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FOREWORD

This report was prepared by Don W. Kinsey of the Aerodynamics and

Airframe Branch, Aeromechanics Division, Flight Dynamics Laboratory,

Wright-Patterson AFB, Ohio. The work was performed under Work Unit

240410A1.

The work was part of an effort to develop improved computational

capability fcr prcdicting unsteady, transonic flows. Modifications

made to an existing computer program (LTRAN2) are described and some

sample results are provided.
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V

I. INTRODUCTION

The need for a method to determine the unsteady, transonic flow

conditions over an airfoil is well established. The possible applica-

tions for such a solution method include buffet and flutter studies

for fixed wing aircraft, propeller and rotor blade studies, turbine

blade and guide vane designs and many more. The equations governing

unsteady, transonic flow of a viscous fluid (Navier-Stokes equations)

have been known for over 140 years. However, solving the equations

for any practical, time-accurate transonic, viscous flow over ar-

bitrary airfoils requires vast computer resources. Reducing the

problem to two dimensions still leaves a challenging task.

Some success in solving attached flow problems has been achieved

by making simplifying assumptions. Flow conditions that have very

thin boundary layers can be closely approximated by inviscid equa-

tions, the so-called Euler solutions. Another major simplifying

assumption is the irrotational flow assumption. This allows the

definition of a velocity potential, and the combination of the equa-

tions of motion into a single equation referred to as the full

potential equation. Finally, the full potential equation can be ex-

amined and, using order-of-magnitude arguments, reduced to the small

disturbance equation.

Solution of the two-dimensional, transonic small disturbance

(TSD) equation provides a relatively quick and inexpensive method of

predicting unsteady transonic flow over thin airfoils. However, flow

conditions which produce significant boundary layer growth and/or sig-

nificant shock-boundary layer interactions are not well predicted by

the inviscid, irrotational TSD equations. As a result, calculations

which use the steady small disturbance solution as a starting point

for unsteady calculations have serious inherent errors.

Information about the steady-state aerodynamics on the surface of

an airfoil is often known from experimental data or may be determined

with more sophisticated prediction techniques. If a new geometry

1
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could be determined so that the TSD solution conforms to the

prescribed surface aerodynamics, a much more satisfactory steady-state

starting solution would be established. The effects of boundary

layers, local shock-induced separation, and other flow conditions

would be effectively added to the inviscid solution. Once the correct

steady-state conditions are produced by the small disturbance proce-

dure applied to the new geometry, subsequent time dependent variations

should also be more representative of the real flow situation.

A numerical procedure for determining unsteady aerodynamics of

two-dimensional, thin airfoils using the TSD equations was developed

by NASA/Ames and given the name LTRAN21.-7  Several versions of LTRAN2

exist. The version used for this study has a low-frequency and a

high-frequency option, a wind tunnel wall option, a boundary layer

option and a lag entrainment option. An implicit algorithm is used to

solve the governing equations for the flow about thin, two-dimensional

bodies in oscillatory motion, plunge motion, or an oscillating flap

motion.

The normal unsteady solution procedure is to first compute the

steady-state potential flow about the body at a given initial angle of

attack. Then, variations in the potential flow about the initial con-

ditions are determined as a function of time for the type of motion

defined.

The objective of this study is to develop a procedure that allows

the user to obtain the initial surface potentials. Once the poten-

tials are defined on the surface of the airfoil, a modified steady-

state solution routine is employed in an inverse mode to obtain the

geometry that would produce the target surface potentials. This new

geometry is then used to compute unsteady solutions that provide much

better approximations to the experimental unsteady characteristics.

Experimentally measured surface static pressures or steady-state solu-

tions from higher order flow solvers are both excellent sources of

surface information for steady-state flow conditions.

This report will provide a description of the governing transonic

small disturbance equations and the boundary conditions. A discussion

2



of the modifications necessary f or the inverse steady-state procedure

will be included and some representative results will be shown.
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II. GOVERNING EQUATIONS AND SOLUTION SCHEME

)4

Development of the Small Disturbance Equations

The unsteady, small disturbance flow equation is derived from the L

unsteady Euler equations. Assuming irrotational flow (fluid particles

do not rotate about their axis) allows the Euler equations to be com-

bined into a single equation in terms of a velocity potential, 0. For

isentropic flow, relationships exist between pressure (p), density (p)

and speed of sound (a) so that p and p do not appear explicitly in the

equation. This provides the full potential flow equation:

2
ao a 0 ' V 2 2- , - (Vo o) Vo.v( 2 a V 0 o2  at2

at.

where,

2 2 a 2a a (7 1)[- + (1/2)(V4.V$ - U)]. '.

a = free stream speed of sound. I

Further simplification of the potential equation is possible by

restricting the analysis to cases were the following small disturbance

assumptions are valid;

2 /3
k, 1-M, and 7 << 1.

Where, k is the reduced frequency, w c/U

c is the chord length of the airfoil,

U. is the undisturbed freestream velocity,

w is the unsteady oscillatory frequency of the airfoil,

'r is the airfoil thickness-to-chord ratio,

4
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M is the freestream Mach number.

The resulting equation can be written in terms of a small perturbation

velocity potential (0) as:

A Ott + 2 B xt =C xx  . (1)

Where, A k 2 M2 /r2/3

2 2 /3B =k Ms /7-/

C= )/r2/] -(7+1)m, x

x and y are the Cartesian coordinates in the freestream and vertical

directions respectively. 7 is the ratio of specific heats. m is nor-

mally 2.0 (Spreiter scaling) but may vary for some applications. The

subscripts on 0 represent partial derivatives of 0 with respect to the

2/3
subscripted variable. x is nondimensionalized by c, y by c r, time ,

by w, and 0 by c U2/

LTRAN2 Description

A true high frequency solution would require the solution of

equation (1). However, LTRAN2 achieves good results for a large num- S

2
ber of cases by dropping the Ott term of 0[k3 and solving the

3 ".equation

2 Bxt C xx yy* (2)

Both the low frequency and the high frequency options in LTRAN2 use

equation (2). The difference between the low-frequency and high-

frequency calculations of LTRAN2 is in the boundary condit-ons and the

55
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expression used to compute pressure coefficients. The high frequency

option includes time dependent terms of O[k3 <1 in the calculation of

the pressure coefficients and the boundary conditions at the wake and

downstream boundary.3 '4 A summary of the boundary conditions and

pressure coefficient definitions is:

Variable Low frequency High frequency

Pressure coefficient C p -2 x 23 C = 2(Ox+kot) 2/3

Wake conditions lo I = 0 [#+k]= 0

Downstream B.C. x= 0 x+kt =0

I

Upstream B.C. 0= 0 0

Upper and lower B.C. 0 = 0 y 0

where the brackets [] are used to signify this is a jump condition

across the wake.

The surface tangency boundary condition for low frequencies is

satisfied by

y f (x,t) for y = 0, O< x > 1

where y = r2 / f(x,t) defines the airfoil surface. However, both the

low- and high-frequency options of the version of LTRAN2 used for this

study solved the time dependent expression

6



Oy fx+ k ft(,t) -(3)

The unsteady part of LTRAN2 was not altered for the results in

this report. Rather, the algorithm for determining the steady solu-

tion was modified to operate in both an inverse or a direct mode. The

modifications necessary for the inverse procedure are discussed in the

next section. But first, we will discuss the steady equations and the

steady solution algorithm.

LTRAN2 Steady-State Solver

The equations of interests for the steady-state case are:

C 0xx + Oyy= 0 (4)

= -0.5 C T2 /3 (5)
x p

= f(x). (6)

Where equations (5) and (6) are defined on the airfoil surface.

Equation (6) becomes unbounded at the leading edge of airfoils with a

finite leading-edge radius.

The finite difference solution of the small disturbance equations

are computed on a rectangular grid (Figure 1). The x-axis is in the

freestream direction parallel to the airfoil chord it zero angle of

attack and the y-axis is vertical, or perpendicular to the x coor-

dinate.

An approximate factorization solution algorithm (AF2) developed

by Ballhaus et al. is used in LTRAN2 to compute the steady-state flow

solution for equation (4). Some of the more pertinent aspects of that

solution scheme are given here.

A finite difference approximation for equation (4) may be written

by defining a linear operator L as:

'7
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p.

LO (C 6 xx+6 - b =0. (7)

The matrix operator L contains 5xx and 6 yy, which are second central

difference operators in x and y respectively. It also contains C

which, for purposes of analysis is considered a constant. The vector

b results from boundary conditions and the vector 0 is the exact solu-

tion to the finite difference matrix equation (7).

A general form for a two-level iterative solution procedure for

equation (7) is

ND + =0 (8)

where Dn ~n+1 - n is the correction to on after n iterations; Rn =

L On =(C 6 + 6 )On - b is the residual at iteration level n; and a

xx yy

is a relaxation parameter.

The proper choice of N is the key to convergence acceleration.

Two guidelines for the choice of N have been established: (1) N should

be chosen to resemble L as closely as possible, and (2) the matrix

operations required to obtain the correction vector should be simple.

An expression of N as an approximate "factorization" of L is,

N = N I N (9)

where factors N and N are chosen so that their product is an ap-

proximation to L. N and N must also be chosen so that the solution

procedure is stable. Each factor may have a bidiagonal or tridiagonal V

form.

An approximate factorization of equation (7) that has the neces-

sary characteristics can be written as:

~r J~xy I 'L x + )n b] (10)(P - ¢ x) ( P 6x - 5yy ) D n = p[(C 5 xx + 5 yy)0 n b](0

8
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where 3 and are first order accurate forward and backward dif- P
x x

ference approximations, respectively; and P is a parameter to be
defined later. Note that equation (10) is for subsonic flow. For

supersonic flow (C > 0), backward differences are used for 6 and 6

Equation (10) can be rewritten in the form

n [C6)n b
Step 1: ( - C 3x)Fn = P[(0 6 + 6y)# - b]

x xx yy

Step 2: (P 6x  yy )Dn Fn

where two sweeps through the grid are required for each iteration.

The first step involves a matrix solution of y = constant grid points

and defines the intermediate function Fn . The second step requires a

matrix solution for each x = constant line and defines the new poten-

tials at each grid point.

Acceleration Parameters

In the approximate factorization equation (10), a free parameter

was introduced. The choice of P influences the convergence rate
and, ideally, a new value of P that would provide the largest reduc-

tion in error should be selected after each iteration. Unfortunately,

no procedure for defining the optimum value for P8 has yet been
developed for transonic flow problems. Therefore, an acceleration

parameter sequence is used and repeated during the iteration process.

First, estimates are made of the values of f required to minimize the '

error growth for the high (Ph) and low (fi1) frequency extremes of the

error. Then, Ph and k1 are incorporated in an array,

Pk = Ph[Pl/fh /  k = 1,2,3 ....Q. (12)

91
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This array of acceleration parameters is used sequentially during the

course of iterating the solution. An eight-element sequence is most I

often used (Q=8). Estimates based on a simple linear analysis

provided that h= y- and 1. The convergence rate may be im-

proved by making small adjustments to the values of Ph and P,, and

from the use of other types of sequences.

Convergence Criteria

Some criteria are needed to assess the degree of convergence

n
after each iteration. Typical are the residual, R , the correction,

nD , the aerodynamic lift coefficient, CL' and the number of supersonic

points, NSUP. Values for Rn and Dn approach zero as the solution con-

verges, while NSUP and CL approach a fixed value.

1
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III. INVERSE PROCEDURE

The objective of the direct steady-state solution procedure is to

compute surface pressure information from known surface slope informa-

tion. The objective of the inverse method is to estimate surface

slope information (and thus geometry) from known surface pressure in-

formation. A flow chart of how the steady solution procedure

currently operates is shown in Figure 2.

The inverse solution procedure required several changes to the

direct procedure. The major difference was in the form of the surface

boundary conditions. In the direct procedure, the surface boundary

conditions are Neumann type, where the normal derivative of 0 was

specified;

oy= fx (x)

where fx is the local slope of the body. In the inverse procedure,

the boundary conditions on the surface are Dirichlet type, where the

value of the variable 0 itself is specified. Both of these boundary

conditions represent a well-posed problem that has a unique solution.

Defining Surface Conditions

The first step in the inverse procedure was to define the 0 dis-

tribution on the surface. This was accomplished by converting the

input pressure coefficients (known from experiment or higher order

computation) into surface potentials by using the relationship of

equation (5)

-0.5 - / C

where,

( x) j (j+- 0j)/(Xj*l- xj) Cpj

PP



Solving for 0j+l

#1+1= -0.5 - 2 x/3 1 (x.) + 0. (13)

j is the grid index in the x direction.

Once an initial estimate for 0 at x = 0 was determined, the

remaining values at each grid point (j) along the body were computed

from equation (13). The results presented in this report use the

value of t at the leading edge (x=O) obtained from an initial direct

solution on the input geometry. Note that Ox was approximated by a

forward difference. A central difference approximation for 0x was

also run, but there was no obvious improvement in the results, and it

had the disadvantage of requiring two initial values for 0 at the

leading edge.

With both t and 0x defined on the surface, it was a simple matter

to define the second derivative of 0 in the x direction on the sur-

face.

#xx=(0j_1-2 0 + #j+l )/[O.S(xj+ I - xj_l)] 2  (14)
a

Again, several different approximations for x are possible, but the

central difference appeared to work best for the cases presented in

this report.

The AF2 procedure used for steady solutions in LTRAN2 requires an

estimate for 0yy at each grid point on the surface for each y = con-

stant sweep iteration. The direct method computes 0yy from the known

surface slope and the latest approximation for 0 at the first grid

point off the surface,

tyy :(tYl fx )/(Y1+y- Yi) (15)

12



where I is the surface grid line, and equation (6) is the relationship
between fx and #y. Equation (15) is essentially a forward difference

approximation for the second derivative, but has the advantage of

needing information from only one grid level away from the surface of

the body (level 1+1).

The inverse solution must employ another procedure for estimating

the second derivative of 0 in the y direction. Second- and third-

order forward difference approximations were tried, but were

unsatisfactory. Very large gradients can exist in the y direction,

particularly near the leading edge of the airfoil, and the forward

difference may not provide a good approximation. For example, the

three term approximation for y
yy

yyi (01 - 2 0I+l + OI+2)/[°'5(yl,2-YI ) ]

has errors of the order

(Yl'l-Yl)( yyy I )

which may not be a small value when large gradients exist. Also, the

values for 0 on the surface are fixed, while the values away from the

surface are evolving during each iteration.

Following the example of Fung and Chung, the small disturbance
equation itself (equation (4)) was used to solve for y at the sur-

face;

0yy = -Cxx.

Substituting for C, the expression becomes;

yy = -xx[(1 0 ),r -(7+1) O x ( ).

13



Note that this approach may produce inconsistent results just above

the surface. This could contribute to the problems with convergence I

discussed later in this section.

Equation (16) is easily solved at each grid point on the surface

during the y = constant sweep of the two step iteration process.

During the x = constant sweeps, the code was modified to skip the

lines of code that redefine the values of 0 on the surface.

Defining the New Geometry i

After the inverse process has converged, the potential 0 is known

at each point in the domain defined by the grid system. However, the

desired information is the shape of the body that would produce this

potential distribution when input to LTRAN2 and solved in the direct

mode. Equation (6) provides a relationship between the potentials and

the surface slopes;

y'= ay/ax = fxW = Oy = (0l 1 l-Ol)/(yi1 l-yI) (17)

Starting with y=O at x=O (the leading edge of the airfoil), a .

Taylor series approximation provides an estimate for y at the next

grid point; 4-,

Yj =Yj-I +  Y i-(X j- Xj-l) + y 7
1(xj-x j-)2/2 +

y .. (x -xj ) /6 +. .... (18)

Where, y 1 is computed from equation (17), and

yj- 1  a(y')/ax = a(oy)/ax (Yj-Y "-l)/(x j-j-1).

I



with similar approximations for higher derivatives.

Geometries were computed using both three and four terms of the

Taylor series approximation and with forward, centered and backward

approximations for the y" and y.. terms. The best results were ob-

tained using the first three terms of the Taylor series, and a forward

difference approximation for y'.

2=j Yj-l +  oYj-l(Xj- Xj-l) + 0.5(x j- X j-1
)

Yjl

[(0Yj- 0Yj-. Mx j-xj-1)]

or, after simplification,

Yj = Yj-1 + O.5(xj- Xj-l)(Oyj+ OYj-) (19)

A new geometry is created by successively applying equation (19) at

each grid point, starting at the leading edge and progressing to the

trailing edge. Both the upper and lower surfaces are constructed in-

dependently. The new geometry should produce a pressure distribution

identical to the target pressures when input to the direct method of

LTRAN2. When this new geometry and the resulting steady-state start-

ing solution were used in the unsteady mode, a much better comparison

with experimental unsteady data was obtained.

6

Grid Spacing effects

The effect of grid spacing on the inverse solution was inves-

tigated. Reduced grid spacing in the x direction was implemented in

the leading edge region, at the shock location and at the trailing

edge. Both the leading edge and the shock location results with a

finer grid spacing were worse than with the basic LTRAN2 grid dis-

tribution. However, additional grid points at the trailing edge did

seem to help smooth the piessure data in that region. Reducing the

grid spacing in the y direction at the body had a significant effect

?gee,5



on the results. In particular, reconstruction of the new geometry,
which requires an accurate estimate of y, was much better with the

y
finer grid spacing. Therefore the results presented in this report

used the basic LTRAN2 grid in the x direction plus two additional

points at the trailing edge for a total of 113 points, 50 of which

were on the airfoil. The grid extended k200 chord lengths with Ax =

0.005 at the leading edge and Ax = 0.0028 at the trailing edge. The

initial grid spacing in the y direction was 0.001 for the inverse pro-

cedure compared to the normal value of 0.01 for the direct solution.

There were a total of 97 points in the y direction which extends to

*396 chord lengths. The main iteration loop used 1620 time steps for

the unsteady calculations. This allowed for 4.5 complete cycles (at

360 steps per cycle) so that any transients would be out of the solu-

tion.

Convergence Characteristics

Convergence for the inverse -aethod followed much the same pattern

as for the direct method. Thin airfoils in subsonic flow converged

rapidly when using the maximum correction (Dn), or change in lift

coefficient (CL) as the convergence criterion. However, the maximum

residual (Rn) would decrease only about three orders of magnitude for

the inverse method. Thick airfoils with strong shocks had maximum

residual reductions of only three orders of magnitude for both the

direct and the inverse methods. The maximum correction, number of

supersonic points (NSUP), and the change in CL all indicated good con--

vergence after about 500 iterations.

Acceleration Parameters Used

Many different combinations of acceleration parameters were

tried. The number of parameters in the sequence (Q), the low value
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(Pl)and the high value (Ph) may be changed independently for each

solution. The values that currently exist in the code are:

Process lh

Direct solution on input geometry 8 1 800

Inverse solution 20 100 1000

Direct solution on target geometry 8 1 1000

There was little attempt to optimize these parameters for the

limited cases run in this study. Note the relatively high value for

P1 in the inverse method. The value required for convergence is much

* 7
larger than the Ballhaus et al estimate of 1 for the direct method,

but is consistent with the findings of Chung and Fung

In summary, the modifications made to LTRAN2 for this report in-

clude modifications to the AF2 routine, and the addition ol four small

subroutines to accommodate the inverse calculations. Subroutine

CPINPT takes the target surface static pressures and interpolates to

define values at the grid point locations. SURPHI computes and dis-

tributes values of 0 at each grid point on both the upper and lower

surface (equation (13)). PYYC02 determines the second derivative of

in the y direction from equation (16). RECON reconstructs a target

geometry based on the results of the converged inverse solution, equa-

tion (19).
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IV. RESULTS AND DISCUSSION

The experimental data used for comparison in this report comes

from the tests of Davis and Malcolm Two airfoils (NACA 64A010, NLR

7301) were tested over a range of transonic Mach numbers, Reynolds

numbers, angles of attack and reduced frequencies. The models were

oscillated harmonically about 50 percent and 40 percent chord respec- .S

tively. Static pressure distributions for the upper and lower i

surfaces were provided for each test condition at the mean angle of

attack (a0 ). Dynamic pressure data were also provided at several

points on the airfoil. The time-dependent data were Fourier-analyzed

up to the fundamental frequency component; where the fundamental fre-

quency component is the complex number that, indicates the magnitude,

and phase shift with respect to the input motion. The real part, im--

aginary part, magnitude and phase of the complex amplitudes, I

normalized by the amplitude of the input motion, were tabulated and

are used for comparison with LTRAN2 results in this report. Since

magnitude and phase are related to the real and imaginary parts by the

complex relationship,

CpR +iCP P e

only the magnitude and phase results will be shown in this report.

64A010 Airfoil

Table 1 lists the test conditions provided in this report. The

first test condition represents the most severe case that a small dis-

turbance procedure could reasonably be expected to handle. The 64A010

airfoil is 10 percent thick and has a moderately rounded leading edge.

A significant region of supersonic flow is terminated by a shock.

The airfoil was oscillated at a reduced frequency of 0.202.

Comparison of the pressure coefficients from the experimental test

18
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(solid line), the direct solution of LTRAN2 on the original 64A010

geometry (dashed line) and the direct solution on the new geometry

that was determined by the inverse solution (A and +), is presented in

Figure 3. These results indicate that LTRAN2 predicts the steady flow

characteristics for this case with reasonable accuracy. A comparison

of the original geometry in Figure 4 (solid line) and the geometry

determined by the inverse procedure (, and A), shows very little dif-

ference. The new geometry from the inverse solution has some

sharpening of the leading edge and som thickening over the aft part

of the airfoil.

The time-dependent results of LTRAN2, for both the original

64A010 geometry (BASIC LTRAN2) and the geometry that reproduces the

experimental steady results (MODIFIED LTRAN2), and the experimental

data from Ref. 9 are compared in Figures 5 and 6. Again, there ap-

pears to be little difference between the basic results and the new

geometry results, and both compare favorably with the experimental

results. Some representative pressure coefficient plots at different

stages of the ocillatory motion, for the basic airfoil and the new

geometry respectively, are provided in Figure 7 and 8.

NACA 0012 Airfoil

The second test case was the NACA 0012 airfoil, tested at Mach =

0.80, and 1.86 degrees angle of attack.0 Reference 10 provides no

time-dependent experimental data, but the 0012 airfoil is the ar-

chetypal test airfoil and represents a reasonable intermediate shape

between the 64A010 and the NLR 7301 airfoils. This case is more

severe than the previous case because the NACA 0012 is 12 percent

thick, has a much larger leading edge radius and is at an angle of

attack of 1.86. The pressure coefficient comparisons are presented in

Figure 9. The direct solution for the NACA 0012 airfoil is obviously

very different from the experimental steady data. The solution for

the modified geometry agrees quite well with the experimental pressure'4

data except for a small deviation at the shock.
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Theoretically, the inverse procedure should produce a geometry

that would exactly reproduce the target pressure distribution. In

practice, however, it has been found that pressure data in the

vicinity of a strong shock is very erratic. For example, the symbols

in Figure 9 represent the pressure results after 1500 iterations of

the inverse procedure. The results at only 10 iterations before

(1490) and 10 iterations later (1510) show that an almost indistin-

guishable difference in geometry produced very different pressures

(Figure 10). The predicted velocity at 60 percent chord on the upper

surface varies from subsonic to supersonic with almost imperceptible

changes in geometry.

The geometry provided by the inverse solution using the Figure 9

pressures is shown in Figure 11. The actual NACA 0012 geometry is

much thicker and has a much more rounded leading edge than the

geometry that would cause LTRAN2 to produce the target pressure dis-

tribution. The "fishtail" effect on the aft portion of the new

geometry is obviously not practicable for an airfoil, but fortunately,

the small disturbance routine only requires surface slopes.

The unsteady lift and pitching moment coefficients from the

original and the modified geometries are compared in Figure 12. The

magnitude and phase from the time-dependent calculations are shown in

Figure 13. A look at the predicted pressures at various points during

the oscillations, for the original and the new geometries respec-

tively, is given in Figures 14 and 15. Several cycles were computed

to allow any starting transients to dissipate. The original LTRAN2

solution is virtually invariant with angle of attack and produces none

of the phase shift and complex pressure amplitudes of the modified

LTRAN2 procedure.

NLR 7301 Airfoil

Pressure coefficients for the NLR 7301 airfoil are shown in
WMFigure 16. This airfoil is 16.5 percent thick, has a very large lead-

ing edge radius and produces strong shocks followed by separation to

the trailing edge on both the upper and lower surfaces. As with the

20 1I
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NACA 0012 example, the direct solution for the basic NLR 7301 geometry

is completely wrong. The solution for the modified geometry is very I

good over the first 50 percent and the last 35 percent of the airfoil.

However, the small disturbance procedure predicts too severe a

velocity decrease across the shock. Attempts to improve the situation

by changing grid spacing proved to be fruitless. It may well be an

insurmountable characteristic of the small disturbance approximation.

Indeed, Steger and Klineberg 1 show similar effects in their attempts

to use the small disturbance equations in the design mode.

The original and inverse airfoil geometries are shown in Figure

17. Again, the large leading edge radius of the basic airfoil leads

to a fishtail effect for the new geometry.

The direct solution on the original geometry results are shown in

Figures 18 and 19. The original LTRAN2 results show very little

change in the time-dependent pressure profiles and, therefore, very

little change in the complex pressure, magnitude and phase. The

Figures 18 and 19 results are for k := 0.20. A k = 0.05 case was also

computed but the results were as bad as or worse than the k = 0.20

results.

The k = 0.20 results for the new geometry from the inverse proce-

dure are presented in Figures 20 and 21. The LTRAN2 results compare

favorably with the experimental results, though the magnitude of the I
peak values are different. The reason for the differences is not com- m_

pletely understood but is very likely associated with the shock S.

strength errors.

Results for the k = 0.05 case are presented in Figures 22 and 23.

As with the k = 0.20 data, the form of the results compares with the

form of the experimental results, however, the agreement is not quite

as good as for k 0.20. Pressure coefficient plots in Figure 23 in-

dicate that the solution in the neighborhood of the shock strongly

influences the unsteady pressure results. Additional results and

recommendations for further work are presented in Section V.
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V. CONCLUSIONS

The steady-state solution subroutine in the unsteady small dis-

turbance solver LTRAN2 has been modified to operate in an inverse or

"design" mode. "Design" is written with quotation marks because there

has been no attempt to produce a realistic airfoil shape. Rather, the

objective of this inverse procedure is to provide a geometry (actually

a set of upper and lower surface slopes) that causes LTRAN2 to match

the known steady-state surface pressure. The unsteady results from 0

the new geometry should be a much better approximation to the ex-

perimental unsteady results. The purpose is to expand the useful

range of the small disturbance solver to both airfoils and flow condi-

tions that violate the inviscid, irrotational, small disturbance

assumptions.

Three separate airfoils were evaluated with this new procedure.

First, an NACA 64A010 airfoil, tested at Mach = 0.80 and near zero

angle of attack was evaluated. This condition is representative of 3

the most severe case that a small disturbance procedure could be ex-

pected to handle. Indeed, there was little difference between the

s obtained from LTRAN2 run in the normal mode and the results

o ned from the modified geometry that produced steady-state pres- p

sure distributions that exactly matched experimental data. The

unsteady pressure results from both approaches agreed well with ex-

perimental unsteady results.

Next, an NACA 0012 airfoil at Mach = 0.80 and a = 1.86 was inves-

tigated. The steady-state flow results indicated clearly that the .

LTRAN2 solution was not representative of the experimental data.

Implementing the inverse procedure provided a geometry that did repre-

sent the experimental results when solved by LTRAN2. A problem of

extreme sensitivity of the pressure coefficients at the shock was

revealed. LTRAN2 over estimates the velocity reduction at the foot of

strong shocks. There were no experimental unsteady results for com-

parison, but the results from the modified geometry were much more

reasonable that the results from the basic NACA 0012 geometry.
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The most severe test case was an NLR 7301 airfoil at Mach = 0.80

and near zero angle of attack. This 16.5 percent thick supercritical

airfoil had a very large leading edge radius. The flow contained

strong shocks on both surfaces. Again, the steady-state solution on

the basic geometry was much different from the experimental steady-

state results. The inverse procedure produced a geometry that

resulted in good agreement with the experimental steady-state results

except for the wovershoot" problem at the foot of the shock.

The unsteady results are compared for two different reduced fre-

quencies; k = 0.20 and k = 0.05. The trends of the computed k = 0.20

results compared well with the trends of the experimental results.

However, the magnitudes of some peak values were significantly dif-

ferent. The k = 0.05 results did not compare quite as well with the

experimental data as the k = 0.20 results.

The k = 0.05 results from the NLR 7301 airfoil hig'hlight two

problem areas for the inverse procedure. Probably the most serious

problem results from the fact that the experimental shock location

moves fore and aft on the airfoil as the airfoil oscillates. However,

the modified geometry has surface slopes that induce the shock for the

steady-state solution, and this geometry remains fixed as the airfoil

oscillates. As a result, the geometry is trying to force a rapid

change in surface velocity (and thus pressure) at the wrong (except,

perhaps twice during each oscillation) chord location.

The second problem area has been mentioned before and is the ten-

dency for LTRAN2 to overshoot the velocity drop across the shock. The

experimental data, at least for the NLR 7301 case investigated here,

indicate a much less severe velocity drop across the shock than LTRAN2

predicts. The overshoot appears to be an unavoidable result of the

LTRAN2 procedure. Some minor modifications to the code were tried but Ap

they did not improve the overshoot problem.

Before using this procedure on a routine basis, a parametric

study of the acceleration parameters should be completed. It would

probably be very useful to develop a procedure to vary the accelera-

tion parameters as the solution evolves. The solutions presented in

this report were obtained on a CRAY X-MP 12, with run times of about 4

23
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minutes, and required about 156,000 words of memory. However, there

was no attempt to improve the vectorization of the code or to decrease

the memory requirements. Significant reductions in both run time and

memsry requirements should be possible. A more difficult but much

more rewarding improvement would result from solving the overshoot

problem at the shock. Last, but certainly not least, the development

of a practical way of allowing the geometry modifications to move with

the shock during the unsteady oscillations should reap tremendous

benefits.
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Table 1
S

Test Conditions for LTRAN2 Solutions

Airfoil Mach k X R a a C
n 0 1

7NACA 64A010 0.796 0.202 0.50 1.3xlO -0.21 1.09 -0.029

NACA 0012 0.80 0.20 0.50 9.0x10 6  1.86 1.0 0.299 5

NLR 7301 0.807 0.20 0.398 1.2x1O 7  0.36 0.49 0.047

NLR 7301 0.807 0.05 0.404 1.2xlO 7  0.36 0.49 0.047

,277

.



MI I IL..iL. __

0 If
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Subroutjr'e
AF2D

Converge a Solution
Based on Input Geometry

Indirect NO

Solution Desired

FOutput Results
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Based on 0 at SurfaceI

y

Cnverge a Direct solution
Based on new Geometry

Figure 2 Modified AF2 Solution Flow Chart
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LIST OF SYMBOLS

A Small disturbance equation constant =k 2M 2 2/3

a Speed of sound.

AF2 Approximate factorization scheme 2.

AOA Angle of attack.

B Small disturbance equation constant =k M2 /7 2/3

b Boundary condition vector in AF2.

C TSD equation =[(l-M )/r/3 ]- ( 7 +)M; Ox

c Airfoil chord length.

C or CL Lift coefficient.
L

C or CM Pitching moment coefficient about 0.25c.

C or CP Pressure coefficient.
p

C Pressure coefficient corresponding to sonic flow.
p

C Real part of complex pressure coefficient.PR"

C Imaginary part of complex pressure coefficient.

C Magnitude of complex pressure coefficient = (C2 R + C 2)1/2

Pm R PI

f Function that defines the airfoil geometry.

F Intermediate result for the two step iteration process.

k Reduced frequency =w c/U

L Linear operator.

LTRAN2 Unsteady small disturbance solution procedure.

M Mach number.

m ExponenL for Mach number (real number between 1 and 2).

N Operator used in the AF2 development.

NSUP Number of supersonic points.
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LIST OF SYMBOLS

0 Of the order of what follows in brackets

Number of parameters in the acceleration sequence.

R Residual in the AF2 procedure.

R Reynolds number (per foot).
n

t Time variable.

U Freestream velocity.

x Cartesian coordinate in the streamwise direction.

x 0  Chord location about which the forced oscillations occur.

X/C Chord location in fraction of chord.

y Cartesian coordinate perpendicular to the freestream.

Y/C Vertical coordinate in fraction of chord.

Greek
F

a Angle of attack.

Acceleration parameter used in AF2 solution algorithm.

a0 Angle of attack about which the oscillations occur.
a Multiplier for the trig function describing the

oscillations.

a Upper bound for the acceleration parameters.

a1  Lower bound for the acceleration parameters.

T Thickness to chord ratio for the airfoil.

6 Partial derivative operator (with a spatial or temporal

subscript).

wOscillatory frequency.

*Velocity potential.

Small perturbation velocity potential.
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LIST OF SYMBOLS

7 Ratio of specific heats.

a Relaxation parameter for the AF2 solution algorithm.

0 Phase angle for complex pressure coefficient = Tan-CpR/C pi)

Subscripts

Infinity or far field conditions.

x Derivative with respect to the x coordinate.

y Derivative with respect to the y coordinate.

t Derivative with respect to time.

i Index of the computational grid in the y direction.

I i index at the airfoil.

j Index of the computational grid in the x direction.

J j index at the airfoil leading edge.

k Index for the acceleration parameters.

Superscripts

n Iteration counter for the AF2 solution procedure.

-Forward difference.

+ Backward difference.

Derivative with respect to the x coordinate.
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