
0NAVAL POSTGRADUATE SCHOOL
" Monterey California

IC. fILE COP"
IIA

THESIS

THE DESIGN AND IMPLEMENTATION OF A VISUAL USER
INTERFACE FOR A STRUCTURED MODEL MANAGEMENT SYSTEM

by

David D. O'Dell

March 1988

Thesis Advisor: D.R. Dolk

Approved for public release; distribution is unlimited

\JSDTIC
AUG 15 1988

H

REPORT DOCUMENTATION PAGE
!a REPORT SECRIT'Y CZ'ASSjF CA' ON Tt RESTR,CT VE MARK:NGS

Unclassified

2a SECURITY C-ASS.;CATO% A,7T-OR.,y 3 DJSTRIBU
T ON AVAILABILITY OF REPORt

0%DOvGRADNG S Approved for public release;
2b DEC-ASSFCAOE Distribution is unlimited

4 PERFORM:NG 3RGAZA" ON RE:ORT \%MBERkS) 5 MON17ORiNG ORGANIZATION REPORT NLMBER(S,

6a NAME OF 3ERFOM,, C-C.!,ZA7.ON 6o OFF CE SYMBOL 7a NAME OF MONITORING ORGANIZATON
(if ag hcable)

Naval Postgraduate School Code Naval Postgraduate School

6c ADDRESS Cty. State. and ZtPCode) 7b ADDRESS (City. State, and ZIP Code)

Monterey, California 93943-5000 Monterey, California 93943-5000

8a NAME 0- _%D NG SPONSORI\G 8O OFFCE SYMBOL 9 PROCUREMENT .NSTRUMENT DENT'FICAT ON NUMBER
ORGAN Z ON (if applicable)

8c. ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO NO NO ACCESSiON NO

11 TITLE (include Security Classification)
THE DESIGN AND IMPLEMENTATION OF A VISUAL USER INTERFACE FOR A STRUCTURED MODEL
MANAGEMENT SYSTEM

12 PERSONAL AuTHOR(S)
O'Dell, David D.

13a TYPE OF REPORT 13b TME COVERED 14 DATE OF REPORT (Year, Month, Day) 15 PAGE COUNT
Master's Thesis I rROM TO 1988 March 178

16 SUPPLEMENTARY NOTATION
The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.

17 COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
'FIELD GROUP SuB-GROuP Visual Interface; Model Management System; Structured

Modeling; Human Factors; M-a-nMachit-l-nteraction; Graphics
Interface , A 'i'"- / ."I I " " i t ,4

19 ABSTRACT (Continue on reverse if necessary and Identify by block number) "/ - , 'i(.

In the scheme of an integrated decision support system, model management holds a position
comparable with data management. Unfortunately, the development and formalizing of model
management techniques historically have lagged far behind data management concepts,
although the increased interest in spreadsheets has rekindled an interest in models as
productivity enhancing tools. Model management systems offer one way of integrating models
into the overall structure of an organizational information resource library. This thesis
proposes the design and implementation of a visual interface to one such model management

system, based on A.M. Geoffrion's structured modeling paradigm. Our goal is to provide the
user with a natural, easy-to-use interface that is, at the same time, powerful enough to
extract the full potential from a model management system. ,

20 DSTRIBuTION AVAILABiLTY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION

[UNCLASSIF EDUNL MI-ED C- SAME AS RPT E DTIC USERS Tinr1nci fiari

22a NAME OF RESPONSIBLE 'NDivIDUAL 22b TELEPHONE (Include Area Code) 2c OFFICE SYMBOL

Prnf DR_ Dnlk (408) 646-2260 Code 54Dk

DO FORM 1473, 94 MAR 83 APR ed ton -ray :e used until exhausted SECURITY CLASSIFICATION OF THIS DAGE
All other e,, 3. 3re ooscQ.e UNCLASS ipI ttqfl.,.i 0,..o-, 1986-606o24.

i

4:.'

Approved for public release; distribution is unlimited.

The Design and Implementation of a Visual User Interface for a Structured
Model Management System

by

David D. O'Dell
Major, United States Marine Corps
B.S., Kent State University, 1970

Submitted in partial fulfillment of the requirements for
the degree of

MASTER OF SCIENCE IN INFORMATION SYSTEMS

from the

NAVAL POSTGRADUATE SCHOOL
March 1988

Author:

Approved by:I k
DP aielR. Do -

::

I.

Gordo H. Badleyeade

David R. Whipple, Cha______D_!___Ttof Administrative_
-~

tI-o f
-

S-IS

Science

c *5

Jame Frege Dea~f ormaion nd Plic

Scim~es

ABSTRACT

In the scheme of an integrated decision support system,

model management holds a position comparable with data

management. Unfortunately, the development and formalizing

of model management techniques historically have lagged far

behind data management concepts, although the increascd

interest in spreadsheets has rekindled an interest in models

as productivity enhancing tools. Model management systems

offer one way of integrating models into the overall struc-

ture of an organizational information resource library. This

thesis proposes the design and implementation of a visual

interface to one such model management system, based on A. M.

Geoffrion's structured modeling paradigm. Our goal is to

provide the user with a natural, easy-to-use interface that

is, at the same time, powerful enough to extract the full

potential from a model management system.

QUALITY
NspECTED

Accession For

NTIS GRA&I
DTIC TAB fl
UniLnxounced El

A . 11 t..V I td

TABLE OF CONTENTS
's

I. INTRODUCTION 1

II. MODEL MANAGEMENT 5

III. STRUCTURED MODELING 11

IV. THE VISUAL INTERFACE 19

V. SPECIFICATION AND SYSTEM DESIGN 24

VI. DETAILED DESIGN AND IMPLEMENTATION 30

VII. FUTURE ENHANCEMENTS AND ADDITIONAL RESEARCH ...49

APPENDIX A (HALO Supported Graphics Devices) 57

APPENDIX B (Structure Charts) 59 ,

APPENDIX C (Program Listing) 65

APPENDIX D (User's Manual) 153

LIST OF REFERENCES 168

BIBLIOGRAPHY 170

INITIAL DISTRIBUTION LIST 171

iv

LIST OF FIGURES

Figure Title Page

1 The Components of an MMS 8

2 Elemental Structure for a 2 x 2 15
Transportation Model

3 Generic Structure of Transportation 15
Model I

4 Modular Structure and Outline for 16
Transportation Model •

5 Schema Paragraphs for Transportation 17

Model

6 INTUITION (V 1.1) Main Screen 36

7 Workspace Cell Layout 38

8 INTUITION (V 1.1) Data Entry Screen 41

9 ORACLE RDBMS Tables 43

10 INTUITION (V 1.1) 59

11 scrngen() module 60

12 flmode() module 61

13 f2add() module 62

14 f3delete() module 63

15 f4change module 64

.p.

v S

I. INTRODUCTION

The wheel is an extension of the foot, the book is
an extension of the eye, clothing, an extension of
the skin, electric circuitry, an extension of the
central nervous system.

Marshall McLuhan and Quentin Fiore
The Medium is the Message (1967)

We could easily continue that the computer interface is

an extension of the user. To the user, the interface is the

program. It is the single direct link that connects him with

his application. Regardless of how elaborate the algorithms,

how elegant the coding, or how efficient the execution, a

poorly designed interface severely detracts from a program's

usefulness. At best, the program will be used reluctantly;

at worst, it will not be used at all. How the user converses

and interacts with the program becomes a prime measure of its

effectiveness.

The quality of a program's interface must be a consid-

eration from the beginning to the end of the design process.

If a designer fails to take people into account, then his

product--be it hardware or software--may well be difficult or

impossible to use. As Simpson [Ref. 1] says, human factors1

1 Human factors is a small but growing discipline which
seeks to provide a method for taking into account human
strengths and limitations during the design of computer
hardware and software [Ref. 1, p. 108]. Historically, human
factors has dealt with the physical relationships between man

and machine. The development of software pushes even

*~~~~W - -'.

1r

matter because it is people who must operate the machines

(and software] that we produce. Man and machine must work

together interactively. The "system" is a combination of

both.

Of course, the significance of the user interface varies

from application to application. Obviously, the development

of any interface represents an expenditure of valuable

resources. How much of the available resources one can

afford to devote to the interface becomes a legitimate

question. Too little and the interface is inadequate. Too

much and it becomes an unnecessary aggrandizement. The

designer must strive to match the resources expended in

developing the interface with the significance of that

interface to the application. Simpson [Ref. 1 offers four

factors that can provide a measure of the importance of

man/machine interaction to software (and concomitantly,

interface) design:

(1) the number of people operating the program,

(2) the diversity of the operators' backgrounds,

(3) the complexity of the program, and '

(4) the consequences of operator error.

As these factors increase, so should the resources

devoted to the development of the user interface. As

further--moving into the realm of cognition and touching on
exactly how mankind thinks. Because of this cognitive
distinction, some researchers prefer to separate the theories
of human/computer interaction from the more traditional
concepts of human factors.

21

'1"1
, . -,% 'X " " ', , ' 3 . " .:-N, ,2"'VI? " *' :- VI ? .''pV-IL .' 2 ." -"'."*"- "- *.*,:-'.

critical as the interface may be to general software design,

an evaluation of the above factors clearly shows that the

development of an appropriate user interface assumes added

significance in the creation of a highly interactive model

management system.

History shows that model-based assistance is used all too

infrequently by managers and policy-makers. Often this is

the case because available modeling systems are incompre-

hensible to nonspecialists in management science/operations

research (MS/OR) [Ref.2, p.1]. Managers may feel overly

dependent on these MS/OR practitioners who more fully

understand the underlying concepts of modeling systems. They

see this as an erosion of their power. Managers avoid this

dependency by avoiding the very modeling systems that could

enhance their decision-making capabilities. Modern user

interfaces that make the use of modeling systems more

intuitive and easier to learn can lead to improved acceptance

of the systems themselves. In fact, they may even be a

prerequisite for it [Ref. 3, pp. 548-550].

By providing an interface to the modeling environment

that is intuitive to the user, he will more likely accept

modeling as a powerful, working tool rather than shying away

from it as "something better left to those technical types."

This thesis proposes one such design. Our goal is to provide

the user with a natural, easy-to-use interface that is, at

3

~p .~ -VN N
ni. .L

!- , * < - , - .--. - - -

the same time, powerful enough to extract the full potential

from a model management system.

Sections II and III provide a brief overview of both

model management and structured modeling, concentrating on

those aspects which bear most directly on the user interface.

Readers are encouraged to review the specific articles cited

in these sections for a more complete treatment of these

subjects. Section IV introduces a broad specification of the

visual interface concept, touching on various aspects of

interface design and interactive computer graphics. Section

V provides specifications and design goals of a particular J.

interface, called INTUITION. Section VI describes the

prototyping of INTUITION in an IBM PC/MSDOS environment and

discusses problems encountered during the design and imple-

mentation phases. Finally, Section VII concludes with

recommendations for future enhancements to this particular

program, as well as proposals for additional research. S

I

N

.~rv~ %~ I~-~ 4 S.S. . . C- * .o.

N ~.N N *. . N . N .

II. MODEL MANAGEMENT

p

Data has long been recognized as a corporate resource to

be managed and controlled. Models, too, provide managers

with a resource--a decision aid--which, if properly used, can

produce a competitive advantage. On the other hand, if used

improperly, these same models can lead to disaster.

In the scheme of an integrated decision support system,

model management holds a position comparable with data

management. Unfortunately, while considerable effort, and

consequently considerable progress, has been made in devel-

oping and formalizing data management concepts, model

management techniques have lagged far behind. [Ref. 2, p.1]

As a result, many organizations have been reluctant in

the past to totally embrace model management as a viable

information resource. This reluctance has recently diminished

with the sky-rocketing popularity of simple modeling devices t.

such as LOTUS 123. These spreadsheets have clearly brought

home the unique potential of modeling as an aid to decision-

making. But this very popularity, while raising the concept

of modeling to the forefront, has come as a two-edged sword.

That increased productivity may be gained from effective

modeling is a generally accepted premise. And, since S

productivity determines the relative well-being of an

organization, modeling as a tool that increases productivity

5

is welcomed. On the other hand, the informal, often

unstructured, and sometimes unintelligible approach to

modeling inherent in the current state of the art, as often

as not, overwhelms management. The entire situation is

compounded by the management and control problems resulting

from the proliferation of spreadsheet models. Model manage-

ment systems offer some hope of overcoming these obstacles.

[Ref. 4]

What is a model management system? As defined by Dolk

and Konsynski in the previous reference,

The MMS (model management system] is to models what the
DBMS [data base management system) is to data, i.e., a
software system which provides for the creation, manipu-
lation, and access of models.

The key here is "models." Management science and operations

research (MS/OR) models are particularly relevant in imposing

structure on the decision-making process. Gorry and Krumland

[Ref. 5, p. 206] refer to the English Platonist Weldon who

suggested that there are troubles which we do not quite know

how to handle; there are puzzles whose clear conditions and

unique solutions are marvelously elegant; and then there are

problems which we invent by finding an appropriate puzzle

form to impose upon a trouble. To Gorry and Krumland, MS/OR

models are the puzzles imposed on managerial decision-making

to solve problems, i.e., to make decisions. The authors

continue that the problem(s) in question often fail to

dictate the use of any particular model. We may find the

6

same problem solved in different situations through the use

of decidedly different modeling techniques.

In this respect, an MMS allows a decision-maker to access

a collection of several different models or modeling tech-
niques, but to do so in a consistent and standard way.

Moreover, these models, in the form of an MMS, can be

incorporated more readily into an integrated information

resource management (IRM) environment, where they can operate

in concert with a database management system.

Figure 1 depicts one possible MMS, organized along the

lines of a typical DBMS. Readers are referred to Dolk and

Konsynski [Ref. 4] for a more complete discussion of model

management, in general, and Figure 1, in particular. A brief

synopsis follows. Three groups of people are involved in the

creation, management, and use of an MMS. The raison d'etre

of an MMS is to allow a decision-maker ultimately to solve

problems, typically via a model manipulation language of some

sort. Just as a DBMS needs to be managed to be effective, an

MMS requires equivalent management. This is vested in the

model administrator/model bank administrator. In fact,

Figure 1 envisions the MA/MBA operating within an information

resource management (IRM) environment where model management

and data management coexist as sibling functions. These two

functions then share a dictionary/ directory system that is

more broadly (and appropriately) called an information

resource encyclopedia (IRE) to denote a wider array of

7

Wj.5

[(Model-Builder) (MA/MBA) [(Decision-aker)

I
'DL IRE

Interface NI4L
AL

IRE

II

\'. MCS .,/

/" DBCS

*

Bank Library Base

Figure 1: The Components of an MMS
from Dolk and Konsynski (Ref. 1, p.44]

8

knowledge about a subject--knowledge above and beyond simple

definitions. This IRE holds the semantics and structural

declarations for both data and models.

Central to the MMS is the model control system (MCS)

which manages the physical-level access, storage, and

retrieval protocols. The solution library is unique to a MMS

and consists of the algorithms necessary for problem solving.

Thus far, we have neglected the left branch of Figure 1,

the model-builder. Obviously, the solution library is of no

use unless it has something on which and with which "to

operate." To this end, the model-builder constructs the

model banks and databases which hold the necessary equations

and data for the solver to use. He does this through a mode.

description language (MDL) . It is this concept of an MDL

that is of immediate concern to this thesis. How does the

idea, the actual notion, of a model move from man to machine?

Dolk and Konsynski [Ref. 4, p. 43] state emphatically,

Critical to the success of an MMS is a model description
language (MDL) which allows users to specify models in a
uniform fashion independent of any particular physical
implementation The key advantage of an MDL is that it
allows the user to concentrate on model description without
worrying about how the model gets solved.

In this same article, the authors suggest, as a logical

choice, an algebraic language which facilitates the

description of a wide range of mathematical models. This

thesis pursues an alternative route--the use of a graphics-

based, rather than text-oriented, interface. This requires

the adoption of a modeling approach that is:

9

(1) inherently visual in nature, yet can be adequately
described in a text-oriented database, and

(2) of sufficient generality to be applicable across
diverse disciplines and varied modeling paradigms.

Structured modeling, developed by A. M. Geoffrion, provides -

exactly this modeling framework.

1

101

III. STRUCTURED MODELING

Structured model theory, as described by Geoffrion [Ref.

3, pp.547-588], provides a structured framework, on par with

relational database theory, within which model management

requirements can be defined and implemented.

Structured modeling aims to provide the foundation for a
new generation of modeling systems It also aims to
influence how model-based work is carried out using more
conventional modeling systems [Ref. 3, p.550].

Whereas previous efforts at developing model management

systems have tended to be application specific, Geoffrion's

approach is sufficiently general to cross application

boundaries. Development of a formalized system around such a

paradigm should go a long way in ameliorating the fears and

trepidations of management and in advancing the acceptance of

model management techniques as standard operating procedures.

Central to the concept of structured modeling is a system

of elemental definitions which, in the aggregate, comprise a

model. These elements consist of five separate types--

primitive entities, compound entities, attributes, functions,

and test elements.

(1) A primitive entity element is mathematically unde-
fined. It simply asserts the existence of some thing
or concept (e.g., a plant or customer in a transpor-
tation system). Every model must contain at least one
primitive entity.

IkII

(2) A compound entity element represents things or con-
cepts which are defined in terms of previously defined
primitive entities and/or other compound entities
(e.g., a link in a transportation system consists of a
combination of a certain plant and a certain cus-
tomer).

(3) An attribute element represents properties of things
or concepts and is characterized by having a constant,
though not necessarily numeric, value within a
specified range (e.g., the supply capacity of a plant
or the demand of a customer in a transportation
system). A variant of the attribute element, called
a variable attribute element, differs by having a non-
constant value (e.g., the transportation flow between
links within a transportation system).

(4) A function element is very similar to the mathematical
concept of a function in that it has a unique value
within a specified range that is derived by applying
a specific rule to the values of other "called"
elements (e.g., the total cost associated with all
flows in a transportation system).

(5) A test element is simply a special case of the
function element. Test elements must evaluate to
"TRUE" or "FALSE" and thus provide the capability to
perform logical tests on other referenced elements
(e.g., is the total flow leaving a plant less than or
equal to its supply capacity).

A structured model exists on three levels, each of which

provides a varying degree of specificity about the model.

The first two levels are organized as acyclic, attributed

graphs of distinct elements; the third, hierarchically as a

rooted tree.

The base level is the elemental structure. This level

comprises "...a nonempty, finite, closed, acyclic collection W

of elements" [Ref. 6, p. 2-4] which captures the myriad

detail associated with a specific instance of the model. For

example, in a particular transportation model, there exist

12

plants in Dallas and Chicago. These plants service customers

in Pittsburgh, Atlanta, and Cleveland. Associated with these

plants and customers are specific links, flows, and costs

that are individually defined in the elemental structure.

A generic structure is defined on the elemental structure

by what Geoffrion calls a natural familial grouping of ele-

ments. In simple terms, like elements can be aggregated into

a single, homogeneous grouping of elements called a genus.

Each genus must fulfill the requirement of "generic simi-

larity," that is, each element within the genus must refer to

and be referenced by elements from exactly the same genera.

From the previous example, individual plants in Dallas and

Chicago can be partitioned into the genus, PLANT, while the

customers in Pittsburgh, Atlanta, and Cleveland would be

partitioned into a single genus, CUSTOMER. Likewise, the

various flows, links, and costs would be partitioned into

genera, one for each type.

Both the elemental and generic structures are depicted as

directed, acyclic graphs called element graphs and genus

graphs, respectively. In each case, nodes represent elements

(or genera) and arcs represent "calls"'2 of one node by

another. Perhaps somewhat counter-intuitively, the head node

of each arc is said to "call" the respective tail node.

2 A "call" is a definitional reference of one element or
genus to another. Calls form calling sequences. These
calling sequences are "the cross-references among the various
elements of a model (that] are the central focus of struc-
tured modeling [Ref.6, p. 2-3).

13

.- A

Figures 2 and 3 provide the element and genus graphs for a

typical Hitchcock-Koopmans transportation model.

The third, and highest level, is the modular structure.

This is a rooted tree whose terminal nodes have a one to one

correlation with the genera of the corresponding generic

structure. Non-terminal nodes are defined as modules, with

the simplest rooted tree consisting of a single such module--

the root module, representing the entire structured model.

Every possible module structure is not allowed. Valid

structures must satisfy the requirement of monotone ordering

(i.e., must contain no forward referencing). In other words,

it must be possible to linearly order all genera in the model

in such a manner that no element in a genus ever calls an

element in a genus further down the listing. In the vernac-

ular of structure modeling, such a listing is called a

modular outline. Valid modular structures are typically

depicted as modular trees. Figure 4 shows one possible

modular tree and its associated modular outline for the same

transportation scenario cited above.

Both generic and modular structures, in the form of genus

graphs and modular trees, lend themselves to the graphical

display of information. However, Geoffrion has also devel-

oped an extensive textual notation to fully describe the

generic and modular structures of a model. Called a model

schema, it consists of a paragraph for each genus and module

14 141

pr-odu t ion, Objeoti'i Fquctioni Domand
Constr-ai'tas Total Cowl Carimtreintm

CoM t -

Pf1 odu= t ,owr -Dm

P I an'ta u -

Figure 2: Elemental Structure for a 2 X 2
Transportation Model

T:SUP TOTAICOST r:EM H
-~+

SLIP LIWOEM

PLANT LUST

Figure 3: Generic Structure of Transportation Model
modified from [Ref. 6, p. 2-4]

15

in the structure. Figure 5 shows the model schema corre-

sponding to the generic and modular structures given in

Figures 3 and 4. Briefly, the syntactic rules for a model

schema are:

(1) Paragraphs begin with a unique module or genus name.
Names are capitalized. Module names must begin with
an ampersand. Genus names must begin with a letter.
Names of genera containing multiple elements may be
followed by a specific lower case "index" letter,
uniquely associated with the genus that introduces it.

(2) Each paragraph contains an informal interpretation
part which provides easily readable documentation. Its
syntax is unrestricted; however, Geoffrion recom
mends that it contain an underlined, capitalized and
unique key phase which is also capitalized on subse
quent use. Unless printed in a different font (e.g.,
italics), the interpretation should be introduced by
some unique character to separate it from the formal~consist only of a module name and interpretation part.

PLNT Modular Outlin
/ eSUP *TSP

CLIST sPRMt
/ SALES PL sup/ r/

// LINK CUST
&TRI,1 - . ,O'ST - FLOW OEM• .. COST 8IST

| ' x ".LINK
, M]'TRLCCST II '"

\ \ COST
\ •T'. IP TOTFL_-=

". T:EEHT-.,L

II Figure 4: Modular Structure and Outline for

Transportation Model from [Ref. 6, p. 2-4]

| 16

I

s There are some PROJDUCTION DATR.

PUIIi /pe/ There is a list of PLANTS. ,
SUDFPUWI?) la/ {4TD : R Every PLANT has a IISUPPLY CAPACITY measured in tons.

sIFLES There are some CUSTOMER DRTA.
CUSTj /pe/ There is a list of CUSTOMERS.
U[EOTI) /a/ 4 -SI} : F Every CUSTOMER has

a nonegative DEMAND measured in tons.

s[IST There are some DISTRIBUTION DATA.
LNK(PLfiXMI&)/ Spect *UIL~fHh0JKT}
covering {RRWIF, GIJST There are transportation
LINKS rom sorre PLR4TS to sorre WSIu Hr.
FIGJ .Wi) /a/ 4 : F+ There can be a
nonnegative transportation FLOW (in tons) over
each LINK. a'
COST(H(ii) /a/ 4LH Every LINK has a COST
RATE for use in dollars/ton.

UTL_C[IS(I "TJ.IWID If/ I ; MKiK(osTij I
FRlJil) There is a TOTAL COST associated with
all FLOWS.

T'F(FUL .,d~Pi) iti "eRUhT) ; *iFTtIJi <=

SI Is the total FLOW leaving a PLRT less than
or equal to its SUPPLY CAPACITY? This is called
the SUPPLY TEST.

Td1HC, 1IU-IJJEt /t/ 41JS ; MiGFLOUpii= [D:
Is the total FLOW arriving at a CUSTOMER exactlu
equal to its DEIDND? This is called the OEIRM

TEST.

Figure 5: Schema Paragraphs for Transportation Model

17

.

(3) The formal part of each genus paragraph contains the
essential characteristics of the genus:

(a) a type indicator (/pe/,/ce/,/a/,/va/,/f/, or
/t/) specifies the element type; r

(b) for all non-/pe/ paragraphs, a generic calling
sequence (denoted by parentheses) specifies all
elements which participate in the definition of a
typical element;

(c) an index set statement (denoted by braces)
specifies the element population of the genus
(omission implies every possible element exists);

(d) for attribute genus paragraphs, a range state- %
ment (denoted by a colon) defines the allowable
values for the elements of the genus; and

(e) for function and test elements, a generic rule
(denoted by a semi-colon) specifies how element
values are calculated.

Geoffrion (Ref. 3, p. 550] predicts the potential for

wide adoption of structured modeling:

This kind of definitional system turns out to be widely
applicable within model-oriented fields such as MS/OR/DSS
(for finance, logistics, marketing, production, and other
application areas), information systems, economics, and
engineering ... structured modeling lays the foundation for
a unified theory of model aggregation.

Geoffrion further asserts that such a definitional system is

applicable to fields of artificial intelligence, database

management, programming language design, and software
5%

engineering. It is exactly this generality and capacity for

cross-fertilization that makes structured modeling so

attractive as the underpinnings of a model management system.

18.

IV. THE VISUAL INTERFACE

w

Geoffrion [Ref. 6, p. 3-8] describes the idealized inter-

face for a full-scale model management system as providing,

... full-screen, fully interactive, mostly command-driven
(but with border or hideable menus) access to a file
library, which can contain materials pertaining to several
models or model schemata.

In view of this description, the question arises, "Why a

graphics interface?" This can be answered, perhaps somewhat

simplistically, yet nonetheless accurately, by the cliche--a

picture is worth a thousand words. The Apple Macintosh, Sun

and Apollo workstations, and the forthcoming IBM System 2

series "Presentation Manager" are adequate proof)f the

acceptance of visual interfaces as productive enhancements to

computer technology.

Interactive computer graphics are particularly well

suited as a descriptive device for a model management system.

As Scott [Ref. 7, p. 77] remarks, "Interactive computer

graphics is based on the concept of working with a model

described by information stored in the computer." In

concept, the interface for a model management system is not

very different from the typical "paint" program or computer-

aided design (CAD) program.

19

Computer graphics is equally well suited to the psycho-

logical and intellectual requirements of a user interface.

Bennett [Ref. 8, p. 54], in amplifying Foley (Ref. 9] states,

The payoff (from graphics applications] is high because of
the bandwidth [capability for rapid interaction with high-
resolution, directly relevant pictures] of the communi-
cations channel.

Bennett continues,

Graphics offer potential for decision makers who can
benefit from interaction with computer-generated represen-
tations but who are repelled by computer-oriented detail.

Of course, as stated in the introduction, if any inter-

face (graphics or otherwise) is to be effective, the needs

and capabilities of the user must be considered. Simpson

(Ref. 1] recommends six principles for computer interface

design:

(1) Provide feedback. Don't keep users in the dark. Every
user action, whether correct or incorrect, should
elicit some response from the program. Ensure that
feedback is immediate, obvious and placed on the
screen where the user anticipates it.

(2) Be consistent. While human beings can tolerate
ambiguity, it only serves to reduce their effective-
ness. Notwithstanding Ralph Waldo Emerson's assertion
that consistency is the "hobgoblin of little minds,"
consistency within software is essential. Establish a
set of rules and follow them compulsively. Ensure
that similar functions are performed in a like manner
throughout the program. This allows the user to learn
one part of the program and to apply this knowledge to
other portions, making the program much easier to
learn and use.

(3) Minimize human memory demands. Simply put, computers
have better memories than people. While people do not
always remember things exactly, computers do. Reduce
ihe user's need to memorize commands and mnemonics
through the use of displayed menus or other screen
prompts. Rely on the machine's memory, not the
user's.

20

(4) Keep the program simple. Simplicity must be a
conscious design goal. Continuously edit and pare
down the program. Provide those functions that are
necessary and useful; however, don't encumber the user
with unnecessary functions simply because they are
possible.

(5) Match the program to the operator's skill level.
Evaluate the skill level(s) of expected users and
design the program to match these skills. For larger,
more complex programs, this may require a complete
task analysis to determine what mission a system must
perform, what functions are involved, and what tasks
are required to perform these functions. Alter-
natively, for simpler programs, answers to the
following questions may suffice:

(a) What will operators be expected to do?

(b) What decisions must they make?

(c) What must they know to make the decisions?

(d) What skill levels will be required?

(6) Sustain operator orientation. Don't allow the user to
become "lost" in the program with no way out. Provide
signposts to tell him where he is and to guide him
back from whence he came. Provide a consistent way to
backtrack to a main menu or to an opening screen.

In summary, Simpson (1982, p.116) reduces ese six prin-
ciples to a single idea,

...know the needs of your system users. Recognize that
they need feedback to avoid confusion, consistency to ease
the learning process, minimal strain on memory capacity,
simplicity rather than complexity, demands gauged to their
skill levels, and constant, clear orientation.

Simpson addresses two additional areas that have special

significance to interface design and are thus worthy of

mention. These are data entry and screen design. Briefly,

he offers these recommendations:

(1) Data Entry

(a) if data are to be entered from a standardized

21

form, then the screen should look similar to the
form in use;

(b) the program should provide a prompt for every
data input, including range limits, default p
values and formats, where possible;

(c) keep input data length to the absolute minimum
consistent with the data being entered;

(d) provide feedback by displaying data on the

screen as it is entered;

(e) check all data entries for error;

(f) when an error is detected, alert the user,
identify the error, and tell the user how to
recover;

(g) place all error messages consistently from
screen to screen, preferably near the erroneous
entry;

p
(h) allow the user to edit data during the initial

data entry, after a group of data have been
entered, and subsequent to the data being
stored; and

(i) provide "fail-safe" entry mechanisms for data
entry that can cause catastrophic failures, e.g.
double prompt the user prior to deleting a file.

(2) Screen Design

(a) access screens by paging, not scrolling;

(b) title all screen displays, preferably centered at
the top of the screen;

(c) center screen displays, where possible;

(d) allocate specific screen areas for each type or
grouping of information (e.g., prompt line, error
messages, mode indicators, etc.) and use these
areas consistently;

(e) distinctly separate each area of the screen with
mechanisms such as blank rows or columns, lines,
or color coding;

(f) keep screens simple and uncluttered through the
use of "white space;"

22

NO

(g) follow prevailing conventions--present infor-
mation from left to right, top to bottom, left
justify text and right justify numbers aligning
them on the decimal point;

(h) display information in a recognizable order--for S
example, alphabetically, numerically, or chrono-
logically; and

(i) break up long strings of data into independently
recognizable units--for example, showing a
telephone number as (408) 555-1234 is much
clearer than 4085551234.

S

N

%.

23

AO JC"

V. SPECIFICATION AND SYSTEM DESIGN
S

Our purpose is to design and implement a visual interface

(using established computer interface design principles) for

a model management system based on Geoffrion's structured

modeling approach. This interface will allow the user:

(1) to interactively enter a graphical representation of a
structured model and,

(2) to produce a relational database representation of
this model, using the information from the graphic
view augmented with other information entered by the
user.

We will follow a structured approach to software design.

Software engineering methodologies provide the designer with

a systematic means of managing and controlling the over-

whelming number of tasks involved in software development.

To date, no single methodology has caught and held designers'

fancies, although within the Federal Government, the classic

life cycle or "waterfall" model generally is dictated.

However, in many sectors, both prototyping and fourth gene-

ration techniques(4GT)3 are gaining favor.

Prototyping is especially relevant in this instance. In

fact, the design of a visual interface fulfills all three of

the criteria given by Pressman [Ref. 10, pp. 148-149],

3 this term encompasses a wide array of tools that
allow a developer to specify software characteristics at a
high level and then have the tool automatically generate
source code based on these specifications. (Ref. 10, p. 24)

24

Sz

...there are circumstances that require the construction of
a prototype at the beginning of analysis since the model is
the only means through which requirements can be effec-
tively derived. In general any application that creates
dynamic visual displays, interacts heavily with a human
user, or demands algorithms or combinatorial processing
that must be developed in an evolutionary fashion is a
candidate for prototyping.

Our prototype interface will be designed and implemented

in bit-mapped graphics, using a structured programming lan-

guage, a standardized graphics library, and a relational

database management system. The prototype will support

monochrome and color (CGA and EGA or equivalent) systems and

will self-configure to the hardware used. Graphics objects

will be differentiated by shape and color.

The screen will consist of five fixed windows--a status

window, an icon window, a command button window (augmented by

pop-up menus), a dialog window, and the workspace (drawing)

window. User inputs, error messages, and system prompts

appear in the dialog window. The user workspace is a free-

form drawing area whose size is limited only by available

memory. The user sees a four-way scrollable window on this

total workspace, into which he interactively enters genus

graphs and/or modular trees directly in pictorial form.

Commands and node types will be selected from on-screen

displays, pop-up menus, or on-screen prompts. The user will

have the choice of using a mouse, cursor keys, or function

keys to select options. S

The interface must be simple, intuitive, and unobtrusive.

It should not distract the user from the task at hand, i.e.,

25

getting his model into the computer. It should support only

those tasks necessary to accomplish the program's purpose, as

stated herein. Bells and whistles will be minimized. Just

because the interface can accomplish a task does not mean

that it necessarily should. Every function must be justified

on the basis of increased user productivity. Give the user

what he needs--nothing more and nothing less.

The interface must be consistent. Similar functions

should look the same and work the same throughout the

program. The interface must prompt the user for all data

entries and must edit all entries. Input must be accepted in

a consistent place and manner; output will be displayed like-

wise.

The interface must be easy to learn and use. It should

minimize human memory requirements and the need to reference

external documentation. It must provide immediate and

consistent feedback for every user action. Errors must

elicit meaningful and helpful error messages (i.e., what is

wrong and how to correct it). Finally, the interface must

provide "signposts" throughout to keep the user oriented and

to provide an easy means of returning to the starting point.

The program presupposes that the user understands struc-

tured modeling concepts, but makes no further assumptions

regarding the user's computer experience. It will be highly

structured and modularized to ease transportability across

26

' r r e

systems and to allow future extensions to the program.

Specifically, it must allow the user to:

(1) add genus elements (nodes) or modular subtrees to the
pictograph;

(2) delete genus elements or modular subtrees from the
pictograph (including all arcs into and out of the
deleted nodes);

(3) rename genus elements or modules on the pictograph;

(4) change the type of genus elements on the pictograph;

(5) add "calls" (directed arcs) between genus elements and
modules;

(6) delete existing "calls" from the pictograph;

(7) move genus elements, modules, and subtrees to a new
position on the pictograph and adjust all "calls" and
spacing accordingly; and

(8) convert specified portions of a genus graph to a
modular subtree and automatically redraw the picto-
graph correctly.

As the user creates a pictorial representation of the

model, the program must transform the genus graph and modular

structure from the pictograph form to an appropriate rela-

tional database representation. Specifically, the following

functions will be supported:

(1) extract the genus name, genus type, and calling
sequence from the appropriate genus pictograph
(extract module name and monotone ordering only for
modules);

(2) create a color-coded input screen (based on the
structured mcdel paragraph syntax) and allow the user
to enter the index set statement, range statement,
generic rule, and informal interpretation for a
particular genus (or the informal interpretation only
for a particular module);

(3) allow the user to modify all paragraph fields except
genus name, module name, genus type, and calling

27

WV P lip - - .

sequence (in order to maintain data integrity, these
items can only be modified from the pictograph);

(4) display an appropriate modular outline;

(5) generate a color-coded, scrollable display of the
entire model schema based on the appropriate genus and
module paragraphs; and

(6) transform the complete model schema into an appro-
priate relational database representation;

(7) save the pictographs and descriptive paragraphs to

disk for subsequent reloading and editing.

The following criteria must be validated when accepting

data entry from the user:

(1) Module Paragraph

(a) Module names must be unique, capitalized and
prefixed with an "M

(b) The informal interpretation must be identified by

a unique font or introductory character.

(2) Genus Paragraph

(a) Genus names must be unique, capitalized and
begin with an alphabetic character.

(b) Type indicators must be one of the following
mnemonics and must be enclosed in back slashes:
pe, ce, a, va, f, or t.

(c) Generic calling sequences apply only to non-/pe/
types and must be enclosed in parentheses.

(d) Element indices must be single, lower-case,
alphabetic characters and immediately follow the
elements that they index.

(e) Index set statements must be enclosed in curly
braces.

4 Geoffrion designates modules with an ampersand;
however, this character has special meaning within the ORACLE
Database.

28

(f) Range statements apply only to /a/ and /va/
types and must be preceded by a colon.

(g) Generic rules apply only to /f/ and /t/ types and
must be preceded by a semi-colon.

(h) The informal interpretation must be identified by
a unique font or introductory character.

29S

11

!p

, 4,

29

VI. DETAILED DESIGN AND IMPLEMENTATION

The previous section provides preliminary specifications

for a visual interface. A prototyping methodology will be

employed to further develop and define these general specifi-

cations into a system that meets the user's needs. It is a

legitimate question at this point to ask why prototyping is

used rather than the more traditional life cycle model for

software development.

The classical life cycle model is patterned after the

conventional engineering cycle. It calls for a sequential

series of events that progress systematically from system

engineering through analysis, design, coding, testing, and

maintenance. Because the output of one step becomes the

input to another, this paradigm is frequently called the

1waterfall" model. [Ref. 10, p. 20] This process satisfies

the need for an organized methodology that establishes

appropriate milestones against which to measure progress and

at which to obtain approval to continue. Unfortunately, it

also requires the capability to fully and unambiguously

define all system specifications during the design process.

When full specification fails, as it so often does, those

requirements that are omitted or misunderstood become the

undetected errors that are so costly to correct in later

stages.

30

5'

Prototyping offers an alternative approach that is

particularly valuable in developing functional specifications

under conditions of uncertainty. Prototyping techniques may

either be incorporated into traditional life cycle methods

or, in certain circumstances, may replace the traditional

model entirely. In either case, the key to prototyping is

its iterative nature. The classical model presents the user

with reams of text-based specifications and/or reams of

diagrammatic representations of those same paper specifi-

cations for the entire system. The user cannot possibly

determine if the proposed system meets his needs--especially

since he very likely doesn't yet know exactly what his

requirements truly are. A prototype, on the other hand,

attempts to present the user with a realistic view of the

eventual system based on what he does currently know about

his requirements. This view is then iteratively refined, as

uncertainty is reduced, to produce a software product that

ultimately reflects the user's true needs. The user is

provided with a "specification" that he can experience

directly. [Ref. 11, pp. 178-179]

This software project lends itself to prototyping on

several counts. Obviously, the prime purpose of any inter-

face is to interact with the user. In a model management

system, the level of interaction is particularly high.

Prototyping allows this interaction to begin early in the

development process and to continue throughout design and

31

_. ",]

implementation. In addition, this particular case represents

one of the first documented efforts at designing a graphics-

based model management interface. Developing a comprehensive

set of functional specifications for such a first-time system

is an unrealistic endeavor. Simply too many uncertainties

exist. As explained above, prototyping is ideally suited to

developing specifications under conditions of uncertainty.

Finally, when working in a graphics environment, it is

essential that the user (and developer) see the system as it

exists on the computer screen. The screen size and graphics

resolution of current computer displays are limiting at best.

It is all too easy to develop concepts that work well on

paper--an analog medium--but that do not translate at all to

the digital screen. Prototyping allows the developer to get

the visual aspects of the graphics environment in front of

the user early in the process.

The prototype that we propose is called INTUITION. The

initial version (1.0) was developed on an IRIS 2400 dedicated

graphics workstation. This version was not intended to

provide any specific functionality5 , but was used to validate

the basic program structure, to develop the initial screen

layout, and to determine any unique requirements for

5 It epitomized the "throw away" prototype as a
mechanism for identifying software requirements. As Brooks'
[Ref. 12] writes, "In most projects, the first system built
is barely usable When a new system concept or new tech-
nology is used, one has to build a system to throw away, for
even the best planning is not so omniscient as to get it
right the first time."

32

.. '...

including mouse-control as one method of manipulating the

interface.

Because of the highly specialized nature of the IRIS

workstation, many graphics functions that are trivial on the

IRIS system become major considerations on non-dedicated

machines. Consequently, INTUITION (Version 1.1) is designed

to test the validity of a visual MMS interface in the MSDOS

environment using an IBM PC (XT or AT) or compatible. It is

programmed in the Lattice C programming language and uses

graphic routines from the HALO Graphics Library. Lattice C

was chosen because it supports a wide variety of systems

(thus easing future portability issues) and, more impor-

tantly, because it directly interfaces with the Oracle

Relational Database Management System (RDBMS)6 The HALO

Graphics Library was selected because of its completeness as

a graphics language and because of the large number and

variety of graphics devices and other peripherals that it

supports (again, a portability issue). This makes it

possible to produce a bit-mapped graphics display while mini-

mizing machine-specific graphics programming. INTUITION (V

1.1) has been tested with and specifically supports the IBM

Color Graphics Adapter "'GA), generic CGA work-alikes, the

IBM Enhanced Graphics Adapter (EGA), and the Sigma Designs

Color 400 graphics adapter. However, with minimal modifi-

6 ORACLE was previously selected as the RDBMS of choice
for the particular MMS to which INTUITION interfaces because
of its support of Structured Query Language (SQL).

33

'p

cation, it can be configured to run on any graphics device

supported by the HALO Graphics Library. (See Appendix A for

a listing of the currently supported devices.)

Appendix B contains structure charts detailing the basic

control structure of INTUITION (V 1.1) . Both model manage-

ment and structured modeling are evolving concepts. As such,

numerous changes are to be expected in any software package

involving them. To remain effective, the software must

easily accommodate these changes as new functions are added

and old functions are modified or removed. INTUITION accom-

plishes this in three ways. First, all constants and data

types are consolidated and defined in header files where they

are readily available if the program needs modification.

Secondly, common-use utility functions are gathered into a

single library file (util.c). Thirdly, the control structure

of INTUITION accommodates a series of "plug-in/pull-out"

modules to implement the main functions of the program.

These modules, along with the submodules that support them,

are essentially self-contained units that can be modified or

even completely removed (i.e., pulled-out) without effecting

the remainder of the program. Likewise, as new functions are

identified, new modules can be developed and easily plugged

into the control structure of the program. Not only do these

techniques enhance the extendibility and contractibility of

the program, but they also significantly ease the portability

of the software across computer systems.

34

lee

The program listing for INTUITION (V 1.1) is provided in

Appendix C. Appendix D is a self-contained (i.e., stand-

alone) user's manual which provides commands and detailed
I

procedures for using INTUITION.

The program initially creates a display screen that

consists of five fixed windows as specified in the previous

section. In addition, two smaller windows (one designated %

ROW and another designated COL) have been included in the

screen layout. These are intended to maintain user orien-

tation in the virtual workspace when full-screen scrolling is

finally implemented, but are non-functional in Version 1.1.

They are included at this point simply to preclude a major

screen redesign in the immediate future. Figure 6 provides

a mock-up of thi main display screen.

The dimensions of each screen area are defined as

floating point constants in a header file (intuit.h) and are

entered in the program in HALO Graphics world coordinate

mode. This facility has become a standard in languages that

support graphics programming. It allows us to enter all

measurements in real world units 7 as opposed to dealing

strictly in artificial screen coordinates. This signif-

icantly eases the process of screen layout and object design.

7 In this case, measurements are given in inches and
fractions thereof. Specifically, the screen is laid out in a
rectangular grid that measures eight inches horizontally by
five inches vertically. These proportions reflect the actual
aspect ratio of the computer screen reasonably well.

35

I%

Unless otherwise noted, all measurements in the program are

given in world coordinates.

Each of the six icons representing a modeling element is

constructed within a rectangle one inch long by eight/tenths

inch high. The individual geometric shape fits in a

six/tenths inch square centered inside this rectangle. The

shapes themselves have no specific significance to structured

modeling. They were selected primarily to provide a clear

visual differentiation of elemental types. However, the

seventh icon representing the structured model concept of a

module is approximately twice the size of the other elemental

icons to visually show that it fulfills a different function

within structured modeling. Each icon is completely defined ,

within a separate module (in the file, icon.c). Consequently,

T%',E; NI: ROLU: CCL:

LCE

I

,F\ \T
.'

COMMS-NO BUTTON i

F "OO F&MOVE

F2ZIOO F7LORD

FP3DIL FeSRVE

F-CHG F9-ICLR A-

~FINO,4 FrIOQUIT

Figure 6: :NTUZT.CON (V 1.1) Main Screen .1
6

% %A

2 ~ ',.,.~* *~ '*.* .'.~..,, r. ~'\%.'VV.% "V' %.% V ' J

an icon can be reproduced at any point in the program by

simply calling its respective module. This also makes it

easy to redesign or modify the icons during the prototyping

process to better align them with the user's perceptions of

what they should be.

Error messages and various prompts are presented to the

user in the dialog area at the bottom of the display screen.

However, menu choices (other that the initial command button

selections) are made from pop-up menus that overlay portions

of the workspace area. This necessitates a series of steps

each time a menu is displayed:

(1) saving a portion of the workspace to a temporary
array,

(2) drawing the pop-up menu,

(3) reading the user's selection,

(4) erasing the menu, and

(5) restoring the screen display underneath.

Moving large portions of the screen display to and from

memory is typically a slow process often requiring machine-

level programming to make it practical. Fortunately, the

HALO Graphics Library provides two functions, MOVETO and

MOVEFROM, that greatly simplify this task and are suffi-

ciently fast for our purposes.

The workspace area utilizes another feature of the HALO

Graphics Library, the SETVIEWPOINT function. This allows us

to set one world coordinate system for the entire screen and

a separate world coordinate system for just the workspace

37 1

area. This technique allows us to reduce the size of the

icons in the workspace to approximately three-fourths of

their menu size, thus allowing us to produce somewhat larger
I

models in the workspace area.

The workspace itself consists of 56 cells arranged in a

matrix of eight columns by seven rows. Figure 7 shows the

layout of a typical cell. The active cell is designated by a -

box cursor that delineates the cell boundaries. This cursor,

as well as the edge cursor, discussed later, are created with

..4.4 I. p.... 4

. . .. 1

...............
¢

I ~~Edges _____

Figure 7: Workspace Cell Layout .

the HALO Graphics rubber band functions. This is a set of

functions that allow us the easily animate objects by "

automatically erasing and redrawing their image as their

screen coordinates change. These functions use an exclusive

38

a,.-~~~~..... - , ~-~~. ~ % . ~ ' *.

or (XOR) operation to draw and erase the cursor without

destroying the underlying screen image.

Selected icons and their associated names are displayed

inside the cell boundaries. These cells can then be

connected by arcs (edges). INTUITION (V 1.1) currently

restricts the numbers of edges (i.e., calls) emanating from a

single cell to five or less. Otherwise, every effort was made

to allow the user near total freedom in positioning the edges

so that the program does not unnecessarily dictate his view

of the model. This presents several problems.

First, edges may be drawn at any angle, so lines

approaching the horizontal or vertical show varying degrees

80
of aliasing 8 . This can make it difficult for the eye to

follow the edge, particularly if lines happen to intersect,

as they well may in a complex model. The only solution at

this point is to use the maximum resolution possible to

reduce the "jaggies," although in the future, various anti-

aliasing techniques should be explored to improve the display

quality.

The second problem comes from the fact that the edges

must be directed arcs. On paper, this is accomplished quite

simply by placing an "arrow" on the calling end of the arc.

It becomes much more difficult on the computer screen. Since

the individual screen pixels are rectangular, not square, the

8 This is the stair-step effect commonly seen when
circles and lines are drawn on a computer screen.

39 0

owV

arrows on non-horizontal or non-vertical edges are severely

distorted. To solve this problem, we chose to draw these

arcs with short vertical sections that contain the arrow

itself (see Figure 7).

Finally, if an edge is simply drawn as straight lines

from a beginning point to an ending point, the possibility

exists that it will inadvertently pass through an icon. To

preclude this from happening, we allow the user to change the

direction of an edge (up to three turns in V 1.1) by simply

moving the edge cursor to a desired location, pressing a key,

and continuing the edge from that point. However, this means

that we have to save, not only the beginning and ending

coordinates of each edge, but also the coordinates of each

turn point. This significantly increases the amount of

graphics data that the program must track in order to

manipulate the image (e.g. to erase an arc that is incor-

rectly placed)

The HALO Graphics Kernal contains functions for allo-

cating computer memory and for rapidly saving and recalling

the entire graphics screen to and from this allocated block

of memory. This technique is used to create a second screen

for data entry of the non-graphical portions of the struc-

tured model (see Figure 8). The user can toggle back and

forth between the two displays at any time without loss of

data.

40
S

To complete the process of model creation, the graphical

representation must be transformed into a database format and

stored in the ORACLE RDBMS. INTUITION interfaces with the

database through ORACLE's programmatic interface called

Pro*C. This enables INTUITION to actually read and write

data to ORACLE, using a high-level query language: Struc-

tured Query Language, or SQL (pronounced "sequel").

Data is stored in ORACLE in two tables. The first of

these is the ENTITY table. It contains the data necessary to

describe the specific characteristics of each model node.

The second is the RELSHIP table which holds the data that

describes the relationship between nodes. In the case of

genus graphs, this is the calling sequence data. For modular

trees, it reflects what subtrees are contained in the module,

MODEL NA4E: Record NU4BER:

Name: Description:
Type: Last Modified: Number Mods:
Date Added:
Index: Generic Rnge:
Index Statement:

Generic Rule:

Comments:

Relationship Type: Edtje I: called by
Edge 2: cal I ed by
Edge 3: called by

Relative Position: Edge 1: called by
Edge 5: called by

[+1 Next [-] Previou Eel Edit If] Find Is] Save Crl Return

Figure 8: INTUITION (V 1.1) Data Entry Screen

41
41.

.. . % - - N " - - --------------...- - -.i; . - -- < .". ''

i.e., the parent-child relationships. Refer to Figure 9 for

the specific contents of each table.

In the ENTITY table, ENAME and ETYPE hold the entity name

and entity type. For structured models, these refer to the

specific genus or modular name and the appropriate element

type (pe, ce, a, va, f, t, or m) . DNAME is a free-form

descriptive variant of the entity name. DATEADDED is the

date that the record was created and LASTMOD is the date

that the record was last modified. NMODS is the number of

modifications that have been made to the record. IDX,

IDXSTMT, GRANGE, GRULE are the index, index set statement,

generic range statement, and generic rule, respectively, from

the structured model schema paragraph (see Figure 5).

COMMENTS equates to the structured modeling concept of an

informal interpretation.

In the RELSHIP table, RTYPE is the relationship type.

This is either "CALLS" for a generic calling sequence or

"CONTAINZ" for a modular subtree. EINAME and ElTYPE reflect

the calling element and type in a genus graph or the parent

node and type in a modular graph. Likewise, E2NAME and

E2TYPE are the called element and type in a genus graph or

the child node and type in a modular graph. ACCMETH (access

method) and FREQ (frequency) are not used in this program and

are always null filled. RELPOS is used only in modular

structures and contains the positional number of the node in

a monotone ordering.

42

Table Name 'ENTITY'
Col. No. Col. Name Coi. TUoe Width

ENHELff 12
2 ETYPE CHFIR

nw~m rump
L"i LIIa Am- IN 0 iI .JU

4 ORTE-RODIJ DARTE 7
5 LRSTM DATE 7
6 NtHfDS NUJMBER 5
7 lotX, GmA 4

8loxSTMlT CHAR too3
GFRANGE CHuR 20

10 GRUlLE CHAR 1131
U COMMETS CHAR 13

Table Name = 'RESHIP
CC.N.Col. Same Col. Type Width

IEITYPE CHA9 12
E2NMECHAR 12

J E21VP off 12
6 CE TH CHAR 12

7 FREQ NUMBER 6
SREL-POS NUMBER6

Figure 9: ORACLE RDBMS Tables

43

It is obvious that ENTITY and RELSHIP are general purpose

tables within the context of the model management system. As

such, they contain data fields that are used for a variety of p

purposes. Consequently, not every item in each table is %

necessary to describe a given modeling element or relation-

ship. For example, a primitive entity requires only ENAME,

DNAME, DATEADDED, LASTMOD, NMODS, and COMMENTS. The

remaining fields in the ENTITY table would simply contain

null values. On the other hand, a test element or a function

element requires values for IDXSTMT and GRULE, in addition

to those necessary for a primitive entity. A similar

situation holds for the RELSHIP table. A calling sequence

requires only ElNAME, ElTYPE, E2NAME, and E2TYPE (the calling

and called nodes). However, a modular relationship must also

include RELPOS to denote the positional relationship of -

child to parent in the monotone ordering. All remaining

fields are simply null placeholders. This capability to

design a general purpose table and then create alternative

views or ways of looking at the same data is one of the

distinct advantages of the ORACLE RDBMS and SQL. The views

become virtual tables through which you can see the data that

is stored in real tables. While the views themselves contain

no data of their own, they can be operated on just as if they

were the real tables. According to the ORACLE documentation,

this has the advantage of simplifying data access, of

providing data independence, and of providing data privacy.

44 0

Ile

Io-

A

Version 1.1 of INTUITION falls short of providing the

total functionality specified in the previous section. These

shortcomings, with recommendations for their inclusion in

future versions of the program, are discussed in Section VII

under future enhancements to the system.

However, INTUITION (V 1.1) has shown that the imple-

mentation of a visual inteiface for a model management system

is feasible in a standard microcomputer environment; but, it

is not a trivial undertaking. The primary difficulties stem

from the open ended nature of the thinking, and hence the

modeling, processes. Different people approach the same

problem in a variety of ways. In a computer environment, the

hardware and software should transparently assist the modeler .

in depicting his mental image of the model. It should not

unduly restrict or inhibit his thought processes. The

program should accommodate him. He should not have to bend

his will to the machine.

It is unfortunate for the programmer that every user is 0

different. In general, software cannot be designed for a

single individual user, but must satisfy many. It is these

differences in users, coupled with the need for free-form

entry of a model concept, that make this type of programming

so difficult to do well.

Nevertheless, the development of a visual interface poses

no unsolvable problems, even though the IBM PC/MSDOS (and

45

compatibles) environment is perhaps not ideal 9 from a

programming perspective. Two areas deserve particular

comment.

The first of these is screen resolution. The typical

microcomputer display device is a standard cathode ray tube

(CRT) . It generally uses raster-scan technology to "paint" a

picture on the screen by means of an electronic beam. This

picture is created as a set of points (called picture

elements or pixels) as the electron beam scans from left to

right and top to bottom. The number of pixels that can be

displayed without overlap is called the CRT's resolution.

Obtaining adequate resolution in the MSDOS environment

presents some concerns. Our initial specifications required

the program to support both CGA and EGA type graphics

adapter and to support color coding of various icons and

paragraph schema. It quickly became apparent that the

maximum CGA color resolution (320x200 pixels) was severely

inadequate. For example, circles smaller than the diameter

of a quarter loose their "roundness." Diagonal lineT

exhibited excessive aliasing, making them unsuitable for

drawing directed arcs between nodes.

The coup de grace was the text display. Text is required

to label element names within the drawing area. Even in

graphics mode, CGA text is displayed at 40 characters per

9 More will be said about the "ideal" environment in
Section VIII, under future enhancements.

46

..1 . ' .. ' . ? .,..?' . .v "vv ," ' " ' : .,"-" . " .-

line. Text this large severely limits the number of nodes

that can be displayed simultaneously on the screen. This
defeats one of the primary advantages of a visual interface--

the ability to see the nodes and arcs in context. The disad-

vantages of the CGA color mode heavily outweigh the advantage

of having four colors available for programming. We decided

to limit CGA displays to black and white in order to use the

higher resolution (640x200) available in the monochrome

display mode. Even then the size of the text display is

limiting because text is displayed twice as high as wide.

Realistically, EGA (640x385) or better resolution is desir-

able for any display and is essential for color displays.

The second area of concern is computer memory. Graphics

programming, in general, is memory intensive. In addition, 5-

this program uses pop-up menus which require that large

sections of the screen temporarily be saved to memory when a

menu is displayed so that the screen underneath can be

restored when the menu is erased. The higher the resolution,

the more memory that is required to store the screen infor-

mation.

Compounding the fact that the graphics themselves use

substantial memory, the program needs to accommodate reason-

able sized models (i.e., up to several hundred nodes and

arcs). The data structures necessary to hold both the

graphics data and modeling data for these elements is

significant. Finally, the program must share memory with the

47

N N

Oracle RDBMS which has considerable memory requirements of

its own.

The outgrowth of this is that expanded memory, beyond

640K, is necessary for effective use of the system. How much

expanded memory is dependent essentially on what size mode1 s

will be created and what resolution screen is desired. The

availability of 640K or less, however, necessarily restricts

the user to CGA monochrome and relative small models.

48

",,,, ,• .' 2 2 ;2 2i .J. ' . ', ... ,. ' , , . .' ', '. .'- . ' N ' -). 4'..

IL

VII. FUTURE ENHANCEMENTS AND ADDITIONAL RESEARCH

Several utilities and functions should be included in the

next revision of INTUITION. These enhancements are discussed 10

below.

Scrolling. INTUITION (V 1.1) only supports a limited

workspace of 56 cells. While sufficient to test all program

functions, this workspace is insufficient to hold any but the

smallest models. To be effective, the next version of

INTUITION should support a four-way, scrollable "virtual"

workspace. The program should determine the actual maximum

size of this workspace automatically from the memory avail-

able on a given computer and should configure itself accord-

ingly.

Saving and Loading Models. It is not unreasonable to

expect the user to enter a model (particularly a large model)

in more than a single session. This means that the program

must support some method of saving the partial model to disk

and subsequently reloading it, without the loss of infor-
U,

mation or spatial orientation. INTUITION (V 1.1) only

supports a limited means of doing this. Basically, the

entire graphics screen is saved to disk as an image file.

The necessary text information required to describe the model 0

is saved to another file. This method will not work when the

workspace is expanded by scrolling. The next version of

49

I

U,

INTUITION should support the saving and reloading of all

models, regardless of size.

Printing Model Graphs and Model Schema. INTUITION

(V 1.1) supports no hardcopy devices, although several

printer and plotter routines are included with the HALO

Graphics Library. Printing a model schema presents few

problems since it is essentially text-based data. Printing

the model graph is more difficult because it involves output

to a graphics printer or plotter. The HALO Graphics Library

eases these problems somewhat by providing driver programs

for several common printers and plotters. In addition, the

HALO library includes a special graphics device driver called

the Virtual Raster Interface. This device driver is unique

in that it does not control a specific board. Rather, it

creates the model of a display device in the IBM PC user

memory space. Such a virtual display device permits the user

to create a display of any arbitrary resolution and then

output the display to a hard copy device. It is thus

possible to produce printouts of much higher resolution than

the display device actually installed in the computer. The

possible advantages of producing hardcopy with this device

driver should be explored in the next version of INTUITION.

Testing. Pressman (Ref. 10, p. 467,470], in describing

testing, states,

Software testing is a critical element of software quality
assurance and represents the ultimate review of specifi-
cation, design, and coding The increasing visibility of %
software as a system element and the attendant "costs"

50

associated with a software failure are motivating forces
for well-planned, thorough testing. It is not unusual for
a software development organization to expend 40 percent of
the total project on testing The design of tests for
software and other engineered products can be as chal-
lenging as the initial design of the product itself.

Only limited and informal testing of INTUITION has been

done. This consisted primarily of "white box" testing

required during the coding process. A detailed test plan

should be developed and appropriate test cases devised to

more fully test the program. This should include "white box"

testing to ensure that all independent paths within each

function have been exercised at least once, that all logical

decisions have been tested on both the true and false sides,

that all loops have been tested at their boundaries and

within their operational ranges, and that the internal data

structures are valid. "Black box" testing should also be

conducted to ensure that the program meets all functional

requirements. Specifically, it should determine if there are

any incorrect or missing functions, if there are any inter-

face errors between functions, if there are errors in data

structures or external database access, if there are perfor-

mance errors, and if there are any initialization or termi-

nation errors. [Ref. 10, pp. 472, 484]

With regard to further research, two areas have surfaced.

These topics are briefly introduced below.

Re-creation of the Graphic Representation from the

Database Representation. Concurrently with this thesis,

Wyant [Ref. 13] has designed and implemented a program that

51

uses the database representation of a structured model to

redisplay a pictorial view of the genus graph. In a sense,

his thesis and this one are opposite sides of the same coin.

While this thesis concentrates on entering a structured model

into the database using a visual representation of the genus

graph, Wyant's does just the opposite. Both functions are

necessary parts of a complete model management interface.

In fact, both programs could be combined into an inte-

grated system. This could provide substantiai savings in

program overhead. No major problems are anticipated in

merging the two. Both are written in the Lattice C program-

ming language, use the HALO Graphics Library, run in the

MSDOS environment, use similar icon images for display, and

access the same database structures within the Oracle RDBMS.

Minor problems, such as adopting a common screen display and

eliminating duplicate functions, should be easily resolved.

One major concern does stand out, however. When a model is

reloaded from the database representation, spatial relation-

ships set up between nodes and arcs when the model was

originally designed will be lost. This could cause some

disorientation for the user, particularly if he expects to

see "his" model re-displayed. Wyant proposes to solutions to

this problem:

(1) expand the database to include the necessary graphical
data, so that the graph can be re-displayed as
originally drawn; or

(2) reformat the user's representation (following Wyant's
algorithms) as the user enters the model data.

52

I,.

Moving Genera/Subtrees within the Pictorial Represen-

tation. One of the advantages of a computer interface is the

ability to quickly and easily modify the model representation

to reflect how the user currently views or thinks about the

model relationships. To do so, the user must be able to

specify a segment of the model pictograph--either a group of

genera or a modular subtree--and, once specified, to move

this grouping to any other location in the pictograph. This

presents major problems that are, in many respects, similar

to those faced by Wyant in re-creating the model represen-

tation from the database description.

Specifically, the entire pictograph must be realigned to

open up space for the group at the new location and to close

up the vacated space at the old location. Even more diffi-

cult, all of the edge relationships between nodes must be p

maintained and automatically adjusted for the new location

(without intersecting any other icons). Essentially, this

requires restructuring of the entire model. In an inter-

active environment, this must be accomplished in a reasonably

short time. It is a potentially significant problem that

must be resolved in future versions, quite possibly through

employment of artificial intelligence techniques. Alter-

natively, the algorithms for displaying the model that were

developed by Wyant could possibly be used to accomplish this

function. I

53p

Other Operating Environments1 0 . As stated earlier, while

the development of a visual interface is certainly feasible

under MSDOS, it is not the optimum programming environment

for a graphics based system. Several alternatives exist. In

particular, recent advances in computer technology provide

some very attractive approaches to explore.

As indicated in a previous section, the original version

of INTUITION was implemented on a dedicated IRIS Graphics

workstation. With its ability to link to the UNIX environ- I

ment, the IRIS offers an excellent high-end solution. It

provides all of the necessary graphics functions and is

unique in offering the capability of viewing graphics objects

in three dimensions. Whether or not there is any advantage

in being able to visualize a structured model (a modular

tree, for example) in three dimensions is an interesting

question in its own right.

Within the IBM and compatibles world, adaptation to the

forthcoming OS/2 operating system is an obvious migration

path from the MSDOS environment. The arrival of IBM's

promised "Presentation Manager" software should enhance the

graphics operating environment. An alternative approach to
I

enhance the current MSDOS environment is the use of an

add-on "windowing" environment. In this regard, DESQview

I

10 These comments pertain only to the implementation of
a visual interface. They do not necessarily pertain to the
overall implementation of a model management system.

54

I

-

from Quarterdeck Office Systems is a very strong contender.

Not only does it offer windowing capability, but it also

provides extensive memory management and multi-tasking capa-

bilities, both of which could be can be effectively utilized

in a model management interface.

Rather than windowing, a two monitor system could also be

devised. One monitor would be used to display and manipulate

the graphics information. A second monitor could display

textual data and allow direct access to the ORACLE RDBMS

through the SQL*Forms utility. This is an ORACLE function

that lets you design custom input "forms" for any appli-

cation. These forms provide fast and easy data entry,

updates, deletions, and queries to an ORACLE database. This

would provide the best of both worlds, so to speak, allowing

a truly integrated graphics and text environment.

However, perhaps the most attractive environment from a

hardware perspective is the Apple Macintosh II. Basea on a

proven visual interface, the "MAC II" offers integrated

windowing, menus, mouse-control, graphics primitives, and

expansion memory. It providec adequate high resolution

graphics and color without the confusion engendered by the

multitude of add-on graphics devices available for the IBM

PC's and compatibles. From a software viewpoint, its advan-

tages are less apparent, although developing a model manage-

ment interface under Apple's new HyperCard software certainly

offers possibilities worth pursuing. The main drawback is

55

the availability of a suitable relational database system--in

particular, one that supports SQL (Structured Query

Language).

56

.A
4

- ~ I~J ~.t. V

APPENDIX A

HALO Supported Graphics Devices

1. Amdex MAI
2. AT&T Display Enhancement Board
3. AT&T Image Capture Board
4. AT&T Indigenous Graphics Board
5. AT&T TARGA 8 and M8
6. AT&T TARGA 16
7. AT&T Video Display Adapter
8. Conographics Model 25
9. Conographics Model 40

10. Datacube IVG-128
11. Generic IBM Display Card
12. Hercules Monochrome Graphics
13. IBM 3270 PC with All Points Addressable

Graphics Adapter
14. IBM Color Graphics Adapter
15. IBM Enhanced Graphics Adapter(EGA)
16. IBM PCjr
17. Imaging Technology FG-100-AT
18. Imaging Technology PC-Vision
19. Imagraph AGC 4
20. Imagraph AGC 8 (IM512P and IM1024P)
21. Metheus Omega/PC Display Processor
22. Micro Display Systems Genius VHR
23. New Media Graphics PC Overlay
24. Number Nine Revolution
25. Number Nine Revolution 2048x4
26. Quadram Palette Master
27. Quadram Quadscreen
28. Quadram Quadcolor II
29. Scion PC 640
30. Sigma Designs Color 400
31. STB Graphix Plus II
32. Tecmar Graphics Master

57

" 4- 1 V /'I '' I..

33. Texas Instruments Professional
34. Tseng Labs EVA & EVA/480
35. Virtual Raster Interface I I

36. WYSE WY-700

11 This device driver is unique in that is does not
control a specific board. Rather, it creates the model of a
display device in the IBM PC user memory space. Such a
virtual display device permits the user to create a display L
of any arbitrary resolution and then output the display to a
hard copy device. It is thus possible to produce printouts
of much higher resolution than the display device actually
installed in the computer.

58

, , .. L z , i. i *--
,

, -
' I '

- - -
- I " .

0o
I

APPENDIX B

Structure Charts
-F

Figure 10: INTUITION (V 1.1)
Figure 11: scrngen() module
Figure 12: flmode() module
Figure 13: f2add() module
Figure 14: f3delete() module
Figure 15: f4change() module

'Sn on I -on ~ O ~ 1t.3n

Figure 10: INTUITION (V1.1)

59'

¢,

,'p.

.

- .. - - -- 5~+

icancolo

rdwscr I curlocat

I iconcor 7 7 7

clearscr curlocat

m-~iconjJ

Figur 11:scrneno odul

60J

fIode i

subtitle Vsubline4

*sublinel subline5
,subline2 Iuenu it ch<i

Ssubline3 or ch>3
"error_

if ch-1 if ch=2

restore- restore
CO under-. under--.

getchr
cler..- cler. _ -k
dialog-_ dialog_..

if ch= box box

Setchr OxMS create- create-.,
*1 l genus_ module-sc, graph treeI ,

I decode. if Ch3
char onoj I- e store7

under-- 'II f I
nla.Or1dial o&._

b Uo.

editA -.
r estore_ o de-,

Figure 12: flmode() module

61

V.

onl

f2add
subti t Ie sublie

a subiinei subiine5

subIin2 enu if ch("

,subl i ne3 or ch) 3
~error-.

draw-. wr ite.
suSmanu error

if chzl if ch:2

ge tchr h t add-node add-edge

if Ch=
getchr @X@@

sc]h

decode- isof ch3
char Of h:

Iaddmodulei

dialogI
box

restore-

0%
d.5._

Figure 13: f2add() module

62

6on

f3e Ie te

subtitle I e subline4 L
' sublinel 4subline5

subline2 menu if h(isubline3 .h>3

Fdraw-u wi te-
submenu error

if ch ich=

go t4h delete-, delete-node edge

if ch=
getchr exee,

decode- ,sch if ch:3

on
delete-

clear- module

dialog-
box

restore- L enu
under-
menu

Figure 14: f~delete() 'odule

'3

fMchange

isubtitle subIine4 e

subIinel subIine5

+ subline2 ,vnenu if h<1
subline3 or ch>3

error..

draw- wr'i te
sumenu error

*6

if ch:I if ch:2

ch change- change-..Setchrn % e type

ge tchr Ix,.
sf chon:

gclar- SS
decode_. sch

diaio& I
box

restore o
under-

Figure 15: f4change() module ...

64
4p,

APPENDIX C

Program Listing

File Name Function Name

1. intuit.h a. none (header files)
struct .h
exstruct .h

2. int.c a. main()

3. scrn.c a. scrngen()

4. menu.c a. devmenu()
b. clearscn()
C. curlocate()

5. icons.c a. pe icon()
b. ce icon()
C. a icon()
di. va icon()
e. fIcon()
f . t-icon()
g. m icon()
h. arrow()

6. util.c a. bigport()
b. littleport()
C. getchr()
di. decode-char()
e. inside()
f. draw submenu()
g. restore under menu()
h. define 'dot test()
i. write error();
j. clear dialog box()
k. clear status box()
1. write dialog()
M. get string()
n. get name()
o. get model name()
p. mnit_workspace()

7. fun.c a. flmode()I.
b. f2add()
C. f3delete()
di. f4change()
e. f5find()

65 wal
% V

f. f6move()
g. f 7load()
h. f8save()
i. f9dbms()
j . f lOquit(

8. sfunl.c a. create genus_graphi)
b. add node()
C. add edge()
d. change_name()
e. change_type()

9. sfun2.c a. create -module-tree()
b. edit model paragraphs()
C. add moduleo)
d. delete node()o
e. delete-edge()
if. delete module()

66-.

I

* Name: intuit.h *

* Purpose: contains *leios for Tntiti n *

* Author: David D. O'Dell *

* Date: 15 December 1987 *

#define MAXNODES 56 /*maximum nodes in workspace*/

#define BEGIN 0 /*starting point of edge*/

#define END 4 /*ending point of edge*/

#define MAXEDGES 5 /*maximun edges in and out of node*/

#define MAXPOINTS 6 /*maximum coord pairs for an edge*/ t

#define TRUE 1 /*boolean true is non-zero*/

#define FALSE 0 /*boolean false is zero*/

#define BLACK 0 /*standard colors*/

#define BLUE 1
#define GREEN 2

#define CYAN 3
#define RED 4
#define MAGENTA 5
#define BROWN 6
#define WHITE 7
#define GREY 8

#define BRIGHT-BLUE 9
#define BRIGHTGREEN 10 '

#define BRIGHTCYAN 11

#define BRIGHT RED 12
#define BRIGHT MAGENTA 13

#define YELLOW 14
#define BRIGHT-WHITE 15

#define SOLID 1 /*hatch style indices*/

#define DITHERED 2

#define WXMAX 8.05 /*set maximum world x-coordinate*/
#define WYMAX 5.05 /*set maximum world y-coordinate*/
#define WXMIN 0.0 /*set minimum world x-coordinate*/
#define WYMIN 0.0 /*set minimum world y-coordinate*/

#define BUTTONS 1 /*command button area*/

#define ICONS 2 /*icon area*

#define WORKAREA 3 /*work area*/

/*following coordinates are given in world coord system*/

#define XLLSTATUS 0.0 !*status bo:: lower t-ft . -'id'

#define YLLSTATUS 4.7 /*status box lower left y-coord*/

67

-

#define XURSTATUS 6.0 /*status box upper right x-coord*/
#define YURSTATUS 5.0 /*status box upper right y-coord*/

#define XLLROW 6.0 /*row box lower left x-coord*/
#define YLLROW 4.6 /*row box lower left y-coord*/
#define XURROW 7.0 /*row box upper right x-coord*/

#define YURROW 5.0 /*row box upper right y-coord*/

#define XLLCOL 7.0 /*col box lower left x-coord*/

#define YLLCOL 4.6 /*col box lower left y-coord*/

#define XURCOL 8.0 /*col box upper right x-coord*/
#define YURCOL 5.0 /*col box upper right y-coord*/

#define XLLICONS 6.0 /*icon area lower left x-coord*/
#define YLLICONS 1.8 /*icon area lower left y-coord*/

#define XURICONS 8.0 /*icon area upper right x-coord*/
#define YURICONS 4.6 /*icon area upper right y-coord*/

#define YURCONS 4.6 /*con are uper rit coord*/
#define XLLCMDHDR 6.0 /*cmd hdr lower left x-coord*/

!#define YLLCMDHDR 1.5 /*cmd hdr lower left y-coord*/

#define XURCMDHDR 8.0 /*cmd hdr upper right x-coord*/

#define YURCMDHDR 1.8 /*cmd hdr upper right y-coord*/

#define XLLBUTTONS 6.0 /*buttons lower left x-coord*/

#define YLLBUTTONS 0.0 /*buttons lower left y-coord*/

#define XURBUTTONS 8.0 /*buttons upper right x-coord*/

#define YURBUTTONS 1.5 /*buttons upper right y-coord*/

#define XLLDIALOG 0.0 /*dialog box lower left x-coord*/

#define YLLDIALOG 0.0 /*dialog box lower left y-coord*/

#define XURDIALOG 6.0 /*dialog box upper right x-coord*/

#define YURDIALOG 0.6 /*dialog box upper right y-coord*/

#define XLLWORK 0.0 /*workspace lower left x-coord*/

#define YLLWORK 0.6 /*workspace lower left y-coord*/

#define XURWORK 6.0 /*workspace upper right x-coord*/

#define YURWORK 4.7 /*workspace upper right y-coord*/

#define XLLPE 6.0 /*PE lower left x-coord*/

#define YLLPE 3.9 /*PE lower left y-coord*/

#define XURPE 7.0 /*PE upper right x-coord*/

#define YURPE 4.6 /*PE upper right y-coord*/

#define XLLCE 7.0 /*CE lower left x-coord*/

#define YLLCE 3.9 /*CE lower left y-coord*/

#define XURCE 8.0 /*CE upper right x-coord*/

#define YURCE 4.6 /*CE upper right y-coord*/

#define XLLA 6.0 /*A lower left ::-coord*/

#define YLLA 3.2 /*A lower left y-coord*/ Ot

#define XURA 7.0 /*A upper right :-coord*/

#define YURA 3.9 /*A upper right y-coord*,

#define XLLVA 7.0 /*VA lower left x-coord*/

68

j) ~/V,.~ '.~\f .k ~ N~~~~.~**.. ~ ~%,~B~hB

#define YLLVA 3.2 /*VA lower left y-coord*/ I
#define XURVA 8.0 /*VA upper right x-coord*/

#define YURVA 3.9 /*VA upper right y-coord*/

#define XLLF 6.0 /*F lower left x-coord*/-
#define YLLF 2.5 /*F lower left y-coord*/
#define XURF 7.0 /*F upper right y-coord*/

#define YURF 3.2 /*F upper right y-coord*/

#define XLLT 7.0 /*T lower left x-coord*/

#define YLLT 2.5 /*T lower left y-coord*/

#define XURT 8.0 /*T upper right x-coord*/

#define YURT 3.2 /*T upper right y-coord*/

#define XLLM 6.0 /*M lower left x-coord*/

#define YLLM 1.8 /*M lower left y-coord*/

#define XURM 8.0 /*M upper right x-coord*/

#define YURM 2.5 /*M upper right y-coord*/

#define XLLF1 6.0 /*F1 lower left x-coord*/

#define YLLF1 1.2 /*F1 lower left y-coord*/

#define XURF1 7.0 /*Fl upper right x-coord*/

#define YURF1 1.5 /*F1 upper right y-coord*/
#define XLLF2 6.0 /*F2 lower left x-coord*/S

#define YLLF2 0.9 /*F2 lower left y-coord*/

#define XURF2 7.0 /*F2 upper right x-coord*/

#define YURF2 1.2 /*F2 upper right y-coord*/ '

#define XLLF3 6.0 /*F3 lower left x-coord*/

#define YLLF3 0.6 /*F3 lower left y-coord*/ -
#define XRF3 7.0 /*F3 upper right x-coord*/

#define YURF3 0.9 /*F3 upper right y-coord*/

#define XLLF4 6.0 /*F4 lower left x-coord*/

#define YLLF4 0.3 /*F4 lower left y-coord*/

#define XURF4 7.0 /*F4 upper right x-coord*/

#define YURF4 0.6 /*F4 upper right y-coord*/

#define XLLF5 6.0 /*F5 lower left x-coord*/

#define YLLF5 0.0 /*F5 lower left y-coord*/
#define XURF5 7.0 /*F5 upper right x-coord*/
#define YURF5 0.3 /*F5 upper right y-coord*/

#define XLLF6 7.0 /*F6 lower left ::-,c ord*,
#define YLLF6 1.2 /*F6 lower left y-cDord*i -

#define XURF6 8.0 /*F6 upper right :.:-coord*/

#define YURF6 1.5 /*F6 upper right y-coord*/

#define XLLF7 7.0 /*F7 lower left ::-oord*

#define YLLF7 0.9 /*F7 lower left y-.. r'B

#define XURF7 8.0 /*F7 upper right :c.-coord*/

69

#define YURF7 1.2 /*F7 upper right y-coord*/

#define XLLF8 7.0 /*F8 lower left x-coord*/
#define YLLF8 0.6 /*F8 lower left y-coord*/
#define XURF8 8.0 /*F8 upper right x-coord*/
#define YURFS 0.9 /*F8 upper right y-.coord*/

#define XLLF9 7.0 /*F9 lower left x-coord*/

#define YLLF9 0.3 /*F9 lower left y-coord*/
#define XURF9 8.0 /*F9 upper right x-coord*/
#define YURF9 0.6 /*F9 upper right y-coord*/

#define XLLF10 7.0 /*FlO lower left x-coord*/
#define YLLF10 0.0 /*FlO lower left y-coord*/
#define XURF10 8.0 /*F1O upper right x-coord*/
#define YUTRF10 0.3 /*F1O upper right y-coord*/

#define TEXTHT 1 /*dot text height x 8 pixles*/
#define TEXTWD 1 /*dot text width x 8 pixels*/
#define HORIZONTAL 0.0 /*horizontal text path*/
#define ROTATE_90 1.0 /*vertical text path*/
#define ROTATE_180 3.0 /*up-side-down text path*/
#define ROTATE_270 4.0 /*vertical text path*/
#define BORDER 1 /*border around dot text*/
#define NOBORDER 0 /*no border around dot text*/

70

/W"T _WV.";%WVW

*Name: struct.h
*Purpose: contains data structures for ORACLE tables and %

* to hold coordinates for model nodes and edges.*
*Author: David D. O'Dell p
Date: 10 March 1988

struct table

char *ename; /*element name*/
char *etype; /*element type*/
char *djflme; /*descriptive name*/
char *date-added; /*date node created*/
char *last-mod; /*date last modified*/
mnt nmods; /*nmer of mods*/
char *id-,; /*index*/
char *idx stint; /*index statement*/
char *grange; /*generic range*/
char *grule; /*generic rule*/ J,
char *cmens /*interpretation*/

char *rtype; /*relationship type*/
char *elnaine[5]; /*calling element*/
char *eltype[5]; /*calling type*/
char *e2name[5]; /*called element*/
char *e2type[5]; /*called type*/
char *acc-meth; /*access method and*/
int freq; /*frequency always null*/
int relpos; /*position in monotone order*/e

struct node

mnt used; /*TRUE is used-FALSE is unused*/ %
char *ename; /*link to ORACLE tables*/%
char *etype; /*node type*/
float nodex; /*x-coord of cell center*/
float nodey; /*y-coord of cell center*/
mnt out; /*number of edges out used*/
mnt in; /*numnber of edges in used*/
float edgex(S) [5]; /*x-coord of edges out 1-5*/
float edgey[5] [5]; /*y-coord of edges out 1-5*/
mnt cnode[51; i*number of called by node*/
mnt cedge[51; /*flumbzhr of -alled by edge*/

/*element is a table structure*/

struct table element[MAXNODES]:

71

e-e.-

/*cell is a node structure*/

struct node cell[MAXNODES];

int used nodes; /*number of used nodes*/
int active node; /*currently selected node*/
char *model name;

71

%%

'

-.S

.

-S

72

" Name: exstruct.h
" Purpose: contains external data declarations corresponding*

* to those in struct.h.
" Author: David D. O'Dell *

" Date: 10 March 1988*

ex-tern struct table

char *ename; /*element name*/
char *etype; /*element type*/
char *dname; /*descriptive namne*/
char *date added; /*date node created*/
char *last-mod; /*date last modified*/%
int nmods; /*numer of modifications*/
char * i ix; /*index*/
char *id-x stint; /*index statement*/
char *grange; /*generic range*/
char *grule; /*generic rule*/
char *comments; /*interpretation*/

char *rtype; /*relationship type*/

char *elname[5]; /*calling element*/
char *eltype(5]; /*calling type*/
char *e2name(5]; /*called element*/
char *e2type[5]; /*called type*/
char *acc meth; /*access method always

null*/
int freq; /*frequjency always null*/
mnt relpos; /*position in monotone P

order */

extern struct node

mt used; /*TRUE is used-FALSE is 0
unused* /

char *ename; /*link to ORACLE tables*/
char *etype; /*node type*/
float nodex; /*x-coord of cell center*/

float nodey; /*y-coord of cell center*/
mnt out; /*number of edges out used*/
mnt in; /*number -)f edges in ,ised*/

float edge.x(5] (5]; *::-cocrd o)f daes 'au'- 1-*
float edgey(5] [5]; /*y-coord of edges out 1-5*,/
mnt cnode(5]; /*number of called by node*/'
mnt cedge(S); /*nunmber of called by edge*/

73

NA

%S

%V

/*element is a table structure*/

extern struct table element(MAXNODES];

/*cell is a node structure*/
extern struct node cell[MAXNODES];

extern int usednodes; /*number of used nodes*/ 4 *

extern int activenode; /*currently selected node*/

e-tern char *model-name;

1%

.. r

744

%.%

/*** ****

* Name: intuition.c *

* Purpose: to allow the user to enter a structured model *

* Author: David D. O'Dell *
* Date: 29 December 1987 *

#include "stdio.h"

#include "intuit.h"
#include "struct.h"

main()

char getchro; /*function to input keyboard character*/

float xl, yl, x2, y2; /*graphic coordinate variables*/

float cx, cy; /*x-hair cursor coordinates*/

float button_height; /*command button height*/

float button-width; /*command button width*/ |

float hheight, hwidth; /*height and width of x-hair
cursor*/

int sw; /*exclusive-or mode switch*/
P

int status; /*termination status variable*/

int color; /*color and hatchstyle*/

int on; /*determines command button
selected*/

/* --- *

status=O; /*normal termination status*/

scrngeno; /*draw display screen*/

bigporto; /*set full screen viewport*/

color-WHITE;
setcolor(&color);

button height=YURFl-YLLFI; /*calc command button height*/

button width=XUPFI-XLLFI; ,taLc -,mman1 n> width*/

75

hheight=button -height/2.O; /*height of x-hair cursor*/
hwidth=button -width/2.O; /*width of x-hair cursor*/
color=WHITE; /*Color of x-hair cursor*/
inithcur(&hheight, &hwidth, &color); /*init x-hair cursor*/

cx=XLLBUTTCNS+hwidth; /*put x-hair cursor in the*/
cy=YURBUTTGNS-hheight; /*upper right corner of the*/
movhcurabs(&cx, &cy); /*command button area*/
delhcuro; /*donft show x-hair cursor*/

on=1; /*initialize to flbutton*/
xl=O.O; yl=O.O; x2=O.O; y2=0.0; /*initialize bar coord*/

while (TRUE)

sw=1; /lo*
setxor(&sw); /*turn on exclusive-or mode*/

bar(&xl,&yl,&x2,&y2); I*turn old command button off*/

switch (on) /*changes button color*/

case 1: xl=XLLF1; yl=YLLF1; /*low lt coord of
Flbutton*/

x2=XURFl; y2=YURF1; /*up rt coords of
Flbutton*/

break;
case 2: xl=XLLF2; yl=YLLF2; /*low it coord of

F 2button* /
x2=XURF2; y2=YURF2; /*up rt coords of

F2button*/
break;

case 3: xl=XLLFJ; yl=YLLF3; /*low it coord of

F3button*/
x2=XURF3; y2tYURF3; /*up rt coords of

F3button*/
break;

case 4: xl=XLLF4; yl=YLLF4; /*low it coord of

F4button*/
x2=XURF4; y2=YURF4; /*up rt coords of

F4button*/
break;

case 5: xl=XLLF5; yi=YLLF5; /*low it coord of
F'blitton* /

x2=XURF5; y2=YURF5; ", p rt coords of
F5button*/

break;

case 6: xi1=XLLF6; yl=YLLFE; /*lcw It coord of
Frp 2 r tu- nrl

76

%

x2=XURFE; y2=YURFG; /*up rt coords of f

F6button*/
break;

case 7: xl=-XLLF7; yi=YLLF7; /*low it coord of
F7button*/

x2=XURF7; y2=YURF7; /*up rt coords of
F7button*/

break;
case 8: xl=XLLF8; y1=YLLFS; /*low it coord of

F8button*/
x2=XURF8; y2=YURFS; /*up rt coords of

F8button*/
break;

case 9: xl=XLLF9; y1=YLLF9; /*low it coord of
F9button*/ %.

x2=XIJRF9; y2=YURF9; /*up rt coords of
Fgbutton*/ 1

break;
case 10: x1=XLLFlO; yl=YLLF1O; /*low it coord of

FiObutton*/
x2=XURFiO; y2=YIJRF1O; /*up rt coords of

FiObutton*/
break;&

default: break;
/*end switcht!

bar(&xl,&y1,&x2,&y2); /*turn new command button on*/

sw=0O; /*Ooff*/
setxor(&sw); /*turn off exclusive-or mode*/

switch (on) /*selects function*/

case 1: on=flmodeo; '

break;
case 2: on=f2addfl;

break;
case 3: on=f3deleteo;

-

break;
case 4: on=f4changeG;

break;
case 5: on=f5findfl;I

break;
case 6: on=f6moveo;

break;
case 7: on=f7lcado;

break;
case 8: on=f8savev;

break:;--
case 3: on=f9dtmsh;:,

break:
A]

77I

case 10: on=flOquito;
break;

default: closegraphics 0;

exit (status);
'

break; "
/*end switch*/

) /*while t */
%

/*end main*/ I

wk

78I

.J

-e.It

....... ..

/ ****************************.***************************,******

* Name: scrn.c *

* Purpose: to create the background screen for Intuition *

* Author: David D. O'Dell *

* Date: 15 December 1987 *

#include "intuit.h"

scrngen()

static char devicel[) = "HALOIBM.DEV"; /*CGA raster dev*/

static char device2(] = "HALOIBMG.DEV"; /*generic dev*/

static char device3[j = "HALOIBME.DEV"; /*EGA rasuer dev*/

static char device4[] = "HALOSIGM.DEV"; /*Sigma 400 dev*/

static char titlel(] = "TYPE:"; /*screen titles*/

static char title2[] = "NAME:";
static char title3[] = "ROW:";

static char title4(] = "COL:";

static char title5f[= "COMMAND BUTTONS"; S

static char buttonl(] = "Fl Mode "; /*cormnand button
labels*/

static char button2[] = "F2 Add

static char button3] "F3 Del";

static char button4] = "F4 Del ";

static char button5[] ="F5 Find "

static char button6[] = "F6 Move ";

static char button7(] = "F7 Load "

static char button8[] = "F8 Save ";

static char buttong(] = "F9 DBMS "
J.'

static char buttonlO[] = "FLO Quit"

79

.,

. . .% .- ... - o......... ..-. .._..'. .'.z.'. . . ' i ' . -J . . .',' ',v. '$4 $..'..'.2. 9"

static char iconl(] = "PE"; /*icon labels-primitive

entity*/

static char icon2[] = "CE"; /*compound entity*/

static char icon3[] = "A"; /*attribute element*/

static char icon4(= "VA"; /*variable attribute
element*/

static char icon5(] = "F"; /*function element*/

static char icon6[] = "T"; /*test element*/

static char icon7[] = "M "; /*module*/

float xl, yl, x2, y2; /*coordinate variables*/

float tx, ty; /*text coordinate variables*/

int status; /*zero-normal program termination*/

int row, col; /*location of cursor on text
screen*/

int i; /*loop variable*/

int color, style; /*color and hatchstyle*/

int mode; /*graphics mode*/

int foreground; /*foreground color*/

int border; /*border color*/

int iconcolor; /*display color of icon*/

int palette; /*palette number*/

int index; /*color index for EGA dev*/

int dev; /*type of graphics card selected*/

int height; /*dot te::t heirht*/

int width; /*dot text width*,'

int path; /*dot text display direction*/

int textmode; /*dot text display mode*/

80

int textforeground; /*dot text foreground color*/ '
int textbackground; /*dot text background color*/

/*---

status=0; /*normal program termination status*/

dev=devmenuo; /*display menu and get graphics device*/

if(dev==l) /*set graphics device and mode*/

setdev(devicel); /*IBM CGA device*/
mode=l; /*640 x 200 - 2 colors*/
foreground=WHITE; /*set foreground color*/
palette=0; /*set unused dummy value in palette*/
setipal(&foreground, &palette); /*set IBM palette*/

else if(dev==2)

setdev(device2); /*IBM generic CGA device*/
mode-l; /*640 x 200 - 2 colors*/
foreground=WHITE; /*set foreground color*/
palette=0; /*set unused dummy value in palette*/
setipal(&foreground,&palette); /*set IBM palette*/

else if(dev==3)

setdev(device3); /*IBM EGA device*/
mode=4; /*640 x 385 - 16 colors*/
for(i=0; i<=15; i++)

index=i; /*for this EGA color index...
color=i; /*this is the color.*/
setxpal(&index, &color); /*set the EGA palette*/

I /*end for*/

N
else if(dev==4)

setdev(device4); /*Sigma Designs 400 device*/
mode-3; /*640 . 400 - 16 colors*,
border=BLACK; /*set border 7olor*,
palette-0; /*set unused dummy palette value*/
setipal(&border, &palette);

else if(dev==5)

clearscn(; /*clear the te:t screen*/

81

] ' .i ' " ' ' " ' ? , ?.?€')¢ ? ','-'.ii'-' o -; ,- .- ."...-'-. -.€ -, '..': 2 o. '. .2 -'- I
• N . *5** I 1 . .

J
-d ' |" -

"V i i kC WN L Wu WV .1W LL'r. t% Xr -. yW i WVT, XV |" ~ w . C . '.. -' .' -

rowO0; col=O; /*upper left corner of screen*/

curlocate(row,col); /*move cursor*/

exit(status); /*terminate program*/
/*end if-else*/

initgraphics(&mode); /*initialize graphics mode and

clear the graphics screen*/

xI=WXMIN; yl=WYMIN; x2=WXMAX; y2=WYMAX;

setworld(&xl, &yl, &x2, &y2); /*set world coord system*/

if((dev==l) i1 (dev==2)) /*if two color mode*/

height=TEXTHT;
else

height=(2*TEXTHT); /*if 16 color mode*/
width=TEXTWD; /*text width in pixels*/

path=HORIZONTAL; /*text display direction*/

textmode=NOBORDER; /*text display mode*/
settext(&height, &width, &path, &textmode); /*set

attributes*/

color=WHITE;
setcolor(&color); /*set active drawing color*/

xl=XLLSTATUS; yl=YLLSTATUS; /*low lt coord of status box*/

x2=XURSTATUS; y2=YURSTATUS; /*up rt coords of status box*/

box(&xl, &yl, &x2, &y2); /*draw status box*/

xl=XLLROW; yl=YLLROW; /*low lt coord of row box*/
x2=XURROW; y2=YURROW; /*up rt coords of row box*/
box(&xl, &yl, &x2, &y2); /*draw row box*/

xl=XLLCOL; yl-YLLCOL; /*low it coord of col box*/
x2-XURCOL; y2-YURCOL; /*up rt coords of col box*/
box(&xl, &yl, &x2, &y2); /*draw col box*/

xl=XLLCMDHDR; yl-YLLCMDHDR; /*low lt coord of cmd hdr*/
x2nXURCMDHDR; y2-YURCMDHDR; /*up rt coords of cmd hdr*/
box(&xl, &yl, &x2, &y2); /*draw commands header*/

xl-XLLDIALOG; yl-YLLDIALOG; /*low it coord of dialog box*/ "4

x2-XURDIALOG; y2-YURDIALOG; /*up rt coords of dialog box*/

box(&xl, &yl, &x2, &y2); /*draw dialog bo::*/

r,

82

if((dev==l) II (dev==2)) /*if two color mode*/

style=DITHERED; /*creates GREY color*/
sethatchstyle(&style); /*set active hatch style*/

else /*if 16 color mode*/ 3

color=GREY;

setcolor(&color); /*set active drawing color*/
/*end if-else*/

xl=XLLICONS; yl=YLLICONS; /*low it coord of icon area*/
x2=XURICONS; y2=YURICONS; /*up rt coords of icon area*/
bar(&xl, &yl, &x2, &y2); /*draw icon area*/

if((dev==3) U) (dev==4)) /*if 16 color mode*/

color=BROWN;
setcolor(&color); /*set active drawing color*/

else /*if two color mode*/

style=SOLID;
sethatchstyle(&style); /*set active hatch style*/
color=BLACK;
setcolor(&color); /*set active drawing color*/

/*end if-else*/

xI=XLLBUTTONS; yl=YLLBUTTONS; /*low lt coords button area*/

x2=XURBUTTONS; y2=YURBUTTONS; /*up rt coord of button area*/

bar(&xl, &yl, &x2, &y2); /*draw button area*/

color=WHITE;
setcolor(&color); /*set active drawing color*/

xI=XLLWORK; yl=YLLWORK; /*low lt coord of workspace*/
x2-XURWORK; y2=YURWORK; /*up rt coords of workspace*/
bar(&xl, &yl, &x2, &y2); /*draw workspace*/

xI=XLLPE; yl=YLLPE; /*low lt coord cf PE area*/
x2-XURPE; y2=YURPE; /*up rt coords of PE area*/

box(&xl, &yl, &x2, &y2); /*draw PE frame*/

xl-XLLCE; yl=YLLCE; /*low it -oord of CE area*/
x2-XURCE; y2=YURCE; /*up rt coords of CE area*/

box(r*,l, &yl, &x2, &y2); /'*draw CE frame*/

xI XLLA; yI=YLLA; /*low lt -word of A area*./
x2-XURA; y2=YURA; /*up rt - -rds -)f A area*/
box(&xl, &yl, &x2, &y2); /*draw A frame*/

83

% %

xl=XLLVA; yi=YLLVA; /*low it coord of VA area*/

x2=XURVA; y2=YURVA; /*up rt coords of VA area*/

box(&xl, &yl, &x2, &y2); /*draw VA frame*/
I

xi=XLLF; yl=YLLF; 1*1ow it coord of F area*/
x2=XURF; y2=YURF; /*up rt coords of F area*/

box(&xl, &yl, &x2, &y2); /*draw F frame*/

xI=XLLT; yi=YLLT; /*low it coord of T area*/
x2=XURT; y2=YURT; /*up rt coords of T area*/

box(&xl, &yl, &x2, &y2); /*draw T frame*/

xI=XLLM; yi=YLLM; /*low It coord of M area*/
x2=XURM; y2=YURM; /*up rt coords of M area*/
box(&xl, &yl, &x2, &y2); /*draw M frame*/

xI=XLLFI; yI=YLLFI; /*low it coord of F1 button*/
x2=XURFi; y2=YURFI; /*up rt coords of Fl button*/
box(&xl, &yl, &x2, &y2); /*draw Fl frame*/

xI=XLLF2; yl=YLLF2; /*low it coord of F2 button*/
x2-XURF2; y2=YURF2; /*up rt coords of F2 button*/
box(&xl, &yl, &x2, &y2); /*draw F2 frame*/

xI=XLLF3; yI=YLLF3; /*low it coord of F3 button*/
x2=XURF3; y2=YURF3; /*up rt coords of F3 button*/

box(&xl, &yl, &x2, &y2); /*draw F3 frame*/

xi=XLLF4; yl=YLLF4; /*low It coord of F4 button*/

x2=XURF4; y2=YURF4; /*up rt coords of F4 button*/

box(&xl, Lyl, &x2, &y2); /*draw F4 frame*/

xI=XLLF5; yI=YLLF5; /*low it coord of F5 button*/
x2=XURF5; y2=YURF5; /*up rt coords of F5 button*/

box(&xl, &yl, &x2, &y2); /*draw F5 frame*/

xI=XLLF6; yl-YLLF6; /*low it coord of F6 button*/
x2=XURF6; y2-YURF6; /*up rt coords of F6 button*/

box(&xl, &yl, &x2, &y2); /*draw F6 frame*/

xl-XLLF7; yl-YLLF7; /*low it coord of F7 button*/
x2-XURF7; y2-YURF7; /*up rt coords of F7 button*/
box(&xl, &yl, &x2, &y2); /*draw F7 frame*/

xi-XLLFS; yl=YLLF8; /*low it coord of F1 button*/
x2-XURF8; y2-YURF8; /*up rt coords of F8 button*/

box(&xl, &yl, &x2, &y2); /*draw F8 frame*/

xI=XLLF9; yI=YLLF9; /*low it cord of F9 button*/
x2=XURF9; y2=YURF9; /*u, rt cr."ds .,4 F'? bltton*l

box(&xl, &yl, &x2, &y2); /*draw F9 frame*/ Z

84

xl=XLLFlO; yl=YLLF1O; /*low it coord of F10 button*/%

x2=XURFlO; y2=YURF1O; /*up rt coords of F10 buttont!

box(&xl, &yl, &x2, &y2); /*draw FlO frame*/

textforeground=WHITE; textbackground=BLACK; /*dot text

colorst*/
settextclr (&texcforeground, &textbackground); /*set

colors*/

tx=XLLSTATUS4-.2; ty=YLLSTATUS4-.05; /*text cursor coords*/
movtcurabs(&tx, &ty); /*move text cursor*/
text(tirtlel); /*label for type of

model*/

tx=XLLSTATUS+4.O; ty=YLLSTATUS+O.05; /*text cursor coords*/
movtcurabs(&tx, &ty); /*move text cursort/

text(title2); /*label for name of

model */

tx=XLLROW+O.2; ty=YLLROW+O.1; /*text cursor coordst/
movtcurabs(&tx, &ty); /*move text cursor*/
text (title3); /*row label*/

tx=XLLCOL4-.2; ty=YLLCOL+O.l; /*text cursor coorast!
movtcurabs(&tx, &ty); /*move text cursor*/
text(title4); /*columnJ labelt!

tx=XLLCMDHDR+O.2; ty=YLLCfrWHDRA-O.05; /*text cursor coordst/
movtcurabs(&tx, &ty); /*move text cursor*/

text(titleS); /*command header
label*/

if((dev==-3) 11 (dev==4)) /*jf 16 color mode*/
textbackground=BROWN;

else /*jf two color mode*/
textbackground=BLACK;

tx=XLLFl+O.l; ty=YLLFl+O.05: /*text cursor coords*/
movtcurabs(&tx, &ty); /*move text curscrt/A

text(buttonl); /t Fl label*/

tx-XLLF2+O.1; ty=YLLF2+O.05; /*text cursor coords*/
movtcurabs(&tx, &ty); ./*mnove text culrsor*!
text(button2); *F2 label*/ F

tx=XLLF34-.l; ty=YLLF3+O.05; /*text cursor coords*/
movtcurabs(&tx, &ty); /*move text cursor*/

text(button3); !*3label*,/

tx=XLLF4+O.l; ty=YLLF4+O.O5; /*tex-.t cursor coords*/

85

movtcurabs(&tx, &ty); /*move text Cursor*/
text(button4); /*F4 label*/

tx=XLLFS+0 .1; ty=YLLF5+0 .05; /*text cursor coords*/
movtcurabs(&tx, &ty); /*move text cursor*/

text(button5); /*F5 label*/

tx=XLLF6+0.1; ty=YLLF6+0.05; /*text cursor coords*/
movtcurabs(&tz, &ty); /*move text cursor*/
text(button6); /*F6 label*/

tx=XLLF7+0. 1; ty=YLLF7+O.05; /*text cursor coords*/
movtcurabs(&tx, &ty); /*move text cursor*/

text (button7); /*F7 label*/

tx=XLLF8+0.1; ty=YLLF8+0.05; /*text cursor coords*/ 1
movtcurabs(&tx, &ty); /*move text cursor*/
text(button8); /*F8 label*/

tx=XLLF9+0.1; ty=YLLF9+0.05; /*text cursor coords*/%
movtcurabs(&tx, &ty); /*move text cursor*/
text (button9); /*F9 label*/

tx=XLLF1O+0.1; ty=YLLF1O+O.05; /*text cursor coords*/
movtcurabs(&tx, &ty); /*move text cursor*/
text(buttonl0); /*FlO label*/

iconcolor=GREEN; /*primitive entity is
green* /

xl=XLLPE; yl=YLLPE; /*lower left coords of icon
area*/

peicon(xl, yi, iconcolor); /*draw primitive entity*/

textforeground=BLACK; textbackground-iconcolor; /*dot text
colors*/

settextclr (&textforeground, &textbackground); /*set
colors*/

tx=x14-0.4; ty-yl+0.25; /*primitive entity label
coords*/%

movtcurabs(&tx, &ty); /*move text cursor*/
text(iconl); /*label primitive entity*/

iconcolor=BROWN; /*compound entity is

brown* /
xl=XLLCE; yl-YLLCE; /*lower left coorcis of icon'%

area*,
ce icon(xl, yl, iconcolor); /*draw compound entity*/

textforeground-BLACK; te::.-tbackqround=iconcoior; /*dot text
colors*/

settextclr(&te.tforeground, &te::tbackrgr-1n1): 'set%

colors*/ a.

86

S, -kN o.

tx=xl+O.4; ty=yl+O.25; /*compound entity label

coords* /
movtcurabs(&tx, &ty); /*move text cursor*/
text (icon2); /*label compound entity*/

iconcolor=CYAN; /*attribute elemet is
cyan* /

xl=XLLA; yl=YLLA; /*lower left coords of icon
area*/

a icon(xl, yl, iconcolor); /*draw attribute element*/

textforeground=BLACK; textbackground=iconcolor; /*dot text
colors*/

settex,,tclr (&textforeground, &textbackground); /*set
colors* /

tx=xl+Q.45; ty=yl+O.25; /*attribute element label
coords* /

movtcurabs(&tx, &ty); /*move text cursor*/

text (icon3); /*label attribute element*/

iconcolor=BLUE; /*variable attribute is
blue*/

.,cl=XLLVA; yl=YLLVA; /*lower left coords of icon
area*/

va-icon(xl, yl, iconcolor); /*draw variable attribute
element* /

textforeground=BLACK; textbackground=iconcolor; /*dot text
colors */

settextclr (&textforeground, &textbackground); /*set

colors*/
tx=xl+O.4; ty=yl+O.25; /*variable attribute label

coords* /
movtcurabs(&tx, &ty); /*move text cursor*/

text(icon4); /*label variable attribute
element*/

iconcolor=YELLOW; /*function element is
yellow*/

x:l=XLLF; yl=YLLF; /*lower left coords of icon
area*/

f-icon(xl, yl, iconcolor); /*draw function element*/

3textforeground=BLACK; textbackgrounci=ic-ncolcr: -dot te-.ct
cc I c: r s~

settextclr(&textforeground, &te:-tbackground) ; *set
colors* /

t.x=xl+O.45; tyyl+O.2; /*function :eIement label
cocrls*"

text(icon5l; /*label function element*/

.

iconcolor=RED; /*test element is red*/
xl-XLLT; yl-YLLT; /*lower left coords of icon

area*/

t-icon(xl, yl, iconcolor); /*draw test element*/

textforeground=BLACK; textbackground=iconcolor; /*dot text
colors*/

settextclr (&textforeground, &textbackground); /*set

colors*/
tx=xl+O.45; ty=y14-O.2; /*test element label ~i

coords*/
movtcurabs(&tx, &ty); /*move text cursor*/
text(icon6); /*label test element*/

iconcolor=MAGENTA; /*module is magenta*/4
xl=XLLM; yl=YLLM; /*lower left coords of icon

area*/
m-icon(xl, yl, iconcolor); /*draw module icon*/

textforeground=BLACK; textbackground=iconcolor; /*dot text
colors*/

settextclr (&textforeground, &textbackground); /* set
colors*/

tx=xl+O.65; ty=yl+O.25; /*module label coords*/
movtcurabs(&tx, &ty); /*move text cursor*/

text(icon7); /*label module*/

deltcuro; /*turn off text cursor*/

textforeground-WHITE; textbackground=BLACK; /*dot text
colors*/

settextclr (&textforeground, &textbackground); /*set colors*/

xl=O.2; yl=O.3 5; /*coords of line 1 of dialog box*/
movtcurabs(&xl, &yl); /*move text cursor to line 1*!

/*end scrngen*/

88*

OM Ir NN 14

* Name: menu.c *

* Purpose: to print a menu for user to select the type of
* graphics device installed. *

* Author: David D. O'Dell *

* Date: 21 December 1987 *

devmenu ()

int row, col; /*location of cursor on text

screen*/
int dev; /*type of graphics card selected*/

clearscn(); /*clear the text screen*/
row=6; col=l; /*center menu on screen*/
curlocate(row, col); /*move cursor*/

printf a.

("%63s\n%64s\n%64s\n%64s\n%64s\n%64s\n%64s\n%64s\n%64s\n%64s
\n%64s",

"* Select the graphics device for your system: *"

"* 1. IBM Color Graphics Adapter *", -.

"* 2. Generic CGA-type display card
"* 3. IBM Enhanced Graphics Adapter

4. Sigma Designs Color 400 *"1.

"1* 5. Quit *"
* i *IY

printf("\n\n%28s","Your choice?");

scanf("%d",&dev); /*get user's selection*/

while ((dev<l) 1I (dev>5)) a.

printf("Sorry, your selection must be between 1 and
5.\n");

printf("Please re-enter your chci-e.");

scanf("%d",&dev); /*get the new selection*,

I /*endwhile*/

return (dev);
/*end devmenu*/

89

%

I

clearscn()

* Function: clear the entire text screen to background color *

* Modified from blanksc function contained in: *
* Radcliffe, Robert A. and Raab, Thomas J. 1986. *

* DATA HANDLING UTILITIES IN C. Berkeley, CA.: *

* SYBEX Inc. *

typedef char byte;
typedef union (int i2; long int i4;} INT;

struct XREG

short ax, bx, cx, dx, si, di;
1;

struct HREG

byte al,ah,bl,bh,cl,ch,dl,dh;

union REGS

struct XREG x;
struct BREG h;

,1*---

union REGS ir, or;
ir.h.ah = 0x06; /*interrupt number to scroll page up*/
ir.h.al = 0; /*set registers to scroll entire screen*/
ir.h.ch = 0; /*from top left (0,0)*/
ir.h.cl = 0;
ir.h.dh = 25; /*to bottom right (25,80)*/

ir.h.dl = 80;
ir.h.bh = 0x07; /*scroll white on black*/
int86(0x10, &ir, &or); /*Lattice interrupt call to BIOS

CRT*/
/*end clearscn*/

90

curlocate (row, col)
int row, col;

* Function: locate cursor at row and column on text screen -
* Modified from setcrc function contained in: *

* Radcliffe, Robert A. and Raab, Thomas J. 1986. *

* DATA HANDLING UTILITIES IN C. Berkeley, CA.: SYBEX Inc. *

typedef char byte;
typedef union {int i2; long int i4;} INT; -

struct XREG

short ax, bx, cx, dx, si,di;

struct HREG

byte alah,bl,bh,cl,ch,dl,dh;

union REGS

struct XREG x; .4
struct HREG h;

I; •

I *-- - -- - - -

union REGS ir, or;
ir.h.ah = 0x02; /*interrupt number to set cursor

position*/
ir.h.bh = 0;
ir.h.dh = row;
ir.h.dl = col;
int86(OxlO, &ir, &or); /*Lattice interrupt call to BIOS •

CRT*/-
/*end curlocate*/

S

91

%~r

/ * * ** * * ** * * * ** * * ** * * ** * * * ** * * ** * * ** * *S

" Name: icons.c
" Purpose: to create the icons used by Intuition
" Author: David D. O'Dell
" Date: 16 December 1987*

#include "intuit.h"
#include "ex.struct.h"

/*all icons are described in terms of world coordinates*/

peicon(x, y, iconcolor) /*create primitive entity icon*/
float x, y; /*lower left coord of icon area*/
mnt iconcolor; /*color of icon*/

float xl, x2, yl, y2; /*coords of icon*/

setcolor(&iconcolor); /*set icon color*/

xl=x+O.2; yl-y4-O.O5; /*lower left coords of
icon*/

x2-x+O.8; y2=y+O. 65; /*upper right coord of
icon*/

bar(&xl, &yl, &x2, &y2); /*draw primitive entity
icon*/

iconcolor-BLACK; /*change colors forS
outline*/

setcolor(&iconcolor); /*set outline color*/

box(&xl, &yl, &-c2, &y2); /*draw outiine*/

/*end pe_icon*/

vaicon(x, y, iconcolor) /*create compound entity icon*/
float x, y; /*lower left coord of icon area*/
mnt iconcolor; /*color of icon*/

floa xar ay[J; / x~co rds of i on*

float yarray[8]; /*y-coords of icon*/

float xl, yl; /*coords of first vertex*/ '

mnt n; /*number rf verticeS./

n-8; /*number of vertices*/

xarray(OJ-x+O.6; yarray[O1=y+O.05; /*coords of
vertices* /

xarray[1]=x--+O.8; yarray[I]=y+O.25;
xarray[2]-x+O.8; yarray[21=y+O.45;

92

- S. VU - -1F -w I. -:F

xarray(3]=x+O. 6; yarray[3]=y+O. 65;
xarray[41=xO. 4; yarray[4J=y+O. 65;
-xarray[5]=x+O .2; yarrayE5]=y+O .45;
xarray[6J=x+O .2; yarray[61=y+0O.25;
xarray[7]=x+O. 4; yarray[71=y+O.05;

xl=x+O.4; yl=y+O.O5; /*coord of first vertex*/
movabs(&xl, &yl); /*move graphics cursor to

vertex*/

polyfabs(xarray, yarray, &n, &iconcolor); /*draw
icon*/

iconcolor=BLACK; /*change colors for outline*/
setcolor (&iconcolor); /*set outline color*/

xl=x+O.4; yl=y+O.O5; /*coord of first vertex*/
movabs(&xl, &yl); /*move graphics cursor to

vertex*/
pol.ylnabs(xarray, yarray, Wn; /*draw outline*/

/*end va-icon*/

a icon(x, y, iconcolor) /*create attribute element icon*/
float x, y; /*lower left coord of icon area*/
mnt iconcolor; /*color of icon*/

float xl, yl; /*coords of circle center point*/
float radius; /*radius of circle*/

setcolor(&iconcolor); /*set icon color*/

xl=x4-O.5; yl=y+O.35; /*center of circle*/
movabs(&xl, &yl); /*move graphics cursor to

center*/
radius=O.25; /*set radius of circle*/'
fcir(&radius); /*draw attribute element

icon*/

iconcolor=BLACK; /*change colors for
outline*/

setcolor(&iconcolor); /*set outline color*/
cir(&radius); /*draw outline*/

/*end a-icon*/

t icon(x, y, iconrolor) /*create variatle attritute
icon* /

float x, y; /*lower left coord of icon
area* /

mnt iconcolor; /*color of icon*/

float xarray[4); /*-:c-coords of icon*/

93

float yarrayf4j; /*y..coords of icon*/
float xl, yl; /*coords of first vertex*/
int n; /*nlumber of vertices*/

n=4; /*numer of vertices*/
xarray[O]=x+0.8; yarray(0]=y+0.35; /*Coords of

vertices*/
xarray~l]-x+0.5; yarray(l]=y+0. 65;
xarray[2]=x+0.2; yarrayE2]=y+0. 35;
xarray[31=x+0 .5; yarray[31=y+0 .05;

xl=x+0.5; yl=y4-0.05; /*coord of first vertex*/
movabs(&xl, &yl); /*move graphics cursor to

vertex*/
polyfabs(xarray, yarray, &n, &iconcolor); /*draw

icon* /

iconcolor=BLACK; /*change colors for
outline*/

setcolor(&iconcolor); /*set outline color*/

xl=x+0.5; yl-y+0.05; /*coord of first vertex*/
movabs(&xl, &yl); /*move graphics cursor to

vertex */
polylnabs(xarray, yarray, &n); /*draw outline*/

/*end t-icon*/

f-icon(x, y, iconcolor) /*create function element
icon*/

float x. y; /*lower left coord of icon
area*/

mnt iconcolor; /*Color of icon*/

float xarray[3]; /*x-coords of icon*/
float yarray[3]; !*y-coords of icon*/
float xl, yl; /*coords of first vertex*/
int n; /*ume of vertices*/

* n-3; /*numb.Aer of vertices*/

xarray[0]-x+0.8; yarray[0]=y-0.05; /*coords of
vertices*/

xarray(l]=x+0.5; yarray(l]=y-0. 65:
xarrayf2]=x-0.2; yarray[2]=y+0 .05:

xl=x+0.2; yl=y+0.05; /*coort of first vertex*/
movabs(&xl, &yl); /*move graphics cursor to

polyfabs(..:array, yarray, &n, &ic-n -1-r: ~1raw
icon* /

94

iconcolor-BLACK; /*change colors for
outline*/

setcolor(&iconcolor); /*set outline color*/

xl~x+0.2; yl=y+O.O5; /*coord of first vertex*/
movabs(&xl, &yl); /*move graphics cursor to

vertex* /
polylnabs(xarray, yarray, &n); /*draw outline*/

/*end f-icon*/

ce_icon(x, y, iconcolor) /*create test element icon*/
float x, y; /*lower left coord of icon

area */
mnt iconcolor; /*color of icon*/

float xarray[5]; /*x-coords of icon*/
float yarray[5J; /*y-coords of icon*/
float xl, yl; /*coords of first vertex*/
mnt n; /*number of vertices*/

n=5; /*number of vertices*/

xarray(01=x+0.8; yarray[0]=y-0.05; /*coords of
vertices*/

xarray[l]=x-0.8; yarray[l]=y+0. 35;
xarray(2]=x+0. 5; yarray[21=y+0. 65;
xarray(3]=x-0 .2; yarray(31=y+0. 35;
xarray(4J =x+0 .2; yarray(4] =y+0 .05;

xl=x+0.2; yl=y+O.05; /*coord of first vertex*/
movabs(&xl, &yl); /*move graphics cursor to

vertex*/
polyfabs(xarray, yarray, &n, &iconcolor); /*draw

icon* /

iconcolor-BLACK; /*change colors for
outline*/

setcolor(&iconcolor); /*set outline color*/

xl=x+0.2; yl=y+O.O5; /*coord of first vertex*/
movabs(&xl, &yl); /*move graphics cursor to

vertex* /
polylnabs(xarray, yarray, &n); /*draw outlin-* /

/*end ce icon*/

m-icon(x, y, iconcolor) /*create module icon*/'
float x, v; /*lower left -oord of icon

area',
int iconcolor; /*color of icon*'

95

float xl, x2, yl, y2; /*Coords of icon*/

setcolor(&iconcolor); /*set icon color*/

xl=x+0.55; yl=y+0.05; /*lower left coords of
icon*,/

x2=x+l.45; y2=y+0.65; /*upper right coord of
icon*/

bar(&,1, &yl, &x2, &y2); /*draw primitive entity

icon*/

iconcolor=BLACK; /*change colors for
outline*/

setcolor(&iconcolor); /*set outline color*/

box(&xl, &yl, &x2, &y2); /*draw outline*/

xl=x+0.9; yl=y+005; /*set start of cross line*/
movabs(&xl, &yl); /*move graphics cursor to

start*/
x2=x+0.9; y2=y+0.65; /*set end of cross line*/
lnabs(&x2, &y2); /*draw cross line*/

I

/*end micon*'
P

arrow(arrowcolor) /*create directed arc arrow head*/
int arrowcolor;

int hcolor; /*color of h-cursor*/
float cx, cy; /*coords of node ctr*/
float x, y; /*coords of arrow tip*/
float xarray[3]; /*x-coords of arrow*/
float yarray[3]; /*y-coords of arrow*/
float xl, yl; /*coords of stem end*/
int n; /*number of vertices*/

n=3; /*number of vertices*/

inqhcur(&cx,&cy,&hcolor);

y=cy-0.55; /*set tip y-coord*/

if(cell(activenode] .out=-l) Y*set tip ::-cocrd*/
x=cx;

else if(cell[activenode] .out==2)

x=cx-O. 2;
else if(cell[active node].out==3)

x=cx+0.2;
else if(cell[activenode].out==4)

96

%!

X=CX-O .4;
else if(cellfactive nodej.out==5)

V

x=cx+O. 4;
else

x=cx; /*default*/

setcolor (&arrowcolor);

xarray(O]=x-O.05; yarray[O]=y-Q.l; /*coords of
vertices*/

xarray(1J=X+O.05; yarray(1] =y-O.1;
xarray(21=x yarrayf2]=y;

xnovabs(&x, &y); /*move graphics cursor to tip*/
polyfabs(xarray, yarray, &n, &arrowcolor); /*draw

arrow* /

xl=x; yl=y-O.2;
lnabs(&xl,&yl); /*draw stem*/

/*end arrow*/

V
'9.

* Name: util.c *

* Purpose: contains general purpose utility subroutines *

* used by various programs. *

* Author: David D. O'Dell *

* Date: 31 December 1987 *

#include "intuit.h"

#include "exstruct.h"

bigport ()

* Function: set viewport to full screen normalized *

* coordinates. Do not draw border or redraw *

* background *

float xl, yl, x2, y2; /*graphic coordinate
variables*/

int border; /*flag to draw viewport
border * /

int background; /*flag for viewport
background*/

xl0.0; yl=0.0; x2=1.0; y2=1.0; /*full screen normalized
coords*/

border=-l;background--l; /*no border or

background*/ -"

setviewport(&xl, &yl, &x2, &y2,&border,&background); /*set
viewport*/

xl=WXMIN; yl=WYMIN; x2=WXMAX; y2=WYMAX;

setworld(&xl, &yl, &x2, &y2); /*set world coord system*/

/*endbigport*/

littleport()

/************************************* ***** ************ %m

* Function: set viewport to work area only in normalized *

* coordinates. Do not draw border or redraw * *

background *

float xl, yi, ::2, y2; /*graphic :' rdinite -ariables*/

98

(SI

(S

.'," ,'

lumt'. ..MrP-7,7- t. % -r

float xw, yw; /*float to normal coords*/
int border; /*flag to draw viewport border*/

int background; /*flag for viewport background*/

int height, width, path, tex-tmode; /*dot text attributes*/

xw=XLLWORK;yw=YLLWORK; /*set lower lt corner of
viewport*/

mapwton(&x-.w,&yw,&xl,&yl); /*to lower It corner of work
area* /

xw=XURWORK;yw=YURWORK; /*se-.tiupper rt corner of
viewport */

mapwton(&x*.w,&yw,&x2,&y2); /*to upper rt corner of work

area*
border=-1;background=-l; /*no border or background*/
setviewport (&xl,&yl,&x2,&y2,&border,&background); /*setL

viewport*/

xl=WXMIN; yl=WYMIN; x2=WXMAX; y2=WYMAX+2.O;
setworld(&xl, &yl, &x2, &y2) ; /*set world coord system*/ JI

height=TEXTHT; width=TEXTWD; path=HORIZONTAL;
textmode=BORDER;

settext (&height, &width, &path, &textmode);

/*endlittleport*/h

char getchr (kbchar)

char *kbchar;

*Function: get character from keyboard without echo and *

* return character by function and value.*
Modified from getchr.c contained in:

* Radcliffe, Robert A. and Raab, Thomas J. 1986. *
t-

* DATA HANDLING UTILITIES IN C. Berkeley, CA.: *

* SYBEX Inc.*

typedef char byte;
typedef union {int i2; long irit i4;1 I flT;

struct XREG

short ax,bx,cx,d_.,si,di;

99

W. -. _0 'r -o

struct HREG

byte al,ah,bl,bh,cl,ch,dl,dh;

union REGS

struct XREG x;
struct HREG h;

/* ---

union REGS ir, or;

ir.h.ah = 0x07; /*get character for keyboard*/
int86(0x21, &ir, &or); /*DOS function call access*/
*kbchar = or.h.al; /*put character in kbchar*/
return(or.h.al);

/*end getchr*/

decode char(sch)
char sch;

* Function: check if a cursor key is pressed and update *

* cx and cy coordinates accordingly *

float topedge, bottom-edge; /*top and bottom cursor
limits*/

float left edge, rightedge; /*left and right cursor
limits*/

float buttonheight, button-width;
float hheight, hwidth;

static float cx,cy; /*local cursor variables*/
int on; /*button state*/
int hcolor; /*x-hair color*/

on-0; /*no button selected*/ a

button-height=YURFI -YLLFI ;

buttonwidth=XURF1-XLLF;
hheight=button height/2.0;
hwidth=button width/2.0;

inqhcur(&cx,&cy,&hcolor); /*get postition of ::-hair
cursor'

10

100

P/. % - %-% ",a -% a , a , " ", , . d d "-" ." ," % % % '

if((sch==72)11I(sch==75)11I(sch-=77)11I(sch==80))

top edge = YURBUTTONS-hheight;
bottom-edge =YLLBUTTONS+hheight;
left edge =XLLBUTTONS+hwidth;

right edge =XURBUTTONS-hwidth;

switch (sch)

case 72: cy=cy.4(2*hheight); /*cursor up height
x hair*/

if (cy>top edge) /*if at top 2dge*/
cy=top edge; /*stay there*/

break;
case 75: cx~-cx:(2*hwidth); /*cursor left width

x-hair*,'
if (cx<left edge) /*if at left edge*/

cx=left-edge; /*stay there*/
break;

case 77: cx=cx+(2*hwidth); /*cursor right width

x-hair*/
f(cx>right edge) /*if at right edge*/

cx=right_edge; /*stay there*/
break;

case 80: cy=cy-(2*hheight); /*cursor dcwn
height x-hair*/%

if(cy<bottom-edge) /*if at bottom
edge*/

cy=bottom-edge; /*stay there*/
break;

default: break;

/*endswitch*/

movhcurabs (&cx, &cy);
delhcuro; /*don't show x-hair cursor*/

if(inside(cx,cy,XLLF1,YLLF1,XURF1,XURFl))
on=1;

else if(inside(cx,cy,XLLF2,YLLF2,XURF2,XURF2))
on=2;

else if(inside(cx,cy,XLLF3,YLLF3,XURF3,XURF3))

on=3;
else if (inside (cx, cy, XLLF4, YLLF4, XI.PF4, XTRF4))

on=4;
else if(inside(c:-.,cy,XLLF5,YLLF5,XURTPF5,XURF5))

on=5;
else if(inside(cx.,cy,XLLF6,YLLF6,XUTRF6,XURF6))

on=6;
else if (inside (c.--, l XLLF7 YLLF,:.-PP7TPF"'

on=7;

1~01

I
else if(inside(cxcy,XLLFS,YLLF8,XURFS,XURFS))

on=8;
else if (inside(cx,cy,XLLF9,YLLF9,XURF9,XURF9))

on=9;
else if(inside(cx,cy,XLLFIO,YLLF0,XUF10,XURFI0))

on=10;
else

on=0;

/*end if sch*/

/*********************************P.**************************
* Function: check if a function key has been pressed *
* and return the corresponding value of 'on'. *

if((sch>=59)&&(sch<=68))

switch(sch) V

case 59: on=l;
cx=XLLFl+hwidth; /*position x-hair

cursor*/
cV=YLLF1+hheight; /*in F1 button*/ I
break;

case 60: on=2;
cx=XLLF2+hwidth; /*position x-hair

cursor*/
cy=YLLF2+hheight; /*in F2 button*/
break;

case 61: on=3;
cx=XLLF3+hwidth; /*position x-hair

cursor*/
cy=YLLF3+hheight; /*in F3 button*/
break;

case 62: on=4;
cx=XLLF4+hwidth; /*position x-hair

cursor*/
cy=YLLF4+hheight; /*in F4 button*/
break;

case 63: on=5;
cx-XLLF5+hwidth; /*position x-hair I

cursor*/
cy=YLLF5+hheight; /*in F5 button*/
break;

case 64: on=6;
cx=XLLF6+hwidth; /'position ::-hair

cursor*/
cy=YLLF6+hheight: /*in Fb button*/
break;

102

%<102

I

case 65: on=7;
cx=XLLF7+hwidth; /*position x-hair

cursor*/

cy=YLLF7+hheight; /*in F7 button*/
break;

case 66: on=8;
cx=XLLF8+hwidth; /*position x-hair

4.%'
cursor*/

cy=YLLF8+hheight; /*in F8 button*/ %

break;

case 67: on=9;
cx=XLLF9+hwidth; /*position x-hair

cursor*/

cy=YLLF9+hheight; /*in F9 button*/
break;

case 68: on=10;
cx=XLLFl0+hwidth; /*position x-hair -4

cursor*/
cy=YLLFIO+hheight; /*in FIO button*/
break;

default: on=O;
break;

/*end switch*/

movhcurabs(&cx,&cy);
delhcur(); .4

I /*end if sch*/

return(on);

/*end decodechar*/

int inside(x,y, xmin, ymin, xnax, ymax)
float x,y; /*location of cursor*/
float xmin,ymin, xmax,ymax; /*boundries of bounding box*/

* Function: determines if (x,y) is inside bounding box * *

determined by (xmin,ymin)-(xmax,ymax). * I

if ((nin <= x) && (x <= :.:a:.:) && (ymin y) && (; y-ma.:)

return(TRUE); /*cursor is inside bounding bo.*i

else

return(FALSE); /*cursor is outside bounding box*/ /

103 p

.I

/*endif-else*/

/*end inside*/

draw -submenu(title,linel,line2,lIneJ,line4,line5,menu)
char *title;
char *linel,*line2,*linej,*line4,*line5;
int *menu;

*Function: prints submenu for selected.

int tex,-tforeground, textbackground; /*dot text
colors* /

int color; /*drawing color*/
float ulx, uly, lrx, lry; /*coord of popup menu

area* /
float sxl, sx2, syl, sy2; /*graphic coordinates*/

float stx, sty; /*dot text coordinates*/
char getchro; /*get keyboard character*/

define-dot-texto; /*set dot text attributes*/
text foreground=WHITE;

textbackground-BLACK;p
settextclr (&textforeground, &textbackground); '

ulx=l.0; uly=4.l; /*upper left coord of popup*/
lrx=5.0; lry=2.O; /*lower right coord of popup*/ 4

movefrom(&ulx,&uly,&lrx,&lry,menu); /*save scrn under
popup* /

color=BLACK;
setcolor (&color);
sxl=1.0; syl-2.O;
sx2=5.0; sy2-4.l;
bar(&sxl,&syl,&sx2,&sy2); /*draw popup menu*/
color-WHITE;
setcolor (&color);
sxl-l.l; syl-2.l;
sx2=4.9; sy2-3.6;
box (&sxl, &syl, &sx2, &sy2);

* sxl-1.1; syl=3.7;

sx2-4.9; sy2-4.0;
box (&sxl,&syl,&sx2, &sy2);

stx=2.5; sty=3.75;
movtcurabs (&stx, &sty);
text (title);

stx-l.5; sty=3.35;

104

r Pr f

movtcurabs (&stx, &sty);

text (linel);

stx=l.5; sty=3.05;
movtcurabs (&st, &sty);
text (line2) ;

stx=l.5; sty=2.75; -

movtcurabs (&stx, &sty);

tex-.t (line3);

stx=1.5; sty=2.45;
movtcurabs (&stx, &sty);

text (line4);

stx=l.5; sty=2.15;
movtcurabs (&stx, &sty);
text (line5)

deltcur 0;

/*end draw submenu*/

restore-under-menu (menu)
int *menu;

Function: restore screen area under submenu.

float ulx, uly, lrx, lry; /*popup menu coordinates*/

float sxl, syl, sx2, sy2; /*graphics coordinlates*/

int mode; /*restore mode*/

int color; /*current drawing color*/

color=WHITE;
setcolor (&color);
sxl=l.0; sy'l=2.0;
sx2=5.0; sy2=4.0;
bar(&sxl,&syl,&sx2,&sy2); /*draw popup menu*/

ulx=l.0; uly=4.l; /*upper left coord of popup*/
lrx=5.O; lry=2.0; /*lower right coord of popup*/

mode-i; /*set restore to ov-rwrite*/

moveto(&ulx,&uly,menu,&mode); /*restore scmn under popup*/

/*end restore under menu*/

105

define dot text()

* Function: sets dot text attributes. *

int device; /*graphics device*/
int height, width, path, textmode; /*dot text attributes*/

inqdev(&device); /*get device number installed*/

if((device==1)11i(device==26))
height=TEXTHT;

else
height=(2*TEXTHT);

width=TEXTWD; -
path=HORIZONTAL;
textmode=BORDER;

settext(&height,&width,&path,&textmode);

/*define dot text*/

write error(error number)/***i
* Function: prints error message pointed to by error number *

int dev, device; /*graphics device*/ I
int textforeground,textbackground; /*dot text colors*/
float stx, sty; /*dot text coordinates*/

static char errorl[]=
"Sorry, selection out of range. Please re-enter
choice. "-

define dot texto; /*set dot text attributes*/

dev=inqdev(&device); /*get graphics device number*/
if((dev==l) II (dev=-26))

textforeground=WHITE;

else
textforeground-RED;

textbackground-BLACK;
settextclr (&textforeground, &te:.tbackqro' nd);

cleardialogboxo;

stx=0.2; sty=0.35;
movtcurabs(&stx, &sty);

106

QA.

switch (errornumber) %

case 1: text(errorl);
break;

default: break;
I /*end switch*/ P

I /*end write error*/

clear_dialog_box()

* Function: clear error statement from dialog box. *

int color; /*drawing color*/
float xl, yl, x2, y2; /*graphics coordinates*/

color=BLACK; /*set drawing color to black*/--Y
setcolor(&color);

xl=XLLDIALOG+0.045; ylYLLDIALOG+0.045;
x2=XURDIALOG-0.055; y2=YURDIALOG-0.055;
bar(&xl,&yl,&x2,&y2); /*overwrite dialog box*/

color=WHITE;
setcolor(&color); .

I /*end clear dialog box*/

clearstatusbox()/**

* Function: clear status box of all text. * P

int color; /*drawing color*/
float xl, yl, x2, y2; /*graphics coordinates*/

color=BLACK; /*set drawing color to black*/
setcolor(&color);

xl=XLLSTATUS+0.8; yl=YLLSTATUS+0.05;
x2-XURSTATUS-2.2; y2=YURSTATUS-0.05; C

bar(&xl,&yl,&x2,&y2); /*overwrite type*/

xl=XLLSTATUS+4.6; yl=YLLSTATUS+0.05;

x2=XURSTATUS-0.5; y2=YURSTATUS-0.05;
bar(&xl,&yl,&x2,&y2); "9-rwrite name*/

/*end clear status box*/

107

write dialog (messagel,message2)
char *messagel, *message2;

*Function: write two line message in dialog box at bottom of
* screen.

mnt textforeground, textbackground; /*dot text colors*/

float tx, ty; /*dot text coordinates*/

define-dot-text(); /*set dot text attributes*/

J.

text foreground=WHITE;P
textbackground=BLACK;
set textclr (&textforeground, &textbackground);

clear-dialog box 0;

tx=XLLDIALOG+0.2; ty=YLLDIALOG+0.3; /*write first line*/
movtcurabs (&tx, &ty); a.

text (messagel);

tx=XLLDIALOG+0.2; ty=YLLDIALOG-0.05; /*write second line*/
movtcurabs (&tx, &ty);
text (message2); %.

/*end write dialog*/

getstring (string, length, tx, ty) 5

char *string;
mnt length;
float *tx, *ty; I

Function: get and print a string at specified location.

mnt text foreground, textbackground; /*dot text colors*~/
mnt index;
char ch;
float x,y; /*dot te::t coordinates*/

index-0;
x-*tx; y=*ty;

text foreground-CYAN;
textbackground=BLACK;
settextclr (&texrtforeground, &textbackground);

108

%.

_v-jvv"Wr W

getchr (&ch);

while (! (ch==OXOD)) /*while not carriage return*/

if (ch==OXOD)

ch=' \O';

string[index] =ch;
break;

else if(ch==OxO8)

text foreground=BLACK; tex.tbackground=BLACK;
settextclr (&textforeground, &textbackground);
movtcurabs (&x, &y);

text (string);
--index;
if (index<O)

index=O;
ch-' ';

string[index] =ch;
text foreground=CYAN;
textbackground=BLACK;
settextc.r (&textforeground, &textbackground);
movtcurabs (&x, &y);
text (string);

else if ((ch>='0')&& (ch<-' 9')jj
(ch>='A')&&(ch<-'ZF)j
(ch>='a')&&(ch<-'z')j

(ch=' _'I)

if (index>length-1)

index=length;
string[index]=' \0';
break;

string~index] =ch;
movtcurabs (&x, &y);
text (string);

* ++index;

*I /*end if-else*/

getchr (&ch);

*) /*end while*/

* /*end getstring*/

109

rest -under-screen(menu)
int *menu;

*Function: restore screen area under edit screen. *

float ulx, uly; /*popup menu coordinates*/
float sxl, syl, sx2, sy2; /*graphics coordinates*/
int mode; /*restore mode*/
int color; /*current drawing color*/

color-WHITE;
setcolor (&color);
sxl=0.5; syl-l.0;
sx2=5.5; sy2-4.5;
bar(&sxl,&syl,&sx2,&sy2); /*draw popup menu*/

ulx=O.5; uly=4.5; /*upper left coord of popup*/

mode=l; /*set restore to overwrite*/
moveto(&ulx,&uly,menu,&mode); /*restore scmn under popup*/

I/*end~ restore under screen*/

get -nameo(

*Function: gets element name and writes it below icon *

* image in work screen.

static char name[8J; 1*8 characters + null*/
static char messagel(]="MANDfATORY ENTRY: Enter element

name";
static char message2[]="(7 or less characters) and press

RETURN";%
static char message3(]=
"Move cursor and press p,c,a,v,f,t, or m to add an";
static char message4H]-
"element or press e to add edge or <esc> to quit.";

mnt i; /*float variable*/
int hcurclr; /*x-hair cursor color*/
int strlength; /*of characters in name*/

float cx, cy; /'*pos of .--hair bo:: cursor*/

strlength-7;

for(i-O; i<-a(strlength-2); i+4-) /*init name to blanks*/

110
a,,

'a

naxne~i]-'

name~strlength-l]=' \O';

inclhcur (&c-x, &cy, &hcurclr);
cxcx-0.45; cy=cy-O.45; /*put name in bottom of box*/

biqrport ()
write-dialog(&messagel,&mnessage2);
littleport ()

getstring(&name,strlength,&cx,&cy); /*get name*/

bigport 0;
write dialog(&message3,&message4);
littleport ()

elemnt~ativ nodl~eame~ame
celemactivenode] .ename=name;

/*end get name*/

get -model -name()

*Function: get name of model user will enter.

mnt i; /*loop variable*/
mnt tcurclr; /*text cursor c-oor*!

mnt textforeground, textbackground; /*dot text colors*/
mnt strlength; /*string length*/
float tx, ty; /*dot text coordinates*/

float dtx, dty; /*position of text cursor in dialog box*/

static char nametll]);

static char messagel[]="Enter the name of this model";
static char message2[]="(lO or less characters): 0;

strlength=lO;

clear status boxo; /*clear model type and name*/

for(i-O;i<=(strlength-2);i++) /*init mcdel name to blanks*/
namefil-' ';

name~strlength-l]='\O';

define dot texto;

text foreground=YELLOW;

111 %

MIRMUMMAM r W-I

textbackground=BLACK;

settextclr (&text foreground, &textbackground);

clear -dialog_ boxo;R
write-dialog(&message1, &message2);

inqtcur(&dtx, &dty, &tcurclr); /*get text cursor position*/

getstring (&name, strlength, &dtx, &dty);

text foreground=YELLOW;
textbackground=BLACK;
settextclr (&textforeground, &textbackground);
tx=XLLSTATUS+4 .7; ty=YLLSTATUS+0 .05;
movtcurabs (&tx, &ty);
text (name);

model-name=name;I

deltcur 0; /*turnl off text cursor*!
clear-dialog box 0;

/*end get model name*/

init workspace()4'

int i,j,k; /*loop variabies*/

for~i=0; i<='MAXNODES; i=i+l)

element (ii .ename="null";
element Ei].etype="null"; N
element (i .dname="null";
element~i] .date added="null";
element~i] .last mod="null";
element [ii .nrods-0;
element (il. idx-"null";
element fi] .idx-stmt="null"; %
element (i .grange-"null";
element l] .grule-"null";
element fi].corments-"null";
element fi] .rtype-"null"; S

elementfi] .acc meth="null";
element[[i]. f req=0-;
element [i] .relpos=0;t

/*endj for*/

for(i-0; i<-MAXNODES; i=i+1)
f-

cell[i] .used=FALSE:

112

V'

cell~i] .nodex=O.O;
cell(i] .nodey=O.O;
cell(iJ .out=O;
cell~i] .in=O;

for(jtO; j<=MAXEDGES;-jj1

for(k=O; k<=MAXPOINTS; k=k+1)

cell~i].edqex[j][kJ=o.o;

cell~i].edgey[jJ(kJ=O.o;
I/*end for k*/

celfi] .cnode(j]=O;
ceilfi] .cedge(j]=O;
element(i] .einame(j]="null";
eiementfi] .eltype[j]="null";(
element~iJ .e2name[j]="nul"';
element~i] .e2type[j]="null";

/*end for j*/
/*end for i*/

model-name-"null";
used-nodes=O;
active-node=O;

littleport 0;
clr (
bigport 0;

/*end init workspace*/

113

* Name: fun.c *

* Purpose: contains functions assigned to function keys. *N

* Author: David D. O'Dell *

* Date: 29 December 1987 *

.'.

#include "intuit.h
#include "exstruct.h"

int menu[12000]; /*global array to hold screen area
under popup menus*/

fimodeo(
/***
* Function: allows user to select between creating a genus *

* graph, creating a module tree, or edi-ing model*
* paragraphs. *
..*******/*

char ch, sch; /*keyboard character*/

/*submenu title entries*/

static char subtitle(]=" Fl MODE ";

static char sublinel(]="l. Create genus graph
static char subline2[]="2. Create module tree
static char subline3[]-"3. Edit model paragraphs ";

static char subline4f]=" Enter your choice or...
static char subline5[]=" Select a new command button.";

I-
int on;

draw submenu(&subtitle,&sublinel,&subline2,
&subline3,&subline4,&subline5,&menu);

getchr (&ch);

if (ch==0x00)

getchr (&sch);

on-decodechar(sch);

clear dialog box();

restoreunder_menu(&menu);
return(on);

else if((ch<'l') II (ch>'3'))
write error(l);

else if(ch=='l')

restoreundermenu(&menu);

clear-dialogbo:: (); A.

creategenusgraph();

114

ik

A'

&I

else if(ch=='2')

restoreundermenu(&menu); ,
cleardialog box();

create module tree);

else if(ch=='3')

clear_dialog_box(;
restore under menu(&menu);

edit model_paragraphs(;
/*end if-else*/

on=l;

return (on); -

I /*end flmode*/

f2add()

* Function: allows user to add nodes or edges to a genus *

* graph or module tree interactively in the work * P
* area. *

char ch, sch; /*keyboard characters*/

/*submenu title entries*/

static char subtitle[]-" F2 ADD "; 4
static char sublinel(]="l. Add a node
static char subline2[1="2. Add an edge

static char subline3(]="3. Add a module "; ,
static char subline4(]=" n;
static char subline5[]="Enter selection... "

int on;

drawsubmenu(&subtitle,&sublinel,&subline2,

&subline3,&subline4,&subline5,&menu);

getchr (&ch);

if (ch==OxOO)

getchr(&sch);
on=decode char(sch);

/*end if OxOO*/

clear dialogbo: (); /*erase ary err-'r rn":- res-

115 I

r P

P

restoreunder menu(&menu);

if (ch==' 1')

on=2;
addnode(;

else if(ch=='2')

on=2;

addedgeo;

else if (ch==' 3')

on=2;

addmodule();
/*end if-else*/

return(on);

I /*end f2add*/

f3delete()

* Function: allows user to delete nodes or edges from a genus *

* graph or module tree. *

{r

char ch, sch; /*keyboard characters*/

/*submenu title entries*/

static char subtitle[]="F3 DELETE";
static char sublinel(]="l. Delete a node

static char subline2[]="2. Delete an edge
static char subline3[]="3. Delete a module
static char subline4[]=" "%
static char subline5[]="Enter selection...

int on;

draw submenu(&subtitle,&sublinel,&subline2,
&subline3,&subline4,&subline5,&menu);

getchr(&ch);

if(ch==OxOO)

getchr(&sch);
on=decode char(sch),•

/*end if 0:,:00"/

116

I

clear dialogbox); /*erase any error messages*/

restoreundermenu(&menu);

if (ch=='l')

on=3;
deletenodeo;

else if(ch=='2') '

on=3;
deleteedge o;

else if (ch==' 3')

on=3;

delete module(;
/*end if-else*/

return (on);

/*end f3delete*/

I

f4change ()

* Function: allows user to change a node type or name in a * S

* genus graph or modular structure. *

char ch, sch; /*keyboard characters*/

/*submenu title entries*/

static char subtitle[]="F4 CAANGE";
static char sublinel[]="l. Change element name "

static char subline2[]="2. Change element type n;
static char subline3[]="
static char subline4[l=" "; "
static char subline5[]="Enter selection...
int on;

I
draw submenu(&subtitle,&sublinel,&subline2, p-,

&subline3,&subline4,&subline5,&menu); 0:

getchr (&ch);

if(ch==OxOO)

getchr (&sch);
on=decode char (sch);

/*end if OxO0*/

117

..---- " - . -. " - - . - . ""-%

clear-dialog boxo; /*erase any error mfessages*/

restore-under-menu(&menu);

if (ch=='1')

on=4;

change name 0;

else if(ch=='2')

on=4;
change type 0;

I/*end if-else*/

return (on);

I/*end f4change*/

f5findoC

Function: allows user to locate a node in a genus graph or
* modular structure.*

char ch, sch; /*keyboard characters*/
int on;

static char messagel[]="FUNCTION NOT IMPLEMENTED.";
static char message2[]="Select any command to continue.";

write dialog(&messagel,&message2);

getchr (&ch);

if (ch==OxOO)

getchr (&sch);
on=decode char (sch);

/*end if OxOO*/

clear-dialog box 0;

return (on);

/*endj f~find*/

118

f6move()

* Function: allows user to re-locate node(s) in a genus graph*

* or modular structure. *

char ch, sch; /*keyboard characters*/ W
int on;

static char messagel[]="FUNCTION NOT IMPLEMENTED.";
static char message2f]="Select any command to continue.";

write-dialog(&messagel,&message2);

getchr (&ch);

if (ch==OxOO)

getchr (&sch);
on=decodechar(sch);

/*end if OxOO*/

clear_dialogbox();
return(on); p

I /*end f6move*/

f7load()

* Function: allows user to load a structured model from disk.* I

char ch, sch; /*keyboard characters*/
int on;
static char messagel[]="FUNCTION NOT IMPLEMENTED.";

static char message2[]="Select any command to continue.";

write dialog(&messagel,&message2);

getchr (&ch);

if (ch==OxOO)

getchr (&sch);
on=decode char(sch);

I /*end if OxOQ*/

cleardialog_box();

return(on);

/*end f7load*/

119 I

%4

I

f8save()
/*** 4%

* Function: allows user to save a structured model to disk. *

char ch, sch; /*keyboard characters*/
int on;
static char messagel(]="FUNCTION NOT IMPLEMENTED.";

static char message2[]="Select any command to continue.";

write-dialog(&messagel,&message2); ~|

getchr (&ch);

if (ch==0x00)
,p.

getchr(&sch);
on=decode char(sch);

I /*end if OxO*,'

clearzialog box();

return (on);

/*end f8save*/

f9dbms()
/**

* Function: allows user to connect to a database management *

* system. *

static char messagel[]="DBMS function not implemented.";
static char message2[]="Select any command to continue.";

char ch, sch;
mnt on;

writedialog(&messagel,&message2);

getchr(&ch);
if (ch-OxOO)

getchr (&sch);
on-decode char(sch);

/*end if OxOO*/

cleardialog_boxo;

return (on);

/*end f9dbms*/

120

,%

- - - , ~ r, .4 . 7t-- - -

flOquit () .

* Function: allows user to the HALO graphics environment. * V

char ch, sch; /*keyboard characters*/

/*submenu title entries*/

static char subtitle[]="FlO QUIT ";

static char sublinel[]="l. Yes, I want to quit. ";

static char subline2[]=" ";
static char subline3[]="Enter 1 to confirm quitting ";

static char subline4[]=" . . .or. ..
static char subline5[]="Select a new command button. ";

int on; /*selected command button*/

drawsubmenu(&subtitle,&sublinel,&subline2,
&subline3, &subline4, &subline5, &menu);

getchr (&ch); I

if (ch==OxOO)

getchr (&sch);
on=decodechar (sch);

I /*end if OxO0*/

cleardialogboxo; /*erase any error messages*/

restoreundermenu(&menu);

if (ch==' i') 1

on= 11 ;
return (on);

return (on);

/*end flOquit*/ %

121

%
%9!i

Va' w~r 4'' A '.A ~'~ ~ ' Ni ''l\. -'j~ a~~% V% %~V~%'% .% ~ 4%

Name: sfunl.c

*Purpose: contains sub-functions called by primary command *

* functions constained in file fun.c
Author: David D. O'Dell
*Date: 7 January 1988

#include "intuit.h
#include "exstruct.h"

create_genus grapho(

Function: set up screen so user can enter a genus graph.

IA-

char ch, sch;
mnt textforeground, textbackground; /*dot text colors*/
float tx, ty; /*dot text coordinates*/
static char messagel[]-"WARNING: You will erase the current

model!";
static char message2[]h"Press y to erase or <esc> to

return.";
static char graphtype[]="Genus Graph n
static char message3(I=nModel initialized and workspace

cleared.";
static char message4[]=nSelect any command to continue.";

write dialog(&messagel, &message2); r

define-dot-text();

text foreground-YELLOW;
textbackground-BLACK;
settextclr (&text foreground, &textbackground);

tx=XLLSTATUS+O.9; ty=YLLSTATUS+O.05;
movtcurabs (&tx, &ty);
text (graphtype);

deltcur 0;

getchr (&ch);
if (ch-OzOO)

getchr (&sch);

if (ch--'y')

mnit workspaceo;
get-model-nameo;
write dialog(&message3,&message4);

122

W kp

else

clear dialog box 0;
return;

/*end if else*/

I/*end create genus graph*/

add-node()

float xl, yl, x2, y2; /*graphic coordinates*/
float tx, ty; /*dot text coordinates*/
float ix, iy; /*icon area coordinates*/
float bxl, byl, bx2, by2; /*cell box coordinates*/
float hx, hy; /*x.-hair cursor coordinates*/
float hheight, hwidth; /*x-hair cursor height/width*/
float top edge,bottom -edge;
float left edge, right edge;
mnt i; /*loop variable*/
int hcolor; /*x..hair cursor color*/
mnt textforeground, textbackground; /*dot text color*/ 1

int iconcolor;
int color; /*current drawing color*/
char ch, sch; /*keyboard characters*/
char row[2], col[2J; /*position of box cursor*/
static char messagelt]=
"Move cursor and press p, c, a, v, f, t, or m to add an";
static char message2(1=
"element or press e to add an edge or <esc> to return.n;

write dialog(&messagel,&message2);

row(OJ='7'; col(OJ=/A';
row[l]='\O' ;col(1]='\O' ;

tx=XLLROW+O .8; ty=YLLROW+O .1;
movtcurabs (&tx, &ty);

text (row);
tx=XLLCOL+O .8; ty=YLLCOL+O.1;
movtcurabs (&tx, &ty);
text (col);

littleporto; /*reset viewport area*/

hheight=O.5; hwidth=O.5;
hcolor=BLACK;
inithcur (&hheight, &hwidth, &hcolor);

textforeground=WHITE; te-tbackground=BLArY:;
sette:.tclr(&textforeground, &te::tback-Tin-1f

123

hx=W)QIIN+0 .5; hy=WYMIN+0 .5;

movhcurabs (&hx, &hy); 1

delhcuro %;

bxl-hx-0.5; bylhy-0.5; M

bx2=hx+0.5; by2=hy4-0.5; .

rbox (&bxl, &byl, &bx2, &by2);

getchr(&ch);

if (ch==OxOO)
getchr(&sch);

while(! (ch==OxlB)) /*while not escape key*/

inqhcur(&hx,&hy,&hcolor); /*get postition of x-hair
cursor*/b

if((sch==72)11I(sch==75)11I(sch==77) iI(sch==80))

top edge = (WYMAX4-2.n -hheight-0.05;
bottom-edge = WYMIN+'>:eight;
left edge =WXMIN+hwidth;

right edge -WXMAX-hwidth-0.05;

switch (sch)

case 72: hy-hy+(2*hheight); /*cursor up a

height xhair*I
if (hy>top edge) /*if at top

edge */
hy-top edge; /*stay there*/

row(0) =row[0J -1;
if(row[0]<='1')

row (0] ='1';
break;

case 75: hx-hx.-(2*hwidth); /*cursor left
width x-hair*/ 4

if(hx<left_edge) I*if at left
edge*/

hx-left -edge; /*stay there*/ :

col [0]=col [0 -1;
if(col[0]<-'A')

col (01='A';
break;

case 77: hx.=h:.+(2*hwidth); ,*cursor right
width ::-hair*/

if (hx>right edge) /*if at rightI

hx =rightedre; ,'*stay there*/
col[O]=col(O'-1;
if(col[0]>='H')

124I

N- mINO ~YV F - V& %)M 4% tr%W

col (01=' H';
break;

case 80: by=hy-(2*hheight); /*cursor down
height x-.hair*/

if(hy<bottom-edge) /*if at bottom

edge* /
hy=bottom edge; /*stay there*/

row [0] =row [0]+1;
if(row[01>='7')

row [0)-' 7';
break;

default: break;

I/*endswitch*/

/*end if sch*/

bigport U;

color=BLACK;
setcolor (&color);
xl=XLLROW+0.6; yl=YLLROW+0 .05;
x2=XURROW-0 .05; y2=YURROW-0 .05;
bar (&xl, &yl, &x2, &y2);
xl=XLLCOL+0.6; yl=YLLCOL+0 .05;

x2=XURCOL-0 .05; y2=YURCOL-0 .05;
bar (&xl, &yl, &x2, &y2);

color=WHITE;
setcolor(&color);
tx=XLLROW+0.8; ty=YLLROW+0 .1;
movtcurabs (&tx, &ty);%
text (row);
tx=XLLCOL+0.8; ty=YLLCOL+0.l;
movtcurabs (&tx, &ty);

text (col);
littleport 0;

movhcurabs (&hx, &hy);
bxl=hx-0.5; byl=hy-0.5; /*draw cursor box*/
bx2=hx+0.5; by2-hy+0.5;
delhcuro;
rbox(&bxl, &byl, &bx2, &by2);

if(ch=='p' I ch=='c' jch=='a' Ich--'v' I ch--'t' lch=='' I-h=='m' I

inqhcur(&h-, &hy, &hcolor); ./*cret ctr coorcis of
node* /

for(i=0; i<=used nodes4-1: i=i~lli.

125

1! = 11''1 Ir III, Ir 4C r I

if (i>MAXNODES)

write-error(2);
break;

else if(cell(i].used TRUE)

active node=i;

cellil.used-TRUE; /*mark cell
used* /

celtused-nodes] .nodex=hx; /*update
structure*

cell(used -nodes] .nodey=hy;

used-nodes=used-nodes+l;
break;

I/*end~ if else*/

I/*end for*/

/*endj if p etc.*/

switch (ch)

case 'p': iconcolor-GREEN;
ix=hx-O. 5; iy=hy-O. 2;

peiconlix, iy, iconcolor);
get name 0;
element (active -node] .etype="pe";

celI[active -node] .etype="pe";
movhcurabs (&hx, &hy);

bxl=hx-O.S; byl=hy-O.5; /*draw cursor
box*/

bx2=hx+O .5; by2=hy+O .5;-

delhcur 0;
rbox (&bxl, &byl, &bx2, &by2);

break;

case 'c': iconcolor-BROWN; 7

ix=hx-O.5; iy-hy-O .2;

ce-icon(ix, iy, iconcolor);
get name 0;
element (active node] .etype-"ce";
cell (active -node] .etype-"ce";
movhcurabs (&hx, &hy);

bxlhx-O.5; byl=hy-O.5; /*draw cursor

bx2=hx-+O.S; by2=hy+4-.5;
delhcur ();
rbox (&b, &byl, &bx2, &by2);

break;- L

case 'a': iconcoior=CYAN;
ix-hx -O. 5; iy=hy-'. V
a-icon(ix, iy, iconcolor);

126
S'%

%5

get name;
element [active -node] .etype-"a";

cell [active node] .etype="a";
movhcurabs (&hx, Thy);
bxl=hx-O.5; byl=hy-O.5; /*draw cursor

box*/
bx2=hx-+0. 5; by2=hy+O. 5;

delhcur
rbox (&bxl, &byl, &bx2, &by2);
break;

case 'v': iconcolor=BLUE;
i:=hx-O.5; iy=hy-O.2;
va icon(ix, iy, iconcolor);
get_narneo;
element [active -node] .etype-rlvan;
cell~active-node] .etype="van;
movhcurabs (&hx, &hy);
bxl=hx-O.5; byl=hy-O.5; /*draw cursor

b%2=hx+0.5; by2=hy+O.5;
delhcur 0;
rbox (&bxl, &byl, &bx2, &by2);
break;

case If': iconcolor=YELLOW;
ix=hx-0. 5; iy=hy-0.2;
f-icon(ix, iy, iconcolor);
get_name();

element(active -node] .etype="fu;
cell(active node] .etype=n";
movhcurabs (&hx, &hy);
bxl=hx-O.5; byl=hy-O.5; /*draw cursor

bx2=hx+O.5; by2=hy+O. 5;
delhcur 0;
rbox (&bxl, &byl, &bx2, &by2);
break;

case 't': iconcolor=RED;
ix=hx-O .5; iy=hy-O .2;
t icon(ix, iy, iconcolor);
get_name0;
element [active node] .etype-"t";
cell~active node] .etype=nt";
movhcurabs (&hx, &hy);
b:U=hx-C.5; byl=hy-O.5; /*draw cursor

bz2=h:,-O. 5; by2=hy4-Q .5:
delhcur ()
rbo:.:(&b:-:1,&byl,&b:.:2,&by2);
break;

case 'in': iconcolor=MAGENTA;
i::=h-:-J.O: iy=hy-'. .0
in-icon(i.:, iy, iconcolor);

127

Il%

VWVI(VfVV -

get_nameo;
element(active -node] .etype-"m";

cell (active -node] .etype="rn";
movhcurabs (&hx, &hy);
bxl=hx-O.5; byl=hy-O.5; /*draw cursor

box*/

bx2=hx+O.5; by2-hy+O .5;

delhcur o;
rbox (&bxl, &byl, &bx2, &by2);

break;
default: break;

I/*end switch ~

if (ch-=e')
break;

iconcolor=WHITE;
setcolor (&iconcolor);

sch=OxOO;

getchr (&ch);
if (ch='=OxOO)

getchr (&sch),

I/*end while*/

delboxo; /*delete current rubber band
box*/

bigrpor-

clear-dialog_boxo;

add-edge();

/*end add-node*/

add-edge()

float hheight, hwidth; /*size of ::-hair cursor*/

float xl, yl, x2, y2; /*graphic~ coordinates*/

float cx, cy; /*x-hair coordinates*/

float tx, ty; /*tevt cursor

coordinates*/
float bx.l, byl, bx2, by2; /*cell bo:: coorlinates*/

float top_edge,bottom-edore;
float left edge, right edge; 0

128

SI - - -- b

-NI .EWW.-. ,.* -

float lx, ly; /*Coordinates of line's
fixed end*/

int i, /*loop variable*/
mnt turn; /*numer of turns in an

edge*/

mnt color; /*drawing color*/
mnt gcolor; /*color of graphics

cursor*
mnt hcolor; /*color of x-hair cursor*/
int line; /*toggle to draw/not draw

line*/

char ch, sch; /*keyboard characters*/
char row[2], col(2]; /*position of box. cursor*/

static char messagel[1=
"Move cursor to calling node and press return.";
static char message2[]=
"Or press n to add node or <esc> to return.";

static char message3[1=
"Move cursor and press t to turn or e to end edge.";

static char message4[= n;

write dialog(&messagel, &.. ssage2);

turn=C;

row(O]='7'; col(O]='A';

row(1]='\O' ;col[1]='\O';
tx=XLLROW+ . 8; ty=YLLROW+ . 1;
movtcurabs (&cx, &ty);

text (row);
tx=XLLCOL+O .8; ty=YLLCOL+O .1;
movtcurabs (&tx, &ty);
text (col);

ch='-'; line-FALSE; /*init to move line, don't draw it*/

littleport 0;

hheight=O.5; hwidth-O. 5;
hcolor=BLACK;
inithcur (&hheight, &hwidth, &hcolor);

cx=WXG4IN+O.5; cy-WYMIN+O.5; /*start cursor in lower left*/
movhcurabs (&cx, &cy); /*corner *-f cirawinc a r~
delhcuro;

bxl-cx-O.5; byl=cy-Q.5;
bx2=cx+O.5; by2=cy+O .5;

rbox (&bxl, &byl, &bx2, &by2);

getchr (&ch);
if (ch==OxOO)

129

% ILA

getchr (&sch);

while (!(ch==OxlB)) /*while not escape key*/

inqhcur(&cx,&cy,&hcolor); /*get position of x-hair
cursor*/

if ((sch==72) I (sch==75) I I(sch==77) I (sch==80))

top edge = (WYMAX+2.0)-hheight-0.05;
bottom-edge =WYMIN+hheight;
left edge =WXMIN+hwidth;

right edge =WXMAX-hwidth-0.05;

switch (sch)

case 72: cy=cy+(2*hheight); /*cursor up
height x-hair*/

if (cy>top edge) /*if at top
edge */

cy=top edge; /*stay there*/
row[0]=row(0] -1;
if(row[0j<-'l')

row (01=' 1';
break;

case 75: cx-cz-(2*hwidth); /*cursor left

width x-.hair*/
if (cx<left edge) /*if at left

edge*/
cx=left-edge; /*stay there*/

col[0]=col[0]-l;

if (col (0] <=' A')
col[0]='A';

break;
case 77: cx=cx+(2*hwidth); /*cu~sor right

width x.-hair*/
if (cx>right edge) /*if at right

edge */
cx=right edge; /*stay there*/

col(0]=col(0]+l;
if (col [0] >=' H')

col[0]-'H';
break;

case 80: cy=cy-(2*hheight); /*cursor down
height ::-hair*/

if(cy<bottcm_'ige) /*if at bottom

edcre */
cy=bottom_edge; /*stay there*/

row [0]=row [01± 1:
i f(row [O' C)I-' "

row (01='7';

130

break;
default: break;

/*endswitch*/

f/*end if sch*/

bigport ();
color=BLACK;
setcolor(&color);
xl=XLLROW-0.6; yl=YLLROW+0 .05;
.2=XURROW-0 .05; y2=YURROW-0 .05;
bar (&xl, &yl, &.x2, &y2);
xl=XLLCOL+0.6; yl=YLLCOL+0 .05;
x2=XURCOL-0 .05; y2=YURCOL-0 .05;
bar (&xl, &yI, &x2, &y2);
color=WHITE;
setcolor (&color);
tx.=XLLROW+0 .8; ty=YLLROW+0. 1;
movtcurabs (&tx, &ty);
text (row);
t::-=XLLCOL+0 .8; ty=YLLCOL+0.13;
movtcurabs (&tx, &ty);
text (col);
littleport 0;

movhcurabs (&cx, &cy); b
bxl=cx-0.5; byl=cy-0.5; /*draw cursor box*/
bx2=cx+0 .5; by2=cy+0.5;
deihcur 0;
rbox (&bxl, &byl, &bx2, &by2);

if (ch==0x0D)

bigporto; /*change viewports and*/
color=BLACK; /*write prompts*/
setcolor (&color);
write-dialog(&message3,&message4);

littleporto; /*change viewports and*/
movhcurabs(&cx,&cy); /*reposition cursor*/
cielhcuro %;

if (line==FALSE)

inqhcur (&c-:, &cy);
for(i=0; i<=usect nodes; i=14-1)

if (i>MAXIIOOES)

write erro-r (2);
break;

131

else
if((cell~i] .nodex==cx)&&(cell(i] .nodey-=cy))

active-node-i;
cell [active node] .out=cell~active _node] .out+1;

if (cell [active-node] .out>MAXEDGES)

write error(2);

break;
/*end if cell.out>MAXEDG-ES*/

color=BLACK;
arrow(color); /*draw arrow head*/
inqgcur (&lx, &ly, &gcolor);

movats (&lx, &ly);

line=TRUE; /*fixed end of line*/

cell(active-node] .edgex(cell[active-node] .out] [BEGIN] =lx;

cellfactive-node J.edgey[cellfactive-node) .out] [BEGIN)=ly;
inqhcur (&cx, &cy, &hcolor);
bxl=cx-0 .5; byl=cy-O.5;
bx2=cx+0 .5; by2=cy+0.5;
rbox (&bxl, &byl, &bx2, &by2);

/*delete box cursor*/ A~

movhcurabs (&cx, &cy);
/*draw h-carsor*/

element(active-node] .rtype="calls";

elernent[active-node] .elname[cell(active node] .out]=
cell [active-node] .ename;

element[active-node] .eltype~cell~active-node) .out]=
cell [active node] .etype; bek

/*end if else*/A
/*end for i*/

I/*end if line is false*/

while (line--TRUE)

sch-OxOO;
getchr (&ch);
if (ch==O:xOO)

getchr(&sch);

if((sch==72) I (sch==75) I (sch=-77) I (sch==80))

top edge = (WYMAX+2 .0? -hheight-0 .05;

132

bottom-edge = WYMIN+hheight;
left_edge =WXMIN+hwidth;

right edge =WXMAX-hwidth-0.05;

.0

switch (sch) -

case 72: cy=cy+(2*hheight); -

if (cy>top edge)

cy=top edge;
break;

case 75: cx=cx-(2*hwidth);
if (cx<left edge)
cx=left edge;
break;

case 77: c:x=cx+(2*hwidth);
if(cx>right_edge)
cx=right_edge;
break;

case 80: cy=cy-(2*hheight);
if (cy<bottom-edge)

cy=bottom edge;
break;

default: line=FALSE;
break;

/*endswitch*/

/*end if sch*/

if (ch==' t')

turn=turn+l;
if (turn>3)

write error(2);
break;

color=BLACK;

setcolor (&color);
delhcur 0;
lx=cx; ly=cy; /*draw line from fixed

end*/
lnabs(&lx,&ly); /*x-~hair cursor

position*/
line=TRUE; I

cell~active-node] .edgex-[cell~active-node] .cut] tturn]=l::;

cell~active node] .edgey~cell(active node] .ouitJ turn]=ly:

/*end if ch=--*

133

V % , R- ' - -e - F- 'I-

if (ch=-e')

color=BLACK;
setcolor (&color);

delhcur 0;
lx=cx; ly=cy+O.55; /*draw line from

fixed end*/
lnabs(&lx,&ly); /*x-hair cursor

position*/
line=FALSE;

cell(active-node] .edgex~cell~active-node] .out] [END]=lx;

cell(active node] .edgey~cell [active-node] .outi [END]=ly;

for (i=l; i<=used nodes; i=i+1)

if((cell(i] .nodex==cx)&&(cell~iJ.nodey==cy));

cell(i] .cnode(cell [active-node] .out]=active-node;

cellii] .cedge(cell[active-node] .out]=cell~active-node] .out;

element(i].e2name~cell(i].in]=cell[i].enane;

element(i] .e2type(cell(i] .in]=cell[i] .etype;

/*end for*/
/*end if ch=e*/e

movhcurabs (&cx, &cy);

/*end while line is true*/
I/*end if return*/

turn-O; /*reset turns in edges to zero*/

sch=OxOO;

getchr (&ch);
if (ch==OxOO)

getchr(&sch);

if (ch==' n')
break;

/*end while*/

bigport ()

if (ch=='n') - -

134

p' 1 ~r r.v ~ J~'wV.~$~~-~ %

add-nodeo;

/*enjd add edge*/

change_name()

float xl, yl, x2, yZ; /*graphic coordinates*/

float bxl, byl, bx2, by2; /*cell box coordinates*/

float cx, cy; /*x-hair cursor coordinates*/

float hheight, hwidth; /*x-hair cursor height/width*/

float top edge, bottom -edge;
float left_edge,right_edge;

int hcolor; /*x..hair cursor color*/
int color; /*current drawing color*/
char ch, sch; /*keyboard characters*/
static char messagel[]=
"Move cursor to desired node and press return.";
static char message2H]=" ";

write-dialog(&messagel,&message2);

littleporto; /*reset viewport area*/

hheight=O.5; hwidth=O .5;
hcolor=BLACK;
inithcur (&hheight, &hwidth, &hcolor);

cx=WXMIN+0.5; cy=WYMI1N+O.5;
movhcurabs (&cx, &cy);
delhcur 0;

bxl-cx-O.5; byl-=cy-O.5; .
bx2=cx+O.5; by2-cy+O.5;
rbox (&bxl, &byl, &bx2,,&by2);e

getchr (&ch);
if (ch=OxOO)

getchr (&sch);

while(' (ch==OxlB)) *while not escape key*/

inqhcur(&cx,&cy,&hcolor); /*get postition of x -hair
cursor*/

if((sch=-72)11I(sch==75) II sch==77)11I(T-h==9$fl)

135
.A'

P

#0

top edge =(WYMAX+2.O)-hheight;

bottom-edge = WYMI4N4hheight;
left edge =WXMIN+hwidth;

right edge =WXMAX-hwidth-O.05;

switch (sch)

case 72: cy=cy+(2*hheight); /*cursor up I

height x hair*/

if (cy>top edge) /*if at top
edge */

cy=top edge; /*stay there*/
break;

case 75: cx=cx-(2*hwidth); /*cursor left
width x-hair*/

if (cx<left edge) /*if at left
edge */

cx=left edge; /*stay there*/
break;

case 77: cx=cx+(2*hwidth); /*cursor right
width x-hair*/

if (cx>right edge) /*if at right
edge* /

cx=right_edge; /*stay there*/
break;

case 80: cy=cy-~(2*hheight); /*cursor'down
height x-hair*/

if (cy<bottom edge) /*if at bottom
edge*/

cy=bottom-edge; /*stay there*/

break;
default: break;

I/*endswitch*/

/*n if sch*/

movhcurabs (&cx, &cy);
bxl-cx-0.5; byl-cy-O.5; /*draw cursor box*/
bx2=cx+0.5; by2=cy+0.5;
delhcuro;V
rbox (&bxl, &byl, &bx2, &by2);%

if(ch==OxOD) /*if return*./

inqhcur(&cx,&cy,&hcolor);

for(i-0; i<=used nodes; i=i4-1)

if(((cel I i I nocie-i==c::) -,e IIt i Ind-ey==cy)
active-node=i;

136

/*end for*/

color=WHITE;
setcolor (&color); P'
xl=cx-O.45; yl=cy-O.45; /*delete old name*/

x2=cx+O.45; y2=cy-O.25;
bar (&xl, &yl, &x2, &y2);

get naxneo; /*get new namne*/

/*end if ch=return*/

sch=OxOO;

getchr(&ch); -

if (ch==QxOO)

getchr (&sch);

I!*end while*/

delboxo; /*delete current rubber band box*/

bigport 0

I /*end change_name*/

change type (

float xl, yl, x2, y2; /*graphic coordinates*/%
float ix, iy; /*icon area coordinates*/
float bxl, byl, bx2, by2; /*cell box coordinates*/

float cx, cy; /*x-hair cursor coordinates*/
float hheight, hwidth; /*x-hair cursor height/width*/
float top edge, bottom edge;t
float left edge, right edge;
int hcolor; /*x-.hair cursor color*/
int color; /*current drawing color*/
int iconcolor; /*current icon color*/
char ch, sch; /*keyboard characters*/

littleporto; /*reset viewport area*/

hheight-O.5; hwidth=O.5;
hcolor-BLACK;
inithcur (&hheight, &hwidth, &hcolor);

cx=WXMIN-O.5; cy=WYMIN4-.5;
movhcurabs (&cx, &cy);
delhcur U;

137

-'r Jill

bxl-cx-O. 5; byl=cy-O. 5;

bx2=cx4-O.5; by2=cy+O.5;

rbox (&bxl,&byl&bx2, &by2);

getchr (&ch);
if (ch=-OxOO)

getchr (&sch);

while(' (ch==OxlB)) /*while not escape key*/

inqhcur(&cx,&cy,&hcolor); /*get postitioi of x-hair
cursor*/

if((sch=-72) I I(sch==75) I I(sch==77)1II(sch==80))

top edge = (WYMAX+2.0)-hheight;
bottom-edge = WYMIN+hheight;
left_edge WXMIN+hwidth;
right edge WXMAX-hwidth-O.05;

switch (sch)

case 72: cy-cy+(2*hheight); /*cursor up
height x -hair*/

if (cy>top edge) /*if at top

edge* /
cy=top edge; /*stay there*/

break;
case 75: cx-cx-(2*hwidth); /*cursor left

width x-hair*/

if (cx<left edge) /*if at left
edge*/

cx-left-edge; /*stay there*/

break;

case 77: cx-cx4(2*hwidth); /*cursor right
width x-hair*/

if(cx>right_edge) /*if at right
edge */ '

cx=right_edge; /*stay there*/

break;

case 80: cy-cy-(2*hheight); /*cursor down
height x-hair*/%

if(cy<bottom-edge) /*if at bottom%

cy=bottcom edgre; /*stay there*/

break;

default: break;

/*endswitch*/ '

/*end if sch*/

138

% . %

~~A ska S N 'Q WON:,~% ',~

movhcurabs (&cx, &cy);
bxl=cx-O.5; byl=cy-O.5; /*draw cursor box*/
bx2=cx+O.5; by2=cy+O.5;
deihcur 0;
rbox (&bxl, &byl, &bx2, &by2);

if (ch==' t')

;etchr (&ch);

inqhcur (&cx, &cy);

color=WHITE;
setcolor (&color);
xl=cx-O.45; yl=cy-O.2; /*draw cursor box*/
x2=cx4-O.45; y2=cy4-Q.45;
bar (&xl, &yl, &x2, &y2);

switch (ch)

case 'p': icoricolor=GREEN;

ix=cx-O .5; iy=cy-O .2;
peicon(ix, iy, iconcolor);
break;

case 'c': icoricolor=BROWN;

ix='cx-O.5; iy=cy-O .2;
ce_icon(ix, iy, iconcolor);
break;

case 'a': iconcoior=CYAN;
ix=cx-O .5; iy=cy-O.2;
a-icon(ix, iy, iconcolor);
break;

case 'v': iconcolor=BLUE;

ixcx-O.5; iy-cy-O .2;
va-icon(ix, iy, iconcolor);

break;
case If': iconcolor=YELLOW;

ix-cx-O. 5; iy=cy-O.2;
f icon(ix, iy, iconcolor);
break;

case It': iconcolor=RED;

ix=cx-O. 5; iy-cy-O .2;
t icon(ix, iy, iconcolor);
break;

case in': iconcolcr=MAGENTA;
ix~x-O5;iy=cy-O.2;

in _icon(i:x, iy, iconcolor);
break;

default: break;
/*end switch */

/*end if ch=t*/%

139

%I

sch=OxOO;

getchr (&ch);

if (ch==OxOO)

getchr (&sch);

/*end while*/

delboxfl; /*delete current rubber band box*/

bigport U;

/*end change type*/

p140

. , - w -- . - * . . : . . . o - ,- - - ' . - - - -.

* Name: sfun2.c *

* Purpose: contains sub-functions called by primary command *

* functions constained in file fun.c *

* Author: David D. O'Dell *

* Date: 7 January 1988 *

#include "intuit.h"
#include "e:*struct.h"

createmodule tree()

char ch, sch;

int on;
static char messagel(]="FUNCTION NOT IMPLEMENTED.";
static char message2[]="Press any key to continue.";

write dialog(&messagel,&message2);

getchr (&ch);

if (ch==OxOO)

getchr (&sch);

on=decodechar (sch);

/*end if OxOO*/

cleardialogbox (;

return (on);

/*end creat moduletree*/

editmodel_paragraphs ()

char ch, sch; /*keyboard characters*/ (
int record;
int segment; S
int address;

int on;
int color;

float xl,yl,x2,y2;

buf32 (&segment);
address-segnent* 12;
imsave(&address); /*save screen m memory',

color-BLACK;

141

Ile

setcolor (&color);

clro; /*clear entire screen to BLACK*/

color-RED;
setcolor (&color);
xl=O.l, yl=O.1, x2=WXMAX-O.1; y2=WYMA.X-O.l;
box (&xl, &yl, &x2, &y2);
xl=O.l; yl=WYMAX-O.5;
movabs(&xl,&yl);,
x2=WXMAX-O.1; y2-WYMAX-O.5;
inabs (&x2, &y2);
xl=O.l; yl=O.5;
movabs(&xl,&yl);
x2=WXMAX-O.1; y2=0.5;
Inabs (&x2, &y2);

record-active-node;

curlocate (1,6);
printf("MODEL NAME: %-12s",model-name);
curlocate (1,56);
printf("RECORD NUMBER: 7%-4d",record);
curlocate(3,2);
printf("Name: %-12s",element(record] .ename);
curlocate (3,34);
printf("Description: %-30s",element (record] .dname);

curlocate(4,2);
printf("Type: %-8s",element(record] .etype);

curlocate (5,2);

printf ("Date Added: %-7s",element (record] .date added);
curlocate (5,34);
printf ("Last Modified: %-7s"felement[record].last-mod);
curlocate (5,59); V
printf("Nunber Mods: %-5d",element(record] .nods);
curlocate(7,2);

printf("Index: %-4s",element(record] .idx);
curlocate (7, 34);
printf ("Generic Range: %-20s",element[record] .grange);

curlocate(8,2);
printf ("Index Statement: %-58s",element~record] .idx-stint);
curlocate(11,2);
printf ("Generic Rule: %-61s",element(record] .grule);
curlocate (14,2);
printf("Comments: %-65s",elementfrecord] .corments);
curlocate(17,2);
printf ("Relationship Type: ':-8s",element [record]. rtype);%
curlocate(17,31); %~

printf("Edge 1: %-12s called by
%-12sn,eleinent~record] .e2naine[l],

element Erecor.e lnameil)):%
curlocate(18, 31);%
printf("Edge 2: -12s called by

142

.0

-. e-V

%-12s",elernent(record] .e2namei2],
elernent(record] .elname(2J);

c-urlocate (19, 31);
printf("Edge 3: %-12s called by

%-12s",element~record] .e2narne(3],

elernentfrecord] .elname[3]);

curlocate (20,2);
printf ("Relative Position: %-8d",elementtrecordl .relypos);

curlocate (20,31);
printf ("Edge 4: %-12s called by

%-12s",element~record] .e2name[4],
element(record] .elnare[4]);

curlocate (21,31);
printf ("Edge 5: %-12s called by

' -12S",element(record] .e2name[5],
element~recordj .elname[5]);

curlocate (23, 8);
printf("[+] Next -1Previous (e) Edit [f] find");
printf(" (s] Save (r] Return");

getchr (&ch);
if (ch==0x00)

getchr (&sch);
on=decode char (sch);

/*endj if 0x00*/

while(' (ch==0xlB)) /*while not escape*/

if (ch--F')

record=record+1;

if (record='=MAXNODES)
record=0;

curlocate (1,70);
printf (" %-4d", record);
curlocate (3,9);
printf("%-12s",elementfrecordl.ename); -

curlocate (3, 48);
printf("%-30s",element~record] .dname); 0
curlocate (4,9); I%'

printf("%-8s",element~recordl .etype);
curlocate (5,15);
printf("%-7s",element(recordl .date-added);
curlocate (5,50); -*I

printf("%-7s",element(recordj .last mod);

curlocate(5,73);
printf("' -5d",element(recordl .nmods);
curlocate ('7, 10);
printf("% -4s",element[record] .idx!);

143

Na

.J V1,10 . -- -

curlocate (7, 50);
printf("%-20s",elementfrecord] .grange);

curlocate (8, 20);
printf("%-58s",element(record] .idx stint);

curlocate (11,17);

printf("%-61s",elemfent(record] .grule);

curlocate (14, 13);
printf("%-65s",e..ement~record] .corments);

curlocate(1 7 ,21);

printf("I%-8s",elementtrecord] .rtype);
curlocate (17,40);
printf(" %-12s called by

%-12s",eleinent~record].e2name[1],

element~recordj .elnanie(1]);
curlocate (18, 40);

printfi" %-12s called by
-12s",element(record] .e2name(2J,

element frecord) .elname[2.1);

curlocate (19, 40);

printf(" %-12s called by
't-12Snelement[record] .e2name[31,
elementfrecordj .elname[3]);

curlocate(20,21);
printf("%-8d",elemlent~record] .relypos);

curlocate (20, 40);
printf(" %-12S called by

%-12s",element(recordl .e2naxne(4],
element(record] .elnarne(4J);

curlocate (21,40);
printf(" %-12S called by

%-12s",eleinent~record] .e2name[5],

element(record] .elname[51);

else if(ch=='-')

record-record-l;

if (record<0)
record=MAXNODES-1;

curlocate (1,70);

printf (" %-4d", record);
curlocate (3,9);
printf("%-12s",elementfrecordJ .enarne);

curlocate(3, 48);
printf("%,-30s",element[record1 .cname);

curlocate (4, 9);
printf("%-8s",eleinent~recordl .etype);

curlocate (5,15);
printf("% -7s'",elemeitfrecordl .date-added);

* curlocate (5,50);

* ~printf(,--7s",eleinent~r9ord1 m)

curlocate (5,73);

144

printf("%-5d",element(record] .nxnods);

curlocate (7,10);
printfU'%-4s",element~record] .idx);

curlocata (7,50);
printf("%-20s",element~recordl .grange);
curlocate (8, 20);
printf("%-58s'",element~record] .idt" stmnt);

curlocate (11,17);
printf("%-61s'",element[record] .grule);

curlocate (14,13);
printf("%-65s",element~recordj .commnents);

curlocate (17, 21);
printf("%-8s",element~record] .rtype);

curlocate (17,40);
printf(" %-12s called by

%-12s'l,element(record].e2name[1],
element~record] .elname(1]);

curlocate(18,40);
printf(" %-12s called by a.

%-12s",element~record] .e2naine(2],
element~recordJ .elriame[2]);

curlocate (19,40);
printf("I %-12s called by

%-12s", elernenttrecord) .e2naxne[3),
element[record] .elname[31);

curlocate(20,21);
printf("%-8d",elementfrecord] .rel_pos);

curlocate (20,40);
printf(" %-12s called by

%-12s",element~recordj .e2namne[4],
element [record] .elnane (41);

curlocate (21,40); -

printf(" %-12s called by
%-12s"l,element(record] .e2naxne[5],

element(record] .elnaine[5]);

else if(ch--'f)

curlocate (23,8);
printf ("Find not implemented--press any key to

continue.");

getchr (&rh);
curlocate (23, 8);
printf("(+] Ne:-:t -1Previ' :S [el Ecdi, ff1

find");
printfi" [s] Save [r] Return");

else if (ch==' s'

curlocate (23,8);

145

printf ("Save not implemented--press any key to
continue.");

getchr (&ch);
curlocate (23,8);
printf("[+I Next -IPrevious [e) Edit [f)

find");
printf("1 [I Save [r) Return");

else if(ch=-I'e')

curlocate (23, 8);
printf("<TAB> to move between fields, <ESC> to

exit editing.");

getchr (&ch);
if (ch=OxOO)

getchr (&sch);
while ('(ch==OxlB)) /*while not escape*/

curlocate (3, 33);
printf (">");

getchr(&ch);
if (ch=OxOO)

getchr(&sch);
if (ch==OxlB)

break;
else if(! (sch==OxOF)) /*if not tab*/

curlocate(3.48); /*description*/
scanf("%s",element[record] .dnarne);

I/*end if else*/

curlocate (5,1);
printf (">"1);

getchr (&ch);

if (ch=OxOO)
getchr (&sch);

if (ch==OxlB)
break;

else if (! (sch=-OxOF)) /*if not tab*/

curlocate(5,15); /*date added*/
scanf("%s",element(record] .date added); 5

/*end if else*/

curlocate (5,33); I

printf(">");

getchr (&(-h) ;an
if (ch=O:O)

aetchr (&sch) V
if (ch==O::lB) -

break;

146

else if (! (sch==OxOF)) /*if not tab*/

curlocate(5, 50); /*last mod*/
scanf("%s",elementfrecord] .last-mod);

/*end if else*/

curlocate (5,58);
printf(Il>H);
getchr (&ch);

if (ch=OxOO)

getchr (&sch);
if (ch==OxlB)

break;

else if (! (sch==OxOF)) /*if not tab*/

curlocate(5,73); /*num mods*/
scanf("%s",element~record .rnods);

I/*end if else*/

curlocate (7,1);
printf(">%)

getchr (&ch);
if (ch=OxOO)

getchr (&sch);
if (ch==OxlB)

break;

else if(! (sch==OxOF)) /*if not tab*/

curlocate (7, 9); /*index*/
scanf("%s",element~record] .idx);

/*end if else*/

curlocate (7,33);
printf(">");

getchr(&ch);
if (ch=OxOO)

getchr (&sch);

if (cb==OxlB)
break;

else if(!(sch==OxOF)) /*if not tab*/

curlocate(7,50); /*generic range*/
scanf ("%s",element [record] .granqe);

/*end if else*/

curlocate (8,1);
printf (">");
getchr (&ch);

if (ch=0:-:O0)%

getchr (&sch);
if (ch==O::J.B)

break;

147

else if(! (sch= OxOF)) /*if not tab*/

curlocate(8,20); /*index statement*/

scanf ("%s",elernent(record] .idx -stint);
/*end if else*/

curlocate (11, 1);
printf(">");

getchr (&ch);
if (ch-OxOO)

getchr (&sch);
if (ch==OxlB)

break;
else if(! (sch=-OxOF)) /*if not tab*/

curlocate(l1,17); /*generic rule*/
scanf("%s",element(record] .grule);

I/*end if else*/

curlocate (14,1);

printf(">");

getchr (&ch);
if (ch'=OxOO)

getchr (&sch);
if (ch==OxlB)

break;
else if(! (sch=-OxOF)) /*if not tab*/

curlocate (14, 13); /*commients*/
scanf("%s",element(record] .conunents);

/*n if else*/

/*end while not escape*/

curlocate (23, 8);
printf("f+] Next [-] Previous [e] Edit [f]

find");
printf(ff [s] Save [r] Return");

/*end if ch-e*/

else if(ch--'r')

break;
I/*end if else*/

getchr(&ch);
if (ch==0x00)

getchr (&sch);

on=decode char (sch);
/*end if OxOO*/

148

/*end~ while not escape*/

imrest(&address); /*restore screen from memory*/

on=l;

return (on);

/*end edit model paragraphs*/

add-module()

char ch;
static char messagel(]="FtJNCTION NOT IMPLEMENTED.";

static char message2r]-"Press any key to continue.";

write dialog(&messagel, &message2);

getchr (&ch);

clear dial ogboxo;

delete-node()

float xl, yl, x2, y2; /*graphic coordinates*/

float bxl, byl, bx2, by2; /*cell box coordinates*/

float cx, cy; /*x-hair cursor coordinates*/

float hheight, hwidth; /*x-hair cursor height/width*/
float top edge,bottom-edge;
float left_edge, right edge;

mnt hcolor; /*x-hair cursor color*/

mnt color; /*current drawing color*/

char ch, sch; /*keyboard characters*/
static char messagellj-"Move cursor and press return to%

delete node.";
static char message2f]="Or press <esc> to return.";

write dialog(&messagel,&message2);

littleporto; *re set ;riewp-rt area*/

hheight-O.5; hwidth=O .5;

hcolor=BLACK;
inithcur (&hheight, &hwidth, &hcolor);

cx=WXMIN+O .5; cy=WYMIN+O.5;

149

-4- 0

-*1111 - : :<A-

movhcurabs (&cx, &cy);
delhcur o;

bxl=cx-0.5; byl=cy-0.5;
bx2-cx+0.5; by2=cy+0.5;

rbox(&bxl, &byl, &bx2, &by2);

getchr (&ch); 0

if (ch==OxOO)
getchr (&sch);

while (! (ch==OxlB)) /*while not escape key*/

inqhcur(&cx,&cy,&hcolor); /*get postition of x-hair
cursor* /

if((sch==72)11I(sch=-75)11I(sch77)11I(sch==80))

top-edge = (WYMAX+2.0)-hheight;

bottom-edge = WYMINA-.height;
left_edge =WXMIN4-hwidth;

right_edge =WXMAX-hwidth-0.05;

switch (sch)

case 72: cy=cy+(2*hheight); /*cursor up

height x -hair*/

if (cy>top edge) /*if at top

edge */
cy=top_edge; /*stay there*/

break;
case 75: cx=cx-(2*hwidth); /*cursor left

width x-hair*/

if (cx<left edge) /*if at left
edge* /

cx-left-edge; /*stay there*/
break;

case 77: cx=cx+(2*hwidth); /*cursor right

width x-hair*/
if (cx>right edge) /*if at

right edge*/
cx-right edge; /*stay there*/I

break;

case 80: cy~cy-(2*hheight); /*cursor down
heicght- ::-hair*/

if(cy<bottomeige) /*if at bottom
edige*/'

cy=bottom edge: /*stay there*/

break;
default: break;

150

/*endswitch*/

/*end if sch*/

movhcurabs (&cx, icy);
bxl=cx-O.5; byl=cy-O.5; /*draw cursor box*/

bx2=cx+O.5; by2=cy+O.5;
deihcur o;
rbox (&bxl, &byl, &bx2, &by2);

if(ch==OxOD) /*if return*/

inqhcur (&cx, &cy);

color=WHITE;
setcolor (&color);
xl=cx-O.45; yl=cy-O.45; /*draw cursor box*/
x2=cx+O.45; y2=cy+O.45;
bar (&xl, &yl, &x2, &y2);

/*end if ch=d*/

sch=OxOO;

getchr (&ch);
if (ch==OxOO)

getchr (&sch);

delboxo, /*delete current rubber band box*/

bigport 0;

clear dialog-boxo;

L
I /*end~ delete-node*/

delete_edge()

char ch;
static char messagel(]="FUNCTION NOT IMPLEMENTED.";
static char message2EJ="Press any key to continue.";

write dialog(&messagel,&message2;

getchr (&ch);

clear dialog box();

151

delete-rnodule()

char ch;

static char messagel[]="FUNCTION NOT IMPLEMENTED.";

static char message2[]="PresS any key to continue.";

write dialog(&messagel,&message2);

getchr (&ch);

cJlear-dia logbo;

152

ll^Ial-71 -W .* TM ---- .

APPENDIX D

INTUITION
User's Manual

TABLE OF CONTENTS Page

1: INTRODUCTION 154

2: SYSTEM REQUIREMENTS 155

Hardware 155
Software 155
Memory 155
Operating System....................... 155
Graphic Display Cards 155
Pointing Devices 155

3: GETTING STARTED 156

Power Up 156
The Opening Screen 156
The Drawing Elements 156
The Command Buttons 158
How to Use Your Pointing Device 158

4: CREATING A MODEL 159

Selecting the Program Mode 159
Adding Elements to the Model 159
Deleting Elements from the Model 162
Changing Elements Names or Types 164
Finding a Specific Element 165
Moving Elements or Subtrees 166
Loading a Model from Disk 166
Saving a Model to Disk 166
Connecting to a DBMS 166
Quitting the Program 167

153

ml

p

q vK ~v [v 2 ; ¢ ?. . /.
"' ,

, .'., .' "" i;,.,.

1: INTRODUCTION

Welcome to INTUITION, a graphics-based program that allows

you to generate sophisticated model representations directly

on the computer screen and to transform these representations

to a database form for subsequent manipulation and solution.

INTUITION assumes that you are familiar with the concept of

Structured Modeling and makes no attempt to "teach" this

concept itself. Otherwise, the functions of INTUITION are

sufficiently simple to master with a few minutes of practice.

The program is totally self-prompting and menu-driven. We

have tried to make it work in an manner that is both obvious

and intuitive (hence the name). Normally, what you expect to

happen will happen; but, if something does go wrong, the

program will identify the error and tell you what to do to

fix it. You do not need to read the user's manual from cover

to cover in order to use the program. In fact, you would

find much of the reading duplicative. The user's manual is

intended as a reference manual, so when you look up a

particular topic, all of the information for using that

function is contained within that section. You don't have to

go on a scavenger hunt to find out what you need to know.
I

So, with that in mind, let's begin

154 I

% Z* '

2: SYSTH REQUIRMENTS

HARDWARE:

An IBM PC (XT or AT) or compatible with at least one
disk drive.

A monitor capable of resolving, at a minimum, 640 x
200 pixels.

SOFTWARE:

An INTUITION (V 1.1) program disk.

HALO Graphics Library (specifically, the graphics driver
for your particular computer). If not previously
installed, the appropriate driver must be copied to the
INTUITION program disk.

ORACLE Relational Database Management System (RDBMS) for
IBM PC/MS-DOS

MEMORY:

The program will run minimally in 640K of memory. For
effective operation, expanded memory of 1M or more is
recommended. (This does not consider the memory needed
to run the ORACLE RDBMS. Consult your ORACLE User's
Guide to determine the RDBMS's memory requirements.)

OPERATING SYSTEM:

IBM PC DOS or MSDOS (Release 2.0 or later).

GRAPHIC DISPLAY CARDS:

IBM Color Graphics Adapter (CGA)
Generic CGA work-alikes
IBM Enhanced Graphics Acapter (EGA)
Sigma Designs Color 400

POINTING DEVICES:

Keyboard cursor keys (default)
Microsoft or compatible mouse (optional)

155

'S

3: GETTING STARTED

POWER UP:

Ensure that the appropriate graphics driver has been
copied to the INTUITION program disk. (If using a mouse,
ensure that the mouse driver has also been copied.)

Insert the INTUITION program disk in drive A: and type
int to invoke the program. An initial menu screen will
quickly appear. Enter the number of the graphics device
that matches your equipment configuration and press
return. The main program will then be loaded.

THE OPENING SCREEN:

Shortly you will be presented with an opening screen
similar to Figure 1. This screen consists of five
windows:

At the top of the screen is the status window.
This shows the type and name of the current
model.

The window on the top right contains the
geometric shapes used to draw the structured
models.

The window on the bottom right contains the
command buttons available in the program.

The window at the bottom of the screen is the
dialog area. Prompts and error messages will
always appear here.

The white center area is the workspace F7 r
drawing the structured model.

THE DRAWING ELEMENTS:

Each icon on the right side of the screen represents
different type of element in the structured model.

PE represents a primitive entity element and
is a green square.

CE represents a compound entity element and is a
brown octagon.

156

... ,,,.,,. '- ' -\ -.. ,V

.%

TYPE.,: NAME: ROlhCL .

TV,4 II j"L h

COMMSNO BUTTOI-NS

F UlOE FM-OVE

FZROO F7LOl O %°
F30EL V6SRVE

F-41HG F9CLc

_____ ____ ____ ____ ____ FIOQIUST S

Figure 1: Main Screen

p
A represents an attribute element and is a .'

cyan circle.

VA represents a variable attribute element and
i-s a blue trapezoid.

F represents a function element and is a
yellow triangle.

T represents a test element and is a red
diamond.

M represents a module and is a magenta
rectangle.

(In monochrome mode, all icons are white with a black
border.)

157

'-

%%

L %"

THE COMMAND BUTTONS:

All program functions are initiated by choosing the
appropriate command button. The selected button is
highlighted. Only one command can be selected at a
time. Commands are chosen by pressing the appropriate
function key (e.g. fl function key selects FIMode), by
moving the highlight with the cursor keys, or by
clicking on the desired command with the left mouse
button. Commands may be selected in any order. (When
using the cursor keys to move to a specific command, all
intervening command buttons are rapidly selected and
deselected. This can be disconcerting at times. For
this reason, using the function keys and/or mouse to
select commands is recommended.) Some commands produce
submenus, providing additional choices. Simply follow
the appropriate prompts when presented with a submenu.

HOW TO USE YOUR POINTING DEVICE:

The primary purposes of a pointing device are to move
the various "cursors" around the screen, to draw on the
screen, and to select icons and commands from the menus.

The default pointing device is the keyboard cursor keys.
To access these keys, the numeric keypad must be in
"cursor mode." If your computer prints numeric digits
on the screen when you press a cursor key, press the
"num lock" key once to exit "numeric mode." Then
-ressing the cursor keys will move the cursor either
horizontally or vertically.

A Microsoft compatible mouse may also be used as an
optional pointing device in future versions of the
program. Ensure that the mouse is connected to the
computer (normally through the serial port) and that the
appropriate HALO graphics mouse driver is on the program
disk. To move the cursor, simply move the mouse in the
direction you want the cursor to move. To select or
drag an object, click (press) the left mouse button.
To release or place an object, click the right mouse-
button. (If you have a three button mouse, the middle
button is currently unused.)

15

.P

158

.. . 1 ..f.. . .. V |

4: CREATING A MODEL

SELECTING THE PROGRAM MODE:

The program will display the FIMode submenu:

The program will prompt you to enter a model name.
The name must be 10 or less characters long. If
you attempt to enter more than 10 characters, only
the first 10 will be accepted and the program will
automatically continue from this point. Valid
names can contain any combination of letters,
digits or underscores. End names of less than 10
characters by pressing the return key.

Press 1 to enter a genus graph. The program
prepares the drawing area and data structures to
accept a new genus graph. WARNING: SELECTING THIS
OPTION DESTROYS ANY PREVIOUS GENUS GRAPH IN THE
DRAWING AREA.

Press 2 to enter a modular tree. The program
prepares the drawing area and data structures to
accept a new genus graph. WARNING: SELECTING THIS
OPTION DESTROYS ANY PREVIOUS MODULAR TREE IN THE
DRAWING AREA.

Press 3 to edit module or genus paragraphs. The
program will display the paragraph editing screen.
You can scroll through the model paragraphs by
using the + and - keys. You can move from field
to field in a specific paragraph by using the left
and right cursor keys. You can edit any field
except genus name, module name, genus type, and
calling sequence. These fields can only be
modified by changing the appropriate genus graph or
module tree. The cursor will not enter one of
these fields on the edit screen. Press the escape
key to exit editing mode. This will return you to
the initial display screen.

ADDING ELEMENTS TO THE MODEL:

Select the F2Add command button by either pressing the
f2 function key, clicking on the F2Add command with the
left mouse button, or moving the highlight to F2Add with
the cursor keys. i'he program will display the F2Add
submenu:

159

Press 1 to add an element to the genus graph.

A box cursor will appear in the lower left
corner of the drawing area. Move the cursor
with the cursor keys or mouse. It will move
within a grid eight blocks wide by seven
blocks high.

To enter an element, move the box cursor to
the desired location and press the first
letter of the element type (i.e., p, c, a, v,
f, t or m) or click on the element icon with
the left mouse button. The appropriate icon
will be drawn inside the box cursor.

The program will then prompt you to enter an
element name. Names must be seven or less
characters long. If you attempt to enter more
than seven characters, only the first seven
will be accepted and the program will auto-
matically continue from this point. Valid
genus names must be unique and must begin with
a letter. The remainder of the name may
contain any combination of letters, digits or
underscores. End names of less than seven
characters by pressing the return key.

ELEMENT NAMES ARE MANDATORY ENTRIES. YOU CANNOT
CONTINUE UNTIL YOU ENTER A VALID ELEMENT NAME.

You can now move the box cursor to enter
another element or:

press * to add an edge;
press m to add a module;
press the escape key to return to the

F2Add submenu.

To return to adding nodes after adding edges
and/or modules, simply press n. You :an
repeatedly cycle between adding nodes, edges,or modules by pressing the n, e, or m keys.

Press 2 to add an edge (directed arc) to the genus
graph or an undirected arc to a modular tree.

A box cursor will appear in the lower left
corner of the drawing area. Move the cursor
with the cursor keys or mouse. It will move
within a grid eight blocks wide by seven
blocks high.

160

M

To draw an edge, move the box cursor to the
calling element and press the return key. The
program will automatically draw the 'arrow"
end of a directed arc below the element icon
in a genus graph. Or it will begin an undi-
rected arc to the left side of a modular icon
in a modular tree.

The box cursor will change to a cross-hair
cursor. Move the cross-hair cursor (with the
cursor keys or mouse) to the called element
and press a for end. The edge will Lh drawn.
(Note: When using the cursor keys to draw an
edge, you can only move the cursor horizon-
tally or vertically; however, the actual edge
will be a straight line directly from the
beginning point to the end point. It will NOT
be a series of vertical and horizontal lines
following the cursor path.)

Sometimes, when an edge is drawn directly
between two elements, if will cross an inter-
vening element. To prevent this, an edge can
contain up to three turns. To turn an edge,
press t for turn. The completed edge segment
will be drawn. You can then continue the edge
in any direction. This allows you to draw
"around corners."

You can now move the box cursor to enter
another edge or:

press n to add a node;
press m to add a module;
press the escape key to return to the i•.

F2Add submenu.

To return to adding edges after adding nodes
and/or modules, simply press e. You can
repeatedly cycle between adding nodes, edges,
or modules by pressing the n, e, or m keys.

D
Press 3 to add a module to the module tree or
genus graph.

A rectangular cursor will appear in the lower
left corner of the drawing area. Move the
cursor with the cursor keys or mouse. It
will move within a grid eight blocks wide by
seven blocks high.

161

-

°I

To enter a module, move the rectangular cursor
to the desired location and press m or click
the left mouse button. The module icon will be
drawn inside the rectangular cursor.

The program will then prompt you to enter an
module name. Names must be seven or less
characters long. If you attempt to enter more
than seven characters, only the first seven
will be accepted and the program will auto-
matically continue from this point. Valid
module names must be unique and must begin
with a capital M and underline character (M_).
The remainder of the name may contain any
combination of letters, digits or underscores. ;
End names of less than seven characters by
pressing the return key. MODULE NAMES ARE
MANDATORY ENTRIES. YOU CANNOT CONTINUE UNTIL
YOU ENTER A VALID MODULE NAME.

You can now move the rectangular cursor to
enter another module or:

press a to add an edge;
press n to add a node (in genus graphs

only);
press the escape key to return to the

F2Add submenu.

To return to adding modules after adding edges
and/or nodes, simply press m. You can repeat-
edly cycle between adding nodes, edges, or
modules by pressing the n, e, or m keys.

DELETING ELEMENTS FROM THE MODEL:

Select the F3Del command button by either pressing the
f3 function key, clicking on the F3Del command w i t h
the left mouse button, or moving the highlight to F3Del
with the cursor keys. The program will display the
F3Del submemu:

Press 1 to delete an element from a genus graph.

A box cursor will appear in the lower left
corner of the drawing area. Move the cursor
with the cursor keys or mouse. It will move
within a grid eight blocks wide by seven
blocks high. To delete an element, move the
box cursor to the desired location and press

162

%

return for node or click the left mouse
button. The element icon, element name, and
all arcs into and out of the element will be
deleted.

You can now move the box cursor to delete
another element or:

press e to delete an edge; %
press m to delete a module;
press the escape key to return to the

F3Del submenu.

To return to deleting nodes after deleting
edges and/or modules, simply press n. You can
repeatedly cycle between deleting nodes,
edges, or modules by pcessing the n, e, or m
keys.

Press 2 to delete an edge (directed arc) from a
genus graph or an undirected arc from a modular
tree.

A box cursor will appear in the lower left
corner of the drawing area. Move the cursor
with the cursor keys or mouse. It will move
within a grid eight blocks wide by seven
blocks high.

To delete an edge, move the box cursor to the
calling element and press the return key. The
box cursor will change to a cross-hair cursor.
Move the cross-hair cursor inside the arrow
head of the arc to be deleted and press the
return key. The arc will be deleted.

You can now move the box cursor to delete
another edge or:

press n to delete a node;
press m to delete a module;
press the escape key to return to the

F3Del submenu.

To return to deleting edges after deleting
nodes and/or modules, simply press e. You can
repeatedly cycle between deleting nodes,
edges, or modules by pressing the n, e, or m
keys.

Press 3 to delete a module from a module tree or
genus graph.

163

%

A box cursor will appear in the lower left
corner of the drawing area. Move the cursor
with the cursor keys or mouse. It will move
within a grid eight blocks wide by seven
blocks high.

To delete a module, move the box cursor to the
desired location and press m for module or
click the left mouse button. The module icon,
module name, and all arcs into and out of the
module will be deleted.

You can now move the rectangular cursor to
delete another element or:

press a to delete an edge;
press n to delete a node;
press the escap* key to return to the

F3Del submenu.

To return to deleting modules after deleting
edges and/or nodes, simply press m. You
can repeatedly cycle between deleting nodes,
edges, or modules by pressing the n, o, or m
keys.

CHANGE ELEMENT NAMES OR TYPES:

Select the F4Chg command button by either pressing the
f4 function key, clicking on the F4Chg command with the
left mouse button, or moving the highlight to F4Chg with
the cursor keys. The program will display the F4Chg
submenu:

Press 1 to change an element name on the genus
graph.

A box cursor will appear in the lower left
corner of the drawing area. Move the cursor
with the cursor keys or mouse. It will move
within a grid eight blocks wide by seven
blocks high.

To change an element name, move the box cursor
to the desired location and press c for change
or click the left mouse button. The old name
will be erased and the program will prompt you
to enter a new element name. Names must be
seven or less characters long. If you attempt
to enter more than seven characters, only the
first seven will be accepted and the program

164

b

.... . t . . -

will automatically continue from this point.
Valid genus names must be unique and must
begin with a letter. The remainder of the
name may contain any combination of letters,
digits or underscores. End names of less than
seven characters by pressing the return key.
ELEMENT NAMES ARE MANDATORY ENTRIES. YOU
CANNOT CONTINUE UNTIL YOU ENTER A VALID
ELEMENT NAME.

You can now move the box cursor to change
another element name or press the escape key
to return to the F4Chg submenu.

Press 2 to change an element type on the genus
graph.

A box cursor will appear in the lower left
corner of the drawing area. Move the cursor
with the cursor keys or mouse. It will move
within a grid eight blocks wide by seven
blocks high.

To change an element type, move thp box cursor
to the desired location and press the first
letter of the element type (i.e., p,- c, a, v,
f, or t) or click on the element icon with the
left mouse button. The old icon will replaced
with the new icon.

You can now move the box cursor to change
another element type or press the escape key
to return to the F4Chg submenu.

FINDING A SPECIFIC ELEMENT:

Select the F5Find command button by either pressing the
f5 function key, clicking on the F5Find command with the
left mouse button, or moving the highlight to F5Find
with the cursor keys.

The program will prompt you to enter the name of the
element you wish to find followed by the return key.
You must enter the name exactly as it is 'isted in the
database. The program will find this element on the
genus graph and move the box cursor around it.

You can now enter another name or press the ecape key
to select another command button.

165

MOVING ELEMENTS OR SUBTREES:

This function is not implemented in the version of
INTUITION. Selecting the F6Move command button has
not effect.

II

LOADING A MODEL FROM DISK:

Select the F7Load command button by either pressing the
f7 function key, clicking on the F7Load command with the
left mouse button, or moving the highlight to F7Load
with the cursor keys. 1

The program will prompt you to enter the filename. It
will then load the file. The selected file must be on
the disk in drive A. WARNING: SELECTING THIS OPTION
DESTROYS ANY GRAPHS IN THE CURRENT WORKSPACE. 0

SAVING A MODEL TO DISK:

Select the F8Save command button by either pressing the 0

f8 function key, clicking on the F8Save command with the
left mouse button, or moving the highlight to F8Save
with the cursor keys.

The program wil] prompt you to enter the filename. It
will then save the file to the disk in drive A. Two 0
files are created. One contains the screen image
information and will have the postfix .img added to the -N

name you specify. The other contains the text data
needed to describe the model and will have the postfix
.dat added to filename. After saving a file, you can
continue to add to the model; however, any additions
will be lost unless you resave the model.4-.L

CONNECTING TO A DATABASE MANAGEMENT SYSTEM:

Select the F9dbms command button by either pressing the
f9 function key, clicking on 4 he F9dbms command with the
left mouse button, or movinj the highlight to F9dbms t
with the cursor keys. '.

The program will open a connection to the ORACLE RDBMS.
Pressing the key a second time will disconnect you from
the database. ORACLE must be properly installed on the
system you are using or the command will fail.

166

%~

PURIM

QUITTING THE PROGRAM:

Select the FlOQuit command button by either pressing the
flO function key, clicking on the FlOQuit command with
the left mouse button, or moving the highlight to 0

FlOQuit with the cursor keys.

The program will ask you to confirm that you want to
exit the program. Press y to confirm. Press n to
continue in the program. WARNING: EXITING THE PROGRAM
DESTROYS THE CURRENT MODEL UNLESS IT WAS PREVIOUSLY
SAVED TO DISK.

9%.

'.

167 0

~~~~~ ~~ N- ' .. ' ~ .

LIST OF REFERENCES

1. Simpson, H., "A Human-Factors Style Guide for Program
Design," Byte, v. 7, no. 4, pp. 108-132, April 1982.

2. Dolk, D. R., Model Management and Structured Modeling:
The Role of an Information Resource Dictionary System,
Working Paper No. 87-12, Naval Postgraduate School,
Monterey, California, June 1987.

3. Geoffrion, A. M., "An Introduction to Structured
Modeling," Management Science, v. 33, no. 5, pp. 547-588,
May 1987.

4. Dolk, D. R. and Konsynski, B. R., "Model Management in
Organizations," Information and Management, v. 9, no. 1,
pp. 35-47, August 1985.

5. Gorry, G. A. and Krumland, R. B., "Artificial Intelli-
gence Research and Decision Support Systems," in J. L.
Bennett (ed.), Building Decision Support Systems, pp.
206-208, Addison-Wesley, 1983.

6. Geoffrion, A. M., "Structured Modeling," research mono-
graph, Graduate School of Management, University of
California at Los Aangeles, January 1985.

7. Scott, J. E., Introduction to Interactive Computer
Graphics, John Wiley & Sons, Inc., 1982.

8. Bennett, J. L., "Analysis and Design of the User
Interface for Decision Support Systems," in J. L.
Bennett (ed.), Building Decision Support Systems, pp.
41-64, Addison-Wesley, 1983.

9. Foley, J.D., "The Human Factors--Computer Graphics
Interface," In Symposium Proceedings, Human Factors and
Computer Science, Washington, D.C., Potomac Chapter of
the Human Factors Society, pp. 103-114, 1 June 1978.

10. Pressman, R. S., Software Engineering,A Practitioner's
Approach, 2d ed., McGraw-Hill, Inc., 1987.

11. Carey, T. T. and Mason, R. E. A., "Information System
Prototyping: Techniques, Tools, and Methodologies,"
Infor, v. 21, no. 3, pp. 177-191, August 1983.

168

Ij*{ V % . Y c,. j 4 - .U-S

12. Brooks, F., The Mythical Man-Month, Addison-Wesley, -

1985.
13. Wyant, M. A., Design and Implementation of a Prototype

Graphical User Interface for a Model Management System,
Master's Thesis, Naval 7ostgraduate School, Monterey,
California, March 1988.

~.5.

A

%-

A6

BIBLIOGRAPHY

Clemence Jr., R. D., Lexicon: A Structured Modeling System I
for Optimization, Master's Thesis, Naval Postgraduate School,
Monterey, California, June 1984.

Greenberg, H. J., and Maybee, J. S., (ed.), Computer-Assisted
Analysis and Model Simplification, Academic Press, 1981.

Groenert Jr., F. E., A Design Analysis and Implementation of
a User-Friendly Interface for the UNIX Operating System,
Master's Thesis, Naval Postgraduate School, Monterey,
California, June 1984.

Shneiderman, B., Human Factors in Computer and Information 0
Systems, Winthrop Publishers, Inc., 1980.

Shneiderman, B., Designing the User Interface: Strategies
for Effective Human-Computer Interaction, Addison-Wesley,
1987.

Spear, B., How to Document Your Software, lst ed., Tab Books,

Inc., 1984.

Thomas, J. C. and Schneider, M. L., (ed.), Human Factors in
Computer Systems, Ablex Publishing Corp., 1984.

Traister, R. J., Programming HALO Grahics in C, Prentice-
Hall, Inc., 1985. .

1.
5,.

a.

170

(

INITIAL DISTRIBUTION LIST

No. Copies P

1. Defense Technical Information Center 2

Cameron Station
Alexandria, Virginia 22314-6145

2. Library, Code 0142 2
Naval Postgraduate School

Monterey, California 93943-5100

3. Director, Information Systems (OP-945) 1 %
Office of Chief of Naval Operations
Navy Department
Washington, D. C. 20350-2000

4. Computer Technology Curriculum Office, Code 37 1 N
Naval Postgraduate School
Monterey, California 93943-5000

5. Professor Daniel R. Dolk, Code 54DK 1
Administrative Sciences Department ,.
Naval Postgraduate School
Monterey, California 93943-5000

6. Professor Gordon H. Bradley, Code 52BZ 1
Computer Science Department -'

Naval Postgraduate School

Monterey, California 93943-5000

7. Major David D. O'Dell 2
Headquarters, U.S. Marine Corps
Code MPI-40
Washington, D.C. 20380 %.4

oil

171

4,.

