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ABSTRACT

The periodic shedding of vortices from bluff bodies was first recognized in the

late 1800's. Currently, there is great interest concerning the effect of vortex shedding

on structures and on vehicle stability. In the design of bluff structures which will be

exposed to a flow, knowledge of the shedding frequency and the amplitude of the

aerodynamic forces is critical. The ability to computationally predict parameters

associated with periodic vortex shedding is thus a valuable tool.

In this study, the periodic shedding of vortices from several bluff body geome-

tries is predicted. The study is conducted with a two-dimensional finite-difference

code employed on various grid sizes. The effects of the grid size and time step on

the accuracy of the solution are addressed. Strouhal numbers and aerodynamic

force coefficients are computed for all of the bodies considered and compared with

previous experimental results.

Results indicate that the finite-difference code is capable of predicting periodic

vortex shedding for all of the geometries tested. Refinement of the finite-difference

grid was found to give little improvement in the prediction; however, the choice of

time step size was shown to be critical. Predictions of Strouhal numbers were gen-

erally accurate, and the calculated aerodynamic forces generally exhibited behavior ]

consistent with previous studies. , %
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ABSTRACT

The periodic shedding of vortices from bluff bodies was first recognized in the

late 1800's. Currently, there is great interest concerning the effect of vortex shedding

on structures and on vehicle stability. In the design of bluff structures which will be

exposed to a flow, knowledge of the shedding frequency and the amplitude of the

aerodynamic forces is critical. The ability to computationally predict parameters

associated with periodic vortex shedding is thus a valuable tool.

In this study, the periodic shedding of vortices from several bluff body geome-

tries is predicted. The study is conducted with a two-dimensional finite-difference

code employed on various grid sizes. The effects of the grid size and time step on

the accuracy of the solution are addressed. Strouhal numbers and aerodynamic

force coefficients are computed for all of the bodies considered and compared with

previous experimental results.

Results indicate that the finite-difference code is capable of predicting periodic

vortex shedding for all of the geometries tested. Refinement of the finite-difference

grid was found to give little improvement in the prediction; however, the choice of

time step size was shown to be critical. Predictions of Strouhal numbers were gen-

erally accurate, and the calculated aerodynamic forces generally exhibited behavior

consistent with previous studies.
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CHAPTER I

INTRODUCTION

Formal recognition of the periodic structures existing in the wakes of bluff

bodies is credited to Strouhal. In his now famous work of 1878, Strouhal determined

that the shedding of vortices behind a body occurred periodically, and he also gave

a crude approximation for the frequency of the vortex shedding. Soon after in 1879,

Rayleigh discovered a relationship between the shedding frequency and the flow

Reynolds number. However, the most famous contributions to the field of periodic

structures in bluff body wakes is credited to von Kirmln. Von Kirmin formulated

a theory on the flow pattern that occurs in the wakes of bluff bodies, that pattern

being the familiar Kirm~in vortex street (Figure 1.1). His theory attempted to

predict the geometry of the flow pattern in the wake behind a body as well as other

vital parameters, such as the velocity of the vortices and the drag on the body.

Though his theory is not complete in that it concentrates only on the wake region

and subsequently ignores the exterior potential flow, it is nonetheless a significant

contribution to the study of coherent structures in bluff body wakes.

Importance of Vortex Shedding

These pioneering efforts in the study of periodic structures in wakes have many

valuable applications. Though the study of the vortex street is essentially a problem

11



in fluid dynamics, its primary applications are related to structural mechanics. Since

the vortex street is periodic in nature, the aerodynamic loads on a body which

is shedding vortices axe also periodic. The frequency of the vortex shedding is a

critical parameter, for if the shedding frequency approaches a natural frequency

of the structure, potentially damaging large amplitude oscillations can occur. A

vivid demonstration of the damaging effects of vortex shedding was provided by

the destruction of the Tacoma Narrows Bridge in 1940 (Polodny and Scalzi 1976).

In a matter of hours, this bridge was destroyed by the oscillations induced by the

periodic shedding of vortices from the bridge's surface.

In line with this example, the study of vortex shedding is important in the ]

design of structures that will be subjected to wind loadings. Also, there is an analog

in m arine structures, where vortex shedding is a matter of considerable interest.

Another field of recent interest is the effect of vortex shedding on the stability of

motor vehicles with bluff tail sections. In general, any bluff body subjected to a % A

fluid flow can potentially shed vortices; knowledge of the frequency and amplitude .

of the associated loading can be vital to stability and structural integrity.

Value of Computational Analyrsis ,

The ability to predict various parameters associated with vortex shedding can

be of great value. For structures which will be subjected to fluid flow, the possibility .(

of damage due to vortex-induced loading must be considered. Though one could : i

attempt to measure the vortex shedding characteristics experimentally, the ability

to do so computationally has many advantages.

The advantages of computational studies are often based on monetary consid-

erations. One fundamental advantage of computational methods is the ability to :
p

%
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construct and test many configurations relatively quickly and inexpensively. The

use of fine grids in calculations allows one to achieve a highly detailed picture of

the flow field, and greater detail can be achieved by simply refining the grid. In an

experimental study, determining complex flow fields may require time consuming

testing, which inevitably leads to great expense. In many cases, computer codes

have the ability to predict flow in regions of a flow field that are inaccessible by ex-

perimental methods.

This study treats the problem of vortex shedding with a two-dimensional finite-

difference code. A three-dimensional code is not used for several reasons. First,

there was no three-dimensional code available for this study. Also, the addition of

another dimension to the calculation domain would greatly increase computer run

time. Furthermore, since the primary objective of the study is to simply demon-

strate the ability to numerically predict vortex shedding, the added complexity of

a third dimension is unnecessary.

Objectives of the Study

The primary objective of this study is to demonstrate the ability of a finite-

difference code to predict periodic vortex shedding from various geometries. To

demonstrate the abilities of the code, the phenomena of vortex shedding is consid-

ered for three basic flow schemes. The three basic schemes consist of the following:

a flat plate in a uniform flow which is oriented normal to the plate (Figure 1.2(a)),

a flat plate near a ground plane in a uniform flow which is oriented normal to the
plate (Figure 1.2(b)), and a rectangular cylinder in a uniform flow which is oriented

normal to the cylinder (Figure 1.2(c)). The dependence of the results on the choice

of finite-difference grid size, turbulence, and time step size are also examined.
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Data for the comparison of computational and experimental results comes from

various sources. For the shedding from a flat plate in a open region, the parameters

used for the comparison are shedding frequency, drag and lift coefficients, and wake

pressure profiles. Experimental data for comparison comes primarily from work

by Roshko (1954). For the case of a flat plate near a ground plane, the primary

interest is the prediction of shedding frequency. Experimental results are provided

by the studies of Strickland et al. (1980) and Matty (1979). Finally, the study of

vortex shedding from a rectangular body concerns the prediction of the shedding

frequency and the drag coefficient. Data for comparison is extracted from work by

Okajima (1982) and Davis and Moore (1982).

° g
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U
(a) Flat Plate in a Uniform Flow.

I

(b) Flat Plate Near a Ground Plane ..
in a Uniform Flow.

UU

(c) Rectangular Cylinder in a
Uniform Flow.

FIGURE 1.2: Basic Flow Configurations.
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CHAPTER II

THEORY OF VORTEX SHEDDING

The subsequent discussion covers the aspects of vortex shedding which are

relevant to the current study. The basic mechanism of periodic vortex shedding is

discussed along with a review of experimental results for each of the three geometries

studied. The experimental results presented provide a basis for comparison with

the numerical p .'dictions.

Basic Parameters

The study of vortex shedding is simplified by the introduction of a number of

dimensionless parameters. Several parameters are defined to nondimensionalize the

aerodynamic forces, pressure, and vortex shedding frequency.

The fundamental aerodynamic forces known as drag and lift are typically given

in a nondimensional form. The nondimensional forms of drag and lift are respec-

tively the drag coefficient, CD, and the lift coefficient, CL. Definitions of CD and

CL are given respectively as

D
CD D (2.1)q,,. A

L
CL A (2.2)

7 A
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where

A = frontal area

D = drag force

L = lift force

q,,. = dynamic pressure.

The dynamic pressure is defined as

1
q= pU.' (2.3)

where

U00 = freestream velocity

p = density.

Pressures are nondimensionalized by introducing the pressure coefficient, CP,

defined as

!r

CP p - Poo (2.4)qoo

where

p = static pressure

pc, = freestream static pressure.

Note that Cp > 0 indicates that the pressure is greater than freestreamn pressure,

and Cp < 0 indicates that the pressure is less than freestream pressure.

Another nondimensional quantity often associated with flow problems is the

Reynolds number, Re. The Reynolds number expresses the ratio of inertial to

viscous forces and is defined as

ab'C ! Z t 4 YZ& & &.2



Re pUcd (2.5)

where

d = characteristic length

y = dynamic viscosity.

The final parameter to introduce is the Strouhal number, St. The Strouhal

number is a nondimensional frequency, and it is the primary quantity in the study

of vortex shedding. The Strouhal number is defined as

ndst = -(2.6)

where n is the shedding frequency.

Vortex Formation from Bluff Bodies

A bluff body in a uniform flow can assume two different flow patterns in its

wake. At very low Reynolds numbers (Re < 60) a stationary, symmetric vortical

pattern is formed. This symmetric pattern is a seemingly trivial solution, because

it can only be achieved under controlled situations. The solution of interest is the

formation of a vortex street in the wake of the body.

The mechanism of wake formation is described similarly by Younis (1988) and

Roshko. At the sharp leading edges of the body the flow separates, creating free

shear layers. These shear layers continue downstream for a short distance before

rolling up into vortices. This flow pattern is inherently unstable, and thus oscilla-

tions in the flow field are initiated. Eventually, the vortices from the top and bot-

tom surfaces will alternately be carried downstream forming the familiar pattern of
,v.

the K~rm6.n vortex street.
I

.
9.
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Roshko derived certain qualitative relationships pertaining to bluff body wakes.

He noted that all bluff body wakes are similar in structure, with the bluffness of a

body being related to the dimensioi, of the wake width with respect to the body. In

essence, a bluffer body diverges the flow more extensively and creates a larger wake.

He also noted an inverse relationship between the shedding frequency and the wake

width, indicating that bluffer bodies have lower shedding frequencies. Finally, he

noted that a decrease in wake width is accompanied by an increased drag.

Vortex Shedding from a Flat Plate

The shedding of vortices from bluff bodies was studied extensively by Roshko.

Among the bodies Roshko studied was the flat plate. Of primary interest was the

measurement of shedding frequency from the plate in terms of the Strouhal number.

He determined that the Strouhal number for a flat plate remained nearly constant

over a wide range of Reynolds numbers. The value of the Strouhal number for a

flat plate fell in the range of 0.130 < St < 0.140. Experimental Strouhal numbers

determined by Roshko are provided as Figure 2.1.

Also of interest was the prediction of aerodynamic forces on the plate, especially

drag. Roshko devised a method by which he could determine the drag on a flat

plate from one experimental measurement, the base pressure coefficient. He joined

the work of Kirchhoff and von K rmgn in what was termed the notched-hodograph

theory (Roshko 1953). The geometry employed in the notched-hodograph theory is

presented in Figure 2.2, with the free streamlines representing the separated shear

layers.

The velocity U, is the separation velocity and is a multiple of the freestream

velocity by the relation

Si h.1

4 w4 . * * * * ~ 5 * * * * ~ . . '-
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U, = .c , (2.7)

Since the velocity U, exists on the downwind side of the plate, the base pressure

coefficient, Cps, is simply

C,1 2 (2.8)

To determine r,, the relationship is transformed to read

K= V " - CP (2.9)

The constant K is related to the wake width by the curve given as Figure 2.3.

Another relation was formed between the relative velocity of the vortices., url and

the freestream velocity as

Urel 2 1 ±)1(2.10)

Finally, the drag can be calculated by the K6rm~n drag formula

C.65,-7-- 2.25 ii . (2.11)cD= 1- oUr (U...

The data provided by Roshko for Cp, yields drag coefficients in the neighborhood

of 1.85.

Vortex Shedding from a Flat Plate
Near a Ground Plane

The study of vortex shedding from a body situated near a ground plane seems

to have been exclusively addressed by the related studies of Mattv and Strickland
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et al. Their study was motivated by a concern about the effects of vortex shedding I

from heliostats. Though the actual geometry that they were concerned with was

not a flat plate, they addressed their concern by performing wind tunnel tests on

a flat plate near a ground plane. The basic configuration involved in the study is

shown in Figure 2.4.

Their study intended to determine the Strouhal number as a function of the

Reynolds number and the height of the plate above the ground plane. Shedding

frequencies were determined for the three-dimensional flat plate, and the data they

obtained are presented in Figure 2.5. From these data, an equation was derived

that approximates the Strouhal number in terms of the dimensionless parameters

Re and A, where

N]

A=h/ (2.12)

The equation derived from the study took the following form:

St(Re, A) =h(A)St,(Re) (2.13) -e

Their derivation gave the Strouhal number as the product of two indepen-

dent functions. The function gh(A) describes the variation in Strouhal number for ]

changes in A. The function gh(A) is given as

gh 1 + aie - 2 a sin[a 3 (a 4A - 1)) (2.14)

where ai are constants given as

al - 0.518

I t
r. * .,. U - * #tUU.- U .. *V - - ~ ' ~
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a 2 = 4.6

a3 = 18.00

a 4 = 20.0.

A graphical representation of the function gh(A) is provided as Figure 2.6.

The function St,,(Re) is representative of the variation in the Strouhal number

with Reynolds number for a flat plate removed from the ground plane. Analytically,

the function St,,(Re) is given by the simple expression

St = a5 + a6 /Re (2.15)

where

a5 = 0.121

a 6 = 407.

This function is shown graphically as Figure 2.7. It is important to note that this

function was derived for the specific Reynolds number range of 1.4 x 104 < Re <

1.5 X l01.

There are a few important features to note about the function St(Re, A). In-

creasing Reynolds number is accompanied by a decrease in the Strouhal number as

indicated by St,,(Re). With respect to the function gh(A), for 0 < A < 0.20 the ten-

dency is for the Strouhal number to increase with increasing A. For 0.20 < A < 0.50,
the Strouhal number decreases for increasing A. Finally, for A > 0.50, the Strouhal

number appears to be virtually unaffected by the presence of the ground plane.

Vortex Shedding From Rectangular Cylinders

From a practical viewpoint, the rectangular cylinder is a body of considerable

interest. Vortex shedding from rectangular bodies is applicable to flows around

, " / -, " , " ,f " " ., " , ,r ." a ,Z % ,, v " " " , -W * " , , , .., -" r " * v " @ , w -" * , . .. . -., I-



14

automobiles, buildings, and many other bodies of practical interest. These bodies

also exhibit interesting behavior with relation to their characteristics while shedding

vortices.

The more curious aspects of vortex shedding from rectangular cylinders are re-

lated to the Strouhal numbers of such bodies. The basic geometry of the rectangu-

lar cylinder is provided as Figure 2.8. The ratio of c/l, which is a critical parame-

ter in determining the characteristics of the flow about a given cylinder, is denoted

as 0. Okajima provided plots of the variation in Strouhal number with Reynolds

number for four values of 3 (,3 = 1, 2, 3, 4). These plots (Figures 2.9-2.12) demon-

strate the interesting behavior apparent in the shedding frequency.

For the case 3 = 1 (Figure 2.9), there is some variation in the Strouhal number

for increasing Reynolds number, but the variation is gradual. However, for the cases

of 0 = 2 (Figure 2.10) and 3 = 3 (Figure 2.11), the behavior is quite different. For

,3 = 2, there is a discontinuity in the plot at Re z 500 and a similar discontinuity

appears in the plot for 03 = 3 at Re -_ 800. This discontinuity appears because there

are actually two modes of vortex shedding which occur from rectangular cylinders

in the range of 2 < 3 _ 3 (Okajima).

The first mode, which occurs at low Reynolds numbers, is characterized by a

reattachment of the flow which separates at the leading edge. The reattached flow

then separates at the trailing edge and forms the vortex street. As the Reynolds

number is increased, the flow loses the ability to reattach to the surface of the

cylinder. Finally, when the Reynolds number reaches a critical value, the separated

regions suddenly detach from the surfaces creating a drastic increase in the wake

width. As demonstrated by Roshko, an increase in the wake width is accompanied
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by a decrease in the shedding frequency. Therefore, this detachment characterizes

the second mode of the vortex shedding and is the physical process responsible

for the discontinuities which occur in plots for Strouhal number versus Reynolds

number.

With respect to the variation in aerodynamic forces on rectangular cylinders,

some general trends have been recognized. A study by Davis and Moore indicated

an increase in lift and drag for an increase in Reynolds number. Laneville and Yong

(1983) were concerned with the variation in the drag for changing '3. Their data

indicate that the drag increases steadily with increasing 3 for 3 < 0.8. However, for

3> 0.8 the trend suddenly changes and increasing 3 is accompanied by a decrease

in the drag coefficient.
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CHAPTER III

DESCRIPTION OF COMPUTATIONAL ANALYSIS

The field of computational fluid dynamics is currently a field of considerable

interest. The basic goal is to predict the distributions of velocity, pressure, tem-

perature and other relevant variables throughout a given flow field. Advantages of

computational methods over experimental methods include a greatly reduced cost

and the ability to survey areas of a flow field that may be otherwise inaccessible.

Furthermore, numerical methods allow the solution of problems which are impos-

sible to solve using classical methods. Computational methods, of course, are not

without disadvantages. In some cases, numerical solutions may diverge and yield

no useful results. Also, for more complex flows, especially turbulent flows, empiri-

cal models are employed that may not suitably represent the physics of a situation.

This may lead one to question the validity of computational results. For this reason,

a combination of experimental and computational investigations will likely provide

the most consistent and useable results. In the following discussion, the computa-

tional tools employed in this research are reviewed.

Discretization of Differential Equations

For a homogeneous fluid, a total description of the flow field consists of the

distribution of six quantities throughout the flow domain. In Cartesian coordinates,

26
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the six quantities which arise in these equations are the three velocity components,

u, v, and w, pressure p, density p and temperature T. The required six equations

for the solution of any flow problem are fundamental. Three equations are provided I
by conservation of momentum for each of the three Cartesian coordinate directions

(X, y, z). These equations are also commonly known as the Navier-Stokes equations I

and are given for the x, y, and z directions respectively as '

Dax aO[ 3O2 d.Nl

(3.1)1

Dv _ Op+ O[ 2v 2 .Nv

+ zz /  +(3.2) r

UX\Y Ox

Dw Op 0 (2t Ud

p-~Z-+ - PL

P--- = z -~ + ,-(2z "\ z-divv, .

Dt+ z [ z +  (3.3)9

where"

V[ - + - * *

i~y 0,X

P~w Z- OP 19 2 aw "div
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t =time

X = x-direction body force

Y = y-direction body force

Z = z-direction body force

= dynamic viscosity

and v is the velocity vector

v=ui+vj+wk (3.4)

A fourth equation is provided by conservation of mass, or the continuity equation,

given as

p o (pu) +(pv) + - o (3.5)+ + +v
at iOx ay a

Conservation of energy provides the fifth equation which given in a basic form is

6Q = dET + SW (3.6)

where

8Q = quantity of heat added

dET = increase in internal energy

W = work done by the system.

The set of equations is closed by an equation of state, commonly the well known

ideal gas law

p =pRT (3.7)

I) e .I
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where R is the specific gas constant. Of course, the use of the ideal gas equation

assumes that the fluid is a gas. If this were not the case, an appropriate equation

of state would have to be employed.

Theoretically, given six equations for six unknowns the solution to a given prob-

lem should be within reach. However, with the exception of very simple problems,

this set of equations cannot be solved analytically. It then becomes the task of the

computational fluid dynamics algorithm to provide an approximate solution that

adequately describes the flow field.

To obtain a solution to a given flow field using a finite-difference scheme, the

differential equations that describe the physics of the flow must first be discretized.

To discretize the differential equations, one assumes that the flow field is composed

of a discrete number of control volumes, and the flow variables stored at each

control volume are prevalent for that region in space. The discretization equations

are algebraic equations that relate the quantities at a grid location to the quantities

at the neighboring grid locations. The equations that are derived to represent

conservation of mass, momentum, and energy all follow the same basic form, which is

app = aEOE + aww + aNbN + ases + b (3.8)

where

a = finite-difference coefficient

b = source term

0 = general variable (u, v, T, etc.).

The subscripts identify which point in the field the a or 4 refers to, as shown in

Figure 3.1. The source term b is available to account for any terms which do not
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conform readily to this format upon discretization of the differential equation. The

most obvious example of a term that is contained in the source term b is the pressure

gradient term in the momentum equations.

Among the most important aspects in the derivation of the finite-difference

coefficients is the differencing scheme. The differencing scheme provides information

on the variation of flow quantities between grid locations. The scheme employed in

this research is known as the upwind scheme. In this scheme, the value of a quantity

at a given point is assumed to be affected only by the cells which are upstream of

the cell, with no influence of the downstream cells being felt. This scheme works

well for processes governed primarily by convection, but it is not suitable for flows

which are predominantly processes of diffusion. The solution of these discretization

equations throughout the flow domain is the task of the finite-difference algorithm.

For a detailed description of the finite-difference coefficients and other differencing

schemes refer to Patankar (1980).

The FORDC-2 Finite-Difference Code

The basis for the code used in this research is the FORDC-2 (Elow Over

Radiator and Condenser - 2 Dimensional) code developed by Carroll, Maxwell and

Sun (1985). This code originally treated a flow as two-dimensional, incompressible,

steady and elliptic. Modifications have been made to the code to allow the solution

of unsteady problems and to speed the solution of the discretization equations.

The algorithm employed in the FORDC-2 code is the SIMPLE (Semi- Implicit

Method for Pressure Linked Equations) algorithm described by Patankar (1980).

A brief outline of this iterative method follows. The iterative process is started by

assuming a pressure field. With the pressure field presumed to be known, one can
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solve the momentum equations to obtain the velocities. Next, the pressure correc-

tion equation, a form of the continuity equation employed to insure conservation of

mass, is solved. Following the solution of the pressure correction equation, the ve-

locities and pressures are adjusted to insure satisfaction of continuity. The solution

then proceeds to deal with any other quantities of interest (i.e. temperature). The

updated pressure is then used to continue the iterative process. Typically, the iter-

ative process is continued until the flow quantities remain virtually unchanged be-

tween iterations indicating a converged solution. However, in the transient case the

solution should be valid at each step in time. Flow quantities may well be changing

considerably between successive iterations, or time steps, in transient problems.

The FORDC-2 code was modified to speed the solution by altering the method

by which the discretization equations are solved. Previously, all of the discretization

equations except pressure correction were solved by the ADI (Alternating Direction

Iteration) procedure. The program has been altered to allow the solution of all of the

discretization equations by Stone's method. Stone's method is a field iterative solver

that is claimed to be approximately three times as fast as other available meth-

ods. Stone's method requires the selection of a relaxation factor which was set to

a = .93. For details on the formulation of Stone's method, refer to either Stone

(1968) or Carroll (1980).

Finite-Difference Grid

The accuracy of the solution of the finite-difference equations is governed by

the approximation involved in determining the variation of a given quantity between

neighboring grid locations. With respect to the variation of velocity, this problem

can be remedied by employing a staggered grid. The premise of the staggered grid
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is that there may be an advantage to storing some quantities at the main grid

location while storing other variables elsewhere. A staggered grid is employed in

the FORDC-2 code.

A representative segment of the finite-difference grid is shown in Figure 3.1.

The grid is constructed in the Cartesian coordinate system in two dimensions (x,

y). The capital letters (E, 14, N, and S) mark the locations of the main grid

points with respect to the point of interest, point P. Note that the symbols for the

cells neighboring point P are derived from the points on a compass. It is at the

main grid points that the properties of the fluid are stored, with the exception of

the velocity components u and v. The dashed lines represent control volume faces,

shown as lower case letters, which are the boundaries of the control volume at point

P. The u velocity components are stored at the e and w faces and the v velocity

components are stored at the n and s faces. It is the storage of the velocities at the

control volume faces, removed from the main grid points, that creates the staggered

grid. The staggered grid can simply be thought of as three different grids being

employed on the same calculation domain: one grid is employed for the primary

grid quantities, the second for u velocities, and the third for v velocities.

The advantage to be gained by this grid is that the mass flow across a control

volume face can be calculated directly. If the velocities were stored at the main grid

points with the other variables, the values of the velocities at the grid faces would

arise from an interpolation and introduce an unnecessary approximation in the cal-

culation of the mass flow through a control volume. Since satisfaction of continuity

is fundamental to the solution of any flow problem, it is critical to calculate accu-

rate mass flow rates. The employment of the staggered grid aids in the achievement

Pe
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of that end. This type of grid also allows the direct calculation of the pressure gra-

dient for a given control volume.

The finite--difference grid is constructed for the entire calculation domain by

the specification of the control volume face locations. Once the face locations have

been identified, the main grid points are placed such that they are centered between

the control volume faces in each direction. The spacing between the faces can be

either uniform or nonuniform. The advantage of the nonuniform grid is that the

grid can be made more dense in areas of interest without making the entire grid

dense. This allows one to get more detailed information about the flow field in the

areas of interest without increasing computer run time.

Boundary Conditions

The uniqueness of a given problem is determined by the specification of bound-

ary conditions. In the case of pressure and temperature, the boundaries were typi-

cally set to take on ambient conditions. However, the boundary conditions imposed

on velocities are the primary interest in this case.

The inlet and exit boundary conditions are critical to calculating accurate flow

fields. In these studies, the inlet velocity plane is always situated at the location

of minimum x, and the outlet velocity plane is always situated at the location of

maximum x. The inlet velocity distribution is simply specified to match the desired

velocity profile at the inlet of the calculation domain. For these studies, the inlet is

always a uniform velocity, Uc,. The exit boundary velocity must be such that the

continuity equation is satisfied. This result can be achieved in two manners by the

FORDC-2 code. First, the velocity at the exit plane can be specified directly to

satisfy conservation of mass. The second scheme available adds some sophistication

V .V64
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to the calculation of the exit velocity profile, but also carries a restriction on the

direction of the exiting flow.

The second scheme for setting the exit boundary condition is intended to allow

the finite-difference algorithm to calculate the proper exit velocity profile. The

scheme involves calculating the mass flow across the plane just ahead of the exit

plane, scaling all of the velocities on this plane to match the entering mass flow, and

then placing these scaled velocities at the exit plane. In this manner, the velocity

profile at the exit is similar to the profile just upstream of the exit and overall

continuity is satisfied. However, one must be cautious to place the exit boundary

far downstream, for any backflow at the exit will prevent this scheme from working

properly.

The other exterior boundaries to the flow are handled by either external walls

or symmetry planes. If the boundary is considered to be a wall, the velocity com-

ponents are set to zero at the wall. However, if the boundary is placed at a fluid-

fluid interface, then the proper boundary condition is a symmetry plane or slip wall.

The symmetry boundary condition is imposed by setting the finite-difference coef-

ficient that links the boundary point to an interior cell equal to zero. This insures

that the velocity stored at the symmetry boundary has no effect on the flow field. V

1

This is typically used in a situation where the boundary could also have been con- p

sidered to be at freestream conditions. For this reason, the location of a symmetry

boundary is typically far from the body about which the fluid is flowing. Of course,

if there is an actual symmetry in the flow field, then the symmetry boundary can

be used at a symmetry plane to shrink the calculation domain. This allows one to

achieve greater resolution in the flow field while still maintaining the same number

J.
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of control volumes. A simple example where an actual symmetry plane could be

used is the flow between two flat plates, or Poiseuille flow.

Another important consideration, though not technically a boundary condition,

is the internal wall. For these studies, internal walls are always considered to be

impermeable. The walls are placed at control volume faces since the specification

of the wall requires that the velocity component perpendicular to the wall be set

to zero. The finite-difference coefficient that links the velocities parallel to the

wall on either side of the wall is set to zero. This prevents these velocities from

wrongly influencing each other across a wall. Finally, the viscous effects that appear

near walls are accounted for by employing a wall function (Nallasamy 1985). The

numerical implementation of the wall function is outlined by Carroll et al.

Turbulence Model

The accurate modelling of turbulent flows is a particularly challenging prob-

lem. Theoretically, solution of the full Navier-Stokes equations should provide an

accurate result with the full effects of turbulence present. The problem lies in the

fact that the scale of the turbulent fluctuations are on the order of 10 - that of the

primary flow (Rodi 1984). For a two-dimensional flow, this would require an in-

crease in the number of grid points by an order of 10' to handle the details of the

turbulence. Even on the fastest of today's supercomputers, solution of such a large

set of equations would require prohibitive amounts of memory, time, and money.

To account for the effects of turbulence without attempting the solution of the

full Navier-Stokes equations one employs empirical turbulence models. The Navier-

Stokes equations are converted into time averaged equations by assuming that the 11
flow quantities are composed of a mean value and a fluctuating value

Zi
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S ± +'(3.9)

where

= mean value of -

fluctuating component of €.

Typically it is the mean values of the flow which are of interest. This formulation

spawns additional terms for which extra relations must be derived. For the momen-

tum equation, these additional terms are known as the Reynolds stresses. It is the

task of the turbulence model to express these terms as functions of the mean flow

quantities.

The turbulence model employed in the FORDC-2 program is perhaps the most

popular turbulence model used in the computational fluid dynamics codes, the k-

E model. The basis of this model is that the turbulent flow can be characterized

by two quantities, the kinetic energy of turbulence, k, and the dissipation rate of

turbulence energy, c. The solution of the differential equations for k and f allows

the calculation of a turbulent, or eddy viscosity, /'t. The eddy viscosity is added to

the laminar viscosity to yield an effective viscosity,

ILef =/Al+ tLt (3.10)

It is this variation in the local viscosity which accounts for the presencc of turbulence

in a flow. This model was derived empirically, and expectedly does not work well

for all flow situations. For a more detailed description of the k-C turbulence model

refer to Rodi or Nallasamy.
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CHAPTER IV

DETERMINATION OF AERODYNAMIC

FORCE COEFFICIENTS AND

SHEDDING FREQUENCY

The following discussion outlines the methods for calculating various parame-

ters associated with a given flow. The methodology for calculating the drag coeffli-

cient CD, the lift coefficient CL, and the Strouhal number St are discussed.

Drag Coefficient

In the most general treatment, the aerodynamic forces experienced by a body

are the result of the distribution of shear stress and pressure on the surface of the

body. The drag force is the force experienced by the body in a direction parallel

to the freestream velocity. For the case of a flat plate, if one considers the plate to

be infinitesimally thin the effects of shear and pressure on the width of the plate

can be neglected. Therefore, the drag on a plate which is normal to the freestream

direction is simply a function of the pressure distribution on the plate.

Referring to Figure 4.1 one can immediately write the drag force as

D J pi(y)dA - Ipb(y)dA (4.1)

0 0

38
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This calculation of drag is dependent on a knowledge of the continuous distribution

of the pressure force over the surface of the plate. However, in the computational

scheme the surface of the plate has been broken into a discrete number of elements,

N. An example of the discretized pressure distribution is given in Figure 4.2.

Defining the depth of the plate as a unit 1, the differential area then becomes

dA=dy.1~dy . (4.2)

One can then write the drag in terms of the discretized pressures as

N

D Z f Pb)iAYi (4.3)
i=1

This expression can be simplified by denoting the pressure differential as

APi = (Pf - Pb)i (4.4)

which gives an expression for the drag

N

D = > ApiAyi (4.5)
i=1

This expression can be further simplified by noting that the plate is discretized into

elements of equal length Ayi. This yields the simplified drag expression

N

D A E Api (4.6)
i=1

The task is then to cast the drag force in terms of a drag coefficient. Recall
that the definition of the drag coefficient is
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CD - D (4.7)

Substituting the expressions for the drag and the area yields

D =(4.8)
qc~l

Note that since all of the Ay, are equal that an arithmetic average for Api can be

written as

EZfi ApiN A(4.9)

or similarly

N
SApi NAPi (4.10)

Substituting equation 4.10 into equation 4.8 yields the result that

CD= NAyi (4.11)q0 0 l

By noting that NAy is simply the plate length 1, a final expression for the drag

coefficient can be written as

CD = (4.12)
qoc

Lift Coefficient

The lift force is defined as that force which acts on body in a direction normal

to the freestream velocity. For the case of an infinitesimally thin flat plate which is

W F
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oriented normal to the freestream direction, the lift is due only to the shear forces

which act on the surface of the flat plate.

Figure 4.3 shows the distribution of the shear stress r(y) on the surface of a

flat plate. The shear stress for a Newtonian fluid in the coordinate system defined

in Figure 4.3 is

dx= -- vx (4.13)

The velocity gradient dv/dx can be computed by simply dividing the v velocity that

neighbors the surface by the distance between the velocity location and the surface.

The gradient may be calculated in this manner because the velocity at the surface

must be zero.

Turning now to the calculation of the lift force, one can immediately write that

I I

J 7/ y)dA + Iy,(y) dA (4.14).

0 0

Proceeding in the same manner as that used in the calculation of CD, the lift for

equal Ayj can be written as

N

L = Ay Z(ry, ti- 7Ijt (4.15)
t=1 .

Recalling the definition of the lift coefficient as

L

eL -(4.16)
q,, A

the lift and area expressions can be substituted to yield

..
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CL = + ,-,. (4.17)~q 00l

Again, due to the uniformity of the Ayj terms the arithmetic average of the shear

stresses can be written as

N
(;r - + ) =r,, N (4.18)

By substituting equation 4.18 into equation 4.17 and recognizing that NAy is I, the

lift coefficient can be written as

CL = (, + % ) (4.19)

q00

Finally, one may put the expression for CL in terms of the simplest quantities

and eliminate the "r- terms. Referring to Figure 4.4, the average shear stresses can

be written as

-.Yf = (4.20)
6f

_ -b (4.21)
tSXb

Substituting equations 4.20 and 4.21 into equation 4.19, a final expression for CL

in terms of the variables calculated in the program is given as

±L(i b (Pb/Sb) (4.22)qC

N1-
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Aerodynamic Forces on a Rectangular Cylinder

With the lift and drag on a flat plate resolved, the task now is to extend

those forces to a rectangular cylinder. The pressure and shear forces which act on

the cylinder are shown in Figure 4.5. Note that for the rectangular cylinder lift

and drag both have force components due to pressure and shear stress. Recalling

the definitions of CD and CL once more, and using the forms of the lift and drag

forces given in the previous section, the lift and drag coefficients on the rectangular

cylinder are easily derived.

Drag on the cylinder oriented normal to the freestream velocity is due to the ,

pressure on the front and back surfaces and the shear stresses on the upper and

lower surfaces. Once again the spacing of the Axi and Ay i terms is uniform, with %

N elements composing a vertical surface and M elements composing a horizontal

surface. An expression for the drag in terms of average pressures and stresses can

be written immediately as

D = N(Pf - p6 )Ay + M(r. + ;r,, )Ax (4.23)

Recalling that NAy is 1 and MAx is c, the drag coefficient becomes

CD + ( - b) (r " + )  (4.24)q o q,,l

Lift on the cylinder is due to the pressure on the upper and lower surfaces and

the shear stresses on the front and back surfaces. The lift can then be written as

L M(fi - Pf,)Ax + N(i , + 'y,)Ay (4.25) -

'S
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The lift coefficient is then

CL- q I )c+ q (4.26)
q0 qol

The expressions for calculating CD and CL for both a flat plate and a rectangular

cylinder perpendicular to the freestream flow have been determined. These equa-

tions are the relations programmed into the FORDC-2 code for the determination

of the aerodynamic force coefficients.

Shedding Frequency

The method for determining the shedding frequency is derived from the work by

Younis (1988). He proposed to determine the shedding frequency by examining the

periodic fluctuations in three fundamental quantities. He determined the frequency

n by examining

1. the axial velocity at two locations behind the body as shown in Figure 4.6, the

velocities being denoted by ul and u2 ,

2. the drag coefficient CD, and

3. the lift coefficient CL.

For the slightly more complex case of a rectangular cylinder, the axial velocity

is measured at four locations as shown in Figure 4.7 because of the possibility of

vortices being shed from either the front or rear of the cylinder. Note that the flow

field must be allowed to reach a cyclic state before the frequency can be determined

by this method.

The shedding frequency can be extracted directly from plots of either ul, U2 ,

CD, or CL versus time. This method, with one exception, assumes that vortices

are shed at the same frequency at which the aforementioned quantities fluctuate.

r. %
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Knowledge of the shedding frequency immediately leads to the Strouhal number by

the relation

nd (4.27)St=1 .- (.7 ,-

Younis notes that the drag oscillates at twice the frequency of the lift, which

oscillates at the shedding frequency. Plots of the fluctuations in CD and CL provided a

by Younis are given as Figure 4.8 and clearly demonstrate the higher frequency

oscillation in the drag. Similar plots obtained in this research for a flat plate at

Re z 7826 aie givcii in Figures 4.9-4.12, and the higher frequency oscillation of the

drag is again evident. -
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FIGURE 4.1: Pressure Distribution on a

1% Thin Flat Plate.
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FIGURE 4.6: Locations for Transient Velocity
Measurements for a Flat Plate.
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FIGURE 4.7: Locations for Transient Velocity Measurements
for a Rectangular Cylinder.
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CHAPTER V

RESULTS FOR VORTEX SHEDDING

FROM A FLAT PLATE

The subsequent discussion descriF es the results obtained for the case of vortex

shedding from a flat plate in a uniform flow. Several comparisons are made with

data obtained by Roshko for this geometrical configuration. The effects of changing

parameters associated with the finite-difference solution of the flow field are also

examined. ]

Computational Setup

The numerical prediction of vortex shedding from a flat plate in a uniform flow

was achieved on for different grid configurations. The coarser of the grids used in

the study was a 60 x 50 uniform grid as shown in Figure 5.1. Overall physical

dimensions of the calculation domain were 0.06 m x 0.03 m. The flat plate was

composed of 10 vertical cells, had a length of 0.006 m, and was centered vertically -

within the calculation domain. The spacing between the plate and the upper and

lower boundaries was approximately two plate lengths. An inlet boundary was

provided at approximately 2.5 plate lengths upstream of the plate, and the exit %

boundary was placed approximately 7.5 plate lengths downstream of the plate. f-"

7,

'5.

'5
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A finer grid was also employed in the solution of this problem. The second grid

was a highly nonuniform 150 x 80 grid as shown in Figure 5.2. Nonuniformity was

introduced to concentrate the control volumes in the area of greatest interest, that

area being the region directly downstream of the plate. Also, the nonuniformity

allows for the placement of relatively large cells near the boundaries which locate

the boundaries farther away from the plate to reduce the influence of boundary

conditions. The overall dimensions of the calculation domain were 0.175 m x 0.140

m. The flat plate was composed of 16 equally spaced vertical cells which gave a plate

length of 0.0102 m. Vertical spacing between the plate and the outer boundaries

was approximately 6.4 plate lengths at both the top and bottom. Upstream of the

plate by about two plate lengths was an inlet boundary, and approximately 15 plate

lengths downstream of the plate was an exit boundary.

Boundary conditions for the two grid sizes were similar in nature. The upper

and lower boundaries were assigned a symmetry (slip wall) condition. The inlet

boundary was a uniform flow directed normal to the plate with the magnitude of the

velocity being varied from 0.3 m/s to 3.0 m/s to achieve a range of Reynolds numbers

of approximately 2000 < Re < 30000. The exit boundary was set by allowing

the boundary to assume a velocity profile similar to the one directly upstream as

described in Chapter III.

The FORDC-2 program was executed on the VAX 8650 and VAX 11/780

computers available at the Texas Tech computing facilities. The problem was solved

isothermally with the calculated variables being u, v, and p. Runs were also made

for the coarse grid case with the k-c turbulence model included in the solution,

which results in the addition of the variables k and E to the process. Turbulence

-M XZ
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was employed to determine whether there was a significant difference in the results

between the turbulent and laminar cases. The different grids were employed to

examine the effects of a refined grid on the solution and to determine whether the

extra effort required to create and run the more complex grid was justified. Finally,

the time step, At, was adjusted on a case by case basis to ensure convergence of

the transient solution.

Method of Inducing Vortex Shedding

A significant problem arose in computationally simulating the Kirmin vortex

street. Geometrically, the problem has a symmetry about the horizontal line which

bisects the flat plate. Since the finite-difference model is simply a mathematical

model, the flow field that results would share this symmetry about the horizontal

bisector. This symmetry would seemingly exclude the vortex street pattern from

the set of possible solutions.

Fortunately, this problem can be overcome by removing the symmetry in the

initial conditions. To make the flow initially asymmetric, a perturbation was added

to the flow in the form of a momentum source. The momentum source was included

for the first three time steps and was located at a control volume directly behind

and at the upper limit of the plate. The location of the source was approximately

the same location at which the transient velocity, ul, was measured as shown in

Figure 4.6. Inclusion of this momentum source proved to be an adequate method

of introducing asymmetry to the flow; consequently, the vortex street was predicted

by the program.
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Qualitative Analysis of Transient
Vector Fields

Prediction of the K~irm~n vortex street by the FORDC-2 program is clearly

demonstrated by Figures 5.3-5.7. These figures show the absolute velocity vectors

for equally separated increments in time. The five plots progress by steps of a

quarter of the vortex shedding period, P, to show the progression of the vector

field with time. Absolute velocity vectors are displayed simply because the vortex

shedding pattern is far more apparent when shown in this manner. The velocity

vectors are transformed by the simple relation

Vabs=V-UM (5.1)

At t = 0 (Figure 5.3), the familiar alternating vortex pattern of the vortex

street is clearly visible. In fact, the pattern shown has much the same character

as that given in Figure 1.1. There is a pronounced spreading of the vortices in the

vertical direction as they move downstream. Also note that the vortices seemingly

grow in size as they progress downstream. These characteristics indicate that the

finite-difference code accurately predicts the vortex shedding pattern.

Progressing to t = 1/4P (Figure 5.4), notice that the entire flow pattern from

t = 0 has moved downstream. There is also a disturbance at the top of the plate

which is the beginning of the formation of the next vortex. At t = 1/2P (Figure

5.5), the vortex on the top of the plate has formed and is clearly recognizable. As

CxpeLf,u, L L 1/2P the vector field appears to be a mirror image about the

horizontal bisector of the field at t = 0. The vector field at t = 3/4P (Figure 5.6)

indicates the beginning of the formation of a new vortex at the bottom of the plate.

-6.
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Finally, at t = P (Figure 5.7) the vector field appears to be the same field calculated

at t = 0. Therefore, the vector field has cyclicly progressed back to its initial state,

and the predicted vortex shedding is indeed periodic.

Comparison of Numerical and Experimental
Strouhal Numbers

Among the most critical parameters associated with periodic vortex shedding

is the Strouhal number. Roshko provided extensive data on the Strouhal numbers

for different geometries, including the flat plate. Figure 5.8 offers a quantitative

comparison of the experimental results of Roshko with the results from this study.

The data presented graphically are also given in tabular form as Tabies 5.1 and 5.2.

A quick examination of Figure 5.8 indicates that the numerical model predicted

Strouhal numbers comparable to those measured by Roshko. However, a closer

examination reveals some important trends in the data. For the detailed 150 x 80

grid, the prediction of Strouhal number was quite accurate up to a Reynolds number

of approximately 10. For Reynolds numbers greater than 10, the model seemed

to lose accuracy as the predicted Strouhal number decreased. In any case, the error

between the predicted and experimental results never exceeded 15 percent.

For the case of the 60 x 50 grid the same trend was not apparent. For the

entire Reynolds number range, the coarser grid appears to have predicted Strouhal

numbers more consistent with Roshko's results. The Strouhal numbers predicted

on the coarse grid were generally greater than those predicted on the fine grid.

Addition of the k-E turbulence model generally caused a slight increase in the

Strouhal number; however, that trend w:as not substantiated for all cases.

P at
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Overall, the results were favorable, especially when compared with the work !

done by Younis. In a similar study, Younis predicted Strouhal numbers for a flat p

plate in a range of 0.165-0.185. Younis' values would appear to be an overestimate

of the Strouhal number when compared with the experimental data provided by

Roshko. Overestimation of the Strouhal was not a problem encountered in the

current study.

Comparison of Numerical and Experimental
Wake Pressure Profiles

Roshko provided experimental results for the time averaged pressure distribu-

tion on the centerline of the wake. His data was for the specific Reynolds number

of Re = 14500, and the data was given in terms of the nondimensional quantities

C, and /1l. The quantity x is measured from the plate with positive x extending

downstream. A comparison with Roshko's data was made for both grid sizes and

for the case where turbulence was included.

Figure 5.9 gives the variation in C with downstream distance for the fine grid.

The most obvious difference between the computational and experimental curves is

the magnitude of the suction predicted by the numerical model just downstream of

the plate. The numerical model predicted a base pressure coefficient nearly twice as

large as Roshko measured. Note that the numerical model predicted the minimum

pressure to occur at xl z 0.7 where the experimental results indicate that the

minimum pressure occurs at xl - 2.0. Minimum pressure values were also quite

different, with the predicted minimum taking a value approximately twice that of

the experimental result. However, this does not necessarily indicate an error in the

numerical model, because Roshko cited difficulties in obtaining the wake pressure
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measurements. Furthermore, note that the agreement between the curves for x/1 >

2.0 was quite good.

The anomalies cited for the fine grid solution are also apparent in the coarse

grid solution as shown in Figure 5.10. The predicted base pressure coefficients

for the two grids are almost identical. Minimum pressure for the two cases also

occurred at nearly the same value of xlI, though the coarse grid solution did not

predict as low a value of Cp as did the fine grid solution. The primary difference

between the solutions for the two grid lies in the accuracy of the solution for values of

xlI > 2.0. For this region, the fine grid solution was much closer to the experimental

solution than was the coarse grid solution. Nonetheless, the coarse grid solution did

approximate this part of the curve with reasonable accuracy.

The addition of turbulence to the coarse grid solution appears to make little

difference in the solution. The pressure profile for the turbulent case (Figure 5.11)

is virtually identical to the laminar case. This result indicates that the addition of

turbulence has little effect on the prediction of wake pressures.

Comparison of Numerical and Experimental
Aerodynamic Force Coefficients

Measurement of the time averaged lift and drag coefficients was carried out

for each case run. As expected, the average lift coefficient, CL..,, was zero for all

runs though instantaneous values of lift were nonzero. The zero value of lift was

expected since this case is for a fiat plate at zero angle of attack.

A graphical display of the calculated average drag coefficients is given as Figure

5.12. Also included on the plot are drag coefficients derived from Roshko's data

and the equations given in Chapter II. Note the extreme difference between the

% % %
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numerical solution and the experimental/theoretical values provided by Roshko.

The numerical values of CD exceed Roshko's values by more than 50 percent, and

this may well be tied to the much lower base pressure predicted by the computations.

However, also note that the predicted values agree favorably with the numerical

results of Younis who found CD's in the range of 3.25-3.65.

From a numerical standpoint there were also significant differences in the

predicted drag coefficients. The fine grid solution estimated drag coefficients on the

order of 10 percent greater than the coarse grid. This fact may be related to the

lower minimum pressure found in the wake for the fine grid solution. Turbulence

appeared to have little effect on the prediction of drag, though its addition did seem

to generally increase the drag coefficient by about 1 percent.

Effect of Iterative Time Step Size

From a numerical standpoint, the selection of the iterative time step At can

be critical. Figure 5.13 presents the variation in the predicted Strouhal number for

various iterative time step sizes. The horizontal line indicates the experimentally

measured Strouhal number for this particular Reynolds number, Re = 14500. A

best fit linear approximation of the data is also displayed. Note that the curvature

in the curve fit is due to the logarithmic axis.

From this figure one can clearly see the dependence of the solution on the time

step. The prediction of the Strouhal number deteriorates markedly as the time step

is increased. For this particular case, any further increase in the time step above At

.0008 led to divergence of the solution. Also note that as At -- 0 the predicted

solution asymptotically approaches the experimental solution. These indicate that

the choice of a sufficiently small value of At is critical in obtaining accurate solutions.
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TABLE 5.1: Numerical Shedding Frequency and

Aerodynamic Force Data for the
150 x 80 Grid.

U". (m/s) Re St CDavg 0 L avg

0.30 2660 0.132 3.30 0.0

0.50 4435 0.139 3.35 0.0

0.80 7096 0.129 3.30 0.0

1.00 8870 0.132 3.26 0.0

1.50 13304 0.124 3.20 0.0

1.63 14500 0.130 3.23 0.0

2.00 17739 0.124 3.23 0.0

3.00 26609 0.116 3.24 0.0
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CHAPTER VI

RESULTS FOR VORTEX SHEDDING FROMI

A FLAT PLATE NEAR A GROUND PLANE

The following discuss:on describes the results obtained for the case of a flatI

plate near a ground plane. A comparison is made between the predicted Strouhal

numbers and the function obtained by Matty. The effect of the presence of the

ground plane on the aerodynamic force coefficients is also examined.

Computational Setup

The numerical prediction of vortex shedding from a flat plate near a ground

plane was carried out on only one grid configuration. This is due to the fact that

results in Chapter V indicated that refinement of the grid yielded only limited

improvements in the solution. However, the 60 x 50 grid used in the previous case

proved to be unacceptable due to a lack of spacing between the plate and the exit

boundary. To remedy this problem, cells were added to the grid downstream of the

plate.

The grid employed for this problem was a 80 x 50 grid as shown in Figure 6.1

with overall dimensions of 0.08 m x 0.03 m. The plate was composed of 12 vertical

cells and had a length of 0.0072 m. The inlet boundary was located approximately

two plate heights upstream of the plate, and the exit was located approximately

80



81

nine plate heights downstream of the plate. The location of the bottom boundary

relative to the plate was governed by the parameter A which was assigned the values

of 0, 1/4, 1/2, and 1. The spacing between-the plate and the upper bourdary varied

between 2 and 3 plate heights for different values of A.

Boundary conditions for this case were similar to those presented in Chapter

V. The primary difference was the placement of an impermeable wall at the bottom

boundary. Otherwise, the boundaries remained the same with the exception of the

magnitude of the inlet velocities. The inlet velocity was varied between 2.0 m/s and

20.0 m/s to give a range of Reynolds numbers of approximately 1000 < Re < 15000.

This range of Reynolds numbers was chosen to match the range examined by Matty.

Vortex shedding was induced in the same method explained in Chapter V.

Turbulence was not included in this case due to the previous results which indicated

that the addition of turbulence was of little consequence. Again, the solution was

isothermal, and the calculated variables were u, v, and p.

Qualitative Analysis of the Flow Field

Inducing vortex shedding in the wake of a flat plate near a ground plane was

not successful for all cases. For the case of A = 0, vortex shedding was never

achieved. To achieve vortex shedding, the plate had to be moved to a distance of

one plate length from the wall. At this distance from the wall, vortex shedding

occurred readily. To achieve shedding for other values of A, the velocity field of the

A = 1 case was imposed as an initial condition.

Figure 6.2 and A.2 respectively present representative plots of the velocity

vectors and streamlines for an instant in time. This particular plot is for the case

of A 1. The main difference to note between this case and the cases presented in

'S.
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Chapter V is a decrease in the wake width. This is apparently due to the influence of

the wall which deters the vortices shed from the bottom of the plate from spreading.

Comparison of Numerical and Experimental
Strouhal Numbers

Data obtained for the various values of A are provided as Tables 6.1-6.3. A

comparison of the predicted Strouhal number data versus the function St(Re. A)

obtained by Matty is provided in Figures 6.3-6.5.

For the greatest separation between the plate and the ground plane at A = 1

(Figure 6.3), the numerical prediction of the Strouhal number for tile entire range

of Reynolds numbers was fairly accurate. As the Reynolds number was increased,

the numerical solution tended to give a slightly higher value of the Strouhal number

than the function St(Re, A). However, the Strouhal number generally decreased for

increasing Reynolds number as indicated by Matty's study.

As the value of A was decreased to A = 1/2 (Figure 6.4), the trend changed

considerably. Predicted values of the Strouhal number were lower than those given

by the function St(Re, A) for low values of the Reynolds number. However, as the

Reynolds number was increased the numerical solution was quite accurate. The

trend of decreasing Strouhal number with increasing Reynolds number was also

supported by the prediction. The results were also similar for A = 1/4 (Figure 6.5),

though predicted Strouhal numbers slightly underestimated the empirical relation.

Nonetheless, the trend of decreasing Strouhal number with increasing Reynolds

number was again supported.

The variation in the Strouhal number with A for a fixed value of the Reynolds

number was also examined. Strouhal numbers for A 1/4 were generally greater

,A
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than those for A = 1/2. Matty's data indicates a similar behavior between these val-

ues of A. However, the predicted Strouhal numbers at A = 1 were significantly higher

than those at A = 1/2, though Matty's study indicates that these values should be

nearly equal. The difference here may well lie in the fact that Matty's study was

for a three-dimensional plate, while the numerical study was two-dimensional.

Variation in Aerodynamic Forces

with Ground Clearance

A variation in the aerodynamic forces was noted for changes in the parameter

A. However, for a given value of A, there was little apparent dependence of the

drag force on the Reynolds number. Figure 6.6 presents the variation in the drag

coefficient with A. The trend for the drag to increase as A decreases was clearly

apparent. At A = 0, the drag had attained a value approximately 50 percent greater

than that obtained for a flat plate removed from a ground plane. This behavior was

expected, for the increase in the drag on a body as it approaches a ground plane is

well documented.

An increase in lift also occurred for decreasing ground heights, though the trend

was not as prominent as it was for the drag. Figure 6.7 presents the variation in the

lift coefficient with A revealing this relationship. The lift appeared to have a slight

dependence on the Reynolds number, with an increase in Reynolds number being

accompanied by a decrease in the lift coefficient. However, it must be noted that

the magnitude of the lift coefficient was quite small, and the lift may be considered

to be insignificant.
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TABLE 6.1: Numerical Shedding Frequency and
Aerodynamic Force Data for A = 1.

U" (m/s) R e S t CDog C~X 10-4

2.0 12521 0.148 3.62 2.4

5.0 31304 0.135 3.60 2.4

10.0 62608 0.157 3.61 1.9

15.0 93913 0.160 3.60 1.7

20.0 125210 0.164 3.59 1.5
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TABLE 6.2: Numerical Shedding Frequency and
Aerodynamic Force Data for ) = 1/2.

U,, (mis) Re St Ct8 .9 CL X 10-41

2.0 12521 0.130 3.72 3.1

5.0 31304 0.127 3.72 2.9

10.0 62608 0.126 3.70 2.7

15.0 93913 0.126 3.69 2.5

20.0 125210 0.117 3.76 2.4 j

............



ft

88

TABLE 6.3: Numerical Shedding Frequency and

Aerodynamic Force Data for A = 1/4.

U" (m/s) Re St CD. g CL agX 10- 4

2.0 12521 0.138 4.06 3.3

5.0 31304 0.135 4.07 3.2

10.0 62608 0.132 4.06 2.9

15.0 93913 0.130 4.04 2.7-

20.0 125210 0.130 4.06 2.4
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CHAPTER VII

RESULTS FOR VORTEX SHEDDING FROM

A RECTANGULAR CYLINDER

The following discussion reviews results of the computational prediction of vor-
I

tex shedding from rectangular cylinders. Computed Strouhal numbers are com- 7

pared to experimental values provided by Okajima. Trends in the variations of
a,

aerodynamic forces are also explored.
I

Computational Setup

The numerical prediction of vortex shedding from rectangular cylinders was

achieved on the same basic 80 x 50 grid used for the study of a flat plate near a

ground plane. The primary differences between the two grids were the placement

of the body in the calculation domain and the specification of boundary conditions.

Figure 7.1 presents the finite-difference grid for the specific case of a rectangular

cylinder with = 3. The study was executed for cylinders of varying length to height

ratios, with the i taking on the values 1, 2, and 3. The height of the cylinder was

composed of 10 cells giving a height of 0.006 m. The length of the box was composed

of either 6, 12. or 18 cells depending on the respective value of 03, either 1, 2, or

3. The inlet boundary was located approximately two cylinder heights upstream of

the cylinder, and the exit varied from 4.5- 6.5 cylinders heights downstream of the

94
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cylinder depending on the value of 3. Spacing between the cylinder and the top

and bottom boundaries was fixed at approximately two cylinder heights.

Boundary conditions for this case were identical to those for a flat plate in a

uniform stream (Chapter V), with the exception of modified inlet velocities. Inlet

velocities were varied from approximately 0.04 m/s to 2.80 m/s yielding a Reynolds

number range of 200 < Re < 15000. This range roughly corresponds to the range

of the data presented by Okajima.

Again, the solution was isothermal, and the k-e turbulence model was excluded

from the solution process. This provided a solution in terms of the variables u, v.

and p.

Qualitative Analysis of the Flow Field

The unusual behavior exhibited in plots of Strouhal number versus Reynolds

number for cylinders with aspect rations in the range of 2 < j3 < 3 was theorized

to be dependent on an overall change in the flow field. It was hoped that the nu-

merical solution of this problem would demonstrate this change in the flow geome-

try. However, the change in the flow pattern was not at all evident in plots of the

velocity vectors and streamlines for the tested cylinders.

Plots of the flow fields for each of the values of f are provided as Figures 7.2-7.4

and Figures A.3-A.5. The plots are all quite similar, and show a pattern very much

like that obtained behind a flat plate. These figures are all representative of the

flow fields obtained over the entire range of Reynolds numbers for their respective
values of 0. Unfortunately, the resolution of the solution was not such that the e

region of reattachment along the cylinder length could be seen for the two latter

cases where 0 took on the values of 2 and 3.
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Comparison of Numerical and Experimental
Strouhal Numbers

The most interesting aspect of the shedding of vortices from a rectangular

cylinder was the discontinuity that occurred in plots of the Strouhal number versus

the Reynolds number. This behavior was predicted by the FORDC-2 code for the

expected values of L. Data for these cases is provided in Tables 7.1-7.3.

Figure 7.5 presents the variation in the Strouhal number with Reynolds num-

ber for a cylinder with S = 1. The plot indicates that the Strouhal number was rel-

atively insensitive to the Reynolds number over the entire range of Reynolds num-

bers. Maximum values of the Strouhal number occurred at minimum values of the

Reynolds number. This prediction is supported by the data provided by Okajima

which indicates similar trends.

Of greater interest is the case for a cylinder with / 2 as shown in Figure 7.6.

The Strouhal number increases steadily with increasing Reynolds number up to the

point where Re - 600. The Strouhal number then falls sharply and maintains a

fairly constant value over the remainder of the Reynolds number range. This result

is in good agreement with experimental results which indicated the same behavior.

The prediction of the point where the discontinuity occurred was also very close to

the experimental measurements.

The case of the cylinder with 0 = 3 shown in Figure 7.7 was similar to the case

of 3 = 2. Again, the Strouhal number increased with increasing Reynolds number

up to a value of Re - 1600. At this point, the plot then changed discontinuously

and the Reynolds number remained reasonably constant over the remainder of the

plot. Qualitatively, the behavior of the prediction agrees well with the experimental A

data provided by Okajima. However, the discontinuity in the plot occurred at a

, 4,',#I --



.T. - 4VY-7TKJF OT7

97

significantly greater Reynolds number than cited by Okajima. Nonetheless, the

prediction of the behavior of the plots of Strouhal number versus Reynolds number

for all value of 3 were reasonably accurate.

Variation in Aerodynamic Force Coefficients

A variation in the aerodynamic force coefficients with both Reynolds number

and aspect ratio was indicated by the data. The exhibited trends were more solidly

established for drag, with the variation in drag with both Reynolds number and 3

being quite evident.

Figure 7.8 presents the variation in the drag coefficient for the different values

of 3. Clearly the drag coefficient decreases for increases in the aspect ratio. This

is a trend which was indicated by the study of Laneville and Yong. A variation in

drag coefficient with the Reynolds number was also apparent as shown in Figure

7.9. The trend is most clearly seen in the data for the cylinder with 3 = 2, where

the drag steadily increases with increasing Reynolds number. This is the trend

indicated by the data of Davis and Moore. However, this trend was more subtle for

the other values of 3.

The variations in the lift coefficient with 3 shown in Figure 7.10 did not exhibit

the expected behavior. There are some indications that the lift may increase slightly

with increasing 0, but the trend is not well established. Even more curious was

the variation in the lift with the Reynolds number shown in Figure 7.11. The data

in this case clearly indicate that the lift decreases for increases in the Reynolds

number. Data provided by Davis and Moore indicates a relationship between the

lift and Reynolds number inverse to that derived in this study.

...
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TABLE 7.1: Numerical Shedding Frequency and
Aerodynamic Force Data for i 1.

UV, (m/s) Re St CD. CLg.

0.10 522 0.143 1.88 0.00

0.30 1565 0.143 1.90 0.02

0.50 2609 0.129 1.89 0.00

0.80 4174 0.138 1.89 0.00

1.00 5217 0.130 1.95 0.04

1.50 7826 0.136 1.93 0.00

2.00 10435 0.123 1.90 0.00

2.78 14500 0.138 1.89 0.00 V.

'

I I
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TABLE 7.2: Numerical Shedding Frequency and
Aerodynamic Force Data for / = 2.

U.. (m/s) Re St CD0 - 9  CL_9

0.04 209 0.132 1.53 0.23

0.06 313 0.158 1.63 0.17

0.08 417 0.191 1.67 0.18

0.10 522 0.170 1.69 0.16

0.15 783 0.096 1.72 0.07

0.20 1043 0.107 1.75 0.00

0.30 1565 0.122 1.77 0.04

0.50 2609 0.091 1.79 0.05

C.80 4174 0.118 1.80 0.04

1.00 5217 0.106 1.80 0.04

1.50 7826 0.124 1.81 0.04

2.00 10435 0.110 1.81 0.06

.5

5%
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TABLE 7.3: Numerical Shedding Frequency and
Aerodynamic Force Data for I9=3..

U. (m/s) Re St CD.4 g CL~v

0.08 417 0.144 1.65 0.07

0.10 522 0.143 1.66 0.09

0.20 1043 0.163 1.68 0.09

0.30 1565 0.179 1.69 0.06

0.50 2609 0.150 1.69 0.04

0.60 3130 0.122 1.70 0.02

0.80 4174 0.121 1.70 0.03

1.00 5217 0.129 1.69 0.02

1.25 6522 0.147 1.70 0.02

1.50 7826 0.132 1.68 C.02

2.00 10435 0.115 1.63 0.02

-ILA MA"
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CHAPTER VIII

CONCLUSIONS

This study proposed to demonstrate the ability to predict the phenomena of

vortex shedding from various two-dimensional bodies. For every case tested with

the exception of a flat plate on a ground plane, periodic vortex shedding was

achieved.

For the initial case involving a flat plate in a uniform flow (Chapter V), the

results were favorable. Predicted Strouhal numbers agreed well with experimental

data. A calculation of pressures in the wake of the plate indicated a region behind

the plate where the predicted pressures were much lower than the experimental data;

however, the difference may be due to difficulties in experimentally measuring the

pressures. Predictions of the drag also indicated deviations from the drag function

provided by Roshko, but the accuracy of Roshko's function was unknown.

With respect to parameters affecting the solution of the finite-difference equa-

tions, some significant results were discovered. Refinement of the finite-difference

grid yielded only a slight improvement in the prediction of pressure distributions,

and actually hampered the prediction of Strouhal numbers. The inclusion of turbu-

lence was found to have very little effect, and was subsequently excluded from the

solution process.
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The prediction of vortex shedding from a flat plate near a ground plane also

yielded favorable results. The comparison of predicted Strouhal numbers with an

empirically derived function demonstrated the ability to predict general trends in

the shedding frequency. Quantitatively, there were significant differences in the

prediction and the empirical function; however, this may be attributable to the fact

that the prediction was two-dimensional while the function was derived for a three-

dimensional case. Also, the expected increase in the aerodynamic force coefficients

as the body approached the ground plane were accurately predicted.

Finally, the prediction of vortex shedding from rectangular cylinders was suc-

cessful. Strouhal numbers for cylinders of differing aspects ratios were predicted

with reasonable accuracy. This prediction also properly included the discontinuity

in the plots of Strouhal number versus Reynolds number for cylinders with aspect

ratios in the range 2 < 3 -_ 3. Unfortunately, the flow pattern that gives rise to this

discontinuity was not clearly apparent. Predictions of the drag coefficient on the

cylinder compare well with previous studies; however, the lift coefficient behaves in

a manner contrary to prior indications.

%.
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