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Automatic Concept Formation
in a Rich Input Domain

Army Research Institute, MDA903-85-K-0103
29 March 85 - 29 March 87

Final Report

Michael Lebowitz
Department of Computer Science, Columbia University

New York, NY 10027

Executive Summary

Learning by observation involves automatic creation of categories that summarize

experience. In this report we summarize our research during the contract period with

UNIMEM, an artificial intelligence system that learns by observation. UNIMEM is a

robust program that can be run on many domains with real-world problem characteristics

such as uncertainty, incompleteness, and large numbers of examples. We give an .

overview of the program that illustrates UNIMEM's key elements, including the automatic

creation of non-disjoint concept hierarchies that are evaluated over time. We then

describe several experiments that we have carried out with UNIMEM, including testing it

on different domains (universities, Congressional voting records, and terrorist events) and

an examination of the effect of varying UNIMEM's parameters on the resulting concept

hierarchies. Finally we discuss future directions for our work with the program.

- - - - - - - - -



1 Introduction

Learning from observation is a task that is important in domains where examples are not pre-

classified, but where one still wishes to detect general rules and intelligently organize examples. In this

paper we discuss UNIMEM, a system that learns from observation by noticing regularities among

examples and organizing them into a generalization hierarchy. We view UNIMEM both as implementing

an algorithm for concept formation and as a prototype intelligent information system that can incorporate

large amounts of data into memory and retrieve appropriate information in response to user queries.

UNIMEM is not intended to be a psychological model per se, since it deals with a task more data-

intensive than people are likely to perform. However, in developing the program we have made use of

techniques derived by observing human behavior.

The task of UNIMEM is to take a series of examples (or instances) that are expressed as

collections of features and build up a generalization hierarchy of concepts. For example, UNIMEM might

use information about a collection of universities to inductively determine the concepts of Ivy League

universities, European technical universities, and so forth, and determine which examples are described

by which concepts. The point of creating such concept descriptions is that they allow a performance

element using the output of the program to make inferences about new examples based on partial

information.

Successful learning from real-world input must deal with several constraints. The key features that

characterize the operation of UNIMEM are:

" It learns by observation; it is not explicitly told how examples are grouped into concepts.
" It is incremental; after processing each example it must have available a generalization

hierarchy; it cannot wait for all the input.

* It must handle examples in large numbers (currently hundreds, eventually more).

" Its generalizations are pragmatic; even when a generalization appears to apply, it does not
have to; usually is good enough.1

Although certain learning systems have dealt with tasks having some of these characteristics, little work

'Pragmatic generalizabon is crucial in dealing with uncertain, incomplete or inconsistent data, where apparently equivalent
situations may not always produce the same results.
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has been concerned with all of them. However, all seem to characterize human concept formation and al

seem valuable for learning in complex real-world domains. We constantly receive new examples and the

world is not perfectly regular.

The task of UNIMEM is basically that of conceptual clustering as presented by Michalski and Stepp

(1983), but our work also draws upon research in learning from examples (e.g., Winston, 1972, Mitchell,

1982, Dietlerich and Michalski, 1986). However, in a learning by observation setting, one must consider

not just how to compare examples, but also decide which examples to compare. This largely determines

the concepts that one creates. We make the assumption that similarities among natural occurring

examples reflect meaningful regularities in the world, an assumption that we discuss at length elsewhere

(Lebowitz, 1986a).

The name UNIMEM is derived from the phrase UNIversal MEMory model, which reflects our goal

of generality. We would like the system to be easily applicable to new domains, at least those where a

feature-based representation is adequate. Domains that UNIMEM has been used on include:

U. S. states, Congressional voting records, software evaluations, biological data, football plays,

universities, terrorist events, census data, and financial data. In the following sections we provide sn

overview of the UNIMEM learning algorithm, along with an example of the system in operation, and then

describe several experiments that we have performed with the program. These include both examining

the system's behavior in several different domains and a study of the effects of varying UNIMEMs

parameters. We conclude with with a discussion of several open research issues and the relation of our

work to other research in machine learning.

2 The basic UNIMEM algorithm

UNIMEM takes a series of examples in a domain and organizes them into a permanent long-term

memory.2 The key idea behind UNIMEM is Generalization-Based Memory (GBM). 3 GBM is a hierarchy of

2 UNIMEM runs on a DECSysterrI2060 in UCI LISP and on an HP 9861 workstation and a VAX 750 running Portable Standard
LISP.

3 GBM is also used by our other prototype intelligent information system, RESEARCHER, which reads, remembers and
generalizes from patent abstracts (Lebowitz, 1983a, 1986b). The instances in RESEARCHER are more complex than those iTr
UNIMEM, but it can handle fewer examples. The idea of GBM was originally developed for IPP, a program that read and learned
from news stories about terrorism (Lebowitz 1980. 1983b); see also Section 3.2 of this paper.

3%
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concepts describing classes of objects. GBM is built up by our systems, including UNIMEM, by

generalizing specific examples. This involves both searching memory for similar examples and

abstracting out similarities. To illustrate the UNIMEM learning algorithm, we will use examples from the

domain of university information. For this domain we collected 284 universities descriptions of 224

distinct universities. Information was taken from standard reference books and by surveying

undergraduate students. In studying learning by observation we feel that it is important to collect as much

information as possible and not prejudge whether any particular piece of information is likely to be useful

in generalization.

2.1 UNIMEM's representation of instances and concepts

Input to UNIMEM is a series of examples, or instances, givt n to the program one at a time. An

instance is described as a set of features that are essentially attribute/value pairs.4 Each university has

attributes such as "percent of students receiving financial aid," "average math SAT score," and so forth.

Some features, such as quality of social life, make use of arbitrary five point scales. While a simple

feature representation is clearly inadequate for many tasks, it allows us to get started very easily on new

domains. Table 1 shows the input features for Columbia, Yale, and Brown, three typical instances in the

university domain.

The goal of UNIMEM is to recognize similar instances and abstract them to form a hierarchy of

generalized concept descriptions. Instances are stored in GBM under the generalizations that describe

them. The resulting concept hierarchy can, if desired, be used by a performance system, such as a

question-answering program. The manner in which generalizations are related is illustrated in Figure 1,

which shows part of a concept hierarchy formed by UNIMEM from 150 university instances averaging

about 20 features apiece.5 The complete hierarchy is shown in Appendix I. We can see in Figure 1 how

4UNIMEM actually uses attribute/facet/value triples. This greatly simplifies its use for frame-based representations. For example,
in the terrorist event domain we use attributes and facets to distinguish among features of the different role fillers, e.g, the victim's
nationality and the actor's nationality. However, for purposes of clarity, in this paper we have collapsed the attribute and facet fields.

5UNIMEM does not require that every instance have a value for every attribute, hence the number of features per instance varies.
Also, attributes with multiple values are allowed.

I.
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Value for Value for Value for
Attribute COLUMBIA YALE BROWN

STATE NEW-YORK CONNECTICUT RHODE-ISLAND
LOCATION URBAN SMALL-CITY URBAN
CONTROL PRIVATE PRIVATE PRIVATE
MALE:FEMALE 7:3 55:45 1:1
NO-OF-STUDENTS < 5,000 < 5,000 < 5,000
STUDENT:FACULTY 9:1 5:1 11:1
SAT-VERBAL 625 675 625
SAT-MATH 650 675 650
EXPENSES > $10,000 > $10,000 > $10,000
%-FINANCIAL-AID 60 40 40
NO-APPLICANTS 4,000-7,000 10,000-13,000 10,000-13,000
%-ADMITTANCE 30 20 20
%-ENROLLED 50 60 50
ACADEMICS 5 out of 5 5 out of 5 5 out of 5
SOCIAL 3 out of 5 3 out of 5 4 out of 5
QUALITY-OF-LIFE 3 out of 5 4 out of 5 5 out of 5
ACAD-EMPHASIS LIB-ARTS HISTORY HISTORY
ACAD-EMPHASIS BIOLOGY BIOLOGY
ACAD-EMPHASIS ENGLISH ART-SCIENCES
ACAD-EMPHASIS LIB-ARTS

Table 1: Three instances of universities

the basic concept of a university is broken down into a number of more specialized versions. The

hierarchical nature of the generalizations is indicated by indentation (e.g., GND60 inherits all the

properties of GND2). The English concept descriptions have been added by hand. At the top level, we

see universities under GNDO that are described by no generalized concepts. Shown beneath GNDO are

two generalized concepts, GND2 and GND4. The later of these, which describes private universities,

also has several more specific versions.6

In the hierarchy of generalizations that describe concepts of increasing specificity, instances and

sub-generalizations are stored using efficient indexing methods 7 The generalizations themselves are

sets of leatures. Table 2 shows several of the generalizations taken from the hierarchy in Figure 1.

GND4, the first generalization in the table can be summarizeo as "high-quality private universities",

represented by an appropriate set of features. At this point in the run, no instances were stored directly

under GND4, since those from which it was created had all been used to create sub-generalizations.

'The more specific versions of a generalization are referred to as its sub-generalizations.

7We have experimented with both discrimination networks (Feigenbaum, 1963; see Charniak et al.. 1980 for implementation
methods) and hash tables for indexing. The exact indexing method is not crucial in most domains; there are rarely a large number
of instances under a given generalization, since sub-generalizations tend to be formed as the number of instances grows.

5I
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GNDO (''unusual'' universities that are not covered by any generalization)
(DALLAS-BAPTIST-COLLEGE JUILLIARD MICHIGAN-STATE SUNY-BUFFALO

UNIVERSITY-OF-MISSISSIPPI VASSAR]

GND2 (high quality of life and academics; engineering emphasis)
(CHALMERS-UNIVERSITY-OF-TECHNOLOGY ECOLE-POLYTECHNIQUE PENN-STATE

SAN-JOSE-STATE UNIVERSITY-OF-CALIFORNIA-SAN-DIEGO UNIVERSITY-OF-TEXAS) p

GND60 (large state schools with strong social life eM

[UNIVERS ITY-OF-COLORADO UNIVERSITY-OF-MASSACHUSETTS-AMHERST)

GND4 (private universities with high academic level and medium social life)

GND9 (expensive, urban schools with strong applicant SAT scores)
[HARVARD UN'IVERS ITY-OF-PENNSYLVANIA]

GND119 (small schools with low admittance rates)
[COLUMBIA WESLEYAN)

GND19 (expensive schools with high enrollment yields)
[MIT SWARTHMORE]

GND133 (small schools with very high SATs and low admittance rates)
(PRINCETON YALE]

Figure 1: A portion of UNIMEM's concept hierarchy for a university run."-

As part of its representation, UNIMEM includes numeric ratings that indicate its confidence in each

feature of each generalization. These numbers start at 0 and can increase or decrease during the

processing of later examples, as described in Section 2.2.3. The values in the rightmost cohlrnn of Table '"

2 are the confidence levels.8

The numbers in the third column of Table 2 are feature frequencies indicating how often each

fea3ture appears in other generalizations. This information is used for predictability analysis, a method for .,

aNaturally, the decimal places should not be taken too seriously. They are the product of the numeric evaluation procedure used. '

L
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FEATURE FEATURE
ATTRIBUTE VALUE FREQUENCY CONFIDENCE

GND4
QUALITY-OF-LIFE 4 out of 5 1 20.00
ArADEMICS 4.5 out of 5 2 17.67
CONTROL PRIVATE 3 16.00 1
SOCIAL 3 out of 5 3 20.00

GND9, a more specific version of GND4
SAT-MATH 662.5 1 4.13
%-FINANCIAL-AID 60 1 5.00
LOCATION URBAN 4 0.00
STUDENT:FACULTY 10:1 5 4.40
EXPENSES > $10,000 5 11.00
[HARVARD UNIVERS ITY-OF-PENNSYLVANI A]

GND19, a more specific version of GND9
SAT-VERBAL 637.5 1 2.72
%-FINANCIAL-AID 45.0 1 2.20
%-ENROLLED 55.0 2 1.00
NO-OF-STUDENTS < 5,000 5 5.00
[MIT SWARTHMORE]

Table 2: Selected concept descriptions for the university domain

determining which features are likely to indicate a generalization's relevance to new examples. While we

will not discuss predictability in depth here -- it is discussed more fully in Lebowitz (1983b) -- the basic

idea is that only certain features should be used to index a concept (because they indicate its relevance),

and that these features can be identified efficiently using Generalization-Based Memory. Predictability

analysis can also be important in determining causal explanations for generalizations (see Lebowitz.

1986c).

Table 2 also shows GND9, a more specific version of GND4, and GND19, a more specific version %

of GND9. The concept GND9 describes expensive, urban schools and GND19 describes schools tha

are, in addition, small with high verbal SAT scores. Each of these generalizations has instances

(universities) stored with it. When future instances are found to be described by these generalizations,

they will be compared to the examples stored there.

The use of a hierarchy of generalizations as a method of memory organization allows efficient

storage of information since it supports inheritance. In addition, GBM allows the generalizations and

7



instances relevant for learning to be found efficiently in memory using the algorithm described below.

This latter property is largely independent of UNIMEM's feature-based knowledge representation, as we

have shown with RESEARCHER (Lebowitz, 1983a, 1986b) a system that uses a more complex

representational scheme. The use of concept hierarchies with inheritance is by no means new; semantic

networks (Quillian, 1968), frame systems (Minsky, 1975), MOPs (Schank, 1982) are among many

formalisms that incorporate this approach. What distinguishes UNIMEM is the dynamic formation of the

concept hierarchy and the use of this hierarchy to guide the development of further concepts.

An important part of the UNIMEM methodology is that the more specialized versions of a given

concept need not be mutually exclusive. In Figure 1, for example, the two concepts "schools with high

quality of life and academics; engineering emphasis" and "private universities with high academic level I
and medium social life" are obviously not mutually exclusive; a university could be described by both

concepts. An implication of this is that UNIMEM can store an instance in several places in memory. Most

clustering techniques require disjoint categories, but this does not seem to be the best way to maximize

the inferential power of the concepts created. Even if a concept allows default inferencing, its negation

may not, because the instances in that category have little in common. For example, universities that are

neither in GND2 nor GND4 above may share no features, and hence no default inferences could be

made based on identity in that class.

2.2 Adding new instances to memory '

The basic process of incorporating a new instance into GBM makes direct use of the memory

organization defined above. UNIMEM's incorporation algorithm for a new instance with a list of

input-features can be broken into two phases:9

1. Search GBM for the most specific concept node(s) that the instance matches by calling
SEARCH(root-node, input features).

2. Add the new instance to memory by calling UPDATE(most-specific-node, input-features) for
the node(s) found by SEARCH. This involves comparing the new instance to the ones
already stored and generalizing i appropriate.

I

9 The UNIMEM incorporation algorithm includes a number of adjustable parameters, noted by a superscript P in the text. By
parameterizing all aspects of UNIMEM, we do not give great meaning to any specific numeric value. In Section 4.1 we will discuss
the possibility of setting the parameters automatically. Appendix II gives a complete listing of UNIMEM's parameters.

:, r.# . ' "L " '. *\' -" .' ",,- ,", r .*S% "S* 'J ." . 5 5, ". " , ' . . ---------------------. * -- **''
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If desired the search phase could be used independently to retrieve instances that match an input

description. This could be done for information retrieval and similar applications.

2.2.1 Searching the generalization hierarchy

As UNIMEM processes a new instance, it first finds the most specific generalizations that describe

it. GBM can be viewed as a large discrimination net (Feigenbaum, 1963), so UNIMEM starts with its mos',

general node and carries out a controlled depth-first search to find the most specific generalization(s) that

legitimately describe the new instance. When the search begins, none of the input features have been

matched to a generalization. As UNIMEM searches down the concept hierarchy, features are gradually

accounted for by various generalizations. The major steps of the SEARCH algorithm are:

SEARCH(node, unexplained-features)
1. If the sum of the distances between the features in unexplained-features and those of node

is "too large", P then node does not adequately match the instance; return the empty list.

2. Otherwise, for each potentially relevant sub-node sx of node, call SEARCH(sx,
[unexplained-features - features of node]). .

3. If for any sx, SEARCH returns a list of nodes that describe the new instance, then return the
union of those lists.

4. Otherwise, return the singleton list of node. (This case occurs only when each sub-node
conflicts with the new instance. Since node does not conflict with the new instance, it is the
most specific acceptable generalization on this search path.)

During UNIMEM's search process, feature values can do more than match or mismatch - there can be

varying degrees of closeness.10 Instead of values simply matching or not, we allow the quality of feature

matches to vary between 0 (total mismatch) and 1 (perfect match).1 1 When UNIMEM matches a new

instance to a generalization, it considers whether the sum of the distances between the features in the

generalization and those in the new instance is small enoughP to assume that the generalization

describes the instance. 12

If an instance has feature values that conflict with a generalization, which is allowed as long as the

total conflict is not too high, then the instance feature values simply override those in the generalization.

I°We developed categorization algorithms for numeric input that allowed an all-or-none regimen to work reasonably well

(Lebowitz, 1985), but we have since modified UNIMEM to take into account the closeness of values as described here.

"The system is set up so that a user can easily define different distance measures for vanous features, if desired. We currently
consider numeric data, ordinal data, and simple hierarchical data.

12We also add in a penalty for any feature of the generalization simply missing from the instance. This is possible since instance
descriptions can be incomplete.

9



This contrasts with many learning techniques which assume that all the features of a generalization must

hold for each instance that it describes. In early experiments with UNIMEM, we found that such an

all-or-none matching scheme led to the creation of excessive numbers of slightly different generalizations

because new instances did not quite fit under old ones. Allowing contradiction does potentially leave

UNIMEM open to problems of the sort described by Brachman (1985), such as describing an instance as

"an Ivy-League type school except it's not in the East, not private, not expensive .... However, as long

as we keep the allowed-difference parameter small, this does not appear to happen.

2.2.2 Storing a new Instance in memory

Once UNIMEM has retrieved the most specific generalization(s) that a new instance matches, it

compares the instance against others already stored with the concept(s) to determine whether further

generalizations should be made. The system looks for instances that have features in common with the

new one. If it finds one that has enough features in common," it creates a new node by generalizing the

common features, and it stores the contributing instances with the new concept. If no sufficiently similar

instances are found, it stores the new instance under the existing generalization. The attribute/vaiue

representation of UNIMEM normally yields a unique generalization of two instances21 but multiple

generalizations are sometimes created by matching a new instance with several existing ones. The main

steps in the UPDATE algorithm are: P

UPDATE(node, new-instance)
1. Define new-features as the features of new-instance that are not part of node (or its parent

nodes). This information is retained from SEARCH.

2. If none of the instances currently stored under node have enough p features with values
sufficiently closeP to those of new-instance to warrant a new generalization, then store
new-instance under node.14

3. Otherwise, for each instance with enough features in common with new-instance, create a
generalization node comprised of the shared features and:

a. Store the new node in the node's sub-generalization list.

b. Store both instances under the new node.

c. Remove the old instance from the original node.

1
3
Exceptions would be if there are multi-valued attributes or if the "averaging" process described below returns multiple

possibilities.

14"Enough" is defined as a percentage of the maximum number of features of the two instances being compared.

10
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In deciding which features to include in a generalization, UNIMEM selects all those in the two instances

witi values that are sufficiently closeP. In those cases where features have slightly different values,

UNIMEM uses an "average" feature value in the generalization. For real-values features this is the

arithmetic or geometric mean; for ordinal attributes it is one of the two values; and for hierarchically-

ordered attributes it is the lowest common ancestor.

2.2.3 Evaluating generalizations

As seen above, concepts are generalized by UNIMEM on the basis of only two instances. This can

cause the creation of an over-specified generalization if the initial instances share spurious features.

Generalizations can be under-specified if the instances had unknown values for relevant features (which

is possible, since UNIMEM does not require every instance to have values for each feature). Under- -

specification is not a problem, since the missing features will simply appear in sub-generalizations.

However, concepts must be evaluated when they are potentially relevant to future input in order to

remove overly-specific features. This is particularly true in domains where there are a large number of

features for each instance, since coincidental matches become inevitable. UNIMEM perform.s evaluation

as a normal part of the memory search process, since the generalizations to be evaluated are exactly

those that are accessed when a new instance is processed. We simply add the following step to the

beginning of the SEARCH algorithm:

Increase confidence in any features of node that is also in unexplained-features; decrease
the confidence of those that are contradicted.15 Delete any features with confidence levels
that go low enoughP . Make permanent any features with confidence levels that go high
enoughP (e.g., stop modifying their confidence levels).

The evaluation operations are applied to all nodes considered during the SEARCH process, even if they

do not ultimately match.

This modification to SEARCH does not lead UNIMEM to entirely eliminate a generalization when it

fails to fit later input. Instead, it tries to throw away just the "bad" (overly specific) parts and keep the

"good" parts. Confidence modification occurs by incrementing confidence levels when new values are

closeP to the generalization (in terms of the distance measure) and decrementing them when they are

15Node is guaranteed to be a 'potentially relevanr node by the way the algorithm is structured.

I



not. The amounts of the increments or decia-ments depend upon the distance between the feature values

o1 the instance and of the generalization. I a confidence level falls below a negative threshold,P then the

system eliminates that feature from the generalization, since it has unreliably appeared in instances when

the generalization seemed relevant.16 Above a specified level P values are "frozen" and assumed to be

permanently correct.

In some cases the feature evaluation process leads to concepts so general that they no longer

provide substantial information. There is not advantage to retaining a category with so few features that

no inferences can be made when an instance is matched to it. Thus, UNIMEM eliminates an entire

generalization when too few of its featuresP remain, defined as a percentage of the number of features of

the instances that formed the generalization. When it deletes a generalization, UNIMEM also loses

access to the instances and sub-generalizations stored there. This will lose instances that are not also

stored elsewhere, but if we immediately reindex the instances with the parent node, then the same

instances that initially formed the eliminated generalization will do so again. In the domains that we deal

with there are enough input examples so that good concepts will eventually be created, despite losing

some information. However, for other domains different strategies might be appropriate, such as putting

deleted instances back into memory after a delay.

2.3 A simple program trace

To illustrate UNIMEM's update algorithm, we will look in detail at how it adds an instance from the

university domain to an existing memory. 17 This example will involve the three universities described in

Table 1 as well as six others with descriptions that can be found in Appendix I1l. Figure 2 shows the

structure of UNIMEM's memory after the instances MIT, Brown, Princeton, Harvard, Yale, Arizona State,

Case Western, and Auburn have been processed in that order. Table 3 shows the details of the

generalizations in this sample run.

16Other than removing features, UNIMEM does not use the confidence level in the matching process. An interesting extension
might be to give added weight to features with high confidence values.

17To make pedagogic points, we have set some of UNIMEMs oarameters to unrealistic values.
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I root I

I I

/I\

IGND1I IGND21 IGND41
11.311 11.241 12.681

Brown (1) Harvard (1) Case Western
MIT (4) I I

IGND3I IGND5I
11.981 I I

Princeton Arizona State
Yale Auburn

Values with GNDI, GND2, GND3, and GND4 are the sum of the feature £

distances between that node and Columbia. The numbers in parentheses
are the number of features the instance has in common with Columbia,
not including the ones accounted for by generalizations.

Figure 2: Initial memory structure for the sample run

We will describe in some detail how UNIMEM now processes Columbia. It begins by searching

memory for the most specific generalizations that satisfactorily match the new instance. This begins by

matching Columbia's features with those of GND1. As shown in Figure 2, the total difference between the

features of GND1 and Columbia is 1.31. As the parameters were set for this run, the allowed difference is

1.36 (8% of 17 features), so GND1 is considered acceptable. The same is true for GND2, with its 1.24

difference. However GND2's sub-generalization, GND3 is not acceptable, nor is GND4. Note that since

GND4 is not acceptable, its sub-generalization, GNDS was not even considered. The final result of the

search is that GND1 and GND2 are the most-specific generalizations that match Columbia.

Searching through memory also involves the updating of feature confidence levels. In this case,

as a match is conducted, if a generalization features value is close to that of Columbia, then its

confidence level is increased, otherwise it is decreased. The amount of the increment or decrement is

based upon the degree of the match or mismatch. Looking at GND1, for instance, if we compare the

rightmost two columns of Table 3, we can see that the confidence level for the percentage of financial aid

went down, since the generalization value was 45% compared to 60% for Columbia. The remaining

confidence levels went up, as the Columbia values were quite close to the values in GND1. The

confidence levels for GND5 were not adjusted at all, as it was skipped by the search algorithm.

13



INITIAL FINAL

FEATURE UEATUPE FEATURE
VALUE FREQUiNCY CONFIDENCE CONFIDENCEGND1 .

STUDENT:FACULTY 5:1 1 5.79 6.75
SAT-VERBAL 637.5 1 -2.00 -1.25
%-FINANCIAL-AID 45.0 1 1.60 1.40
%-ADMITTANCE 25.0 1 -1.20 -0.60
%-ENROLLED 55.0 1 0.80 1.40
SOCIAL 3.5 out of 5 1 3.33 4.00
NO-OF-STUDENTS < 5,000 1 0.00 1.00
LOCATION URBAN 1 -1.00 0.00
EXPENSES > $10,000 2 2.00 3.00
ACADEMICS 5 out of 5 2 1.33 2.33
CONTROL PRIVATE 2 2.00 3.00

GND2
5-FINANCIAL-AID 55.0 1 1.20 1.80
5-ADMITTANCE 20 1 -2.00 -1.80
SOCIAL 3 out of 5 1 2.00 3.00
QUALITY-OF-LIFE 3.5 out of 5 . 2.00 2.67
ACAD-EDGRASIS HISTORY 1 -2.00 deleted
ACAD-EMPHASIS LIBERAL-ARTS 1 -2.00 -1.00
MALE: FEMAE 65:35 1 -0.68 -0.12
STUDENT:FACULTY 7:1 1 3.89 4.88
SAT-MATH 675 1 -0.50 0.00
EXPENSES > $10,000 2 0.00 1.00
ACADEMICS 5 out of 5 2 -0.67 0.33
CONTROL PRIVATE 2 0.00 1.00

GND3, a more specific version of GND2
SAT-VERBAL 662.5 1 0.00 0.25
%-FINANCIAL-AID 45.0 1 0.00 0.00
NO-APPLICANTS 10,000-13,000 1 0.00 -1.00
%-ENROLLED 60 1 0.00 0.20
NO-OF-STUDENTS < 5,000 1 0.00 1.00
ACAD-EMPHASIS HISTORY 1 -- 0.00

GND4
STUDENT:FACULTY 20:1 1 1.00 1.97
%-ADMITTANCE 82.5 1 0.40 -0.60
ACADEMICS 3 out of 5 1 0.33 0.00
ACAD-EMPHASIS ENGINEERING 1 1.00 0.00

GNDS, a more specific version of GND4
CONTROL STATE 1 0.00 0.00
MALE:FEMALE 50:50 1 0.00 0.00
SAT-VERBAL 465.0 1 0.00 0.00
SAT-MATH 522.5 1 0.00 0.00
5-FINANCIAL-AID 50 1 0.00 0.00
5-ENROLLED 60 1 0.00 0.00
SOCIAL 4 1 0.00 0.00
QMITY-OF-LIFE 4.5 1 0.00 0.00

GND6, a more specific version of GND1
MALE:FEMALE 75:25 -- 0.00
5-FINANCIAL-AID 55.0 1 -- 0.00
NO-APPLICANTS 4,000-7,000 1 -- 0.00
QUALITY-OF-LIFE 3 out of 5 1 -- 0.00

Table 3: Generalizations of the sample run
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While searching GND2, the confidence level for history as an academic emphasis was reduced P

from -2.0 to -3.0. This caused the confidence level to go below the threshold for retaining features, so the

feature was deleted from the generalization. In order to maintain correctness, the same feature had to be

added to GND2's sub-generalization, GND3. Also, since the feature was deleted from GND2 during the OR

matching process, this particular feature difference was not considered part of the total discrepancy

between GND2 and the new instance, which allowed a match with Columbia.

With the search and confidence evaluation phase complete, UNIMEM updates memory by adding

Columbia to both GND1 and GND2. In each case, it compares the new instance to those already stored

with the generalization to see if there are a significant number of features in common (other than those

already accounted for by the generalization). The number of features that Columbia has in common with

each relevant instance is shown in parentheses in Figure 2. Columbia only shares one feature with

Brown, the first instance under GND1, but four with MIT. Since this is above the parameter for

generalizing on this run, UNIMEM creates a new generalization, GND6, which is indexed under GND1.

Both MIT and Columbia are stored under the new generalization. Harvard, the only instance under

GND2, the other generalization that Columbia matched, shares only one feature with the new instance,

and so no generalization is made. Columbia is simply stored under GND2. The structure of memory at

the end of the processing of Columbia is shown in Figure 3.

I root I

/ I

IGND1I IGND2I IGND4I
I I I I I

Brown Harvard Case Western

I Columbia I
II I

IGND6I IGND3I IGND51
I I I I I I

Columbia Princeton Arizona State
MIT Yale Auburn

Figure 3: Final memory structure
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Notice that Columbia is not compared against any of the instances under generalizations other

than GND1 and GND2. It is possible that it has much in common with some of these instances.

However, it is much more likely to be similar to those under the matched generalizations. Restricting the

set of instance that we match against is a prime factor in maintaining the efficiency of the algorithm.

This sample UNIMEM run also illustrates the nature of the disjoint UNIMEM generalizations.

GND1 and GND2 are not mutually exclusive, and the program has matched Columbia with both of them.

Essentially, GND1 covers small urban universities with high academic levels and GND2 covers high

"quality of life," liberal arts schools. Columbia can quite logically be considered to exemplify either

concept.

2.4 UNIMEM in terms of search and memory organization

Like artificial intelligence programs in general, UNIMEM can be viewed as searching through a

space of alternatives. In this case, each state in the space represents an entire concept hierarchy.

UNIMEM employs several operators to move through this search space, all of which are driven by the

addition of new instances. First, it can simply change the confidence levels of features in concepts that

appear relevant to a new instance. Second, it can modify concepts by removing features for which the

confidence levels fall too low. Third, it can modify the structure of the generalization hierarchy by adding

new concepts when instances are sufficiently similar, Finally, it can delete generalizations (and all their

sub-generalizations) when too few features remain after deletions.

Although it is possible to describe UNIMEM in search terms, we feel it is more valuable to describe

it in the memory terms that we have been using. The basic data structure of Generalization-Based

Memory is the key to its operation. In fact, we feel that more researchers should consider their work in

memory terms. Viewing learning from this perspective forces one to consider how the concepts that are

created can be efficiently accessed, how memory should be modified, and how the various data

structures evolve over time, both in terms of structure and size.

16
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4 .xperiments with UNIMEM

An important criterion on which to evaluate any learning system is its generality. In this section we

demonstrate UNIMEM's behavior in two additional domains: congressional voting records and terrorist

events. Another important issue concerning a system's performance is how it responds to changes in

parameter values. Thus we conducted a set of experiments in parameter variation which we also present

in this section.

3.1 Congressional voting records

One domain on which we tested UNIMEM involved Congressional vo!'g records. Instances were

formed from the votes of each U.S. Congressman on a number of major issues (taken from The 1983

American Political Almanac) combined with information about the district and state represented. One

advantage of this domain for research purposes is that people have strong intuitions about the kinds of

generalizations that should be found. A complete description of the domain can be found in Lebowitz

(1986c). In the run described here, we presented UNIMEM with 100 instances, each containing 15 votes

and about 21 other features.' 8 We expected to find generalizations that related the various votes to each

other (e.g., "liberal" and "conservative" ideologies), along with others that related the votes to the states

and districts represented (e.g., someone representing a highly urban state would support bills that help

cities). Indeed UNIMEM formed concepts of this sort.

Table 4 shows several of the resulting generalizations from this run and Figure 4 shows their

organization in memory. One top-level generalization, GND2, describes congressmen from agricultural

states with high levels of school expenditures' 9 who voted for an education bill, parks in Alaska, and so

forth. The 24th Texas Congressional District is stored under this generalization, along with two sub-

generalizations. Someone familiar with U.S. politics would describing this votingpattern as "liberal".

Similarly, the second top-level node in this example, GND3, would be considered "conservative".

laNot all instances had all features.

1 Values of the form "n out of m" represent categorized numeric information. In this domain categories were automatically
created using methods described in Lebowitz (1985).

17
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I root I

''liberal'' ''conservative'

IGND2I IGND31 ....

I \

IGND41 IGND71 .. lGND8I..

Figure 4: CD generalization structure

These two generalizations are non-disjoint, since their features do not include opposite votes on

the same bills. Instead, the generalizations include votes on different bills and are not exclusive. A

conservative record can most confidently be identified based on the votes shown in GND3, such as a vote

against cutting the MX missile, while a liberal record shows up from the votes in GND2, such as a positive

education vote. A Congressman can fit into both categories (indeed, we see this happen in the sub-

generalizations of GND2). Apparently "liberal" does not equal "not conservative". N

The situation becomes particularly interesting when we look at the sub-generalizations of GND2

(GND4 and GND7) and GND3 (GND8). When we examine these generalizations carefully, we see that p

the contrasting votes omitted from the top-level generalizations appear in their sub-generalizations. For

example, the "liberal" generalization (GND2) contains a vote against a cut in social funds. The converse

of this vote does not appear in GND3, but it is present in its sub-generalization, GND8. Similarly, the

opposite of the conservative vote against the MX missile is not included in GND2, but it does occur in one

of the sub-generalizations, GND7. Certain votes that do not serve well to define concepts at the top level

can be useful in refining these concepts after the initial set of features is "factored out." 1%

3.2 Terrorist events

UNIMEM was developed from the memory and generalizatin module of IPP (Lebowitz, 1980, .I'

1983b, 1983c), a program that read news stories about international terrorism and added them to long-

term memory. In the process, it formed a generalization hierarchy using a learning module that we will

Sr W
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ATTRIBTEZ V~ALUE

GND2
STATE- IIIUSTRY AGRICULTUR.E
STATE-SCROOL-RXP 3 out of 3
EDUCATION -VOTE FOR
ALA.SKA-PARKS -VOTE FOR
SOC-FUND-CUT -VOTE AGAINiST
STATE- INDUSTRY MANUFACTURING
STATE-INCo~z 3 Out of 4
STATE-MINORITY-PCT I out of 2
tTEXAS 24]

GND4, a mWOe Specific Version of GND2
WIND-TAX-LIM-VOTE AGAINST
GAS -CONT-RAN -VOTE FOR
HOSP -COST-CONT -VOTE FOR
1IICAN.AGUA-RAN-VOTE AGAINST
PARTY DEMOCRATIC
ZTATE-FMQ4-VAL 5 out of 6
OSHA-CUT-VOTE AGAINST
FOOD-STAiE'-CAP -VOTE AGAINST
PAC-LIIT-VOTE FOR

STATR-UREAN-PCT 6 out of 6
FAIR-OUS 1MG-VOTE FOR
(CAL37ORR(IAG CALIFORN~IA? CALIFORNIS .. .

GND7, a more specific version of GND2
WICP.UA-AN-VOTE AGAINST
STATE-DIMT 5 out 7
STATE- INDUSTRY TOURISM
)C(-CDT-VOTE FOR
DISTRICT-POP-DIR UP
STATE-FAM-VL 5 out of 6
FAI-OUSIIG-VOTE FOR
IFLOIDA13 FZORZDA15 MICIAN10 .. .

GND3
BOSP-COST-CONT-VOTE AGAINST
WIND-TAX-LI4-VOTE FOR
DRAFT-VOTE FOR '
WUC-POWER-VOTE AGAINST
)CC-CUT-VOTR AGAINST
STKTE-TAXES-PERCAP 2 out of 5
DISTRICT-POP-DIR U
STATE-INCOME 3 out of 4
STATE- INDUSTRY MAFCURING
STATE-MINORXTY-PCT I out of 2

ONDS, a rhore specific version of GND3
STATE-POPULATION 6 out of 7 4

EDUCATION-VOTE AGAINST
PARTY REPUBLICAN
NICAAGAE1"IVOTZ FOR
QAS-CON't -RAN -VOTE AGAINST -
SOC-FUNDb-CUT -VOTE FOR
OSSA-CUT-VOTE FOR
STATE-UP"A-PCT 6 out of 6
?AC-L~d4T-VOTE AGAINST
if-&? 11I34 FLO':_A_.O ... ) I4

Table 4: Congressional voting record domain generalizations

refer to as IPP-MEM. An interesting aspect of this domain is that descriptions of events tend to be
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incomplete, so that the instances do not have the same feature sets. UNIMEM differs from IPP-MEM in a

r, mber of technical ways, For example, parameters have been added to make it more flexible and

different methods of low-level indexing are available. The most substantial change is the modification of

confidence methods to consider each feature in a generalization separately. IPP-MEM maintained a

single confidence level for each generalization. As a result, even one anomalous feature could cause an

entire generalization to be deleted. We wanted to see whether this change in UNIMEM would

dramatically alter the kinds of generalizations that remain in the generalization hierarchy at the end of a

run.

The experiment described here used 374 of the stories that the IPP text processor (IPP-NLP)

handled most accurately, all taken from the period of 1979-1980.20 Table 5 shows three successively

more specific generaliz3:ions that UNIMEM built up from a number of bombing stories in the sample set.

The features in Table 5 with "deleted" in their confidence fields have been removed and are not part of

the final generalizations (but were initially included). GND10 describes terrorist events involving bombs in

Westem Europe in which people were hurt. This generalization was originally formed from stories

originating in Spain with an explosion taking place. While this made the generalization carry more

information than the final version, it was also less widely applicable. Since other stories were found with

the same characteristics, but not occurring in Spain, UNIMEM removed the location from the

generalization. This allowed it to apply to a wider range of examples. Ultimately UNIMEM created a

sub-generalization of GND1 0 (GND30) that described events in which an explosion took place and people

were killed (as indicated by the -10 health value). The system also formed an even more specific variant

of GND10 (GND37) in which the victims were soldiers.

The output in Table 5 is quite typical of the performance of UNIMEM in the terrorist event domain.

It created concepts that seemed to capture basic regularities in the domain. Qualitative comparison of the

UNIMEM generalizations in the terrorist event domain with those generated by IPP-MEM was quite

ES

2oThe prooessing needed to prepare IPP-NLP output for UNIMEM is described in Appendix IV.
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FEATURE FEATURE I.

ATTRIBUTE VALUE FREQUENCY CONFIDENCE

GNOl0
WEAPON-WEAPON BOMB 1 6.50
WEAPON-CLASS EXPLOSIVE 1 15.00
RESULTS HURT-PERSON 2 15.00
LOCATION-AREA WESTERN-EUROPE 2 15.00
METHODS $EXPLODE-BOMB deleted

S-MOP S-DESTRUCTIVE-ATTACK deleted
VICTIM-NATIONALITY *SPAIN* deleted
LOCATION-NATION *SPAIN* deleted

[S214 S253B S375A]

GND30, a more specific version of GND10
RESULTS-HEALTH -10 1 15.00
S-MOP S-DESTRUCTIVE-ATTACK 4 11.00
METHODS $EXPLODE-BOMB 4 9.75
VICTIM-NATIONALITY *SPAIN* deleted

[$89A S138 S139 S185 S220 S222A S260 S263 S321A S334 s337 S534D]

GND37, a more specific version of GND30
VICTIM-ROLE AUTHORITY 1 3.75
VICTIM-ROLE SOLDIER 1 -0.75
VICTI1M-AUTH T 1 3.75

VICTIM-POL-POS ESTAB 1 3.75
VICTIM-NATIONALITY *ENGLAND* deleted

LOCATION-NATION *N-IRELAND* deleted

[$29 S223A S241 S314]

Table 5: An IPP-NLP/UNIMEM bombing example

informative. Overall, the UNIMEM generalizations seemed more intuitively plausible and covered a wider

range of concepts. On the other hand, they also seemed more "bland", omitting some of the mos.

"interesting" generalizations that the original system had made -- that pistols with silencers were

frequently used in shootings of Italian political activists, for example.

It is clear from Table 5 why the UNIMEM generalizations were more "bland" than those of IPP.

Suppose that each system formed a complicated generalization, like the one above, by noticing similar %

events. In response to future data, IPP-MEM would either keep the description in toto or delete it entirely.

On the other hand, UNIMEM would inevitably refine the generalization, and make it less unusual. by

removing the coincidental elements so that it covers a wider range of events. While this is mildly

disappointing in the short run, overall it is quite positive. UNIMEM produces the basic generalizations L

(e.g., terrorist shootings usually hurt people) needed for default reasoning. Furthermore, the "flashy" ',

generalizations need not be lost, as they can be formed as sub-generalizations. This did not happen very

21
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often in our experiment with the terrorist domain, since there were not enough examples and, more

importantly, many of the examples had very few features. Large numbers of features actually hindered 4'I'i

IPP-MEM, as it had no way to refine over-generalized concepts. Given UNIMEM's ability to deal with

greater numbers of features, we plan to increase the level of detail of the feature sets produced from

IPP-NLP representations.

3.3 The effect of varying UNIMEM parameters

UNIMEM has a number of adjustable parameters that affect its behavior. Given different

parameter settings, the same sequence of instances can lead to many different generalization

hierarchies. In order to generate the "best" hierarchi, we will have to find appropriate parameter settings,

which may vary among domains or applications. For example, one might aim for generalizations that

predict a great deal in a limited number of situations, or for ones that are widely applicable but predict only

a small amount of information.21 Convergence rate is also an issue for an incremental system like

UNIMEM. Depending on the degree of consistency in the domain in question, one may have to trade off

learning speed with various aspects of hierarchy quality.

In order to better understand the effect of UNIMEM's parameters on the shape of the hierarchy

created, and the convergence behavior, we conducted a series of experiments involving parameter

variation, which are described in this section.

3.3.1 Evaluating UNIMEM behavior

In order to intelligently evaluate the output of UNIMEM, we must consider what makes one set of

concepts better than another. We can apply the criteria recursively so that they applies to entire

hierarchies. ()her things being equal, we would prefer concept descriptions with many features, since V

each additional feature adds inferential power to the generalization. However, the more specific a S

generalization, the fewer examples it can be expected to cover. Thus, there is an inherent trade-off in

concept formation between coverage and the ability to make predictions based on the generalizations.

21 Gluck and Corter (1985) and Fisher (1986) have argued on information-theoretic grounds that there is an optimal level of

classffication. However, their work does not apply directly to non-disjoint categories, nor to situations in which the input is uncertain

and incomplete.
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A second trade-off in concept formation involves non-disjoint concepts. As pointed out Earlier,

allowing overlap will often result in more specific generalizations with more inferential power. However,

overlap can also make the concepts less useful for a performance element, as it will have to consider how

to deal with the case where a new example fits into several categories. In addition, Hr there are two

concepts that are only slightly different, since many of the same instances will be stored under both,

UNIMEM will create very similar trees of sub-generalizations, which is inefficient in both space and time.

The trade-ofts between concept specificity and both generality and minimal overlap can be

instantiated in UNIMEM terms with two criteria. First, under any given generalization, there should be a

"modest number" of sub-generalizations. A number in the 4-12 range seems appropriate in our domains

as it yields generalizations that are relatively specific, but general enough to cover a range of instances.

Second, the instances covered by a set of concepts should be divided roughly equally among them,

guaranteeing that each generalization describes a number of different instances and tending to minimize -

overlap.

Since UNIMEM forms concepts incrementally, we must also deal with convergence. It is important

to look at how long it takes the program to settle on a set of high confidence concepts that it is not likely to

invalidate later in the run. Although we would like the generalization hierarchy to converge as rapidly as

possible, as we will see below, this goal may conflict with the other desired p, erties. However, we must

make sure that the program does not simply continually create and invalidate concepts.

3.3.2 An experiment in parameter variation

Our initial experiment involved the variation of two parameters -- the percentage of features that

instances must have in common for generalization to occur and the percentage of features that must

remain in a generalization for it to be retained.22 Specifically, we set the "percentage to generalize" 

parameter value at 25%, 37.5%, and 50% and the "percentage to retain a generalization" at 20% and

'lhe percentage to retain a generalization parameter is computed in terms of the initial number of features in the instances

23
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2551.23 We expected these parameters to influence UNiMEM's rate of generalization, e.g., the larger

percentage of features required for a generalization, the slower the system should generalize.

The experiment involved three randomly selected sequences of 100 universities apiece. For each

of the six pairs of parameter values, we had UNIMEM independently incorporate the three sets of

universities into an initially empty memory and then collected summary information. All of the data were

averaged across the three runs.24 Given difficulties in making assumptions about the distribution of the

data, we will not present statistical analyses, but instead examine the data qualitatively. In addition, we

restricted our analysis to the top-level generalizations, which can be viewed as UNIMEM's overlapping

categorization of all the input instances.

The first dependent variable that we measured was the number of top-level generalizations

retained by UNIMEM, as displayed in Figure 5. In the various experimental conditions the system

retained an average of between 9 and 14 such generalizations, although the number will inevitably

approach zero if either parameter is made very much higher. There is some indication that the number of

remaining generalizations tends to increase along with each parameter, but this is not a strong trend.

In an attempt to clarify these results, we examined the two dependent variables that determine the

number of generalizations that remain -- the number that are created and the percentage of those created

that are deleted. The average number of generalizations created for each combination of parameters is

shown in Figure 6. We see, somewhat surprisingly, that the number of generalizations created declines

only moderately as the features needed to generalize increases. We might expect this decline to be

greater since it should be harder to find instances with more features in common. For reasons that will be

considered below, the number of features needed to retain a generalization has a substantial effect on

the number created.

3lnstanoes contained about 20 features in this domain, so the absolute number of features needed to retain a generalization is
roughly A at the 20% level and 5 at the 25% level. The 25% value for the features to generalize parameter requires about 5
features, the 37.5% value requires about 8, and the 50/ value about 10.

2"While UNIMEM is potentially susceptible to effects of the order of instances, this usually is not a major issue. A few odd
generalizations made at the beginning of a run may have to be discarded, losing some information. In this experiment, while there
was some variation in the results between the three different data sets, in no case was it striking. %
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Average number of generalizations at end of run
14 k K

12 K
11 12 k
10 11%
9 kK

6
5
4
3
2 K -- pet to retain gen - 25%
1 k -- pct to retain gen = 20%

25% 37.5% 50%
Feature percent to generalize

Figure 5: Generalizations at end of run as a function of
percentage to generalize and percentage to retain

Average generalizations created
36
33 C - C
30 32 32 C
27 29
24 c
21 24 c
18 21 - c
15 17
12
9
6 C -- pt to retain gen = 25%
3 c -- pct to retain gen = 20%
0

25% 37.5% 50%
Feature percent to generalize

Figure 6: Generalization creation as a function of
percentage to generalize and percentage to retain

Figure 7 shows the average percentage of generalizations deleted by UNIMEM's evaluation

method when too many features were removed. As expected, more generalizations are deleted at the C,

25% retention level than at the 20% level. A more surprising result is that number of features needed to

create a generalization affects the percentage that are deleted. The reason becomes clear when one

realizes that the more features that are initially in a generalization, the more that can be removed and still

25



be over the deletion threshold. In effect, requiring more common features to form a generalization

enhances the possibility that there will be a "good" set of features included that UNIMEM can retain once

the "bad" ones are whittled away.

Average percentage of generalizations deleted
90
80 71%
70 D
60 d
50 63% 63D
40 51b
30 d d
20 33% 35%
10 D -- pct to retain gen = 25%
0 d -- pct to retain gen - 20%

25% 37.5% 50% 1
Feature percent to generalize

Figure 7: Generalization deletion as a function of
percentage to generalize and percentage to retain

The decrease in the deletion rate as one increases the percentage of features needed to

generalize explains the decrease in the creation rate. Since fewer generalizations are deleted, there is a

higher chance that new instances will be stored under existing generalizations before the hierarchy

converges. This diminishes the chance that new top-level generalizations will be created. The

combination of creation and deletion behavior provides an explanation for the smaller number of

generalizations retained at both ends of the 20% deletion level curve in Figure 5. If the number of

features needed to generalize is very low, then few generalizations are kept, and if it is very high, then I!

few are made. Determining the robustness of this phenomenon will require the collection of further data.

Another evaluation criteria that one might expect the parameters under consideration to influence %

is the average number of features in a generalization. Figure 8 shows the how this variable varies. The

average final number of features that remain in each top-level generalization is essentially independent of

the number of features needed to create a generalization, but it does depend upon the number needed to

retain a category. The lack of effect of the creation threshold is despite the fact that the initial number of

features in a generalization, also shown in Figure 8, clearly does depend on that parameter.

'.|
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Number of features in a top-level generalization
12 11.4
11 i

9 8.1 .88 90

7 IF F
6 7.4 6.7 7.1
5 f f f
4 5.5 5.5 5.5
3 I -- pct to retain gen = 25% (initial features)
2 i -- pct to retain gen - 20% (initial features)
1 F -- pct to retain gen - 25% (final features)
0 f -- pct to retain gen - 20% (final features)

25% 37.5% 50%
Feature percent to generalize

Figure 8: Average top level initial and final features as a function of
percentage to generalize and percentage to retain

Another one of our evaluation criteria was that, to the extent possible, instances should be evenly

divided among the various concepts. To measure this, for each top-level generalization we counted the

instances stored under it and its children. We looked at the standard deviation among the top-level

generalizations, normalized in terms of the mean. 2s Figure 9 shows the results with this dependent

measure. In general, the standard deviation increases (the instances are less well distributed) with the

number of features needed to make a generalization. The (50%, 20%) point is a notable exception. This

pair of parameter values also produced good behavior on the other measures as well. However, the

results are not robust enough to draw any strong conclusions. In particular, the standard deviation results

are very susceptible to new top-level generalizations created near the end of a run that describe only a

small number of instances. We plan to examine at this situation in more detail using longer runs or by

restricting our analysis to generalizations with high-confidence features.

The final dependent variable we considered was the average feature confidence level for top-level

generalizations, which we use as an approximate measure of convergence. We present the results in

Figure 10. The most notable thing about the data is that confidence levels are much higher for the 20%

25The normalization is needed since the total number of instances stored in the hierarchy can vary widely because instances can
be "lost" when generalizations are deleted and because they can be stored in more than one place in memory.
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Normalized standard deviation of number of instances per
top level generalization

1.0 .93 I
0.9 1-~ .00
0.8i
0.7
0.6 ii i
0.5 .65 .58
0.4
0.3
0.2 X- pct to retain gen = 25t0.2Ii -- pct to retain gen = 20%

0.0

25% 37.5% 50%
Feature percent to generalize

Figure 9: Average instance distribution as a function of
percentage to generalize and percent to retain

retention level than for the 25% level and that the (50%, 20%) parameter combination clearly produces

the highest confidence levels The lower levels at the 25% retention level probably resulted from the

failure of the concept set to converge before the run ended. Thus, the average reflects a number of

generalizations that would ultimately have been removed entirely. We need to examine longer runs to

determine whether this is strictly a convergence phenomenon or whether the confidence levels will remain

lower even with a fixed set of generalizations. UNIMEM typically will not converge upon a final set of

generalizations if one selects particularly poor parameter values. Whether this property is good or bad is

unclear.

Average feature confidence for top level generalizations
11 C
10 1.2

9 cc
8 c 8.9
7 8.2
6
5 C C
4 C- 5.4 4.8
3 3.6
2 C -- pct to retain gen = 25%
1 c -- pct to retain gen = 20%
0

25% 37.5% 50%
Feature percent to generalize

Figure 10: Average feature confidence as a function of
percentage to generalize and percentage to retain

28 '

'N'



The results in this section illustrate the various trade-ohs involving the UNIMEM parameters.

Considering first the percentage to retain a generalization parameter, the lower value (20%) produced

generalizations with features that had higher confidence, a desirable result, indicating more rapid

convergence. However, the higher value (25%), as expected, produced generalizations with more

features, which is also desirable. The results involving numbers of generalizations produced were largely

inconclusive with respect to this parameter, though they did indicate that the range of values we tried

produced reasonable results in terms of our evaluation criteria.

Percentage of features needed to generalize, the other parameter under consideration, generally

produced better results with the highest value (50%). The generalizations under that condition tended to

have higher confidence features and more features and there were a reasonable number of S

generalizations. On the other hand, higher values of this parameter seemed to produce less well

distributed instances, although the 50% value actually produced the best result in combination with the

20% value of the percentage to retain parameter. Notice that if we let the percentage to generalize

parameter increase further and approach 100%, only identical instances would be used to create new

concepts, which does not seem acceptable. Hence a trade-off is apparent.

It appears, then, that there is a need for intermediate values for each of the two parameters that S

we have examined. It seems that if instances are generalized on the basis of too few features then they

are not necessarily very similar, and so their generalization has little predictive power. UNIMEM's

confidence evaluation methods work well when a good generalization is embedded in the initial one, but

not when the initial generalizations are essentially random. In contrast, if we require large numbers of

features to generalize (especially larger values than the ones used here) then the initial generalized

instances have so much in common that the generalization applies to few other instances and yet

appears relevant to many of them. This undermines the ability of the confidence evaluation methods to

identify irrelevant features. If too many features are required to retain generalizations in relation to the

number needed to make them, then almost all of the generalizations will be disconfirmed. If too few are

required, then the remaining generalizations become essentially meaningless.

1,,.
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While collecting the data for this experiment we also saved information about the computer time

needed to incorporate instances into memory. UNIMEM was designed so that the time needed to add

instances to memory should increase only slightiy as memory grows. Indeed, if memory reaches a poin

where most of the new examples are duplicates of existing ones, and hence cause no changes to the

concept hierarchy, then update time should be nearly constant. In any case, the tree structure of memory

should result in the time needed to update memory growing at no more than a logarithmic rate, with the

growth constant depending on how efficiently instances and sub-generalizations are indexed. Figure 11

shows the emp;rical results for one run in the university domain, averaged over groups of ten instances.2 6

The growth of update time appears consistent with a logarithmic increase hypothesis and it clearly does

not explode in any extreme way. We plan additional experiments to better estimate the growth rate and

to examine UNIMEM's behavior when greater numbers of instances are involved.

Average seconds to incorporate
8

7 17.2811 17.4741 17.5421

6 I I .-- I 16.4061
------ 15.9161 15.9731 1 I

5 15.3711 1 1 1 1 1
SI I I I I I I I

4 14.8721 1 1 1 1 1 1
SI I I I I I I 1I

3 13.3251 I I 1 I I 1 i 1

2 I II

1 11.452 1 1 1 I 1 1 1 I 1
I I I 1 1 1 1 1 I 1

1-10 11-20 21-30 31-40 41-50 51-60 61-70 71-80 81-90 91-100
Number of instances in memory

Figure 11: Time to incorporate new instances as a function of

instances already in memory

In conclusion, although we do not view the results presented in this section as definitive, they have

given some insight into the effects of UNIMEM parameters. In addition, we feel that they show the kind of

data that must be collected before we can fully understand the nature of learning by observation.

2We average the data over groups ot ten instances since individual update times can vary radically depending upon whether a
new gereraizabon node needs to be created and how quickly the search tnrough the concept hierarchy is narrowed.
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4 Related research Issues

Our work with UNIMEM has left us with a number of interesting problems to pursue. We briefly

describe two of them here: the automatic modification of parameter settings and the integration of

explanation-based methods with the empirical approach of UNIMEM.

4.1 Automatic setting of UNIMEM parameters

We have seen that UNIMEM uses many parameters and that their settings greatly affect the

system's behavior. In the long run we would like the program to set these parameters itself for each new

domain. The basic idea is that UNIMEM would monitor its behavior and adjust parameters to guide it

toward the desired kind of generalization hierarchy. The goal would be expressed as another set of

parameters, but ones that would make intuitive sense to a user, such as the rate at which generalizations

are created, the rate they are deleted, or the average branching factor of the generalization tree.

It should not be difficult to extend UNIMEM in this fashion. The system would incrementally collect

data about its behavior and periodically consider adjusting its parameters in response. However, we must

first understand the effects of the various parameters through experiments of the sort described above.

As an initial attempt at automatic parameter adjustment we plan to have UNIMEM monitor the rate at

which generalizations are deleted, and if this rate becomes too high or too low have the system modify

the parameters discussed in the previous section.

4.2 Using domain-dependent knowledge

Frequently when observing the world, humans attempt to to explain the generalizations that they

make (Schank, 1986), an ability that is lacking in UNIMEM. We are currently studying the relationship

between the empirical learning of the sort UNIMEM does and the explanation-based learning methods

that have been developed recently (e.g., DeJong and Mooney, 1986, Mitchell et al., 1986, and Silver,

1986). These methods, instead of looking for regularities among a large number examples, analyze a

single example in terms of cause and effect and generalize on the basis of this analysis. Roughly

speaking, these methods explain an example and then generalize it, eliminating elements that are not

essential to the explanation.

'3
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We have written elsewhere (Lebowitz, 1986a, 1986c) about the need to integrate these two styles p

of learning and our initial attempt to do so using UNIMEM. The basic approach is to explain empirically-

produced generalizations using a simple rule base and to modify the UNIMEM generalizations where this '

is not possible. We have also begun a new project that focuses on the interaction between the two

learning methods in understanding terrorism events (Danyluk, 1987). ,,

Four assumptions underlie our plan for integrated learning. First, while an important goal of

learning is indeed a causal model, and many explanation-based methods consider the causality behind

examples, it is often not possible to determine underlying causality. Even where it is possible, it may not

be computationally practical. Second, similarity usually indicates causality, is much easier to determine,

and predictability can be used to help determine the direction of causality. Third, there exist methods to

refine generalizations to mitigate the effects of coincidence, some of which we have seen in this paper.

Finally, explanation-based and empirical methods complement each other effectively. In particular, it

seems more efficient to use explanation-based methods to analyze generalizations rather than every

individual example. Explanations can also help in deciding which empirical generalizations are likely to

be significant and which features to consider.

5 Relation to other work

UNIMEM is closely related to Michalski and Stepp's (1983) conceptual clustering which was

developed independently and contemporaneously with our work on Generalization-Based Memory.

Fisher and Langley (1985) survey conceptual clustering methods. Michalski and Stepp's systems take

instances represented much like those of UNIMEM and produce a hierarchical set of concept descriptions

to describe them. The underlying mechanism, is, however, quite different. In particular, Michalski and

Stepp's methods are not incremental, making use of an algorithm that looks at all of the instances at

once. By making use of an algorithm that first finds maximally general discriminants and then determines

maximally specific definitions of the resulting concepts, conceptual clustering aims to optimize the

predictive power of concepts. Instances are required to be perfectly described by the concept that

describes them, but this could presumably be relaxed for a performance element. Later versions of

conceptual clustering (Stepp and Michalski, 1986) make use of domain goals to guide the search for

descriptive concepts.
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More recently, Fisher (1986) has developed COBWEB a system that, like UNIMEM, performs

incremental concep, formation from input instances represented with features. COBWEB shares with %

UNIMEM the general approach of top-down building of a concept hierarchy. A significant strength of

Fisher's research is its use of an information measure developed by Gluck and Corter (1985) to determine

an optimal concept division. This allows the work to be considered in theoretical as well as operational

terms. COBWEB uses concept definitions are probabilistic (e.g., "50% of the instances in concept X have

feature f"), unlike UNIMEM's simple conjunctive definitions. COBWEB has other differences in task

definition -- it uses disjoint categories, and allows only nominal feature values -- but the general approach

is similar. It would also appear that the information measure used by COBWEB will be more

computationally expensive that UNIMEM's matching process, but confirming this would require a detailed

comparison of computation times on similar domains with matched machines. However, the key point is

that the growth rate for both systems is small, at worst logarithmic in the number of instances.

Another program carrying out the same task is Hanson and Bauer's (1986) WIT. Like COBWEB, P

W1TT makes use of an information content metric, but unlike either COBWEB or UNIMEM it builds up its

concept hierarchy bottom-up and is not incremental.

The research that is most closely related to the work described here is that of Kolodner (1984) with
her CYRUS program. CYRUS was initially developed at Yale contemporaneously with IPP, UNIMEM's

predecessor.27 Like UNIMEM, CYRUS builds up hierarchies of generalizations based on similarities

among instances. The primary difference is that CYRUS makes much more use of domain information, ,

which it uses to determine which elements of instances can best serve as discriminants among concepts.

CYRUS is able to handle instances that contain more information than do the UNIMEM instances since it,

can apply domain knowledge to avoid combinatorial explosions in search and concept formation. I

However, this also limits its flexibility in application to new domains. It is both a strength and weakness of

UNIMEM that it relies on a feature representation that requires little domain information.

27Both IPP and CYRUS were heavily influenced by Schank's (1982) theory of memory organization packets (MOPs), which is a
psychologically-orented theory of memory that was under development at the same time as these programs. CYRUS also involved
a major effort in intelligent Question answering, including reconstructing intormation. Section 3.2 describes how UNIMEM differs from
Ipp.
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UNIMEM, and indeed all the work in conceptual clustering, can also be compared to work in 0

statistical clustering, e.g., Anderberg (1973). The way that instances are grouped by our methods bears

considerabie resemblance to the trees producec by hierarchical statistical clustering. These algorithms

use as input a matrix of distances between pairs of instances. This can either be computed from a more

complex representation (such as the feature representations that we used), or by evoking direct similarity

measures (from human subjects, for example). The conceptual hierarchy is built solely from the similarity

matrix by grouping together instances that are near to each other.

Unlike conceptual methods, statistical clustering algorithms do not form descriptions of the clusters

that they find. This is a direct result of using only distance measures in the algorithm. This is auite

acceptable if we have no other data. If we have more complex representations of instances, then

conceptual methods can take advantage of it. In particular, statistical methods are subject to grouping

together instances that are pairwise close, but have no common similarities as well as failing to group

instances that have a core of similarity, but differ in other respects, so that they are not close together

overall. In addition, the incremental nature of UNIMEM allows it to avoid computing distances between

each pair of instances by only looking at those that are necessary. Conceptual clustering is further

contrasted with statistical methods by Michalski and Stepp (1983). Appendix V shows a tree built from 47

university instances using a single linkage, farthest neighbor binary clustering algorithm the sum of 4

feature differences (as defined for UNIMEM) as the similarity metric. Note that there are not any

associated concept definitions.

6 Conclusion

Incremental concept formation is an important area of machine learning invoiving the automatic

construction of a knowledge base that organizes real-world information. In this paper we have given an

overview of UNIMEM, a program that performs concept formation incrementally. We demonstrated the

system's generality by showing it in operation on several disparate domains. We also showed several of

its key processes, including the creation of generalized concepts and their evaluation over time. We

reported an experiment relating two of UNIMEM's parameters to the quality of the resulting set of

concepts. While each new domain brings its own problems, the basic methods described here have
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poven to be Quite robust. We feel that UNIMEM constitutes a promising step along the way toward

systems that can make maximal use of information that they collect over time.
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L. A complete UNIMEM generalization hierarchy

Below we present the complete concept hierarchy formed in a run of UNIMEM on 224 university

descriptions. The features that define each node are not presented. Figure 1 and Table 2 were taKer,

from this hierarchy. The complete set of input is available from the author upon request.

GXDO [DALLAS -BAPTIST-COLLEGE JUILLIARD MICHIGAN-STATE SUNY-BUFFALO
TJNIVERSITY-OF-MISSISSIPPI VASSAR]

G=D1 [CCNY SUNY-BINGHAMTON UNIVERS ITY-OF-NORTHCAROLIXA YALE)

GND26 [NORTHWESTERN REED]
GND1 4 [TULANE UNIVRSITY-OF-PENNSYLVANIA)
GND15 5 (GEORGE-WASHINGTON UNIVERSITY-OF-HARTFORD)

GND4 4 [AUGSBURG OKLAHOMA-STATE-UNIVERSITY)
GND 63 [BARUJCH UNIVERS ITY-OF-MiASSACHtJSETTS -AMHERST

WILLIAM-PATERSON-COLLEGE)
GND72 [BAYLOR-UiNIVERS ITY TEXAkS-CHRISTIAN-UNIVERSITY)
GND7 3 [CONNECTICUT-COLLEGE GEORGE-WASHINGTON NORTHWESTERN)

GND140 [CLARK-UNIVERSITY COLGATE)

GND1.65 [ORAL-ROBERTS--UNIVERSITY TEXAS-CHRISTIAN-UNIVERSITY)
GND76 [MIT PRINCETON)
GND 85 [UNIVERSITY-OF-CHICAGO UNIVEPSITY-OF-NOTRE-DAME VANDERBILT]
GND 103 [NICHOLLS -STATE UNIVERSITY-OF- SOUTHDAKOTA)

GND 166 (ORAL-ROBERTS-UNIVERSITY WILLIAM-PATERSON-COLLEGE)
GND114 [RICE SMITH SWARTHMORE)
GND123 [COLGATE WESLEYAN]

GND1 49 [PENN-STATE UNIVERSITY-OF-PENNSYLVANIA)
GND124 [ILLINOIS-TECH OREGON-INSTITUTE-OF-TECHNOLOGY)
GND12 6 (UNIVER-SITY-OF-CALIFORNIA-SAN-D)IEGO UNIVE.S ITY-WEST-VIRGINIA)
GND128 [NYU TRINITY-COLLEGE)
GND137 [SAN-JOSE-STATE UNIVERSITY-OF-LOWELL)

GN Z2 [CHALME.S -UNIVERSITY-OF-TECHNOLOGY ECOLE -POLYTECHNIQUE PENN- STATE
SAN-JOSE-STATE U'NIVERS ITY-OF-CALIFOP.NIA-SAN-D)IEGO
UNIVERSITY-OF-TEXAS)

GND 60 [UNIVERSITY-OF-COLORADO UNIVERSITY-OF-MASSACHUSETTS-AMHERSTI
GNT3 [PENN-STATE SUNY-BINGHAMTON YALE]

GND13 [BARD)I
GND15 6 [GEORGE-WASHINGTON LEWIS -AND-CLARK)

GND15 [RUTGERS TRINITY-COLLEGE UNIVERSITY-OF-WASHINGTON)

GND17 [HUNTINGTON-COLLEGE MESA ORAL-ROBERTS-UNIVERSITY
t7NIVERS ITY-OF-PORTLAND)

GNID31 [UNIVERS ITY-OF-PUGET-SOUND)
GND-r1O9 [REED SMITH)
GND1 15 [MANHATTANVILLE-COLLEGE SWARTHMORE]
GND1 42 [CONNECTICUT-COLLEGE TRINITY-COLLEGE)

ND4 1 [CLARK-UNIVERSITY STEVENS WASHINGTON-AND-LEE)
GND64 [BARUCH UNIVERSITY-OF-MASSACHUSETTS-AMHERST

WILLT.AM-PATER~SON-COLLEGEI
GNDS2 [TEXAS-CHRISTIAN-UNIVERSITY TOt7RO]

GND157 [COLGATE GEORGE-WASHINGTON)

(more)

Figure 12: A complete UNIMEM generalization hierarchy
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GND88 [NORTHCAROLINA-STATE-UNIVERLSITY UNIVERSITY-OF-LOWELL
UNIVERS ITY-OF-NORTHCAPROLINA)

GND 90 [ROCHESTER-TECH UNIVERS ITY-OF-NOTRE -DAME %

UNIVERSITY-OF-PENNSYLVANIA]
GNr'l04 (NICHOLLS -STATE UTNIVERS ITY-OF-SOUTHDAKOTAJ
GND118 [PRINCETON WESLEYAN]
GND1.25 [TULANE UNIVERSITY-OF-CHICAGO)

GND27 [UNIVERSITY-OF-CALIFORNIA-SAN-DIEGO UNIVERSITY-OF-DENVER)
GND131 [QUEENS SAN-JOSE-STATE)
GND152 [NORTHWESTERN NYU)

GND4 []

GND 9 [HARVARD UNIVERSITY-OF-PENNSYLVANIA)
GND119 [COLUBIA WESLEYAN)

GND19 [MIT SWARTHMORE]
GND133 [PRINCETON YALE)
GND134 [BROWN YALE] J

GND20 [BRANDEIS BROWN]
GND27 [COLGATE CONNECTICUT-COLLEGE LEITIS-AND-CLARK RICE)

GND116 [REED SWARTHMORE]
GND129 [TRINITY-COLLEGE WESLEYAN]JP

GND33 [CLARK-UNIVERSITY MANHATTANVILLE-COLLEGE)
GND3 9 [BAYLOR-UNIVERSITY UNIVERSITY-OF-TULSA)
GND7 4 [STEVENS TEXAS-CHRISTIAN-UNIVERSITY)

GND82 [BOSTON-UNIVERSITY TOURO)
GND8 6 [UNIVERSITY-OF-CHICAGO UNIVERS ITY-OF-NOTRE-DAME VANDERBILT]
GND97 [NYU ROCHESTER-TECH)
GND110 [SMITH TP-NITY-COLLEGE WASHINGTON-AND-LEE)
GNDl53 [CORNELL wORTHWESTERN)
GND154 [NORTHWESTERN TUFTS)
GNfl167 [AUGSBURG ORAL-ROBERTS-UNIVERSITY)

GND5 [ORAL-ROBERTS-UNIVERSITY RICE)]
GND21 [MIT SWARTHMOR.E]

GND-135 [PRINCETON YALE)
GND136 [BROWN YALE)

GND28 [NEWENGLAND-COLLEGE REED)
GND3 4 [CLARK-UNIVERSITY MANHATTANVILLE-COLLEGE)
GND3 5 [CLARK-UNIVERSITY LEHIGH-UNIVERSITY)]
GND49 [BOSTON-UNIVERSITY STEVENS) '
GNDS2 [BAYLOR-UNIVERSITY UNIVERS ITY-OF-PUGET- SOUND) -

GND 68 [COLGATE NEWYORKIT NORTHWESTERN UNIVERSITY-OF-PORTLAND)
GND150 [CORNELL UNIVERSITY-OF-PENNSYLVANIA)

GND8 3 [TEXAS -CHRISTIAN-UNIVERSITY TOURO)
GND8B7 [UNIVERS ITY-OF-NOTP.E-DAME VANDERBILT)
GND1 11 [SMITH TRINITY-COLLEGE WASHINGTON-AND-LEE)
GND12 0 [UNIVERSITY-OF-CHICAGO UNIVERSITY-OF-PENNSYLVANIA)

GND141 [COLGATE WESLEYAN]
GND143 [CONNECTICUT-COLLEGE TULANE)
GND158 [GEORGE-WASHINGTON NYU)

(more)

Figure 12, continued
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[CCNY ILLINOIS -TECH NORTHCAROLINA- STATE-UNIVERSITY PRINCETON
SUNY-BINGHAMTON UNIVERS ITY-OF-CALIFORNIA- SAN-DIEGO)

GND 14 (CONNECTICUT-COLLEGE UNIVERSITY-OF-ROCHESTER)
GND159 [COLGATE GEORGE-WASHINGTON)
GND1 60 [GEORGE-WASHINGTON LEWIS-AND-CLARK)

GND2 3 (NYU SUNY-ALBANY TEXAS-CHRISTIAN-UNIVERSITY
UNIVERSITY-OF-NORTHCAROLINA UNIVERSITY-OF-WASHINGTON
WASHINGTON-AND-LEE)

GND53 (BOSTON-UNIVERSITY UNIVERSITY-OF-PUGET-SOUND)
GND1 61 [GEORGE-WASHINGTON VANDERBILT]

GND2 4 [SUNY-ALBANY SUNY-PURCHASE)
GND162 [COLGATE GEORGE-WASHINGTON)
GND163 [GEORGE-WASHINGTON UNIVERSITY-OF-PUGET-SOUND)

GND32 [CONNECTICUT-COLLEGE ORAL-ROBERTS-UNIVERSITY RICE)
GND8 4 [MANHATTANVILLE-COLLEGE TOURO)
GND112 (REED SMITH)
GND12 1 [COLGATE SWARTHMORE UNIVERSITY-OF-CHICAGO)
GND130 [TRINITY-COLLEGE UNIVERSITY-OF-PUGET-SO7ND)

GND4 0 [UNIVERSITY-OF-PENNSYLVANIA UNIVERSITY-OF-TULSA)
GND13 8 [BAYLOR-UNIVERSITY UNIVERSITY-OF-LOWELL)

G=D164 [GEORGE-WASHINGTON UNIVERSITY-OF-PUGET-SOUND)
GND 42 [CLARK-UNIVERS ITY STEVENS WASHINGTON-AND-LEE)
G=5 5 [TEXAS-A&M UNIVERSITY-OF-OKLAHOMA UNIVERSITY-WEST-VIRGINIA)
GND93 [NORTHWESTERN ROCHESTER-TECH)

GND144 [CONNECTICUT-COLLEGE YALE)
GND1 45 [CONNECTICUT-COLLEGE TRINITY-COLLEGE)
GND 151 [UNIVERS ITY-OF-NOTRE-DA1'E UNIVERSITY-OF-PENNSYLVANIA)

GND105 (NICHOLLS-STATE VNIVERSITY-OF-SOUTHDAKOTA)
GND1 68 [ORAL-ROBERTS-UNIVERSITY WILLIAM-PATERSON-COLLEGE)

GND7 [CAL-TECH ORAL-ROBERTS-UNIVERSITY OREGON- INSTITUT E-OF-TECHNOLOGY)
GND45 [AUGSBURG CORPUS-CHRISTI-STATE-U)
GND 69 [BRYN-MAWR UNIVERSITY-OF-PORTLAND)
GND1 00 [MORGAN-STATE UNIVERSITY-OF-DENVER)
GNBI06 [NICHOLLS-STATE UNIVERSITY-OF-SO7THDAKOTA)
GND!17 [RICE SMITH SWARTHMORE]
GND1 46 [CONNECTICUT-COLLEGE TRINITY-COLLEGE)

GND1 0 [ORAL-ROBERTS-UNIVERSITY TOURO WASHINGTON-ANTD-LEE)
GND29 [BRYN-MAWR REED)
GND3 6 [CLARK-UNIVERSITY MANHATTANVILLE-COLLEGE)
GND47 [AUGSBURG HUNTINGTON-COLLEGE)
GND4 8 [AUGSBURG WALLA-WALLA-COLLEGE)
GND7 0 [STEVENS UNIVERSITY-OF-PORTLAND)
GND113 [COLORADO-COLLEGE SMITH)
GND1 47 (CONNECTICUT-COLLEGE TRINITY-COLLEGE)

GND1 6 [GEORGE-WASHINGTON GOTHENBURG-UYNIVERS ITY NORTHWESTERN

ORAL-ROBERTS-UNIVERSITY WASHINGTON-AND-LEE)
GNDS 8 [NEWYORKIT UNIVERS ITY-OF-PUGET-SOUND)
GND5 9 [NEWYORKIT SAM-HOUSTON-STATE-UNIVERSITY)
GND75 [TEXAS-CHRISTIAN-UNIVERSITY UNIVERSITY-OF-PORTLAND)

GNDB 0 [BARUCH UNIVERSITY-OF-TOLEDO)
GND98 [NYU TUFTS)
GND1 08 (NICHOLLS-STATE UNIVERS ITY-OF-SOUTHDAKOTA)
GVD13 9 [SAN-JOSE-STATE WILLIAM-PATERSON-COLLEGE)

Figure 12, completed
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It. UNIMEM parameters

What follows is a complete list of the parameters used to control the UNIMEM generalizationN

process. Omitted are parameters used only to control the form of the output. Typical valuns are given in

parentheses.

" Percentage of similar instance features needed to create a generalization (40%).

" Absolute minimum number of features needed to generalize (2).

" Percentage of instance features needed to keep a generalization after some features have
been deleted (20%).

" Absolute minimum number of features needed to keep a generalization (2). Z.

• Total amount of conflict between instance features and generalization features allowed in
search (1.0).

* Confidence level at which a feature is deleted (-3).

" Confidence level at which a feature is presumed permanent (20).

" Distance apart feature values can be and still be assumed to match (0.5).

• Confidence multiplier for matches (2.0).

" Confidence multiplier for mismatches (-2.0).

" Number of features that indicate relevance in search (2).

" Number of misses, less than which indicates relevance (2).

" Penalty for missing feature (0.1).

.

I

SI

=,55
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Ill. Instances used for the example in Section 2.3

Value for Value for Value for
Attribute PRINCETON HARVARD MIT

STATE NEW-JERSEY MASSACHUSETTS MASSACHUSETTS p
LOCATION SMALL-TOWN URBAN URBAN
CONTROL PRIVATE PRIVATE PRIVATE
MALE:FEMALE 65:35 65:35 75:25
NO-OF-STUDENTS < 5,000 5,000-10,000 < 5,000 ,
STUDENT:FACULTY 7:1 10:1 5:1
SAT-VERBAL 650 700 650
SAT-MATH 675 675 750
EXPENSES > $10,000 > $10,000 > $10,000
%-FINANCIAL-AID 50 60 50 ."

NO-APPLICANTS 10,000-13,000 13,000-17,000 4,000-7,000
'%-ADMITTANCE 20 20 30
%-ENROLLED 60 80 60
ACADEMICS 5 out of 5 out of 5 5 out of5 
SOCIAL 3 out of 5 3 out of 5 3 out of 5
QUALITY-OF-LIFE 3 out of 5 4 out of 5 3 out of 5 p
ACAD-EMPHASIS HISTORY HISTORY SCIENCE
ACAD-EMPHASIS ECONOMICS BIOLOGY ELEC-ENGINEERING
ACAD-EMPHAS IS POLITICAL-SCIENCE LIBERAL-ARTS MECH-ENGINEERING
ACAD-EMPHAS IS LIBERAL-ARTS ENGINEERING
ACAD-EMPHAS IS ENGINEERING

Value for Value for Value for
Attribute CASE-WESTERN AUBURN ARIZONA-STATE

STATE OHIO ALABAMA ARIZONA
LOCATION URBAN SMALL-TOWN
CONTROL PRIVATE STATE STATE
MALE:FEMALE 70:30 11:9 50:50
NO-OF-STUDENTS < 5,000 15,000-20,000 > 20,000
STUDENT:FACULTY 9:1 18:1 20:1
SAT-VERBAL 550 480 450
SAT-MATH 650 545 500
EXPENSES > $10,000 < $4,000 > $4, 000-7,000
%o-FINANCIAL-AID 65 50 50
NO-APPLICANTS < 4,000 4,000-7,000 > 17,000
%-ADMITTANCE 85 90 80
%-ENROL. -ED 35 60 60
ACADEMICS 3 out of 5 2 out of 5 3 out of 5
SOCIAL 2 out of 5 4 out of 5 4 out of 5
QUALITY-OF-LIFE 3 out of 5 4 out of 5 5 out of 5
ACMD-EMPHAS-S ENGINEERING EDUCAT ION BUS INESS-EDUCAT ION
ACAD-EMPHAS IS MANAGEMENT BUS INESS-ADMIN ACCOUNTING
ACAD-EMPHAS IS ARTS-AND-SCIENCES ENGINEERING FINE-ARTS
ACAD-EMPHAS IS HEALTH-SCIENCE ENGINEERING
ACAD-EMPHAS IS PRE-PROFESSIONAL
ACAD-EMPHAS IS SOCIAL-SCIENCE

Table 6: Six more universities
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IV. Configuring UNIMEM to process terrorist stories

In addition to the comparison of IPP-MEM and UNIMEM behavior, we present our work with the

terrorism domain in order to illustrate some of the issues that arise in trying use real-world input for a

machine learning program. In order to experiment with the terrorist event domain, we had to construct an

interface that translated the output of the natural language module of IPP (IPP-NLP) into a set of features

(as was originally done for IPP-MEM) which were given to UNIMEM as input. This configuration is

illustrated in Figure 13. UNIMEM's memory can be used in a performance fashion by IPP-NLP for some

default inferences. If a new instances matches with a generalization in memory, but has no values for

some features contained in the generalization, then those features are added to the description of the

instance.

IIPP-NLP text l => text => I representation I => feature => I UN.M. I
I processing I representation I post-processing I list

Figure 13: IPP-NLP/UNIMEM -w

The output of IPP-NLP was prepared for either IPP-MEM or UNIMEM (which received identical
C'

input) by producing features about the action (what it was - hijacking, bombing, etc.; where it was; when

it was) and about each of the role fillers (actor, weapon, etc.). For each role filler, features were taken

from modifiers in the text. Other features, such as that a soldier is in the military, were inferred using a

simple frame-based memory. 28 Table 7 shows a typical, if simple, terrorism story and the features that

were generated for it from the output of IPP-NLP. There are both direct translations of adjectives (e.g.,

"right wing" in the text becomes the feature actor-politics/conservative) and inferred features (e.g., target-

place-type/public).

2eThe inferred features were necessary since certain facts, such as that soldiers are in the military, are so basic that stories will
never mention them. The addition of such features by the interface does involve a clear bias in the sense of Utgoff (1986).
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New York Times (UPI), 12 December 1979

J. plastic bomb apparently net by right-wing extremists exploded early today
in the doorway of the town hall of Lezo in the northern Basque region.

Attribute Value

METHODS $EXPLODE-BOMB [the first group of
LOCATION-AREA WESTERN-EUROPE features describe
LOCATION-NATION *SPAIN* the event as a whole)
S-MOP S-DESTRUCTIVE-ATTACK

TIME EARLY
ACTOR-POLITICS CONSERVATIVE [the rest are from the
ACTOR-POL-POS ACTIVISTvaiuroeflrs
ACTOR-NATIONALITY * SPAIN*vaiu roeflrs
WEAPON-CLASS EXPLOSIVE
WEAPON-COMPOSITION PLASTICr

WEAPON-WEAPON BOMB
TARGET-PLACE-TYPE PUBLIC
TARGET-DIRECTION NORTH

TARGET-NATIONALITY *RAQUE*
TARGET-PLACE LEZO
TARGET-NATIONALITY *SPAIN*
TARGET-PLACE TOWN-HALL
TARGET-PLACE-TYPE GOVERNMENT
TARGET-PLACE DOORWAY

Table 7: Typical terrorist event features provided to UNIMEM
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V. Statistical clustering on university instances

This tree was built from 47 university instanoes using A single linkage.

farthest neighbor binary clustering algorithm. The similarity Nasure

between instances was the sum of feature differences, exactly as defined for

UNIMEM. There are no associated conoept definition&. Lengths of the

edges are not significant.

JOHNS-HOPKINS -- \____

CASE-WESTURN -- I \
CAL-TECH - - \__

CORNELL ---- ------------- \

CCNY ..---------------- /

STANFORD --

HARVARD -- \___
YALE -- \ / \
BROWN -- / I__,.
MIT -- \ I \ _.'

COL B.IA -- / \ / I

PRINCETON -- \ / I
DARTMOUTH -- / I-.... \

RENSSELAER --

COLGATE -- / \ I I I,

NYU. / \ / I --- --

Ut-OF-PEIN -- \ / I
cMU -- I
USC__
BOSTON-U -- / \ /

BC -- /
L-OF-OKLAHOMA -- \____
TEXAS-A&M -- / \

U-OF-MAXNE ------------ \

TEMPLE--/

MORGAN-STATE --/
UC-SANTA-CRUZ --

UC-SAN-DIEGO -- / \ ----------------

VC-DAVIS -- \ / \ I [

FLORIDA-STATE -- / I--..\ I I

UCLA -- \ / I / ,

UC-B.REREI Y / I

ARIZONA-STATE ------------------- / '

NJ-TECH -- \

ILL-TECH / __ /

rj-OF-MONTANA -------- / \_

FLORIDA-TECH . .------------/ \

USF ------------------ / __

PRATT -- \ / \

COOPER-UNION -- / l__

WORCESTER -- I \

STEVENS -- / l I

GEORGIA-TECH--......-/ I-------

ROFSTRA -- \____

ADRLPEI -. / \ /

ROCH-TECH- ...-------- /

Figure 14: Statistical clustered universities,'p
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