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Optical phase conjugation with smooth pump profiles
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We present analytical results for the steady-state signal and phase-conjugate fields interacting
with smoothly varying nondepleted pump waves in a nearly degenerate four-wade-mixing geometry.
Signal depletion is retained in the equations and we study the effect that detuning on the input sig-
n0p fron. the degenCratL pump arnplit"Jes has on the reflected conjugate wave and the transmitted
signal wave. A general result is derived for the appearance of spontaneous amplification under
weak restrictions on the profile of the degenerate pump fields. The conjugation of the phase front of
the signal is studied for exponential and hyperbolic secant functions multiplying the coupling coeffi-
cients and comparison is made with corresponding results for square profile pump fields. These re-
sults are discussed and their relevance to phase conjugation of pulses is examined.

I. INTRODUCTION from the degenerate pump fields.6 Of course, the results
of both methods are related and they have a direct bearing

One of the many remarkable phenomena resulting from on experiments.7

the mixing of electromagnetic waves in nonlinear media is All of the above-mentioned papc1i endow the pump
optical phase conjugation.' It is realized in a wide range fields with a square profile. It is the purpose of this paper
of materials and under several experimental co-ditions. to deal with pump fields whose profiles are smooth. This
There are new types of adaptive optical devices (called causes, as is shown below, significant quantitative differ-
phase-conjugating mirrors) that use this phenomenon to ences in the response of the phase conjugator; surprising-
create a scattered electromagnetic wave from the signal ly, some properties are unchanged. We show, for in-
field, called the conjugate field. The conjugate wave prop- stance, that the region of amplification of degenerate sig-
agates along the same axis as the incoming signal, but nal and conjugate fields is not changed when inhomogene-
with its phase and propagating direction reversed. The ous pump profiles are used. On the other hand, for de-
conjugate waves have the property of correcting distor- tuned signal fields the response of the phase conjugator is
tions in a wave front of a coherent electromagnetic field weaker for smoother pump profiles. Taken together this
that were introduced in the signal wave as it passed can lead to large quantitative discrepancies in the frequen-

N through an inhomogeneous medium. Thus the conjugate cy response of the phase conjugator with different pump

wave is called'the "time-reversed" analogue of the signal profiles.
field. In Sec. II the derivation of the equations in the slowly

Degenerate four-wave mixing (DFWM) is a simple varying envelope approximation is given and necessary
method used to generate optical phase conjugation., It notation is introduced. Analytic results are presented and
has been proposed for a variety of applications including discussed in Sec. III. In Sec. IV conclusions are drawn
interferometry and signal processing. 2- 4 While applica- about the results.
tions such as this are intriguing, there is a need to esti- II. DERIVATION OF EQUATIONS
mate the fidelity of the phase-conjugate wave not only
with respect to the time reversal of the amplitude, but also The wave equation for the electromagnetic fields in a
with respect to the time reversal of the phase across the medium with a scalar dielectric constant is
wave front. n 32 E a - 2P

For pulses the signal field is polychromatic and signifi- V 2E- a, 2  c2 t2

cant variation in the response of the optical phase conju- c t 2

j,ator to the components of the frequency spectrum can be where P denotes the nonlinear polarization of the medi-
expected. This expectation has motivated studies of the mn. The linear nonresonnnt intcractions havc been clim-
transieni response of these devices2  An alternative inated and are included in the index of refraction n. E is
method of studying the response of a phase conjugator is the electromagnetic field and c is the speed of light in
the use of steady-state signal fields which are detuned vacuum.

35 3398 (?1987 The American Physical Society
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Several waves are mixed in the nonlinear medium. Assuming a Kerr medium and all fields linearly polar-
There are two counterpropagating pump fields with am- ized in the same direction, the polarization is

plitudes, E,(x) and Ep (x) and their frequencies are de- P = E .(6)
generate. These are wave vectors kI and -k 1 , respective- P E
ly, with I k =k'=nw'/c; their frequencies are degen- Then from Eq. (2), the polarization amplitudes are
erate. These are assumed to be strong steady-state fields ^ R3(, (7a)
compared with the signal E5(x,t) and conjugate Ec(x,t) P, 32( +E 2 + 6VEk,,E 7

field amplitudes, which propagate along the z axis with and
wave vector k = ki1 and k = - kci , respectively, where 2.

the carets denote a unit vector. The pump waves are as- Pc 3X3 ( Ep 2 - , I k, " . (7b)
sumed to be undepleted here. The electric field is written -.

as the sum of these four amplitudes with appropriate Since the amplitudes E, (x) and E P2(x) are not plane
plane-wave phase factors: waves, the coupling coefficients, appearing in Eq. (4) after

ik+x -ik-x inserting Eqs. (7), are also functions of the spatial coordi-
E(x)=[E (x)e +E 2 (x)e ]enates. This dependence is simplified by considering the

" iksz-iwo~ +' - k c signal and conjugate fields to propagate perpendicular to
+E~e $ +Ec(x)e "' +c.c. , (2) the pump fields and by allowing the pump fields to have a

where c.c. refers to the complex conjugate of the first beam waist which is much larger than the transverse ex-

terms on the right-hand side. The polarization can also be tent of the fields E and E (see Fig. 1). Nevertheless, the

expanded into four terms as given in Eq. (2); the slowly pumps still have a finite extent along the z axis and they

varying envelope approximation8 for the amplitudes in possess a smooth profile. The equations of motion can be

Eq. (2) is written as

k1V~~ 2~~ 2i 5  E, dE, 2
I k,'-VE, I << k  Ei 2ik, -c at +±- +V E=a()E+3(z)E,,

and (3) c (8)

C a aI 2ik t - an O =a(z) E + 3(z)EaE t  <_o__ _t+-_-_ V c ^
CJ

where i =p 1 , P2, c, or s. We are only interested in the

signal and conjugate field amplitudes and the equations
for these fields are EC ES

2ik, ,A +  +V EP=-41rw ,
c 2s +~Ez P (4a)

and

n E a ,,./ 41( .
2ikc I- ca-t- + az gC* +V1~ - c2 -- Pc , th (4b),

where the polarization has been expanded into two modes

, i(k z- t , ̂  -i(k z+WC )
P=(Pe +Pce )+c.c. E

and the appropriate amplitude contributions appear in Eq. EC ES
(4). The operator V2 is the Laplacian in the direction C

transverse to the z axis.
To make explicit calculations we assume linear polari-

zation for the signal and the conjugate field and the polar-
ization is a linear function of E5 and Ec. When the
medium relaxes fast compared to electric field amplitude E,
variations, the scalar functions for the polarizations can I

be represented as (b)

P, C 1Ek, rC 2 P
FIG. 1. (a) Side view illustration of the conjugate and signal

and (5) fields cutting across the pump field profile. The conjugate and

signal field profiles are assumed to be smaller than the pump
•Ck+C4 E5 . profiles; in this limit only the z dependence of the pump profiles

The coefficients (Ci) depend on the particular medium is important. (b) Top view illustration of the conjugate, signal,

and are dependent on the amplitudes EpI and lp. and pump fields.

- - • - , q , - , w * V' " , . -, . **--":." ,, . ',, W " ' ". W '" - 1,
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coefficients a(z) can be transformed out of the equations where H(x) is the Heaviside function and the length scale
by introducing a phase factor of the exponential has already been included in the defini-

I Z tion of z. This profile would be approximately realized
-16z) - a(z')dz' (9) experimentally by blocking all but a tail portion of the

2k --= pump beams. Of course, combinations of exponentials,
and transforming the amplitudes such as exp( - z ) can be analytically treated, as well.

Fs--F.*se i , The second case is the hyperbolic secant pump profile,
(10)

c-* - e . G (z)= sech(z) . (14)

The equations so generated can be used as the basis of r
further calculations on dynamic properties. However, the This profile simulates the transverse shape of a laser
steady-state results in this paper already provide informa- beam.
tion about the response of the phase-conjugating mirror to For comparison we use results for the square pump
different frequency components. Therefore, these results profile defined as
are relevant to describing the time-dependent fields. G(z)=[H( -z)-H( -z)] . (15)

The transverse modes are easily treated by introducing
the Fourier transform of the transverse coordinates. Let In this case the coefficients of the differential equation are
the transverse wave number be 12 =k 2 +k and for com- constant and the general solution for the signal field is
parison with other work we define fl(z)=2kKG(z), where E,(O)K2cos[O( 1-z) ]
the integral of G(z) is equal to unity. The coefficient K is E(z)= (OcosO+iA sinO) '(16)
related to the space-averaged strength of the pump fields.
Consider the signal to be detuned from the pump waves, where 02 =K

2  
A

2 . This assumes that the conjugate field
the steady-state equations for the signal and conjugate at z = 1 vanishes, i.e., no conjugate signal is injected into
fields are the medium. The conjugate signal is

dEE -E i KG (z)E 2* (lla) (17)

dz F (OcosO+iAsin)

and The dependence on q has not been included in the nota- S
tion, but these results are valid for transverse signal and

dE' i7 2 conjugate profiles within the limits imposed by the pump
dz - iKG (I Ib) geometry, cf. Fig. 1. These solutions simplify to the

well-known results:9

where the z coordinate has been scaled to a characteristic[ I
length of the interaction region L; and the transverse E,(z)=E,(0) cOsK(-z) (18)
coordinates have been scaled to the waist d, of the incom- COSK
ing signal. F=2kd 2/L is the Fresnel number. A is the and
detuning of the signal from the pump fields and is scaled sin[K( 1 -z)
to nL/c. This is generated by the phase mismatch of the E*(z)= -iE,(O) s (19)
signal and conjugate field momenta. The caret has been cosA
dropped to denote the Fourier transform with respect to The coupling coefficient K is varied by changing the
the transverse direction. The transverse coordinate can be length of the interaction region in the pump field ampli- •
removed by transforming the fields, and the equations can tudes in the region ir/4 <K < 31T/4, in which the signal
be combined into a single second-order differential equa- and conjugate fields are amplified. Near K=iT/2 there is
tion for the complex fields. For instance, the signal field a so-called oscillation threshold where a small signal field
satisfies the equation value produces a large conjugate and signal field output.

These spontaneous amplification regimes appear at higher
EF'=GE,'- [K2G2+A2-iAG IE., ,12i values of K as well, K=31r/2, 5i/2, etc. and are the result

G IG of fulfilling a resonance condition in the medium..

where the primes denote a derivative with respect to z. A. Exponential pump profile
Specific functions Gt z) are treated in the followine sec-
tion. Here we only treat the profile given by Eq. (13); howev-

er, it is also possible to solve for combinations of exponen-
II. RESULTS tial pump shapes both rising and falling as functions of z. S

Equation (12) is solved for this case by transforming the
The second-order differential equation Eq. (12) of the coordinates to a new variable -=e'. The resulting equa-

previous section is useful for obtaining explicit solutions tion is
with detuning. We consider two cases here, the exponen- (2S tial pump profile: d2E, [ (A2-iA) ],ilV

+ K 2+ - IE, =0. (20) )'.(

G(z)=e-H(-z), (13) dg " g2

' "- r -. I
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The solutions of this equation are related to Bessel func- Furthermore, the intensities diverge for K = 77/2 . This is a ..

tions1°  regime where the pumps would be depleted in order to

keep amplifying the conjugate wave and spontaneous am-
(g)=A'/2J,( )+B /jv(K ) , (21) plification of the signal occurs. Further regimes for spon- .

where v= + iA is used in order to simplify the notation. taneous amplification appear near K= 37T/2, 51T12 , etc.
The coefficients A and B are determined from the boun- For A#0, the zeros of the Bessel function J__,W lie
dary conoitions. The asymptotic form of the Bessel func- off the real Fxis and the divergence is prevented. For
tions10 is pulses this means that not all frequency components of

(-z)' the conjugate wave are equally amplified. The field will

r(v+ 1 (22) be distorted for the conjugate wave, not only in its ampli-
v (z-- _"(+ 1)tude, but also in its phase. Similar properties are observed

where 1700) is the gamma function.10  for the square profile as well, but there are large quantita-

As F-.0, the signal field is tive differences which will be discussed at the end of this
section.

E.,) 2 B (23)
K Pl-v) B. Hyperbolic secant pump profile

This is the asymptotic form required of the signal field The differential equation for the signal amplitude is '.

when the pump fields are turned off: simplified by introducing the transformation

E, W)=E,(O)e -'Az, (24) 1 +tanh(z) (30)

and the coefficient is 
2

The equation is

d 2E (1 2) dE,g l- )- +
The secondary boundary condition is obtained at = 1 and d *2  2 d4
is actually a boundary condition for the conjugate field. [K2 (I-2) A 2

This field can be calculated from Eq. (01 a); the result is + - iA__ +4 (__ E,=0. (31)
:E * (g) = + i t/[ AJ _ , ,(K') - BJ ,(K )] (26) -.0

The conjugate field has its boundary at 4 I (or z =0) This equation has the structure of the Riemannian dif-
and the amplitude A is ferential equation and the solution of Eq. (31) can be ex-pressed in terms of hypergeometric functions"

iE,*( I) +E, () K r H (K) 2F, (a,b ;c ;z):

-(27)
J_*(K) E( - 1

In phase conjugating experiments a conjugate field is not
inserted in the medium E,*( =l)=0. The solution for AFK -
the phase conjugate field is F,I7T ITI

212 + B .B'2 F, - +v, -r + v;l+ v:. (32) P

Jv*(K)0e

X lJv,(Kg)- J"*( , (). (28) as -,0 (i.e., z - ). The asymptotic solution is

The solution for the field when the signal is degenerate
with the pumps (A =0) is This coniorms with the rroper -symptotic siu',ii of th,-

E()=-iEsin[K( ) ) free field Es(z) which is
(~~:)E. (0) si[K. (29)

This solution has properties which are similar to those de- E,(z) =E.(O)e - i. (34)
rived by assuming that the pump beams have a constant
amplitude profile %A hich falls abruptly to zero. For inter- The coefficient A is
mediate pump field amplitudes, i.e., T/4 <K < IT, the
phase-conjugate field is amplified in the medium, when A = Es(0)( - I )liA/2) (35)
the signal field is degenerate with the pumps. In this re-
gime the reflectivity of the device is greater than unity. The phase-conjugate field is S

i %"- " "- ~~~~~~~~~*" %,3 % ." ' ~ " .
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E, ( ) -" E'(0)( _ K)I/2 2 K + K
K ITvr I

-B i"g-*~ 2F, K +"- K+V;I+V

IT ir 1 1 171

iT IT

+jv2 - (lv ",F I+ +~ -X-+;+ (36)

The boundary condition for the conjugate field applies at '= 1. After some algebra the coefficient B is

-K I ) I K212 K I )iA/2 K + K %IT Ec*(1_(-1)-i'/2 + (-1 E,(0) 2F I I + V*,-Tr+v ;I+ V*;l

(+v) 2F, ' ;2+v;l (37) ,

The amplification of the fields resonant with the pump fields occur at the same values of K as in the previous examples
of a square profile and an exponential pump profile. The spontaneous amplification regimes appear at the zeros of the Np,

function
0

2F r K,+ K; 5; 1 J= I _ .. K I(38

The divergences of the gamma function r(3/2-K/I.) can The spontaneous amplification regimes appear at identical
also be found in Ref. 10; they also appear at K=37n/2, values of K independent of the profile shape. In particular
51r/2, etc. the Gaussian-shaped profiles will likewise obey this

threshold condition.

C. General result for resonant fields D. Numerical illustration

The fact that all of the above profiles have identicalvaue fr h dvegecs uges ha ageealthorm To illustrate these results in greater detail the intensities ,
values for the divergences suggest that a general theorem

holds for classes of pump profile shapes. This is indeed are plotted for the three pump profiles. The signal fields

the case and is derived in the following, are shown in Fig. 2 for K=0.7 8 . The longitudinal coordi-

For a transverse profile G W) 0, we define the area as nate extends over the range [0,1]; for the square pump e

profile this coordinate is the z axis and for the exponential
q(z)= f"_ G(z')dz' . (39) and hyperbolic secant pump profiles the scaled variable

is used for this coordinate. The profiles of the intensities
Equation (1) for A =0 can be transformed to are plotted versus detuning from the pump resonance; for

dE, convenience this is scaled as a square root. A constant
iKE* (40a) field E,(0) is used in the calculations; this allows a simplediq interpretation of the results for inhomogeneous depen-

and dence of E,(0) on the detuning.

dE* For the square profile the amplitude difference between
- iKE, (40b) A=+4 and 0 is about a factor of 5 when the coupling

constant is K=0.78_Ir/4. The signal field is amplified

as lon- q(z) is monotonic. over the entire output (z = 1) for the range of detunings

The solution of this case is precisely the square profile, shown. For the exponential profile, Fig. 2(b), and the hy-

Eqs. (18) and (19): perbolic secant profile, Fig. 2(c), the wings of the signal
intensity at A= +4 are not amplified at all at the output

E(q)=E (O) c[K( (41a) = 1. The exponential profile gives a broader frequency -e
cosK response than the hyperbolic-secant profile.

and The conjugate intensities exhibit a corresponding
response to the pump profiles; comparison between Figs. .*

E*(q) = -iEs(O) sin[( I -(41b) 2(a) and 3(a) reveal that the reflectivity is also amplified in
cos " the entire detuning region shown. This is contrast with
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SIGNAL INTENSITY SQUARE PROFILE CONJUGATE INTENSITY SQUARE PROFILE

K o78 K O 7e

zS

2

0 . .. . .. . .. I..-

(0) . -., "(0)

SIGNAL INTENSITY EXPONENTIAL PROFILE

K 078 CONJUGATE INTENSITY EXPONENTIAL PHOFILE

K-078

24

x //.

01

(b) "
2

SIGNAL INTENSITY HYPERBOLIC SECANT
PROFILE(b0

K=078

CONJUGATE INTENSITY HYPERBOLIC SECANT
PR OFIL E

\ /,/
I 

i K ,0 78

-2.

00

2 0~

FIG. 2. (a) The signal intensity resulting from an interaction '~3-
with a square pump profile. The three-dimensional representa- 20

tion. The value of the coupling constant is K=0. 78. The z axis
is shown and the square root of the detuning times the signum
of the detuning. (b) As in (a), except that the exponential pump FIG. 3. (a) Conjugate intensity corresponding to Fig. 2(a). (b)
profile is used and the 4 axis is plotted. (c) As in (b), but for the Conjugate intensity corresponding to Fig. 2(b). (c) Conjugate in-
hyperbolic secant pump profile. tensity corresponding to Fig. 2(c).
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CONJUGATE INTENSITY SQUARE PROFILE the results of Figs. 3(b) and 3(c) which clearly demon-K 93strate the inability of the smooth pump profiles to interact

z with fields which have a large detuning. Again the ex- --

ponential profile has a wider conjugate field response to S
the signal field than the hyperbolic secant profile. r,

From Eq. (17), it is obvious that the response of the
conjugate fields is more uniform when the coupling con-
stant is larger. At least this is the case for a square pro-

" , "file. This is indeed the case for the conjugate field shown
in Fig. 4(a). Here the coupling constant was chosen as
K =3.93e_-51/4. The central region is amplified less than
the wings A=+4 and the difference in amplification is

/ now only about a factor of 2. The larger coupling con-
stants also give more structure to the fields in the medi- ,4.- 1 !,',i urn. This also could be anticipated from Eq. (29). The
conjugate intensity from the exponential pump profile is

S ,also broadeneC from K=3.93, Fig. 4(b). However, for the
'k hyperbolic secant pump profile, the detuning response of

the conjugate field has not been significantly increased for
(a) v'o" this value of the coupling constant, Fig. 4(c). The wings

for I A I > I are not responding to the pump profile.
CONJUGATE INTENSITY EXPONENTIAL PROFILE

K: 3.93

IV. CONCLUSIONS

In view of the foregoing results, several remarks are
worth mentioning. In noncritical situations where the
bandwidth of the signal is small compared to c /nL the
conjugate field is a good time-reversed replica of the in-
coming signal. This means that the precise profile of the
pumps are not a determining factor in achieving good op-
tical phase conjugation fidelity.

As the bandwidth is increased the amount of loss of
fidelity depends sensitively on the pump profile shape.
We find that the square pump profiles [Figs. 3(a) and 4(a)]
have better fidelity than the exponential and the hyperbol-

0 ic secant pump profiles. These results could be tested, for
instance, using an experimental arrangement similar to

CONJUGATE INTENSITY HYPERBOLIC SECANT Falk;" he tested the fidelity of phase conjugation using
PROFILE

K F 393 CS2 with a I-cm path length and the same DFWM
geometry discussed here. Only millijoules of energy are
required for the pump beams and the detuning of the sig- 0
nal required to observe the effects discussed here is about

Of course, there is one caveat to this which is not exhib-
ited in the figures, namely, the phase of the conjugate
fields is also distorted by the frequency detuning of the

-2 signal field from the pump fields. For the square pump
I'..' Z profiles the phase distortion can also be minimized by in-

creasing the coupling constant, i.e., increasing pump in-
. :-tensities, cf. Eq. (17). The phase distortion correction of

the exponential and hyperbolic secant pump profiles for
large K are not as obvious, but analogous to the discussion ,
of the intensities in the preceding section, we find that the

(C) "-2 o square profile has the best distortion correction and the 0
hyperbolic-secant profile the worst, The phase reversal is

FIG. 4. (a) Conjugate intensity for the square pump profile, rapidly improved as the pump widths are decreased;"
all parameters as in Fig. 2(a) with the coupling coefficient however, the smooth pump profiles ability to correct the
K= 3.93. (b) Conjugate intensity for the exponential pump pro- phase distortions is reduced.
file K=3.93. (c) Conjugate intensity for the hyperbolic-secant If we interpret the trends shown in Figs. 3 and 4 and
pump profile K= 3.93. discussed above, then the pump profiles with sharp edges

. ,,, .",. ,.
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