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Abstract

This thesis is concerned with the efficient design of digital modulation and
error-control schemes for point-to-point meteor-scatter communication
systems. The methods introduced exploit the unique properties of the

meteor-scatter channel.

A channel model is derived based on the work of other researchers. The
channel model includes expressions for meteor arrival rate, burst duration,
and received power. Meteor arrivals are modeled as a Poisson random
process and the properties of the Poisson process are used extensively.
Channel noise is modeled as additive, white, and Gaussian distributed. The
multipath structure of the channel is evaluated only to the extent that it
affects channel bandwidth.

New expressions for long run average bit rate and mean message waiting
time are derived. Performance of the fixed-rate and adaptive-symbol-rate
modem is evaluated in terms of average bit rate and mean waiting time.

Bounds on the improvement in mean waiting time over the fixed-rate modem
are derived.

M-ary modulation methods are investigated to find the optimal modulation
for the fixed-rate modem and adaptive-symbol-rate modem. It is shown that
the adaptive-symbol-rate modem is not optimal on a bandwidth-limited
channel. An alternative scheme, called adaptive quadrature amplitude
modulation (QAM) is evaluated and shown to out-perform adaptive-symbol-
rate on a bandwidth-limited channel. A suggested implementation of
adaptive QAM is presented to include a modem block diagram and signal
constellation. This impiementation appears to be more practical than the

proposed implementation of adaptive-symbol-rate.
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The use of Reed-Solomon codes in forward-error-correction is investigated.

=

An appropriate figure of merit for coding schemes used on the meteor-scatter ‘

ey
o

channel is derived. The performance of Reed-Solomon codes is evaluated in hyt

¥

terms of improvement in average bit rate or mean waiting time. The optimal "

code rate is found to be about 4/5. A lower bound on the optimal code rate is

K derived as a function of block length. This lower bound applies to any
i maximum distance separable (MDS) code operating with M-ary phase shift
keying (PSK), M-ary QAM or binary frequency shift keying (FSK).

Topics of further research are suggested, especially the use of adaptive trellis
coded modulation (TCM) on the meteor-scatter channel.
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Chapter 1 - Introduction

The Earth sweeps up billions of tiny meteors each day. As these meteors
enter the Earth's atmosphere, they create short-lived ionization trails. These
trails of ionized electrons reflect radio signals in the frequency range
40 —100 Mhz. A digital radio communication system that uses these trails is
called a meteor-scatter or meteor-burst system. Meteor-scatter
communication systems operate over distances from 400 to 2000 km. Such
systems are highly reliable and since the "foot print" for a particular
reflection is quite small, there is an inherent privacy feature. This thesis is
concerned with efficient digital signal design of a point-to-point meteor-
scatter communication system. The term signal design for digital radio

refers to the integration of modulation and coding to produce an effective
communication system.

The meteor-scatter channel has several unique properties that should be

exploited in signal design. A brief description of these properties is given in
the following section.

1.1 Basic Concepts. With the exception of meteor showers, meteor arrivals
are considered random, isolated events. The mass of each arriving meteor is
aiso random with a probability distribution roughly proportional to the
inverse of the meteor mass. The large meteors that cause visible trails
("shooting stars") arrive infrequently and contribute little to channel
capacity. Meteor trails occur in the altitude range 80 - 120 km with typical
trails having length 25 km. The mean time between observed trails on a
point-to-point link is about 10 seconds. Because meteor trails diffuse rapidly
after formation, typical burst durations are on the order of 0.5 seconds. An
effective communication system must therefore acquire the signal quickly
and transmit information efficiently before the burst termination.
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Each meteor trail is characterized by its capacity in bits. Trail capacity is a
function of meteor mass, so large meteors leave trails with large capacities.
Since the mass of arriving meteors is random, the corresponding trail
capacity is also random. The role of the system designer for any
communication system is to achieve a large fraction of channel capacity.
For meteor-scatter, attempting to achieve channel capacity normally involves
a trade-off: maximizing trail capacity in bits causes the observed number of
trails per second to decrease. Essentially, this trade-off between trail capacity
in bits versus arrival rate in trails per second is the overriding concern of the

system designer.

Conventional meteor-scatter systems operate at constant bit rates in the
range 5-15 k bits/s. Because of the burst characteristics of the channel, long
run average bit rates for these systems are typically 100 - 200 bits/s. These
rates are quite iow compared to modern day satellite and terrestrial
microwave systems. Thus, one of the goals of this thesis is to find ways to
increase long run average bit rate. Long run performance is important in
some applications, but another consideration is the waiting time to transmit
short messages. This topic will be investigated also.

1.2 Adaptive Modulation Methods. There are two modulation methods
proposed for use on the meteor-scatter channel: fixed information rate and
adaptive information rate. One important property of meteor trails is that
the received power as a function of time is predictable once the trail is
formed. For most meteor trails, the received power decays exponentially from
the inception of the trail. Therefore, the potential information rate at the
beginning of the burst is greater than at the end. An adaptive modem varies
the information rate to match the time-varying signal-to-noise ratio (SNR) at

the receiver. The fixed-rate modem, on the other hand, operates at a

constant information rate for the entire burst.
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For meteor-scatter channels with unlimited bandwidth, the optimal adaptive
scheme is one in which the channel symbol rate adapts to match the SNR.
For bandwidth-limited channels, this scheme is not optimal and the author
proposes a new scheme, called adaptive QAM. A third approach to adaptive
information rate is to use error-control codes. During periods of high SNR,
codes with high code rates and relatively weak coding gain would be used.
During periods of low SNR, codes with low code rates and strong coding gain
would be used. Thus, the information rate would vary with SNR. Adaptive

coding is beyond the scope of this thesis, but adaptive modulation with
traditional coding will be discussed.

1.3 Objectives. The two main drawbacks of conventional meteor-scatter
communication systems are the low average bit rates (also called
throughput) and long message waiting times. This thesis attempts to
improve average bit rate and message waiting time through the use of digital
modulation and error-control coding techniques. The digital modulation
methods discussed in this thesis involve the use of M-ary quadrature
amplitude modulation (QAM) and M-ary frequency shift keying (FSK) in
adaptive and fixed-rate schemes. The analysis of error-control coding is

restricted to the use of Reed-Solomon codes in forward-error correction.

The objectives of this thesis can be stated as follows:

1) Derive expressions for two measures of performance for digital
communication systems on the meteor-scatter channel: long run
average bit rate, Rpavg: and mean message waiting time, Tavg-

2) Evaluate the performance of the fixed-rate and adaptive-symbol-
rate modems in terms of the performance measures, Rpavg and

T

avg:
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i)

;

; 3) Design an adaptive modulation scheme called adaptive QAM that

5: approaches optimality for bandwidth-limited channels.

:0

; 4) Evaluate the performance of adaptive QAM in terms of the two

i: performance measures.

1: 5) Evaluate the performance of Reed-Solomon codes used for

r forward-error correction.

.

. 6) Derive a lower bound on the optimal code rate for Reed-Solomon

codes.

"

:" A brief summary of the main results follows.

"

‘ Expressions for average bit rate and mean waiting time are derived because

.. the expressions found in the literature are narrowly defined and usually

. apply only to packet communication systems. The expressions derived in

this thesis are quite general in nature and have wide application. The
expression for average bit rate is an approximation since it assumes that all

p meteor trails occur at a fixed point in the sky and that the electron line

density is upper-bounded by 1017 ¢/m. On the other hand, the expression for
mean waiting time for a fixed-rate modem is exact and a natural extension of

§ earlier work by Oetting (1980). Bounds on mean waiting time are derived for
the general case and an expression for the Laplace transform of the mean

Y waiting time in the general case is also derived as a special application of

' earlier work by Cox (1962).

The two performance measures serve as figures of merit for evaluating the

.5_ performance of the fixed-rate modem and adaptive-symbol-rate modem. The

. adaptive-symbol-rate modem out-performs the fixed-rate modem by a

i

'

p

;

'
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significant amount in terms of average bit rate. The improvement in mean

waiting time is upper-bounded by a factor of 2.0.

On a bandwidth-limited channel, the adaptive QAM scheme developed by the
author can out-perform the adaptive-symbol-rate scheme by a 3 to 1 margin
in terms of average bit rate. In terms of mean waiting time, the idaptive-

P symbol-rate modem out-performs adaptive QAM.

Reed-Solomon codes used for forward-error correction offer modest gains in

average bit rate and decreases in mean waiting time.

-

The remaining chapters are concerned with the derivations and designs that

lead to the results summarized above. In Chapter 2, a channel model is

derived. This channel model is based on the work of other researchers and

includes models for meteor arrivals, burst duration, received power, noise,
and multipath effects. Chapter 3 is concerned with the derivation of the two
‘1 performance measures and evaluation of the performance of the fixed-rate
modem and adaptive-symbol-rate modem in terms of these two performance
\ measures. Chapter 4 deals with optimal use of waveform modulation for
meteor-scatter communication. Optimal M-ary modulation techniques are
found for the fixed-rate and adaptive-symbol-rate modems. The adaptive
QAM modem is designed and the performance evaluated. In Chapter 5,

Reed-Solomon codes for forward-error-correction are evaluated. Chapter 6

e

: summarizes the main results and provides suggestions for further research
\ in this field.
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Chapter 2 - Channel Model

In this chapter we shall derive a model for the meteor-scatter channel. This
model will serve as the foundation for the results derived in Chapters 3, 4,
and 5. Skywave propagation in the frequency band 30-100 MHz is primarily a
meteor-scatter phenomenon, but experiments conducted by the U.S. Air
Force in Greenland indicate that returns are also caused by sporadic E layers
and "unidentified scatter returns” (Ostergaard et al., 1985). This channel

model will only consider returns from ionized meteor trails.

2.1 Properties of Meteor Arrivals. With the exception of meteor showers,
meteor arrivals are considered random events and experimental evidence
indicates that meteors arrive according to a Poisson random process with
rate A (Oetting, 1980 and Weitzen, 1983). Since the arrival rate, A, is a
function of the time of day and season, a more appropriate model for meteor
arrivals would be a nonstationary Poisson process with rate A(t)
(Ross, 1985). However, the arrival rate changes slowly, so for short periods of
time (less than 30 minutes), the process can be considered stationary
(Weitzen, 1983). For long periods (several days or more), one can
approximate the process as stationary with rate A equal to the mean value of
A(t) over time. In the next chapter we shall derive expressions for the mean
message waiting time and long run average symbol rate. These two
performance measures fall into the short and long periods, respectively.
Hence, for our purposes, we treat A as a constant, independent of time. The

following properties of the Poisson process will prove useful (Ross, 1985):

* Stationarity. The Poisson process possesses stationary increments,
meaning that the distribution of the number of events that occur in any

interval of time depends only on the length of the interval.
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e Independence. The Poisson process possesses independent

!
} increments, meaning that the number of events that occur in disjoint time ~
\ )
i intervals are independent. )
*
':l
-  Number of Arrivals. The number of arrivals in time t is a Poisson 1
b, random variable with probability mass function ]
> i ’
’ o oAt () .
px ) = PX=1) = e I 1i=0,1,2, .. (2.1)
n
2 The mean number of arrivals in time t is At.
o
-
* Interarrival time. The time between arrivals, T, is an exponential
v, random variable with probability density function
':;‘ )
: fr(t) =re™ >0 (2.2)
; The mean time between arrivals is 1/A .
i * Waiting time until mth arrival. Let S, equal the arrival time of the
b

A mth event, m > 0. S, has a Gamma distribution with parameters m and A .
The probability density for S, is given by

3 S ™ ;
:' fsm (t) = Ae (_n—l—_l)—' , t 20 (2.3) t

The random variable S, has mean m/A .

2.2 Types of Meteor Trails. Meteor trails are normally categorized as

underdense or overdense, according to the electron line density of the trail.

- Most meteor-scatter channel models ignore overdense trails, but we shall 3
,'. ‘
' d
%

[ o
)

»: . PN » g W g W W W W W W C R ™ "’-J‘.‘F"".,J‘-* “(- 'f‘l
:'..': AU OO IR ci.u fy vy !" n\ ORIV NS, e T ! < (el i e et i e oy




...... .- N -N,- A .p‘.; ,("\.r_..": {V""\":v\I‘S\{\;}.‘\-\‘- e -'- --'~_-_ '-. -_-..'-- A -ll LA 5 R -.-_' . -.__ S .

demonstrate their importance. Ostergaard et al., (1985) propose a third type

of trail, called "tiny,” to explain short duration returns that do not exhibit the
exponential decay of underdense trails. Most meteor-scatter communication
systems employ acquisition times on the order of 0.1 sec (Kokjer, 1986) and
since "tiny" trails have typical durations of less than 0.1 sec, their
contribution to the performance of a meteor-scatter system is negligible and
we shall ignore them. If the electron line density of the meteor trail is less
than 1014 electrons/meter (e¢/m), then each electron reflects independently of
all others and the trail is labeled underdense. If the electron line density
exceeds 1014 e/m, then an incident wave cannot penetrate the cloud of
electrons and the trail is modeled as a metallic cylinder. The incident wave
is reflected from the surface of the trail and such a trail is labeled overdense.

Overdense trails are infrequent, but Weitzen (1983) and Ostergaard et al.

U
Sl

(1985) have shown that overdense trails contribute the majority of channel -

»
’

capacity when long run performance is considered. For example, data from

g

the experimental link in Greenland show that although overdense trails 4
account for only 5% of returns, these trails contribute over 60% of the p
throughput when adaptive signaling is used. We can conclude that E
theoretical models for the long run performance of meteor-scatter systems v
. . )
should include overdense trails. &
::'_
“u
3 - -« 4.,
2.3 Received Power Models. The power received due to reflection from an N
underdense trail is given by Eshlemann (1955) as ;'
3 9 32 n2Dt + 8 n° r02
Pr Gr G, o, A" q°exp| - T ad?
sec
P, (t) = — S0 L, g<10% em @4
(4m)” Rer Rer (Rer + Rep) (1 - sin® ¢ cos™ B)
where Prp 1s the transmitter power
Ggr 1s the receiver antenna gain
Gt 1s the transmitter antenna gain
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is the wavelength of the carrier

is the electron line density of the trail

is the diffusion coefficient of the atmosphere (~ 5 - 10 m2/s)

is the angle of incidence of the transmitted plane wave

is the angle between the trail and the great circle path from
the receiver to the transmitter

is the distance from the receiver to the trail

is the distance from the transmitter to the trail

is the nominal radius of a trail (0.65 m)

is the effective echoing area of the electron (~ 10-28 m2)

Note that A represents wavelength as well as meteor arrival rate. Usage will
be clear from the context. Equation 2.4 is plotted as a function of time in

Figure 2.1. Note that the received power decays exponentially with time.

1.2e-8
!
3 1.0e-8
3
S
.8 8.0e-9 A
13 4
5 6.0e-9':
3
R 4.0e-9
B~
LY
S
'S 2.0e-9 1
$ .
Py
0.0e+0
0.0

¥ M ¥

0.2 0.4 0.6 0.8 1.0

Time in seconds

Figure 2.1 P.(t) for underdense trail (P = 2000 watts, q = 1013 e/m)

Equation 2.4 is a theoretical result that is obtained using the tools of classical

antenna theory. For the overdense trail model, Hines and Forsythe (1957)
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found the solution more difficult and resorted to an approximate expression.
The received power for an overdense trail is approximated by Hines and
Forsythe as

2 el 4 Y12
o | 4Dt+rp) ro QA sec” ¢
PT GT GR A In

2 2 (4Dt + )

sec” ¢
- ————, 10 <q<10'" (2.5)
32 n” Rer Rer (Rer + Rer) (1 = cos® B sin® ¢)

P.t) =

where r, (~3 x 10-15 m) is the classical radius of the electron. This model
holds provided the argument of the logarithm is greater than unity. For an
in-depth treatment of the derivations of (2.4) and (2.5), the reader should
consult Weitzen's Ph.D. thesis (1983). Weitzen (1983) points out that due to
the physics of particle reentry, meteor trails with electron line densities

017

greater than 1 e/m rarely exist. Thus our model holds for q < 1017 e/m.

Equation 2.5 is plotted as a function of time in Figure 2.2.

Received power in milliwatts

1

0.0e+0 1 g v I .
0.0 . 2.0 3.0

Time in seconds

Figure 2.2 P/(t) for overdense trail (P = 2000 watts, q = 1015 e/m)
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From Figure 2.2 we note that overdense trails do not decay exponentially with
time. In fact, the received power from these trails actually increases at first,

reaching a peak value before decaying.

2.4 Meteor Statistics. In this section we shall derive probability distributions
for electron line density and burst duration. In addition, we shall derive an

expression for the arrival rate, A, in terms of the link parameters.

24,1 Electron lin nsity. The meteors that are useful for
communications have masses that are roughly distributed in numbers
proportional to the reciprocal of their mass (Kokjer and Roberts, 1986).
Assuming that the electron line density, q, is directly proportional to the
meteor mass, then the cumulative distribution function (CDF) for the

random variable Q is given by

F@ =PQ<g9 =1-—, qz2q (2.6)

If we define (2.6) as the distribution for observable meteor trails, then qgis
the electron line density of the smallest observable meteor. We emphasize
that this distribution is approximate and is least accurate for large values
of q. Since we know that electron line densities greater than 1017 e/m are

almost nonexistent, then a better distribution for electron line density is the
following

Jo Qo .
FQ(q)=P(QSq)=1—E- + F, qOSqSIO1 (2.7

We can now use (2.6) to derive the distribution for burst duration.

242 Burst Duration. Assume for the moment that all trails are
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underdense. The received power for an underdense trail is given by (2.4) and

can be written as

-2t
P, (t,9 = P.(0,1) q2 exP{: t ] (2.8)
C
where
3 8 7t2 r02
Pr Gr G, o, A” exp| - B
A“sec” ¢
P, (01) = 3 2 2
(4m)” Rer Rer Rer + Rop) (1 - sin® ¢ cos” B)
A2 sec? o)
te = ———
16 n°D

Note that P, (0,1) is defined as the received power at time t = 0 when q =1 e/m.
Let T4 = burst duration in seconds, a random variable. The termination of a
burst is defined as the time when the received power has decayed to a

threshold value, P, (T4, q) = Py (0, qg). Substituting into (2.8) and solving for t
yields

te | Pr(0,1) Q% Q
Ty = E‘ In':Tr-(—-O’—qO—)} = tcln[ E(;:l

The CDF for burst duration, Ty, is then given by

Fr () =P(Tg < t) = P(tc ln[ 3] < t)
do

)

= P(Q < q exp[

nﬁl"’

.
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Using (2.6) results in

v
(@)

Fp, ) =1-e ", ¢ (2.9)
where t=t,. Therefore, the burst duration is exponentially distributed with
mean T. The exponential distribution is almost universally accepted as the
proper distribution for burst duration when all trails are assumed
underdense. See Campbell and Hines (1957), Nes (1985), Oetting (1980), and
Milstein et al. (1987). Havens (1976) prefers a sectional logarithmic
distribution for burst duration, but his distribution does not have a strong
following. Havens suggests a mean burst duration of 0.58 s, independent of
season, time of day, and system sensitivity. He notes that results of
experiments conducted from 1958 to 1968 support this conclusion. If the
mean burst duration is indeed constant, and the modulation scheme is fixed,

then all variations in throughput are attributable to A, the meteor arrival
rate.

2.4.3 Meteor arrival rate. Weitzen (1983) and others have shown that the
aumber of observable trails per second is proportional to the inverse of the
electron line density, q. Assuming that all trails are underdense, then one
can show that the mean number of trails per second, A, is proportional to the
square root of the transmitter power. For meteor-scatter systems operating
at a fixed rate, experiments have shown (Brown, 1969) that the throughput
(average bit rate) is proportional to PTO‘G. One can reason that the difference
between the experimental results and the theoretical claim (exponent of 0.6
versus 0.5) is due to overdense trails. The difference of 0.1 in exponent will
not change our results significantly, so we will assume a PTn'5 behavior. The
dependence of throughput on frequency is more complex. Oetting (1980)
points out that a simple theoretical analysis indicates that the throughput
f-2.4

should vary as , where f is the RF carrier frequency. Assuming that the
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throughput varies as PTO'S, and as f 24, then we write the following

% expression for the mean number of trails/s (Oetting, 1980)

R ]

A=A

0.5
© (©) -24
(©) Gr Ry7 Gr Pr (EJNpkreq ( f ) (2.10)

Ggl(‘l) RS G(lg) PSI(‘:) (Es/NO)req f< ©

where the superscript (C) denotes the COMET values.! For the COMET
system, A = 0.1 trails/s, GT = GR =10dB, P’r = 200 W, Rg = 2000 symbols/s, and
. f=37.5 MHz. (E¢Ng)req is the minimum required signal-to-noise ratio per
channel symbol to maintain reliable communications. For the COMET
system, we assume noncoherent FSK and a bit-error rate (BER) of 10-4, The
corresponding value of (E¢/Ng)req is 17.0 (12.3 dB). Substituting these values -
into (2.10) yields the following empirical formula

¥ 1.7GpGg Py 1% ~24 ;

A = 0.1[ il T] (——7f—5) (2.11) \
;' R, (ES/NO)req 317. o
;‘ N
K, The reader should note that (2.11) will prove useful by showing the ~

dependence of the meteor arrival rate as a function of the link parameters,
symbol rate, and (E¢/Ng)eq- The actual value of A has little importance

except to give realistic values for performance measures.

2.5 Noise. Excluding man-made noise, the predominant noise source in the
d range 30-100 MHz for meteor-scatter systems is galactic noise. Careful
antenna siting is required to avoid other noise sources. Galactic noise is 2
Gaussian distributed and assumed white. Hence, the noise power spectral .

density is constant and is given by

L YT

-
v

: No = kT,

1 The COMET system became operational in the 1960's. It is probably the most studied
meteor-burst communication system. See Bartholome and Vogt (1968).
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where k is Boltzman's constant, (1.38 x 10-23 J/°K) and T, is the antenna Vo
noise temperature. For galactic noise in the frequency range 30-100 MHz, !
Villard et al. (1956) approximate T, as ";
N

Y 23

T, = (—) Ty 212) -

a xo :::
o
~
where Ay (= 1.8 m) is a constant and Ty = 290 K. This expression assumes a :_
receiver noise Figure of 0 dB. We can conclude that the meteor-scatter )
channel is an additive white Gaussian noise (AWGN) channel. ,?'::
o

A

2.6 Multipath. Conventional meteor-scatter communication systems are ‘
fixed-symbol-rate systems with symbol rates on the order of 5 to 15 kHz )
(Weitzen et al., Jan., 1984). In Chapter 3, we shall show that to maximize the b
long run average symbol rate, the meteor-scatter system should employ
symbol rates on the order of 1 to 10 MHz. In order to implement such a %,

system, the multipath structure of the channel must be known. Multipath

o

propagation degrades channel performance in two ways: Ny
N

-~
* Multipath fading o

¢ Intersymbol interference b

r

&
The causes of multipath propagation on the meteor-scatter channel are ]

many. Included are the following (Weitzen et al., Jan.,1984): wind induced
warping of long duration trails, multiple trails in the common volume of the
antenna pattern, "sporadic E" layer anomalies, and fragmentation of
meteoric particles upon entry into the earth's atmosphere. Weitzen's
experimental research indicates that multipath spreads rarely exceed 1 pus
and therefore systems with symbol rates on the order of 500 kHz should, in

X

v

PR AN
P

general, be able to operate free of intersymbol interference. To operate at

required.

)
\"
N
higher symbol rates, adaptive correction of intersymbol interference is :
N
)
A
-
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2.7 Bandwidth. Radio channels are often categorized as either bandwidth-
limited or power-limited. Since conventional meteor-scatter systems operate
at low symbol rates (5 - 15 kHz), bandwidth has received little attention.

Future systems operating at higher symbol rates will encounter bandwidth
restrictions from the following sources:

¢ Multipath-induced intersymbol interference

¢ Regulatory agencies (to prevent adjacent channel interference)
¢ Hardware constraints.

For our purposes, the only bandwidth constraint is that imposed by
intersymbol interference.

2.8 Link Parameters. When actual values of link parameters are needed for
illustration, the values in table 2.1 will be used. These link parameters are

typical for existing meteor-scatter communication systems.

Table 2,1 Link parameters

Py = Transmitter power = 2000 W

Gt =Gg = Antennagain = 13dB

d = Path distance =1000 km

f = Radio frequency = 50 MHz

) = Angle of incidence = 1.37 rads

B = Angle between trail and great circle path = r/6 rads
h = Meteor trail height = 100 km

D = Diffusion coefficient of the atmosphere = 10 m2/s

(BER)max Maximum acceptable bit error rate = 107

]

The angles ¢ and B are actually random variables, but in Chapter 3 the
channel model will be simplified by assuming that all trails arrive at a fixed

point in the h-plane. Furthermore, unless stated otherwise, we shall
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assume binary phase shift keying (BPSK) for waveform modulation. The
minimum required signal-to-noise ratio per channel symbol for BPSK is

(E¢/No)req = 8.4 dB for a bit-error rate (BER) of 107 (Lee, 1986).

WA A

s

2.9 Summary. Following is a brief summary of the important
) characteristics of the meteor-scatter channel according to the model derived
y in this chapter.

* Meteors arrive according to a Poisson process with rate A.

1 * Received power from a meteor trail is given by (2.4) or (2.5), according
to electron line density.

) * Assuming all trails are underdense, burst duration has an
K exponential distribution with mean t. The mean burst duration is

constant, independent of system sensitivity.

* Variations in throughput are attributed to the arrival rate, A, given by
(2.11).

h * The channel noise is additive white Gaussian noise (AWGN).

* Intersymbol interference caused by multipath propagation limits the

maximum channel symbol rate to ~ 500 kHz.

* The channel is bandwidth limited. The only bandwidth constraint is

the coherent bandwidth, determined by the multipath structure of the
channel.
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Chapter 3 - Performance Measures

Historically, the performance of a meteor-scatter communications system is
measured in terms of either information throughput or message waiting
time (Milstein et al., 1987). Definitions of throughput vary, but we shall
define throughput as the long run average bit rate, Rp,yg. An appropriate
measure of message waiting time is the expected value, or mean. Therefore,

we are interested in the following two performance measures:

* Long run average bit rate, Ryayg

* Mean message waiting time, T,yg

The nature of the message traffic determines which performance measure
has priority. For example, a point-to-point link that transmits thousands of
messages per day should be designed to maximize long run average bit rate.
On the other hand, the user may want to transmit a single message as
quickly as possible. In this case, one should minimize the mean message
waiting time (or simply waiting time). This chapter is devoted to the
derivation of expressions for long run average symbol rate, denoted by Ravg
and mean waiting time. The corresponding bit rate depends on the
modulation scheme and will be discussed in Chapter 4. The fixed-symbol-
rate (or simply fixed-rate) modem and adaptive-symbol-rate modem are
considered. For the adaptive case, we assume that a noiseless feedback path
with zero delay is present. Weitzen (1983) discusses the effects of path delay,
a noisy feedback channel, and rate quantization for the adaptive-symbol-rate
modem. Treatment of these subjects is beyond the scope of this thesis. The
two performance measures, Ry,yg and Tayg, will serve as figures of merit
when comparing the performance of various modulation and coding

schemes. We begin by deriving an expression for the long run average

18

TR

......
LIV P S IR A

{‘:'-1.07\'?1

- B

ST Ea

Iy

(.(

1@ £ 2L AT IO

1(.'1“

Y

LR

ot
£ a

R

2]

14

a;{.g{

1@

s



LA

- P

-

A 0t gt 17 et " 4

19

symbol rate.

3.1 Long Run Average Symbol Rate, R,y,. Recall from Chapter 2 that
meteors arrive according to a Poisson process with rate A. Most messages
will be long enough to require several bursts to complete transmission. We
assume that the message can be partitioned at arbitrary points without loss
of information. On the average, the capacity of a single burst is many
thousand channel symbols. For this reason, we can approximate the
number of symbols per burst as a continuous (rather than discrete) random
variable, W. We shall consider the general case, and thus we ignore any
packet structure or message protocols. Let the total number of symbols
transmitted by time t be W(t). Given the above arguments, we can model the
stochastic process {W(t), t > 0} as a compound Poisson process where a

compound Poisson process is defined as follows (Ross, 1985):

Definition 3.1. Consider a Poisson process (N(t), t > 0 ] having interarrival
times T,, m 2 1. Suppose that when an arrival occurs we receive a reward.

Denote by W), the reward earned at the time of the mth arrival. Assume
that the Wy,,, m = 1, 2, 3, ... are independent, identically distributed (iid)
random variables that are also iridependent of (N(t), t > 0}. Let

N)
Wty = ), W, (3.1)
m=1

Then W(t) represents the total reward earned by time t. (W(t), t > 0} is said to
be a compound Poisson process.

Clearly, the process of transmitting messages on the meteor-scatter channel
is a compound Poisson process where W_, represents the number of symbols
sent during the mth burst. Since the probability of multiple (overlapping in
time) trails is small (~ 10-3) (Weitzen, 1983), then we can assume that W, is
independent of {N(t), t > 0). The compound Poisson process is a member of

the larger family of random processes called renewal reward processes.
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For these random processes one can show the following (Ross, 1985): If :
'5 E[W] < o, and E[T] < e, then with probability 1, -
: :
W) _ E(W] >

t - RIT] ast — (3.2) ;

Thus, we can write the long run average symbol rate (as t — o ) as the >
following X
i

Ravg =L E [W] (3.3) '

",

Let's compare this expression for throughput with that obtained using the N

one of the most popular definitions of throughput. Oetting (1980) defines
throughput as the average number of data bits (or symbols) received per unit

time. Ignoring packet structure, this definition gives an expression identical
to (3.3). To see why this is true, consider the following derivation. The mean -
number of symbols transferred in time t is simply the expected value of the ‘
compound Poisson process (Ross, 1985) "
E (W(t)] = E [N()] E [W] N

E
Since the expected value of N(t) is just At, then we have '-; ]
E[W®)] = 2t E[W] "
Dividing both sides of this equation by t gives the average number of symbols 6
received per unit time '
Ravg = A E[W] N

~
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This expression is identical to (3.3). Therefore, the long run average symbol
rate is equivalent to the "throughput" as defined in the literature. Oetting's
expression for throughput differs from the expression derived in this chapter

because he assumes a particular packet structure.

The number of symbols per burst, W is a function of the random variables &,
Z, and Q where

Z = Reflection point in the h-plane (Z € R?)

@ = Angle of incidence at reflection point

Q = Electron line density of the meteor trail
We assume that Z is a uniform random variable over a large, finite region of
the h-plane (Weitzen, 1983). As long as the region is large, its actual size is
not important because the geometry precludes good paths from distant points

in the plane. Furthermore, based on the properties of meteor arrivals, it is

reasonable to assume that @, Z, and Q are independent. Then we can write
the average symbol rate as

A
Rug=5 |, J, |y W% ® Qo @@ dadoda 3.4

where A= the area of the finite region of the h-plane. As it stands, this
expression for R,y 1s unwieldy. Weitzen (1983) and others simplify their
models by assuming that all trails arrive at a fixed point in the h-plane.

Making this simplification, we get the following expression for the long run
average symbol rate:

Ravg = b jQ W(a) fq (@ dg (3.5)
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We can further justify (3.5) by noting that we are interested in the relative,
not absolute performance of several modulation and coding schemes. The
reader should be cautioned, however, about using (3.5) to compare
performance over values of path distance. For values of B (defined in Chapter
2) other than n/2, equation 3.5 is not strictly decreasing for increasing path
distance.

3.1.1 Fixed-symbol-rate modem. For a fixed-rate modem the expression
for long run average symbol rate is given by

Ravg =2 fQ R; T4 (@) fo(@ dq (3.6)

where R = channel symbol rate in Hz and Ty (q) = the useful duration of the
trail in seconds. This integral is evaluated in Appendix A. For the link
parameters of Chapter 2, we get the following table of values for R,y

1 ver 1 rate in Hz for fixed-rate modem
R.(kHz underdense goverdense Total
1 4.7 .83 5.5

5 9.5 4.2 13.6

10 12,5 8.3 20.8

50 21.1 413 62.4
100 24.4 81.8 106.3
500 21.3 3791 400.4
1000 11.5 682.8 694.3

The values of R,y in Table 3.1 were calculated by scaling (3.6) by a constant.
This constant was chosen to give values consistent with the results from the
experimental link in Greenland (Ostergaard, et al.,, 1985). Note that
overdense trails account for anywhere from 15% to 98% of channel capacity,
depending on symbol rate. Equation 3.6 is plotted in figure 3.1. From
Figure 3.1, we see that there exists an optimal symbol rate, that is one that
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maximizes R,yg. For our link parameters, this optimal rate is found

graphically from Figure 3.1 to be approximately 10 MHz.

2000

1000

Average symbol rate in Hz

0 M T v 1 T
0.0e+0 1.0e+7 2.0e+7 3.0e+7

Instantaneous symbol rate in Hz

Figure 3.1 Average symbol rate as a function of instantaneous
symbol rate, Rg

The author has found that for transmitter power levels as low as 200 watts,
the optimal symbol rate still exceeds 1 MHz. Since the meteor-scatter
channel is constrained by multipath propagation to symbol rates less than
500 kHz, we conclude that the optimal symbol rate is the maximum rate that
the channel can support, i.e. ~ 500 kHz. This result agrees with Abel's

conclusion (1986), although Abel did not derive an expression for R,y

1.2 A ive-symbol-r modenrr  The adaptive-symbol-rate modem
varies the symbol rate continuously to match the time-varying received power
levels. Since the received power is equal to the product of the energv per
channel symbol, Eg, and the channel symbol rate, R(t), we can write the

instantaneous symbol rate as
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R(t) = (3.7)

where (Eg/ Ng)req is the ratio of received energy per symbol to noise power
spectral density required by the modem to maintain an acceptable bit error

rate (BER). The number of symbols transmitted per burst is then given by

Td Q) ‘
W= R(t) dt (3.8)
0

where Tq(q) = the useful burst duration as a function of the electron line

density, q. It follows that the long run average symbol rate for the adaptive-
symbol-rate modem is given by

Td (@) .
Ravg = J'Q J'O R(t) fq (q) dt dg 3.9) |

Equation 3.9 is evaluated in Appendix A. At a transmitter power level of 2000

watts, we get an average symbol rate of 6.04 kKz, an improvement of 15.1 j
over fixed-rate at Ry = 500 kHz. Recall from Section 2.4.3 of Chapter 2 that the
meteor arrival rate, A, is a function of the symbol rate, Rg. For the adaptive
symbol rate modem, thie meteor arrival rate is a function of the minimum
realizable symbol rate, Ry,;, (a2 hardware constraint). Note that for our
model, A — e as R;;5, = 0, indicating that Ravg — o. This is not the case,
however, because as A — oo, trails start to overlap and our expression for Ravg
is no longer valid. In practice, however, hardware constraints will confine
Rmin to values that make our model valid. The improvement factor for the

adaptive-symbol-rate modem versus the fixed-rate modem is discussed in
Section 3.1.4.

3.1.3 Constrained channel. In Chapter 2 we found that the meteor-
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scatter channel is constrained by multipath-induced intersymbol

interference to a maximum symbol rate of Ry« ~ 500 kHz. For such a

channel, the expressions for long run average symbol rate must be modified
as follows:

Fixed-r modem:
Ravg=xJ'Q R, T®,,q fg@da, Ry € R (3.10)

Adaptive.symbol-rate modem:

T(Rmin » )

Ravg = A _[Q J'o R(t) fq (@) dt dq (311)

P
P, ’ r(t) < R
N0 (Es / NO)req NO (Es / NO)req
where R() = ﬁ

P (t)

Rax

No B/ Nokreq Rinax

Because of the added complexity of this expression, we resort to numerical
integration to evaluate Equation 3.11. Table 3.2 lists values of Ry, for several

values of maximum symbol rate.

Note that at Rp,,x = 500 kHz, the average symbol rate has dropped by a factor
of 13.7 from the value of the previous section. We can conclude therefore that
the ceiling on symbol rate has a serious effect on the long run average symbol
rate. In fact, we shall show in the next section that for a bandwidth-limited
channel, the adaptive-symbol-rate modem does not exceed a factor of 2.0

improvement over the fixed-rate modem, assuming that the fixed-rate
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modem is operating at the maximum rate (~ 500 kHz). This result seems to
contradict some recent experimental evidence. Ostergaard et al. (1985) found
that very few returns would support symbol rates exceeding 1 MHz, and
concluded that the channel was effectively power limited, not bandwidth
limited. This author does not dispute this conclusion, but he wishes to point
out that systems with higher transmitter power or antenna gain will
invariably encounter these signal levels with greater frequency. Therefore,
the effect of the bandwidth ceiling on the adaptive-symbol-rate modem will

depend on the link parameters and the receiver sensitivity.

Table 3.2 Aver } rate in Hz for ive- l-rate modem on
bandwidth limited channel (R(t) S R ..)

Rumax (kHz) underdense overdense Total
50 404 35.2 75.6
100 58.1 70.3 128.4
250 81.4 174.3 255.7
500 97.9 343.9 441 .8
1 000 109.5 668.9 778.5
2000 1135 12389 13524
5000 113.5 2243.2 2356.8

J.1.4 Improvement factor. For an unconstrained channel (Ry 5 = )
the adaptive-symbol-rate modem provides a significant improvement in Ravg
over the fixed-rate modem. Define the improvement factor as

Ravg (adaptive)
R (Eved) (3.12)

With the aid of the computer we can use the expressions derived in Appendix

A to get the graph of Figure 3.2. Note the vast improvement that the adaptive
modem offers on a strictly power-limited channel.
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These results should encourage further research into adaptive techniques to

correct intersymbol interference on the meteor-scatter channel.

3.2 Mean Message Waiting Time, Tayg. Long run performance on the
meteor-scatter channel may not be important in some applications. Often the
user would rather minimize the waiting time required to transmit a
message of length N bits. In fact, much of the recent literature on meteor-
scatter communications is focused on this subject. See Oetting (1980),
Hampton (1985), and Milstein et al. (1987). Oetting derives an expression (in
the form of an infinite sum) for the CDF of the waiting time, but does not
discuss mean waiting time. Hampton and Milstein, et al. limit their

discussions to packet structures.

We shall derive a closed-form expression for the mean waiting time for the
fixed-rate modem, assuming no packet structure. However, we shall
assume that the message can be partitioned at arbitrary points without loss
of information. For the adaptive-symbol-rate modem, we derive some tight
bounds on the mean waiting time. In addition, we extend a result from Cox
(1962) to derive a general expression for the Laplace transform of the mean
waiting time. This expression is valid for any modem, as long as the
distribution for the number of symbols/burst, W, is known and the Laplace
transform of the probability density function for W exists. As in Section 3.1,
we assume that multiple trails are nonexistent and that the number of
symbols per burst is normally quite large. Thus, we approximate the
number of symbols/burst, W, as a continuous (rather than discrete) random
variable. One can extend the results of this section to packet structures when

the packets are small (few symbols/packet). Define message waiting time as
follows:
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Definition 3.2. Consider a compound Poisson process, (W(t), t =20). The
message waiting time, T, , is the time required to completely transmit a

message of length N symbols when the message can be partitioned into
arbitrary segments of size W,,,.

LR, g ¢

-

The mean waiting time, denoted by Tayg, is defined as the expected value of

the message waiting time. We make the following assumptions:

e All trails are underdense
* The W, symbols transmitted during the mth burst are sent in a time ’
(
At=0

We can justify these assumptions by noting that the waiting time for

overdense trails is typically an order of magnitude greater than the waiting N
time for underdense trails. For example, an overdense trail with electron
line density of 1015 ¢/m has a waiting time of about 15 minutes. In contrast,
an underdense trail with electron line density 1013 e/m arrives about every
15 seconds. A single message of reasonable length is not likely to see an
overdense trail. Also, the duration of a burst is typically a fraction of the time .
between bursts ( e.g. 0.5 s vs. 10 s). The duration of the last burst for a given

message will not make a significant contribution to the message waiting ;
time. :

3.2.1 Fixed-rate modem. Oetting (1980) derived an expression for the
CDF of Ty, for a fixed-rate modem, but the literature lacks a general closed

b
-~
fa

form expression for the mean waiting time. In Section 3.2.3 we shall
present a general expression for mean waiting time in terms of an inverse
Laplace transform. For the fixed-rate modem, however, we can derive the
mean waiting time via straightforward application of conditional

expectation. We can write the mean waiting time as
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E(T,]= ), E[ T, | m] P(m) (3.13)

m=1

where P(m) is the probability that exactly m bursts are required to completely
transmit the N-symbol message. We notice that

TR YT Y W R Y

E[T, | m]=E[S,] (3.14)

where S, = the waiting time until the mth meteor arrival. Since S, is a

Gamma random variable with parameters (m, A), then

E [Ty | exactly m bursts required] = E [S,,] = -rf— (3.15)

The probability that exactly m bursts are required to send the message is
given by

m-1
Pm)=P| ), W;<N< ZW
i=1 =1
m-1 m-1

=P D W, <N, W+ D, W, =N
i=1 i=1

m-~1

ifwelet X= Z W; and Y=W, then we can write
i=1

Pm)=P(X<N,X+Y2N) (3.16)
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Recall that the distribution for underdense burst duration in seconds is

exponential with mean t. It follows that the underdense burst duration in

2
4 symbols is also exponential with mean 1y =Rgt. Let Ay = 1/15. The random
: variable X is the sum of m-1 independent and identically distributed (iid)
P exponential random variables with mean t3. Then one can show (Ross, 1984)
¥ that X is a Gamma random variable with parameters (m-1, ;). The random
¢ variables X and Y are independent, so we can write (3.16) as the following:
A N
4 P(m) =j0 L 0y () dy dx 317)
&
; h Ao e 0% (g 1) ™2
3 where fx (x) = T mol) , x20
[}
fy () =hoe oV, y20
['(s) is the Gamma function where I'(s) = (s-1)! for integer s. Evaluating
(3.17), we find that P(m) is given by

‘
: Ao N m-1
\ e Ao N) ™

P(m) = (3.18)
[ (m-1)!
‘ Note from (3.18) that if we let U = the number of bursts required to completely
.

! send the message, then U-1 is Poisson with mean Ay N. Combining (3.15)
and (3.18), we find that the mean message waiting time is given by

i

Pl il

- -2y N m-1
m € 0 0\,0 N)
E[Twl=), & — (3.19)
m=1
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Letn =m-1 and x = Ay N. Then we can write

E[T.) = 5 2(1“‘)" (3.20)

z 2—7 * r; (n-1)!

n=0

Substituting x = g N, and simplifying, results in

N
E[Tyl=% + ;0 (3.21)
or equivalently,
1 N
E[TW]='>T+MR (3.22)
-

The reader should note that (3.22) is an exact result. Inspection of Equation
3.22 reveals that in the limit as N is small with respect to symbol rate, R, the
mean waiting time is simply the mean waiting time for the first meteor
burst. This result is intuitively sound. Table 3.3 gives some typical values for
Tavg using equation 3.22 for t = .58 sec., A = 0.1 trails/s, and Ry = 1200
symbols/s. BPSK modulation is assumed, so N symbols = N bits.
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1 Typical val fmean m waiting time, Tayg
N (bits) Tavg(sec.) N (bits Tavg(sec)
100 11.44 1000 24.37
200 12.87 2 000 38.73 ,
300 14.31 5000 81.84 -
400 15.57 10000 153.7 N
500 1718 50 000 728.4 g
We can now derive an expression for the optimal symbol rate — the rate that ;A
minimizes T,yg. i
3.2.2 Optimal symbol rate for fixed-rate modem. To minimize the

waiting time on a power-limited channel, the system designer simply
increases the symbol rate. Because of the burst characteristics of the meteor-
scatter channel, we cannot minimize message waiting time simply by
increasing the symbol rate to an arbitrarily high value. There is a penalty to
be paid for any increase in bit rate. The penalty is a corresponding decrease
in the number of observable trails per second, A. This penalty applies

regardless of whether the channel is modeled as bandwidth-limited or

Pl o LU

power-limited. In the past, the behavior of the message waiting time as a i
function of bit rate was not known precisely because a general expression for g
mean waiting time was not available. Now that we have derived such an >
expression (3.22), we can proceed to find the symbol rate that minimizes the
mean waiting time. Since we made the conservative assumption that all
trails are underdense, the behavior of the meteor arrival rate, A, as a

function of symbol rate is given by ph

A= cRs,_l/2 <
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where c = 0.1.\/ (Es/No)req 375

Substituting this expression into (3.22), we get

1

Tavg = E[Twl = Py Ry? + A

-1/2 \
— R, h
c1

Differentiating and setting the result equal to 0,

0 Ty 1 e N -3/2 |
R, “oc s TR =0 3
Solving for R, we get Rg = 0, Ry = N/t . Therefore, the optimal symbol rate is ‘-'
simply
«.-
N e
RSOpt = T (3.23) ‘v
A check of the second derivative confirms that this is indeed a minimum. "3
Table 3.4 gives some typical values of R, for 1= .58 sec. v
A
Table 3.4 Typical values of optimal symbol rate, Ropt in Hz .
I
N ¢ | Rgopt(Hz) N( ol Rgopt (Hz)

100 1724 1000 1724
200 344.8 2000 3448 i
300 517.2 5000 8 621 K
400 689.7 10 000 17240 .
500 862.1 50 000 86210 :
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Note that even for large messages, the optimal symbol rate is only a fraction

Lo

of the rate that maximizes Ryyg. We can conclude that a fixed-rate scheme

cannot be designed to maximize R,y and minimize Ty simultaneously. To

-

get an expression for the minimum mean waiting time, we substitute (3.23)
into (3.22) to get

2 [N
E[Tuloe = = o/ =

Or in terms of the meteor arrival rate, A,

E [Tyl = = (3.25)

Substituting the value for ¢ into (3.24), we get the following expression for the

mean message waiting time with Rg = Rgypt

N(Es/NO)req f 24
B [Tulopt = 20\/ 1.7 Gy Gg Pp < (375 (8:26)

3.2.3 Adaptive-symbol-rate modem. Recall that the expression for

mean waiting time is given by (3.13):

E[Ty] = D, E[ Ty | m] P(m)

m=1

and that P(m) is given by
Pim) = PX<N,X+Y2>2N)

For the fixed-rate case, the random variable X is the sum of m-1 iid
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exponential random variables and therefore X has a Gamma probability
\ distribution. In the adaptive case, X will not be exponential and the (m-1)th
order convolution of the density, fiy (t) will be dependent on m. Therefore, to
. get a general result, we must resort to other methods. Discussion of the
mean waiting time for a compound Poisson process is almost nonexistent in
the literature, but Cox (1962) does give an expression for the Laplace
transform of the mean first passage time, which is equivalent to our mean
! waiting time. Substituting our notation into Cox's expression, we get the

important result:

L{E[T =l{-1-+—F(Sl-—} 3.27
(BIT) =3 | 5% Toop (3.27)

Ot e P e,

where

sy

F(s) = Laplace transform of the density for the random variable W.

v, -
>y

s = the argument of the Laplace transform with respect to N, the
number of symbols in the message.

'
o,

We can easily check that (3.27) gives an expression identical to (3.22) for the
fixed-rate modem. Note that for the fixed-rate modem, the number of
symbols per burst is an exponential random variable with mean 1/ = 1R,
The Laplace transform of the probability density function, fyy (N), is then
given by

,‘ F(S) - }\.0+S

; Substituting this expression into (3.27) and taking the inverse Laplace

transform, we get our previous result:

E[Twl=%x +

1
T TR, (3.22)
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. Next we consider the adaptive-symbol-rate modem. First we need the

: distribution for W, the number of symbols per burst. In Section 3.1 we
S ‘ derived the following expression for W:

o

. T
» w = [ Rt :
° |
'

W

5 J_T Pr(o) q2 e—2t/‘t

" D (Es/NO)req Ny
: P" (O) qzt 2T/t

) = -e” ) (3.28)

: 2 (Es / No)req NO
h We can write q2 as a function of T,
;'0

2T/ \

3 o2 - (Es/No)req NoRpin €™ '
b P,(0)

.2.

:: Substituting this into (3.28), we get

W

W = Binin T @217 1
2
N
. The distribution for W is then given by
inT

: Fy (x) = PW<x) = P(E";L 2171y < x)

Y "
" T 2x

= P( T < —=1n +1 )
2 |: Rmin T i|

l
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Since T is exponential with mean t, we have the following:

P(W<x) = 1—exp{ --11? % ln[Riixt + 1}}

Simplifying, we get the distribution for W for the adaptive modem:

PW<x) =1 - (3.29)

Let a = 2/(Rp,;, 7). Differentiating (3.29) yields the density for W:
f(N) = % (aN+1y¥2 (3.30)

Consulting a table of Laplace transforms (Fodor, 1965), we find that the
Laplace transform of fig(N) is given by

F(s) =1 - \/E Vs e erfc (\/E) (3.31)
a a

where erfc (u) is the complementary error function, defined as

o0

2

erfc (u) = -\/1_ J. e ™ dx
T u

Substituting (3.31) into (3.27) results in the expression for the Laplace

transform of the mean waiting time for the adaptive-symbol-rate modem:

1

NEE (\/j)
a a

LAET) =7 (332

C R =

¥ rorx ‘l
b -

h‘l’

ATy

TATR N Gy Yy T
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Thus, finding the mean waiting time reduces to finding the inverse Laplace
transform of (3.32). Unfortunately, this transform (3.32) is not found in any
published table of Laplace transforms. In fact, the inverse Laplace
transform may not exist in closed form. For this reason, we resort to finding
bounds on mean waiting time for the adaptive-symbol-rate modem.

Consider the ideal modem — one that can transmit the entire message of N
symbols on the very first burst. In this case the lower bound on Tavg 18
simply the mean waiting time for the first arrival, 1/.. The upper bound on
Tavg is found by assuming the worst case — we send nothing until a burst
occurs that can transmit the entire message of N symbols. Let T}, = the
waiting time until such a burst occurs and let X = the number of bursts
required. Then we can write the upper bound as follows:

E[Ty] < E[Ty] = 2 E [Ty | no successes until m® burst] P(X =m)

m=1

Since consecutive meteor bursts are independent trials, then X is a geometric
random variable with the following probability mass function

px (m) = PX=m)=(1-p)™!p

wherep=P(W2 N) = 1-Fy (N). The upper bound can then be written as

m -1 1 1
E[T,] < — 1-p)™ == E[X] = —
Z L A" p = S EX] = 5
m=1
Where we made use of the result
. th m
E [Ty | nosuccesses untilm™ burst] = E[S,,] = _?\—
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Therefore, the mean waiting time for any modem, including the adaptive-

symbol-rate modem, is bounded in the following way

1 1
T <E[Ty] < E (3.33)

Since p =1 - Fw (N), we can use (3.29) to get the following bounds for the

adaptive-symbol-rate modem

T < E[T,] < +1 (3.34)

Figure 3.4 demonstrates the behavior of these bounds as a function of
message size, N, for Ryijp = 25 kHz, A = 0.1 trails/s, and © = .58 s. As

expected, the mean waiting time approaches the lower bound for small N.

18

16 ] Upper bound
14 ]
12 -
10 T
8 ] Lower bound
6]

4-

e

2]

Mean waiting time in seconds

0 T T — T

0 5000 10000 15000

Message length in bits

Figure 3.4 Upper and lower bounds on mean waiting time
for adaptive-symbol-rate modem
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2.4 Improvement factor. Define the improvement factor as follows: ’

|':
_ E [Tw]ﬁxed t i
E [Tyladaptive o
where E [Tyladaptive 15 the mean message waiting time for any adaptive- ;::'
information-rate modem. Before deriving the improvement factor for the o
e

adaptive-symbol-rate modem, it will prove useful to derive bounds on the )

improvement factor in the general case. The improvement factor is bounded

]
as follows: ::":
:'

E [Tw] fixed E [Tw] fixed ’
ub sTs T N
E [Tw] adaptive E [Tw] adaptive Y
o,
\

where the superscripts "ub" and "lb" denote upper bound and lower bound, )
respectively. Recall that the mean message waiting time for the fixed-rate ‘:
modem operating at the optimal symbol rate is given by the following: ;;
b

2 )
E [Twlopt = T (3.25) ;\

M

!‘:’

Since any adaptive modem is bounded according to (3.33), we can write the ::'
bounds on improvement factor as the following »
3
LSt
2psl<2 (3.35) N
\ ]
>

where p = P(W 2 N) and we have assumed that the meteor arrival rate is the ’;_
.

same for both modems. Now consider the specific case of the adaptive-
symbol-rate modem. To make a fair comparison, we assume that the fixed-
rate modem is operating at the optimal symbol rate, Rsopt = N/t and that the

adaptive modem operates with a minimum symbol rate equal to Rsopt- The
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N .
meteor arrival rate, A, is then the same for both modems and we can write
. the bounds on the improvement factor as follows: 2
N J
i
F
. 2 <1<2 (3.36) 4
V3
‘ 3
K These bounds are remarkably tight considering the weakness of the ',
b )
29 assumptions we made to get them. Note that for an adaptive-symbol-rate .
| modem operating with Ry = Rgopt, the maximum improvement is just 2.0. ‘
; In fact, for any modulation scheme with this minimum symbol rate, we ‘
';' cannot exceed 2.0 improvement factor over fixed-rate.
'. '
¢ 3
4 5
s N
Y
[
‘ F
Y (e
» 5
I &
L.

.
! -~ P N O e BNy P M, Mg L R S . ) L IR TR A T S T P O I E O N YL ‘,.‘ivk.l' AT '.'h‘*“
g A AT R L D Ao W, AT T A BT TS A R S

Y '
JXjn Mbg Wiy Wi MM R o K g N Na N R Ay XN



““““ R . - -~ cata At 4% Ata'Ala Alat ~alh cum Nal . - A i el A Y A al®
U TRt TSt Tt o TR T, S T POR AR YOO R (A X M By, A'at'nd X N ¥ M Atarita iie 4 a g v LIC -

PR 2T A T AN S

|
|
! Chapter 4 - Modulation Methods 9
| i
| :
In the preceding chapter, we investigated the performance of the fixed-rate i
, modem and the adaptive-symbol-rate modem on the meteor-scatter channel. ”
F We assumed that both modems map information bits onto channel symbols Yy
(or waveforms) in the same manner, but we did not examine the details of -::
this mapping, called waveform modulation. This chapter is concerned with ..»
the optimal use of waveform modulation for meteor-scatter communications.
4
We should now distinguish between adaptive modulation and waveform :1
modulation. The function of the digital waveform modulator is to match the o

output of the encoder, which is digital, to the channel, which is analog.

Adaptive modulation, on the other hand, uses one or more waveform

S48 5

- _m

modulation techniques to match the information rate to the time-varying

signal-to-noise ratio (SNR) at the receiver. By definition, the adaptive- o
symbol-rate modem uses a single waveform modulation technique and varies (,Q.
the symbol rate to match the time-varying SNR. The author proposes a :
complementary scheme: fix the symbol rate and vary the number of bits per '.‘
symbol. The author calls this adaptive scheme adaptive QAM since the ;:
scheme uses M-ary quadrature amplitude modulation (QAM). Adaptive ; ‘
ol
QAM should be less difficult to implement than adaptive-symbol-rate, and on Y
. . . . )
J a bandwidth-limited channel, adaptive QAM will out-perform adaptive- 8
symbol-rate. :L
3 \J
\'
*‘
The remainder of the chapter is divided into four sections: y
-\
3
* Section 4.1 is an introduction to two important families of waveform ::
™
modulation: M-ary QAM and M-ary Frequency Shift Keying (FSK). ~
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¢ Section 4.2 is dedicated to finding the optimal M-ary modulation
technique for the fixed-rate modem.

¢ Section 4.3 is dedicated to finding the optimal M-ary modulation
technique for the adaptive-symbol-rate modem.

¢ Section 4.4 investigates the performance and implementation of
adaptive QAM.

4.1 Me-ary Waveform Modulation Techniques. This section briefly
summarizes the important properties of M-ary QAM and M-ary FSK, where
M=2k (k=1,2,..). These two families are chosen because they have proven
to be powerful modulation techniques for channels impaired by additive
white Gaussian noise (AWGN). The key properties of each family are power

efficiency and bandwidth efficiency. These two properties are defined below.

Definition 4.1. Consider a M-ary modulation scheme operating on a
AWGN channel with noise power spectral density Ny . Assume a user-
defined specification on the maximum probability of bit error, Py, and a

minimum required energy per bit, Ey, to meet that specification. Define
power efficiency as

ep = (EyNp )req (4.1)

In other words, power efficiency is the required SNR per bit to maintain
reliable communication.

Definition 4.2. Consider a M-ary modulation scheme operating at R bits/s
and consuming a bandwidth W Hertz. Define the bandwidth efficiency by

€ = o7 (4.2)

Bandwidth efficiency has the units bits/second/Hertz (bits/s/Hz).
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The bandwidth expansion factor, B,, is defined as the reciprocal of the
bandwidth efficiency. The following treatment of M-ary QAM and M-ary FSK
is necessarily brief. For a complete description of these modulation schemes,
see Blahut (1987) or Proakis (1983). A excellent treatment of M-ary QAM is
also found in Noguchi et al. (1986).

411 M-ary QAM. Typical modulator and demodulator sections for a
digital radio link are shown in Figure 4.1. The output of the modulator
section is the sum of the outputs of two balanced modulators in phase
quadrature, hence the name quadrature amplitude modulation (QAM). The
input to the digital-to-analog (D/A) converter is a sequence of binary digits
(bits) traveling at a rate k/T bits/s, where k = logg M. The D/A converter takes
groups of k bits at a time and maps these k-bit symbols onto pairs of analog
data values {ap, , by). At the nth signaling period, the value a, is the input to
the in-phase (I) channel and the value b, is the input to the quadrature (Q)
channel. Note that each signaling period has length T seconds and the
channel symbol rate is Rg = 1/T symbols/s (Hertz). Let p(t) be the pulse shape
produced by the filtering of the low-pass filters. The modulator section
output, s(t), can then be written as

s(t) = z a, p(t — nT) cos w, t} - {Z b, p(t — nT) sin w, t (4.3)

n

where w, = 2rf; and f is the carrier frequency. The data value corresponding
to the nth signaling period can be represented by a complex number,
anp +j by. This data value is taken from a finite, discrete alphabet (or
constellation) with M elements. The choice of alphabet determines the
amplitude and phase characteristics of the resulting modulation scheme.
For example, if a, = cos ¢, and b, = sin ¢, ~where

o, €{0, 2r/M, 4n/M, ..., (M-1)2rn/M}, then the modulation is M-ary PSK.
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M-ary PSK has the desirable property that s(t) has constant amplitude.

Certain constellations with multiple amplitudes and multiple phases have
better power efficiency (lower (Ep/Ng)req) than M-ary PSK, however, and these
constellations are the popular choice for digital radio (Noguchi et al., 1986).

a I
n LPF —®_—
D
JIr + :
k/T LO QE
] w2 - To meteor-
bits/s bn s}iatter :
A LPF Q channe
(a) Modulator section
Sanple a]
—®'_ LPF att =0 "F: A
g
a JU
_—
» MF| 3 LO >
ni2 k/T
% bits/s
Sample 'g D
LPF att = 0 ﬁ

(b) Demrpdulator section

Figure 4.1 Modulator and demodulator sections for QAM modem

When M is a perfect square, the square constellations are usually preferred.

When M is not a perfect square (i.e. k is odd), square constellations are not
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possible and non-rectangular constellations often have better power

efficiency. For our purposes, the rectangular constellations are preferred
because these constellations lead to closed form approximations for the <
probability of bit error, P, (Proakis, 1983). Examples of square and A
rectangular signal constellations for M = 4, 16, 32, and 64 are shown in X
Figure 4.21 (The rectangular constellation for 8-ary QAM is purposely :
omitted from Figure 4.2 because it obscures the other constellations. The : )
8-ary QAM constellation is just one-half of the 16-ary constellation.) :"
bt
Now consider the demodulator section of Figure 4.1. The received signal at ::
the front end of the receiver is the transmitted signal, s(t), plus noise :
v
r(t) = s(t) + n(t) (4.5) )
where n(t) is white Gaussian noise with noise power spectral density N,. We .
wish to demodulate the signal r(t) such that the probability of correct ;v .
demodulation is maximized. The optimal demodulation for M-ary QAM is N
matched filter demodulation (Blahut, 1987). The two main results from E
matched filter theory are the following: ‘:
‘,
* The impulse response of the matched filter is given by p*(-t) = the ’
complex conjugate of pulse waveform evaluated at -t. E:
-
* The maximum signal-to-noise ratio at the output of the matched filter ' .
is given by
% = %ﬂ (4.4)
4
where Ej, = the energy of the pulse, p(t). \
>
! In common usage, the QAM label is applied to those modulations “or which M is a perfect :_'_.,
square and the constellation is a square lattice. Our definition applies to all rectangular "
constellations. ";
o,
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Figure 4.2 Rectangular signal constellations
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Provided there are no timing errors at the sampler, the input signal to the
threshold detector will achieve the SNR of (4.4). For a complete description of
matched filter demodulation, the reader should consult Blahut (1987),
Proakis (1983), or Haykin (1983). One can show that, in the presence of
additive white Gaussian noise, the optimal decision at the threshold detector
is to choose the constellation point that is nearest to the received point in
terms of Euclidean distance (Blahut, 1987 and Proakis, 1983). This decision
rule minimizes the probability of demodulation error and is the maximum a
posteriori probability (MAP) rule. Thus, the threshold detectors on the I and
Q channels of the demodulator choose the nearest allowed values for
ap and b, . These values are the inputs to the analog-to-digital (A/D)
converter, which performs the inverse mapping of the D/A converter of the
modulator. Next, we examine the error performance of M-ary QAM by

deriving an approximate expression for the probability of bit error, Py,

The probability of symbol error for M-ary PSK can be approximated by the
following expression for M > 4 (Michelson and Levesque, 1985):

= 8 ain
Py = erfc( N, sin = J (4.6)

where erfc(u) is the complementary error function, defined as 2

00

2 2
erfc(u) = Fx J’ e = dx 4.7

2 Error probabilities for coherent demodulation are often expressed in terms of the Q
function, defined as

00 x2

1 WX
Q()’)—mi e 7 dx

The Q function and the complementary error function are related by

erfc(u) = 2 Q(\l.2u)
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One can show that the average power for M-ary PSK must increase as (M/n)2
in order to maintain the same error rate performance as M increases. On
the other hand, for M-ary QAM (rectangular constellations), the power must
increase as 2 (M - 1)/3 (Proakis, 1983). Therefore, the advantage of M-ary
QAM over M-ary PSK is given by the ratio

3 M2

D = —2
g M-1)r?

(4.8)

Table 4.1 lists this ratio in dB for several values of M.

Table 4.1 Improvemen r for M- AM
M 10log D,
8 1.43
16 414
32 7.01
64 9.95

We can combine (4.8) and (4.6) to get the following approximate expression
for the probability of symbol error

E, [ 3M ] ) T J
Py = erfc — | ————— | 5in° — 4.9
" [ No leom-1) @2 M

The equivalent bit error probability depends on the particular mapping of the
k-bit symbols onto the signal constellation. The preferred mapping uses a
Gray code. When a Gray code is used, adjacent points in the constellation
differ by exactly one bit. The Gray code is used because, in the presence of
additive noise, the most likely demodulation error is one that results a
demodulated symbol that is adjacent to the correct symbol. If a Gray code is

used, this type of symbol error will result in only one bit error.

¥

AL

-y T

x©
.;‘N f“' &

A N A N T e

1% B
L XX

NI )

A

-
>
La!
‘s
»




51
Assuming that a Gray code is used and that all k-bit combinations are
equally likely, then the equivalent bit error probability is given by

1

Pb=kPM

where k = log2 M . Combining the above with (4.9) yields

1 Es [ 3 M2 ) 2 T
P, = erfc - | ———— | sin“ — 4.10)
b = Tog, M ( No \aM-D) @2 M (

In Figure 4.3, equation 4.10 is plotted as a function of E/Nj for M = 4, 8, 186,
32, and 64. These curves agree closely with those published in Proakis (1983).
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Figure 4.3 Probability of bit error for M-ary QAM with Gray coding
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In later sections we shall compare modulation methods on the basis of power
3 efficiency, (Ep/Ng)req, and the values listed in Table 4.2 will prove useful. The
data for Table 4.2 were computed using (4.10).

Table 4.2 (Fy/Ng)reqin dB for several values of Py, for M-ary QAM

Modulation Py= 10-3 EbElQ4 Pp= 10-5 Pp= 10-6

“" 4-QAM (QPSK) 6.6 84 9.6 105
8-QAM 8.7 104 11.6 12.6

. 16-QAM 10.3 121 134 14.3

: 32-QAM 12.3 141 154 16.4

. 64-QAM 144 16.2 17.6 18.6

The primary advantage of M-ary QAM over other modulation types is
bandwidth efficiency. The bandwidth efficiency for M-ary QAM is
determined by the spectral properties of the pulse, p(t). The maximum
P bandwidth efficiency is achieved when the Fourier transform of p(t), given by
" P(f), satisfies the following:

_ ) 1
) P, fi € — .
! POl 1l < o5 (411)
3 P(f) = ¢
. 1
| 0, Ifl > 2—T-
! One pulse that meets this requirement is the sinc pulse, given by
sin (x t/T)
= ——— )
p(t) ~UT (4.12)

: When such a pulse is used, the bandwidth efficiency achieves the maximum

) value, given by
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—\%- = logo; M bits/s/Hz (4.13)

Future discussion of M-ary QAM will assume a bandwidth efficiency given
by (4.13).

41.2 M-ary FSK. Like the M-ary QAM modulator, the input to the D/A
converter (or pulse generator) is a sequence of bits traveling at a rate k/T
bits/s. Each signaling period has length T seconds, thus the channel symbol
rate is Ry = 1/T symbols/s. The D/A converter maps each k-bit symbol onto
one of M complex orthogonal pulses, p;(t) G =0, 1, ..., M-1). Pulses pi(t) and
pj(t) (1 #)) are orthogonal if the following is true

[ moprwa=o

where * denotes complex conjugate. The real part of py(t) is fed to the in-
phase channel and the imaginary part is fed to the quadrature channel.

Therefore, the output of the modulator section, s(t), for a single signaling
period can be written as

s(t) = Re[pj(t)Jcoswgt — Im [ p; (t) ] sinwg t (4.14)

For demodulation, we have a choice of coherent demodulation or
noncoherent demodulation. For coherent demodulation of M-ary FSK in

AWGN, the probability of symbol error is given by (Michelson and Levesque,
1985)

1 1 \1M-1 1 9
Py = = J:w{l —[1 -3 erfec (;%H } exp{—g(y -a/2 EJNo) :’ dy (4.15)
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For noncoherent demodulation, the probability of symbol error is given by
(Proakis, 1983)

b3 P

4

S L

oy R R

s

5"

E A A N

D
| M-1 B
- m(M-1) 1 o o2 (1_) :
3 Pm = ; = ( i )i+1 e"p[ Ng \F1 (4.16)
: =
E
p The probability of symbol error for M-ary FSK can be converted to a bit-error
probability by assuming that when a M-ary symbol is in error, each of the
: 2k_1 incorrect k-bit patterns is equally likely. One can show that this
assumption leads to the expression
2k—1
: P, = = Py (4.17)
‘ 2" -1
Table 4.3 lists values of (Ep/Ng)req for coherent demodulation of M-ary FSK.
5 Table 4.4 gives values of (Ep/Ng)eq for the noncoherent case. The values for
3 these tables were computed using equations 4.15, 4.16, and 4.17.
4 Table 4.3 (Ey/N)req indB for M-ary FSK with coherent demodulation
\ M lation Py = 10-3 Pp=104 P, =105 Pp= 10-6
4-FSK 7.2 8.7 9.8 10.7
» 8-FSK 6.0 7.3 8.4 9.2
16-FSK 5.2 6.5 7.4 8.2
s 32-FSK 4.6 5.8 6.7 7.5
o 64-FSK 4.2 5.3 6.2 6.9
i
Curves of Py, versus Ep/N( are shown in Figure 4.4 for coherent demodulation
of M-ary FSK. Curves of Py versus E /N are shown in Figure 4.5 for
3 noncoherent demodulation of M-ary FSK.
-
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' le 4,4 (Ey/Nolreqi FSK and nonc¢oheren lation N
j b
Modulati =103 P,=104 P, =105 P, =106 N
4 FSK 8.3 9.6 10.6 114 5.3
8 FSK 7.0 8.2 9.2 9.9 s
16 FSK 6.2 7.3 8.2 8.9 -
32 FSK 5.5 6.6 7.4 8.1 p
64 FSK 49 5.8 6.8 75 5
WAl
A comparison of Figures 4.4 and 4.5 indicates that there is a penalty in power N
\
efficiency for noncoherent demodulation. Note also that in contrast to M-ary o
QAM, the curves for M-ary FSK shift to the left as M increases. In fact, for v
coherent M-ary FSK signaling, it can be shown that as M—ee, the channel 2:
capacity approaches the limit predicted by Shannon's capacity formula :’
(Blahut, 1987). .
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Figure 4.4 Probability of bit error for coherent demodulation -.'.f, .
of M-ary FSK signals b
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Unfortunately, the use of large FSK tone libraries has two serious
drawbacks: (1) Coherent reception of a large number of orthogonal
waveforms leads to a complex design and (2) Large tone libraries consume
bandwidth. To see why (2) is true, consider the bandwidth efficiency of M-ary
FSK.

XXX
o w u un
REE N

Probability of bit error

8.0
Eb/Noin dB

Figure 4.5 Probability of bit error for noncoherent demodulation
of M-ary FSK signals

For M-ary FSK with tones spaced at 1/2T Hz, the overall required bandwidth
is approximately M/2T, where T is the FSK pulse duration. The bit rate, R, is
given by k/T where k = logy M. Therefore, we see that the bandwidth
efficiency is given by the following

R 2logos M

8 =y M
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Thus, as M — «, the bandwidth required also goes to infinity.

From the previous discussion of M-ary QAM and M-ary FSK, we can
conclude that M-ary QAM is optimal for strictly bandwidth-limited channels
(unlimited power) and M-ary FSK is optimal for strictly power-limited
channels (unlimited bandwidth). Because of the complexity of employing

I W W W e— - W W ——

large sets of orthogonal waveforms, M-ary FSK for large M may be
impractical even on channels with large bandwidths. On such channels,
error-control coding can improve the power efficiency without adding the

complexity of orthogonal waveforms.

The next two sections of this chapter are concerned with finding the optimal
M-ary waveform modulation for the fixed-rate modem and the adaptive-

symbol-rate modem. By optimal, we mean the waveform modulation that

L b aa gt

either maximizes the average bit rate, Rbavg’ or minimizes the mean
message waiting time, Tayp. In general, the modulation that is optimal in
terms of average bit rate will not be optimal for mean waiting time. For our

purposes, each modulation is completely specified by the following three
parameters:

R

* Bits per channel symbol: k = logo M
t * Power efficiency: ep = (Ep/Noeq
* Bandwidth efficiency: e = R/'W

Noncoherent demodulation in itself has no direct effect on average bit rate or
mean waiting time, but because of its widespread use in meteor-scatter
communications, we shall investigate its performance also. In the
discussion that follows, binary FSK and binary PSK have been purposely
omitted for the following reasons: Binary FSK is always 3 dB less efficient in
terms of power than BPSK (Blahut, 1987), so the only advantage of binary FSK

" p N '“'f"v-"‘v"
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is noncoherent demodulation. If Gray coding is used, one can show that
QPSK (4-QAM) has identical power efficiency to BPSK. Therefore, the only -
advantage of BPSK over QPSK is the absence of the quadrature channel and :
its potential crosstalk contribution.

a

4.2 Optimal Waveform Modulation For Fixed-Rate. Several factors govern ” .
the choice of modulation technique: Y
2
* Power efficiency ¥
¢ Bandwidth efficiency _‘
¢ Use of noncoherent demodulation R
¢ Tolerance to impairments
The use of noncoherent demodulation is an important consideration on the
meteor-scatter channel. Noncoherent demodulators are immune to phase _'
errors, so acquisition of the signal is greatly simplified and acquisition time .
is shortened. Because acquisition time is typically a significant portion of :
burst duration, noncoherent demodulation is preferred. Impairments ;
(other than noise) in digital communications are caused by the equipment ~
and the channel. Impairments caused by equipment include linear K.
distortion, nonlinear distortion, and synchronization errors. Those caused ,
by the channel include interference, jamming, and multipath fading f.:_
(Noguchi, et al., 1986). The factors of greatest interest to us are those that ’
affect our two performance measures, R,,, and Tavg- These factors are :
power and bandwidth efficiency. Noncoherent demodulation will be a -
secondary consideration. The topic of tolerance to impairments is beyond the E
scope of this thesis. P
:
Conventional meteor-scatter communication systems employ frequency shift 2
keying (FSK) or binary phase shift keying (BPSK). The chief advantage of "
FSK is the option of noncoherent demodulation. BPSK is 3 dB better in terms
by,
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of power efficiency, but BPSK requires a coherent demodulator. Both are
rather easy to implement, but there is no evidence that either technique is
optimal in terms of our performance measures, R,y and Tyye. In fact, the
topic of the appropriate modulation technique for meteor-scatter is rarely
discussed in the literature. Restricting the class of modulation techniques to
M-ary QAM and M-ary FSK, we can find the optimal modulation technique
for a given set of link parameters. In general, the optimal modulation
technique will depend on which performance measure we are trying to
optimize and the bandwidth constraints of the channel. Consider first the
waveform modulation technique that maximizes the long run average bit

rate, Rbavg’ for a fixed-rate modem.

421 Maximizing long run average bit rate, Ryayg.  Assume for the
moment that the channel is unconstrained (unlimited bandwidth). We wish
to maximize the average bit rate, Rbavg over the allowable waveform
modulation methods: M-ary QAM and M-ary FSK. The expression for

average symbol rate, R,yg, for the fixed-rate modem is derived in Appendix A
and is given below (qg << 1014 e/m)

2R,
Ravg = ARstc + AR;Bqo 6.91—A107

the

_ Rs NO (Es/NO)req
o= P, (0,1)

172

1.7G+Gr P -24
A = 01 TUVUR I'T ( f )
R, (ES/NO)req 37.5

g 7172
P.(0) ro Ay
where A = [ :| l: ]

NO (Es/N O)req
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and all other terms are defined either in Chapter 2 or Appendix A. We can
convert (4.19) into an expression for average bit rate by noting that the
average bit rate is simply the product of number of bits per symbol and the b

average symbol rate

Rpavg = (1022 M) Rayg (4.20)

PR T o aik B L g

Assuming a constant bit rate, Ry, for all modulation methods, we can
attempt to maximize Ry,,g as a function of M and (Ep/Ng)eq- We can write

an expression for Rpayg in terms of these two parameters by noting that

Ry (E/N O)req =Ry (Eb/NO)req
Using this result leads to the following expression for average bit rate

Ry

Rpavg = C1a | =
bave ! (Eb/NO)req

+ CyRy[6.91 - C3 Ry (By/Noheq |  (4:21) 3

£ -24
where G, 01[17GTGRPT]°5(375) te

LY

1.7 Go Gg Pr N, T2
C2=01[ TRTO}

P.(0,1) X
)

*

, ~

C { 2x10° NO} nz e 12 ~

3= P, (0) Te )\%v N

r

F

.

Since (4.21) is a strictly decreasing function of (Ey/Ng)req, the mazimum is -E

not attained and the optimal modulation is M-ary FSK, M—e. This is the
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expected result since we assumed the channel is strictly power-limited.

For a bandwidth-limited channel, we must consider the bandwidth
efficiency, eg. Assuming a bandwidth limit of R,y (= maximum symbol
rate), we can compute the maximum bit rate as

Rbmax = &g Rmax

Values of maximum bit rate for Ry, = 500 kHz are listed in Table 4.5 for
M-ary QAM and M-ary FSK, M = 4, 8, 16, 32, and 64.
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Table 4.5 Maximum Bit Rate for M-ary QAM and M-ary FSK X
)
. ™~
Modulation €p Rbmax N
64-QAM 6 3.0 M b/s n
32-QAM 5 2.5 Mb/s &
16-QAM 4 2.0 M b/s ~
8-QAM 3 1.5 M b/s "
4-QAM 2 1.0 M b/s ot
4-FSK 1.0 500 k b/s N
8-FSK 3/4 375 k b/s By
16-FSK 1/2 250 k b/s '
32-FSK 516 156 k b/s -
64-FSK 316 93.8k b/s 9
Now assume that each M-ary modulation scheme is operating at the .
maximum bit rate, given by Table 4.5. We wish to maximize (4.21) as a F;‘.
function of the allowed values of (Ey/Ng)eq, With Ry = Rpmax. The curve of Z"-
W,
Figure 4.6 demonstrates this behavior for a bit-error-rate of 1074, i"
.'l
From Figure 4.6 we see that 8-QAM is optimal, but there is negligible "
difference between 8-QAM and 4-QAM. In general, the optimal modulation :"3:
is a function of transmitter power. The higher order M-ary QAM waveforms ::'."‘
are favored for high transmitter power. )
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- Figure 4.6 Average bit rate for M-ary modulation on fixed-rate modem Y
: S
:' Since the overdense trail model is only an approximation, one may wish to ‘g
find the optimal modulation assuming that all trails are underdense. The =
N expression for Rp,yg assuming all trails are underdense is given by the first ~J
term of (4.20) E
L o
Ry, 3
Rpavg = C A | o (4.22) 3
bavg 1 (Eb/NO)req 3
N
A To maximize (4.22), we must simply maximize the square root of the
N bandwidth efficiency over the pcwer efficiency 3
U .
- €g P.
(Eb/NO)req
! r
r
o
From Figure 4.7 we can see that 4-QAM (QPSK) is optimal for this case, b
independent of the link parameters. Next we want to consider minimizing .
)
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the mean message waiting time for the fixed-rate modem.
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Figure 4.7 Bandwidth efficiency/power efficiency for Py = 10-4
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42,2 Minimizing mean message waiting time. T,,,. Recall from
Chapter 3 that the mean message waiting time for a fixed-rate modem is
given by the following

..,v--
L

ooy
C,

-

Y

N
A TR,

LI ]

E[T,] =-‘;‘: + (4.23)

R NR

where N = the message length in symbols, T = mean burst duration (= .58 s),
and Ry is the symbol rate in Hz. It is easy to show that the following

expression is equivalent to (4.23) where N is now in bits

-

T

] PRI

N
)\.TRb

E(T,] =-§- + (4.24)

¢ 7

The optimal bit rate is then Rpopt = N/t bits/s. Typical message lengths are

on the order of 10,000 bits, so if we operate at or near the optimal bit rate we
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will be operating considerably below the maximum symbol rate of the :_

channel, except for M-ary FSK, with M very large. E

' -
l-f ;

The mean waiting time when operating at the optimal bit rate will be the s’

same as that found in Chapter 3, i.e.

-~
o>

] RS
{ 2 B
E [Tulopt = (4.25) o

)
f
{ From the previous section we know that (4.25) is a strictly increasing :
E function of (Ep/Ngleq. Therefore, the minimum is not attained and the 2
optimal modulation is M-ary FSK, M—, This conclusion is not entirely ’
valid because for very large M, the bandwidth may approach the bandwidth
A -
limit of 500 kHz. For example, consider a system operating at a bit rate of ;
5,000 bits per second. To approach the bandwidth limit, we would have to -

have a bandwidth expansion factor of 100. This value is not reached until |_ )
| M = 4096. It is highly unlikely that a system of this complexity would ever be , ;
; implemented. To improve the power efficiency a system designer would f-
: incorporate some form of error-control coding. Thus, we conclude that the -’
strictly power-limited channel model is quite good when message waiting '

time is the performance measure of interest.
4.3 Optimal Waveform Modulation for Adaptive-Symbol-Rate. =

)

431 Maximizing long run average bit rate, Ryavg. The expression for :}

‘ average symbol rate for the adaptive-symbol-rate modem is derived in E:'.
Appendix A and is found to be .
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where all terms have been defined previously. Using the same arguments as
in Subsection 4.2.1, we can convert (4.26) to the equivalent expression for
average bit rate. This leads to the following

PR A

C4+Cs

‘ R T — 4.27
g bavg (E b/NO)req ( )

1.7GpGrPr Ny 1%/ ¢ V24P, (0,1) ¢ 10"
where C, = 01 ( )
P,(0,1) 375 2N,

1/2 1/2
176G Gg Pr N 241 p 07 r. 22
Cs = 3.06x107[ 1 Cr Pr °} ( £ ) [ ’()J{r"' B

P0,1) 375 No || 2o

R Assume for the moment that the channel is strictly power-limited. Since
, (4.27) is a strictly decreasing function of (Ep/Nglreq, then the optimal
modulation is once again M-ary FSK, M—es,

Now consider the bandwidth-limited case. The average bit rate is given by the
following expression

T(q)
Riavg = : J'Q fo Ry(t) fq (o dt dq (4.28)

. where

Py (t, q) P.(t, @ < R
No (Ep / NO)req ’ Ny (Ep/ NO)req - bmax

Rp(t) =

P, t,@ R
N, (Ey / Ng) > Momax

req

Rbmax ’

-~

“#

J
v
1

PR R

1 35 Iy

s e

hoh

. e e« -
O'A.(".

A AR

A

L7

rosroseLs

“ 4t
. Y 'n

. . P I R R RS PN I I et . o
x', RS M ATATY 1)\"\'_\.,\‘,‘!.w,\"'\..\-*\..'v_.'i_r"'.\_.\_.‘_..'_.“.‘v_.\_. AN LN N KA AP '.\.N \J'-. W, LIATAL

--------------



Pt Sl il WL

Py

.............
n %

and Rpmax is given by the values in Table 4.5. Figure 4.8 consists of a plot of
(4.28) for a bit-error rate of 10-4. The transmitter power is 2000 watts and all
other link parameters are those of Chapter 2. The curve of Figure 4.8
indicates that the optimal modulation is 16-QAM, but the optimal modulation
will in general be a function of the transmitter power. As the transmitter
power increases, the percentage of time that the modem operates at

Rp(t) = Rpmax increases and the modulation with greater bandwidth
efficiency is favored.

2000
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Average bit rate in bits/s

O v Ll 4 i ' T v T

0 1 2 3 4 5 6
Bandwidth efficiency in bits/s/Hz

Figure 4.8 Average bit rate for M-ary modulation on
adaptive-symbol-rate modem (P = 2 000 watts, BER = 10-4)

4.3.2 Minimizing mean message waiting time, Tavg- We do not have a
closed form expression for the mean message waiting time for the adaptive-
symbol-rate modem, but from equation 3.32 of Chapter 3 we know that the
mean waiting time is directly proportional to the inverse of the meteor arrival
rate. Therefore, we come to the same conclusion as for the fixed-rate
modem: the optimal modulation is M-ary FSK with M large. This result

supports the argument that error-control coding should be effective in
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minimizing message waiting time. Coding can greatly improve power
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efficiency without the complexity of additional orthogonal waveforms.
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4.4 Adaptive QAM. The discussion of adaptive techniques thus far has been
restricted to the adaptive-symbol-rate modem. The adaptive-symbol-rate
modem employing M-ary FSK (large M) uses the channel optimally,

assuming that the channel is strictly power-limited. This assumption is

valid for systems with low transmitter power levels, small antenna gains, or

noisy receivers. On the other hand, systems with high transmitter power

levels will encounter signal-to-noise ratios (SNR) that will support symbol
rates exceeding the coherent bandwidth of the channel. For these systems,
the adaptive-symbol-rate modem is not optimal. To see why, consider the plot

of instantaneous symbol rate versus time found in Figure 4.9
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Figure 4.9 Instantaneous symbol rate R(t) for an overdense trail

When the SNR at the receiver exceeds the value corresponding to the
maximum symbol rate, Ry, the adaptive-svmbol-rate modem must operate

at a fixed symbol rate and a fixed bit rate, Rypax: Rmax and Ryypaye are
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related by bandwidth efficiency, see Table 4.5.) At these high received signal
levels, the channel is being under-utilized, since the SNR indicates that the

channel can support high. Dbit rates.

A better adaptive system is one that uses waveforms with high bandwidth
efficiency when the SNR is high and waveforms with good power efficiency
when the SNR is low. Thus, the ideal adaptive scheme on a bandwidth-
limited channel would be one that operates at an adaptive (time-varying)
symbol rate until such time that the SNR supports the maximum symbol
rate, Ry ,x. At this time, the symbol rate would stay constant at Rg = Ry«
and we would employ a modulation technique with high bandwidth efficiency
such as M-ary QAM. Such a hybrid system of part adaptive-symbol rate and
part fixed-symbol rate would be difficult to analyze and to implement, but the
author encourages further research in this direction. For the purpose of this
thesis, we shall limit discussion to a fixed-symbol-rate system that adapts the
bit rate to the time-varying SNR through the use of M-ary QAM waveform
modulation. The author calls this adaptive scheme adaptive QAM.

The adaptive QAM scheme that we shall analyze employs the set of M-ary
quadrature amplitude signal constellations of Figure 4.2. The reader will
recall that these were the rectangular constellations for M = 4, 8, 16, 32, and
64. Larger constellations will not be used since their exclusion has little
impact on performance for reasonable values of transmitter power. The
operational concept for adaptive QAM is simple: operate at the highest value
of M that the channel will support. Recall that the instantaneous symbol rate
can be written as the following

(4.29)

For the following discussion, denote the power efficiency for M-ary QAM by
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(E¢/No)m, where Eg = (logg M) Ey,. Values of (E¢/Ng)y for M = 4, 8,16, 32, and
64 are listed in Table 4.6.

e o do Yo Ml WM 3 10 s

A T T e T T

Table 4.6 (E/Ng).c..in dB for several values of Py, for M-ary QAM

Modulation P, =103 P,=10+4 P, =105 P,=106 N
4-QAM (QPSK) 9.6 114 12.6 135 -
8-QAM 13.5 15.2 16.4 174
16-QAM i8.3 181 19.4 20.3
32-QAM 19.3 21.1 22.4 234
64-QAM 22.2 24.0 25.4 26.4

Realizing that the symbol rate is constant, we can rewrite (4.29) to get an

expression for the signal-to-noise ratio per channel symbol as

PEEEEST P LA L

l (E¢/Ng) = 1;;0(;?) (4.30) 3
.
{ When the the right-hand side of (4.30) exceeds (E¢/Ng)y, the modem changes ‘.:
modulation to M-ary QAM and operates at a bit rate of (logg M)Rg bits/s. E

Figure 4.10 demonstrates this operation graphically for an underdense trail ;“'

l with q = 1013 e/m and a symbol rate of 1 kHz. Figure 4.11 demonstrates .

P4

&

3 similar behavior for an overdense trail with q = 1015 e/m and a symbol rate of
500 kHz. The operating thresholds of Figures 4.10 and 4.11 are those for a
required maximum bit-error rate of 10-4 (see Table 4.6). Note that the
underdense trail will not support 64-QAM and the overdense trail will
support neither 32-QAM nor 64 QAM.

.’,‘, oy, }'-‘- A 4 :,(‘,‘.‘y)'-."-"‘-

a4

The adaptive QAM modem operates at or above a minimum SNR per bit to

maintain reliable communications. Therefore, the average probability of bit :‘_
error is always less than that given by (E¢/Ng),.q, and the subsequent e
ey
performance predictions can be considered lower bounds on performance, '
rather than just estimates of performance. 'T:"_
»
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Figure 4.10 Operation of adaptive QAM on underdense trail ;'
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Figure 4.11 Operation of adaptive QAM on an overdense trail
(P1 = 2000 watts, R, = 500 kHz, g = 1015 e/m) ‘
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On the svrface, changing modulation with time may appear more complex
than changing symbol rate, but in Subsections 4.4.4 and 4.4.5 we shall see
that the adaptive QAM modem has definite advantages over adaptive-symbol-
rate in implementation. One obvious advantage is that the adaptive QAM
modem has only 5 information rates. In contrast, the theoretical adaptive-
symbol-rate modem has an infinite number of information rates. We begin

our investigation of the performance of adaptive QAM by examining the long
run average bit rate.

441 Average bit rate. Ry, Let W(q) denote bits per meteor burst, a
random variable and a function of electron line density, q. From Figures 4.10

and 4.11 we see that, in general, W(q) can be written as

W(Q) = RS[2t4 + 3t8 + 4t’16 + 5t32 + 6t64} (431)

where ty = the time that the modem operates at M-ary QAM for a given
burst. Note that the total burst duration, Ty, is given by Ty = ty + tg + t15 + t3o

+ tg4. Since many trails will not support 64-QAM or even 32-QAM, we allow
the possibility that ty; = 0 for some M.

The average bit rate can be written as

Rpavg = _[QW(q) fq (@ dq (4.32)

where W(q) is given by (4.31). This expression is evaluated numerically with
results tabulated in Table 4.7 for the link parameters of Chapter 2.

Comparing Tables 4.7 and 3.2, we see almost a three-fold improvement over
adaptive-symbol-rate at R = 500 kHz.
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Table 4,7 Aver it rate in bits/s for adaptive QAM, Pt = 2000W

i of g ¢

Rs. kHz nderden overdense total
1.0 11.1 5.0 16.1
5.0 20.3 24.6 449
10 249 48.7 73.6
50 32.9 221.8 254.7
100 31.8 402.5 254.7
500 12.0 1269 1281
1000 1.0 1789 1790

(l'l"S‘. -

[ 3
St

The improvement factor for adaptive QAM over adaptive-symbol-rate is
plotted in Figure 4.12 as a function of transmitter power. Note the
improvement is significant, but is highly dependent on transmitter power for

power levels below 3000 watts.

Improvement factor

LN M T

4000 6000

Transmitter power in watts

Figure 4.12 Improvement in average bit rate for adaptive QAM
over adaptive-symbol-rate (R4 = 500 kHz)
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44,2 Mean waiting time, T,,,. Recall from Section 3.2.3 of Chapter 3

that the Laplace transform of the mean waiting time is given by

(4.33)

L BT} =1T['1' _E‘ﬂ_]

s T SO -F©)

where
F(s) = the Laplace transform of the probability density function

for the random variable W (= bits per meteor burst).

s = the argument of the Laplace transform with respect to N,
the number of bits in the message to be transmitted. N is

assumed known, not random.
A= the meteor arrival rate (= rate of the Poisson process).

The first step in evaluating (4.33) for adaptive QAM is to derive an expression
for the cumulative distribution function (CDF) for the number of bits per
meteor burst, W. Denote the CDF for W by Fy (x). The expression for Fy (x)

is derived in Appendix B and is given below

Fw =1- Kg exp{— GI}{( p }, X 2 Xg4 (4.34)

S

X
1- K32 exp{— ER ‘C}’ X39 < X < Xgq
S

X
1 - Kis exp{— = t}’ X16 £ X < X39
S

1 - Kg exp{—- 3;1}, Xg < X < Xyg
S
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1 exp{ ZRS’E}’ 0 <x < xg

where the constants Ky and xy, M = 8, 16, 32, 64 are defined in Appendix B
and t (= t;) is the mean burst duration in seconds. The function Fy (x), given
by (4.34), is plotted in Figure 4.13.

1.0

0.8 1

0.6

0.4 -

P(W<x)

0.2 -

0.0 v ¥ v T Y T Y T
0 10000 20000 30000 40000 50000

Bits per meteor burst, x

Figure 4.13 Cumulative distribution function for bits per burst, W,
for adaptive QAM (P}, = 104, Ry = 5900 Hz, 1= .58 s)

We can see from (4.34) that F (x) is divided into 5 regions, each described by
an exponential function with a different rate of decay. The CDF of (4.34) is
continuous, but only piecewise differentiable. Therefore, the Laplace
transform of the probability density function, denoted by F(s), will be quite
intricate, involving polynomials and exponential functions of s. The
corresponding expression for the Laplace transform of the mean waiting
time, given by (4.33), is not tractable and possibly not invertible in closed

form. To avoid this situation, we choose to approximate Fy (x) by a sum of
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: ph

3 three exponential functions with rates of decay given by the first, third and '

fifth terms of (4.34). A least-square linear approximation is derived in *\-‘

: Appendix B and plotted in Figure 4.14. 2

i )

K

1.0 .

i 0.8

) S\

'5] 0.6 - — CDF for random variable W 'A
E 0.4 ¢ Approximation to CDF iy
_y ’ Q
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b
0.2 ~i
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N 0.0 -1 v T v T g Y \ T T :.'
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#

Bits per meteor burst, x f._

Figure 4.14 Approximate CDF for adaptive QAM -

; (Pp, =104, Rg = 5900 Hz, t=.58 s) N

r -
]

The approximate probability density function is just the first derivative of the By
approximate CDF and the Laplace transform of the approximate density :
he

| (denoted by F(s)) is easily found for the sum of three exponential functions. b

} A

When the Laplace transform of the density function is substituted into (4.33), "}
we get the following expression ."

: 1[ A B Cs+D by

! LiEm =55+ 2 + 54— (4.35)

s s s° + dgs + d n

o

L
| where A, B, C, D, dy, and d; are constants d=fined in Appendix B. .-
Consulting a table of Laplace transforms, (Fodor, 1965) the mean waiting }

X

time for Py = 10-4 is given by x*

: e T T S G R N TR
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N oD
149R,t O P|T 864R, <
N . N
. [.37 COS(W) —.052 sin (Wj}} (4.36)

where N is the message length in bits. For N =10 000 bits and R = 3 000 Hz,

the mean waiting time is 9.2 seconds.

Now that we have an approximate expression for the mean waiting time for
the adaptive QAM modem, we should compare performance with the fixed-

rate and the adaptive-symbol-rate modems.

We already have evidence that adaptive-symbol-rate outperforms adaptive
QAM. For example, from Table 4.6 we see that to increase the bit rate by a
factor of 3 (from QPSK to 64-QAM) the received power must increase by 12.6
dB (P}, = 10-4). For adaptive-symbol rate, on the other hand, the instantaneous
bit rate is directly proportional to received power and a three-fold increase in
bit rate requires only a threefold (4.8 dB) increase in power. In the following

discussion we shall present a more rigorous argument in favor of adaptive-
symbol rate.

Recall that the CDF for W for the fixed-rate modem when operating with
QPSK is given by the following

X
Fw() =1 - exp{—2R t}
S

The CDF for the adaptive-symbol-rate modem was found in Chapter 3 to be

R R RV - ‘e e W) L) L IV e e ) AR A ) ""V'r‘f‘{
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{ where W is symbols per burst and Ry ;, is the minimum symbol rate.

When W is in bits and QPSK modulation is used, the CDF is given by

PR

v
]

Fy(® =1 - . 2
1

Rmin T

'

+1 A
p
)

The cumulative distribution functions for these three modems are plotted in
Figure 4.15 for Py, = 10-4, Ry = Ry, = 5900 Hz, and QPSK modulation.
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Figure 4.15 Cumulative distribution functions for three meteor-scatter ;'
modulation methods (P, =104, R = Rpy;;, = 5900 Hz, and waveform A\
modulation for fixed-rate and adaptive-symbol-rate = QPSK) .
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The most important feature of Figure 4.15 is that the CDF for adaptive-symbol f
rate is strictly less than the CDF of adaptive QAM for all values of x. :-"
Therefore, assuming that the symbol rate for adaptive QAM equals the t::
p,
minimum symbol rate for adaptive-symbol-rate (making the meteor arrival o
.. . . ]
rate, A, the same for both modems), the mean waiting time for adaptive- e
symbol rate will always be less than that for adaptive QAM. f-f:
hRY
A
The improvement factor for adaptive QAM over fixed-rate is defined as the ‘."h
ratio of the fixed-rate waiting time to the adaptive rate waiting time, i.e. o,
t
¢
I= E[Tw]ﬁxed :'A
E[ Tw] adaptive 4
%
From Chapter 3, we know that the optimal bit rate for the fixed-symbol-rate .’\",
l"—‘
modem is given by N/t and the mean waiting time when operating at this bit ]
®
rate is given by o
2 o
E[T,] = = (4.37)
A =
»
If we assume that the fixed-rate modem is operating with QPSK waveform on
S
modulation, then the optimal symbol rate is just N/(2t). Furthermore, if the ::
adaptive symbol rate modem operates at this same symbol rate, then the ';-\.
B
meteor arrival rate, A, is the same for both modems and we can compute the :
improvement factor for adaptive QAM over fixed-rate as the ratio of (4.37) and "
(4.36), given by
N N >
E(T,]=2!{137T+ ——— -exp| - ————— .
(Tw] { 449R, 7 P ( 3.64 R, r) ph
S
Pt

Y
~
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Substituting in the value for symbol rate, Rg = N/(2 1), we get 1 =1.205.

Although Equation 4.36 was derived assuming a bit-error rate of 10-4, it is
also an excellent approximation to mean waiting time for bit-error rates in
the range P, =10-3 to P, = 10-6, as noted in Appendix B. Further evidence to
support this claim is given by the results of Table 4.8 where the improvement
factor is computed for several values of bit-error rate. Note that the

improvement factor is constant to two decimal places.

Table 4.8 Improvement in waiting time for ive QAM over fixed-rate
Py I
103 1.203
104 1.205
10-5 1.202
10-6 1.201

From Table 4.8, we see that the adaptive QAM modem offers a 20%
improvement over the fixed-rate modem when operating at the optimal
symbol rate for the fixed-rate modem. In Chapter 3, we derived a lower
bound on improvement factor for adaptive-symbol-rate of 1.15. Since the
adaptive-symbol-rate modem will always outperform adaptive QAM, we now
have the following new, tighter bounds on the improvement factor for the

adaptive-symbol-rate modem

12<1<20
To this point we have compared mean waiting time for the special case
where both the adaptive QAM modem and the fixed-rate modem are

operating at the same symbol rate. In Appendix B it is shown that the

optimal symbol rate for adaptive QAM is approximately 0.3 (N) Hz where N is
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the message length in bits. When both modems are operating at their

respective optimal symbol rates, the improvement factor increases to 1.283,
or 28.3%

When the message lengths are long compared to the symbol rate, the

improvement factor increases as shown in Figure 4.16.

2.0

Improvement factor

0.0 1.0 2.0 3.0 4.0 5.0 6.0

Symbol rate /| message length, (Rs/N) in Hertz/bits

Figure 4.16 Improvement in mean waiting time for adaptive QAM

For very long messages, Figure 4.16 indicates that improvements on the

order of 2.0 are expected (e.g. for RN = 0.1, improvement factor is 1.81).

4.4.3 Optimal symbol rate. Figure 4.17 illustrates the behavior of

average bit rate as a function of instantaneous symbol rate for adaptive QAM.
As in the case of the fixed-rate modem, the optimal symbol rate appears to
exceed the bandwidth limit of the channel. However, the optimal symbol rate
1s now approximately 3.5 MHz rather than 10 Mhz, so it is quite possible that
for transmitter power levels below 2000 watts, the optimal symbol rate may be

less than Ry ,, = 500 kHz. In this case, the system designer should attempt
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to operate at the optimal symbol rate rather than the maximum rate.

2500

2000

1500

1000

500

P

Average bit rate in bits/s

0 4 T v T y T —— T

0.0e+0 2.0e+6 4.0e+6 6.0e+6 8.0e+6 1.0e+7

Symbol rate in Hz

Figure 4.17 Average bit rate as a function of symbol rate for adaptive QAM

The symbol rate that minimizes the mean waiting time for adaptive QAM is

approximated in Appendix B as Rgqp¢ ~ 0.3 (N) Hz, where N is the length of
the message in bits.

4.4.4 Signal constellation. To this point we have assumed idealized
performance for adaptive QAM. Now we attempt to design an adaptive

modem whose performance comes as close as possible to that of the idealized
case.

The traditional quadrature amplitude modem of Figure 4.1 incorporates
threshold detectors on the in-phase (I) and quadrature (Q) channels of the
demodulator. These threshold detectors map the received data values
an + jby to the nearest (in terms of Euclidean distance) allowable data value,
where the allowable values come from a set of order M. One possible

realization of adaptive QAM would involve a demodulator with five threshold
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detectors. The correct threshold detector wculd be chosen based on an :};
estimate of the time-varying SNR at the receiver. Such an implementation is Ny
not cost efficient, however. The threshold detector is an analog device and ::'
modern-day analog devices tend to be more expensive than digital devices. =
For this reason, we choose to realize the adaptive information rate at the :
digital level of the modem and use a single threshold detector on each f
channel. :':;
"

This type of design requires that the mapping of information bits to analog '.‘\"
values, a, + jb, be done in a manner that minimizes the complexity of the ;}3’.
threshold detector and insures that demodulation errors result in the ‘.“ !
minimum possible number of bit errors. Such a mapping is the topic of this ;:
section. :::
4

An efficient signal constellation for adaptive QAM should accomplish the :'

following:

o K.

vt s e

L A
»
«

q‘;.’w’ e ’.’.- L

L

1]
’

* Incorporate decision regions identical to those for non-adaptive

QAM, thus the symbol-error performance is unchanged.

N

* Minimize the number of distinct constellation points to reduce

threshold detector complexity.

o x

v

»

«

Yy

* Incorporate a Gray code, to minimize the probability of bit error.

v

¢ Place constellation points such that the average transmitted power

F

)

is the same for all values of M.

AR A

Attempting to meet all four of the above requirements involves compromise
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as seen by the signal constellation of Figure 4.18. This signal constellation
holds 120 points; only four constellation points are co-located (4+8+16+32+64
=124). One could design a constellation with fewer points, but incorporating
fewer points makes it difficult to equalize average transmitted power and

maintain the original decision regions.

The rectangular constellation for 8-ary QAM was abandoned in favor of one

with better power efficiency.

The average power transmitted into a 1 ohm load for this constellation is

given in Table 4.9.

Table 49 Aver ransmi wer in w
r ive QAM constellation
M Average power
4 10.6
8 10.5
16 10.2
32 9.8
64 10.5

The signal constellation of Figure 4.18 incorporates 20 distinct amplitudes on
the in-phase channel and 19 distinct amplitudes on the quadrature channel.
Therefore, a digital-to-analog (D/A) converter should only require 5 bits to
represent these amplitudes. It may be impossible to incorporate a Gray code

with only 5 bits per channel, however, so the author suggests that 6-bit or

higher D/A converters be used.
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445 Modem block diagram. A modem block diagram is shown in <

b Figure 4.19 that implements the design discussed thus far. A brief :
. description of the operation of this modem follows. We assume a noiseless ;
feedback path with zero delay is present. :
The input to the modulator section (see Figure 4.19) is a stream of g

: information bits traveling at some predetermined rate not to exceed the o
.' capacity of the data buffer. When a meteor trail of proper intensity and 2
' orientation is present, the receiver sends to the transmitter a message ::
;5 requesting information. This message includes the value of M (M = 4, 8, :
} 16, 32, or 64) which is determined by an estimate of the signal-to-noise .
, ratio, E/Ng. The data buffer sends k=logg M bits to the look-up-table encoder. B!
K The encoder takes the two inputs, (value of M and the k information bits) and "
maps them onto two 6-bit words (one for each channel of the modulator). f
; This word length is chosen because we require at least 6 bits per channel to '
A represent each of the constellation points with a Gray code. The digital-to- "
; analog (D/A) converters map thie 6-bit words onto 120 distinct constellation "
p points in such a way that the probability of bit error at the receiver is ,.
:' minimized. The analog values, a, and b, from the I and Q channels, 3
y respectively, are quadrature modulated and transmitted over the channel. ) :
At the receiver, the signal-to-noise ratio is estimated and an estimate of M is )

; sent to three locations: the transmitter, the look-up-table decoder, and the t
d rate changer. The received signal is demodulated and sent to the threshold A
' detectors of the I and Q channels. The threshold detectors choose the nearest !
allowed values a,' and b,". These values are sent to the look-up-table decoder RS

¥ where the inverse mapping of the encoder is performed. The output of the .:
! decoder is a k-bit word that is sent to the rate changer, which serves as a :
: buffer. ’
. 7]
' ”
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Since the output of the encoder and the input to the decoder are always 6-bit
words, regardless of the value of M, the modem operates at a fixed symbol '.
rate, R, and a fixed bit rate. The information rate varies at the data buffer Ry
and the rate changer. Since all other components of the system operate at a o
fixed symbol rate and a fixed bit rate, synchronization and timing problems .
are minimized once the initial synchronization and timing are achieved. "
This feature of the modem, plus the fact that it requires only 5 information
rates, makes this implementation of adaptive QAM quite feasible. :
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Chapter 5 - Error-Control Codin ;

;

A

.J'

In this chapter, we investigate the optimal use of Reed-Solomon (RS) codes on

the meteor-scatter channel. These codes are examined on the basis of -
<

L]

forward-error-correction (FEC) of random errors on an AWGN meteor-

scatter channel. The burst characteristics of the channel make it possible to

optimize coded performance in terms of an optimal code rate. A lower bound

on optimal code rate for RS codes will be derived. Performance of the coded

system will be investigated in terms of improvement in average bit rate,

Rpavg, or mean waiting time, T,,,. Coded performance will be estimated for
the three types of modems discussed thus far, namely fixed-rate, adaptive-
symbol-rate, and adaptive QAM. Some familiarity with the theory of error-
control coding is assumed. Excellent background information on this subject
is found in the texts by Blahut (1983), and Lin and Costello (1983). The
performance of Reed-Solomon codes is also treated in Berlekamp et al. (1987).

i . 5\\1‘;;-;1,(.’({1"'\!:,

Yy

i
The topic of error-control coding for meteor-scatter communication has :
received some attention, yet much work remains to be done. The COMET '
system of the 1960’'s employed a crude form of error control called automatic- E
repeat-request (ARQ). Recent published research includes the work of :
Hampton (1985) and Milstein et al. (1987). Hampton's work includes the :::
effect of the time-varying signal-to-noise ratio on the performance of a hybrid ”,"
(ARQ and FEC) coding scheme. Milstein et al. produced an excellent paper ::
on the performance of two packet communication protocols with RS codes for :.?
error correction. One rather obscure, but noteworthy, treatment of adaptive :’
coding is the work of Rediske (1982). Rediske designed a coding scheme :f‘,
employing rate 1/N convolutional codes for use on Weitzen's adaptive :-
modem. This work demonstrates that adaptive information rate can be E

achicved through error-cuircciion coding rather than through adaptive

88
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symbol rate or adaptive waveform modulation. Adaptive coding for meteor-
scatter is one area that deserves more attention, as noted by Milstein et al.

This chapter is concerned with traditional (not adaptive) coding techniques

- ¥ §F ST

for meteor-scatter communications.

; In many respects, this chapter is an extension of the work of Milstein et al.
for non-packet communications and adaptive modulation (Milstein et al.
considered only the fixed-rate modem). This author believes that the non-
packet case is more general since the corresponding results apply to a wider

class of communication systems.

Before examining the performance of RS codes, a brief introduction to their

properties is in order.

5.1 Properties of Reed-Solomon Codes. Reed-Solomon codes are examples of
non-binary linear block codes. Consider a message sequence of k symbols
} taken from a finite field, GF(q). A linear block code maps these k information
d symbols onto a codeword of n symbols such that the gk codewords form a
\ vector space over GF(q). For Reed-Solomon codes, q is almost always a power
of 2 and the block length is normally 2™ - 1. Reed-Solomon ccdez achieve the
Singleton bound, meaning that the minimum distance d,,;, = r + 1, where r
is the number of parity symbols (r = n - k). Codes that achieve the Singleton

bound are called maximum-distance-separable (MDS) codes.

Codes with minimum distance, d,;5 = 2t + 1 can correct all patterns of t or

4 fewer errors in any received n-tuple. Define the code rate, R, as R = k/n.
Then the error-correcting capability of MDS codes can be written in terms of
block length and code rate as

_ n-k _ n1-R)

Q]
Do

Yo y 1 ¥y oy




Reed-Solomon codes are good choices for meteor-scatter for the following
reasons:

Reed-Solomon codes are proven performers on AWGN channels.

Since RS codes are MDS, they are efficient users of parity symbols

and thus they are effective on channels that penalize increases in
bit rate.

Reed-Solomon codes can combat burst errors. On the meteor-
scatter channel, burst errors would most likely occur in the

presence of multipath fading, burst termination, interference, or

jamming.

RS codes are not perfect codes, so many n-tuples lie outside the ball
of radius t that surrounds each codeword. Therefore, RS codes

have a very low misdecode rate, meaning that the decoder will

almost always recognize that such a received n-tuple cannot be
properly decoded and flag it. Of course, some form of ARQ must be
used to fully exploit this property. The error-rate of data that
is both undecodable and not recognized as such is typically 5 orders
of magnitude below the overall BER (Berlekamp et al., 1987).
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A good error-control code will reduce the Ep/N required to achieve reliable
communication. The amount of this reduction is the traditional figure of
merit for a coding scheme, called the coding gain, G.. The usual method of
determining coding gain is to plot the probability of bit error versus E,/Nj for
the coded and the uncoded systems and read the difference at a specified
error rate. For example, consider the plot of bit-error-rate for a (31,23) RS

code with 32-ary FSK modulation found in Figure 5.1. In this case, the
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coding gain is given by the difference in power efficiency (expressed in dB) for
the coded and the uncoded systems. For a BER of 10-4, the coding gain is
found from figure 5.1 to be about 1.7 dB.

10!
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Figure 5.1 Coding gain for a (31, 23) Reed-Solomon code
with 32-FSK modulation

The coding gain gives a measure of how much we can reduce transmitter
power and maintain the same error performance. Thus, error-control can
drive down hardware costs by allowing the use of less powerful (and less

expensive) transmitter amplifiers.

2.2 Figure of Merit. Recall that our two performance measures are long run
average bit rate, Ry,yg, and mean message waiting time, Tavg. The figure of
merit for a given coding scheme should reflect the improvement (if any) in
either Rp,yg or Tayp. The meteor-scatter channel exhibits the important

property that even when the channel is modeled as strictly power-limited,
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there is still a penalty for operating at a higher bit rate. This penalty is a
decrease in the number of observed meteor trails per second, A. In the
discussion that follows, we shall attempt to derive appropriate figures of
merit for a coding scheme on the meteor-scatter channel. The figure of merit
will be a function of the code rate, R, and the coding gain, G.. Consider first
the figure of merit for Rpay,g.

9.2.1 Figure of Merit for Ry,yp. From Chapters 3 and 4 we know that the
expression for Rp,yg for the adaptive-symbol-rate modem is proportional to
the inverse of (Ep/Ng)eq, For a coded system, the instantaneous information
bit rate, Ry(t), is decreased in direct proportion to the code rate. A similar
argument holds for adaptive QAM. Therefore, the figure of merit for a coded

system with either adaptive modulation scheme should be the following

Gf =R Gc (52)

For the fixed-rate modem, we can simplify matters by assuming that all
trails are underdense. Making this assumption, the average bit rate is given

by Equation 4.22 and the figure of merit is simply the square root of (5.2), i.e.

Gf = R Gc (53)

Note from Equations 5.2 and 5.3 that the same code will give a greater

improvement in average bit rate for the adaptive modem than for the fixed-

rate modem.

5.2.2 Figure of merit for T.vg- The mean waiting time for the fixed-rate

modem operating at the optimal bit rate was found in chapter 3 to be 2/A or
equivalently

'.‘-"“ TedT '.-'-' AT

K »

o aa e -y
Ay, 5,

™ e -
2 - A

- ‘\.\e’\\‘\‘

T

") -

.
[
.

SN NI I A T T N A

-

R )
® ',"'

.'q.n.

3 'v- \."- Y ‘-{- e

o D A S IR

‘-)‘-.,‘3' p

sh

¥ \'I'{_'- '.'_\'..\' N



T . sk Bl dad Rt ud Gt vad el €' 0 e et st a—
IR RGO PR O R MO ¥ AT O e N v ¥ n Ve UwWL . . e T . Sl gy

A7

93 i
o
z:
'-
!
2.4 -
S % N(Ep/ Noreq ( f ) (5.4) N
= . "
wilopt 1.7 GR GT PT Tt \37.5 ;
where all terms have been defined previously and the optimal bit rate is
Ry = N/t. Now N denotes the total number of bits, i.e. information bits + ,:::
parity bits. Since we wish to minimize the waiting time, we can see from -
(5.4) that the figure of merit should be simply :
‘:
&2
Gf = .\/R Gc ~c
]
which is identical to (5.3). The adaptive-symbol-rate modem has mean T
waiting time proportional to 1/A, so we get the identical result. We assume :3;-
the same for adaptive QAM, but we shall not prove it. E‘:
3
Summarizing, if one wishes to maximize the improvement in average bit 3
rate or waiting time, one should maximize the product G = RG, as a function ph )
of code rate, R. e
)
"
5.3 Optimal Code Rates. The objective of this section is to maximize the gain o
factor, G, as a function of code rate, R, provided that the maximum exists. N
The behavior of coding gain as a function of code rate for Reed-Solomon codes )
. . [ ]
is not well documented, but the author has found that for RS codes used with
2.8
BPSK and M-ary FSK, the coding gain peaks once at a value of code rate in ;::_'.
the interval from 1/2 to 1.0. Since our goal is to maximize the product of code Z:_'
rate and coding gain, this behavior is consistent with the hypothesis that an '
optimal code rate exists. f::
I‘,.
%
By restricting waveform modulation to certain types, we can derive an ;.}
expression for the optimal code rate for MDS codes used on the meteor-scatter )
NS
N
!
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channel. This expression applies to systems operating with binary FSK and
M-ary QAM to include BPSK and M-ary PSK. These modulation types all
have bit-error-rate expressions in terms of either the complementary error
function or the exponential function. These functions allow a
straightforward derivation of asymptotic coding gain similar to that found in
Clark and Cain (1981). Clark and Cain derive an expression for the
asymptotic coding gain (as Ep/Ng — o) for a t-error correcting binary block
code operating with BPSK modulation on a binary quantized channel. This
expression is given by

G, = R(t+1) (5.5)

One can show that this expression also holds for M-ary QAM, M-ary PSK and
binary FSK (both coherent and noncoherent) when used with t-error
correcting Reed-Solomon codes. The reader should note that the coding gain
predicted by (56.5) is only achieved in the limit as Ep/Ng — « . At modest
signal-to-noise ratios, the actual gain may be considerably less. Equation 5.5

is useful because we want to maximize the product of code rate and coding
gain i.e.

G =RG, = R®(t+1)
Substituting (5.1) into the above, we get the following

G = Rz[%a-mn]

Differentiating and setting the result equal to zero yields
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dG 3 '}

n n 2 <

4G _o(B )R - (__) = 0 .
iR 2(5+1) 5 )& 4
A]

Solving for R, we get R =0, and R = 2/3 (1 + 2/n). We must check to see that Y
the latter is in fact a maximum. The second derivative of G is given by 3 .
o

2 ~
—dcj =mn+2)-3nR N

dR )
)
a

.F‘

Substituting R = 2/3 (1 + 2/n) into this expression yields ;‘:'
iy

. ’
d°GRqpot) w3

— - er? :

dR &

which is always less than 0. So this value of code rate is indeed a maximum ?F_
and we can write the optimal code rate (as E,/Ng — ) for n 2 5 as the v;
following \\‘
W

]

2 2 R
ROpt = 3 (1 +;) (5.6) N

Py
N
>
~
.
»
)
c .
o
1“
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l\ +
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We now make the assumption that coding gain, G, is a strictly non-
decreasing function of Ey/Nj, a safe assumption since all good codes exhibit
this behavior. If this is the case, then the optimal code rate is always greater
than or equal to the value given by (5.6) and we can write bounds on the
optimal code rate. Thus, the optimal code rate for MDS codes used on the

meteor-scatter channel is bounded in the following way ( for n 2 5)

B e TN
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Note that the lower bound on optimal code rate approaches 2/3 asn — . We
shall see in the next section that for realistic signal-to-noise ratios, the
optimal code rate is about 4/5. The lower bound of (5.7) should encourage
system designers because it eliminates consideration of the low rzte codes

and the associated decoder complexity.

%

_ 5.4 Performance Estimates. Since the weight distribution for Reed-Solomon
; codes is known, it is possible to derive exact expressions for the probability of -
) incorrect decoding. Such expressions are found in Blahut (1983) and
o Michelson and Levesque (1985). For our purposes, a simple bound on
iy decoding error will suffice. Assuming random errors on an AWGN
channel, we can write an upper bound on the probabiltiy of decoding error for
a t-error correctiong Reed-Solomon code of block length n symbols as

Tk

PP

n

Pg< ), (;’) p, @-p)™? (5.8)

j=t+l

- em @ @n -

LI K A T %y
Ls
-

where pg is the probability of code symbol error, which is dependent on the v
modulation type. We shall consider two implementations:

y * Binary waveform modulation.

* M-ary waveform modulation matched to the RS code.

By "matched,” we mean that the modulation symbol size in bits is the same
as the RS code symbol size in bits. For example, 32-ary FSK is matched to a
(31,23) 4-error correcting Reed-Solomon code. This type of coding scheme is
convenient because the probability of code symbol error is simply the
probability of modulation symbol error. For binary waveform modulation,

; the probability of symbol error equals the probability that we have 1 or more .
bit errors in a code symbol, i.e.

.-
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k '
where p = the probability of bit error for the binary modulation and k = the ;
number of bits per code symbol. For RS codes, k = log2 (n+1).
We can convert (5.8) into an approximate expression for the probability of E:
symbol error by noting that a received n-tuple with more than t errors will :.
-~
almost always be undecodable and recognized as such. These n-tuples are A
)
routed around the decoder to avoid introducing additional errors. Based on o
. this assumption, the probability of symbol error can be approximated by the ”
following v
.
n {,:'
j n . 3 ¢
PSE.Z -;(j)vls(l—ps)nj (59)
j=t+l
i3
&N
)
Finally, we convert this expression to a probability of bit error by assuming \
that when a code symbol is in error, each of the 2k - 1 k-bit patterns are ::«:‘
equally likely. (This is the same assumption we made in Chapter 4 for M- ':
ary FSK.) This assumption leads to the following expression for probability of .
bit error ‘:;:' !
s
o & ¥
20 j n i - )
Py, = — z L () P -ps)"” (5.10)
2" -1 j=t+l nA -
v
| Armed with this expression for the probability of bit error, we can evaluate x
the performance of RS codes on the meteor-scatter channel. Figure 5.2 '._
demonstrates the behavior of the gain factor, G = RG_, as a function of code »
*
rate for (31,k) Reed-Solomon codes. BPSK modulation is assumed. Note that
the optimal code rate is approximately 0.8. The optimal code for P, = 104 is a “
)
(31,27) 2-error correcting RS code. For a bit-error rate of 10-6, the optimal N
~
W~
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code is a (31,25) 3-error correcting RS code. Note that the optimal code rate
shifts toward the lower bound (approximately 2/3) as the power efficiency

increases. This behavior was predicted in the previous section.

1.8 ]
1.6 ] & Pb=1.0e-04
1.4 - - Ph=10e-06
12

1.0 ]
0.8 1
0.6 J
04 ]
0.2 7
0.0

Gain factor

0.0 0.2 0.4 0.6 0.8 1.0
Code rate

Figure 5.2 (31, k) Reed-Solomon codes with BPSK modulation

Figure 5.3 is the equivalent graph of figure 5.2, this time for 32-FSK
modulation. Now we can see the behavior of the optimal code rate as a
function of Ep/N(. Note that once again, the optimal code for a required BER
of 10-4 is the (31,27) 2-error correcting code, but for a required BER of 10-6, the
optimal code rate shifts toward the lower bound, making the optimal code a
(31,25) 3-error correcting RS code.

From Figure 5.3 we see that for a required BER of 10-6, the maximum gain is
approximately 1.4. Recall that the figure of merit for the adaptive modems
when evaluating average bit rate is simply the gain factor, G = RG..
Therefore, the average bit rate for these modems would increase by a factor of
1.4. The figure of merit for the fixed-rate modem was found in section 5.2 to
be the square root of G, so the improvement factor for this modem is 1.2. The
figure of merit with respect to mean waiting time is the same for all systems
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and is again the square root of G. So we can expect a reduction in mean
waiting time by a factor of 1.2.

15

G Pb = 1.0e-04
- Ph=1.0e-06

Gain factor

Cade rate

Figure 5.3 (31, k) RS codes with coherent 32-ary FSK

Figure 5.4 demonstrates the performance of (63, k) Reed-Solomon codes.

Again, the optimal code rate is about .8 with the optimal codes being (63, 55)
for a BER 0f 10-4 and (63, 53) for a BER of 10-6.

2.0

& Pb=10e-04
- Pb=10e-06

Gain factor
- A —’?.'fff‘l' '..'..l(':l;(; - 8, ‘f- i‘f

I'(-

. .9

Code rate

Figure 5.4 (63,k) RS codes with coherent 64-ary FSK
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The performance results presented thus far indicate that Reed-Solomon
codes can provide only modest improvements in average bit rate and mean
waiting time. Because of the very low misdecode rate of Reed-Solomon codes,

the inclusion of some type of ARQ may improve the coding gain and
subsequently the gain factor.
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Chapter 6 - Conclusion

6.1 Summary of Findings. The goal of this thesis is to improve the )
performance of digital communication systems on the meteor-scatter !

N

F .

channel through the use of digital modulation and coding techniques. The E
3

main results fall conveniently into six categories: channel model,

expressions for average bit rate, expressions for mean waiting time, optimal

]
M-ary modulation, adaptive QAM, and Reed-Solomon codes. Following is a ‘.
brief summary of the findings of this thesis, organized according to the i‘_:
aforementioned categories. ;‘
!
61,1 Channel model. The meteor-scatter channel exhibits several t
unique properties that should be exploited in digital signal design. These |
properties are described in detail in Chapter 2 where a channel model is :
derived. This channel model is based on the premise that meteor arrivals : \:‘:
can be modeled as a Poisson process and the properties of the Poisson process 'R ‘
are used extensively throughout the thesis. ‘
)
Burst duration is found to have constant mean, independent of the link E
parameters. Thus, for a given modulation scheme, all variations in ‘:-
throughput are attributed to the meteor arrival rate, A. :'
Channel noise is modeled as additive, white, and Gaussian distributed. v~
Multipath-induced intersymbol interference places a ceiling on channel .\
symbol rate, effectively limiting the bandwidth of the channel. The :
maximum channel symbol rate is approximately 500 kHz. '~
_'..
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1.2 Long run avera it rate. Recognizing that the process of

transmitting messages on the meteor-scatter channel is a compound Poisson

process, one can derive an expression for long run average bit rate. The

general expression derived in Chapter 3 is given by

Rbavg = LE [W] (6.1)

- AJ'Q W(q) fq () dq

where
A is the meteor arrival rate
W is the number of bits per burst
q is electron line density

fo(q) is the probability density function for electron line density

It is shown that this expression for average bit rate agrees in theory with one
popular definition of throughput found in the literature. Equatiocn 6.1, as
evaluated in Chapter 3, is an approximation to the long run average bit rate
since it assumes that all trails occur at a fixed point in the sky and that the

electron line density, q, is upper-bounded by 1017 e/m.

Specific expressions are derived for the fixed-rate and the adaptive-symbol-
rate modems. The symbol rate that maximizes the average bit rate for the

fixed-rate modem will normally exceed the ceiling imposed by intersymbol
interference.

The adaptive-symbol-rate modem offers a twenty-fold improvement in
average bit rate when the channel is modeled as strictly power-limited.

When the channel is modeled as bandwidth-limited, the improvement is
reduced dramatically to about 25%.
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- 6.1.3 Mean message waiting time. The mean message waiting time .
: for a fixed-rate modem operating at a bit rate of Ry, bits/s is derived in Chapter 1
3 and is given by ‘
1 N N
E[T,] = ~ + 6.2 .
[ w] )\. AT Rb ( ) “,
) N
LWyt
~3
where N is the message length in bits and © (= .58 s) is the mean burst _
i duration in seconds. The meteor arrival rate, A, is a function of bit rate and o
D it is shown that a unique bit rate exists that minimizes mean waiting time. o
X This optimal bit rate is \
" N ”
| Roopt = = (6.3) ]
. iy
{ 1
Upper and lower bounds on the mean waiting time for the adaptive-symbol-
\ rate modem are derived based on probabilistic arguments. These bounds are .
given by E‘_ ‘
1 1 5
= < _— -4
T < E[T,] < D (6.4) 3
N
) ey
where p = P(W > N). When the adaptive symbol rate modem is operating at a .
minimum symbol rate, Ryi,, equal to the symbol rate given by (6.3), the 3
! improvement factor for adaptive-symbol-rate over fixed-rate is given by
2 )
— <1< 2 6.5 "
V3 (6.5 )
The work of Cox (1962) is used to derive an expression for the Laplace :::
transform of the mean waiting time when the distribution for W is known '.J_
.‘ -
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and the Laplace transform of the probability density function for W exists. '
o
This expression is given by o
A
111 F(s) }
R = G/ 6.6
LEm) =51+ e (6.6) :
"
where N ‘
F(s) = the Laplace transform of the probability density function for N
the random variable W. K
;
s = the argument of the Laplace transform with respect to N, the oy
message length in bits. .
6.1.4 Optimal M-ary Modulation. When the meteor-scatter channel is "
modeled as strictly power-limited, the optimal M-ary modulation technique is -
M-ary FSK, M — . The power-limited model is valid when waiting time is '
the performance measure of interest. This model is not valid when the user
wishes to maximize average bit rate. In this case, the channel must be -
-
modeled as bandwidth-limited and the optimal modulation is normally -

M-ary QAM. In general, the optimal modulation for the bandwidth-limited
channel model is a function of the link parameters (especially transmitter
power), and the particular bandwidth limitation.

I

IO 4'1:4,'5,'1,'!,",'-.,'7’ R s,

-

When all trails are assumed underdense and the channel is bandwidth-

limited, the optimal modulation for the fixed-rate modem is QPSK,
independent of the link parameters.

6.1.5 Adaptive QAM. The adaptive-symbol-rate modem employing M-
ary FSK (M — ) uses ihe channel optimally, assuming that the channel is

)

power-limited. The meteor scatter channel is bandwidth-limited, however, ™)
. . . . '

and for this type channel, adaptive-symbol-rate is not optimal. S,
R

~

N
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An adaptive modulation scheme that out-performs adaptive-symbol-rate on a
bandwidth-limited channel is adaptive QAM. The improvement in average
bit rate over the adaptive-symbol-rate scheme is shown in Chapter 4 to be
about three-fold for a bandwidth limit of Ry, = 500 kHz.

In terms of mean waiting time, it is shown that adaptive-symbol-rate will
always outperform adaptive QAM when QPSK modulation is used. Adaptive
QAM offers an improvement in mean waiting time over the fixed-rate
modem of about 28%. A suggested implementation of adaptive QAM is
presented to include a signal constellation and a modem block diagram.

This suggested implementation appears to be feasible using today's
technology.

6.1.6 Reed-Solomon Codes. Reed-Solomon codes used for forward-

error correction are shown to provide modest gains in average bit rate and

modest reductions in mean waiting time.

An appropriate figure of merit is derived to measure the improvement in

either average bit rate or mean waiting time. This figure of merit is given by

G = RG,

where R = code rate and G, = coding gain. The figure of merit for the fixed-
rate modem and for all modems when waiting time is the performance
measure of interest, is simply the square root of G. It is shown that a (31, 25)
Reed-Solomon code offers gain in average bit rate of 40% for the two adaptive
modulation schemes. The gain for the fixed-rate modem is about 20%. The
improvement in mean waiting time is the same for all modulation schemes
and is again 20%.

Bounds on optimal code rate for maximum-distance-separable (MDS) codes
are derived in Chapter 5 and are given by
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&3
are derived in Chapter 5 and are given by ﬂ
g
0 . 1-
; 5(1 +;—J < Rype <1 (6.7) h
’ ’
) where n is the block length of the code. Because of the very low misdecode
b rate of Reed-Solomon codes, some type of automatic-repeat-request (ARQ) o
may improve the coding gain and subsequently the gain factor, G. .
) 'l
! 6.2 Recommendations for Further Research. 3
: .
) 2.1 FExperimental confirmation of findings. Especially to verify )y
strong dependence on overdense trails and strong effects of bandwidth ';:
ceiling. Both seem to contradict results published by Ostergaard et al. (1985). $
5
6.2.2 Signal detection and estimation. Adaptive modems especially "
. require fast and reliable estimate of channel SNR. This channel provides -‘
interesting application for signal estimation since we know much about how ;:
the received power behaves after trail formation. There are possible o
applications of linear prediction and other signal processing methods. "~'
Meteor arrivals are modeled as a Poisson random process and signal 3
: detection methods should exploit the properties of the Poisson process. !
. 4
6.2.3 Variable rate codes. Achieve adaptive information rate through .
variable rate error-control codes. Some work has already been done in this o
area. See Rediske (1982).
22
6.2.4 Trellis codes for digital modulation. Trellis codes invented by ,
Ungerboeck are in widespread use on bandwidth-limited digital radio R
-
chanriels. One possible adaptive implementation would use the same trellis -~
F
for say, five QAM signal sets. ’;'-Z
[}
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Appendix A - Expressions For Long Run Average Symbol Rate

".ﬁl‘; ] -.’-sv

Al Fixed-Symbol-Rate Modem. From Section 3.1.1 we have the following

expression for long run average symbol rate for the fixed-rate modem

"y vy v

‘e

Ravg =A .[Q Rs Td )] fQ(Q) dq (A1)

s1-

where

o
fQ@=—,a20q
q

T e

T4(q) = the burst duration as a function of electron line density, q

A = the meteor arrival rate

The lower and upper limits of integration in (A.1) are gy and 1017 e/m,
respectively. Assuming that qy < 1014 e/m we can derive an expression for qq
based on the underdense trail model. From Section 3.1.3 we have the

T T FRLLS,

o
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.,-1‘
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L I e % % o'

instantaneous symbol rate as a function of time and electron line density as
Pr (tv Q.)
Rt, @ = (A.2)
N0 (Es / NO)req
where
No is the noise power spectral density
(E¢/No)req is the signal-to-noise ratio required to maintain an
acceptable bit error rate (BER) for a particular modem
P.(t, q@) is the received power as a function of time and electron
line density
107
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From Section 2.3 we have the following expression for P.(t, q) for underdense

trails

o

TunAs LS @y

b,

-2t
P.(t,q = P,(0,1) ¢° exp[ —t—] (A.3)
(v

CXAX

where

..,,
w2,

8 7t2 1'02
29
(4m)® Rer Rer (Ror + Rep) @ - sin® ¢ cos” B)

Pr Gr G; o, A3 exp —|:

A2 sec

Y

NES o]

P.(01) =

W oW«
PR i
A

A2 sec? o
16 1D

t. =

A

Let Tq = the duration of the burst in seconds. At the termination of an
underdense burst the received power drops to the threshold value and the
symbol rate is given by the following

®
! oy

PNy -.'_s::.

D
¥

_ Pr (Td’ q)
- NO (Es / NO)req

R, q) = R,

¥ »

SN

r

PP AR o A g w
'I'l

Pr (Ov qO)
NO (Es / NO)req

|
»
L
ll

SILIRT )

P, (0,1) ¢ =
N0 (Es / NO)req

Solving for q yields '.::.":




Rs NO (Es / NO)req
T \/ PO, (B4

1 nderden ils. From the preceding derivation of qg, we

have the received power at burst termination as

Pl‘ (Td’ q) = Pr (0: qO)

Or equivalently

2Ty
P, (O,l)qzexp[ - } =P, (0,1)¢
C
Solving for burst duration, T4, gives
Ty = t, In{:-g-} (A.5)
Jo

Therefore, the expression for Ravg becomes

Integrating by parts yields the following

AR t. qo [1014 (1014]
R, = - lnj— | -1 A.6
a g 1014 qo ( )

where qq is given by (A.4). If qy << 1014, then Ravg is simply

Ravg = ARt (A.7)



110

Recognizing that the distribution for burst duration in symbols is exponential
with mean Rt where 1T = t,, then the above expression is equivalent to the
following

Ry = AE [W]

where W in this case is the number of symbols/burst when all trails are

assumed underdense.

A.12 Overdense trails. Recall from Section 2.3 of Chapter 2 that the
received power from overdense trails is given by

9 o 9 \M/2
o | 4Dt+1g) r, QA% sec” ¢
PpGpGpA' | ——— Ln| —-
sec” ¢ n (4Dt+r0?')
P (t,@ = 5 — (A.8)
32 n° Rcr Rer Reg + Rep) (1 — cos™ B sin® ¢)
Or equivalently,
4Dt + rg ro q A2 sec® ¢
P,(t,Q = P, (0)| —5— Ln| 5—— (A.9)
sec” ¢ n° (4Dt +13)
where
Pp Gp Gy A2
P, (0) =

32 2 Rcr Rer Rer+ Rer) (1 - cos? B sin’ o)

Note that P, (0) is only approximately equal to the received power att =0. The
time varying symbol rate, R(t), (given by (A.2) ) for overdense trails can be
approximated by a triangle whose base has length t,,, and whose altitude,
or peak is R .4 . See figure A.1.
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Figure A.1 Piecewise linear approximation to R(t) for overdense trails

Observe that 4Dt >> rg? for all but very small t. Making this approximation,

it is straightforward to show that Ry ,; and ty,,; are given by the following

(Abel, 1986)
P, (0) q7»2 2

r re
= A10
Rmax [ NO (Es / No)req :’ l: nz e :l ( )

2.2
r,qA°sec” ¢
bmex = ——5— (A11)
471°D

Based on our linear approximation to R(t), (see figure A.1) one can show

quite easily that the burst duration, Ty, is simply a proportion of t;,,

R,
Ty = {1 - —— |t 0 A12
d ( Rmax)tm (412

Thus the long run average symbol rate, Rg,yg, for overdense trails is given by
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R
Ravg = A | ., R (1 - —s—) e — dg (A.13)
Rimax o«

Let Rax = A q1/2 and let ty,,x = B @ where the constants A and B are defined
as follows

1/2

A P, (0) r, A2
- |: NO (Es / NO)req n;2 e

T, A%sec? 0}

B =
47:2D

Substituting these values into (A.13) results in

1017
R, = AR,B 1 % 1 d
avg = s D o o —m a q

Straightforward integration yields

2R,
Ravg = AR;Bqy| 691 - m (A.1l4)

where the constants A and B are defined above. The expression for long run

average symbol rate (for qy << 1014 e/m) is found by adding (A.7) and (A.14)

2R,
Rag = ARet. + AR,Bqq 691 - (A.15)

A10’
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2 A ive- 1- M . From Section 3.1.3 we have the following
expression for Ryyg
Ryvg =2 J'Q W(Q) fq (@) dt dq (A.16)
T4 (@
where W(q) = R(t, @) dt and R(t, q) is given by (A.2).

The threshold value for q is qp and is found by substituting Rpy,;, for Ryin

(A.4)
_ Rmin NO (Es / NO)req
P = P,(0, 1)

nder rails. For underdense trails, the number of
symbols/burst is given by

: 2t
JTd @ P,(0,1) q exp[ e ]
W(q) = = dt A17
() A No (B, Noms ( )

where Ty(q) = t, In[ aq-] = duration of underdense burst.
0

Straightforward integration of (A.17) yields the following

2
P,(0,1)¢*> t, { (QO) }
W) = -1 1-|— A.l8
@ NO (ES/NO)req 2 q ( )

Substituting (A.18) into (A.16) gives
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14 2
R _xJ‘“’ P, (0,1) ¢’ tc[l (QO) ] %
ave 9o NO (Es/ NO)req 2 q q2 4

Evaluating this integral results in the following expression

P (01) t. qo

m [@ -2x10"qy + 10%]  (A19)
210" Ny (Eq / Np)req

avg —

For gy << 1014 this expression simplifies to the following

P, (0,1) t, qo10™
2 Ny (Eg/ No),,eq

Ravg = (A.20)

verdense trails. In this case the number of symbols/burst is
simply the area under the triangle in figure A.1. Thus we can write

T(Rmin )
W) = J; R(t, q) dt = &?"2—';’“4‘1

and R,y is given by

107 1
R, =A[ A9 Baql,
avg 101 2 q2 !

where the constants A and B were defined previously. We can simplify the
irtegrand to give
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Evaluating this integral, we get the following result

Ravg = 3.06x10° L ABq, (A.21)

combining (A.20) and (A.21), we get the following expression for the adaptive-
symbol-rate modem

P, (0,1) t, g, 10™*

_ 8
Ravg = A 2N (Ey/ Nojren + 3.06x10° AABqy (A.22)
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Appendix B - Mean Waiting Time For Adaptive QAM

Recall from Section 3.2.3 of Chapter 3 that the Laplace transform of the mean
waiting time is given by

1 1 F(s)
L{E[Tw]} =7[;+m] (B.1)

where F(s) = the Laplace transform of the probability density function

for the random variable W (= bits per meteor burst).

s = the argument of the Laplace transform with respect to N,
the number of bits in the message to be transmitted. N is

assumed known, not random.
A= the meteor arrival rate (= rate of the Poisson process).

The first step in evaluating (B.1) for adaptive QAM is to derive an expression
for the cumulative distribution function (CDF) for the number of bits per

meteor burst. Let W represent this random variable and denote the CDF for
W by Fy (x).

B.1 CDF For Bits per Burst, W. As in Section 3.2 of Chapter 3, we make the

following assumptions regarding the metecr-scatter channel:

¢ All trails are underdense.
W is a continuous, rather than discrete, random variable.
Overlapping trails (in time) are nonexistent.

The W, bits transmitted during the mt" meteor burst are sent in a
time At = 0.
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Recall that the instantaneous symbol rate can be written as the following

P (t,.9)

RO = NO (ES/NO)req

(B.2)

As in Chapter 4, we denote the power efficiency for M-ary QAM by (E¢/Ngy,
where Eg = (logg M) Ey,. Values of (E¢/Ng)y for M = 4, 8, 16, 32, and 64 are
listed in Table B.1.

Table B1 (F/Ng)..qin dB for several values of Py for M-ary QAM s
ﬁ.
Modulation P, =103 P, =104 P, =105 P, =106 )
4-QAM (QPSK) 9.6 114 126 135 §
8-QAM 13.5 15.2 16.4 174 e
16-QAM 16.3 181 19.4 20.3 ‘
32-QAM 19.3 21.1 22.4 234 3
64-QAM 22.2 24.0 25.4 26.4 =
-__
X

Realizing that the symbol rate is constant, we can rewrite (B.2) to get an

P

expression for the signal-to-noise ratio (SNR) per channel symbol as

P, (t,q)
E/N, = 1\;0R (B.3)

When the the right-hand side of (B.3) exceeds (E/Ng)y, the modem changes
modulation to M-ary QAM and operates at a bit rate of (logoM)R, bits/s.

The operation of adaptive QAM on a typical underdense trail is illustrated in

Figure B.1.
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Time in seconds

Figure B.1 Operation of adaptive QAM on an underdense trail
(Pp= 2000 watts, R, = 1000 Hz, g = 1013 e/m)

From Figure B.1 we see that, in general, the number of bits per meteor burst,

W, can be written as

W=R[2t;+3tg+4t;g+5t30+61tg4] (B.4)

where ty = the time that the modem operates at M-ary QAM for a given

burst. Note that the total burst duration, Ty, is given by Tq = t4 + tg + t16 + t32
, + tgy4. Since many trails will not support 64-QAM or even 32-QAM, we allow
the possibility that ty = 0 for some M.

The initial (and maximum) bit rate for a given burst is determined by the
initial signal-to-noise ratio per channel symbol which is a function of the
¥ electron line density, Q, a random variable. Let the minimum electron line

> density required to support M-ary QAM be given by qy;. For adaptive QAM,

T v ot

i A
o

there are exactly five mutually exclusive events regarding the electron line

density of observable meteor trails:
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E; = {q4 £Q < gg}
E; = {93 < Q < g4}
E3 = {q6 £ Q < q32)
E4 = (q32 £ Q < qg4)
Es = {Q 2 qg4)

The probability that Q is less than q4 is 0, so the union of these five events
comprises the sample space.

The event {W < x} can be written as the union of five mutually exclusive
events, { (W<x}nE;},i=1, 2, 3, 4, 5. Therefore, the CDF for the random
variable, W, can be written as the sum of the probabilities of these five

mutually exclusive events, i.e.
5
Fw® = PW<x) = ) PW<xE) (B.5)
i=1

We must now find expressions for the probabilities: P(W <x, E;),1=1,2,3,4,5.

Consider first the case where E5 has occurred, meaning that Q 2 qg4. We can
use (B.4) to write the probability P(W < x, E5) as the following

P(WSX,Es) = P(Rs[2t4+3t8+4t16+5t32+6t64] < X,Q2q64) (BG)

The burst duration for a fixed-rate modem operating with M-ary QAM can be
written as a function of Q

Td = tc ln[—Q—:l (B7)
am

where t. is defined in Chapter 2.
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We can use (B.7) to write the terms tyy , M = 4, 8, 16, 32, 64 for adaptive QAM .

in the following manner

tes = tcln[%]

ol @] {3
e = tcln;% - tcln:%]
o] 2] -l &)

ty = t. ln--Q-T -t ln[g-]
| % | Qs

Realizing that the total burst duration is given by
Q
Td = tc ln[a

we see that the above expressions for ty, M = 4,8,16,32, and 64 can be written
in terms of T4 and logarithms of qyy. Furthermore, we recognize that qy can

_ Rs NO (ES/NO)M
I = P, 0.1)

so the above expressions for ty; will be logarithms of the square root of the
required SNR per channel symbol, (E¢/Ng)y. Given this information, simple

be written as
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algebraic manipulations yield the following expression for W

W =R,|6T;+—In
2 (E¢/Nolg (E¢/No)1g (E#/Nolag Es/Noles

The probability P(W < x, Es) can be written as

t, E/Ny)i
P[Rs[GTd+—ln{ E/Nos H Sx,Qan]
2 (E#/Nolg (Es/No) g (E/Ng)sz (Eg/No)gy

Since the burst duration, Ty, is exponentially distributed with mean t = t,,
and burst duration and electron line density are related by (B.7), we can write
the above expression as the following

(E¢/Ng)4

PWsx,E;) = m-Km exp{-

1
(E/No)§ r
(E/No)g (E¢/No)16 (Eg/No)zz (Eg/No)gy

.

Since the above expression was derived assuming that Q > qgq4, the values of x
must be restricted to x > xg4 where xg4 is the number of bits per burst when
Q = qg4- The burst duration for such a trail is given by

t‘c (Es/NO)64
Ty =t In| —| = =In| m———st
d tc n[ q4] 2 IDI: (Es/No)4 :|

Substituting this value of burst duration into (B.8) yields
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e - R Eln{ (Es/N0)24 }
#7702 T (BUNg (E/No)s (E/No)s (E/No)ss

Similar expressions to the above can be derived for the events Ey, Eg3, Eg, and
E;. These results can be substituted into our expression for the CDF of W
yielding the following

5

Fy(®) = PW<x) = ) PW<x,E) (B.9)
i=1

=1- Ky exp{-— 6R, ¢ }, X 2 Xgy
(4

X
1- Ky, exp{— BR.T }, X329 £ X < Xgq
(4

1 - Ky exp{-

1 - Kq exp{—

1—exp{— X },03x<x8

where the constants Ky; , M = 8, 16, 32, 64 are given by

1
K,, - [’ (E4/No) 1
* | (E/Nolg (E¢/No)16 (E¢/No)az (E¢/No)gy
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1
K _[ (E4/No)3 TO
» | (E/Ng)s (Es/Nohs (E/No)sz

1

‘ % . = (Es/No)z r
’ 16 7 | (E/Np)s (E¢/No)is

1

. (ES/NO)Z}6
8 7| E/No)s

- -

and the values of xj; are given by

Xey = R.| — hl{ (ES/NO)24 | }
i ™ L2 | @/NYE BSNog (E/No)ig (Ef/No)ga f
; - 4
(E¢/No)32

tC
Xq9 = Rs -2'1

n
(E¢/Np)% (E¢/No)g (Eo/No)s

¢t EJ/N,)?
X716 = Ry Ecln{ E/Noks H

(E¢/No)% (E/No)g

: t, EJ/Ny)2
xg = Rg 5 ln{(—S/N—O):
; (Es/No)'y

Equation B.9 is plotted in Figure B.2 for Ry = 5900 Hz and P}, = 10-4. Note that

since the burst duration is independent of the link parameters, the CDF for
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adaptive QAM is also independent of the the link parameters. The CDF is a

.‘ function of symbol rate, mean burst duration, t;, and ratios of (E¢/Ng) eq. :
:
i:i ‘
) 1.0
N 0.8 -
L
B (
k- = 061
\Y]
: =
\ ~ 0.4 1
3 A J
3 .
L™ 0.2 A :
y 1 0.0 v 1 N 1 M T v ) v i
{ 0 10000 20000 30000 40000 50000 3
iyt
{ Bits per meteor burst, x .
Figure B.2 Cumulative distribution function for bits per burst, W,
for adaptive QAM (P, =104, Rg = 5900 Hz, t, = .58 s) ]
5 N
s The distribution function of (B.9) is continuous, but only piecewise
differentiable. Consequently, the Laplace transform of the probability density ]
. function (denoted by F(s)) involves polynomials of s and exponentials of s. A Y
L4 1
| more tractable approach is to approximate (B.9) by a sum of three exponential f
4
N functions and use this approximation to find an expression for mean waiting
3 time. This is done in the next section. :
B.2 Exponential Approximation. In this section we approximate the CDF for
the number of bits per meteor burst by a linear approximation that
{ minimizes the squared error. For the following discussion, the inner :‘
product of two vectors (functions) is given by 3
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1
1
.I
l
&
§ (x,)= [ KOy dt
; °
o
.(
¢ The approximation problem can be stated as follows: Find ag, a;, and a3 such
that
p
':' 2 2
‘s X
_ f [1- Fy (x)] - Zaiexp{— R | & (B.10)
) 0 i=0
'
¢
\‘
?! is minimized. Let s =1 - Fy (x), the function to be approximated. The basis is

the set {0,9;.0,} where

[ o

N X
J = e -
t ) XP{ IR <, }
p'e
= exp! -
02 p{ 6R, t. }

The error is minimized when the error vector is orthogonal to the subspace

spanned by {¢,,0;.0,}. This orthogonality condition leads to the following g
matrix equation :

i
i
I
[\
IR
ol"'
H—/

AN AR

(S) ¢0) aO
(S, ¢1) = G ay
(S’ ¢2) ag

where G is the Gram matrix given by
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.« - l-—-”{'{-w{_--

(90, 99) (01, Gg) (2, 00)
G = | (&1, 90) (01, 91) (09, ¢y)

S,
; (92 00) (91, 02) (02, 02) &
t
Straightforward integration yields the following matrix equation for P, = 10-4
. {
116 1.00 1.33 1.507 | 20 :f
Rot.|1.66] = Rgt.|1.33 2.00 2.40]| | a1 o
L5
2.01 1.50 2.40 3.00] | a, "
“,
Solving the equation, we get ag = 0.801, a; = -0.658, and ag = 0.795. Thus, the N
exponential approximation to the CDF of W is given by )
: \]
- X X X )
=1-]. - -0. - . - B.1
Fwx) =1 [Sexp{ 2Rstc} 066exp{ 4Rstc}+08exp{ GRstcH B.11) E
Equation B.11 is plotted in Figure B.3 along with the original CDF. ;(
I
o
1.
’ o
0.8 1 b‘
3
1 W
AN
a 06 7 — CDF for random variable W % !
= s Approximation to CDF :
~ 0.4 ]
Y )
0.2 -
)
0.0 ] M 13 M L r | T o ‘.
0 10000 20000 30000 40000 50000 .
-
Bits per meteor burst, x -
3
Figure B.3 Approximate CDF for adaptive QAM N
(Py, =104, Rg = 5900 Hz, t, = .58 s) !
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4

B.3 Mean Waiting Time. The approximate probability density function for W

:: is simply the first derivative of (B.11), given by ]
o
v .
" fw(x) = .8hyexp{-Ayx}-0.66Asexp{ —Ayx} + 0.8 exp{ -Agx} (B.12)
X
:: where Ao = 1/(2 t; Rg), Ay = 1/(4 t. Ry), and Ag = 1/(6 t, Rg). The Laplace ]
4 transform of (B.12) is given by :
n
l: n - > - :
f P = Lifwed = [ o™ Fwoo dx
¥ '
¥ g
z This integral can be evaluated in a straightforward manner. The resulting b
expression is substituted into (B.1) yielding ’
) A
L)
2 cosi+e; s+ Co ‘
L{Em )=+, 2" (B.13)
’ A 2,2
-j- s s“(s“+dgs+4d) .
j where
d
‘ cz=a0k2+a17t4+a2?\6
‘ 4
o ¢ = (ao + al) }.2 )\.4 + (ao + 3.2) )\.2 Xe + (al + 8.2) )\.4 XG ]
3 Co = Aohydg
i dy = (L-ag) A + (1-ay) Ay + (1-ay) Ag f-
) :
d1=32}‘.27\4+al}\.27\.6+82l4}\,6
: Partial fraction expansion of (B.13) yields :
> it
Y Liemgy=L]4, 28, Cs+D (B.14)
A 2 8 2
s s+ dys + d;
4 ~
"y
1y L
3
"‘
I
N
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where
Co
A='a-1-
c ¢y d
B=1+— - =22
dl d%
¢ ¢y d
C=——1 022
d, d;
Co G Co dp
D-e-g a3 - )

Taking the inverse transform of (B.14) yields

ET) = » { B+AN + exp(@N) [ Ceos (FN) + Essin (fN)}} (B.15)

where

N—

For Py, = 104, these constants can be written in terms of the symbol rate R

and the mean burst duration, t = t,. Doing so results in the following
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~
=4

_::

1 N ’
ElTw]:T{l'?’” 249R. < “exp(’ 3.64Rst) )

P
N . N i
® —————— —_— ————— e {
[.37 cos( 740 R, tj .052 sm( 740 R, tﬂ} (B.16) ]
Equation B.16 is also a reasonable approximation of mean waiting time for E"
bit-error rates in the range 10-3 to 10-6, not just for P, = 10-4. The bit-error Ry
.
rate curves for M-ary QAM in this range are almost parallel, and since the

CDF of the random variable W is a function only of ratios of (E¢/Ng)y, then -
the CDF does not vary with bit-error rate. The only term of (B.16) that will ]
)

vary with Py, is the meteor arrival rate, A, which is a function of (E¢/Ng)y4. N
’
Equation (B.16) is plotted in Figure B.4 for R; = 5900 Hz, and t = .58s. From
Figure B.4, it appears that the optimal symbol rate is approximately "
Rsopt = 0.3 (N) Hz. The author has found that for other values of message e
length, N, the optimal symboi rate also equals approximately 0.3 (N). L
2 e:.-.

2

W e,
"wfe e

l’.
v

Mean waiting time in seconds

o

W NXNN,

0 5000 10000 15000 20000
Symbol rate in Hertz

Figure B.4 Mean waiting time for adaptive QAM
(P, =104, N =10 000 bits, T =.58 s)
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