a two—dimensional finite—
difference code. A three-dimensional code is not used for several reasons. First,
there was no three-dimensional code available for this study. Also, the addition of
another dimension to the calculation domain would greatly increase computer run
time. Furthermore, since the primary objective of the study is to simply demon-
strate the ability to numerically predict vortex shedding, the added complexity of

a third dimension is unnecessary.

Objectives of the Study

The primary objective of this study is to demonstrate the ability of a finite—
difference code to predict periodic vortex shedding from various geometries. To
demonstrate the abilities of the code, the phenomena of vortex shedding is consid-
ered for three basic flow schemes. The three basic schemes consist of the following:
a flat plate in a uniform flow which is oriented normal to the plate (Figure 1.2(a)),
a flat plate near a ground plane in a uniform flow which is oriented normal to the
plate (Figure 1.2(b)), and a rectangular cylinder in a uniform flow which is oriented
normal to the cylinder (Figure 1.2(c)). The dependence of the results on the choice

of finite-difference grid size, turbulence, and time step size are also examined.
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Data for the comparison of computational and experimental results comes from

various sources. For the shedding from a flat plate in a open region, the parameters
used for the comparison are shedding frequency, drag and lift coefficients, and wake
pressure profiles. Experimental data for comparison comes primarily from work
by Roshko (1954). For the case of a flat plate near a ground plane, the primary
interest is the prediction of shedding frequency. Experimental results are provided
by the studies of Strickland et al. (1980) and Matty (1979). Finally, the study of
vortex shedding from a rectangular body concerns the prediction of the shedding
frequency and the drag coeflicient. Data for comparison is extracted from work by

Okajima (1982) and Davis and Moore (1982).




L Egd Ha¥ g® AaVitaratad ¥at BaY 4" at (Y T2t fa' (2% ¥at a¥ (et} g’ $a0 000 Ua® 02 a¥ #a¥ $a° 100 .6t Bat ot Qa0 Bat ot o0 Ba¥ Du a¥ B3 B 6 Py [Ty AR

~ W PL o)

¥

- e

FIGURE 1.1: Karman Vortex Street (Van Dyke 1982).
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(a) Flat Plate in a Uniform Flow.
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(b) Flat Plate Near a Ground Plane

in a Uniform Flow.

(c) Rectangular Cylinder in a
Uniform Flow.

FIGURE 1.2: Basic Flow Configurations.
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CHAPTERII
THEORY OF VORTEX SHEDDING

The subsequent discussion covers the aspects of vortex shedding which are
relevant to the current study. The basic mechanism of periodic vortex shedding is
discussed along with a review of experimental results for each of the three geometries
studied. The experimental results presented provide a basis for comparison with

the numerical p :dictions.

Basic Parameters

The study of vortex shedding is simplified by the introduction of a number of
dimensionless parameters. Several parameters are defined to nondimensionalize the
aerodynamic forces, pressure, and vortex shedding frequency.

The fundamental aerodynamic forces known as drag and lift are typically given
in a nondimensional form. The nondimensional forms of drag and lift are respec-
tively the drag coefficient, Cp, and the lift coefficient, Cp. Definitions of Cp and

C are given respectively as

Cp= aod (2.1)
L
CL = qo.j (2.2)

LA A R
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where
4 = frontal area 2
( .
' D = drag force |
L = lift force
: goo = dynamic pressure.
? The dynamic pressure is defined as
i 1
9o = 5PUc (2.3)
B
*
i where
Us = freestream velocity
1
| p = density.
b
Pressures are nondimensionalized by introducing the pressure coefficient, C,,
‘
R defined as
\
Cp = P~ P (2.4)
) qm
D
'
A where
3
! P = static pressure
[ ]
X Poo = freestream static pressure.

Note that C, > 0 indicates that the pressure is greater than freestream pressure,
and C, < 0 indicates that the pressure is less than freestream pressure.
Another nondimensional quantity often associated with flow problems is the

Reynolds number, Re. The Reynolds number expresses the ratio of inertial to

viscous forces and i1s defined as
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)
where
d = characteristic length
g = dynamic viscosity.

The final parameter to introduce is the Strouhal number, St. The Strouhal
number is a nondimensional frequency, and it is the primary quantity in the study
of vortex shedding. The Strouhal number is defined as

nd

St = — 2.6
i (2.6)

where n is the shedding frequency.

Vortex Formation from Bluff Bodies

A bluff body in a uniform flow can assume two different flow patterns in its
wake. At very low Reynolds numbers (Re < 60) a stationary, symmetric vortical
pattern is formed. This symmetric pattern is a seemingly trivial solution, because
it can only be achieved under controlled situations. The solution of interest is the
formation of a vortex street in the wake of the body.

The mechanism of wake formation is described similarly by Younis (1988) and
Roshko. At the sharp leading edges of the body the flow separates, creating free
shear layers. These shear layers continue downstream for a short distance before
rolling up into vortices. This flow pattern is inherently unstable, and thus oscilla-
tions in the flow field are initiated. Eventually, the vortices from the top and bot-
tom surfaces will alternately be carried downstream forming the familiar pattern of

the Karman vortex street.
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Roshko derived certain qualitative relationships pertaining to bluff body wakes.
He noted that all bluff body wakes are similar in structure, with the bluffness of a
body being related to the dimensiowu of the wake width with respect to the body. In
essence, a bluffer body diverges the flow more extensively and creates a larger wake.
He also noted an inverse relationship between the shedding frequency and the wake
width, indicating that bluffer bodies have lower shedding frequencies. Finally, he

noted that a decrease in wake width is accompanied by an increased drag.

Vortex Shedding from a Flat Plate

The shedding of vortices from bluff bodies was studied extensively by Roshko.
Among the bodies Roshko studied was the flat plate. Of primary interest was the
measurement of shedding frequency from the plate in terms of the Strouhal number.
He determined that the Strouhal number for a flat plate remained nearly constant
over a wide range of Reynolds numbers. The value of the Strouhal number for a
flat plate fell in the range of 0.130 < St < 0.140. Experimental Strouhal numbers
determined by Roshko are provided as Figure 2.1.

Also of interest was the prediction of aerodynamic forces on the plate, especially
drag. Roshko devised a method by which he could determine the drag on a flat
plate from one experimental measurement, the base pressure coefficient. He joined
the work of Kirchhoff and von Karman in what was termed the notched-hodograph
theory (Roshko 1953). The geometry employed in the notched-hodograph theory is
presented in Figure 2.2, with the free streamlines representing the separated shear
layers.

The velocity U, 1s the separation velocity and is a multiple of the freestream

velocity by the relation

-------------------------
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Us=rlUs . (2.7)

Since the velocity U, exists on the downwind side of the plate, the base pressure

coefhcient, Cp,, is simply

Cps =1—-r% . (2.8)

To determine k, the relationship is transformed to read

k=+/1-Cph . (2.9)

The constant k is related to the wake width by the curve given as Figure 2.3.
Another relation was formed between the relative velocity of the vortices, u,;, and

the freestream velocity as

Urel 1 K,2
— ==1£4/1- . 2.10
U 2 ( \/ 2\/§> (2.10)

Finally, the drag can be calculated by the Karman drag formula

Cp = & |5.65%mt _ 95 ( Urel : 2.11
D=7 ‘o[joc 23 U . (2.11)

The data provided by Roshko for C,, yields drag coefficients in the neighborhood
of 1.85.

Vortex Shedding from a Flat Plate
Near a Ground Plane

The study of vortex shedding from a body situated near a ground plane seems

to have been exclusively addressed by the related studies of Matty and Strickland
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et al. Their study was motivated by a concern about the effects of vortex shedding '
from heliostats. Though the actual geometry that they were concerned with was v
not a flat plate, they addressed their concern by performing wind tunnel tests on .:
\ a flat plate near a ground plane. The basic configuration involved in the study is v
ot
shown in Figure 2.4. Y
~
Their study intended to determine the Strouhal number as a function of the
Reynolds number and the height of the plate above the ground plane. Shedding :.
!
frequencies were determined for the three—dimensional flat plate, and the data they '.‘
obtained are presented in Figure 2.5. From these data, an equation was derived ]
! that approximates the Strouhal number in terms of the dimensionless parameters ’.
p 3
Re and A, where :
)
4 A=h/l . (2.12) ]
! 4
s The equation derived from the study took the following form: “
[}
i
\ St(Re,A) = gr(A)Sto(Re) . (2.13) <
{ 3
F Their derivation gave the Strouhal number as the product of two indepen- ':E
! dent functions. The function g,(A) describes the variation in Strouhal number for N
p -
' changes in A. The function gx(A) is given as f—
| 2
5
i N,
: gh =1+ a;e7*sin[az(asA — 1)] (2.14) T
I
f where a; are constants given as e
-
; a; = 0.518 >
! :
4 ¢
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e
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az = 4.6

a3z = 18.0°

ay = 20.0.
A graphical representation of the function gx(A) is provided as Figure 2.6.

The function St ( Re) is representative of the variation in the Strouhal number
with Reynolds number for a flat plate removed from the ground plane. Analytically,

the function St..(Re) is given by the simple expression

St = as + ag/Re (2.15)
where
as = 0.121
ag = 407.

This function is shown graphically as Figure 2.7. It is important to note that this
function was derived for the specific Reynolds number range of 1.4 x 10* < Re <
1.5 x 10°.

There are a few important features to note about the function St(Re,A). In-
creasing Reynolds number is accompanied by a decrease in the Strouhal number as
indicated by St (Re). With respect to the function g (), for 0 < A < 0.20 the ten-
dency is for the Strouhal number to increase with increasing A. For 0.20 < A < 0.50,
the Strouhal number decreases for increasing A. Finally, for A > 0.50, the Strouhal

number appears to be virtually unaffected by the presence of the ground plane.

Vortex Shedding From Rectangular Cylinders

From a practical viewpoint, the rectangular cylinder is a body of considerable

interest. Vortex shedding from rectangular bodies is applicable to flows around
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automobiles, buildings, and many other bodies of practical interest. These bodies
also exhibit interesting behavior with relation to their characteristics while shedding

vortices.

The more curious aspects of vortex shedding from rectangular cylinders are re-
lated to the Strouhal numbers of such bodies. The basic geometry of the rectangu-
lar cylinder is provided as Figure 2.8. The ratio of ¢/l, which is a critical parame-
ter in determining the characteristics of the flow about a given cylinder, is denoted
as #. Okajima provided plots of the variation in Strouhal number with Reynolds
number for four values of B (8 = 1, 2, 3, 4). These plots (Figures 2.9-2.12) demon-

strate the interesting behavior apparent in the shedding frequency.

For the case 8 =1 (Figure 2.9), there is some variation in the Strouhal number
for increasing Reynolds number, but the variation is gradual. However, for the cases
of 8 = 2 (Figure 2.10) and 8 = 3 (Figure 2.11), the behavior is quite different. For
B = 2, there is a discontinuity in the plot at Re ~ 500 and a similar discontinuity
appears in the plot for § = 3 at Re =~ 800. This discontinuity appears because there
are actually two modes of vortex shedding which occur from rectangular cylinders
in the range of 2 < 8 < 3 (Okajima).

The first mode, which occurs at low Reynolds numbers, is characterized by a
reattachment of the flow which separates at the leading edge. The reattached flow
then separates at the trailing edge and forms the vortex street. As the Reynolds
number is increased, the flow loses the ability to reattach to the surface of the
cylinder. Finally, when the Reynolds number reaches a critical value, the separated

regions suddenly detach from the surfaces creating a drastic increase in the wake

width. As demonstrated by Roshko, an increase in the wake width is accompanied




o T R Y U T I O R R o e U P YT W T W U W WY AR T OO S

15

by a decrease in the shedding frequency. Therefore, this detachment characterizes
the second mode of the vortex shedding and is the physical process responsible
for the discontinuities which occur in plots for Strouhal number versus Reynolds
number.

With respect to the variation in aerodynamic forces on rectangular cylinders,
some general trends have been recognized. A study by Davis and Moore indicated
an increase in lift and drag for an increase in Reynolds number. Laneville and Yong
(1983) were concerned with the variation in the drag for changing 8. Their data
indicate that the drag increases steadily with increasing 8 for 8 < 0.8. However, for
B > 0.8 the trend suddenly changes and increasing (3 is accompanied by a decrease

in the drag coeflicient.
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FIGURE 2.2: Geometry for the Notched-Hodograph Theory.
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FIGURE 2.9: Strouhal Number vs. Reynolds Number
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) CHAPTER 111 :
DESCRIPTION OF COMPUTATIONAL ANALYSIS

The field of computational fluid dynamics is currently a field of considerable
i interest. The basic goal is to predict the distributions of velocity, pressure, tem-

perature and other relevant variables throughout a given flow field. Advantages of

computational methods over experimental methods include a greatly reduced cost
. and the ability to survey areas of a flow field that may be otherwise inaccessible.
Furthermore, numerical methods allow the solution of problems which are impos-
sible to solve using classical methods. Computational methods, of course, are not
without disadvantages. In some cases, numerical solutions may diverge and yield
no useful results. Also, for more complex flows, especially turbulent flows, empiri-
. cal models are employed that may not suitably represent the physics of a situation.
) This may lead one to question the validity of computational results. For this reason,
] a combination of experimental and computational investigations will likely provide
the most consistent and useable results. In the following discussion, the computa-

G, tional tools employed in this research are reviewed.

Discretization of Differential Equations

For a homogeneous fluid, a total description of the flow field consists of the

distribution of six quantities throughout the flow domain. In Cartesian coordinates,
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¢ the six quantities which arise in these equations are the three velocity components,

u, v, and w, pressure p, density p and temperature T. The required six equations
y for the solution of any flow problem are fundamental. Three equations are provided
by conservation of momentum for each of the three Cartesian coordinate directions

(z,y,2). These equations are also commonly known as the Navier-Stokes equations

- e A ey

and are given for the z, y, and 2z directions respectively as

Du dp 0] ou 2 .
ﬁ = - % —a-; -,u,<2'a—z' — §dwv>]
8 [Ou Ov
' a5 )] (3:1)
' L9, (0w  bu
0z _Ii oz = 08z
, Dv op O] v 2
. e =T 5+ gy (25~ 3
}
o (v Ow
+ E #(E 6_y>} (3.2)
AN
\ 9z |V dy Oz
Dw op O ow 2
TR M M?E B 3‘1“”)}
4 0 dw Ou
+ 52 [N<_5; + 5;)] (3.3)

where
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t = time

X = z-direction body force
Y = y-direction body force
Z = z—direction body force
¢ = dynamic viscosity

and v is the velocity vector

v=ui+vj+wk . (3.4)

A fourth equation is provided by conservation of mass, or the continuity equation,

given as

9p  Opu)  8(pv)  O(pw)

ot oz dy dz =0 (3.5)

Conservation of energy provides the fifth equation which given in a basic form is

§Q =dEr + 6W (3.6)
where
6Q = quantity of heat added
dET = increase in internal energy
W = work done by the system.

The set of equations is closed by an equation of state, commonly the well known

ideal gas law
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where R is the specific gas constant. Of course, the use of the ideal gas equation
assumes that the fluid is a gas. If this were not the case, an appropriate equation
of state would have to be employed.

Theoretically, given six equations for six unknowns the solution to a given prob-
lem should be within reach. However, with the exception of very simple problems,
this set of equations cannot be solved analytically. It then becomes the task of the
computational fluid dynamics algorithm to provide an approximate solution that
adequately describes the flow field.

To obtain a solution to a given flow field using a finite—difference scheme, the
differential equations that describe the physics of the flow must first be discretized.
To discretize the differential equations, one assumes that the flow field is composed
of a discrete number of control volumes, and the flow variables stored at each
control volume are prevalent for that region in space. The discretization equations
are algebraic equations that relate the quantities at a grid location to the quantities
at the neighboring grid locations. The equations that are derived to represent

conservation of mass, momentum, and energy all follow the same basic form, which is

appp = apdp + awdw + andN + asds + b (3.8)
where
a = finite~difference coefficient
b = source term
¢ = general variable (u, v, T, etc.).

The subscripts identify which point in the field the a or ¢ refers to, as shown in

Figure 3.1. The source term b is available to account for any terms which do not

.
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conform readily to this format upon discretization of the differential equation. The
most obvious example of a term that is contained in the source term b is the pressure
gradient term in the momentum equations.

Among the most important aspects in the derivation of the finite-difference
coefficients is the differencing scheme. The differencing scheme provides information
on the variation of flow quantities between grid locations. The scheme employed in
this research is known as the upwind scheme. In this scheme, the value of a quantity
at a given point is assumed to be affected only by the cells which are upstream of
the cell, with no influence of the downstream cells being felt. This scheme works
well for processes governed primarily by convection, but it is not suitable for flows
which are predominantly processes of diffusion. The solution of these discretization
equations throughout the flow domain is the task of the finite-difference algorithm.
For a detailed description of the finite~difference coefficients and other differencing

schemes refer to Patankar (1980).

The FORDC-2 Finite-Difference Code

The basis for the code used in this research is the FORDC-2 (Flow Over
Radiator and Condenser — 2 Dimensional) code developed by Carroll, Maxwell and
Sun (1985). This code originally treated a flow as two-dimensional, incompressible,
steady and elliptic. Modifications have been made to the code to allow the solution
of unsteady problems and to speed the solution of the discretization equations.

The algorithm employed in the FORDC-2 code is the SIMPLE (Semi- Implicit
Method for Pressure Linked Equations) algorithm described by Patankar (1980).
A brief outline of this iterative method follows. The iterative process is started by

assuming a pressure field. With the pressure field presumed to be known, one can
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-

solve the momentum equations to obtain the velocities. Next, the pressure correc-

tion equation, a form of the continuity equation employed to insure conservation of
: mass, is solved. Following the solution of the pressure correction equation, the ve-
locities and pressures are adjusted to insure satisfaction of continuity. The solution
then proceeds to deal with any other quantities of interest (i.e. temperature). The
updated pressure is then used to continue the iterative process. Typically, the iter-
. ative process is continued until the flow quantities remain virtually unchanged be-

) tween iterations indicating a converged solution. However, in the transient case the

solution should be valid at each step in time. Flow quantities may well be changing

considerably between successive iterations, or time steps, in transient problems.

- oy

The FORDC-2 code was modified to speed the solution by altering the method

> -

by which the discretization equations are solved. Previously, all of the discretization

equations except pressure correction were solved by the ADI (Alternating Direction

Iteration) procedure. The program has been altered to allow the solution of all of the

. -

discretization equations by Stone’s method. Stone’s method is a field iterative solver
that is claimed to be approximately three times as fast as other available meth-

ods. Stone’s method requires the selection of a relaxation factor which was set to

e e

a = .93. For details on the formulation of Stone’s method, refer to either Stone

(1968) or Carroll (1980).

% Finite-Difference Grid
The accuracy of the solution of the finite-difference equations is governed by
the approximation involved in determining the variation of a given quantity between

neighboring grid locations. With respect to the variation of velocity, this problem

ety g X G-

can be remedied by employing a staggered grid. The premise of the staggered grid

-
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is that there may be an advantage to storing some quantities at the main grid
location while storing other variables elsewhere. A staggered grid is employed in

the FORDC-2 code.

A representative segment of the finite-difference grid is shown in Figure 3.1.
The grid is constructed in the Cartesian coordinate system in two dimensions (z,
y). The capital letters (E, W, N, and S) mark the locations of the main grid
points with respect to the point of interest, point P. Note that the symbols for the
cells neighboring point P are derived from the points on a compass. It is at the
main grid points that the properties of the fluid are stored, with the exception of
the velocity components u and v. The dashed lines represent control volume faces,
shown as lower case letters, which are the boundaries of the control volume at point
P. The u velocity components are stored at the e and w faces and the v velocity
components are stored at the n and s faces. It is the storage of the velocities at the
control voiume faces, removed from the main grid points, that creates the staggered
grid. The staggered grid can simply be thought of as three different grids being
employed on the same calculation domain: one grid is employed for the primary

grid quantities, the second for u velocities, and the third for v velocities.

The advantage to be gained by this grid is that the mass flow across a control
volume face can be calculated directly. If the velocities were stored at the main grid
points with the other variables, the values of the velocities at the grid faces would
arise from an interpolation and introduce an unnecessary approximation in the cal-
culation of the mass flow through a control volume. Since satisfaction of continuity
is fundamental to the solution of any flow problcm,I it is critical to calculate accu-

rate mass flow rates. The employment of the staggered grid aids in the achievement
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of that end. This type of grid also allows the direct calculation of the pressure gra-
dient for a given control volume.

The finite-difference grid is constructed for the entire calculation domain by
the specification of the control volume face locations. Once the face locations have
been identified, the main grid points are placed such that they are centered between

s the control volume faces in each direction. The spacing between the faces can be
either uniform or nonuniform. The advantage of the nonuniform grid is that the
grid can be made more dense in areas of interest without making the entire grid
dense. This allows one to get more detailed information about the flow field in the

areas of interest without increasing computer run time.

Boundary Conditions

The uniqueness of a given problem is determined by the specification of bound-
ary conditions. In the case of pressure and temperature, the boundaries were typi-
cally set to take on ambient conditions. However, the boundary conditions imposed
on velocities are the primary interest in this case.

The inlet and exit boundary conditions are critical to calculating accurate flow
fields. In these studies, the inlet velocity plane is always situated at the location
of minimum z, and the outlet velocity plane is always situated at the location of
maximum z. The inlet velocity distribution is simply specified to match the desired
velocity profile at the inlet of the calculation domain. For these studies, the inlet is

always a uniform velocity, Us. The exit boundary velocity must be such that the

FORDC-2 code. First, the velocity at the exit plane can be specified directly to

satisfy conservation of mass. The second scheme available adds some sophistication

:
E continuity equation is satisfied. This result can be achieved in two manners by the
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to the calculation of the exit velocity profile, but also carries a restriction on the

direction of the exiting flow.

The second scheme for setting the exit boundary condition is intended to allow
the finite-difference algorithm to calculate the proper exit velocity profile. The
scheme involves calculating the mass flow across the plane just ahead of the exit
plane, scaling all of the velocities on this plane to match the entering mass flow, and
then placing these scaled velocities at the exit plane. In this manner, the velocity
profile at the exit is similar to the profile just upstream of the exit and overall
continuity is satisfied. However, one must be cautious to place the exit boundary
far downstream, for any backflow at the exit will prevent this scheme from working
properly.

The other exterior boundaries to the flow are handled by either external walls
or symmetry planes. If the boundary is considered to be a wall, the velocity com-
ponents are set to zero at the wall. However, if the boundary is placed at a fluid-
fluid interface, then the proper boundary condition is a symmetry plane or slip wall.
The symmetry boundary condition is imposed by setting the finite—difference coef-
ficient that links the boundary point to an interior cell equal to zero. This insures
that the velocity stored at the symmetry boundary has no effect on the flow field.
This is typically used in a situation where the boundary could also have been con-
sidered to be at freestream conditions. For this reason, the location of a symmetry
boundary is typically far from the body about which the fluid is flowing. Of course,
if there is an actual symmetry in the flow field, then the symmetry boundary can
be used at a symmetry plane to shrink the calculation domain. This allows one to

achieve greater resolution in the flow field while still maintaining the same number
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KT ARN

of control volumes. A simple example where an actual symmetry plane could be
used is the flow between two flat plates, or Poiseuille flow.

Another important consideration, though not technically a boundary condition,

]
:.r
td'
v
iy

is the internal wall. For these studies, internal walls are always considered to be
impermeable. The walls are placed at control volume faces since the specification
of the wall requires that the velocity component perpendicular to the wall be set
to zero. The finite—difference coefficient that links the velocities parallel to the
wall on either side of the wall is set to zero. This prevents these velocities from
wrongly influencing each other across a wall. Finally, the viscous effects that appear
near walls are accounted for by employing a wall function (Nallasamy 1985). The

numerical implementation of the wall function is outlined by Carroll et al.

Turbulence Model

The accurate modelling of turbulent flows is a particularly challenging prob-
lem. Theoretically, solution of the full Navier-Stokes equations should provide an
accurate result with the full effects of turbulence present. The problem lies in the
fact that the scale of the turbulent fluctuations are on the order of 10~ that of the
primary flow (Rodi 1984). For a two—dimensional flow, this would require an in-
crease in the number of grid points by an order of 10° to handle the details of the
turbulence. Even on the fastest of today’s supercomputers, solution of such a large
set of equations would require prohibitive amounts of memory, time, and money.

To account for the effects of turbulence without attempting the solution of the
full Navier-Stokes equations one employs empirical turbulence models. The Navier—
Stokes equations are converted into time averaged equations by assuming that the

flow quantities are composed of a mean value and a fluctuating value

m o,
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p=¢+¢ (3.9)
where
$ = mean value of ¢
¢' = fluctuating component of ¢.

Typically it is the mean values of the flow which are of interest. This formulation
spawns additional terms for which extra relations must be derived. For the momen-
tum equation, these additional terms are known as the Reynolds stresses. It is the
task of the turbulence model to express these terms as functions of the mean flow
quantities.

The turbulence model employed in the FORDC-2 program is perhaps the most
popular turbulence model used in the computational fluid dynamics codes, the k-
€ model. The basis of this model is that the turbulent flow can be characterized
by two quantities, the kinetic energy of turbulence, k, and the dissipation rate of
turbulence energy, €. The solution of the differential equations for k and € allows
the calculation of a turbulent, or eddy viscosity, u;. The eddy viscosity is added to

the laminar viscosity to yield an effective viscosity,

feff =B+ Hpt (3.10)

It is this variation in the local viscosity which accounts for the presencc of turbulence
in a flow. This model was derived empirically, and expectedly does not work well
for all flow situations. For a more detailed description of the k~¢ turbulence model

refer to Rodi or Nallasamy.
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FIGURE 3.1: Representative Segment of a
Finite-Difference Grid.
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CHAPTER IV
DETERMINATION OF AERODYNAMIC
FORCE COEFFICIENTS AND
SHEDDING FREQUENCY

The following discussion outlines the methods for calculating various parame-
ters associated with a given flow. The methodology for calculating the drag coeffi-

cient Cp, the lift coefficient Cp, and the Strouhal number St are discussed.

Drag Coefhicient

In the most general treatment, the aerodynamic forces experienced by a body

are the result of the distribution of shear stress and pressure on the surface of the

L% )

body. The drag force is the force experienced by the body in a direction parallel ‘
; to the freestream velocity. For the case of a flat plate, if one considers the plate to ‘E:
i be infinitesimally thin the effects of shear and pressure on the width of the plate “i
can be neglected. Therefore, the drag on a plate which is normal to the {reestream ._.'_:1:
direction is simply a function of the pressure distribution on the plate. ‘;_j
. Referring to Figure 4.1 one can immediately write the drag force as &

l l
D= [riwia- [mwas . (1.1)

L
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This calculation of drag is dependent on a knowledge of the continuous distribution

of the pressure force over the surface of the plate. However, in the computational

scheme the surface of the plate has been broken into a discrete number of elements,

N. An example of the discretized pressure distribution is given in Figure 4.2.

Defining the depth of the plate as a unit 1, the differential area then becomes

dA =dy-1=dy
One can then write the drag in terms of the discretized pressures as

N
D =) (ps—ps)ilys

i=1

This expression can be simplified by denoting the pressure differential as

Ap; = (ps — po):i

which gives an expression for the drag

N
D= Z Ap;Ay;

i=1

This expression can be further simplified by noting that the plate is discretized into

elements of equal length Ay;. This yields the simplified drag expression

N
D=2y Ap

=1

The task is then to cast the drag force in terins of a drag coefficient. Recall

that the definition of the drag coefficient is

------------

>y~

(4.2)

(4.3)

T ARy T e SRS T e

(4.5)
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D
Cp = m . (4.7)

Substituting the expressions for the drag and the area yields

Ay SN Ap,
CD:_quE“zI_P‘ . (4.8)

Note that since all of the Ay, are equal that an arithmetic average for Ap; can be

written as

_ Zlil AP:
Ap; = == —— 4.9
p i (4.9)
or similarly
N
> Api=NAp; . (4.10)
i=1

Substituting equation 4.10 into equation 4.8 yields the result that

_ NAyAp;

Cp P

(4.11)

By noting that NAwy is simply the plate length [, a final expression for the drag

coefficient can be written as

Ap;
cp=-2 . (4.12)
deo

Lift Coeflicient

The lift force is defined as that force which acts on body in a direction normal

to the freestream velocity. For the case of an infinitesimally thin flat plate which is
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oriented normal to the freestream direction, the lift is due only to the shear forces
which act on the surface of the flat plate.

Figure 4.3 shows the distribution of the shear stress 7(y) on the surface of a
flat plate. The shear stress for a Newtonian fluid in the coordinate system defined

in Figure 4.3 is

dv
Ty = RS (4.13)

The velocity gradient dv/dz can be computed by simply dividing the v velocity that
neighbors the surface by the distance between the velocity location and the surface.
The gradient may be calculated in this manner because the velocity at the surface
must be zero.

Turning now to the calculation of the lift force, one can immediately write that

l

l
L= /Ty,(y)dA-Jf-/Tyb(y)dA . (4.14)

0

Proceeding in the same manner as that used in the calculation of Cp, the lift for

equal Ay; can be written as

N
L=Ay) (ry, +73)i - (4.15)

=1

Recalling the definition of the lift coefficient as

L
CL = ;;74- (4.16)

the lift and area expressions can be substituted to yield
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Ay Zi:l('ry; + Ty, )i
ool

CL = (4.17)

Again, due to the uniformity of the Ay; terms the arithmetic average of the shear

stresses can be written as

N
= + i
(Tyy +7y) = 21_1(7—3\; ) : (4.18)

By substituting equation 4.18 into equation 4.17 and recognizing that NAy is [, the
lift coefficient can be written as
(Tyy +74)

Cp =Y w (4.19)
V%)

Finally, one may put the expression for Cr in terms of the simplest quantities

and eliminate the 7, terms. Referring to Figure 1.4, the average shear stresses can

be written as

_ o
Ty = u——émff (4.20)
- Up
T = By (4.21)

Substituting equations 4.20 and 4.21 into equation 4.19, a final expression for Cy,
in terms of the variables calculated in the program is given as

Cy = #(5;’/5%) + (B/bzs) (4.22)
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Aerodvnamic Forces on a Rectangular Cylinder

With the lift and drag on a flat plate resolved, the task now is to extend
those forces to a rectangular cylinder. The pressure and shear forces which act on
the cylinder are shown in Figure 4.5. Note that for the rectangular cylinder lift
and drag both have force components due to pressure and shear stress. Recalling
the definitions of Cp and Cp once more, and using the forms of the lift and drag
forces given in the previous section, the lift and drag coefficients on the rectangular
cylinder are easily derived.

Drag on the cylinder oriented normal to the freestream velocity is due to the
pressure on the front and back surfaces and the shear stresses on the upper and
lower surfaces. Once again the spacing of the Az; and Ay; terms is uniform, with
N elements composing a vertical surface and M elements composing a horizontal
surface. An expression for the drag in terms of average pressures and stresses can

be written immediately as

D = N(py — ps)Ay + M(72, + T2,)Az . (4.23)

Recalling that NAy is [ and M Az is ¢, the drag coefficient becomes

cp = PL=Pe) | (Teu *Ta)e (4.24)
oo ool

Lift on the cylinder is due to the pressure on the upper and lower surfaces and

the shear stresses on the front and back surfaces. The lift can then be written as

L=M(p —p.)Az + N(%y; + Ty, ) Ay

)
-~
o
(<)

S

L g

¢

Wy W T

—~y W W 5 ) g N LS. T L] .. - ) LI AR LR s I e 3
N AL NN P e R, T B N N A T o DR T PR P R T T TRV L G G S L T A

A .

S

-

L e

AT AT e

-

27

T

-

N‘

PLELAT

SN

3



Y @ v et Yap Yoy Y AN AN AN ANREN AN AN ‘0 0% 2% 8% 2% 2’8 a% "ats” ‘[\\""'U.a.t‘l HRARA RO ' Ly cat vy iy Drasbsy -y 2. "A% ' §%2 #°

=T 2
¢
Y
'
-
-
44 Yy
1
The lift coeflicient is then ! A
l':
o ]
C — (pl - pu)c + (Tyf + Tyh) . (4.26) |::
qOOl Qeo n"
The expressions for calculating Cp and Cy for both a flat plate and a rectangular 2
2
cylinder perpendicular to the freestream flow have been determined. These equa- ?
.}-‘
tions are the relations programmed into the FORDC-2 code for the determination i
)
of the aerodynamic force coefficients. ‘,:
3
) "
Shedding Frequency :::
o
The method for determining the shedding frequency is derived from the work by )
.
Younis (1988). He proposed to determine the shedding frequency by examining the 'j
periodic fluctuations in three fundamental quantities. He determined the frequency '.’
!
n by examining ; )
1. the axial velocity at two locations behind the body as shown in Figure 4.6, the E;
ph
velocities being denoted by u; and u,, o)
f‘
2. the drag coefficient Cp, and N
J
3. the lift coefhicient Cy,. N
)
For the slightly more complex case of a rectangular cylinder, the axial velocity o,
is measured at four locations as shown in Figure 4.7 because of the possibility of .'
5 .
vortices being shed from either the front or rear of the cylinder. Note that the flow -
r\
Pt
field must be allowed to reach a cyclic state before the frequency can be determined '_".:
Ny
by this method. .“
The shedding frequency can be extracted directly from plots of either u;, us, :
Cp, or Cp, versus time. This method, with one exception, assumes that vortices N
)
are shed at the same frequency at which the aforementioned quantities fluctuate. ';'
]
N
N
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Knowledge of the shedding frequency immediately leads to the Strouhal number by

the relation

nd

St:Uoo

(4.27)

Younis notes that the dfag oscillates at twice the frequency of the lift, which
oscillates at the shedding frequency. Plots of the fluctuations in Cp and C provided
by Younis are given as Figure 4.8 and clearly demonstrate the higher frequency
oscillation in the drag. Similar plots obtained in this research for a flat plate at
Re = 7826 aic givcu in Figures 4.9-4.12, and the higher frequency oscillation of the

drag is again evident.
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FIGURE 4.1: Pressure Distribution on a
Thin Flat Plate.
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on a Thin Flat Plate.
B P I e T SR AT A T e e e T T .

47

e

"

5 5

e

AR

s

]
-
-y

S ¢

Pl S S LI
‘ - -.Af. ‘."-:-1

'
o

e,

PO

>

AR

}

P

PR ARAN

-5, .‘:‘r.l'.

e

T P X A

-r f{f s

el




LA P XA AN BN PR NN N B T R ORI NI W A 0 W MWl W A UM R W W R T VST, LA ¢ PP el S A LA 8 A UK Salk- sl .

48

Tyy (y) Tyb(y)

v

FIGURE 4.3: Distribution of Shear Stress
on a Thin Flat Plate.
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CHAPTER V
RESULTS FOR VORTEX SHEDDING
FROM A FLAT PLATE

The subsequent discussion descrites the results obtained for the case of vortex
shedding from a flat plate in a uniform flow. Several comparisons are made with
data obtained by Roshko for this geometrical configuration. The effects of changing
parameters associated with the finite—difference solution of the flow field are also

examined.

Computational Setup

The numerical prediction of vortex shedding from a flat plate in a uniform flow
was achieved on for different grid configurations. The coarser of the grids used in
the study was a 60 x 50 uniform grid as shown in Figure 5.1. Overall physical
dimensions of the calculation domain were 0.06 m x 0.03 m. The flat plate was
composed of 10 vertical cells, had a length of 0.006 m, and was centered vertically
within the calculation domain. The spacing between the plate and the upper and
lower boundaries was approximately two plate lengths. An inlet boundary was

provided at approximately 2.5 plate lengths upstream of the plate, and the exit

boundary was placed approximately 7.5 plate lengths downstream of the plate.
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A finer grid was also employed in the solution of this problem. The second grid

was a highly nonuniform 150 x 80 grid as shown in Figure 5.2. Nonuniformity was
introduced to concentrate the control volumes in the area of greatest interest, that
area being the region directly downstream of the plate. Also, the nonuniformity
allows for the placement of relatively large cells near the boundaries which locate
the boundaries farther away from the plate to reduce the influence of boundary
conditions. ‘I'he overall dimensions of the calculation domain were 0.175 m x 0.140
m. The flat plate was composed of 16 equally spaced vertical cells which gave a plate
length of 0.0102 m. Vertical spacing between the plate and the outer boundaries
was approximately 6.4 plate lengths at both the top and bottom. Upstream of the
plate by about two plate lengths was an inlet boundary, and approximately 15 plate

lengths downstream of the plate was an exit boundary.

Boundary conditions for the two grid sizes were similar in nature. The upper
and lower boundaries were assigned a symmetry (slip wall) condition. The inlet
boundary was a uniform flow directed normal to the plate with the magnitude of the
velocity being varied from 0.3 m/s to 3.0 m/s to achieve a range of Reynolds numbers

of approximately 2000 < Re < 30000. The exit boundary was set by allowing

the boundary to assume a velocity profile similar to the one directly upstream as

described in Chapter III.

Pt

The FORDC-2 program was executed on the VAX 8650 and VAX 11/780

T W
Pliraii it
“ .
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computers available at the Texas Tech computing facilities. The problem was solved
isothermally with the calculated variables being u, v, and p. Runs were also made
for the coarse grid case with the k—e turbulence model included in the solution,

which results in the addition of the variables k and € to the process. Turbulence
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was employed to determine whether there was a significant difference in the results
between the turbulent and laminar cases. The different grids were employed to
examine the effects of a refined grid on the solution and to determine whether the
extra effort required to create and run the more complex grid was justified. Finally,
the time step, At, was adjusted on a case by case basis to ensure convergence of

the transient solution.

Method of Inducing Vortex Shedding

A significant problem arose in computationally simulating the Karman vortex
street. Geometrically, the problem has a symmetry about the horizontal line which
bisects the flat plate. Since the finite-difference model is simply a mathematical
model, the flow field that results would share this symmetry about the horizontal
bisector. This symmetry would seemingly exclude the vortex street pattern from
the set of possible solutions.

Fortunately, this problem can be overcome by removing the symmetry in the
initial conditions. To make the flow initially asymmetric, a perturbation was added
to the flow in the form of a momentum source. The momentum source was included
for the first three tirae steps and was located at a control volume directly behind
and at the upper limit of the plate. The location of the source was approximately
the same location at which the transient velocity, u;, was measured as shown in
Figure 4.6. Inclusion of this momentum source proved to be an adequate method

of introducing asymmetry to the flow; consequently, the vortex street was predicted

by the program.
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Qualitative Analvsis of Transient
Vector Fields

Prediction of the Karman vortex street by the FORDC-2 program is clearly
demonstrateﬂd by Figures 5.3-5.7. These figures show the absolute velocity vectors
for equaliy separated increments in time. The five plots progress by steps of a
quarter of the vortex shedding period, P, to show the progression of the vector
field with time. Absolute velocity vectors are displayed simply because the vortex
shedding pattern is far more apparent when shown in this manner. The velocity

vectors are transformed by the simple relation

Vabs =V — Uoo . (5.1)

At t = 0 (Figure 5.3), the familiar alternating vortex pattern of the vortex
street is clearly visible. In fact, the pattern shown has much the same character
as that given in Figure 1.1. There is a pronounced spreading of the vortices in the
vertical direction as they move downstream. Also note that the vortices seemingly
grow in size as they progress downstream. These characteristics indicate that the
finite-difference code accurately predicts the vortex shedding pattern.

Progressing to t = 1/4P (Figure 5.4), notice that the entire flow pattern from
t = 0 has moved downsiream. There is also a disturbance at the top of the plate
which is the beginning of the formation of the next vortex. At ¢ = 1/2P (Figure
5.5), the vortex on the top of the plate has formed and is clearly recognizable. As
expecicy, ai ¢ = 1/2P the vector field appears to be a mirror image about the
horizontal bisector of the field at t = 0. The vector field at t = 3/4P (Figure 5.6)

indicates the beginning of the formation of a new vortex at the bottom of the plate.

R P e M P N A T e I N A A A A R Tl T B i g T T Iy iy S T R T Y A N N

7.

»_¥ _ W]
x

-

Ak Al

[ s

A X

',-:,"-?"_ l" .;.'i‘- (‘.if "i '5'1‘1' 'I,‘/;:.','f."."—qv h 4. ‘.11{'\‘. 11- - -ﬁgg,;lu/-'-

p‘]- v

- ‘.5‘)‘

1| F S LS
.

-

N

.



£ o th o BN 0a  aan ke oty ta  te Uan TN TAN FaT Rt Gat Bat a8 00 0.0 50 0a0 0,0 1 0 0 0 bt LA TR G s L 0 e 8% 000 SV 1 To a0 g K Ty A T nat et Ve ST T R S LAY Tl Va0 g ed Sl &

61

Finally, at t = P (Figure 5.7) the vector field appears to be the same field calculated
at t = 0. Therefore, the vector field has cyclicly progressed back to its initial state,

and the predicted vortex shedding is indeed periodic.

Comparison of Numerical and Experimental
Strouhal Numbers

Among the most critical parameters associated with periodic vortex shedding
is the Strouhal number. Roshko provided extensive data on the Strouhal numbers
for different geometries, including the flat plate. Figure 5.8 offers a quantitative
comparison of the experimental results of Roshko with the results from this study.
The data presented graphically are also given in tabular form as Tabies 3.1 and 5.2.

A quick examination of Figure 5.8 indicates that the numerical model predicted
Strouhal numbers comparable to those measured by Roshko. However, a closer
examination reveals some important trends in the data. For the detailed 150 x 80
grid, the prediction of Strouhal number was quite accurate up to a Reynolds number
of approximately 10*. For Reynolds numbers greater than 10, the model seemed
to lose accuracy as the predicted Strouhal number decreased. In any case, the error
between the predicted and experimental results never exceeded 15 percent.

For the case of the 60 x 50 grid the same trend was not apparent. For the
entire Reynolds number range, the coarser grid appears to have predicted Strouhal
numbers more consistent with Roshko’s results. The Strouhal numbers predicted
on the coarse grid were generally greater than those predicted on the fine grid.
Addition of the k-€¢ turbulence model generally caused a slight increase in the

Strouhal number; however, that trend wis not substantiated for all cases.
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Overall, the results were favorable, especially when compared with the work :
4 &
; done by Younis. In a similar study, Younis predicted Strouhal numbers for a flat %
&
plate in a range of 0.165-0.185. Younis’ values would appear to be an overestimate "'
\ of the Strouhal number when compared with the experimental data provided by -
‘ Roshko. Overestimation of the Strouhal was not a problem encountered in the =)
[ .
: current study. ; At
)
) Comparison of Numerical and Experimental &
Wake Pressure Profiles
t
Roshko provided experimental results for the time averaged pressure distribu- -3
! ]
tion on the centerline of the wake. His data was for the specific Reynolds number Y,
N
of Re = 14500, and the data was given in terms of the nondimensional quantities : '
"
Cp and z/l. The quantity z is measured from the plate with positive z extending o
)
downstream. A comparison with Roshko’s data was made for both grid sizes and 7
"
for the case where turbulence was included. )
s
Figure 5.9 gives the variation in C, with downstream distance for the fine grid. '
)
The most obvious difference between the computational and experimental curves is ::'
- L3
the magnitude of the suction predicted by the numerical mode] just downstream of -
S'
>

the plate. The numerical model predicted a base pressure coefficient nearly twice as
large as Roshko measured. Note that the numerical model predicted the minimum
pressure to occur at =/l = 0.7 where the experimental results indicate that the
minimum pressure occurs at z/l = 2.0. Minimum pressure values were also quite

different, with the predicted minimum taking a value approximately twice that of

LA MT NS »‘;'n}‘-;‘v -

the experimental result. However, this does not necessarily indicate an error in the -
e
numerical model, because Roshko cited difficulties in obtaining the wake pressure o
oy
o
o
"
‘H'
)
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measurements. Furthermore, note that the agreement between the curves for z /I >

2.0 was quite good.

The anomalies cited for the fine grid solution are also apparent in the coarse
grid solution as shown in Figure 5.10. The predicted base pressure coefficients
for the two grids are almost identical. Minimum pressure for the two cases also
occurred at nearly the same value of z/l, though the coarse grid solution did not
predict as low a value of C, as did the fine grid solution. The primary difference
between the solutions for the two grid lies in the accuracy of the solution for values of
z/l > 2.0. For this region, the fine grid solution was much closer to the experimental
solution than was the coarse grid solution. Nonetheless, the coarse grid solution did

approximate this part of the curve with reasonable accuracy.

The addition of turbulence to the coarse grid solution appears to make little
difference in the solution. The pressure profile for the turbulent case (Figure 5.11)
is virtually identical to the laminar case. This result indicates that the addition of
turbulence has little effect on the prediction of wake pressures.

Comparison of Numerical and Experimental
Aerodynamic Force Coethicients

Measurement of the time averaged lift and drag coefficients was carried out

for each case run. As expected, the average lift coefficient, Cr,, , was zero for all

av

runs though instantaneous values of lift were nonzero. The zero value of lift was

expected since this case is for a flat plate at zero angle of attack.

A graphical display of the calculated average drag coefficients is given as Figure
5.12. Also included on the plot are drag coefficients derived from Roshko’s data

and the equations given in Chapter II. Note the extreme difference between the
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numerical solution and the experimental/theoretical values provided by Roshko.
The numerical values of Cp exceed Roshko’s values by more than 50 percent, and
this may well be tied to the much lower base pressure predicted by the computations.
However, also note that the predicted values agree favorably with the numerical
results of Younis who found Cp’s in the range of 3.25-3.65.

From a numerical standpoint there were also significant differences in the
predicted drag coefficients. The fine grid solution estimated drag coeflicients on the
order of 10 percent greater than the coarse grid. This fact may be related to the
lower minimum pressure found in the wake for the fine grid solution. Turbulence
appeared to have little effect on the prediction of drag, though its addition did seem

to generally increase the drag coefficient by about 1 percent.

Effect of Iterative Time Step Size

From a numerical standpoint, the selection of the iterative time step At can
be critical. Figure 5.13 presents the variation in the predicted Strouhal number for
various iterative time step sizes. The horizontal line indicates the experimentally
measured Strouhal number for this particular Reynolds number, Re = 14500. A
best fit linear approximation of the data is also displayed. Note that the curvature
in the curve fit is due to the logarithmic axis.

From this figure one can clearly see the dependence of the solution on the time
step. The prediction of the Strouhal number deteriorates markedly as the time step
is increased. For this particular case, any further increase in the time step above At
= .0008 led to divergence of the solution. Also note that as At — 0 the predicted
solution asymptotically approaches the experimental solution. These indicate that

the choice of a sufficiently small value of At is critical in obtaining accurate solutions.
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TABLE 5.1: Numerical Shedding Frequency and
Aerodynamic Force Data for the
150 x 80 Grid.
U (m/s) Re St CD.,.,Q CLM,Q
0.30 2660 | 0.132 3.30 0.0
0.50 4435 | 0.139 3.35 0.0
0.80 7096 | 0.129 3.30 0.0
1.00 8870 | 0.132 3.26 0.0
1.50 13304 | 0.124 3.20 0.0
1.63 14500 | 0.130 3.23 0.0
2.00 17739 | 0.124 3.23 0.0
3.00 26609 | 0.116 3.24 0.0
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@ CHAPTER VI
?,(
o RESULTS FOR VORTEX SHEDDING FROM
. A FLAT PLATE NEAR A GROUND PLANE
A
\
i
B
{
" The following discuss:on describes the results obtained for the case of a flat
plate near a ground plane. A comparison is made between the predicted Strouhal
Y numbers and the function obtained by Matty. The effect of the presence of the
:: ground plane on the aerodynamic force coefficients is also examined.
~ Computational Setup
-
- The numerical prediction of vortex shedding from a flat plate near a ground
0 plane was carried out on only one grid configuration. This is due to the fact that
: results in Chapter V indicated that refinement of the grid yielded only limited
: improvements in the solution. However, the 60 x 50 grid used in the previous case
y proved to be unacceptable due to a lack of spacing between the plate and the exit
3 boundary. To remedy this problem, cells were added to the grid downstrcam of the 2
)
" plate.

The grid emploved for this problem was a 80 x 30 grid as shown in Figure 6.1
with overall dimensions of 0.08 m x 0.03 m. The plate was composed of 12 vertical

cells and had a length of 0.0072 m. The inlet boundary was located approximately

two plate heights upstream of the plate, and the exit was located approximately

80
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nine plate heights downstream of the plate. The location of the bottom boundary
relative to the plate was governed by the parameter A which was assigned the values
of 0,1/4,1/2, and 1. The spacing between-the plate and the upper boundary varied
between 2 and 3 plate heights for different values of A.

Boundary conditions for this case were similar to those presented in Chapter
V. The primary difference was the placement of an impermeable wall at the bottom
boundary. Otherwise, the boundaries remained the same with the exception of the
magnitude of the inlet velocities. The inlet velocity was varied between 2.0 m/s and
20.0 m/s to give a range of Reynolds numbers of approximately 1060 < Re < 15000.
This range of Reynolds numbers was chosen to match the range examined by Matty.

Vortex shedding was induced in the same method explained in Chapter V.
Turbulence was not included in this case due to the previous results which indicated
that the addition of turbulence was of little consequence. Again, the solution was

isothermal, and the calculated vanables were u, v, and p.

Qualitative Analysis of the Flow Field

Inducing vortex shedding in the wake of a flat plate near a ground plane was
not successful for all cases. For the case of A = 0, vortex shedding was never
achieved. To achieve vortex shedding, the plate had to be moved to a distance of
one plate length from the wall. At this distance from the wall, vortex shedding
occurred readily. To achieve shedding for other values of A, the velocity field of the
A = 1 case was imposed as an initial condition.

Figure 6.2 and A.2 respectively present representative plots of the velocity
vectors and streamlines for an instant in time. This particular plot is for the case

of A = 1. The main difference to note between this case and the cases presented in
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Chapter Vis a decrease in the wake width. This is apparently due to the influence of

the wall which deters the vortices shed from the bottom of the plate from spreading.

Comparison of Numerical and Experimental
Strouhal Numbers

Data obtained for the various values of A are provided as Tables 6.1-6.3. A
comparison of the predicted Strouhal number data versus the function St(Re. )
obtained by Matty is provided in Figures 6.3-6.5.

For the greatest separation between the plate and the ground plane at A =1
(Figure 6.3), the numerical prediction of the Strouhal number for the entire range
of Reynolds numbers was fairly accurate. As the Reynolds number was increased,
the numerical solution tended to give a slightly higher value of the Strouhal number
than the function St(Re,A). However, the Strouhal number generally decreased for
increasing Reynolds number as indicated by Matty’s study.

As the value of A was decreased to A = 1/2 (Figure 6.4), the trend changed
considerably. Predicted values of the Strouhal number were lower than those given
by the function St(Re, A) for low values of the Reynolds number. However, as the
Reynolds number was increased the numerical solution was quite accurate. The
trend of decreasing Strouhal number with increasing Reynolds number was also
supported by the prediction. The results were also similar for A = 1/4 (Figure 6.5),
though predicted Strouhal numbers slightly underestimated the empirical relation.
Nonetheless, the trend of decreasing Strouhal number with increasing Reynolds
number was again supported.

The variation in the Strouhal number with A for a fixed value of the Revnolds

number was also examined. Strouhal numbers for A = 1/4 were generally greater
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than those for A = 1/2. Matty’s data indicates a similar behavior between these val-
ues of A. However, the predicted Strouhal numbers at A = 1 were significantly higher

than those at A = 1/2, though Matty’s study indicates that these values should be

LY

nearly equal. The difference here may well lie in the fact that Matty’s study was

) for a three~dimensional plate, while the numerical study was two—dimensional.

Variation in Aerodynamic Forces
with Ground Clearance

!: A variation in the aerodynamic forces was noted for changes in the parameter
K A. However, for a given value of A, there was little apparent dependence of the
drag force on the Reynolds number. Figure 6.6 presents the variation in the drag
coefficient with A. The trend for the drag to increase as A decreases was clearly
apparent. At A = 0, the drag had attained a value approximately 50 percent greater
than that obtained for a flat plate removed from a ground plane. This behavior was
expected, for the increase in the drag on a body as it approaches a ground plane is

well documented.

R L)

An increase in lift also occurred for decreasing ground heights, though the trend
was not as prominent as it was for the drag. Figure 6.7 presents the variation in the
lift coefficient with A revealing this relationship. The lift appeared to have a slight
dependence on the Reynolds number, with an increase in Reynolds number being
accompanied by a decrease in the lift coefficient. However, it must be noted that
; the magnitude of the lift coefficient was quite small, and the lift may be considered

to be insignificant.
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TABLE 6.1: Numerical Shedding Frequency and
Aerodynamic Force Data for A = 1.

Us (m/s) Re St CDuvy | ClLey, x 107%
2.0 12521 0.148 3.62 2.4
5.0 31304 0.135 3.60 2.4
10.0 62608 0.157 3.61 1.9
15.0 93913 0.160 3.60 1.7
20.0 125210 0.164 3.59 1.5
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TABLE 6.2: Numerical Shedding Frequency and
Aerodynamic Force Data for ) = 1/2.

Re

CD..y

CL,,,,Q x 10~*

12521
31304
62608
93913
125210

3.72
3.72
3.70
3.69
3.76

3.1
2.9
2.7
2.5
2.4
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TABLE 6.3:

Numerical Shedding Frequency and
Aerodynamic Force Data for A = 1/4.

Us (m/s) Re St vy X 107%
2.0 12521 0.138 3.3
5.0 31304 0.135 3.2
10.0 62608 | 0.132 2.9
15.0 93913 0.130 2.7
20.0 125210 | 0.130 2.4
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CHAPTER VII o
A8y
RESULTS FOR VORTEX SHEDDING FROM :';
A RECTANGULAR CYLINDER )
]
The following discussion reviews results of the computational prediction of vor- :::
tex shedding from rectangular cylinders. Computed Strouhal numbers are com- !'
pared to experimental values provided by Okajima. Trends in the variations of ::
s
aerodynamic forces are also explored. ;:
Computational Setup :-?
i)
The numerical prediction of vortex shedding from rectangular cylinders was R
achieved on the same basic 80 x 30 grid used for the study of a flat plate near a e
ground plane. The primary differences between the two grids were the placement -
~
of the body in the calculation domain and the specification of boundary conditions. o
3
Figure 7.1 presents the finite-difference grid for the specific case of a rectangular :‘
cylinder with # = 3. The study was executed for cylinders of varying length to height ::Z
ratios, with the 3 taking on the values 1, 2, and 3. The height of the cvlinder was
composed of 10 cells giving a height of 0.006 m. The length of the box was composed !
of either 6, 12, or 18 cells depending on the respective value of 8, either 1, 2, or ~y
o~
3. The inlet boundary was located approximately two cylinder heights upstream of \
o
the cylinder, and the exit varied from 4.5- 6.5 cylinders heights downstream of the ':
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. cylinder depending on the value of . Spacing between the cylinder and the top
E and bottom boundaries was fixed at approximately two cylinder heights.

i:;' Boundary conditions for this case were identical to those for a flat plate in a
: uniform stream (Chapter V), with the exception of modified inlet velocities. Inlet
’?‘ velocities were varied from approximately 0.04 m/s to 2.80 m/s yielding a Reynolds
A number range of 200 < Re < 15000. This range roughly corresponds to the range
. of the data presented by Okajima.
Again, the solution was isothermal, and the k~¢ turbulence model was excluded
E: from the solution process. This provided a solution in terms of the variables u, v,
= and p.

L)

‘ Qualitative Analysis of the Flow Field
: The unusual behavior exhibited in plots of Strouhal number versus Reynolds
/ number for cylinders with aspect rations in the range of 2 < 3 < 3 was theorized
', to be dependent on an overall change in the flow field. It was hoped that the nu-
" merical solution of this problem would demonstrate this change in the flow geome-
K try. However, the change in the flow pattern was not at all evident in plots of the
3 velocity vectors and streamlines for the tested cylinders.
: Plots of the flow fields for each of the values of § are provided as Figures 7.2-7.4
" and Figures A.3—-A.5. The plots are all quite similar, and show a pattern very much
: like that obtained behind a flat plate. These figures are all representative of the
: flow fields obtained over the entire range of Reynolds numbers for their respective
i values of #. Unfortunately, the resolution of the solution was not such that the
3 region of reattachment along the cylinder length could be seen for the two latter

cases where 3 took on the values of 2 and 3.
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) y
Comparison of Numerical and Experimental y
\ Strouhal Numbers .
N [ ]
i The most interesting aspect of the shedding of vortices from a rectangular .

cylinder was the discontinuity that occurred in plots of the Strouhal number versus

the Reynolds number. This behavior was predicted by the FORDC-2 code for the

- e - -

expected values of 5. Data for these cases is provided in Tables 7.1-7.3. '
Figure 7.5 presents the variation in the Strouhal number with Reynolds num- 2
: ber for a cylinder with # = 1. The plot indicates that the Strouhal number was rel- 3
:, atively insensitive to the Reynolds number over the entire range of Reynolds num- :
. bers. Maximum values of the Strouhal number occurred at minimum values of the :
: Reynolds number. This prediction is supported by the data provided by Okajima -
E which indicates similar trends. :E
! Of greater interest is the case for a cylinder with 8 = 2 as shown in Figure 7.6. A
‘ The Strouhal number increases steadily with increasing Reynolds number up to the :
,‘ point where Re =~ 600. The Strouhal number then falls sharply and maintains a
fairly constant value over the remainder of the Reynolds number range. This result M
is in good agreement with experimental results which indicated the same behavior. :
b The prediction of the point where the discontinuity occurred was also very close to :
i the experimental measurements. Y
; The case of the cylinder with 8 = 3 shown in Figure 7.7 was similar to the case ‘
: of B = 2. Again, the Strouhal number increased with increasing Reynolds number :
up to a value of Re =~ 1600. At this point, the plot then changed discontinuously %
and the Reynolds number remained reasonably constant over the remainder of the
! plot. Qualitatively, the behavior of the prediction agrees well with the experimental :
: data provided by Okajima. However, the discontinuity in the plot occurred at a v
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significantly greater Reynolds number than cited by Okajima. Nonetheless, the
prediction of the behavior of the plots of Strouhal number versus Reynolds number

for all value of # were reasonably accurate.

Variation in Aerodynamic Force Coefficients

A variation in the aerodynamic force coefficients with both Reynolds number
and aspect ratio was indicated by the data. The exhibited trends were more solidly
established for drag, with the variation in drag with both Reynolds number and 8
being quite evident.

Figure 7.8 presents the variation in the drag coefficient for the different values
of B. Clearly the drag coefficient decreases for increases in the aspect ratio. This
is a trend which was indicated by the study of Laneville and Yong. A variation in
drag coefficient with the Reynolds number was also apparent as shown in Figure
7.9. The trend is most clearly seen in the data for the cylinder with 8 = 2, where
the drag steadily increases with increasing Reynolds number. This is the trend
indicated by the data of Davis and Moore. However, this trend was more subtle for
the other values of 3.

The variations in the lift coefficient with 8 shown in Figure 7.10 did not exhibit
the expected behavior. There are some indications that the lift may increase slightly
with increasing 8, but the trend is not well established. Even more curious was
the variation in the lift with the Reynolds number shown in Figure 7.11. The data
in this case clearly indicate that the lift decreases for increases in the Reynolds
number. Data provided by Davis and Moore indicates a relationship between the

lift and Reynolds number inverse to that derived in this study.
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FIGURE 7.2: Absolute Velocity Vectors for § = 1.
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FIGURE 7.3: Absolute Velocity Vectors for § = 2.
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TABLE 7.1: Numerical Shedding Frequency and
Aerodynamic Force Data for 8 = 1.
Us (m/s) Re St Cp.., ClL,.,
0.10 522 { 0.143 1.88 0.00
0.30 1565 | 0.143 1.90 0.02
0.50 2609 | 0.129 1.89 0.00
0.80 4174 | 0.138 1.89 0.00
1.00 5217 | 0.130 1.95 0.04
1.50 7826 | 0.136 1.93 0.00
2.00 10435 | 0.123 1.90 0.00
2.78 14500 | 0.138 1.89 0.00
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TABLE 7.2: Numerical Shedding Frequency and

Aerodynamic Force Data for § = 2.

U (m/s) Re St CDavy | ClLays
0.04 209 0.132 1.53 0.23
0.06 313 | 0.158 1.63 0.17
0.08 417 0.191 1.67 0.18
0.10 522 0.170 1.69 0.16
0.15 783 | 0.096 1.72 0.07
0.20 1043 0.107 1.75 0.00
0.30 1565 0.122 1.77 0.04
0.50 2609 | 0.091 1.79 0.05
r.80 4174 0.118 1.80 0.04
1.00 5217 0.106 1.80 0.04
1.50 7826 0.124 1.81 0.04
2.00 10435 0.110 1.81 0.06
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TABLE 7.3: Numerical Shedding Frequency and
Aerodynamic Force Data for = 3.

------
- Wy N Wy W £ Y e T

U (m/s)

Re St CD,,,,Q

CLau,

Sy T Ve et Ay TV

1.65
1.66
1.68
1.69
1.69
1.70
1.70
1.69
1.70
1.68
1.63

0.07
0.09
0.09
0.06
0.04
0.02
0.03
0.02
0.02
€.02
0.02
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with Reynolds Number.

FIGURE 7.9: Variation in the Drag Coeflicient
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! CHAPTER VIII 3
D 3
& CONCLUSIONS A
4 This study proposed tc demonstrate the ability to predict the phenomena of ;

{

:: vortex shedding from various two—dimensional bodies. For every case tested with 4
! the exception of a flat plate on a ground plane, periodic vortex shedding was
N achieved. N
"

4

K For the initial case involving a flat plate in a uniform flow (Chapter V), the
|
) results were favorable. Predicted Strouhal numbers agreed well with experimental

L4 data. A calculation of pressures in the wake of the plate indicated a region behind :

e ]

K the plate where the predicted pressures were much lower than the experimental data; "
. however, the difference may be due to difficulties in experimentally measuring the ¢
. v
4 pressures. Predictions of the drag also indicated deviations from the drag function 3

provided by Roshko, but the accuracy of Roshko’s function was unknown. .

[

i With respect to parameters affecting the solution of the finite-difference equa-

\ tions, some significant results were discovered. Refinement of the finite-difference ‘_.
A A
¥ grid yielded only a slight improvement in the prediction of pressure distributions, g

f )
‘ and actually hampered the prediction of Strouhal numbers. The inclusion of turbu- K
0 lence was found to have very little effect, and was subsequently excluded from the
) q 3
) solution process.
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The prediction of vortex shedding from a flat plate near a grourd plane also
vielded favorable results. The comparison of predicted Strouhal numbers with an
empirically derived function demonstrated the ability to predict general trends in
the shedding frequency. Quantitatively, there were significant differences in the
prediction and the empirical function; however, this may be attributable to the fact
that the prediction was two—dimensional while the function was derived for a three-
dimensional case. Also, the expected increase in the aerodynamic force coefficients
as the body approached the ground plane were accurately predicted.

Finally, the prediction of vortex shedding from rectangular cylinders was suc-
cessful. Strouhal numbers for cylinders of differing aspects ratios were predicted
with reasonable accuracy. This prediction also properly included the discontinuity
in the plots of Strouhal number versus Reynolds number for cylinders with aspect
ratios in the range 2 < B < 3. Unfortunately, the flow pattern that gives rise to this
discontinuity was not clearly apparent. Predictions of the drag coefficient on the
cylinder compare well with previous studies; however, the lift coefficient behaves in

a manner contrary to prior indications.
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APPENDIX
PLOTS OF STREAMLINES
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