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ABSTRACI'

An eighteen-node, three-dimensional, solid element with 54 degrees of

freedom is presented for the finite element analysis of thin plates and shells.

The element is based on the tellinger-Reissner principle with independent

assumed strain. The independent strain is divided into higher and lower

order terms. A modified stress-strain relation decoupling inplane and normal

strain is used to model thin shell behavior. Numerical results demonstrate

that this element is effertively free of locking even for very thin plates and

shells. In addition, the element is kinematically stable. In fact, the

stiffness matrix associated with the higher order independent strain is a

stabilization matrix.
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An eighteen-node, three-dimensional, solid element with 54 degrees

of freedom is presented for the finite element analysis of thin plates

and shells. The element is based on the Hellinger-Reissner principle

with independent assumed strain. The independent strain is divided

into higher and lower order terms. A modified stress-strain relation

decoupling inplane and normal strain is used to model thin shell

behavior. Numerical results demonstrate that this element is

effectively free of locking even for very thin plates and shells. In r
p,

addition, the element is kinematically stable. In fact, the stiffness

matrix associated with the higher order independent strain is a

stabilization matrix.
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Chapter 1

INTRODUCTION

In recent years numerous finite element models based on the

degenerate solid shell concept [1] have been proposed for the analysis

of thin shell structures [2-4 1. A distinct advantage of the degenerate

solid shell concept is that it can be used for finite element modeling

of arbitrary shell geometries without resorting to a specific shell

theory. However, when used in an assumed displacement formulation, the

performance of a degenerate solid shell element deteriorates rapidly as

thickness decreases. This phenomenon is called locking and results

from the inability of an element to represent a zero inplane and

transverse strain state without disrupting the bending behavior [5].

One popular method used in an attempt to alleviate locking is

reduced/selective integration [6-11]. However, reduced/selective

integration has had limited success. In some elements the locking

effect is not completely alleviated [12]. More commonly, when the

order of integration is reduced sufficiently to alleviate locking,

spurious kinematic or zero strain energy modes are introduced to the

element stiffness matrix. These kinematic modes can be suppressed by N

adding a stabilization matrix to the stiffness matrix calculated using

reduced integration [13,14].

An alternate method suggested by Lee and Pian [5] is to use a

formulation with assumed independent strain based on the

Hellinger-Reissner principle. A nine-node shell element based on this

approach performed very well on a variety of thin shell test problems

1!
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[151. This formulation provides a rational mathematical basis for the

reduced integration scheme [5, 16, 171.

Recently, Rhiu and Lee successfully developed nine-node and

sixteen-node degenerate solid shell elements using a new mixed

formulation [3, 41 which is also based on the Hellinger-Reissner

principle with independent strain. In this case, the assumed
.

independent strain is divided into a higher order and a lower order

part. The new mixed formulation provides a rational basis for

introducing a stabilization matrix to the reduced integration displace-

ment model.

Another approach to the finite eleiient analysis of shell structures

that also allows for the modeling of arbitrary geometries without

invoking a specific shell theory is to use a three-dimensional,

eighteen-node, solid element. In fact, a solid element is more

convenient than a degenerate solid shell element since it does not need

rotational angles to describe the kinematics of deformation.

However, when used in a conventional assumed displacement finite

element formulation this eighteen-node element performs poorly. It

experiences the same inplane and transverse shear locking that

degenerate solid shell elements do. In addition, there is a normal

strain locking due to the inability of the element to represent the

condition of zero normal strain. The use of reduced integration

results in spurious kinematic or zero strain energy modes in the finite

element model. Hence, the global stiffness matrix may be kinematically

unstable. Although many kinematically unstable elements can be used

with care, they are of little value for general purpose use.

2
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Therefore, in this study a new mixed formulation with assumed

independent strain [12] is applied to the eighteen-node solid element

to improve element performance. After a brief discussion of geometry

and kinematics of deformation, a new mixed formulation for solid

elements is presented. Next, the selection of assumed independent

strain is discussed in detail. This is followed by a brief discussion

on the modified stress-strain relation. Finally, the performance of

the element is tested by solving several thin plate and shell problems.

3i
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Chapter 2

GEOMETRY AND KINEMATICS

Figure 1 shows the isoparametric representation of a three-

dimensional, eighteen-node element. There are three displacement degrees

of freedom at each node. Shape function polynomials are quadratic in

parent coordinates E and n, and linear in C. The linear coordinate C

is in the thickness direction of a thin structure.

In addition to a global Cartesian coordinate system with

coordinates X, Y and Z, local orthogonal coordinate systems are used to

incorporate shell behavior into the finite element formulation as will

be shown later. In particular, local coordinate systems are defin(J at

numerical integration points. This enables the use of the stress-

strain relation as well as strain components defined with respect to

the local coordinate system. For a local coordinate system, the three

axes x, y and z are parallel to local orthogonal unit vectors a,.

a2 and a3, respectively. Local coordinate vector al is chosen to be

parallel with either & or n. These coordinate systems are chosen so

that the element stiffness matrix is invariant for a given element

geometry. The technique for choosing coordinate systems at integration

points is discussed in detail later.

Given these coordinate systems, the position vector X in the global

coordinate system of an arbitrary point is

X J L Ni(En, Xi

L z
4



where Ni is the three-dimensional Lagrange shape function at node i and

X. are the values of X at node i. Similarly, the global displacement

vector U of the same point is

18
U V N ,i  (2)

where U. is the vector of nodal displacements.

In matrix form, the linearized engineering strain vector E with

respect to global coordinates is

U,X

VY

= W 'z (3)

U,Y + V,X

VZ + W,y Y

U,Z + W,XJ

where the comma (,) denotes differentiation. For a finite element

formulation, the relationship between 2 and the nodal degrees of

freedom vector qe can be written symbolically as

-G = BG 2e (4)

where BG is a matrix relating G to qq. The strain vector in the local
coordinate system is found by transforming the global strain vector as

follows:

' : ~ 2 e (5 )

5



where

T:L-exx E:yy e zz e xy C z C zx T

B T B

In Eq. (5) T is a 6x6 transformation matrix and the superscript T

denotes the transpose.

6
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Chapter 3 !S

FINITE ELEMENT FORMULATION

Assuming small displacements and no initial strains (such as

thermal strains), the functional w R for the Hellinger-Reissner

principle is

T -- T C c)dV -6R C 2 e o (6)Ve

where

E LE C C E IT J (7)
xx yy zz xy Cyz czx-

T

is the independent strain vector, Wo is the applied load term, Ve is

the volume of the element, C is a 6x6 matrix of elastic coefficients

and c is the local strain vector derived from the displacement field

given by Eq. (5). The summation sign indicates assembly of all

elements.

As proposed in reference 12, the independent local strain vector is

divided into two parts as follows:

E :-L +E H (8)

where CL and EH are the independent, local strain vectors with lower

order and higher order assumed polynomial terms in &, n and t,

respectively. Substituting Eq. (8) into Eq. (6) and expanding yields

the following functional:

7



ITR : [fj C dV f C CL dVe + f C £dV

- z T C~ dVe 1 f £HT dV~ - (9)

In the present eighteen-node element the lower order independent

strains are assumed to be trilinear in , n and . They are expressed

in terms of displacement-dependent strains evaluated using a 2x2x2

point Gauss quadrature rule. Specifically,

2L= N N 'n'd), = e (10)

where Ni is the trilinear shape function such that Ni=1 at sampling

point i of the 2x2x2 point integration rule, ci is displacement-

dependent strain evaluated at sampling point i, and ci, ni, €i are the

values for E, n and at sampling point i. Symbolically, the relation

between cL and qe is rewritten as

p -
= B n q (II)

where
8

. (,n,) - Z i(,n, ) B( i ni, )

The higher order strain vector is assumed to have higher order

terms in E, n and C, and is written as

£H = P( ,n ) (12)

8
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where P is the shape function matriA of higher order assumed strains

and a is a vector containing element strain parameters.

Introducing Eqs. (5), (11) and (12) into Eq. (9) yields the

following expression:

1 T T G i T TT R e K L -q e + Ge " H 2 e Qe)

where

L (-T C B + B T C C) dVe (13a)

: T C B dVe  PT  dV e (13b)

S pT C P dVe (13c)

and Qe is the element load vector.

Taking 6 OR=O with respect to a for each element yields the

following relationships:

-2e - H = 0 (14a)

and

a= H- G 2e (14b)

Equation (14a) or (14b) represents the compatibility equation for each

element in discretized form. Using Eq. (14b) in Eq. (13) results in a

familiar expression for 7 R as follows:

I T T)
R Z (7 e 4 1e - ee (15)

where the element stiffness matrix K is given by

e = + KS (15a)

9



and the stabilization matrix K5 is given by

KS = GT H-1 G (15b)

After assembly over all elements, Eq. (15) can be rewritten as

ITR iT K (16)

where K is the global stiffness matrix, is the global displacement

vector and Q is the global load vector. Setting 67R = 0 with respect

to g gives

K = (17)

which can be solved for g. ThuS, ge is known, and the local strain

vector is determined as follows:

= + P H I e (18a)

Stress a is determined by using the stress-strain relation and the

strain in Eq. (18a) as follows:

= C (18b)

As will be demonstrated in the next section the K L matrix in Eq.

(13a) has spurious kinematic modes. The kinematic modes occur because

only lower order terms of assumed strain are used in constructing KL"

When higher order assumed strain is properly chosen, the K S matrix

plays the role of a stabilization matrix and the element stiffness

matrix will be kinematically stable.

Before discussing the selection of higher order strain a few

comments on numerically integrating the expressions for w R in Eqs.

10
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(13a-c) are in order. Since £ iS quadrdtic in C and n, and linear in

c for an element with regular parallelepiped geometry, and cL is

assumed to be trilinear, then Eq. (13a) is integrated exactly with a

2x2x2 point Gauss numerical integration rule. In this cdse Eq. (13a)

reduces to

KL = f BT C B dV (19)
L

where the subscript L on the integral sign indicates a ?x2x2 point

integration rule. In other words, the KL matrix in Eq. (13a) is

exactly the same as the stiffness matrix for the assumed displacement

model with a 2x2x2 point reduced integration rule. Detailed

discussions of the equivalence between reduced integration and ;ixed

formulations are in references 12, 16 and 17. Assuming CH is at most

quadratic in and n, and linear in C, Eq. (13c) and the first integral

in Eq. (13b) require a 3x3x2 point integration rule for exact

integration of the same regularly shaped element. The second integral

in Eq. (13b) is integrated exactly with a 2x2x2 point rule. Although

these rules are only exact for an element with rectangular geometry,

the same integration rules are adopted for elements with distorted

geomet ri es.

'V
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Chapter 4

HIGHER ORDER ASSUMED STRAIN

The criticai step in the present formulation is the proper choice

of assumed strain. Generally, the assumed strain should be as simple

as possible to avoid locking. However, an exceedingly simple assumed

strain field will trigger spurious kinematic modes that do not produce

strain [3]. These kinematic modes are of two types; compatible and

incompatible. Compatible kinematic modes persist even when two or more

elements are assembled. In other words, compatible kinematic modes are

modes that will show up in the global stiffness matrix. On the other

hand, incompatible kinematic modes are suppressed when two or more

elements are a sembled. Since incompatible kinematic modes have no

adverse effect on the global stifFness matrix, assumed strain can be

chosen to suppress only compatible kinematic modes in the element

stiffness matrix. In addition, assumed strain terms must be chosen

carefully in order to avoid reintroducing the locking effect.

4.1 Local Coordinate System

The typical result of choosing assumed strain as simple as possible

is an incomplete set of shape function polynomials in P. In general,

this leads to an element stiffness matrix which is not invariant.

Although invariance is not always important, it can be enforced by

assigning a specific local coordinate system for a given element

geometry [181. For an arbitrary thin element, two unit vectors v1 and

2 are defined at E = = that v, is parallel to E and X2 is

12



parallel to n. The angle 8 between v and v2 is given by

6 = cos "1 (v " 2) (20)

If 8 is less than or equal to 900, then the a1 unit vector in the x

direction of the local coordinate system is chosen parallel with .

Otherwise a is chosen parallel to n. Next the a vector normal to the

-n plane is determined. Finally, unit vector a is found by taking

the cross product between a 3 and ,. Based on the value of 8 for the

element, vectors a 1 A2 and a3 can be computed at any point in the

element. In particular, they are calculated at each numerical

integration point. This definition of al. 2 and a3 guarantees a

unique set of local coordinate systems for a given element geometry,

and thus a stiffness matrix independent of choice of global coordinate

system.

4.2 Spurious Kinematic Modes

As discussed in Chapter 3, the K1. matrix in Eq. (13a) or (19) has

kinematic modes which can be suppressed with the proper choice of

higher order assumed strain. Thus, when P is chosen properly, the K

matrix plays the role of a stabilization matrix. In fact, for the new

mixed formulation the higher order assumed strain is chosen specifi-

cally to suppress kinematic modes [12]. Therefore, the kinematic modes

must be known before the higher order strain terms are selected.

Kinematic modes for the K matrix can be determined analytically

for an element with regular parallelepiped geometry. For a cubic

element with sides along x = ±I, y = ±1 and z = ±1 and the global and

13



local coordinate systems coincident, the displacement field can be

written as

U a, a2  a3  . . . a18

I bI h2 b 3 b18  M (21)

c1 c2 c3  . . . c18

where

M L x y x2  xy y2 xy xy 2 x2y2

2 2 2 2 2 2T
z zx zy zx zxy zy zx y zxy zx y Ti

The local displacement-dependent strain vector is determined by

introducing Eq. (21) to Eq. (3). The displacement field corresponding

to zero strain is found by setting the local strain vector equal to

zero at the 2x2x2 integration points. Specifically,

(t1-,,-i//1/3,-I1//3) = 0 (22)

Equation (22) represents 48 homogeneous equations with 54 unknown

variables. Solving these equations gives the following displacement

field for zero strain:

U = a 1  *a 3y + a10 z +a2x(l - 3y 2 ) + a4 (x2 + y2 - 3x2y)

+ allzx(I - 3y2) + a13Z(K + 2 - 3x2y2 ) (23a)

V =b a3x + b1 oz - a2 y(1 3x2) + b4(X
2 + y2  3x 2 y2 )

- a 1 zy(l - 3x') + b13z(x + y' - 3x y2 ) (23b)

14
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W = c1 - alOx - bloy - 1/3a 13x -1/3b 13Y

+ c4 (x2 + y - 3x2y2 ) + cjOz(1 - 3x2 - 3y + 9x2 y ) (23c)

The underlined terms in Eqs. i'3a-c) are rigid body modes. The other

terms represent spurious kinematic modes.

4.3 Assumed Strain

The strain terms corresponding to the kinematic modes in Eqs. (23a-c)

are
Lxx =a 2(1 - 3y2) + a4(2x - 6 x y 2 ) + allZ(- 3y

+ al3z(2x - 6xy ) (24a)

Cyy a2 (1 - 3x + b4 (2y - 6x y) - allz(1 + 3x2

+ bl13Z(2y - 6x2 y) (24b)

2 2 2 2=czz cO(1 - 3x - 3y + 9x y ) (24c)

xy = a4 (2Y 6x 2 y) + b4(2x 6xy2 ) - 2

a4(2 6xy + a 13z(2y 6x y)

+ bl3z(2x - 6xy ) (24d)

Cyz = - ally( I - 3x 2 ) + b13 (- + X + y - 3x2 y2

+ c4 (2y - 6x'y) + cloz(- 6y + 18x 2 y) (24e)

Czx = alx(l - 3y 2 ) + a 3 (.- -11 + x2 + y - 3x2 y )

+ c4 (2x - 6xy 2 ) + clOz(- 6x + 18xy2 ) (24f)

Higher order assumed strain terms are chosen by examining Eqs.

(24a-f). For example, the kinematic mode represented by

15



2 2
xx a4(2x-6xy ) is suppressed if xy is added to the higher order

assumed strain shape functions for (exx)H. Since the kinematic mode

represented by a4 can also be suppressed by including an x 2y term in

( Xy)H' there must be i logical basis for deciding between

the options. The general rule is to minimize the total number oF terms

in the assumed strain that contribute to locking. For a three-

dimensional element applied to a thin structure this means that the

polynomial terms independent of z (thickness) should be kept as simple

as possible. Kinematic modes corresponding to a2 and a1 1 need not be

suppressed since they are incompatible and disappear for the assembly

of two or more elements.

Even with the general rule there are still two reasonable alternate

sets of higher order strain. One option is to minimize the total

number of terms in the higher order strain field as follows:

Exx )II= alxY2 + a 2 xy2z

(Cyy)H= a3x 2 y +  4x 
2 yz

2 2
= c,5x y(zz 11(25)

Sxy)H= 0

( yz )H = a6x y

zx)H = a7xy

In Eq. (25), a,. a2'13, 4 , a 5 , a6 , a7 are unknown strain parameters.

Note that only one term is needed between (cy) and ( xHto suppress

the kinematic mode represented by c4, The second term is added to

avoid introducing a directional imbalance to the element stiffness

16



matrix. The model using this choice of assumed strain is designated

New Mixed Solid, 18-node version, A (NMS18A).

The other alternative is to replace the x2y 2 term in ( ZZ)H with

x2yz and xy2z terms in (eyz)H and (Ezx)H, respectively. Once again

only one term is needed to suppress a kinematic mode (in this case

c1 but the second term is added to avoid introducing a directional

imbalance. In this case, the total number of terms is increased by one

to eight, but the new terms are expected to have a proportionally

smaller effect as the thickness becomes smaller. This proposal is

tested numerically in the next section. This formulation is designated

NMS18B.

For completeness, all modes are suppressed by adding to the NMS18B

version y2 and y2 z terms to (cxx)H and x2 and x2 z terms to (eyy)H

to suppress the a2 and a1 1 incompatible kinematic modes. As in the

other formulations, only one term is needed to suppress each mode, but

two terms are used to avoid introducing a directional imbalance. This

formulation is designated NMS18C.

For an element with arbitrary geometry, , n and c are used in

place of x, y and z in Eq. (25). Therefore, with the local coordinate

system defined previously, the higher order assumed strains for the

eighteen-node solid element are chosen as follows:

E = H (26)

where for NMS18A
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f ;f 0 0 0 0 0 0

0 0 g rg 0 0 0 0

0 0 0 0 E22 0 0 0

P: 0 0 0 0 0 0 0 0 (27a)

0 0 0 0 0 0 g 0

0 0 0 0 0 0 0 f

oT = LaI, a2 , a 3 , a4 , a 5, a6 , a 7 -] (27b)

for NMS18B

f Cf 0 0 0 0 0 0

0 0 g Cg 0 0 0 0

0 0 0 0 0 0 0 0

P= 0 0 0 0 0 0 0 0 (28a)

0 0 0 0 g Cg 0 0

0 0 0 0 0 0 f Cf

T= Lal, a2 , a 3, a4 , a5 , a6, a7 , a8 j (28b)

-C
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and for NMS18C

r r f 4f 0 0 0 0

0 0 0 0 s rs g Cg
0 0 0 0 0 0 0 0

P 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0 (29a)

0 0 0 0

g Cg 0 0

0 0 f Cf

SLa , a2 , 3' a4 , a5, a6 ,

a7 , 8  a, al , 1 1 , a1 2 J (29b)

For Eqs. (27a), (28a) and (29a), f, g, h and i are chosen as follows:

(1) if x or aI is parallel to E (e 4 900)

2

f = n

2

2I
r n

S = 2
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(2) if x or -1 is parallel to n (o > 900)

f E2 2n

2
g =En
r 

= 2

2S= j

4.4 Modified Stress-Strain Relation

The stress-strain relation for an isotropic, three-dimensional

solid can be modified to incorporate thin plate and shell behavior by

assuming that first the effect of azz on Lxx and eyy is small and

second the effect of axx and ayy on czz is small. Then

x= (axx - voyy) (30a)

S(a - (30b)yy f (yy -UXX)

1 (30c)

where E is Young's Modulus and v, is Poisson's ratio. The relations

between shear strains and stresses remain unchanged as follows:

E i = 1 (30d)xy =  y

1 (30e)

1 (30f)

where G is the shear modulus.

Inverting Eqs. (30a-f) gives the modified stress-strain relation as

follows:

20
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where

E vE 0 0 0 0
i 2 i_ 2

1-v 1-v

vE E 0 0 0

1-v 1-v

0 0 E 0 0 0C : (31)
~m0 0 0 G 0 0

0 0 0 0 G 0

0 0 0 0 0 G

Note that if the third row and third column of the matrix in Eq. (31)

are eliminated, the resulting 5x5 matrix of elastic coefficients is

exactly the same as the one used for degenerate solid shell elements.
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Chapter 5

NUMERICAL TESTS
S

Several plate and shell benchmark problems were solved to test the

performance of the eighteen-node element based on the new mixed

formulation. For each problem, the results using the NMS18A and NMS18B

formulation are compared to the results for the eighteen-node assumed

displacement element (designated DISP18). Results for the NMS18C model

are included for only the ring problem which demonstrates that this

model locks for increasing radius to thickness ratios. Results using

the three-dimensional and modified stress-strain relations are compared

for plate and ring displacement problems. In addition, analytical or

other independent solutions are presented if available. All

computations were done in double precision Fortran on the UNIVAC

1100/92 machine at the University of Maryland.

5.1 Simply Supported and Clamped Square Plates

A square flat plate under uniform pressure is a good starting point

for testing any finite element that is to be used for shell analysis.

Effects of element geometry, boundary conditions and length to

thickness (Lit) ratios can easily be compared to analytical solutions.

In addition, the performance of the and -m matrices is easily tested.

The deflections of a square plate with simply supported and clamped

edges were calculated using uniform and distorted meshes. Due to

symmetry only one quarter of the plate is modeled. Typical elastic

properties for aluminum, E = 107 psi and v = 0.3, are used.
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Evenly divided 2x2, 3x3 and 4x4 uniform meshes were used for both

cases. Distorted 2x2 and 4x4 meshes were adequate for the simply

supported plate, but 3x3 and 6x6 distorted meshes were also used for

the clamped plate to check convergence. The 6x6 distorted mesh is

formed by bisecting each element edge in the 3x3 distorted mesh.

Figures 2a and 2b depict the four distorted meshes. Results for L/t

2 3 4ratios of 10 , 10 and 10 are presented.

Normalized maximum deflections for uniform meshes are in Tables 1

and 2; distorted mesh results are in Tables 3 and 4. In each case the

maximum deflection at the centroid of the plate is normalized with

respect to the analytical solution ootained from thin plate theory

[20,211. The NMS18A and NMS18B formulations give numerical results

that are very close to the analytical solution over a wide range of L/t

ratios when uniform meshes and the modified stress-strain relation are

used. NMS18C results are not reported, since for plate bending NMS18C

is essentially the same as NMS18. This is because the two models

differ only in inplane strain terms and there is no inplane locking for

the plate prohlem. When the regular stress-strain relation is used,

results range from 17 to 20 percent below the analytical solution.

This is due to normal strain locking, the inability of the element

to represent accurately the condition of zero normal strain. Results

for the simply supported plate with distorted meshes and the modified

stress-strain relation are very good. The clamped plate is more

sensitive to distorted meshes than the simply supported plate.

However, when the distorted mesh size is increased to 6x6, results for

the clamped plate with the modified stress-strain relation show good

23
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agreement with the analytical solution. Even when Lit = 10 , which is

beyond the practical range, the solution differs by less than 2.5% from

the analytical solution. The new mixed formulation performed better

than the assumed displacment element in every case. The assumed

displacement formulation element is extremely sensitive to increasing

L/t ratio and distorted element geometry. Finally, it should be noted

that for the plate problems, the NMS18A and NMS18B elements give

virtually identical answers.

Table 5 lists the nondimensional bending moments for a 4x4 uniform

regular mesh evaluated at the integration point nearest to the centroid

of the plate. The computed values are normalized with respect to the

analytical solution at the plate centroid using thin plate theory

r19,20,21]. Although the sampling point is not exactly at the

centroid, the results are insensitive to changing L/t ratio. This

indicates that for the plate case the new mixed formulation elements

are reliable for stress analysis.

5.2 Pinched Circular Ring

As shown in Figure 3, a circular ring is pinched by a concentrated

load P at opposite points on the ring. Due to symmetry only one

quarter of the ring was modeled with meshes of 4, 8 and 16 equally

divided elements. Material and geometric properties are E - 107 psi,

v = 0.3 and R/t = 60, 100, 500.

Table 6 lists the nondimensional displacement at the load point

normalized to the analytical solution [51 for the NMS18A, NMS18B and

NMS18C versions using the regular and modified stress-strain
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relationships. No results for the assumed displacement model are

shown. This is because the global stiffness matrices resulting from

the assumed displacement formulation were ill-conditioned and could not

be solved using a Cholesky decomposition scheme. The NMS18A and NMS18B

formulations give accurate results for all mesh sizes when the modified

stress-strain relation used. The results for the NMS18A and NMS18B

models converge to a value about 9.5% below the analytical solution

when the regular stress-strain relation is used. NMS18C exhibits

locking as the R/t ratio increases. In addition, it performs more

poorly than NMS18A or NMS18B for the 4 and 8 element meshes.

5.3 Pinched Cylindrical Shell

5.3.1 Diaphragmed Ends

A pinched cylindrical shell with diaphragmed ends is a good deep

shell test problem since an analytical solution is available for

comparison. The cylinder is pinched by a concentrated load P at two

opposing points on the circle at the midsection. Due to symmetry and

loading only one octant of the cylinder was modeled (Figure 4).

Uniform and refined 4x6, 5x7, 6x8 and 7x9 meshes were used. The 4x6F

(refined) mesh is formed by dividing the elements along lines BC and CD

of a 3x5 (uniform) mesh. The 3x5 and 4x6F meshes are shown in Figure

5. The meshes illustrated in Figure 5 are on the stretched plane of

octant ABCD of the cylinder. Refined meshes are more effective in

modeling the steep gradients of deflections and stresses near the con-

concentrated load. Material and geometric properties are E 
= 1.05x107

psi, v = 0.3, R = 4.953 in., L = 2R and R/t = 100, 500.

25



'L

1 ,,

Tables 7 and 8 list the nondimensional displacement Wc = -WcEt/P at

the load point for the DISP18, NMSI8A and NMS18B models with the

modified stress-strain relation. Results using the regular stress-

strain relation are not reported since the plate and ring problems

demonstrate that when it is used locking occurs. Since the NMS18C

formulation performed poorly on the ring problem no further results for

it are reported.

Analytical solutions were calculated using 100 terms in each

direction for the double Fourier series expression given by Fl1gge [221

and reported in Reference 19. For comparison, the results for a new

mixed formulation degenerate solid shell element are reported. The

element is the SHEL9N element that was first investigated by Rhiu [19]

and examined in further detail in References 12 and 18. The SHEL9N

element has nine nodes with three displacement and two rotational

degrees of freedom at each node. Therefore, SHEL9N has 45 degrees of

freedom versus 54 for the present eighteen-node solid elements.

Once again, the assumed displacement model performs poorly,

especially for the larger R/t ratios. For R/t = 100, both the NMS18A

and NMS18B results are close to the analytical solution and compare

favorably with SHEL9N. When the R/t = 500 case is examined, it becomes

clearer that the NMS18B formulation is superior to the NMS18A

formulation. In fact, the NMS18B results are virtually identical to

the SHEL9N answers.

5.3.2 Clamped Ends

For this test case the cylinder of the previous example is used,
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but the ends are clamped instead of diaphragmed. Results for two

degenerate solid shell elements, one a triangular element [2] and the

other a nine-node element based on a conventional mixed formulation

[15], are presented for comparison. Nondimensional deflections at the

load point C are listed in Tables 9 and 10 for R/t = 100 and 500,

respectively. As before, the assumed displacement element performs

poorly. And once again, while answers for NMS18A and NMS18B are very

close at R/t = 100, NMS18B is much better at R/t = 500. In addition,

Figures 6 and 7 show inplane force Nx and moment My per unit length

along line BC for a 9x7 mesh with NMS18B elements. The results in

Figures 6 and 7 show excellent agreement with reference 4. The finite

element used in reference 4 is an accurate, cubic degenerate solid

shell element. Results for this element are not shown to avoid

cluttering.

5.4 Hemisphere under Alternating Point Lnads

A hemishpere under directionally alternating point loads at the

free edge is shown in Figure 8. Due to symmetry only one quarter of

the hemisphere was modeled. In order to use only eighteen-node

elements, a 0.10 cutout was made at the pole and inplane displacements

along the resulting edge were constrained to zero. Both uniform and

refined 4x5, 5x6, 6x7 and 7x8 meshes were used. For the uniform meshes

each element subtends equal angles in the longitude (0) and colatitude

() directions. For a refined mesh the row of elements nearest the

pole are divided equally in the colatitude direction. In this way a

4x5F (refined) mesh is formed from a 4x4 uniform mesh. Figure 8 shows
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a 4x4 uniform mesh divided to form a 4x5 mesh. For convenience the

cutout is made after the mesh is formed. Material and geometric

constants are E = 10 psi, v 0.3, R = 10 in., P = 2 and R/t = 250,

500.

Nondimensional displacement ITA = DWA/PR 2 at point A is reported in

Tables 11 and 12 for R/t = 250 and 500, respectively. The symbol 0

represents bending rigidity. As expected, the assumed displacement

model performs poorly. For Rit = 250, NMSI8B converges more quickly

and both NMS18A and NMS18B give answers close to Morley's analytical

solution [23]. Morley did not consider the R/t = 500 case, but a

converged finite element solution using a sixteen-node element similar

to SHEL9N is presented for comparison. Results for the three

formulations are very close.
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Chapter 6

CONCLUSIONS

The numerical tests demonstrate that the NMS1SA and NMS18B mixed

formulation elements with the modified stress-strain relation give

reliable solutions for thin plate and shell problems. In the present

formulation, the assumed strain in conjunction with the modified

stress-strain relation effectively eliminates inplane, shear and normal

strain locking. Overall, the NMS18B version performed better than the

NMS1SA version, thereby supporting the proposal that higher order

strain terms with a thickness coordinate are less likely to reintroduce

locking than other terms. Both the NMSISA and NMSISB formulations are

kinematically unstable at the element level, but are stable when two or

more elements are assembled. The NMS18C formulation, although kinema-

tically stable at the element level, performed poorly for curved

geometries. Thus, a judiciously chosen higher order strain has

successfully suppressed compatible kinematic modes without

reintroducing the locking effect. Finally, the kinematics of

deformation are more easily described with the eighteen-node solid

element than a degenerate solid shell element. Therefore, to make the

most of this advantage, the present formulation should be extended to

geometrically and materially nonlinear problems.
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Figure 8 Hemisphere under alternating loads at the free edge
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Table 1

Normalihed maximum deflection of a simply supported square plate

under uniform pressure (regular meshes)

L/t Type 2x2 3x3 4x1

C C C Cm C Cm

DISP18 .7815 .9573 .8024 .9830 .8095 .9918

10 2 NMS18A .8145 1.0031 .8170 1.0033 .8183 1.0040
NMS18B .8145 1.0031 .8169 1.0033 .8183 1.0041

DISP18 .7802 .9557 .8008 .9810 .8077 .9895

10 3 NMS18A .8135 1.0018 .8153 1.0012 .8159 1.0008

NMS18B .8135 1.0018 .8153 1.0012 .8159 1.0008

DISP18 .7850 .9585 .8034 .9846 .8099 .9919

10 4  NMS18A .8135 1.0013 .8143 1.0003 .8147 .9986

NMS18B .8134 1.0013 .8143 1.0006 .8148 .9992
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Table 2

Normalized maximum deflection of a clamped square plate

under uniform pressure (regular meshes)

L/t Type 2x2 3x3 4x4

C C C C C

DISP18 .6643 .7877 .7427 .9084 .7775 .9511

10 2 NMS18A .8271 1.0129 .8200 1.0041 .8188 1.0026

NMS18B .8271 1.0129 .8200 1.0041 .8188 1.0026

DISP18 .6373 .7807 .7362 .9018 .7712 .9448

103 NMS18A .8254 1.0111 .8183 1.0024 .8171 1.0009

NMS18B .8254 1.0111 .8183 1.0024 .8171 1.0009

DISP18 .6383 .7812 .7368 .9027 .7718 .9454
40 N

10 NMS18A .8255 1.0111 .8179 1.0022 .8168 1.0004

NMS18B .8255 1.0112 1.0023 .8168 1.0005
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Table 3

Normalized maximum deflection of a simply supported square plate

under uniform pressure (distorted meshes)

L/t Type 2x2 4x4

DISP18 .9515 .9930

102 NMSIA 1.0260 1.0129

NMS18B 1.0260 1.0129

DISP18 .8757 .9670

103 NMS18A 1.0236 1.0089

NMS18B 1.0236 1.0089

DISP18 .1690 .5119

104 NMS18A 1.0234 1.0059

NMS18B 1.0235 1.0061
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Table 4

Normalized maximum deflection of a clamped square plate undler

uniform pressure (distorted meshes)

L/t Type 2x2 3x3 4x4 6x6

D ISP !8 .5666 .8394 .9046 .9727

102 NMS18A .9432 .9914 1.0062 1. 0003

NMS18B .9432 .9914 1.0062 1.0003

D ISP 18 .0625 .1648 .6838 .9340

10 3 NMS18 A .6117 .8978 .9551 .9935

NISI8B .6117 .8978 .9551 .9935

DISP18 .0007 .0020 .0433 .3815

10 4 NMS18A .3623 .8414 .8978 .9771

NMS188 .3623 .8415 .8977 .9772
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Table 5 -4

Bending moment Mx at integration point nearest to the centroid

of a square plate normalized to the analytical solution at the centroid

(uniform 4x4 mesh)

Simply Supported Plate Clamped Plate

L/t NMS18A NMS189I NMS18A NMS18 B

• 1'W

102 .9982 .9982 .9909 .9909

3
10 .9961 .9961 .9907 .9907

10 .9938 .9944 .9901 .9903

'S
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Tahle 6

Maximum deflection at load point for a pinched circular ring

(normalized to analytical solution)

R/t Type 4 elements 8 elements 16 elements

C C C C C C

NMS18A .8988 1.0016 .9157 1.0043 .9159 1.0046

60 NMS13B .9145 1.0029 .9156 1.0042 .9158 1.0045

NMS13C .6801 .8940 .8958 .9895 .9127 .9998

NMS13A .8895 1.0009 .9153 1.0041 .9157 1.0044

100 NMS18B .9142 1.0024 .9154 1.0040 .9156 1.0044

NMS18C .5426 .7648 .8688 .9648 .9106 .9920

NMS18A .8570 .9991 .9146 1.0035 .9154 1.0041

500 NMS13B .9134 1.0008 .9152 1.0035 .9154 1.0041

NMS13C .2958 .1785 .7089 .5542 .8865 .8874
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Table 9

Nondimensional deflection at point C (we= -WcEt/P) for a

pinched cylinder with clamped ends (R/t =190)

Type DISP18 NMS18A NMS18B

Mesh Uniform Refined Uniform Refined Uniform Refined

4x6 43.02 74.75 134.3 135.7 135.1 135.8

507 57.24 88.18 135.4 136.3 135.7 136.2

6x8 70.66 99.29 136.0 136.7 136.0 136.5

7x9 82.29 108.3 136.4 136.9 136.3 136.7

Reference 2 137.01

Reference 15 136.81
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Table 10

Nondimensional deflection at point C (Wc= -WcEt/P) for a

pinched cylinder with clamped ends (R/t = 500)

Type DISP18 NMS18A NMS18B

Mesh Uniform Refined Uniform Refined Uniform Refined

4x6 49.37 136.0 784.2 932.1 894.5 963.4

5x7 72.59 201.8 859.4 946.4 928.6 964.0

6x8 101.5 2714 906.0 958.4 949.4 967.7

7x9 135.3 338.5 933.1 966.1 960.6 971.0

Reference 2 963.93

Reference 15 960.88
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Table 11

Nondimensional deflection at point A (WA DWA/PR2 ) for a hemisphere

under alternating point loads (R/t = 250)

Type DISP18 NMS18A NMS18B

Mesh Regular Refined Regular Refined Regular Refined

4x5 .0040 .0030 .1767 .1799 .1783 .1815

5x6 .0090 .0069 .1828 .1845 .1834 .1851

6x7 .0171 .0135 .1845 .1855 .1848 .1858

7x8 .0234 .0233 .1851 .1857 .1853 .1858

Morley [23] .1848
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Table 12

- 2
Nondimensional deflection at point A (W A=DWA/PR) for a hemisphere

under alternating point loads (R/t = 500)

Type DISP18 NMS18A NMS18B

Mesh Regular Refined Regular Refined Regular Refined

4x5 .0010 .0008 .1544 .1620 .1574 .1647

5x6 .0023 .0018 .1733 .1774 .1743 .1785

6x7 .0046 .0036 .1795 .1818 .1800 .1823

7x8 .0080 .0064 .1818 .1832 .1821 .1835

Reference 4 .182
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