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Abstract

This thesis is concerned with the efficient design of digital modulation and

error-control schemes for point-to-point meteor-scatter communication

systems. The methods introduced exploit the unique properties of the

meteor-scatter channel.

A channel model is derived based on the work of other researchers. The
channel model includes expressions for meteor arrival rate, burst duration, .

and received power. Meteor arrivals are modeled as a Poisson random
process and the properties of the Poisson process are used extensively. ."

Channel noise is modeled as additive, white, and Gaussian distributed. The
multipath structure of the channel is evaluated only to the extent that it

affects channel bandwidth.

New expressions for long run average bit rate and mean message waiting
time are derived. Performance of the fixed-rate and adaptive-symbol-rate
modem is evaluated in terms of average bit rate and mean waiting time.
Bounds on the improvement in mean waiting time over the fixed-rate modem

are derived.

M-ary modulation methods are investigated to find the optimal modulation

for the fixed-rate modem and adaptive-symbol-rate modem. It is shown that I

the adaptive-symbol-rate modem is not optimal on a bandwidth-limited

channel. An alternative scheme, called adaptive quadrature amplitude
modulation (QAM) is evaluated and shown to out-perform adaptive-symbol- 1

rate on a bandwidth-limited channel. A suggested implementation of

adaptive QAM is presented to include a modem block diagram and signal
constellation. This impiementation appears to be more practical than the
proposed implementation of adaptive-symbol-rate. I



The use of Reed-Solomon codes in forward-error-correction is investigated.
An appropriate figure of merit for coding schemes used on the meteor-scatter
channel is derived. The performance of Reed-Solomon codes is evaluated in
terms of improvement in average bit rate or mean waiting time. The optimal
code rate is found to be about 4/5. A lower bound on the optimal code rate is
derived as a function of block length. This lower bound applies to any
maximum distance separable (MDS) code operating with M-ary phase shift
keying (PSK), M-ary QAM or binary frequency shift keying (FSK).

Topics of further research are suggested, especially the use of adaptive trellis
coded modulation (TCM) on the meteor-scatter channel.
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Chapter 1 - Introduction

The Earth sweeps up billions of tiny meteors each day. As these meteors

enter the Earth's atmosphere, they create short-lived ionization trails. These

trails of ionized electrons reflect radio signals in the frequency range

40 - 100 Mhz. A digital radio communication system that uses these trails is

called a meteor-scatter or meteor-burst system. Meteor-scatter

communication systems operate over distances from 400 to 2000 km. Such

systems are highly reliable and since the "foot print" for a particular

reflection is quite small, there is an inherent privacy feature. This thesis is

concerned with efficient digital signal design of a point-to-point meteor-

scatter communication system. The term signal design for digital radio

refers to the integration of modulation and coding to produce an effective

communication system.

The meteor-scatter channel has several unique properties that should be

exploited in signal design. A brief description of these properties is given in

the following section.

1.1 Basic Concepts. With the exception of meteor showers, meteor arrivals

are considered random, isolated events. The mass of each arriving meteor is

also random with a probability distribution roughly proportional to the

inverse of the meteor mass. The large meteors that cause visible trails

("shooting stars") arrive infrequently and contribute little to channel

capacity. Meteor trails occur in the altitude range 80 - 120 km with typical

trails having length 25 km. The mean time between observed trails on a

point-to-point link is about 10 seconds. Because meteor trails diffuse rapidly

after formation, typical burst durations are on the order of 0.5 seconds. An

effective communication system must therefore acquire the signal quickly

and transmit information efficiently before the burst termination.

1 1
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Each meteor trail is characterized by its capacity in bits. Trail capacity is a
function of meteor mass, so large meteors leave trails with large capacities.

Since the mass of arriving meteors is random, the corresponding trail

capacity is also random. The role of the system designer for any

communication system is to achieve a large fraction of channel capacity.

For meteor-scatter, attempting to achieve channel capacity normally involves

a trade-off: maximizing trail capacity in bits causes the observed number of

trails per second to decrease. Essentially, this trade-off between trail capacity

in bits versus arrival rate in trails per second is the overriding concern of the

system designer.

Conventional meteor-scatter systems operate at constant bit rates in the

range 5-15 k bits/s. Because of the burst characteristics of the channel, long

run average bit rates for these systems are typically 100 - 200 bits/s. These

rates are quite low compared to modern day satellite and terrestrial

microwave systems. Thus, one of the goals of this thesis is to find ways to

increase long run average bit rate. Long run performance is important in

some applications, but another consideration is the waiting time to transmit

short messages. This topic will be investigated also.

1.2 Adaptive Modulation Methods. There are two modulation methods

proposed for use on the meteor-scatter channel: fixed information rate and

adaptive information rate. One important property of meteor trails is that
the received power as a function of time is predictable once the trail is

formed. For most meteor trails, the received power decays exponentially from

the inception of the trail. Therefore, the potential information rate at the

beginning of the burst is greater than at the end. An adaptive modem varies

the information rate to match the time-varying signal-to-noise ratio (SNR) at

the receiver. The fixed-rate modem, on the other hand, operates at a

constant information rate for the entire burst.

I.:
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For meteor-scatter channels with unlimited bandwidth, the optimal adaptive

scheme is one in which the channel symbol rate adapts to match the SNR.

For bandwidth-limited channels, this scheme is not optimal and the author

proposes a new scheme, called adaptive QAM. A third approach to adaptive

information rate is to use error-control codes. During periods of high SNR,

codes with high code rates and relatively weak coding gain would be used.

During periods of low SNR, codes with low code rates and strong coding gain

would be used. Thus, the information rate would vary with SNR. Adaptive

coding is beyond the scope of this thesis, but adaptive modulation with

traditional coding will be discussed.

1.3 Objectives. The two main drawbacks of conventional meteor-scatter

communication systems are the low average bit rates (also called

throughput) and long message waiting times. This thesis attempts to

improve average bit rate and message waiting time through the use of digital

modulation and error-control coding techniques. The digital modulation

methods discussed in this thesis involve the use of M-ary quadrature

amplitude modulation (QAM) and M-ary frequency shift keying (FSK) in

adaptive and fixed-rate schemes. The analysis of error-control coding is

restricted to the use of Reed-Solomon codes in forward-error correction.

The objectives of this thesis can be stated as follows:

1) Derive expressions for two measures of performance for digital

communication systems on the meteor-scatter channel: long run

average bit rate, Rbavg, and mean message waiting time, Tavg.

2) Evaluate the performance of the fixed-rate and adaptive-symbol-

rate modems in terms of the performance measures, Rbavg and

Tavg.

AV
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3) Design an adaptive modulation scheme called adaptive QAM that

approaches optimality for bandwidth-limited channels.

4) Evaluate the performance of adaptive QAM in terms of the two

performance measures.

5) Evaluate the performance of Reed-Solomon codes used for

forward-error correction.

6) Derive a lower bound on the optimal code rate for Reed-Solomon

codes.

A brief summary of the main results follows.

Expressions for average bit rate and mean waiting time are derived because

the expressions found in the literature are narrowly defined and usually

apply only to packet communication systems. The expressions derived in

this thesis are quite general in nature and have wide application. The

expression for average bit rate is an approximation since it assumes that all

meteor trails occur at a fixed point in the sky and that the electron line

density is upper-bounded by 1017 e/m. On the other hand, the expression for

mean waiting time for a fixed-rate modem is exact and a natural extension of

earlier work by Oetting (1980). Bounds on mean waiting time are derived for

the general case and an expression for the Laplace transform of the mean

waiting time in the general case is also derived as a special application of

earlier work by Cox (1962).

The two performance measures serve as figures of merit for evaluating the

performance of the fixed-rate modem and adaptive-symbol-rate modem. The

adaptive-symbol-rate modem out-performs the fixed-rate modem by a
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significant amount in terms of average bit rate. The improvement in mean

waiting time is upper-bounded by a factor of 2.0.

On a bandwidth-limited channel, the adaptive QAM scheme developed by the

author can out-perform the adaptive-symbol-rate scheme by a 3 to 1 margin

in terms of average bit rate. In terms of mean waiting time, the idaptive-

symbol-rate modem out-performs adaptive QAM.

Reed-Solomon codes used for forward-error correction offer modest gains in

average bit rate and decreases in mean waiting time.

The remaining chapters are concerned with the derivations and designs that

lead to the results summarized above. In Chapter 2, a channel model is

derived. This channel model is based on the work of other researchers and

includes models for meteor arrivals, burst duration, received power, noise,

and multipath effects. Chapter 3 is concerned with the derivation of the two

performance measures and evaluation of the performance of the fixed-rate

modem and adaptive-symbol-rate modem in terms of these two performance

measures. Chapter 4 deals with optimal use of waveform modulation for

meteor-scatter communication. Optimal M-ary modulation techniques are

found for the fixed-rate and adaptive-symbol-rate modems. The adaptive

QAM modem is designed and the performance evaluated. In Chapter 5,

Reed-Solomon codes for forward-error-correction are evaluated. Chapter 6

summarizes the main results and provides suggestions for further research

in this field.
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Chapter 2 - Channel Model

In this chapter we shall derive a model for the meteor-scatter channel. This

model will serve as the foundation for the results derived in Chapters 3, 4,

and 5. Skywave propagation in the frequency band 30-100 MHz is primarily a

meteor-scatter phenomenon, but experiments conducted by the U.S. Air

Force in Greenland indicate that returns are also caused by sporadic E layers

and "unidentified scatter returns" (Ostergaard et al., 1985). This channel

model will only consider returns from ionized meteor trails.

2.1 Properties of Meteor Arrivals. With the exception of meteor showers,

meteor arrivals are considered random events and experimental evidence
indicates that meteors arrive according to a Poisson random process with

rate A (Oetting, 1980 and Weitzen, 1983). Since the arrival rate, X, is a

function of the time of day and season, a more appropriate model for meteor
arrivals would be a nonstationary Poisson process with rate X(t)

(Ross, 1985). However, the arrival rate changes slowly, so for short periods of "

time (less than 30 minutes), the process can be considered stationary

(Weitzen, 1983). For long periods (several days or more), one can

approximate the process as stationary with rate X equal to the mean value of S-,

X(t) over time. In the next chapter we shall derive expressions for the mean
message waiting time and long run average symbol rate. These two

performance measures fall into the short and long periods, respectively.
Hence, for our purposes, we treat X as a constant, independent of time. The

following properties of the Poisson process will prove useful (Ross, 1985):

Stationarity. The Poisson process possesses stationary increments,

meaning that the distribution of the number of events that occur in any

interval of time depends only on the length of the interval.

-k
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* Independence. The Poisson process possesses independent

increments, meaning that the number of events that occur in disjoint time

intervals are independent.

* Number of Arrivals. The number of arrivals in time t is a Poisson

random variable with probability mass function

px(i) = P(X=i) = e i! i=0,1,2,... (2.1)

The mean number of arrivals in time t is Xt.

* Interarrival time. The time between arrivals, T, is an exponential

random variable with probability density function

fT(t) = %_e-t t > 0 (2.2)

The mean time between arrivals is 1/X.

e Waiting time until mth arrival. Let Sm equal the arrival time of the

mth event, m > 0. Sm has a Gamma distribution with parameters m and X.

The probability density for Sm is given by

fsm (t) e (i-) ! t > 0 (2.3)

The random variable Sm has mean m/%.

2.2 Types of Meteor Trails. Meteor trails are normally categorized as

underdense or overdense, according to the electron line density of the trail.

Most meteor-scatter channel models ignore overdense trails, but we shall

S - S ~V(W *W w ~ ~ ~ ~ 4
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demonstrate their importance. Ostergaard et al., (1985) propose a third type

of trail, called "tiny," to explain short duration returns that do not exhibit the
exponential decay of underdense trails. Most meteor-scatter communication

systems employ acquisition times on the order of 0.1 sec (Kokjer, 1986) and
since "tiny" trails have typical durations of less than 0.1 sec, their

contribution to the performance of a meteor-scatter system is negligible and
we shall ignore them. If the electron line density of the meteor trail is less

than 1014 electrons/meter (e/m), then each electron reflects independently of
I

all others and the trail is labeled underdense. If the electron line density

exceeds 1014 e/m, then an incident wave cannot penetrate the cloud of
electrons and the trail is modeled as a metallic cylinder. The incident wave
is reflected from the surface of the trail and such a trail is labeled overdense.

Overdense trails are infrequent, but Weitzen (1983) and Ostergaard et al.
(1985) have shown that overdense trails contribute the majority of channel

capacity when long run performance is considered. For example, data from

the experimental link in Greenland show that although overdense trails P

account for only 5% of returns, these trails contribute over 60% of the
throughput when adaptive signaling is used. We can conclude that

theoretical models for the long run performance of meteor-scatter systems

should include overdense trails.

2.3 Received Power Models. The power received due to reflection from an

underdense trail is given by Eshlemann (1955) as

32 2Dt+8 2 02
3 2 ir~ r0PT GT Gr e X, q exp . 22Pr (t = 2sec2  , 014

r (t) = scq < 10 e/m (2.4)
(47c) 3 RCT RCR (RCT + RCR) (1 - sin 2  cos 2)

where PT is the transmitter power

GR is the receiver antenna gain

GT is the transmitter antenna gain

_NJ% %
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is the wavelength of the carrier

q is the electron line density of the trail

D is the diffusion coefficient of the atmosphere (- 5 - 10 m 2/s)

is the angle of incidence of the transmitted plane wave

is the angle between the trail and the great circle path from

the receiver to the transmitter

RCR is the distance from the receiver to the trail

RCT is the distance from the transmitter to the trail

ro is the nominal radius of a trail (0.65 m)

Ue is the effective echoing area of the electron (- 10-28 m 2 )

Note that X represents wavelength as well as meteor arrival rate. Usage will

be clear from the context. Equation 2.4 is plotted as a function of time in

Figure 2.1. Note that the received power decays exponentially with time.

1.2e-8

1.0e-8

.2 8.0e-9

Z 6.0e-9

c. 4.0e-9

" 2.0e-9

0.0e+O

0.0 0.2 0.4 0.6 0.8 1.0

Time in seconds

Figure 2.1 Pr(t) for underdense trail (PT = 2000 watts, q = 1013 e/m)

Equation 2.4 is a theoretical result that is obtained using the tools of classical

antenna theory. For the overdense trail model, Hines and Forsythe (1957)

N 
-e
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found the solution more difficult and resorted to an approximate expression.

The received power for an overdense trail is approximated by Hines and

Forsythe as

PTGTGR12 (4Dt+ r 2 ) In re qX sec 2  1

PT GTRI 1, '.s2 In 2 (4Dt +r6~,,~sec 2 107
Pr(t) = 2 , <q1 (2.5)

32 E2 RCR RcT (RCR + RCT) (1 - cos 2 P sin 2)

where re (-3 x 10-15 m) is the classical radius of the electron. This model

holds provided the argument of the logarithm is greater than unity. For an

in-depth treatment of the derivations of (2.4) and (2.5), the reader should

consult Weitzen's Ph.D. thesis (1983). Weitzen (1983) points out that due to

the physics of particle reentry, meteor trails with electron line densities

greater than 1017 e/m rarely exist. Thus our model holds for q < 1017 e/m.

Equation 2.5 is plotted as a function of time in Figure 2.2.

2.5e-9

2.0e-9

1.5e-9

1.0e-9

%1.

. 5.Oe-10

C4k

O.Oe+O.

0.0 1.0 2.0 3.0 4.0 5.0

Time in seconds

Figure 2.2 Pr(t) for overdense trail (PT = 2000 watts, q = 1015 e/m)
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From Figure 2.2 we note that overdense trails do not decay exponentially with '.

time. In fact, the received power from these trails actually increases at first,

reaching a peak value before decaying.

S

2.4 Meteor Statistics. In this section we shall derive probability distributions

for electron line density and burst duration. In addition, we shall derive an ,,

expression for the arrival rate, k, in terms of the link parameters. I
2.4.1 Electron line density. The meteors that are useful for

communications have masses that are roughly distributed in numbers

proportional to the reciprocal of their mass (Kokjer and Roberts, 1986).

Assuming that the electron line density, q, is directly proportional to the

meteor mass, then the cumulative distribution function (CDF) for the

random variable Q is given by

qO.

FQ (q) = P(Q< q) = 1 -, q qO (2.6)- q-

'I.

If we define (2.6) as the distribution for observable meteor trails, then qo is I

the electron line density of the smallest observable meteor. We emphasize
that this distribution is approximate and is least accurate for large values

of q. Since we know that electron line densities greater than 1017 e/m are

almost nonexistent, then a better distribution for electron line density is the

following

qo qo-.,FQ (q) = P(Q < q) = 1- + q q 1 1 7  (2.7)

q 1 F 7 'q

We can now use (2.6) to derive the distribution for burst duration.

2,4.2 Burst Duration. Assume for the moment that all trails are
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underdense. The received power for an underdense trail is given by (2.4) and

can be written as

Pr (t, q) = Pr (0,1) q2 ex[ -2 t (2.8)

where
X38 7c ro

Pr(0,1) PT GT Gr Ue X3 exp -X2sec2 ]
(4r)3 RCT RCR (RcT + RCR) (1 - sin 2 0 cos 2)

X2 C2
t sec )

16 7 2 D %

Note that Pr (0,1) is defined as the received power at time t =0 when q =1 e/m.
Let Td = burst duration in seconds, a random variable. The termination of a
burst is defined as the time when the received power has decayed to a
threshold value, Pr (Td, q) = Pr (0, q0 ). Substituting into (2.8) and solving for t

yields

j Pr (0,1) Q21FQ
2I Pr(0, q0) l o

The CDF for burst duration, Td, is then given by

FT (t) = P(Td _ t) = n

t "t

exQ [ tx

tct6

%-



13 J

Using (2.6) results in

FTd (t)= 1 - e , t 0 (2.9)

where c = t c. Therefore, the burst duration is exponentially distributed with

mean r. The exponential distribution is almost universally accepted as the

proper distribution for burst duration when all trails are assumed

underdense. See Campbell and Hines (1957), Nes (1985), Oetting (1980), and

Milstein et al. (1987). Havens (1976) prefers a sectional logarithmic

distribution for burst duration, but his distribution does not have a strong

following. Havens suggests a mean burst duration of 0.58 s, independent of

season, time of day, and system sensitivity. He notes that results of

experiments conducted from 1958 to 1968 support this conclusion. If the

mean burst duration is indeed constant, and the modulation scheme is fixed,

then all variations in throughput are attributable to X, the meteor arrival

rate.

2.4.3 Meteor arrival rate. Weitzen (1983) and others have shown that the

Aiumber of observable trails per second is proportional to the inverse of the

electron line density, q. Assuming that all trails are underdense, then one

can show that the mean number of trails per second, X, is proportional to the

square root of the transmitter power. For meteor-scatter systems operating

at a fixed rate, experiments have shown (Brown, 1969) that the throughput

(average bit rate) is proportional to PT 0. One can reason that the difference

between the experimental results and the theoretical claim (exponent of 0.6

versus 0.5) is due to overdense trails. The difference of 0.1 in exponent will

not change our results significantly, so we will assume a P 0. 5 behavior. The

dependence of throughput on frequency is more complex. Oetting (1980)

points out that a simple theoretical analysis indicates that the throughput

should vary as f- 2 4 , where f is the RF carrier frequency. Assuming that the
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throughput varies as PT 0.5, and as f -2.4, then we write the following

expression for the mean number of trails/s (Getting, 1980)

0.5

RT R(CR G1 T (E,/No)r(e)1-.
X =X (C) R, G(C p~c) (Es/NO)reqj05( -24 2.)

where the superscript (C) denotes the COMET values. 1 For the COMET

system, X = 0.1 trails/s, GT = GR = 10 dB, PT = 200 W, R s = 2000 symbols/s, and

f = 37.5 MHz. (Es/No)req is the minimum required signal-to-noise ratio per

channel symbol to maintain reliable communications. For the COMET

system, we assume noncoherent FSK and a bit-error rate (BER) of 10 -4 . The

corresponding value of (Es/No)req is 17.0 (12.3 dB). Substituting these values

into (2.10) yields the following empirical formula

0 1.7 GT GR PT 0.5 -2.4
= 0.1 E f  (2.11)

Rs (E 37.

R (s/No)re q  -7. ,

The reader should note that (2.11) will prove useful by showing the

dependence of the meteor arrival rate as a function of the link parameters,

symbol rate, and (Es/No)req. The actual value of X has little importance .

except to give realistic values for performance measures.

2.5 Noise. Excluding man-made noise, the predominant noise source in the

range 30-100 MHz for meteor-scatter systems is galactic noise. Careful

antenna siting is required to avoid other noise sources. Galactic noise is

Gaussian distributed and assumed white. Hence, the noise power spectral

density is constant and is given by

N o = kTa

1 The COMET system became operational in the 1960's. It is probably the most studied

meteor-burst communication system. See Bartholome and Vogt (1968).

' +llp tm~ l - . + l+ l ""-+ -+t 
"

t' r" +''" +"r '+ "++- ' "'m "" :
'°

+"+: q '- ,I + + + I' : ' I . . |%
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where k is Boltzman's constant, (1.38 x 10-23 J/°K) and Ta is the antenna

noise temperature. For galactic noise in the frequency range 30-100 MHz,

Villard et al. (1956) approximate Ta as

Ta = (I ) To  (2.12) 

where X0 (= 1.8 m) is a constant and To = 290 K. This expression assumes a
receiver noise Figure of 0 dB. We can conclude that the meteor-scatter

channel is an additive white Gaussian noise (AWGN) channel.

2.6 Multipath. Conventional meteor-scatter communication systems are
fixed-symbol-rate systems with symbol rates on the order of 5 to 15 kHz
(Weitzen et al., Jan., 1984). In Chapter 3, we shall show that to maximize the

long run average symbol rate, the meteor-scatter system should employ

symbol rates on the order of 1 to 10 MHz. In order to implement such a
system, the multipath structure of the channel must be known. Multipath
propagation degrades channel performance in two ways:

* Multipath fading

* Intersymbol interference

The causes of multipath propagation on the meteor-scatter channel are
many. Included are the following (Weitzen et al., Jan.,1984): wind induced

warping of long duration trails, multiple trails in the common volume of the
antenna pattern, "sporadic E" layer anomalies, and fragmentation of
meteoric particles upon entry into the earth's atmosphere. Weitzen's
experimental research indicates that multipath spreads rarely exceed 1 Is

and therefore systems with symbol rates on the order of 500 kHz should, in
general, be able to operate free of intersymbol interference. To operate at
higher symbol rates, adaptive correction of intersymbol interference is

required.

N
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2.7 Bandwidth. Radio channels are often categorized as either bandwidth-

limited or power-limited. Since conventional meteor-scatter systems operate

at low symbol rates (5 - 15 kflz), bandwidth has received little attention.

Future systems operating at higher symbol rates will encounter bandwidth

restrictions from the following sources:

• Multipath-induced intersymbol interference

" Regulatory agencies (to prevent adjacent channel interference)

" Hardware constraints.

For our purposes, the only bandwidth constraint is that imposed by

intersymbol interference.

2.8 Link Parameters. When actual values of link parameters are needed for

illustration, the values in table 2.1 will be used. These link parameters are

typical for existing meteor-scatter communication systems.

Table 2.1 Link parameters

PT = Transmitter power = 2000 W
GT =GR = Antenna gain = 13 dB
d = Path distance =1000 km
f = Radio frequency = 50 MHz

= Angle of incidence = 1.37 rads

3 = Angle between trail and great circle path = 7/6 rads
h Meteor trail height = 100 km
D = Diffusion coefficient of the atmosphere = 10 m2/s

(BER)ma x = Maximum acceptable bit error rate = 10-4

The angles 0 and P are actually random variables, but in Chapter 3 the

channel model will be simplified by assuming that all trails arrive at a fixed

point in the h-plane. Furthermore, unless stated otherwise, we shall

p

-II.
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assume binary phase shift keying (BPSK) for waveform modulation. The

minimum required signal-to-noise ratio per channel symbol for BPSK is

(Es/No)req = 8.4 dB for a bit-error rate (BER) of 10 -4 (Lee, 1986).

2.9 Summary. Following is a brief summary of the important

characteristics of the meteor-scatter channel according to the model derived

in this chapter.

e Meteors arrive according to a Poisson process with rate X.

* Received power from a meteor trail is given by (2.4) or (2.5), according

to electron line density.

* Assuming all trails are underdense, burst duration has an

exponential distribution with mean t. The mean burst duration is

constant, independent of system sensitivity.

* Variations in throughput are attributed to the arrival rate, X, given by

(2.11).

* The channel noise is additive white Gaussian noise (AWGN).

* Intersymbol interference caused by multipath propagation limits the

maximum channel symbol rate to - 500 kHz.

e The channel is bandwidth limited. The only bandwidth constraint is

the coherent bandwidth, determined by the multipath structure of the

channel.
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Chapter 3 - Performance Measures

Historically, the performance of a meteor-scatter communications system is

measured in terms of either information throughput or message waiting

time (Milstein et al., 1987). Definitions of throughput vary, but we shall '.

define throughput as the long run average bit rate, Rbavg. An appropriate

measure of message waiting time is the expected value, or mean. Therefore, I

we are interested in the following two performance measures:

" Long run average bit rate, Rbavg

" Mean message waiting time, Tavg fr

The nature of the message traffic determines which performance measure

has priority. For example, a point-to-point link that transmits thousands of

messages per day should be designed to maximize long run average bit rate.

On the other hand, the user may want to transmit a single message as

quickly as possible. In this case, one should minimize the mean message

waiting time (or simply waiting time). This chapter is devoted to the

derivation of expressions for long run average symbol rate, denoted by Ravg,

and mean waiting time. The corresponding bit rate depends on the
modulation scheme and will be discussed in Chapter 4. The fixed-symbol-

rate (or simply fixed-rate) modem and adaptive-symbol-rate modem are
considered. For the adaptive case, we assume that a noiseless feedback path

with zero delay is present. Weitzen (1983) discusses the effects of path delay,

a noisy feedback channel, and rate quantization for the adaptive-symbol-rate

modem. Treatment of these subjects is beyond the scope of this thesis. The

two performance measures, Rbavg and Tavg, will serve as figures of merit

when comparing the performance of various modulation and coding

schemes. We begin by deriving an expression for the long run average

18
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symbol rate.

3.1 Long Run Average Symbol Rate, Ravg. Recall from Chapter 2 that

meteors arrive according to a Poisson process with rate X. Most messages

will be long enough to require several bursts to complete transmission. We

assume that the message can be partitioned at arbitrary points without loss

of information. On the average, the capacity of a single burst is many

thousand channel symbols. For this reason, we can approximate the

number of symbols per burst as a continuous (rather than discrete) random

variable, W. We shall consider the general case, and thus we ignore any

packet structure or message protocols. Let the total number of symbols

transmitted by time t be W(t). Given the above arguments, we can model the

stochastic process {W(t), t > 0) as a compound Poisson process where a

compound Poisson process is defined as follows (Ross, 1985):

Definition 3.1. Consider a Poisson process (N(t), t > 0) having interarrival
times Tm m 2! 1. Suppose that when an arrival occurs we receive a reward.
Denote by Wm the reward earned at the time of the mth arrival. Assume
that the W m , m = 1, 2, 3, ... are independent, identically distributed (iid) %
random variables that are also independent of (N(t), t > 0). Let

W(t) = Wm (3.1)
m=1

Then W(t) represents the total reward earned by time t. (W(t), t > 0) is said to
be a compound Poisson process.

Clearly, the process of transmitting messages on the meteor-scatter channel

is a compound Poisson process where Wm represents the number of symbols

sent during the mth burst. Since the probability of multiple (overlapping in

time) trails is small (_ 10-3) (Weitzen, 1983), then we can assume that Wm is

independent of {N(t), t > 0). The compound Poisson process is a member of

the larger family of random processes called renewal reward processes.
4,

!'
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For these random processes one can show the following (Ross, 1985): If

E[W] < -, and E[T] < 0, then with probability 1,

W(t) E[W]

W~t) EM ast-+- (3.2)t E[T

Thus, we can write the long run average symbol rate (as t - o ) as the

following

Ravg = X E [W] (3.3)

Let's compare this expression for throughput with that obtained using the

one of the most popular definitions of throughput. Oetting (1980) defines

throughput as the average number of data bits (or symbols) received per unit

time. Ignoring packet structure, this definition gives an expression identical

to (3.3). To see why this is true, consider the following derivation. The mean

number of symbols transferred in time t is simply the expected value of the

compound Poisson process (Ross, 1985)

E [W(t)] = E [N(t)] E [W]

Since the expected value of N(t) is just Xt, then we have

E [W(t)] = X t E [W]

Dividing both sides of this equation by t gives the average number of symbols

received per unit time

Ravg = X E[W]

pp . '. p
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This expression is identical to (3.3). Therefore, the long run average symbol

rate is equivalent to the "throughput" as defined in the literature. Oetting's

expression for throughput differs from the expression derived in this chapter

because he assumes a particular packet structure.

The number of symbols per burst, W is a function of the random variables (D,

Z, and Q where

Z = Reflection point in the h-plane (Z G R 2 )

D= Angle of incidence at reflection point

Q = Electron line density of the meteor trail

We assume that Z is a uniform random variable over a large, finite region of

the h-plane (Weitzen, 1983). As long as the region is large, its actual size is

not important because the geometry precludes good paths from distant points

in the plane. Furthermore, based on the properties of meteor arrivals, it is

reasonable to assume that 4), Z, and Q are independent. Then we can write

the average symbol rate as
A f-

A . f W(Z, (D, Q) fQ (q) fb (0) dq do dA (3.4)

where A= the area of the finite region of the h-plane. As it stands, this

expression for Ravg is unwieldy. Weitzen (1983) and others simplify their

models by assuming that all trails arrive at a fixed point in the h-plane.

Making this simplification, we get the following expression for the long run

average symbol rate:

Ravg X f W(q) fQ (q) dq (3.5)

Q-
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We can further justify (3.5) by noting that we are interested in the relative,

not absolute performance of several modulation and coding schemes. The

reader should be cautioned, however, about using (3.5) to compare

performance over values of path distance. For values of D (defined in Chapter

2) other than 7r/2, equation 3.5 is not strictly decreasing for increasing path

distance.

3.1.1 Fixed-symbol-rate modem. For a fixed-rate modem the expression

for long run average symbol rate is given by

Ravg = X Q RS Td (q) Qq) dq (3.6)

where R. = channel symbol rate in Hz and Td (q) = the useful duration of the

trail in seconds. This integral is evaluated in Appendix A. For the link

parameters of Chapter 2, we get the following table of values for Ravg:

Table 3.1 Average symbol rate in Hz for fixed-rate modem

R, (kHz) underdense overdense Total
1 4.7 .83 5.5
5 9.5 4.2 13.6

10 12.5 8.3 20.8
50 21.1 41.3 62.4

100 24.4 81.8 106.3
500 21.3 379.1 400.4

1 000 11.5 682.8 694.3

The values of Ravg in Table 3.1 were calculated by scaling (3.6) by a constant.

This constant was chosen to give values consistent with the results from the

experimental link in Greenland (Ostergaard, et al., 1985). Note that

overdense trails account for anywhere from 15% to 98% of channel capacity,

depending on symbol rate. Equation 3.6 is plotted in figure 3.1. From

Figure 3.1, we see that there exists an optimal symbol rate, that is one that

. . . . . . . o . ... ...- .. ... ... - . . . .. . .- -. ... .. . : -- %- .. .. ": - - : - -- . ' - .* '- iU
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maximizes Ravg. For our link parameters, this optimal rate is found

graphically from Figure 3.1 to be approximately 10 MHz.

3000'

S 2000-
-oo

1000-

0.Oe+0 1.Oe+7 2.0e+7 3.0e+7

Instantaneous symbol rate in Hz

Figure 3.1 Average symbol rate as a function of instantaneous

symbol rate, Rs

The author has found that for transmitter power levels as low as 200 watts,

the optimal symbol rate still exceeds 1 MHz. Since the meteor-scatter

channel is constrained by multipath propagation to symbol rates less than V.

500 kHz, we conclude that the optimal symbol rate is the maximum rate that ',"

the channel can support, i.e. - 500 kHz. This result agrees with Abel's

conclusion (1986), although Abel did not derive an expression for Ravg.

3.1.2 Adaptive-symbol-rate modery The adaptive-symbol-rate modem

varies the symbol rate continuously to match the time-varying received power

levels. Since the received power is equal to the product of the energy per

channel symbol, Es, and the channel symbol rate, R(t), we can write the

instantaneous symbol rate as

VI
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Pr (t)
R(t) = (3.7)NO (E / No)r q

where (E s / No)req is the ratio of received energy per symbol to noise power

spectral density required by the modem to maintain an acceptable bit error

rate (BER). The number of symbols transmitted per burst is then given by

Td (q)

W = J R(t) dt (3.8)

where Td (q) = the useful burst duration as a function of the electron line

density, q. It follows that the long run average symbol rate for the adaptive-

symbol-rate modem is given by

Td (q)
Ravg = X fQ (q)R(t) fQ (q) dt dq (3.9)

Equation 3.9 is evaluated in Appendix A. At a transmitter power level of 2000

watts, we get an average symbol rate of 6.04 kHz, an improvement of 15.1

over fixed-rate at Rs = 500 kHz. Recall from Section 2.4.3 of Chapter 2 that the

meteor arrival rate, X, is a function of the symbol rate, R s. For the adaptive
symbol rate modem, the meteor arrival rate is a function of the minimum

realizable symbol rate, Rmin (a hardware constraint). Note that for our

model, k - as Rmin -- 0, indicating that Ravg -- oo. This is not the case,

however, because as X - cc, trails start to overlap and our expression for Ravg

is no longer valid. In practice, however, hardware constraints will confine

Rrin to values that make our model valid. The improvement factor for the

adaptive-symbol-rate modem versus the fixed-rate modem is discussed in

Section 3.1.4.

3.1.3 Constrained channel. In Chapter 2 we found that the meteor-

.15, I
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scatter channel is constrained by multipath-induced intersymbol

interference to a maximum symbol rate of Rmax - 500 kHz. For such a

channel, the expressions for long run average symbol rate must be modified

as follows:

Fixed-rate modem:

Ravg=Xf RsT(Rs,q)fQ(q)dq, Rs Rmax (3.10)
Q

_antive-symbol-rate modem: ,%,

T(Rmni q)

Ravg fJ R(t) fQ (q) dt dq (3.11)

Pr Mt Pr Mt
, < Rmax

No (Es / No)req No (E, / No)req m

where R(t) =

Pr (t)
Rmox' No (Es /N)reqa x

Because of the added complexity of this expression, we resort to numerical

integration to evaluate Equation 3.11. Table 3.2 lists values of Ravg for several

values of maximum symbol rate. \'.

Note that at Rmax = 500 kHz, the average symbol rate has dropped by a factor

of 13.7 from the value of the previous section. We can conclude therefore that

the ceiling on symbol rate has a serious effect on the long run average symbol

rate. In fact, we shall show in the next section that for a bandwidth-limited

channel, the adaptive-symbol-rate modem does not exceed a factor of 2.0

improvement over the fixed-rate modem, assuming that the fixed-rate

I
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modem is operating at the maximum rate (- 500 kHz). This result seems to

contradict some recent experimental evidence. Ostergaard et al. (1985) found

that very few returns would support symbol rates exceeding 1 MHz, and

concluded that the channel was effectively power limited, not bandwidth

limited. This author does not dispute this conclusion, but he wishes to point

out that systems with higher transmitter power or antenna gain will

invariably encounter these signal levels with greater frequency. Therefore,

the effect of the bandwidth ceiling on the adaptive-symbol-rate modem will

depend on the link parameters and the receiver sensitivity.

Table 3.2 Average symbol rate in Hz for adaptive-symbol-rate modem on

bandwidth limited channel (R(t) - Rmax

Rmax (kHz) underdense overdense Total
50 40.4 35.2 75.6
100 58.1 70.3 128.4
250 81.4 174.3 255.7
500 97.9 343.9 441.8
1 000 109.5 668.9 778.5
2000 113.5 1238.9 1352.4
5000 113.5 2243.2 2356.8

3.1.4 Improvement factor. For an unconstrained channel (Rmax c)

the adaptive-symbol-rate modem provides a significant improvement in Ravg

over the fixed-rate modem. Define the improvement factor as

Ravg (adaptive)
1 (3.12)

Ravg (fixed)

With the aid of the computer we can use the expressions derived in Appendix

A to get the graph of Figure 3.2. Note the vast improvement that the adaptive

modem offers on a strictly power-limited channel.

I.
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Figure 3.2 Improvement factor, adaptive-symbol-rate over fixed-rate for a

strictly power-limited channel
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Figure 3.3 Improvement factor, adaptive-symbol-rate over fixed-rate for
bandwidth-limited channel (Rmax = 500 kHz)

The results for the bandwidth-limited channel are less remarkable. Note

from Figure 3.3 (above) that the improvement factor varies from 1.25 to 1.75.
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These results should encourage further research into adaptive techniques to

correct intersymbol interference on the meteor-scatter channel.

3.2 Mean Message Waiting Time, Tavg. Long run performance on the

meteor-scatter channel may not be important in some applications. Often the

user would rather minimize the waiting time required to transmit a

message of length N bits. In fact, much of the recent literature on meteor-

scatter communications is focused on this subject. See Oetting (1980),

Hampton (1985), and Milstein et al. (1987). Oetting derives an expression (in

the form of an infinite sum) for the CDF of the waiting time, but does not

discuss mean waiting time. Hampton and Milstein, et al. limit their

discussions to packet structures.

We shall derive a closed-form expression for the mean waiting time for the

fixed-Tate modem, assuming no packet structure. However, we shall

assume that the message can be partitioned at arbitrary points without loss

of information. For the adaptive-symbol-rate modem, we derive some tight

bounds on the mean waiting time. In addition, we extend a result from Cox

(1962) to derive a general expression for the Laplace transform of the mean

waiting time. This expression is valid for any modem, as long as the

distribution for the number of symbols/burst, W, is known and the Laplace

transform of the probability density function for W exists. As in Section 3.1,

we assume that multiple trails are nonexistent and that the number of

symbols per burst is normally quite large. Thus, we approximate the

number of symbols/burst, W, as a continuous (rather than discrete) random

variable. One can extend the results of this section to packet structures when

the packets are small (few symbols/packet). Define message waiting time as

follows:

I
. . . . . . ..I . • *5- -(*



29

Definition 3.2. Consider a compound Poisson process, (W(t), t >_ 0). The
message waiting time, Tw , is the time required to completely transmit a

message of length N symbols when the message can be partitioned into
arbitrary segments of size W m .

The mean waiting time, denoted by Tavg, is defined as the expected value of

the message waiting time. We make the following assumptions:

* All trails are underdense

" The Wm symbols transmitted during the mth burst are sent in a time

At=0

We can justify these assumptions by noting that the waiting time for

overdense trails is typically an order of magnitude greater than the waiting

time for underdense trails. For example, an overdense trail with electron

line density of 1015 e/m has a waiting time of about 15 minutes. In contrast,

an underdense trail with electron line density 1013 e/m arrives about every

15 seconds, A single message of reasonable length is not likely to see an

overdense trail. Also, the duration of a burst is typically a fraction of the time

between bursts ( e.g. 0.5 s vs. 10 s). The duration of the last burst for a given

message will not make a significant contribution to the message waiting

time.

3.2.1 Fixed-rate modem. Oetting (1980) derived an expression for the

CDF of Tw for a fixed-rate modem, but the literature lacks a general closed

form expression for the mean waiting time. In Section 3.2.3 we shall

present a general expression for mean waiting time in terms of an inverse

Laplace transform. For the fixed-rate modem, however, we can derive the

mean waiting time via straightforward application of conditional

expectation. We can write the mean waiting time as

I
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E[TWI = E[ Tw I m] P(m) (3.13)
m=i

where P(m) is the probability that exactly m bursts are required to completely

transmit the N-symbol message. We notice that

E[Tw I m] = E[Sm] (3.14)

where Sm = the waiting time until the mth meteor arrival. Since Sm is a

Gamma random variable with parameters (m, X), then

E [T w I exactly m bursts required] = E [Sm] = (3.15)

The probability that exactly m bursts are required to send the message is

given by

P(m)=PP Wi<N<IWii
i=l "M

=P IWi <N,Wm+ Wi -N
i=l i=1

rn-1

if we let X Wi and Y= Wm then we can write

P(m) =P(X < N, X + Y N) (3.16)

;%
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Recall that the distribution for underdense burst duration in seconds is

exponential with mean t. It follows that the underdense burst duration in

symbols is also exponential with mean to = Rs t. Let X0 = l/t o . The random

variable X is the sum of m-1 independent and identically distributed (iid)

exponential random variables with mean to. Then one can show (Ross, 1984)

that X is a Gamma random variable with parameters (m-1, Xo). The random

variables X and Y are independent, so we can write (3.16) as the following:

No

P(m)=J L fx (x) fy (y) dy dx (3.17)

Xe -XO x(OX) m-2

where fX (x) = F (m-1) , x 0

fy (y) o e y , y > 0

F(s) is the Gamma function where F(s) = (s-l)! for integer s. Evaluating

(3.17), we find that P(m) is given by

e -XO N (X° N) m-1."

P(m) = (-) r(3.18)

Note from (3.18) that if we let U = the number of bursts required to completely

send the message, then U-1 is Poisson with mean Xo N. Combining (3.15)

and (3.18), we find that the mean message waiting time is given by

m e 
-X N (L ~ -

E [Tw ] = e 0 (X"N )r(
m= (-)(3.19)

0 -w , o 0 ~ ?' ~ ~~ 0 0 
0

4 ,( 0 0C0
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Let n =m-1 and x = 0 N. Then we can write

E [TW] = e- -+n)Xn (3.20)i p

xn

e

= ~ -x . + I jj.

= - { eX + xeX ]

Substituting x = Xo N, and simplifying, results in

I Nx ko
E[TwI "+ X (3.21)

or equivalently,

1 N,

E [Tw ]  + XtR s (3.22) %

a.,

The reader should note that (3.22) is an exact result. Inspection of Equation I
3.22 reveals that in the limit as N is small with respect to symbol rate, Rs, the
mean waiting time is simply the mean waiting time for the first meteor
burst. This result is intuitively sound. Table 3.3 gives some typical values for .

Tavg using equation 3.22 for c = .58 sec., X = 0.1 trails/s, and Rs = 1200 p
symbols/s. BPSK modulation is assumed, so N symbols = N bits.

%:
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Table 3.3 Typical values of mean message waiting time. Tavg

N (bits) Wavgec.2 N (bits) Tavg-L

100 11.44 1000 24.37
200 12.87 2000 38.73
300 14.31 5000 81.84
400 15.57 10000 153.7
500 17.18 50000 728.4

We can now derive an expression for the optimal symbol rate - the rate that

minimizes Tavg.

3.2.2 Optimal symbol rate for fixed-rate modem. To minimize the

waiting time on a power-limited channel, the system designer simply

increases the symbol rate. Because of the burst characteristics of the meteor-

scatter channel, we cannot minimize message waiting time simply by

increasing the symbol rate to an arbitrarily high value. There is a penalty to

be paid for any increase in bit rate. The penalty is a corresponding decrease

in the number of observable trails per second, X. This penalty applies

regardless of whether the channel is modeled as bandwidth-limited or

power-limited. In the past, the behavior of the message waiting time as a

function of bit rate was not known precisely because a general expression for

mean waiting time was not available. Now that we have derived such an

expression (3.22), we can proceed to find the symbol rate that minimizes the

mean waiting time. Since we made the conservative assumption that all

trails are underdense, the behavior of the meteor arrival rate, X, as a

function of symbol rate is given by

X

) = cRs - 1 /



34

where c = 0.1 1.7 GTGRPT _

(Es/No)req 37.

Substituting this expression into (3.22), we get

Tav = E [T ]Rp + N RS1/2

C c I

Differentiating and setting the result equal to 0,

a Tavg 1 R -1/2 N R - 3/2 = 0

DR s  2c 2cr

Solving for RS , we get Rs =, Rs = N/'r. Therefore, the optimal symbol rate is

simply

N
Rs = t (3.23)

A check of the second derivative confirms that this is indeed a minimum.

Table 3.4 gives some typical values of Rsopt for T = .58 sec.

Table 3.4 Typical values of optimal symbol rate, Rsopt in Hz-

N (symbols) soptHz N (symbols) Rsopt (Hz)

100 172.4 1000 1724
200 344.8 2 000 3 448
300 517.2 5000 8621
400 689.7 10000 17240
500 862.1 50 000 86 210

.- ..-.. ...- ,
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Note that even for large messages, the optimal symbol rate is only a fraction

of the rate that maximizes Ravg. We can conclude that a fixed-rate scheme

cannot be designed to maximize Ravg and minimize Tavg simultaneously. To

get an expression for the minimum mean waiting time, we substitute (3.23)

into (3.22) to get

E [Tw]opt = 2 (3.24)

Or in terms of the meteor arrival rate, X,

2
E [Tw]0Pt = 2 (3.25)

Substituting the value for c into (3.24), we get the following expression for the

mean message waiting time with R s = Rsopt

N(Es/No)req C f )2.4
E [Tw]0Pt = 20 1.7 GT GR PT (37 (3.26)

3.2.3 Adaptive- symbol-rate modem. Recall that the expression for

mean waiting time is given by (3.13):

E[TwI= E[ Tw I m] P(m) (3.13)
m=1

and that P(m) is given by

P(m) = P(X<N,X+Y>N)

For the fixed-rate case, the random variable X is the sum of m-1 iid

! ,
',S'S
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exponential random variables and therefore X has a Gamma probability

distribution. In the adaptive case, X will not be exponential and the (m-i)th

order convolution of the density, fw (t) will be dependent on m. Therefore, to

get a general result, we must resort to other methods. Discussion of the

mean waiting time for a compound Poisson process is almost nonexistent in

the literature, but Cox (1962) does give an expression for the Laplace

transform of the mean first passage time, which is equivalent to our mean

waiting time. Substituting our notation into Cox's expression, we get the

important result:

£~~~ ~ E T]} - (s)]
L{E[Tw]= - + (3.27)

where
F(s) = Laplace transform of the density for the random variable W.

s = the argument of the Laplace transform with respect to N, the

number of symbols in the message.

We can easily check that (3.27) gives an expression identical to (3.22) for the

fixed-rate modem. Note that for the fixed-rate modem, the number of 'a

symbols per burst is an exponential random variable with mean 1/A0 = tR s.

The Laplace transform of the probability density function, fw (N), is then

given by

F(s)

Substituting this expression into (3.27) and taking the inverse Laplace

transform, we get our previous result: .
a.

1 N
E rT w =- + XtRs (3.22)

X T RS
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Next we consider the adaptive-symbol-rate modem. First we need the

distribution for W, the number of symbols per burst. In Section 3.1 we

derived the following expression for W:

W o R(t) dt

i pr (0) q 2 e-2 t/dt

o (Es /No)req No

=r( ) ( 1 - e -2 /r) (3.28)
2 (Es / No)req No

We can write q 2 as a function of T,

2 T/t
q2 (Es/NO)req NOR.ie

Pr(O)

Substituting this into (3.28), we get

Rm2n T2,W= (e

The distribution for W is then given by

Fw(x) = P(W x) = (ePR1n

4.I 2 -

•~~~ ~ R.m <_ Ilin +
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Since T is exponential with mean t, we have the following:

F itln 2x 1

P(W_<x) = l-exp- 2 In in + 1

Simplifying, we get the distribution for W for the adaptive modem:

1
P(W x)= 1- (3.29)

Let a = 2/(Rmin t). Differentiating (3.29) yields the density for W:

a 1-3/2

fw(N) = (a N + 1) (3.30)

Consulting a table of Laplace transforms (Fodor, 1965), we find that the

Laplace transform of fw(N) is given by

F(s) = 1-%- T es/a erfc s (3.31)

where erfc (u) is the complementary error function, defined as

erfc (u) = j ex dx

Substituting (3.31) into (3.27) results in the expression for the Laplace

transform of the mean waiting time for the adaptive-symbol-rate modem:

1 1 rI
r s e rfc

;:-. ', ,*' .'-'_ *-'-. '.'-.'.'. - '0. .- - '- -' --- , -.- -... . . . . . . .-7-A." -¢ ";< - - S< , - A' , -"-,A4 " 'S : - " S " • A *"",
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Thus, finding the mean waiting time reduces to finding the inverse Laplace

transform of (3.32). Unfortunately, this transform (3.32) is not found in any

published table of Laplace transforms. In fact, the inverse Laplace

transform may not exist in closed form. For this reason, we resort to finding

bounds on mean waiting time for the adaptive-symbol-rate modem.

Consider the ideal modem - one that can transmit the entire message of N
symbols on the very first burst. In this case the lower bound on Tavg is

simply the mean waiting time for the first arrival, 1/X. The upper bound on
Tavg is found by assuming the worst case - we send nothing until a burst

occurs that can transmit the entire message of N symbols. Let Tb = the

waiting time until such a burst occurs and let X = the number of bursts
required. Then we can write the upper bound as follows:

E [Tw] < E [Tb] = E [Tb I no successes until mth burst] P(X m)
m=l

Since consecutive meteor bursts are independent trials, then X is a geometric
random variable with the following probability mass function

rn-iPx (m) = P(X = m) =(1-p) p

where p = P( W> N) = 1 - Fw (N). The upper bound can then be written as

1 1E [TW - (1- ) P = E F [X] = -

Where we made use of the result

E [ Tb I no successes until m th burst] = E [Sm] =m

%1

;_4::



40

's

Therefore, the mean waiting time for any modem, including the adaptive-

symbol-rate modem, is bounded in the following way

1 1

- .5- E < [Tw ] <X (3.33)

Since p = 1 - Fw (N), we can use (3.29) to get the following bounds for the

adaptive-symbol-rate modem

1-< E[TWl 1 2N + 1 (3.34)

Figure 3.4 demonstrates the behavior of these bounds as a function of

message size, N, for Rmin - 25 kHz, X = 0.1 trails/s, and c = .58 s. As

expected, the mean waiting time approaches the lower bound for small N.

18
- 16 Upper bound°

14 -

*S 10
Z" 10 . Lowe rboundt

6-

4-

2

0 5000 10000 15000

Message length in bits

Figure 3.4 Upper and lower bounds on mean waiting time
for adaptive-symbol-rate modem
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3.2.4 Improvement factor. Define the improvement factor as follows:

E [Twifixed
= E [Tw]adaptive

where E [Tw]adaptive is the mean message waiting time for any adaptive-

information-rate modem. Before deriving the improvement factor for the

adaptive-symbol-rate modem, it will prove useful to derive bounds on the

improvement factor in the general case. The improvement factor is bounded

as follows:

E [Tw] fixed E [Tw] fixed
<I < 1

ub E - lb[Tw] adaptive E [Tw] adaptive

where the superscripts "ub" and "Ib" denote upper bound and lower bound,

respectively. Recall that the mean message waiting time for the fixed-rate

modem operating at the optimal symbol rate is given by the following:

2 I
E [T] 0 pt = . (3.25)

Since any adaptive modem is bounded according to (3.33), we can write the

bounds on improvement factor as the following

2p 5 1 < 2 (3.35)

where p = P(W > N) and we have assumed that the meteor arrival rate is the

same for both modems. Now consider the specific case of the adaptive-

symbol-rate modem. To make a fair comparison, we assume that the fixed-

rate modem is operating at the optimal symbol rate, Rsopt = N/t and that the

adaptive modem operates with a minimum symbol rate equal to Rsopt. The

%5
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meteor arrival rate, X, is then the same for both modems and we can write

the bounds on the improvement factor as follows:

2
< I < 2 (3.36)

These bounds are remarkably tight considering the weakness of the

assumptions we made to get them. Note that for an adaptive-symbol-rate

modem operating with Rmi n = Rsopt, the maximum improvement is just 2.0.

In fact, for any modulation scheme with this minimum symbol rate, we

cannot exceed 2.0 improvement factor over fixed-rate.

U

.

k,,
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Chapter 4 - Modulation Methods

In the preceding chapter, we investigated the performance of the fixed-rate

modem and the adaptive-symbol-rate modem on the meteor-scat.ter channel.

We assumed that both modems map information bits onto channel symbols

(or waveforms) in the same manner, but we did not examine the details of

this mapping, called waveform modulation. This chapter is concerned with

the optimal use of waveform modulation for meteor-scatter communications.

We should now distinguish between adaptive modulation and waveform

modulation. The function of the digital waveform modulator is to match the

output of the encoder, which is digital, to the channel, which is analog.

Adaptive modulation, on the other hand, uses one or more waveform

modulation techniques to match the information rate to the time-varying

signal-to-noise ratio (SNR) at the receiver. By definition, the adaptive-

symbol-rate modem uses a single waveform modulation technique and varies

the symbol rate to match the time-varying SNR. The author proposes a

complementary scheme: fix the symbol rate and vary the number of bits per

symbol. The author calls this adaptive scheme adaptive QAM since the

scheme uses M-ary quadrature amplitude modulation (QAM). Adaptive

QAM should be less difficult to implement than adaptive-symbol-rate, and on

a bandwidth-limited channel, adaptive QAM will out-perform adaptive-
symbol-rate.

'

The remainder of the chapter is divided into four sections:
I

Section 4.1 is an introduction to two important families of waveform
modulation: M-ary QAM and M-ary Frequency Shift Keying (FSK).

43

S. .S. .' . ... .S .. ' N S,.N



44

• Section 4.2 is dedicated to finding the optimal M-ary modulation

technique for the fixed-rate modem.

* Section 4.3 is dedicated to finding the optimal M-ary modulation

technique for the adaptive-symbol-rate modem.

" Section 4.4 investigates the performance and implementation of

adaptive QAM.

4.1 M-ary Waveform Modulation Techniques. This section briefly

summarizes the important properties of M-ary QAM and M-ary FSK, where

M = 2k, (k = 1, 2, ...). These two families are chosen because they have proven

to be powerful modulation techniques for channels impaired by additive

white Gaussian noise (AWGN). The key properties of each family are power

efficiency and bandwidth efficiency. These two properties are defined below.

Definition 4.1. Consider a M-ary modulation scheme operating on a

AWGN channel with noise power spectral density N o .Assume a user-

defined specification on the maximum probability of bit error, Pb, and a

minimum required energy per bit, Eb, to meet that specification. Define

power efficiency as

6P = (EbINo)req (4.1)

In other words, power efficiency is the required SNR per bit to maintain

reliable communication.

Definition 4.2. Consider a M-ary modulation scheme operating at R bits/s

and consuming a bandwidth W Hertz. Define the bandwidth efficiency by

RRB (4.2)

Bandwidth efficiency has the units bits/second/Hertz (bits/s/Hz).

16

W "-" •" ." - "" " "' "' "" " % .°." "" % "--' "- "d - -- -
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The bandwidth expansion factor, Bet is defined as the reciprocal of the

bandwidth efficiency. The following treatment of M-ary QAM and M-ary FSK

is necessarily brief. For a complete description of these modulation schemes,

see Blahut (1987) or Proakis (1983). A excellent treatment of M-ary QAM is

also found in Noguchi et al. (1986).

4.1.1 M-arv QAM. Typical modulator and demodulator sections for a

digital radio link are shown in Figure 4.1. The output of the modulator

section is the sum of the outputs of two balanced modulators in phase

quadrature, hence the name quadrature amplitude modulation (QAM). The

input to the digital-to-analog (D/A) converter is a sequence of binary digits

(bits) traveling at a rate k/T bits/s, where k = log2 M. The D/A converter takes

groups of k bits at a time and maps these k-bit symbols onto pairs of analog

data values {an , bn). At the nth signaling period, the value an is the input to

the in-phase (I) channel and the value b n is the input to the quadrature (Q)

channel. Note that each signaling period has length T seconds and the

channel symbol rate is R s = l/T symbols/s (Hertz). Let p(t) be the pulse shape

produced by the filtering of the low-pass filters. The modulator section

output, s(t), can then be written as

s(t) an p(t - nT) cos coo t - bnp(t - nT) sin coo t (4.3)

where co = 2nf, and f. is the carrier frequency. The data value corresponding

to the nth signaling period can be represented by a complex number,

a n + j b n . This data value is taken from a finite, discrete alphabet (or

constellation) with M elements. The choice of alphabet determines the

amplitude and phase characteristics of the resulting modulation scheme.

For example, if a n = cos 0n and b n  = sin0n, where

On E {0, 27c/M, 4t/M, ..., (M-1)2t/M, then the modulation is M-ary PSK.
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M-ary PSK has the desirable property that s(t) has constant amplitude.

Certain constellations with multiple amplitudes and multiple phases have

better power efficiency (lower (EbNo)req) than M-ary PSK, however, and these

constellations are the popular choice for digital radio (Noguchi et al., 1986).

n LPF

bt/ Z__=To meteor-bissb scatter

nI/ A LFQ channel."

(a) Modulator section

Sarle

att=O

,-.

-

-p

(b) Demdulator section

Figure 4.1 Modulator and demodulator sections for QAM modem

When M is a perfect square, the square constellations are usually preferred.

When M is not a perfect square (i.e. k is odd), square constellations are not



a'

47

possible and non-rectangular constellations often have better power
efficiency. For our purposes, the rectangular constellations are preferred
because these constellations lead to closed form approximations for the
probability of bit error, Pb (Proakis, 1983). Examples of square and
rectangular signal constellations for M = 4, 16, 32, and 64 are shown in

Figure 4.2.1 (The rectangular constellation for 8-ary QAM is purposely
omitted from Figure 4.2 because it obscures the other constellations. The

8-ary QAM constellation is just one-half of the 16-ary constellation.)

Now consider the demodulator section of Figure 4.1. The received signal at
the front end of the receiver is the transmitted signal, s(t), plus noise

r(t) = s(t) + n(t) (4.5)

where n(t) is white Gaussian noise with noise power spectral density N0 . We
wish to demodulate the signal r(t) such that the probability of correct

demodulation is maximized. The optimal demodulation for M-ary QAM is

matched filter demodulation (Blahut, 1987). The two main results from
matched filter theory are the following:

" The impulse response of the matched filter is given by p*(-t) = the
complex conjugate of pulse waveform evaluated at -t.

" The maximum signal-to-noise ratio at the output of the matched filter

is given by
S 2 Ep

N oE, (4.4)

where Ep = the energy of the pulse, p(t).

1 In common usage, the QAM label is applied to those modulations "or which M is a perfect
square and the constellation is a square lattice. Our definition applies to all rectangular
constellations.

,N
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Provided there are no timing errors at the sampler, the input signal to the

threshold detector will achieve the SNR of (4.4). For a complete description of

matched filter demodulation, the reader should consult Blahut (1987),

Proakis (1983), or Haykin (1983). One can show that, in the presence of

additive white Gaussian noise, the optimal decision at the threshold detector

is to choose the constellation point that is nearest to the received point in

terms of Euclidean distance (Blahut, 1987 and Proakis, 1983). This decision

rule minimizes the probability of demodulation error and is the maximum a

posteriori probability (MAP) rule. Thus, the threshold detectors on the I and

Q channels of the demodulator choose the nearest allowed values for

an and bn . These values are the inputs to the analog-to-digital (A/D)

converter, which performs the inverse mapping of the D/A converter of the

modulator. Next, we examine the error performance of M-ary QAM by

deriving an approximate expression for the probability of bit error, Pb.

The probability of symbol error for M-ary PSK can be approximated by the

following expression for M > 4 (Michelson and Levesque, 1985):

PM = erfc .. sin 7E (4.6)

where erfc(u) is the complementary error function, defined as 2

2 f 2
erfc(u) = - ex dx (4.7)

2 Error probabilities for coherent demodulation are often expressed in terms of the Q
function, defined as

S 21 ~
Q(y) = e x

The Q function and the complementary error function are related by

erfc(u) = 2 Q T2u)
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One can show that the average power for M-ary PSK must increase as (M!)2

in order to maintain the same error rate performance as M increases. On

the other hand, for M-ary QAM (rectangular constellations), the power must

increase as 2 (M - 1)3 (Proakis, 1983). Therefore, the advantage of M-ary

QAM over M-ary PSK is given by the ratio

2

Dm 32 (4.8)
2 (M - 1) i2

Table 4.1 lists this ratio in dB for several values of M.

Table 4.1 Improvement factor for M-arv QAM

8 1.43
16 4.14
32 7.01

64 9.9 .

We can combine (4.8) and (4.6) to get the following approximate expression

for the probability of symbol error

JE.4Pm erfc M 2  sin2 M" (4.9)

PMe2c N0~ (M 1) IC2)

The equivalent bit error probability depends on the particular mapping of the

k-bit symbols onto the signal constellation. The preferred mapping uses a

Gray code. When a Gray code is used, adjacent points in the constellation

differ by exactly one bit. The Gray code is used because, in the presence of

additive noise, the most likely demodulation error is one that results a .,

demodulated symbol that is adjacent to the correct symbol. If a Gray code is

used, this type of symbol error will result in only one bit error.

.%
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Assuming that a Gray code is used and that all k-bit combinations are
equally likely, then the equivalent bit error probability is given by

Pb = PM

where k = log 2 M. Combining the above with (4.9) yields

Pb _log 3M Me sin 2
2b (eM)c N sinM-) "  (4.10)

10g 2 M - (M2 9

In Figure 4.3, equation 4.10 is plotted as a function of Eb/No for M = 4, 8, 16,

32, and 64. These curves agree closely with those published in Proakis (1983).

10-1

10-2 M--4

" M=8

. 0 3 M=16

-4

10"

• 10 -4

. 10-6

10-
7

6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0

Eb/No in dB

Figure 4.3 Probability of bit error for M-ary QAM with Gray coding
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In later sections we shall compare modulation methods on the basis of power

efficiency, (Eb/No)req, and the values listed in Table 4.2 will prove useful. The

data for Table 4.2 were computed using (4.10).

Table 4.2 (Eb2-0jrea in dB for several values of Pb fQr M-ary QAM

Modulation = 1Q-3  pj. __-4 p--5 pb.1-6

4-QAM (QPSK) 6.6 8.4 9.6 10.5
8-QAM 8.7 10.4 11.6 12.6
16-QAM 10.3 12.1 13.4 14.3
32-QAM 12.3 14.1 15.4 16.4
64-QAM 14.4 16.2 17.6 18.6

The primary advantage of M-ary QAM over other modulabion types is

bandwidth efficiency. The bandwidth efficiency for M-ary QAM is

determined by the spectral properties of the pulse, p(t). The maximum

bandwidth efficiency is achieved when the Fourier transform of p(t), given by

P(f), satisfies the following:

I [P(f) 1, If[ < (4.11)
' -2T

P(f) =

*P 1
0, If 1 2IT

One pulse that meets this requirement is the sinc pulse, given by

sin (7c tT)
p(t) = n t/T (4.12)

When such a pulse is used, the bandwidth efficiency achieves the maximum

value, given by

leeI
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R
- = log 2 M bits/s/Hz (4.13)

Future discussion of M-ary QAM will assume a bandwidth efficiency given

by (4.13).

4.1.2 M-ary FS K. Like the M-ary QAM modulator, the input to the D/A

converter (or pulse generator) is a sequence of bits traveling at a rate k/T

bits/s. Each signaling period has length T seconds, thus the channel symbol

rate is R. = 1/T symbols/s. The D/A converter maps each k-bit symbol onto

one of M complex orthogonal pulses, pi(t) (i = 0, 1, .... M-1). Pulses Pi(t) and

p.(t) (i # j) are orthogonal if the following is true

L pi (t) pj*(t) dt= 0

I

where * denotes complex conjugate. The real part of pi(t) is fed to the in-

phase channel and the imaginary part is fed to the quadrature channel.

Therefore, the output of the modulator section, s(t), for a single signaling

period can be written as

s(t) = Re [pi (t) ] cos coo t - Im [pi (t)] sin coo t (4.14)

For demodulation, we have a choice of coherent demodulation or

noncoherent demodulation. For coherent demodulation of M-ary FSK in

AWGN, the probability of symbol error is given by (Michelson and Levesque,

1985)

P'I 1 f~ (p -1 (y EFl.O)
PM' :~ J 2-1 - erfc exp - V dy (4.15)

, 2i 2. 2.

OR5
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For noncoherent demodulation, the probability of symbol error is given by

(Proakis, 1983)

M-1

PM = M1(-1)i ) 1 e Es ( i (416)ST+_exp o1 .6 I

The probability of symbol error for M-ary FSK can be converted to a bit-error

probability by assuming that when a M-ary symbol is in error, each of the

2 k- 1 incorrect k-bit patterns is equally likely. One can show that this

assumption leads to the expression

k-i

= k PM (4.17)
2 -1

Table 4.3 lists values of (Eb/No)req for coherent demodulation of M-ary FSK.

Table 4.4 gives values of (Eb/No)req for the noncoherent case. The values for

these tables were computed using equations 4.15, 4.16, and 4.17.

Table 4.3 (Eb Nolreq in dB for M-ary FSK with coherent demodulation

Modulation ph -3 pb_IQ-4  pb.i.- 5  pb_.p -6

4-FSK 7.2 8.7 9.8 10.7
8-FSK 6.0 7.3 8.4 9.2
16-FSK 5.2 6.5 7.4 8.2
32-FSK 4.6 5.8 6.7 7.5
64-FSK 4.2 5.3 6.2 6.9

Curves of Pb versus Eb/N0 are shown in Figure 4.4 for coherent demodulation

of M-ary FSK. Curves of Pb versus Eb/No are shown in Figure 4.5 for

noncoherent demodulation of M-ary FSK.

,

r - ,
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Table 4.4 (Eb i-0req in dB for M-arv FSK and noncoherent demodulation

Modulation 10..-3 pb.0- 4  pb_=.1- 5  p 1-6

4 FSK 8.3 9.6 10.6 11.4

8 FSK 7.0 8.2 9.2 9.9

16 FSK 6.2 7.3 8.2 8.9

32 FSK 5.5 6.6 7.4 8.1

64 FSK 4.9 5.8 6.8 7.5

A comparison of Figures 4.4 and 4.5 indicates that there is a penalty in power

efficiency for noncoherent demodulation. Note also that in contrast to M-ary

QAM, the curves for M-ary FSK shift to the left as M increases. In fact, for

coherent M-ary FSK signaling, it can be shown that as M--*-, the channel

capacity approaches the limit predicted by Shannon's capacity formula

(Blahut, 1987).
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Eb/No in dB

Figure 4.4 Probability of bit error for coherent demodulation

of M-ary FSK signals
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Unfortunately, the use of large FSK tone libraries has two serious

drawbacks: (1) Coherent reception of a large number of orthogonal

waveforms leads to a complex design and (2) Large tone libraries consume

bandwidth. To see why (2) is true, consider the bandwidth efficiency of M-ary

FSK.

101
- " M=4

10 -2  M=8

10-31 M M=32
4" M=64

-4-o 10
10 -5

10-6

1

10.8

4.0 6.0 8.0 10.0 12.0 14.0

EblNo in dB

Figure 4.5 Probability of bit error for noncoherent demodulation
of M-ary FSK signals

For M-ary FSK with tones spaced at 1/2T Hz, the overall required bandwidth

is approximately M/2T, where T is the FSK pulse duration. The bit rate, R, is
given by k/T where k = log 2 M. Therefore, we see that the bandwidth

efficiency is given by the following

R 2 log 2 MB = M (4.18)B v I
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I

Thus, as M - c, the bandwidth required also goes to infinity.

From the previous discussion of M-ary QAM and M-ary FSK, we can

conclude that M-ary QAM is optimal for strictly bandwidth-limited channels LU

(unlimited power) and M-ary FSK is optimal for strictly power-limited P-

channels (unlimited bandwidth). Because of the complexity of employing

large sets of orthogonal waveforms, M-ary FSK for large M may be

impractical even on channels with large bandwidths. On such channels,

error-control coding can improve the power efficiency without adding the .5.

complexity of orthogonal waveforms. -5

The next two sections of this chapter are concerned with finding the optimal
M-ary waveform modulation for the fixed-rate modem and the adaptive-

symbol-rate modem. By optimal, we mean the waveform modulation that 6

either maximizes the average bit rate, Rbavg, or minimizes the mean

message waiting time, Tavg. In general, the modulation that is optimal in

terms of average bit rate will not be optimal for mean waiting time. For our

purposes, each modulation is completely specified by the following three

parameters: I

* Bits per channel symbol: k = log 2 M

* Power efficiency: Ep = (Eb/No)req

* Bandwidth efficiency: cB = R/W

Noncoherent demodulation in itself has no direct effect on average bit rate or %

mean waiting time, but because of its widespread use in meteor-scatter

communications, we shall investigate its performance also. In the

discussion that follows, binary FSK and binary PSK have been purposely

omitted for the following reasons: Binary FSK is always 3 dB less efficient in

terms of power than BPSK (Blahut, 1987), so the only advantage of binary FSK

.

,-
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is noncoherent demodulation. If Gray coding is used, one can show that

QPSK (4-QAM) has identical power efficiency to BPSK. Therefore, the only

advantage of BPSK over QPSK is the absence of the quadrature channel and

its potential crosstalk contribution.

4.2 Optimal Waveform Modulation For Fixed-Rate. Several factors govern

the choice of modulation technique:

* Power efficiency

* Bandwidth efficiency

* Use of noncoherent demodulation

* ToleL ance to impairments

The use of noncoherent demodulation is an important consideration on the

meteor-scatter channel. Noncoherent demodulators are immune to phase
errors, so acquisition of the signal is greatly simplified and acquisition time

is shortened. Because acquisition time is typically a significant portion of

burst duration, noncoherent demodulation is preferred. Impairments
(other than noise) in digital communications are caused by the equipment

and the channel. Impairments caused by equipment include linear

distortion, nonlinear distortion, and synchronization errors. Those caused

by the channel include interference, jamming, and multipath fading

(Noguchi, et al., 1986). The factors of greatest interest to us are those that

affect our two performance measures, Ravg and Tavg. These factors are

power and bandwidth efficiency. Noncoherent demodulation will be a
secondary consideration. The topic of tolerance to impairments is beyond the

scope of this thesis.

Conventional meteor-scatter communication systems employ frequency shift

keying (FSK) or binary phase shift keying (BPSK). The chief advantage of

FSK is the option of noncoherent demodulation. BPSK is 3 dB better in terms

i .4
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of power efficiency, but BPSK requires a coherent demodulator. Both are

rather easy to implement, but there is no evidence that either technique is

optimal in terms of our performance measures, Ravg and Tavg. In fact, the

topic of the appropriate modulation technique for meteor-scatter is rarely

discussed in the literature. Restricting the class of modulation techniques to

M-ary QAM and M-ary FSK, we can find the optimal modulation technique

for a given set of link parameters. In general, the optimal modulation

technique will depend on which performance measure we are trying to

optimize and the bandwidth constraints of the channel. Consider first the

waveform modulation technique that maximizes the long run average bit

rate, Rbavg, for a fixed-rate modem.

4.2.1 Maximizing long run average bit rate. Rbavg. Assume for the

moment that the channel is unconstrained (unlimited bandwidth). We wish

to maximize the average bit rate, Rbavg over the allowable waveform K

modulation methods: M-ary QAM and M-ary FSK. The expression for

average symbol rate, Ravg, for the fixed-rate modem is derived in Appendix A

and is given below (q0 << 1014 e/m)

Ravg =XRtc+XRS B q0 6.9 1  (4.19) ,.p
AF10

1r'~-'~' IL 2 -1/2
Pr (0) ]rL ?,12 '

where A = NO (EI0)req 2 e

R No (Es/No)req

qo = Pr (0, 1)

1/2

= 0.[ Rs (Es/No)req -2 .

N

wr uc . *rnin- p P -- pq. .
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and all other terms are defined either in Chapter 2 or Appendix A. We can

convert (4.19) into an expression for average bit rate by noting that the

average bit rate is simply the product of number of bits per symbol and the

average symbol rate

Rbavg = (10g 2 M) Ravg (4.20)

Assuming a constant bit rate, Rb, for all modulation methods, we can

attempt to maximize Rbavg as a function of M and (Eb/N0)req. We can write

an expression for Rbavg in terms of these two parameters by noting that

R, (Es/No)req = Rb (EbfNo)req

Using this result leads to the following expression for average bit rate

Rbavg = C, Rb + C2 Rb [6.91 -C 3 Rb (Eb/No)req] (4.21)

(Eb/No)req

where C1 = 0.1 [1.7 GT GR PT 10 (. f- t

1.7 GT GR PT No 1/2

C2  Pr(0,1) B

2 X 10-7 NO /2 e

= () N '

Since (4.21) is a strictly decreasing function of (Eb/No)req, the maximum is e

not attained and the optimal modulation is M-ary FSK, M-*o,. This is the

..V

-... . . . . ._... ... -, .-,..,... .. ,. ., . ,...-.-...-,. ,-,. ..., ,.. ,.._., ... .. :...,. ,. ......
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expected result since we assumed the channel is strictly power-limited.

For a bandwidth-limited channel, we must consider the bandwidth

efficiency, EB. Assuming a bandwidth limit of Rmax (= maximum symbol '.

rate), we can compute the maximum bit rate as

Rbmax = B Rmax

Values of maximum bit rate for Rmax = 500 kHz are listed in Table 4.5 for

M-ary QAM and M-ary FSK, M = 4, 8, 16, 32, and 64.

Table 4.5 Maximum Bit Rate for M-ary QAM and M-ary FSK

N

Modulation EB Ebmax

64-QAM 6 3.0 M b/s
32-QAM 5 2.5 M b/s
16-QAM 4 2.0 M b/s I

8-QAM 3 1.5 M b/s
4-QAM 2 1.0 M b/s
4-FSK 1.0 500 k b/s
8-FSK 3/4 375 k b/s
16-FSK 1/2 250 k b/s
32-FSK 5/16 156 k b/s
64-FSK 3/16 93.8 k b/s

Now assume that each M-ary modulation scheme is operating at the

maximum bit rate, given by Table 4.5. We wish to maximize (4.21) as a

function of the allowed values of (Eb/No)req, with Rb = Rbmax. The curve of

Figure 4.6 demonstrates this behavior for a bit-error-rate of l04

From Figure 4.6 we see that 8-QAM is optimal, but there is negligible

difference between 8-QAM and 4-QAM. In general, the optimal modulation

is a function of transmitter power. The higher order M-ary QAM waveforms

are favored for high transmitter power. I

S,

I.
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Figure 4.6 Average bit rate for M-ary modulation on fixed-rate modem

Since the overdense trail model is only an approximation, one may wish to

find the optimal modulation assuming that all trails are underdense. The

expression for Rbavg assuming all trails are underdense is given by the first

term of (4.20)

S Rb ,

Rbavg = C1 (Eb0)req (4.22)
),.q

To maximize (4.22), we must simply maximize the square root of the

bandwidth efficiency over the power efficiency

(Eb/N0)req

e,

From Figure 4.7 we can see that 4-QAM (QPSK) is optimal for this case,

independent of the link parameters. Next we want to consider minimizing
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the mean message waiting time for the fixed-rate modem.
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Figure 4.7 Bandwidth efficiency/power efficiency for Pb = 10-4
.

4.2.2 Minimizing mean message waiting time. Tavg. Recall from

Chapter 3 that the mean message waiting time for a fixed-rate modem is

given by the following -'

1 N
E[T w ] = + XTR s  (4.23)

where N = the message length in symbols, T = mean burst duration (= .58 s),

and R. is the symbol rate in Hz. It is easy to show that the following 'k

expression is equivalent to (4.23) where N is now in bits

1 N
E[TW] =" + .tR- (4.24)

The optimal bit rate is then Rbopt - N/ bits/s. Typical message lengths are

on the order of 10,000 bits, so if we operate at or near the optimal bit rate we

e F 'i .4r,
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will be operating considerably below the maximum symbol rate of the

channel, except for M-ary FSK, with M very large.

The mean waiting time when operating at the optimal bit rate will be the

same as that found in Chapter 3, i.e.

2
E [Tw]0pt = (4.25)

From the previous section we know that (4.25) is a strictly increasing

function of (Eb/NO)req. Therefore, the minimum is not attained and the

optimal modulation is M-ary FSK, M--4-. This conclusion is not entirely %

valid because for very large M, the bandwidth may approach the bandwidth

limit of 500 kHz. For example, consider a system operating at a bit rate of

5,000 bits per second. To approach the bandwidth limit, we would have to

have a bandwidth expansion factor of 100. This value is not reached until

M = 4096. It is highly unlikely that a system of this complexity would ever be

implemented. To improve the power efficiency a system designer would

incorporate some form of error-control coding. Thus, we conclude that the

strictly power-limited channel model is quite good when message waiting

time is the performance measure of interest.

4.3 Optimal Waveform Modulation for Adaptive-Symbol-Rate.

4.3.1 Maximizing long run average bit rate. Rbavg. The expression for

average symbol rate for the adaptive-symbol-rate modem is derived in

Appendix A and is found to be

Pr (0, 1) t, q0 1014
R X N3. 0 8 A B q0  (4.26)Ravg "2 N o (Es/N0)req :
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where all terms have been defined previously. Using the same arguments as

in Subsection 4.2.1, we can convert (4.26) to the equivalent expression for

average bit rate. This leads to the following

Rbavg = C4 + C5  (4.27)
(Eb/No)req

P

-1.7 GTGRPTNo 1/2 -2.4 Pr (0, 1) tc10

where C4 =0.1 -Pr(O, 1) (3715) 2 No

-2.41/2 () _ 1/2C5 = 3"06 x 10~~~~7 [ 1.7 G T G R P T N o° ]Pr0 ) /2 2" r 0 re 2 N j --- -jB '".

30x10r(0, 1) j 37. 5 [No ,t2 e

Assume for the moment that the channel is strictly power-limited. Since

(4.27) is a strictly decreasing function of (Eb/NO)req, then the optimal %

modulation is once again M-ary FSK, M- o.

Now consider the bandwidth-limited case. The average bit rate is given by the

following expression

T(q)

Rbavg= fJ o Rb(t) fQ (q dt dq (4.28)

where

Pr (t, c) Pr (t, c)
<- Rbm x

No (Eb / No)req No (Eb / NO)req

Rb(t) =

Pr (t, c)
Rbmax , N (Eb / No)req > Rbmx

No, . ."
"

% ".' - "

. 5, * *1 6
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and Rbmax is given by the values in Table 4.5. Figure 4.8 consists of a plot of

(4.28) for a bit-error rate of 10-4. The transmitter power is 2000 watts and all

other link parameters are those of Chapter 2. The curve of Figure 4.8

indicates that the optimal modulation is 16-QAM, but the optimal modulation

will in general be a function of the transmitter power. As the transmitter

power increases, the percentage of time that the modem operates at

Rb(t) = Rbmax increases and the modulation with greater bandwidth

efficiency is favored.

2000

1500 "

1000

-00

- 50

0 1 2 3 4 5 6

Bandwidth efficiency in bits/s/Hz

Figure 4.8 Average bit rate for M-ary modulation on
adaptive-symbol-rate modem (PT = 2 000 watts, BER = 10-4 )

4.3.2 Minimizing mean message waitinz time, Tavg. We do not have a

closed form expression for the mean message waiting time for the adaptive-

symbol-rate modem, but from equation 3.32 of Chapter 3 we know that the
mean waiting time is directly proportional to the inverse of the meteor arrival

rate. Therefore, we come to the same conclusion as for the fixed-rate

modem: the optimal modulation is M-ary FSK with M large. This result

supports the argument that error-control coding should be effective in
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minimizing message waiting time. Coding can greatly improve power

efficiency without the complexity of additional orthogonal waveforms.

4.4 Adaptive QAM. The discussion of adaptive techniques thus far has been

restricted to the adaptive-symbol-rate modem. The adaptive-symbol-rate

modem employing M-ary FSK (large M) uses the channel optimally,

assuming that the channel is strictly power-limited. This assumption is

valid for systems with low transmitter power levels, small antenna gains, or p

noisy receivers. On the other hand, systems with high transmitter power

levels will encounter signal-to-noise ratios (SNR) that will support symbol

rates exceeding the coherent bandwidth of the channel. For these systems,

the adaptive-symbol-rate modem is not optimal. To see why, consider the plot

of instantaneous symbol rate versus time found in Figure 4.9

700- S

600-
*Unused capacity

500 Rmax

E, 400

300-

2 00

0 1 2 3 45

Time in seconds

Figure 4.9 Instantaneous symbol rate R(t) for an overdense trail

When the SNR at the receiver exceeds the value corresponding to the

maximum symbol rate, Rmax, the adaptive -symbol-rate modem must operate

at a fixed symbol rate and a fixed bit rate, Rhmax. (Rmax and WITrax are

,%.a

---. ' .. %.
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related by bandwidth efficiency, see Table 4.5.) At these high received signal

levels, the channel is being under-utilized, since the SNR indicates that the

channel can support high, bit rates.

A better adaptive system is one that uses waveforms with high bandwidth

efficiency when the SNR is high and waveforms with good power efficiency

when the SNR is low. Thus, the ideal adaptive scheme on a bandwidth-

limited channel would be one that operates at an adaptive (time-varying)

symbol rate until such time that the SNR s;upports the maximum symbol

rate, Rmax. At this time, the symbol rate would stay constant at R. = Rmax

and we would employ a modulation technique with high bandwidth efficiency

such as M-ary QAM. Such a hybrid system of part adaptive-symbol rate and

part fixed-symbol rate would be difficult to analyze and to implement, but the

author encourages further research in this direction. For the purpose of this

thesis, we shall limit discussion to a fixed-symbol-rate system that adapts the

bit rate to the time-varying SNR through the use of M-ary QAM waveform

modulation. The author calls this adaptive scheme adaptive QAM.

The adaptive QAM scheme that we shall analyze employs the set of M-ary

quadrature amplitude signal constellations of Figure 4.2. The reader will

recall that these were the rectangular constellations for M = 4, 8, 16, 32, and

64. Larger constellations will not be used since their exclusion has little

impact on performance for reasonable values of transmitter power. The

operational concept for adaptive QAM is simple: operate at the highest value

of M that the channel will support. Recall that the instantaneous symbol rate

can be written as the following

Pr (t, q)R(t) =(4.29)No (Es/No)req

For the following discussion, denote the power efficiency for M-ary QAM by
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(ES/NO)M, where E s = (log 2 M) Eb. Values of (Es/No)M for M = 4, 8, 16, 32, and

64 are listed in Table 4.6. 4.

Table 4.6 (EIsOreq in dB for several values of Pb for M-ary QAM

Modulation b -3 pb.i.- 5  p 1 Q-6
4-QAM (QPSK) 9.6 11.4 12.6 13.5
8-QAM 13.5 15.2 16.4 17.4
16-QAM i6.3 18.1 19.4 20.3
32-QAM 19.3 21.1 22.4 23.4
64-QAM 22.2 24.0 25.4 26.4

Realizing that the symbol rate is constant, we can rewrite (4.29) to get an

expression for the signal-to-noise ratio per channel symbol as

Pr (t, q)

(Es/No) = NoR (4.30)

When the the right-hand side of (4.30) exceeds (ES/No)M, the modem changes '

modulation to M-ary QAM and operates at a bit rate of (log 2 M)Rs bits/s.

Figure 4.10 demonstrates this operation graphically for an underdense trail

with q = 1013 e/m and a symbol rate of 1 kHz. Figure 4.11 demonstrates

similar behavior for an overdense trail with q = 1015 e/m and a symbol rate of
500 kHz. The operating thresholds of Figures 4.10 and 4.11 are those for a

required maximum bit-error rate of 10-4 (see Table 4.6). Note that the

underdense trail will not support 64-QAM and the overdense trail will

support neither 32-QAM nor 64 QAM.

The adaptive QAM modem operates at or above a minimum SNR per bit to

maintain reliable communications. Therefore, the average probability of bit

error is always less than that given by (Es/No)req, and the subsequent

performance predictions can be considered lower bounds on performance,

rather than just estimates of performance.

I
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Figure 4.10 Operation of adaptive QAM on underdense trail

(PT= 2000 watts, RS = 1000 Hz, q 1 013 elm)
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Figure 4.11 Operation of adaptive QAM on an overdense trail
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On the strface, changing modulation with time may appear more complex

than changing symbol rate, but in Subsections 4.4.4 and 4.4.5 we shall see

that the adaptive QAM modem has definite advantages over adaptive-symbol-

rate in implementation. One obvious advantage is that the adaptive QAM

modem has only 5 information rates. In contrast, the theoretical adaptive-

symbol-rate modem has an infinite number of information rates. We begin

our investigation of the performance of adaptive QAM by examining the long

run average bit rate.

4.4.1 Average bit rate, Rbavg. Let W(q) denote bits per meteor burst, a
random variable and a function of electron line density, q. From Figures 4.10

and 4.11 we see that, in general, W(q) can be written as

W(q) = Rs [2t 4 + 3t 8 + 4t 16 + 5t 32 + 6t64] (4.31)

where tM = the time that the modem operates at M-ary QAM for a given

burst. Note that the total burst duration, Td, is given by Td = t4 + t8 + t1 6 + t 32

+ t64. Since many trails will not support 64-QAM or even 32-QAM, we allow

the possibility that tM = 0 for some M.
N

The average bit rate can be written as %

Rbavg = W(q) fQ (q) dq (4.32)

where W(q) is given by (4.31). This expression is evaluated numerically with "
results tabulated in Table 4.7 for the link parameters of Chapter 2.

Comparing Tables 4.7 and 3.2, we see almost a three-fold improvement over

adaptive-symbol-rate at Rs = 500 kHz.

*1
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Table 4.7 Average bit rate in bits/s for adaptive QAM, PT = 2000W

Rs. kHz underdense overdense total

1.0 11.1 5.0 16.1
5.0 20.3 24.6 44.9
10 24.9 48.7 73.6
50 32.9 221.8 254.7
100 31.8 402.5 254.7
500 12.0 1269 1281
1000 1.0 1789 1790

The improvement factor for adaptive QAM over adaptive-symbol-rate is

plotted in Figure 4.12 as a function of transmitter power. Note the

improvement is significant, but is highly dependent on transmitter power for

power levels below 3000 watts.

4.0-

3.0

2.0

0.0

A-. 1.0

0.0 I I I I

0 2000 4000 6000 8000 10000

Transmitter power in watts
A-

Figure 4.12 Improvement in average bit rate for adaptive QAM
over adaptive-symbol-rate (Rmax = 500 kHz)
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4.4.2 Mean waiting time. Tavg. Recall from Section 3.2.3 of Chapter 3

that the Laplace transform of the mean waiting time is given by

L--ET,] 1 + F(s) (4.33){ E[ ] - s s [I"-F(s)]

where

F(s) = the Laplace transform of the probability density function N.

for the random variable W (= bits per meteor burst).

s = the argument of the Laplace transform with respect to N,

the number of bits in the message to be cransmitted. N is

assumed known, not random.

= the meteor arrival rate (= rate of the Poisson process).

The first step in evaluating (4.33) for adaptive QAM is to derive an expression

for the cumulative distribution function (CDF) for the number of bits per

meteor burst, W. Denote the CDF for W by Fw (x). The expression for Fw (x)

is derived in Appendix B and is given below

f x) .
Fw(x) =1- I4 exp 6Rtt x x 6 4  (4.34)

1- K32 exp 5R ' X 32 X x < X64

K1 6 exp 4Rt} , x1 6  x < X2

1 K 8 exp 3R, X8  X < X6XI
-p9
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1 - exp 2Rt 0 X < X8

where the constants KM and xM, M = 8, 16, 32, 64 are defined in Appendix B

and t (= t.) is the mean burst duration in seconds. The function Fw (x), given

by (4.34), is plotted in Figure 4.13.

1.0

0.8

"- 0.6 -
VI

0.4

0.2

0.0-

0 10000 20000 30000 40000 50000

Bits per meteor burst, x

Figure 4.13 Cumulative distribution function for bits per burst, W,

for adaptive QAM (Pb = 104, Rs = 5900 Hz, r = .58 s)

We can see from (4.34) that Fw (x) is divided into 5 regions, each described by

an exponential function with a different rate of decay. The CDF of (4.34) is

continuous, but only piecewise differentiable. Therefore, the Laplace

transform of the probability density function, denoted by F(s), will be quite

intricate, in-olving polynomials and exponential functions of s. The

corresponding expression for the Laplace transform of the mean waiting

time, given by (4.33), is not tractable and possibly not invertible in closed
form. To avoid this situation, we choose to approximate Fw(x) by a sum of

.5

Si,
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three exponential functions with rates of decay given by the first, third and

fifth terms of (4.34). A least-square linear approximation is derived in

Appendix B and plotted in Figure 4.14.

1.0-

0.8

- 0.6- CDF for random variable W
VI

Approximation to CDF
0.4

0.2

0.0 - -------

0 10000 20000 30000 40000 50000

Bits per meteor burst, x

Figure 4.14 Approximate CDF for adaptive QAM
(Pb = 10-4, Rs = 5900 Hz, c = .58 s)

The approximate probability density function is just the first derivative of the

approximate CDF and the Laplace transform of the approximate density

(denoted by F(s)) is easily found for the sum of three exponential functions.

When the Laplace transform of the density function is substituted into (4.33),

we get the following expression

L-- J{E[T"l I S2- + -- + 2(4.35)
+ s + d2 S + d1

where A, B, C, D, d 2 , and d1 are constants dofined in Appendix B.

Consulting a table of Laplace transforms, (Fodor, 1965) the mean waiting

time for Pb = 10 -4 is given by
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E[TW] -- 1.37+ 4.49R 3.64R ,

N (4(N6 (N6 R

37 cs N -. 052 sin 7.4R (4.36)•.7cs7.40 R S  C -7.0R

where N is the message length in bits. For N = 10 000 bits and R.= 3 000 Hz,

the mean waiting time is 9.2 seconds.

Now that we have an approximate expression for the mean waiting time for

the adaptive QAM modem, we should compare performance with the fixed-

rate and the adaptive-symbol-rate modems.

We already have evidence that adaptive-symbol-rate outperforms adaptive

QAM. For example, from Table 4.6 we see that to increase the bit rate by a

factor of 3 (from QPSK to 64-QAM) the received power must increase by 12.6

dB (Pb = 10-4). For adaptive-symbol rate, on the other hand, the instantaneous

bit rate is directly proportional to received power and a three-fold increase in
S.

bit rate requires only a threefold (4.8 dB) increase in power. In the following

discussion we shall present a more rigorous argument in favor of adaptive-

symbol rate.

Recall that the CDF for W for the fixed-rate modem when operating with

QPSK is given by the following

Fw(::) = 1- exp 2R s t }
2 RSX

The CDF for the adaptive-symbol-rate modem was found in Chapter 3 to be

A.
. ,, . ,,, . , . - , f,, ,. " ,* - , = ' : : ' =:d = - ' 5 

'
.. . . a - - .. . . . . . .
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Fw (x) 1- __

2 +1
Rmint

where W is symbols per burst and Rmin is the minimum symbol rate.

When W is in bits and QPSK modulation is used, the CDF is given by

Fw (x) =1-
1+

+1 4°

The cumulative distribution functions for these three modems are plotted in
Figure 4.15 for Pb = 1-, Rs = 04= 5900 Hz, and QPSK modulation.

1.0
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+ CDF for fixed-rate
0.4

- CDF for adaptive QAM

0.2 - CDF for adaptive-symbol-rate

0.0,,,,

0 10000 20000 30000 40000 50000

Bits per meteor burst, x

Figure 4.15 Cumulative distribution functions for three meteor-scatter

modulation methods (Pb = 10-4, R, = Pin = 5900 Hz, and waveform

modulation for fixed-rate and adaptive-symbol-rate = QPSK)
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The most important feature of Figure 4.15 is that the CDF for adaptive-symbol

rate is strictly less than the CDF of adaptive QAM for all values of x. Ile

Therefore, assuming that the symbol rate for adaptive QAM equals the

minimum symbol rate for adaptive-symbol-rate (making the meteor arrival S
rate, X, the same for both modems), the mean waiting time for adaptive-

symbol rate will always be less than that for adaptive QAM. -,4'-

The improvement factor for adaptive QAM over fixed-rate is defined as the

ratio of the fixed-rate waiting time to the adaptive rate waiting time, i.e.

EliTwIlfixed

E[Tw]adaptive

From Chapter 3, we know that the optimal bit rate for the fixed-symbol-rate

modem is given by N/t and the mean waiting time when operating at this bit .4,.,

rate is given by 2i
E[TW] = (4.37)

If we assume that the fixed-rate modem is operating with QPSK waveform

modulation, then the optimal symbol rate is just N/(2-). Furthermore, if the

adaptive symbol rate modem operates at this same symbol rate, then the

meteor arrival rate, X, is the same for both modems and we can compute the

improvement factor for adaptive QAM over fixed-rate as the ratio of (4.37) and

(4.36), given by

E[TwI 2{1.37 + N -exp 36R

'..! (7.40 RS '52i N ! -7 .4 0  R

I-.%

"

N N 'W, N* % . 4 . . s%
4

.
4

.
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Substituting in the value for symbol rate, Rs =N/(2 -), we get I= 1.205.

Although Equation 4.36 was derived assuming a bit-error rate of 10-4, it is

also an excellent approximation to mean waiting time for bit-error rates in

the range Pb = 10-3 to Pb = 10-6, as noted in Appendix B. Further evidence to

support this claim is given by the results of Table 4.8 where the improvement

factor is computed for several values of bit-error rate. Note that the

improvement factor is constant to two decimal places.

Table 4.8 Improvement in waiting time for adaptive QAM over fixed-rate

Pb I
10-3  1.203
10-4  1.205

10-5 1. 02 Z:
10-6 1.201

From Table 4.8, we see that the adaptive QAM modem offers a 20%

improvement over the fixed-rate modem when operating at the optimal

symbol rate for the fixed-rate modem. In Chapter 3, we derived a lower

bound on improvement factor for adaptive-symbol-rate of 1.15. Since the

adaptive-symbol-rate modem will always outperform adaptive QAM, we now

have the following new, tighter bounds on the improvement factor for the

adaptive-symbol-rate modem

1.2 1 _2.0

To this point we have compared mean waiting time for the special case
where both the adaptive QAM modem and the fixed-rate modem are

operating at the same symbol rate. In Appendix B it is shown that te

optimal symbol rate for adaptive QAM is approximately 0.3 (N) Hz where N is

Ie

.
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the message length in bits. When both modems are operating at their

respective optimal symbol rates, the improvement factor increases to 1.283,

or 28.3%

When the message lengths are long compared to the symbol rate, the
improvement factor increases as shown in Figure 4.16.

.,

2.0

1.8

- 1.6

1.4

1, 2 ""

1.0.
0.0 1.0 2.0 3.0 4.0 5.0 6.0

Symbol rate / message length, (RsIN) in Hertz/bits

Figure 4.16 Improvement in mean waiting time for adaptive QAM

For very long messages, Figure 4.16 indicates that improvements on the

order of 2.0 are expected (e.g. for Rs/N = 0.1, improvement factor is 1.81).

4.4.3 Optimal symbol rate. Figure 4.17 illustrates the behavior of

average bit rate as a function of instantaneous symbol rate for adaptive QAM.
As in the case of the fixed-rate modem, the optimal symbol rate appears to

exceed the bandwidth limit of the channel. However, the optimal symbol rate
is now approximately 3.5 MHz rather than 10 Mhz, so it is quite possible that

for transmitter power levels below 2000 watts, thr optimal symbol rate may be

less than Rmax = 500 kHz. In this case, the system designer should attempt

-.4
.4. • # . -". o", , . ,""% 9"" . -""4 . "","-"-" ". 9 ""o""%". ""- 4%". '' .- "-"--94 .... '."" ."
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to operate at the optimal symbol rate rather than the maximum rate.

2500-
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Symbol rate in Hz

Figure 4.17 Average bit rate as a function of symbol rate for adaptive QAM

The symbol rate that minimizes the mean waiting time for adaptive QAM is

approximated in Appendix B as Rsopt - 0.3 (N) Hz, where N is the length of

the message in bits.

4.4.4 Signal constellation. To this point we have assumed idealized

performance for adaptive QAM. Now we attempt to design an adaptive

modem whose performance comes as close as possible to that of the idealized

case.

The traditional quadrature amplitude modem of Figure 4.1 incorporates 'p

threshold detectors on the in-phase (I) and quadrature (Q) channels of the

demodulator. The -e threshold detectors map the received data values

an' + jbn' to the nearest (in terms of Euclidean distance) allowable data value,

where the allowable values come from a set of order M. One possible

realization of adaptive QAM would involve a demodulator with five threshold

)'
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S
detectors. The correct threshold detector would be chosen based on an

estimate of the time-varying SNR at the receiver. Such an implementation is

not cost efficient, however. The threshold detector is an analog device and

modern-day analog devices tend to be more expensive than digital devices.

For this reason, we choose to realize the adaptive information rate at the -,

digital level of the modem and use a single threshold detector on each
"J

channel. I

This type of design requires that the mapping of information bits to analog

values, an + jbn be done in a manner that minimizes the complexity of the

threshold detector and insures that demodulation errors result in the

minimum possible number of bit errors. Such a mapping is the topic of this

section.

An efficient signal constellation for adaptive QAM should accomplish the S

following:

" Incorporate decision regions identical to those for non-adaptive

QAM, thus the symbol-error performance is unchanged.

" Minimize the number of distinct constellation points to reduce

threshold detector complexity.

* Incorporate a Gray code, to minimize the probability of bit error.

* Place constellation points such that the average transmitted power *5

is the same for all values of M.

Attempting to meet all four of the above requirements involves compromise ,

U PJ- ~wS~~d55- E. ~ f ~ *~A ' 5 - - - - - - - ~ -*~~45~* .55455~ S~ .]
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as seen by the signal constellation of Figure 4.18. This signal constellation

holds 120 points; only four constellation points are co-located (4+8+16+32+64

= 124). One could design a constellation with fewer points, but incorporating

fewer points makes it difficult to equalize average transmitted power and

maintain the original decision regions.

The rectangular constellation for 8-ary QAM was abandoned in favor of one

with better power efficiency.

The average power transmitted into a 1 ohm load for this constellation is

given in Table 4.9.

Table 4.9 Average transmitted power in watts
for adaptive QAM constellation

M Average power
4 10.6

8 10.5
16 10.2

32 9.8

64 10.5 .

The signal constellation of Figure 4.18 incorporates 20 distinct amplitudes on

the in-phase channel and 19 distinct amplitudes on the quadrature channel.

Therefore, a digital-to-analog (D/A) converter should only require 5 bits to

represent these amplitudes. It may be impossible to incorporate a Gray code

w ith only 5 bits per channel, however, so the author suggests that 6-bit or
hc.bhigher D/A converters be used.."

.U
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Number of voltage levels on I axis =20 8-A
16-QAM o

Number of voltage levels on Q axis = 19 32-QAM x
64-QAM A

4 orners of 16 -QAM are oioated with 6 4-QAM I Crm = 1 volt.,

Figure 4.18 Signal constellation for adaptive QAM
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4.4.5 Modem block diagram. A modem block diagram is shown in

Figure 4.19 that implements the design discussed thus far. A brief

description of the operation of this modem follows. We assume a noiseless

feedback path with zero delay is present.

The input to the modulator section (see Figure 4.19) is a stream of

information bits traveling at some predetermined rate not to exceed the

capacity of the data buffer. When a meteor trail of proper intensity and

orientation is present, the receiver sends to the transmitter a message

requesting information. This message includes the value of M (M = 4, 8,

16, 32, or 64) which is determined by an estimate of the signal-to-noise

ratio, Es/N0 . The data buffer sends k=log 2 M bits to the look-up-table encoder.

The encoder takes the two inputs, (value of M and the k information bits) and

maps them onto two 6-bit words (one for each channel of the modulator).

This word length is chosen because we require at least 6 bits per channel to

represent each of the constellation points with a Gray code. The digital-to-

analog (D/A) converters map the 6-bit words onto 120 distinct constellation

points in such a way that the probability of bit error at the receiver is

minimized. The analog values, an and bn from the I and Q channels,

respectively, are quadrature modulated and transmitted over the channel.

At the receiver, the signal-to-noise ratio is estimated and an estimate of M is

sent to three locations: the transmitter, the look-up-table decoder, and the

rate changer. The received signal is demodulated and sent to the threshold
detectors of the I and Q channels. The threshold detectors choose the nearest

allowed values a n ' and bn'. These values are sent to the look-up-table decoder

where the inverse mapping of the encoder is performed. The output of the

decoder is a k-bit word that is sent to the rate changer, which serves as a

buffer.

°.S
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Since the output of the encoder and the input to the decoder are always 6-bit

words, regardless of the value of M, the modem operates at a fixed symbol

rate, Rs , and a fixed bit rate. The information rate varies at the data buffer

and the rate changer. Since all other components of the system operate at a

fixed symbol rate and a fixed bit rate, synchronization and timing problems

are minimized once the initial synchronization and timing are achieved.

This feature of the modem, plus the fact that it requires only 5 information

rates, makes this implementation of adaptive QAM quite feasible.

'
p.'

p.,

p.



Chapter 5 - Error-Control Coding

'p

In this chapter, we investigate the optimal use of Reed-Solomon (RS) codes on

the meteor-scatter channel. These codes are examined on the basis of

forward-error-correction (FEC) of random errors on an AWGN meteor-

scatter channel. The burst characteristics of the channel make it possible to

optimize coded performance in terms of an optimal code rate. A lower bound -

on optimal code rate for RS codes will be derived. Performance of the coded
system will be investigated in terms of improvement in average bit rate,

Rbavg, or mean waiting time, Tavg. Coded performance will be estimated for
the three types of modems discussed thus far, namely fixed-rate, adaptive-

symbol-rate, and adaptive QAM. Some familiarity with the theory of error- ',

control coding is assumed. Excellent background information on this subject 'a

is found in the texts by Blahut (1983), and Lin and Costello (1983). The
performance of Reed-Solomon codes is also treated in Berlekamp et al. (1987).

The topic of error-control coding for meteor-scatter communication has

received some attention, yet much work remains to be done. The COMET

system of the 1960's employed a crude form of error control called automatic-
repeat-request (ARQ). Recent published research includes the work of ,
Hampton (1985) and Milstein et al. (1987). Hampton's work includes the

effect of the time-varying signal-to-noise ratio on the performance of a hybrid
(ARQ and FEC) coding scheme. Milstein et al. produced an excellent paper

on the performance of two packet communication protocols with RS codes for
error correction. One rather obscure, but noteworthy, treatment of adaptive

coding is the work of Rediske (1982). Rediske designed a coding scheme
employing rate 1/N convolutional codes for use on Weitzen's adaptive

modem. This work demonstrates that adaptive information rate can be

achicoved through error- .,, tion coding rather than through adaptive

88
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symbol rate or adaptive waveform modulation. Adaptive coding for meteor-

scatter is one area that deserves more attention, as noted by Milstein et al.

This chapter is concerned with traditional (not adaptive) coding techniques

for meteor-scatter communications.

In many respects, this chapter is an extension of the work of Milstein et al.

for non-packet communications and adaptive modulation (Milstein et al.

considered only the fixed-rate modem). This author believes that the non-

packet case is more general since the corresponding results apply to a wider

class of communication systems.

Before examining the performance of RS codes, a brief introduction to their

properties is in order.

5.1 Properties of Reed-Solomon Codes. Reed-Solomon codes are examples of

non-binary linear block codes. Consider a message sequence of k symbols

taken from a finite field, GF(q). A linear block code maps these k information

symbols onto a codeword of n symbols such that the qk codewords form a

vector space over GF(q). For Reed-Solomon codes, q is almost always a power

of 2 and the block length is normally 2 m - 1. Reed-Solo-mon code - achieve the

Singleton bound, meaning that the minimum distance dmin = r + 1, where r

is the number of parity symbols (r = n - k). Codes that achieve the Singleton

bound are called maximum-distance-separable (MDS) codes.

Codes with minimum distance, dmin = 2t + 1 can correct all patterns of t or

fewer errors in any received n-tuple. Define the code rate, R, as R = k/n.

Then the error-correcting capability of MDS codes can be written in terms of

block length and code rate as

n - k n(1 - R) (510 (5.1) "
2
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Reed-Solomon codes are good choices for meteor-scatter for the following

reasons:

* Reed-Solomon codes are proven performers on AWGN channels.

* Since RS codes are MDS, they are efficient users of parity symbols

and thus they are effective on channels that penalize increases in

bit rate.

* Reed-Solomon codes can combat burst errors. On the meteor-

scatter channel, burst errors would most likely occur in the I
presence of multipath fading, burst termination, interference, or

jamming.

* RS codes are not perfect codes, so many n-tuples lie outside the ball

of radius t that surrounds each codeword. Therefore, RS codes e-

have a very low misdecode rate, meaning that the decoder will

almost always recognize that such a received n-tuple cannot be

properly decoded and flag it. Of course, some form of ARQ must be

used to fully exploit this property. The error-rate of data that

is both undecodable and not recognized as such is typically 5 orders

of magnitude below the overall BER (Berlekamp et al., 1987). -

A good error-control code will reduce the Eb/NO required to achieve reliable

communication. The amount of this reduction is the traditional figure of

merit for a coding scheme, called the coding gain, G. The usual method of

determining coding gain is to plot the probability of bit error versus Eb/No for

the coded and the uncoded systems and read the difference at a specified

error rate. For example, consider the plot of bit-error-rate for a (31,23) RS

code with 32-ary FSK modulation found in Figure 5.1. In this case, the

• I%
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coding gain is given by the difference in power efficiency (expressed in dB) for

the coded and the uncoded systems. For a BER of 10 -4 , the coding gain is

found from figure 5.1 to be about 1.7 dB.

10-°

10 2  
.

10-

4

. 10-5

10 -6

2 3 5 6 7 8

Eb/No in dB

Figure 5.1 Coding gain for a (31, 23) Reed-Solomon code

with 32-FSK modulation

The coding gain gives a measure of how much we can reduce transmitter N

power and maintain the same error performance. Thus, error-control can

drive down hardware costs by allowing the use of less powerful (and less

expensive) transmitter amplifiers.

5.2 Figure of Merit. Recall that our two performance measures are long run

average bit rate, Rbavg, and mean message waiting time, Tavg. The filgure of

merit for a given coding scheme should reflect the improvement (if any) in

either Rbavg or Tavg. The meteor-scatter channel exhibits the important

property that even when the channel is modeled as strictly power-limited,

I
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there is still a penalty for operating at a higher bit rate. This penalty is a

decrease in the number of observed meteor trails per second, X. In the

discussion that follows, we shall attempt to derive appropriate figures of

merit for a coding scheme on the meteor-scatter channel. The figure of merit

will be a function of the code rate, R, and the coding gain, Gc. Consider first

the figure of merit for Rbavg.

5.2.1 Fixture of Merit for Rbavg. From Chapters 3 and 4 we know that the

expression for Rbavg for the adaptive-symbol-rate modem is proportional to
the inverse of (Eb/N0)req. For a coded system, the instantaneous information P.

bit rate, RI(t), is decreased in direct proportion to the code rate. A similar

argument holds for adaptive QAM. Therefore, the figure of merit for a coded

system with either adaptive modulation scheme should be the following

Gf= RG (5.2)

For the fixed-rate modem, we can simplify matters by assuming that all

trails are underdense. Making this assumption, the average bit rate is given

by Equation 4.22 and the figure of merit is simply the square root of (5.2), i.e. N

Gf = JR (5.3)

Note from Equations 5.2 and 5.3 that the same code will give a greater

improvement in average bit rate for the adaptive modem than for the fixed-

rate modem.

5.2.2 Figure of merit for Tavg. The mean waiting time for the fixed-rate

modem operating at the optimal bit rate was found in chapter 3 to be 2/?. or

equivalently

V-.,.-. -"
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where all terms have been defined previously and the optimal bit rate is

Rb = NiT. Now N denotes the total number of bits, i.e. information bits +

parity bits. Since we wish to minimize the waiting time, we can see from

(5.4) that the figure of merit should be simply

Gf= J7J

which is identical to (5.3). The adaptive-symbol-rate modem has mean

waiting time proportional to 1/X, so we get the identical result. We assume

the same for adaptive QAM, but we shall not prove it.

Summarizing, if one wishes to maximize the improvement in average bit

rate or waiting time, one should maximize the product G = RGc as a function

of code rate, R.

5.3 Optimal Code Rates. The objective of this section is to maximize the gain

factor, G, as a function of code rate, R, provided that the maximum exists.

The behavior of coding gain as a function of code rate for Reed-Solomon codes

is not well documented, but the author has found that for RS codes used with
BPSK and M-ary FSK, the coding gain peaks once at a value of code rate in

the interval from 1/2 to 1.0. Since our goal is to maximize the product of code
rate and coding gain, this behavior is consistent with the hypothesis that an

optimal code rate exists.

By restricting waveform modulation to certain types, we can derive an

expression for the optimal code rate for MDS codes used on the meteor-scatter

% o
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channel. This expression applies to systems operating with binary FSK and -

M-ary QAM to include BPSK and M-ary PSK. These modulation types all

have bit-error-rate expressions in terms of either the complementary error

function or the exponential function. These functions allow a

straightforward derivation of asymptotic coding gain similar to that found in

Clark and Cain (1981). Clark and Cain derive an expression for the

asymptotic coding gain (as Eb/N0  oc) for a t-error correcting binary block

code operating with BPSK modulation on a binary quantized channel. This

expression is given by

Ga = R(t+1) (5.5)

One can show that this expression also holds for M-ary QAM, M-ary PSK and

binary FSK (both coherent and noncoherent) when used with t-error

correcting Reed-Solomon codes. The reader should note that the coding gain

predicted by (5.5) is only achieved in the limit as Eb/N0 -4 - . At modest

signal-to-noise ratios, the actual gain may be considerably less. Equation 5.5

is useful because we want to maximize the product of code rate and coding

gain i.e.
p

G = RGa = R2 (t+1)

Substituting (5.1) into the above, we get the following

2[asIG R ( - R)

Df(e+1 2 n tzR'

Differentiating and setting the result equal to zero yields

Wrl -ee -0p.
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dG 2 (L 1n 1I--I-ItL 0
dR 2 ) 21

Solving for R, we get R = 0, and R = 2/3 (1 + 2/n). We must check to see that

the latter is in fact a maximum. The second derivative of G is given by

d2G
d2 = (n+2)-3nH

Substituting R = 2/3 (1 + 2/n) into this expression yields 'S

2d G(Ropt) 2
= - (n + 2) ".,p

which is always less than 0. So this value of code rate is indeed a maximum

and we can write the optimal code rate (as Eb/NO - c) for n _ 5 as the 'A.

following

Ropt = -I1 +- (5.6) %
n,

We now make the assumption that coding gain, Gc, is a strictly non-

decreasing function of Eb/NO, a safe assumption since all good codes exhibit

this behavior. If this is the case, then the optimal code rate is always greater

than or equal to the value given by (5.6) and we can write bounds on the -..

optimal code rate. Thus, the optimal code rate for MDS codes used on the

meteor-scatter channel is bounded in the following way ( for n > 5)

2t 1 (5.7)
a n

I
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Note that the lower bound on optimal code rate approaches 2/3 as n - o. We

shall see in the next section that for realistic signal-to-noise ratios, the

optimal code rate is about 4/5. The lower bound of (5.7) should encourage I-.

system designers because it eliminates consideration of the low rate codes

and the associated decoder complexity. :4
5.4 Performance Estimates. Since the weight distribution for Reed-Solomon

codes is known, it is possible to derive exact expressions for the probability of

incorrect decoding. Such expressions are found in Blahut (1983) and

Michelson and Levesque (1985). For our purposes, a simple bound on

decoding error will suffice. Assuming random errors on an AWGN

channel, we can write an upper bound on the probabiltiy of decoding error for

a t-error correctiong Reed-Solomon code of block length n symbols as

n

P j = t+1 (Ip.)n 3  (5.8)

'S

where Ps is the probability of code symbol error, which is dependent on the

modulation type. We shall consider two implementations:

" Binary waveform modulation.

" M-ary waveform modulation matched to the RS code.

By "matched," we mean that the modulation symbol size in bits is the same '

as the RS code symbol size in bits. For example, 32-ary FSK is matched to a

(31,23) 4-error correcting Reed-Solomon code. This type of coding scheme is

convenient because the probability of code symbol error is simply the

probability of modulation symbol error. For binary waveform modulation,

the probability of symbol error equals the probability that we have 1 or more

bit errors in a code symbol, i.e.

% %
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PS =1- (1- )k .

where p = the probability of bit error for the binary modulation and k = the

number of bits per code symbol. For RS codes, k = log 2 (n+1).

We can convert (5.8) into an approximate expression for the probability of

symbol error by noting that a received n-tuple with more than t errors will

almost always be undecodable and recognized as such. These n-tuples are

routed around the decoder to avoid introducing additional errors. Based on

this assumption, the probability of symbol error can be approximated by the

following

n
j (n)Is( Ps )n-J 59PS- n aj(

j = t+1

A

Finally, we convert this expression to a probability of bit error by assuming

that when a code symbol is in error, each of the 2k - 1 k-bit patterns are ,a

equally likely. (This is the same assumption we made in Chapter 4 for M-

ary FSK.) This assumption leads to the following expression for probability of

bit error ",.

Pb j- () p(1 P. )n-p (5.10)
2 -1 j=t+l

,.

Armed with this expression for the probability of bit error, we can evaluate

the performance of RS codes on the meteor-scatter channel. Figure 5.2

demonstrates the behavior of the gain factor, G = RG c, as a function of code A.

rate for (31,k) Reed-Solomon codes. BPSK modulation is assumed. Note that

the optimal code rate is approximately 0.8. The optimal code for Pb = 10-4 is a

(31,27) 2-error correcting RS code. For a bit-error rate of 10-6, the optimal
,'

"a

,%

,.,
' " Jy R ... A::aS:'a5'-
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code is a (31,25) 3-error correcting RS code. Note that the optimal code rate I

shifts toward the lower bound (approximately 2/3) as the power efficiency

increases. This behavior was predicted in the previous section.

1.8'

1.6 -0- Pb = 1.0e-04

1.4 - Pb = 1.0e-06

1.2 -

"0 1.0

0.8 P

0.6
0.4 0
0.2
0.0

0.0 0.2 0.4 0.6 0.8 1.0

Code rate p

Figure 5.2 (31, k) Reed-Solomon codes with BPSK modulation

Figure 5.3 is the equivalent graph of figure 5.2, this time for 32-FSK
modulation. Now we can see the behavior of the optimal code rate as a

function of Eb/No. Note that once again, the optimal code for a required BER ,%
of 10-4 is the (31,27) 2-error correcting code, but for a required BER of 10-6, the .i
optimal code rate shifts toward the lower bound, making the optimal code a

(31,25) 3-error correcting RS code.

From Figure 5.3 we see that for a required BER of 10-6, the maximum gain is

approximately 1.4. Recall that the figure of merit for the adaptive modems

when evaluating average bit rate is simply the gain factor, G = RG c.

Therefore, the average bit rate for these modems would increase by a factor of
1.4. The figure of merit for the fixed-rate modem was found in section 5.2 to

be the square root of G, so the improvement factor for this modem is 1.2. The

figure of merit with respect to mean waiting time is the same for all systems

';2. ..
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and is again the square root of G. So we can expect a reduction in mean

waiting time by a factor of 1.2.

1.5

-0. Pb = 1.0e-04
-0- Pb=1. Oe-06

1.0

Q 0.5

0.0-
0.0 0.2 0.4 0.6 0.8 1.0

Code rate

Figure 5.3 (31, k) RS codes with coherent 32-ary FSK

Figure 5.4 demonstrates the performance of (63, k) Reed-Solomon codes.

Again, the optimal code rate is about .8 with the optimal codes being (63, 55)

for a BER of 0-4 and (63, 53) for a BER of 10-6.

2.0

SPb = 1.0e-04

1.5 ~ Pb =1.0e-061.5

"Id
1..0

0.5

0.0--
0.0 0.2 0.4 0.6 0.8 1.0

Code rate

Figure 5.4 (63,k) RS codes with coherent 64-ary FSK
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The performance results presented thus far indicate that Reed-Solomon

codes can provide only modest improvements in average bit rate and mean

waiting time. Because of the very low misdecode rate of Reed-Solomon codes,

the inclusion of some type of ARQ may improve the coding gain and

subsequently the gain factor.

L

.1

p.'.

I-

I



Chapter 6 - Conclusion

6.1 Summary of Findings. The goal of this thesis is to improve the
performance of digital communication systems on the meteor-scatter

channel through the use of digital modulation and coding techniques. The
main results fall conveniently into six categories: channel model,

expressions for average bit rate, expressions for mean waiting time, optimal
M-ary modulation, adaptive QAM, and Reed-Solomon codes. Following is a

brief summary of the findings of this thesis, organized according to the
aforementioned categories.

6.1.1 Channel model. The meteor-scatter channel exhibits several
unique properties that should be exploited in digital signal design. These
properties are described in detail in Chapter 2 where a channel model is

derived. This channel model is based on the premise that meteor arrivals
can be modeled as a Poisson process and the properties of the Poisson process

are used extensively throughout the thesis.

Burst duration is found to have constant mean, independent of the link
parameters. Thus, for a given modulation scheme, all variations in

throughput are attributed to the meteor arrival rate, X. p"

Channel noise is modeled as additive, white, and Gaussian distributed.

Multipath-induced intersymbol interference places a ceiling on channel

symbol rate, effectively limiting the bandwidth of the channel. The
maximum channel symbol rate is approximately 500 kHz.

101
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6.1.2 Long run average bit rate. Recognizing that the process of

transmitting messages on the meteor-scatter channel is a compound Poisson

process, one can derive an expression for long run average bit rate. The

general expression derived in Chapter 3 is given by %

Rbavg = XE [W] (6.1)

X24 W(q)fQ,(qdq

where

X is the meteor arrival rate

W is the number of bits per burst

q is electron line density

fQ(q) is the probability density function for electron line density

It is shown that this expression for average bit rate agrees in theory with one t,

popular definition of throughput found in the literature. Equation 6.1, as 'a

evaluated in Chapter 3, is an approximation to the long run average bit rate
since it assumes that all trails occur at a fixed point in the sky and that the

electron line density, q, is upper-bounded by 1017 e/m.

Specific expressions are derived for the fixed-rate and the adaptive-symbol-

rate modems. The symbol rate that maximizes the average bit rate for the

fixed-rate modem will normally exceed the ceiling imposed by intersymbol

interference.

The adaptive-symbol-rate modem offers a twenty-fold improvement in

average bit rate when the channel is modeled as strictly power-limited.
When the channel is modeled as bandwidth-limited, the improvement is

reduced dramatically to about 25%.

. -
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6.1.3 Mean message waiting time. The mean message waiting time

for a fixed-rate modem operating at a bit rate of Rb bits/s is derived in Chapter

3 and is given by

E [TN] (6.2)
w] T+ X _R (.2

where N is the message length in bits and r (= .58 s) is the mean burst

duration in seconds. The meteor arrival rate, X, is a function of bit rate and
it is shown that a unique bit rate exists that minimizes mean waiting time.

This optimal bit rate is

Rbopt N (6.3)
IV.

Upper and lower bounds on the mean waiting time for the adaptive-symbol-
rate modem are derived based on probabilistic arguments. These bounds are

given by

1 1
-< E [TW] _p (6.4)

where p = P(W > N). When the adaptive symbol rate modem is operating at a

minimum symbol rate, Rmin, equal to the symbol rate given by (6.3), the

improvement factor for adaptive-symbol-rate over fixed-rate is given by

2
< 1 2 (6.5)

The work of Cox (1962) is used to derive an expression for the Laplace

transform of the mean waiting time when the distribution for W is known

% %

V.
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and the Laplace transform of the probability density function for W exists.

This expression is given by

L{E [Tw]1 = [ + F(s) (6.6)w s s [1: - F(sll]t

'"

where

F(s) - the Laplace transform of the probability density function for

the random variable W.

s = the argument of the Laplace transform with respect to N, the ,

message length in bits.

6.1.4 Optimal M-arv Modulation. When the meteor-scatter channel is
modeled as strictly power-limited, the optimal M-ary modulation technique is
M-ary FSK, M - c. The power-limited model is valid when waiting time is
the performance measure of interest. This model is not valid when the user
wishes to maximize average bit rate. In this case, the channel must be
modeled as bandwidth-limited and the optimal modulation is normally
M-ary QAM. In general, the optimal modulation for the bandwidth-limited

channel model is a function of the link parameters (especially transmitter

power), and the particular bandwidth limitation.

When all trails are assumed underdense and the channel is bandwidth-

limited, the optimal modulation for the fixed-rate modem is QPSK,

independent of the link parameters.

6.1.5 Adaptive QAM. The adaptive-symbol-rate modem employing M-

ary FSK (M - o) uses the channel optimally, assuming that the channel is

power-limited. The meteor scatter channel is bandwidth-limited, however,

and for this type channel, adaptive-symbol-rate is not optimal. 4

%:'.
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An adaptive modulation scheme that out-performs adaptive-symbol-rate on a

bandwidth-limited channel is adaptive QAM. The improvement in average

bit rate over the adaptive-symbol-rate scheme is shown in Chapter 4 to be %

about three-fold for a bandwidth limit of Rmax = 500 kHz.

In terms of mean waiting time, it is shown that adaptive-symbol-rate will

always outperform adaptive QAM when QPSK modulation is used. Adaptive

QAM offers an improvement in mean waiting time over the fixed-rate

modem of about 28%. A suggested implementation of adaptive QAM is

presented to include a signal constellation and a modem block diagram.

This suggested implementation appears to be feasible using today's

technology.

6.1.6 Reed-Solomon Codes. Reed-Solomon codes used for forward-

error correction are shown to provide modest gains in average bit rate and

modest reductions in mean waiting time.

An appropriate figure of merit is derived to measure the improvement in

either average bit rate or mean waiting time. This figure of merit is given by

G = RGc

where R = code rate and G c = coding gain. The figure of merit for the fixed-
rate modem and for all modems when waiting time is the performance

measure of interest, is simply the square root of G. It is shown that a (31, 25)

Reed-Solomon code offers gain in average bit rate of 40% for the two adaptive

modulation schemes. The gain for the fixed-rate modem is about 20%. The

improvement in mean waiting time is the same for all modulation schemes

and is again 20%.

Bounds on optimal code rate for maximum-distance-separable (MDS) codes

are derived in Chapter 5 and are given by

Ole
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are derived in Chapter 5 and are given by

-11+- R0,p<1 (6.7)

where n is the block length of the code. Because of the very low misdecode

rate of Reed-Solomon codes, some type of automatic-repeat-request (ARQ)

may improve the coding gain and subsequently the gain factor, G.

6.2 Recommendations for Further Research.

6.2.1 Experimental confirmation of findings. Especially to verify
strong dependence on overdense trails and strong effects of bandwidth '
ceiling. Both seem to contradict results published by Ostergaard et al. (1985).

6.2.2 SiL-nal detection and estimation. Adaptive modems especially

require fast and reliable estimate of channel SNR. This channel provides

interesting application for signal estimation since we know much about how

the received power behaves after trail formation. There are possible

applications of linear prediction and other signal processing methods.

Meteor arrivals are modeled as a Poisson random process and signal

detection methods should exploit the properties of the Poisson process.

6.2.3 Variable rate codes. Achieve adaptive information rate through
variable rate error-control codes. Some work has already been done in this

area. See Rediske (1982).

6.2.4 Trellis codes for digital modulation. Trellis codes invented by
Ungerboeck are in widespread use on bandwidth-limited digital radio P.

channels. One possible adaptive implementation would use the same trellis

for say, five QAM signal sets.
p..

p
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Appendix A - Expressions For Long Run Average Symbol Rate

A.1 Fixed-Symbol-Rate Modem. From Section 3.1.1 we have the following

expression for long run average symbol rate for the fixed-rate modem .

Ravg X f R, Td (q) fQ(q) dq (A.1)

where

fQ (q) = - , q > qo S.

q 2
Td (q) = the burst duration as a function of electron line density, qN

X=the meteor arrival rate

The lower and upper limits of integration in (A.1) are qo and 1017 e/m,

respectively. Assuming that qo < 1014 e/m we can derive an expression for qo

based on the underdense trail model. From Section 3.1.3 we have the

instantaneous symbol rate as a function of time and electron line density as
I

Pr (t, q)

R(t, q) N (E / N) (A.2)

.

where
No  is the noise power spectral density

.

(Es/NO)req is the signal-to-noise ratio required to maintain an N
acceptable bit error rate (BER) for a particular modem

Pr(t, q) is the received power as a function of time and electron

line density

107
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From Section 2.3 we have the following expression for Pr(t, q) for underdense

trails

P, (t, q) P, P(0,1) q 2 exp[ -2-t (A.3)

where

PT GT Gr TX 3exp 1 2  2

Pr(),1) = 3 s2e 2

(47c) RCT RGR (RCT + RCR) (1 -sin2 4Cos 23

2 2
=Xsec

16 7c D

Let Td =the duration of the burst in seconds. At the termination of an

underdense burst the received power drops to the threshold value and the

symbol rate is given by the following

R(t, q) R = r:' 1d-qsNo (E, / NO)req

Pr (0, qO)
No (Es NO)req

Pr (0,1) C

No (E. No)req

Solvng for qO yields
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q0 RS No (E, No)req (A.4)
V Pr (0, 1)

A.1 .1 Underdense Trails. From the preceding derivation of q0, we

have the received power at burst termination as

Pr (Td, q) = Pr (0,q 0)

Or equivalently

Pr (0, 1)q [ 1x d P 0 )q

Solving for burst duration, Td, gives W

Td = tc In~ q0  (A.5)

Therefore, the expression for Ravg becomes

144

101 q5

Ravg X XRS tc n dq
q0

0 q

Integrating by parts yields the following

X Rs tcq 0 [11 (04 1
RavgO = 11 q0  In- 1  ii (A. 6)

14 q q0

where q0 is given by (A.4). If q0 << 1014, then Ravg is simply

Ravg XRtc (A. 7)
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Recognizing that the distribution for burst duration in symbols is exponential

with mean Rs t where c = tc, then the above expression is equivalent to the

following

Ravg = X E [W]

where W in this case is the number of symbols/burst when all trails are

assumed underdense.

A.1.2 Overdense trails. Recall from Section 2.3 of Chapter 2 that the

received power from overdense trails is given by S

2 X2 2 1/2

[4Dt+r° ) r, q see ]PT r2 Ln 2(A9sec ( ir (4Dt + r6

Pr (,0) 2 2 0)(A 8

32 2 RR RT (RcR + RT) (1 - cos2  sin2 ) (8_

I

Or equivalently, roe

2 21

or peak is rea q Xe figer A.1 (A9

where

Pr (0) 2, " . - -"" ,32 ic2C RCT (RGR + RGT) (1 -COS
2  sin 2 )

Note that P, (0) is only approximately equal to the received power at t =0. The
time varying symbol rate, R(t), (given by (A.2) ) for overdense trails can be

approximated by a triangle whose base has length tm ax, and whose altitude, :

or peak is Rnax. See figure A.1.

%
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Figure A.1 Piecewise linear approximation to R(t) for overdense trails

Observe that 4Dt >> r 0
2 for all but very small t. Making this approximation,

it is straightforward to show that Rmax and tmax are given by the following

(Abel, 1986)

= Pr(0) 2  (A.1O)
Rmax No (E, / No)req 7c e ,.

r,, q X2 secj 2
tmax = (A.11)

Based on our linear approximation to R(t), (see figure A.1) one can show

quite easily that the burst duration, Td, is simply a proportion of tmax
p

Td= 1 -I ta x  (A.12) -

\Rmax )t

Thus the long run average symbol rate, Ravg, for overdense trails is given by

All
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Ra 0 17 tm x  dq (A.13)
Ravg x J10 14 RS (1 - 2UnxU

Let Rmax = A ql/2 and let tmax = B q where the constants A and B are defined

as follows

F 2 ]1/2

A 22

A= No (Es / N0)req  72-=e

X re2 sec 2

24n D

Substituting these values into (A.1 3) results in

17 r

Ravg X R s B qO 1 (1 q 2q dq 

Straightforward integration yields S

F 2R 5 1
Ravg XRsBo 6.91 - - (A.14)

.-q

where the constants A and B are defined above. The expression for long run

average symbol rate (for qo << 1014 e/m) is found by adding (A.7) and (A.14)

X.RsB~{2R
Ravg X R s tc + X 6.91 - ] (A.15)r ~Al10

S

L.o

,S
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A-2 Ada~tive-Snmbol-Rate Modem. From Section 3.1.3 we have the following

expression for iRavg

Ravg :--XJW(q) fQ(q) dt dq (A.1 6)

Td (q)

where W(q) = IdR(t, q) dt and R(t, q) is given by (A.2).

The threshold value for q is qO and is found by substituting Rmin for Rs in

(A.4)

J L No (Es / No)req

qO Pr(O, 1)

A-2.1 Underdense trails,. For underdense trails, the number of
symbols/burst is given by

W(q) f= J q NO 1)qC]ep dt (A. 17)
0 No (E,/ No)req

where Td (q) = t, In[ -q] duration of underdense burst.

Straightforward integration of (A.17) yields the following

W~) No (Es / N-o re2P(,1q (A. 18)

Substituting (A.18) into (A.16) gives
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Ra 14 Pr (0, 1) q2  tc q0 2

qo No (E, / No)req 2 1- - dq2

Evaluating this integral results in the following expression

Ravg = Pr(0,)tqo [ -2 X qo + 102] (A.19)
2x1014 N0 (Es / No)req

For qo << 1014 this expression simplifies to the following

Pr (0,1) tc qo 1014

Ravg =~ 2 N o (E, / No)req (A.20)

A.2.2 Overdense trails. In this case the number of symbols/burst is

simply the area under the triangle in figure A.1. Thus we can write

TRiq) mxta
W(q) = R(t, q) dt = 2

and Ravg is given by

17 Ni%

1= A q 1/2 B q qo
Ravg X 14  2  2 .dq

.

where the constants A and B were defined previously. We can simplify the

irtegrand to give

17%
1017 A B qq -1/2

Rfavg = 0 q dq
0 ' 4 2
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Evaluating this integral, we get the following result

Ravg = 3.06 x l0 8 A B qo (A.21)

combining (A.20) and (A.21), we get the following expression for the adaptive-

symbol-rate modem

Ravg 2N(E/N) + 3.06 x 10' X A B qo (A.22)

".%-S
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Appendix B - Mean Waiting Time For Adaptive QAM

Recall from Section 3.2.3 of Chapter 3 that the Laplace transform of the mean

waiting time is given by

f E[T..) I = s + (".1)1s [1- F(s) 1(B

where F(s) = the Laplace transform of the probability density function

for the random variable W (= bits per meteor burst).

s = the argument of the Laplace transform with respect to N,
the number of bits in the message to be transmitted. N is

assumed known, not random.

= the meteor arrival rate (= rate of the Poisson process).

The first step in evaluating (B.1) for adaptive QAM is to derive an expression
for the cumulative distribution function (CDF) for the number of bits per
meteor burst. Let W represent this random variable and denote the CDF for

W by Fw (x).

B.1 CDF For Bits per Burst, W. As in Section 3.2 of Chapter 3, we make the N

following assumptions regarding the meteor-scatter channel:

* All trails are underdense.

* W is a continuous, rather than discrete, random variable.
* Overlapping trails (in time) are nonexistent.

" The Wm bits transmitted during the mth meteor burst are sent in a

time At =0.

116
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Recall that the instantaneous symbol rate can be written as the following

Pr (t,q)
R(t) = No (Es/No)req (B.2)

As in Chapter 4, we denote the power efficiency for M-ary QAM by (Es/No)M,

where E s = (log 2 M) Eb. Values of (Es/No)M for M = 4, 8, 16, 32, and 64 are

listed in Table B.1.

Table B.1 (Es/N0reg in dB for several values of Pb for M-arv QAM

Modulation 1.Q--3  p=10-4 pb1. -5  Pb =10-6
4-QAM (QPSK) 9.6 11.4 12.6 13.5
8-QAM 13.5 15.2 16.4 17.4
16-QAM 16.3 18.1 19.4 20.3
32-QAM 19.3 21.1 22.4 23.4
64-QAM 22.2 24.0 25.4 26.4

Realizing that the symbol rate is constant, we can rewrite (B.2) to get an

expression for the signal-to-noise ratio (SNR) per channel symbol as

E Pr (t,q)
ENNo = R (B.3)

i-

When the the right-hand side of (B.3) exceeds (Es/No)M, the modem changes

modulation to M-ary QAM and operates at a bit rate of (log 2M)R s bits/s.

The operation of adaptive QAM on a typical underdense trail is illustrated in

Figure B.1.

2.6,
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Figure B.1 Operation of adaptive QAM on an underdense trail

(PT= 2000 watts, R. = 1000 Hz, q = 1013 e/m)

From Figure B.1 we see that, in general, the number of bits per meteor burst,

W, can be written as

W = R,[2t 4 +3t8+4ti6 +5t 32 +6t 6 4 ] (B.4)

where tM = the time that the modem operates at M-ary QAM for a given

burst. Note that the total burst duration, Td, is given by Td = t4 + t8 + t16 + t32

+ t 64. Since many trails will not support 64-QAM or even 32-QAM, we allow

the possibility that tM = 0 for some M.

The initial (and maximum) bit rate for a given burst is determined by the

initial signal-to-noise ratio per channel symbol which is a function of the

electron line density, Q, a random variable. Let the minimum electron line

density required to support M-ary QAM be given by q,. For adaptive QAM,

there are exactly five mutually exclusive events regarding the electron line

density of observable meteor trails:

45
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El = {q4 
< Q < q8}

E2 = {N8 - Q < q 16 }
E3 = {q16 < Q < q32)

E4 = {q 32 
< Q < q64 )

E5 = {Q> q64).

The probability that Q is less than q4 is 0, so the union of these five events

comprises the sample space.

The event {W 5 x) can be written as the union of five mutually exclusive

events, { {W:x}crE i ), i = 1, 2, 3, 4, 5. Therefore, the CDF for the random '9

variable, W, can be written as the sum of the probabilities of these five

mutually exclusive events, i.e.

5

Fw(x) = P(W < x) = P(W -x, Ei) (B.5)
i=l

We must now find expressions for the probabilities: P(W _ x, Ei), i -1,2,3,4,5.

Consider first the case where E 5 has occurred, meaning that Q > q64. We can

use (B.4) to write the probability P(W < x, E 5 ) as the following

P(W_<x,E 5 ) = P(R 8 [2t 4 +3t 8 +4t 1 6 +5t 3 2 +6t 4 ] _ x,Q_!q6 4) (B.6)

The burst duration for a fixed-rate modem operating with M-ary QAM can be

written as a function of Q

• 1 .
Td t, isd i (B.7)C r.

where tc is defined in Chapter 2.
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We can use (B.7) to write the terms tM , M =4, 8, 16, 32, 64 for adaptive QAM

in the following manner

t= tcn Q]

I q641

t32 =tci~. h1 tc In[ Q-

t= tcn[ l - tcIn[2]Q

I.

t4 = tcIn[-] - tcIn[Q]

Realizing that the total burst duration is given by

Td =tc In q]
QI

we see that the above expressions for tM, M = 4,8,16,32, and 64 can be written 1.

in terms of Td and logarithms of qM. Furthermore, we recognize that qM can

be written as

qRa No (E/No)M

S= Pr (0,1)

so the above expressions for tM will be logarithms of the square root of the

required SNR per channel symbol, (Es/NO)M. Given this information, simple

CC
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algebraic manipulations yield the following expression for W

E/N )(ENo) 3W = RS 6Td + 2 In 4  (B.8)1 2 ~(E)No)8 (E Noh16 (E No)32 (ENo)64

The probability P(W _ x, E5 ) can be written as

P Rs 6Td + 2 I4 (EIn o)8 (E fohs(E "0)32 4 _ x, Q _ q6 t)

.99

Since the burst duration, Td, is exponentially distributed with mean r = tc,
and burst duration and electron line density are related by (B.7), we can write
the above expression as the following

P(W: x, E 5 ) = (ES/N4o) 4  K64 exp{ 6 Rs tc}

where
1

K64

(E= No)8 (E^)16 (EsNo) . (Es/No) 64

Since the above expression was derived assuming that Q > q64 , the values of x
must be restricted to x 2t x64 where x6 4 is the number of bits per burst when
Q = q64 . The burst duration for such a trail is given by

Td =t In -64 L In
q4n[ 2l (E fNO) 4

Substituting this value of burst duration into (B.8) yields

:,
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I t~I (E/No 64
X6 RI 'c. In
x6 =R 2I (E.1N°) 2 (E./No)8 (E.INo)16 (E~jWo32

Similar expressions to the above can be derived for the events E 4 , E 3 , E 2 , and
E 1 . These results can be substituted into our expression for the CDF of W ..

yielding the following

5 I

Fw (x) P(W x) = P(W! _x, Ei) (B.9)

= 1- K 6 4 exp 6. } X X6 4

,°"

1- K32 exp 5t x32  x < X64

1- K1 6 exp 4R s tc X16 X < X32

1-K 8 exp x8  x < x16.

1-exp 2P t 5c  X

where the constants KM , M = 8,16, 32, 64 are given by

NO4 12IQ4 (E/No)4 1

(E No) 8 (ES/No) 16 (EINo) 32 (Es/No) 64
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(E /No)3 10

K32= (E 3
1 1

L (E./No)8 (Es/NO) 16 (E/N°)32

2 8(E,/No).

K1 6= (E/NO) No,/N-

K, (E /N )8  
-

and the values of xM are given by

X64 =Rs[ In{ (E/N)2 (E,/No)8 (EfNo)1 6 (Es/N0 )32
1 ]

4 (EI6N) 32  .7

X 32 = R s, In j 24 /N - ,
(E/No) (E./No)s (E/No) 16JJ

(E5JNO)3
p.

I

X16 s  "ln[(E/N2 (Es/No)8.-

X8 RtI

t c (VNo)2

x~ = Rs " In a(E 4.

Equation B.9 is plotted in Figure B.2 for R. 5900 Hz and Pb =10 -4 . Note that,.
since the burst duration is independent of the link parameters, the CDF for
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adaptive QAM is also independent of the the link parameters. The CDF is a

function of symbol rate, mean burst duration, tc , and ratios of (Es/No)req.

1.0*

0.8

0.6
VI

0.4

0.2

0.0 ,,

0 10000 20000 30000 40000 50000

Bits per meteor burst, x

Figure B.2 Cumulative distribution function for bits per burst, W,

for adaptive QAM (Pb = 10-4, Rs = 5900 Hz, tc = .58 s)

The distribution function of (B.9) is continuous, but only piecewise

differentiable. Consequently, the Laplace transform of the probability density

function (denoted by F(s)) involves polynomials of s and exponentials of s. A

more tractable approach is to approximate (B.9) by a sum of three exponential

functions and use this approximation to find an expression for mean waiting

time. This is done in the next section.

B.2 Exponential Approximation. In this section we approximate the CDF for

the number of bits per meteor burst by a linear approximation that

minimizes the squared error. For the following discussion, the inner

product of two vectors (functions) is given by

VI
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() ) = f. x(t) y(t) dt

The approximation problem can be stated as follows: Find a0, a1 , and a2 such

that

[aexf x dx (B.10).[1-Fw(x)] - - 2(~)Rs ,
0I2(1 +i)R

is minimized. Let s = 1 - Fw (x), the function to be approximated. The basis is

the set (00,01 102 } where

¢Po = e 2Rt c }

R= et,

02 = ex 6RS tc

The error is minimized when the error vector is orthogonal to the subspace

spanned by {%o,01,0}" This orthogonality condition leads to the following

matrix equation

(S, 0) a0

I
(s =i) Ga

(s, 02) a2

where G is the Gram matrix given by

'

h .%Q -':T%-"%.~*~*~ - 72*.a
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[(P0. (P0) ((p1, (P0) (4)2, (P0)1
G I(401, 00) (401'(P1) (4)2, 01)1

L(0)2, 00) (01i. 42) (4)2, 4)2)1

Straightforward integration yields the following matrix equation for Pb 10-4~

1.16 F1.00 1.33 1.50- a0

RS tc [ 6 = Rt, 1.33 2.00 2.40[ a,]
2.01 L1.50 2.40 3.00 -a0 j

Solving the equation, we get a0 = 0.801, a, = -0.658, and a2 =0.795. Thus, the

exponential approximation to the CDF of W is given by

F W(x) =1-[1.8 exp{- 2 Rs tc} 0.66 exp{ - 4 RSt, } + 0.8 exP{ - 6 RStc l (B. 11)

Equation B.11 is plotted in Figure B.3 along with the original CDF.

1.0-

0.8-

0.6-- CDF for random variable W .

VI

*Approximation to CDF
0.4-

0.2

0.01
0 10000 20000 30000 40000 50000

Bits per meteor burst, x

Figure B.3 Approximate CDF for adaptive QAM%
(Pb =10-4, RS 5900 Hz, tc .58 s)
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B.3 Mean Waiting Time. The approximate probability density function for W

is simply the first derivative of (B.11), given by

fw (x) = .8 X2 exp{- X2 X} - 0.66 4 exp{ - X 4 x} + 0.8 X6 exp{ -X6 x} (B.12)

where X2 = 1/(2 t c Rs), X4 = 1/(4 t, R,), and X6 = 1/(6 t c Rs). The Laplace

transform of (B.12) is given by

F(s) = L {fw(x)} = e - sx fw(x) dx

This integral can be evaluated in a straightforward manner. The resulting

expression is substituted into (B.1) yielding

1 2 12C SC
L I E[Tw1 + (B.13)--{[w}=Z s s 2 (s 2-+ d2 s + dj)

where

C2 = a0 X2 + a, X4 + a2 X6

ci = (a0 +a,) X2 X4 + (ao + a2) 2 X6 + (a, + a2) X4 X6

Co = X2 X4

d2 = (1-a o) X2 + (1-a,) X4 + (1-a 2) X6

d= a 2 X2 X4 + a 1 X2 X 6 + a 2 X4 X6

Partial fraction expansion of (B.13) yields

L- IE[Tw 1 1 A +B Cs+D

WS2 s 2 + d2 s + d,
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where

CO.

C co d2

BA=1-- ---

dd

cl co d2  -1

B +d d 2

Cl o c co d2D =C 2  d e2 Ti d 2 :.

T,

Taking the inverse transform of (B.14) yields

E[TwII] = B +AN + exp(gN) Ccos(fN) + Esin(fN) (B.15)

where

D-C(L2

For Pb 10i-4, these constants can be written in terms of the symbol rate R
and the mean burst duration, - = t). Doing so results in the following

'Waf

iS.

= _ a
dl \2J .

d 2 - - ~ -. - .- . - -S - S * )c,~. **~
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E[T. =1 -1.37+ N exp N
4.49 Rs  3.64 Rs T P

[37 c( - .052 sin N
7.40 Rs r 7.40 Rs

Equation B.16 is also a reasonable approximation of mean waiting time for

bit-error rates in the range 10-3 to 10-6, not just for Pb = 10-4. The bit-error

rate curves for M-ary QAM in this range are almost parallel, and since the

CDF of the random variable W is a function only of ratios of (Es/No)M, then

the CDF does not vary with bit-error rate. The only term of (B.16) that will
N

vary with Pb is the meteor arrival rate, X, which is a function of (Es/No) 4 .

Equation (B.16) is plotted in Figure B.4 for R s = 5900 Hz, and t = .58s. From

Figure B.4, it appears that the optimal symbol rate is approximately

Rsopt = 0.3 (N) Hz. The author has found that for other values of message

length, N, the optimal symbol rate also equals approximately 0.3 (N).

12-

0 10

9-

8
0 5000 10000 15000 2u00

Symbol rate in Hertz

Figure B.4 Mean waiting time for adaptive QAM

(Pb = 10-4, N = 10 000 bits, t = .58 s)
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