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FOREWORD

This report was prepared by Don W. Kinsey of the Aerodynamics and
Airframe Branch, Aeromechanics Division, Flight Dynamics Laboratory,

Wright-Patterson AFB, Ohio. The work was performed under Work Unit

240410A1.

R\ The work was part of an effort to develop improved computational

_ capability fer nrcdicting unsteady, transonic flows. Modifications

h made to an existing computer program (LTRAN2) are described and some

;. sample results are provided.
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I. INTRGDUCTION

The need for a method to determine the unsteady, transonic flow
conditions over an airfoil is well established. The possible applica-
tions for such a solution method include buffet and flutter studies
for fixed wing aircraft, propeller and rotor blade studies, turbine
blade and guide vane designs and many more. The equations governing
unsteady, transonic flow of a viscous fluid (Navier-Stokes equations)
have been known for over 140 years. However, solving the equations
for any practical, time-accurate transonic, viscous flow over ar-
bitrary airfoils requires vast computer resources. Reducing the
problem to two dimensions still leaves a challenging task.

Some success in solving attached flow problems has been achieved
by making simplifying assumptions. Flow conditions that have very
thin boundary layers can be closely approximated by inviscid equa-
tions, the so-called Euler solutions. Another major simplifying
assumption is the irrotational flow assumption. This allows the
definition of a velocity potential, and the combination of the equa-
tions of motion into a single equation referred to as the full
potential equation. Finally, the full potential equation can be ex-
amined and, using order-of -magnitude arguments, reduced to the small
disturbance equation.

Solution of the two-dimensional, transonic small disturbance
(TSD) equation provides a relatively quick and inexpensive method of
predicting unsteady transonic flow over thin airfoils. However, flow
conditions which produce significant boundary layer growth and/or sig-
nificant shock-boundary layer interactions are not well predicted by
the inviscid, irrotational TSD equations. As a result, calculations
which use the steady small disturbance solution as a starting point
for unsteady calculations have serious inherent errors.

Information about the steady-state aerodynamics on the surface of
an airfoil is often known from experimental data or may be determined

with more sophisticated prediction techniques. If a new geometry
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could be determined so that the TSD sclution conforms to the

prescribed surface aerodynamics, a much more satisfactory steady-state
starting solution would be established. The effects of boundary
layers, local shock-induced separation, and other flow conditions
would be effectively added to the inviscid solution. Once the correct
steady-state conditions are produced by the small disturbance proce-
dure applied to the new geometry, subsequent time dependent variations
should also be more representative of the real flow situation.

A numerical procedure for determining unsteady aerodynamics of

two-dimensional, thin airfoils using the TSD equations was developed

by NASA/Ames and given the name LTRAN2. 7' Several versions of LTRAN2
exist. The version used for this study has a low-frequency and a
high-frequency option, a wind tunnel wall option, a boundary layer
option and a lag entrainment option. An implicit algorithm is used to
solve the governing equations for the flow about thin, two-dimensional
bodies in oscillatory motion, plunge motion, or an oscillating flap
motion.

The normal unsteady solution procedure is to first compute the
steady-state potential flow about the body at a given initial angle of
attack. Then, variations in the potential flow about the initial con-
ditions are determined as a function of time for the type of motion
defined.

The objective of this study is to develop a procedure that allows
the user to obtain the initial surface potentials. Once the poten-
tials are defined on the surface of the airfoil, a modified steady-
state solution routine is employed in an inverse mode to obtain the
geometry that would produce the target surface potentials. This new
geometry is then used to compute unsteady solutions that provide much
better approximations to the experimental unsteady characteristics.
Experimentally measured surface static pressures or steady-state solu-
tions from higher order flow solvers are both excellent sources of
surface information for steady-state flow conditions.

This report will provide a description of the governing transonic

small disturbance equations and the boundary conditions. A discussion
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I1. GOVERNING EQUATIONS AND SOLUTION SCHEME

Development of the Small Disturbance Equations

The unsteady, small disturbance flow equation is derived from the
unsteady Evler equations. Assuming irrotational flow (fluid particles
do not rotate about their axis) allows the Euler equations to be com-
bined into a single equation in terms of a velocity potential, ¢. For
isentropic flow, relationships exist between pressure (p), density (p)
and speed of sound (a) so that p and p do not appear explicitly in the

equation. This provides the full potential flow equation:

d V6.0 2 2
e 5p(V0.90) 4 VO.V(—) = 2’ VO

a? = al - (7 - 1)[% ¢ (1/2) (V6.8 - U2)].

a, = free stream speed of sound.

Further simplification of the potential equation is possible by
restricting the analysis to cases were the following small disturbance

assumptions are valid;
k, I—Mi, and ’r?/3 K 1.

Where, k is the reduced frequency, = w c/U,

¢ is the chord length of the airfoil,

U, is the undisturbed freestream velocity,

w is the unsteady oscillatory frequency of the airfoil,

7 is the airfoil thickness-to-chord ratio,
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Mm is the freestream Mach number.

O

The resulting equation can be written in terms of a small perturbation

velocity potential (¢) as:

. A¢tt+2B¢xt=C¢xx+¢yy. (1) ':t:
v
2, 2/3 4
Where, A=K M /T

o

B=kM /r/ :.'
(] Cal
.‘."'

2 ., 2/3 Ih! i

C = (M 5/ ) (M2 g %

»

x and y are the Cartesian coordinates in the freestream and vertical :;
directions respectively. 7 is the ratio of specific heats. m is nor- 13
mally 2.0 (Spreiter scaling) but may vary for some applications. The é*

subscripts on ¢ represent partial derivatives of ¢ with respect to the )
.

e

'

subscripted variable. x is nondimensionalized by c, y by c T%/s time ::
n

by v and ¢ by ¢ U 7./3 Z
y w, and ¢ by c U 7. o

Y

LTRAN2 Description

)

ey

A true high frequency solution would require the solution of

equation (1). However, LTRAN2 achieves good results for a large num-

Rl

[
4

ber of cases by dropping the term of O[kg] and solving the

¢tt

3y

(Y

.3
equation

T

2Bg  =Cg . +9¢ (2)

Yy’

PR As
#v A

5

Both the low frequency and the high frequency options in LTRANZ2 use
equation (2). The difference between the low-frequency and high-

f?; -

frequency calculations of LTRAN2 is in the boundary condit:ons and the
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expression used to compute pressure coefficients. The high frequency
option includes time dependent terms of 0[k] <1 in the calculation of

the pressure coefficients and the boundary conditions at the wake and

4

downstream boundary.3 A summary of the boundary conditions and

pressure coefficient definitions is:

Variable Low frequency High frequency

. B 2/3 _ 2/3
Pressure coefficient Cp = -2 ¢x T Cp = —2(¢x+k¢t)1
Wake conditions [¢x] =0 [¢x+k¢t]
Downstream B.C. ¢x =0 ¢x+k¢t =0
Upstream B.C. ¢ =0 ¢ =0
Upper and lower B.C. ¢y =0 ¢y =0

where the brackets [] are used to signify this is a jump condition
across the wake.
The surface tangency boundary condition for low frequencies is

satisfied by

¢y = fx(x,t) for y =0, 0<x > 1

where y = Ty/sf(x,t) defines the airfoil surface.

However, both the
low- and high-frequency options of the version of LTRAN2 used for this

study solved the time dependent expression
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by = £ k£ (x,1). (3)

The unsteady part of LTRAN2 was not altered for the results in
this report. Rather, the algorithm for determining the steady solu-
tion was modified to operate in both an inverse or a direct mode. The

. modifications necessary for the inverse procedure are discussed in the
next section. But first, we will discuss the steady equations and the

steady solution algorithm.

LTRAN2 Steady-State Solver

The equations of interests for the steady-state case are:

C ¢xx + ¢yy= 0 (4)

b = 0.5 C 720 (5)
)

b, = 1,00 (®)

Where equations (5) and (6) are defined on the airfoil surface.
Equation (6) becomes unbounded at the leading edge of airfoils with a
finite leading-edge radius.
/ The finite difference solution of the small disturbance equations
are computed on a rectangular grid (Figure 1). The x-axis is in the
freestream direction parallel to the airfoil chord it zero angle of
attack and the y-axis is vertical, or perpendicular to the x coor-
dinate.

An approximate factorization solution algorithm (AF2) developed

by Ballhaus et al’ is used in LTRAN2 to compute the steady-state flow
solution for equation (4). Some of the more pertinent aspects of that

b solution scheme are given here.
A finite difference approximation for equation (4) may be written

by defining a linear operator L as:

)
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L¢ = (C O I ] y}¢ - b =0. (7) ;
]~
The matrix operator L contains 6xx and 6yy’ which are second central ;
,r
difference operators in x and y respectively. It also contains C bty
which, for purposes of analysis is considered a constant. The vector A
PG
b results from boundary conditions and the vector ¢ is the exact solu- Ec
!
tion to the finite difference matrix equation (7). %
A general form for a two-level iterative solution procedure for )
equation (7) is N
Ry
ND" + o R" =0 (8) 3
S
N
3
where D" = ¢n+1 - ¢n is the correction to ¢n after n iterations; R" = ;~
L ¢n =(C 6xx + 6yy)¢n - b 1is the residual at iteration level n; and ¢ o
g
is a relaxation parameter. }t
The proper choice of N is the key to convergence acceleration. ix
Two guidelines for the choice of N have been established: (1} N should %3
be chosen to resemble L as closely as possible, and (2) the matrix iy
operations required to obtain the correction vector should be simple. .
An expression of N as an approximate "factorization" of L is,
'l
= + N !
N N1 ) (8) :
\~
A
~
where factors N] and N7 are chosen so that their product is an ap- A
‘ )
proximation to L. N1 and N? must also be chosen so that the solution :;
procedure is stable. Each factor may have a bidiagonal or tridiagonal Q
form. tﬁ

An approximate factorization of equation (7) that has the neces-

L

. . . 7
sary characteristics can be written as:

7

» iy
o

B-0B)(p5, -6 0" =pl(CE,, +6 )8 - b] (10)
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where 3x and Sx are first order accurate forward and backward dif-

ference approximations, respectively; and f is a parameter to be
defined later. Note that equation (10) is for subsonic flow. For

supersonic flow (C > 0), backward differences are used for 6xx and 6x.

Equation (10) can be rewritten in the form

Step 1: (f - C 8 )F" = pl(C 6 + 6,08 - b]

Step 2: (A 5_ - 6,, 0" = F" (11)

where two sweeps through the grid are required for each iteration.

The first step involves a matrix solution of y = constant grid points

and defines the intermediate function F". The second step requires a
matrix solution for each x = constant line and defines the new poten-

tials at each grid point.
Acceleration Parameters

In the approximate factorization equation (10), a free parameter
p was introduced. The choice of f influences the convergence rate
| and, ideally, a new value of f that would provide the largest reduc-
tion in error should be selected after each iteration. Unfortunately,
no procedure for defining the optimum value for f has yet been
developed for transonic flow problems. Therefore, an acceleration
parameter sequence is used and repeated during the iteration process.
| First, estimates are made of the values of f required to minimize the

error growth for the high (ﬁh) and low (ﬁl) frequency extremes of the

error. Then, ﬂh and ﬂl are incorporated in an array,

3 Py = ph[pl/ph](k'l)/(q'l) k=1,2,3....9. (12)

i
{
D

3
o,
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This array of acceleration parameters is used sequentially during the
course of iterating the solution. An eight-element sequence is most

often used (Q=8). Estimates based on a simple linear analysis
provided that ﬁhi Ay-1 and ﬂl = 1. The convergence rate may be im-
proved by making small adjustments to the values of ﬁh and f;, and

from the use of other types of sequences.
Convergence Criteria

Some criteria are needed to assess the degree of convergence
after each iteration. Typical are the residual, Rn, the correction,

Dn, the aerodynamic 1ift coefficient, CL’ and the number of supersonic

points, NSUP. Values for R" and D" approach zero as the solution con-

verges, while NSUP and CL approach a fixed value.
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ITII. INVERSE PROCEDURE 0
’
.’
. . . . X
The objective of the direct steady-state solution procedure is to ;:
compute surface pressure information from known surface slope informa- é
tion. The objective of the inverse method is to estimate surface .
Y
: slope information (and thus geometry) from known surface pressure in- :;7
formation. A flow chart of how the steady solution procedure 3
-~
currently operates is shown in Figure 2. -
Pl—
The inverse solution procedure required several changes to the »
direct procedure. The major difference was in the form of the surface ﬁs
boundary conditions. In the direct procedure, the surface boundary Gﬁ
conditions are Neumann type, where the normal derivative of ¢ was 4
specified; 4
e
)
= f (x \
g, = 1,00 3
o
where fx is the local slope of the body. In the inverse procedure,
~
the boundary conditions on the surface are Dirichlet type, where the :.
L
value of the variable ¢ itself is specified. Both of these boundary py?
conditions represent a well-posed problem that has a unique solution.
. -
Defining Surface Conditions N
4
)
The first step in the inverse procedure was to define the ¢ dis- Yy
tribution on the surface. This was accomplished by converting the ;
input pressure coefficients (known from experiment or higher order $‘
computation) into surface potentials by using the relationship of Ny
equation (5) -E
5%
o
- - =2 /3 iy
.= G )p=-057 c, &
&
where, ?{
- -2 /3 '
3 - . - 0. x. .- x.) =-0.57 C
@b = (B0~ 8/ 051 %)) . e
o
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Solving for ¢j

+1?

-2/3
$i1= 0.5 7 / ij(xj+l-xj) . 8. (13)

j is the grid index in the x direction.

Once an initial estimate for ¢ at x = O was determined, the
remaining values at each grid point (j) along the body were computed
from equation (13). The results presented in this report use the
value of ¢ at the leading edge (x=0) obtained from an initial direct

solution on the input geometry. Note that ¢x was approximated by a
forward difference. A central difference approximation for ¢x was

also run, but there was no obvious improvement in the results, and it
had the disadvantage of requiring two initial values for ¢ at the
leading edge.

With both ¢ and ¢x defined on the surface, it was a simple matter

to define the second derivative of ¢ in the x direction on the sur-

face.

2

¢xxj=(¢._1-2 $ ¢ 95.1)/[0.5(x; 1 x5 )] (14)

J

Again, several different approximations for ¢xx are possible, but the

central difference appeared to work best for the cases presented in

this report.
The AF2 procedure used for steady solutions in LTRAN2 requires an

estimate for ¢yy at each grid point on the surface for each y = con-
stant sweep iteration. The direct method computes ¢yy from the known

surface slope and the latest approximation for ¢ at the first grid

point off the surface,

¢ SEPRILTRERY (15)

-(¢
¥t Y141
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where I is the surface grid line, and equation (6) is the relationship

between fx and ¢y. Equation (15) is essentially a forward difference

approximation for the second derivative, but has the advantage of
needing information from only one grid level away from the surface of
the body (level I+1).

The inverse solution must employ another procedure for estimating
the second derivative of ¢ in the y direction. Second- and third-
order forward difference approximations were tried, but were
unsatisfactory. Very large gradients can exist in the y direction,
particularly near the leading edge of the airfoil, and the forward
difference may not provide a good approximation. For example, the

three term approximation for ¢yy;

¢YYI:(¢I -2 ¢I+1 v ¢I+2)/[0‘5(y1+2_y1)]2

has errors of the order

(y1+1'y1)(¢yyy1)

which may not be a small value when large gradients exist. Also, the
values for ¢ on the surface are fixed, while the values away from the

surface are evolving during each iteration.

Following the example of Fung and Chungi the small disturbance

equation itself (equation (4)) was used to solve for ¢yy at the sur-

face;

by = € ¢xx'

Substituting for €, the expressicn becomes;

by = bl 1M T M) g (16)
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Note that this approach may produce inconsistent results just above

the surface. This could contribute to the problems with convergence

discussed later in this section.

Equation (16) is easily solved at each grid point on the surface

during the y = constant sweep of the two step iteration process.

During the x = constant sweeps, the code was modified to skip the

lines of code that redefine the values of ¢ on the surface.
Defining the New Geometry

After the inverse process has converged, the potential ¢ is known
at each point in the domain defined by the grid system. However, the
desired information is the shape of the body that would produce this
potential distribution when input to LTRANZ and solved in the direct
mode. Equation {6) provides a relationship between the potentials and

the surface slopes;
y'= 0y/8x = £,(0) = 8 = By, 197/ G,y -v) (a7)

Starting with y=0 at x=0 (the leading edge of the airfoil), a

Taylor series approximation provides an estimate for y at the next

grid point;
Vi =¥yt ¥ O eyl G ) /2 s
yj:i (xj-xj~1)3/6 e (18)
Where, yj_l is computed from equation (17), and
7 T O = B < 8y by )Ry ),
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: with similar approximations for higher derivatives. :

Geometries were computed using both three and four terms of the

: Taylor series approximation and with forward, centered and backward y
i approximations for the y'” and y °° terms. The best results were ob- K
: tained using the first three terms of the Taylor series, and a forward n
; difference approximation for y-’ ‘
? . 3
f , yj = yj-1+ ¢yj—1(xJ— xJ 1) + O.5(xj- xj_l)2 :;
; (OREMRICEIR ;
( ‘
f or, after simplification, st
. Yy =¥y v 0.50xs- xj_l)(¢yj+ ¢yj»1) (19) y
. A
! R
N A new geometry is created by successively applying equation (19) at X
" each grid point, starting at the leading edge and progressing to the :
’ trailing edge. Both the upper and lower surfaces are constructed in- &
! dependently. The new geometry should produce a pressure distribution j
identical to the target pressures when input to the direct method of W'
: LTRAN2. When this new geometry and the resulting steady-state start- N

{ ing solution were used in the unsteady mode, a much better comparison .
': with experimental unsteady data was obtained. N
:
I Grid Spacing effects S
: 3

X The effect of grid spacing on the inverse solution was inves-
:“ ‘ tigated. Reduced grid spacing in the x direction was implemented in !
the leading edge region, at the shock location and at the trailing

Y edge. Both the leading edge and the shock location results with a ;
: finer grid spacing were worse than with the basic LTRAN2 grid dis- ﬂ(
{ tribution. However, additional grid points at the trailing edge did L
: seem to help smooth the piessure data in that region. Reducing the =
:z grid spacing in the y direction at the body had a significant effect )
' )

¥
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on the results. In particular, reconstruction of the new geometry,

which requires an accurate estimate of ¢y, was much better with the

finer grid spacing. Therefore the results presented in this report
used the basic LTRAN2 grid in the x direction plus two additional
points at the trailing edge for a total of 113 points, 50 of which
were on the airfoil. The grid extended #200 chord lengths with Ax =
0.005 at the leading edge and Ax = 0.0028 at the trailing edge. The
initial grid spacing in the y direction was 0.001 for the inverse pro-
cedure compared to the normal value of 0.01 for the direct solution.
There were a total of 97 points in the y direction which extends to
2396 chord lengths. The main iteration loop used 1620 time steps for
the unsteady calculations. This allowed for 4.5 complete cycles (at
360 steps per cycle) so that any transients would be out of the solu-

tion.
Convergence Characteristics

Convergence for the inverse u.ethod followed much the same pattern

as for the direct method. Thin airfoils in subsonic flow converged

rapidly when using the maximum correction (Dn), or change in 1ift

coefficient (CL) as the convergence criterion. However, the maximum

residual (R") would decrease only about three orders of magnitude for
the inverse method. Thick airfoils with strong shocks had maximum
residual reductions of only three orders of magnitude for both the
direct and the inverse methods. The maximum correction, number of

supersonic points (NSUP), and the change in CL all indicated good con-

vergence after about 500 iterations.
Acceleration Parameters Used

Many different combinations of acceleration parameters were

tried. The number of parameters in the sequence (§), the low value
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(ﬂl)and the high value (ﬁh) may be changed independently for each

solution. The values that currently exist in the code are:

Process q pl ﬂh
Direct solution on input geometry 8 1 800
Inverse solution 20 100 1000
Direct solution on target geometry 8 1 1000

There was little attempt to optimize these parameters for the
limited cases run in this study. Note the relatively high value for

p1 in the inverse method. The value required for convergence is much

larger than the Ballhaus et al’ estimate of 1 for the direct method,

but is consistent with the findings of Chung and Fungq

In summary, the modifications made to LTRAN2 for this report in-
clude modifications to the AF2 routine, and the addition of four small
subroutines to accommodate the inverse calculations. Subroutine
CPINPT takes the target surface static pressures and interpolates to
define values at the grid point locations. SURPHI computes and dis-
tributes values of ¢ at each grid point on both the upper and lower
surface (equation (13)). PYYC02 determines the second derivative of ¢
in the y direction from equation (16). RECON reconstructs a target
geometry based on the results of the converged inverse solution, equa-
tion (19).
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IV. RESULTS AND DISCUSSION

The experimental data used for comparison in this report comes

from the tests of Davis and Malcoln’® Two airfoils (NACA 64A010, NLR
7301) were tested over a range of transonic Mach numbers, Reynolds
numbers, angles of attack and reduced frequencies. The models were
oscillated harmonically about 50 percent and 40 percent chord respec-
tively. Static pressure distributions for the upper and lower
surfaces were provided for each test condition at the mean angle of

attack (ao). Dynamic pressure data were also provided at several

points on the airfoil. The time-dependent data were Fourier-analyzed
up to the fundamental frequency component; where the fundamental fre-
quency component is the complex number that indicates the magnitude,
and phase shift with respect to the input motion. The real part, im-
aginary part, magnitude and phase of the complex amplitudes,
normalized by the amplitude of the input motion, were tabulated and
are used for comparison with LTRAN2 results in this report. Since
magnitude and phase are related to the real and imaginary parts by the

complex relationship,

only the magnitude and phase results will be shown in this report.
64A010 Airfoil

Table 1 lists the test conditions provided in this report. The
first test condition represents the most severe case that a small dis-
turbance procedure could reasonably be expected to handle. The 64A010
airfoil is 10 percent thick and has a moderately rounded leading edge.

A significant region of supersonic flow is terminated by a shock.

The airfoil was oscillated at a reduced frequency of 0.202.

Comparison of the pressure coefficients from the experimental test
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(solid line), the direct solution of LTRAN2 on the original 64A010
geometry (dashed line) and the direct solution on the new geometry
that was determined by the inverse solution (A and +), is presented in
Figure 3. These results indicate that LTRANZ2 predicts the steady flow
characteristics for this case with reasonable accuracy. A comparison
of the original geometry in Figure 4 (solid line) and the geometry
determined by the inverse procedure (+ and Aj, shows very little dif-
fcrence. The new geometry from the inverse solution has some
sharpening of the leading edge and som~ thickening over tne aft part
of the airfoil.

The time-dependent results of LTRAN2, for both the original
64A010 geometry (BASIC LTRAN2) and the geometry that reproduces the
experimental steady results (MODIFIED LTRANZ), and the experimental
data from Ref. 9 are compared in Figures 5 and 6. Again, there ap-
pears to be little difference between the basic results and the new
geometry results, and both compare favorably with the experimental
results. Some representative pressure coefficient plots at different
stages of the ocillatory motion, for the basic airfoil and the new

geometry respectively, are provided in Figure 7 and 8.
NACA 0012 Airfoil

The second test case was the NACA 0012 airfoil, tested at Mach =

0.80, and 1.86 degrees angle of attack'’ Reference 10 provides no
time-dependent experimental data, but the 0012 airfoil is the ar-
chetypal test airfoil and represents a reasonable intermediate shape
between the 64A010 and the NLR 7301 airfoils. This case is more
severe than the previous case because the NACA 0012 is 12 percent
thick, has a much larger leading edge radius and is at an angle of
attack of 1.86. The pressure coefficient comparisons are presented in
Figure 8. The direct solution for the NACA 0012 airfoil is obviously
very different from the experimental steady data. The solution for
the modified geometry agrees quite well with the experimental pressure

data except for a small deviation at the shock.
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Theoretically, the inverse procedure should produce a geometry
that would exactly reproduce the target pressure distribution. In
practice, however, it has been found that pressure data in the
vicinity of a strong shock is very erratic. For example, the symbols
in Figure 9 represent the pressure results after 1500 iterations of
the inverse procedure. The results at only 10 iterations before
(1490) and 10 iterations later (1510) show that an almost indistin-
guishable difference in geometry produced very different pressures
(Figure 10). The predicted velocity at 60 percent chord on the upper
surface varies from subsonic to supersonic with almost imperceptible
changes in geometry.

The geometry provided by the inverse solution using the Figure 9
pressures is shown in Figure 11. The actual NACA 0012 geometry is
much thicker and has a much more rounded leading edge than the
geometry that would cause LTRAN2 to produce the target pressure dis-
tribution. The "fishtail" effect on the aft portion of the new
geometry is obviously not practicable for an airfoil, but fortunately,
the small disturbance routine only requires surface slopes.

The unsteady lift and pitching moment coefficients from the
original and the modified geometries are compared in Figure 12. The
magnitude and phase from the time-dependent calculations are shown in
Figure 13. A look at the predicted pressures at various points during
the oscillations, for the original and the new geometries respec-
tively, is given in Figures 14 and 15. Several cycles were computed
to allow any starting transients to dissipate. The original LTRAN2
solution is virtually invariant with angle of attack and produces none
of the phase shift and complex pressure amplitudes of the modified
LTRAN2 procedure.

NLR 7301 Airfoil

Pressure coefficients for the NLR 7301 airfoil are shown in
Figure 16. This airfoil is 16.5 percent thick, has a very large lead-
ing edge radius and produces strong shocks followed by separation to

the trailing edge on both the upper and lower surfaces. As with the
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NACA 0012 example, the direct solution for the basic NLR 7301 geometry
is completely wrong. The solution for the modified geometry is very
good over the first 50 percent and the last 35 percent of the airfoil.
However, the small disturbance procedure predicts too severe a
velocity decrease across the shock. Attempts to improve the situation
by changing grid spacing proved to be fruitless. It may well be an

insurmountable characteristic of the small disturbance approximation.

Indeed, Steger and Klineberg" show similar effects in their attempts
to use the small disturbance equations in the design mode.

The original and inverse airfoil geometries are shown in Figure
17. Again, the large leading edge radius of the basic airfoil leads
to a fishtail effect for the new geometry.

The direct solution on the original geometry results are shown in
Figures 18 and 19. The original LTRAN2 results show very little
change in the time-dependent pressure profiles and, therefore, very
little change in the complex pressure, magnitude and phase. The
Figures 18 and 19 results are for k = 0.20. A k = 0.05 case was also
computed but the results were as bad as or worse than the k = 0.20
results.

The k = 0.20 results for the new geometry from the inverse proce-
dure are presented in Figures 20 and 21. The LTRAN2 results compare
favorably with the experimental results, though the magnitude of the
peak values are different. The reason for the differences is not com-
pletely understood but is very likely associated with the shock
strength errors.

Results for the k = 0.05 case are presented in Figures 22 and 23.
As with the k = 0.20 data, the form of the results compares with the
form of the experimental results, however, the agreement is not quite
as good as for k = 0.20. Pressure coefficient plots in Figure 23 in-
dicate that the solution in the neighborhood of the shock strongly
influences the unsteady pressure results. Additional results and

recommendations for further work are presented in Section V.
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V. CONCLUSIONS g

»

A

. . . . .‘::

The steady-state solution subroutine in the unsteady small dis- :&
turbance solver LTRAN2 has been modified to operate in an inverse or h&
"design" mode. "Design" is written with quotation marks because there .
has been no attempt to produce a realistic airfoil shape. Rather, the ::
objective of this inverse procedure is to provide a geometry (actually ;W
a set of upper and lower surface slopes) that causes LTRAN2 to match hj
the known steady-state surface pressure. The unsteady results from !a
the new geometry should be a much better approximation to the ex- aﬁ
perimental unsteady results. The purpose is to expand the useful ﬁg
range of the small disturbance solver to both airfoils and flow condi- gg
tions that violate the inviscid, irrotational, small disturbance L3
assumptions. ‘ﬁ
Three separate airfoils were evaluated with this new procedure. o
First, an NACA 64A010 airfoil, tested at Mach = 0.80 and near zero )
angle of attack was evaluated. This condition is representative of ;.
the most severe case that a small disturbance procedure could be ex- ;w
pected to handle. Indeed, there was little difference between the ?f‘
r s obtained from LTRAN2 run in the normal mode and the results Sﬂ

ot .ned from the modified geometry that produced steady-state pres- »
sure distributions that exactly matched experimental data. The t’
unsteady pressure results from both approaches agreed well with ex- ;\
perimental unsteady results. fx
Next, an NACA 0012 airfoil at Mach = 0.80 and a = 1.86 was inves- :
tigated. The steady-state flow results indicated clearly that the ;Si
LTRAN2 solution was not representative of the experimental data. f.
Implementing the inverse procedure provided a geometry that did repre- R ¢
sent the experimental results when solved by LTRAN2. A problem of ;}
extreme sensitivity of the pressure coefficients at the shock was :iﬁ
revealed. LTRAN2 over estimates the velocity reduction at the foot of :E
strong shocks. There were no experimental unsteady results for com- :i
parison, but the results from the modified geometry were much more .'
reasonable that the results from the basic NACA 0012 geometry. :ﬁ?
A
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The most severe test case was an NLR 7301 airfoil at Mach = 0.80

and near zero angle of attack. This 16.5 percent thick supercritical

g

airfoil had a very large leading edge radius. The flow contained

f S0 2

strong shocks on both surfaces. Again, the steady-state solution on
the basic geometry was much different from the experimental steady-
state results. The inverse procedure produced a geometry that e
resulted in good agreement with the experimental steady-state results .
except for the "overshoot" problem at the foot of the shock.

The unsteady results are compared for two different reduced fre-
quencies; k = 0.20 and k = 0.05. The trends of the computed k = 0.20
results compared well with the trends of the experimental results.
However, the magnitudes of some peak values were significantly dif- N
ferent. The k = 0.05 results did not compare quite as well with the
experimental data as the k = 0.20 results. ‘

The k = 0.05 results from the NLR 7301 airfoil highlight two :f
problem areas for the inverse procedure. Probably the most serious
problem results from the fact that the experimental shock location <
moves fore and aft on the airfoil as the airfoil oscillates. However,
the modified geometry has surface slopes that induce the shock for the
steady-state solution, and this geometry remains fixed as the airfoil &
oscillates. As a result, the geometry is trying to force a rapid N
change in surface velocity (and thus pressure) at the wrong (except,
perhaps twice during each oscillation) chord location. :

The second problem area has been mentioned before and is the ten- >
dency for LTRAN2 to overshoot the velocity drop across the shock. The
experimental data, at least for the NLR 7301 case investigated here,
indicate a much less severe velocity drop across the shock than LTRAN2
predicts. The overshoot appears to be an unavoidable result of the

LTRAN2 procedure. Some minor modifications to the code were tried but

B TR P R Y Y

they did not improve the overshoot problem.

Before using this procedure on a routine basis, a parametric
study of the acceleration parameters should be completed. It would y
probably be very useful to develop a procedure to vary the accelera- -
tion parameters as the solution evolves. The solutions presented in

this report were obtained on a CRAY X-MP 12, with run times of about 4
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minutes, and required about 156,000 words of memory. However, there
was no attempt to improve the vectorization of the code or to decrease 4

the memory requirements. Significant reductions in both run time and 'y
mer-ry requirements should be possible. A wmore difficult but much .

more rewarding improvement would result from solving the overshoot

problem at the shock. Last, but certainly not least, the development
of a practical way of allowing the geometry modifications to move with >
e
the shock during the unsteady oscillations should reap tremendous it
]

benefits.
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Table 1
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Test Conditions for LTRAN2 Solutions

o

Y

Airfoil Mach k X R

R
[~
[@]

O

=4

=}

(=2

-
S S

b Y .
o0

o ol wl el

NACA 64A010 0.796 0.202 0.50 1.3x10° -0.21 1.09 -0.029

L A s
o

"

NACA 0012 0.80 0.20 0.50 9.0x10° 1.86 1.0 0.299

NLR 7301 0.807 0.20 0.398 1.2x10 0.36 0.49 0.047

-
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ZX20 &
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LIST OF SYMBOLS

Small disturbance equation constant =k2Mi /1‘2/3

Speed of sound.
Approximate factorization scheme 2.
Angle of attack.

Small disturbance equation constant =k Mi /72/3
Boundary condition vector in AF2.

TSD equation =[(1-M:)/T2/3}—(7+1)M: ¢x

Airfoil chord length.

Lift coefficient.

Pitching moment coefficient about 0.25c.

Pressure coefficient.

Pressure coefficient corresponding to sonic flow.

Real part of complex pressure coefficient.

Imaginary part of complex pressure coefficient.

Magnitude of complex pressure coefficient = (C? + 02)1/2
Pp pI

Function that defines the airfoil geometry.

Intermediate result for the two step iteration process.

Reduced frequency =w c/U_

Linear operator.

Unsteady small disturbance solution procedure.

Mach number.

Exponeni for Mach number (real number between 1 and 2).
Operator used in the AF2 development.

Number of supersonic points.
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LIST OF SYMBOLS

0f the order of what follows in brackets

Number of parameters in the acceleration sequence.
Residual in the AF2 procedure.

Reynolds number (per foot).

Time variable.
Freestream velocity.
Cartesian coordinate in the streamwise direction.

Chord location about which the forced oscillations occur.

Chord location in fraction of chord.
Cartesian coordinate perpendicular to the freestream.

Vertical coordinate in fraction of chord.

[Cong W ot UL LN

Angle of attack.

Acceleration parameter used in AF2 solution algorithm.

K
»
K
rd
4
{
o

Angle of attack about which the oscillations occur.
Multiplier for the trig function describing the

oscillations.

Upper bound for the acceleration parameters.
Lower bound for the acceleration parameters.

Thickness to chord ratio for the airfoil.

Partial derivative operator (with a spatial or temporal
subscript).

Oscillatory frequency.

Velocity potential.

Small perturbation velocity potential.
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! LIST OF SYMBOLS
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'
B 7 Ratio of specific heats.
b
) o Relaxation parameter for the AFZ solution algorithm.
o 6 Phase angle for complex pressure coefficient = Tan_kC /C )
by PR Pr
y Subscripts
a
s ® Infinity or far field conditions.
s X Derivative with respect to the x coordinate.
: y Derivative with respect to the y coordinate.
¢ t Derivative with respect to time.
; i Index of the computational grid in the y direction.
b I i index at the airfoil.
. b Index of the computational grid in the x direction.
N J j index at the airfoil leading edge.
K k Index for the acceleration parameters.
;
s Superscripts
4
™ n Iteration counter for the AF2 solution procedure.
, + Forward difference.
A . Backward difference.
y
Derivative with respect to the x coordinate.
v
v
¢
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