ISI R esea@port

o

¥~ f STR I ISI'RR-88-205

© NG FiLL March 1988

w

N

-

< David Mizell

i Yu-Wen Tung , —

0 Susan Coatney | /\ f;‘ (’ :sf'i;:f?' _

< Scott Carter s ,\14
Rivi Sherman o

Walid Najjar

On the Design of ISl's Initial Prototype
SDI Architecture Simulator

DTIC

ELECTE
JUN 1 5 188

%D

DPEYRIEMON STAtEmz -

- S
Apgrovad for publie r8le 15g; j
:

Digtring 499 ilnlimj ted gy

88 6 15 002
INFORMAIIUN

SCIENCES JEV RN AT
INSTITUTE 4 e,

4670 Adnra i Wav Maring Jel Rev/Caiifornig 90202-m 08

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE

ADA (% 6/0

REPORT DOCUMENTATION PAGE

“a REPORT SECURITY CLASSIFICATION
Unclassified

1b. RESTRICTIVE MARKINGS

23 SECURITY CLASSIFICATION AUTHORITY

20 DECLASSIFICATION / DOWNGRADING SCHEDULE

3. DISTRIBUTION / AVAILABILITY OF REPORT
This document is approved for public release,
distnbution s unhmited

4 PERFORMING ORGANIZATION REPORT NUMBER(S)
IS/RR-88-205

S. MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL | 7a. NAME OF MONI!TORING ORGANIZATION
. ;) 1 li

USC/Information Sciences Institute (1f applicable) |
6c ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

4676 Admiraity Way

Marina del Rey,CA 90292 |} T

r e}

82 NAME OF FUNDING / SPONSORING 3b. OFFICE SYMBOL | 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGAN!IZATION (i applicab'e)

SDIO/S J PP N00014-86-K-0311
8¢c. ADDRESS (City, State, and 2IP Code) 10 SOURCE OF FUNDING NUMBERS
. PROGRAM PROJECT TASK WORK UNIT

(continued on other side) ELEMENT NO. NO. NO. ACCESSION NO.
11 TITLE (Include Security Classification)

On the Design of ISI's Initial Prototype SDI Architecture Simulator [Unclassified]

12 PERSONAL AUTHOR(S)

Mizell, David; Tung, Yu-Wen; Coatney, Susan; Carter, Scott; Sherman, Rivi; Najjar, ‘Malid

'3a TYPE OF REPORT 13b. TIME COVERED

14. DATE OF REPORT (Year, Month, Day)

15. PAGE COUNT

Research Report FROM TO 1988, March 58
16 SUPPLEMENTARY NOTATION
17 COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP - discrete-event simulation, modular software design; object-onented
09 02 - — simulation, strategic defense architecture simulation - .

19 ABSTRACT (Continue on reverse if necessary and identify by block number)

This report describes the software design of the first prototype strategic defense architecture
simulation system developed under iSI's "$DI Communications Research” contract. While the long-
term goal of the simulation task is to investigate techniques for speeding up simulators of this type
via parallelism, the system described here-is a sequential program in which it must be possible to:
incorporate nontrivial, executable representations of the battle management computations taking
place on any defense platform within the simulation; and ctange the candidate defense
architecture being modeled independently of the simulation software that models the external

physical environment.

The report documents our approach to designing a simulator that meets those requirements.

It

includes both a description of the software design and some historical material about our design
process: what design decisions we made, why we made them, and what alternatives were

considered at the time. /. - .

20 DISTRIBUTION / AVAILABILITY OF ABSTRACT 21 ABSTRACT S27VIBITY CLASSIEICATION
LA UNCLASSIFEDUNUIMITEG LT SAME As RPT. [oTIC USERS Unclassified

22a NAME OF RESPONSIBLE INDIVIDUAL
Vict

Sheila Coyazo

rown

22b. TELEPHONE (Include Area Code) | 22¢. OFFICE SYMBOL

213-822-1511

DD FORM 1473, samanr

83 APR edition may be used until exhausted
All other editions are obsolete

SECURITY CLASSIFICATION OF THIS PAGE

Undlassified

Unclassified
SCCURITY CLASSIFICATION OF This PADS

8c. (continued)

Strategic Defense Initiative Organization/Systems Office
SDIO/S

Office of the Secretary of Defense

The Pentagon

Washington, DC 20301-7100

Unciassified
SECURITY CLASSIPICATION OF THIS PAGE

ISI Research Keport
ISI/RR-88-205
March 1988

David Mizell
Yu-Wen Tung
University
Susan Coatney of Southern
Scott Carter California
Rivi Sherman
Walid Najjar

On the Design of ISI's Initial Prototype
SDI Architecture Simulator

| Acce.mn For 1
NTIS CRAK! v
DTic TAE 0
Utannae g Led J
Junthicated,
By o
Dtopntion |
— - —
Aviahitry Codes J
TR T
] Dt Sietia ‘
; ,

I |

i T U0 SN S — |

INFORMATION

SCIENCES
INSTITUTE /é— 7 213/822-1511

4676 Admiralyy Way/Marina del Rey-Californiu 50292-6655

This research = supported by the Strategic Defense initiative Organization under Contract No. NOOD14-86-K-0311 Vie as and
conclusions contained in this report are the authors’ and should not be interpreted as representing the otficial optmo - or
pohicy nf SOI0, the U S Government, or any person of agency connected with them.

Chapter 1.
Chapter 2.
Chapter 3.
Chapter 4.
Chapter 5.
Chapter 6.
Chapter 7.
Chapter 8.

Chapter 9.

References.......
Appendix A.
Appendix B.
Appendix C.

Appendix D.

TABLE OF CONTENTS

INtrodUCtion......ccuuueverriiiiiiiicinirit e 1
Events and the Event Queue.......cccoeeviiiiirviniiniinirnnnennn. 8
Battle Manager Abstractions..........cccccvcveerirnsvecericeerennens 13
MISSIIES...cevireitiiiiiiiiitnie i riretienees st trar e aeesraaseessseeeannes 15
WEAPOMS. ...iiiiriitiniiiriittienieeeeieeraiseeseersiesssaseenassesessene 17
Sensors and Targets.......ccceeviieunieeiieiiirrnncrierncereeneceseanees 19
CoOmmUNICAtION......cccvuuuiiirirerninrieirttttteeeeentiessessanasens 24
Physical MOVEMENL........cciieeriiaiiiieeiieiiiiniieeseneeeeraeeens 28
Input, Output and Graphics........cooevvviiiiiiiiciiiinniiiniininnnn. 29
.. 32
SIM.DOKC.....cuucreiiiiecinnniertetnressennereaeneeeenesesanensannnnns 33
SIMLC...oiiiiiiirttterreees s e neectsarettse e s sesee s s arenssnnnnnns 37
BMA . DOC.....ciiiiiiiiiniieeiceenieneetteneaniiseessasescanennes 43
BMALC...ooieiiitttcciininiinvnettvvestiiiiceseenerassesssssssessnsnes 46

CHAPTER 1. INTRODUCTION
1.1 NATURE AND GOALS OF THE SIMULATION PROJECT

The purpose of the simulation task within ISI's “SDI Communications Research” contract is
to address the basic research issues pertaining to the design and development of a simulation
system capable of executing simulations of candidate strategic defense architectures at
varying degrees of fidelity, for the purpose of comparatively evaluating their performance in
the full systems context. The premise that underlies the project is that SDIO needs a
simulation system that enables it to compare and evaluate different candidate defense system
architectures at a level of abstraction that does not incorporate completely detailed models of
every system component. The system should provide, however, a nontrivial model of the
battle management software and include models of all major system components, in an
“end-to-end” simulation, so that the manner in which the battle management software
makes all of the parts of the defense system work together may be evaluated.

This is a basic computer science research project, and as such is not intended to produce a
complete, refined simulation system capable of meeting SDIO’s needs for end-to-end
defense architecture simulation. The physical and behavioral characteristics of defense
platforms and components are not known to us, even at a fairly high level of abstraction, and
would have to be supplied by contractors with more detailed knowledge of candidate system
and component designs. Our efforts are focused upon the following three computer science
research issues:

1. We are investigating how to structure the design of a modular software system
for SDI architecture simulation that meets these two design requirements
that follow from the original premise:

a. Because the intent of the simulator is to compare many designs,
not just demonstrate a single one, it must be possible to change
the candidate defense architecture being modeled
independently of the simulation software that models the
external physical environment.

b.Because the main focus of the simulator is on systems
integration issues and how the battle management system
makes the many components work together, it must be possible
to incorporate nontrivial, executable representations of the
battle management computations taking place on any defense
platform within the simulation

Furthermore, it is desirable for the software design to allow changing the
amount of detail in the simulation models of system components or the
external environment without restructuring the simulator itself.

2. We conceive this simulation system as one that will be “owned” by SDIO, in
the sense that it will not be designed around a particular candidate defense
architecture, but instead will take a specification of a candidate architecture
as input. Ideally, the user interface would be “friendly” enough to allow
SDIO personnel to enter abstract architecture specifications themselves, and
use the system as a personal tool for examining and comparing system design

(

approaches at a high level. Accordingly. we are trying to design a simple,
flexible user interface that minimizes the effort necessary to specify the
physical configuration and components of a defense architecture and to
characterize the high-level behavior of the battle management system for the
sake of simulation.

3. Given that even high-~level simulations of systems this large and complex are
extremely demanding in computation cycles, it is vital to address methods of
distributing this sort of simulation across multiple processors for the sake of
faster execution.

The first phase of this project concentrated on the first issue and developed a sequential SDI
architecture simulator with what we believe to be an appropriate modular structure. This
system consists of approximately 6,000 lines of C++ [1] code and executes on ISI's VAX
8650. The purpose of this report is to describe this first prototype simulator and thereby
illustrate how we attacked the modularity issue.

1.2 OVERVIEW OF THE SOFTWARE DESIGN
1.2.1 MAIN DESIGN COMPONENTS

Basically, our approach has been to aim for a clean separation and a simple, carefully
specified software interface between the software modules that model the components of a
strategic defense architecture and those that model the external environment, with the goal
of making it easy to replace either type of module. In our design discussions, we referred to
this separation as that between the “simulator” and the “simulatee.” We used these terms to
distinguish between those parts of the simulation system that would be invariant across
candidate strategic defense architectures and those that modeled a particular architecture.

Here, we were loosely using the term “simulator” to collectively refer to both the software
that implements the basic discrete—event simulation mechanisms, such as the event queue
and the scheduler, and the software that models those parts of the simulated strategic
defense environment that do not change for different defense architectures: physical laws,
geography, the characteristics of the threat, etc. In contrast, the “simulatee” encompassed
just those aspects of the simulated system that the user can change, in order to represent a
different candidate defense architecture: the characteristics of the defense satellites and
ground stations, including the equipment assigned to each, the orbital or geographical
deployment of each, and the nature of the battle management computation/communication
capabilities of each.

An obviously important aspect of the software design is the interface between the “simulator”
and the “simulatee.” This interface consists of the simulation models of exactly those
components of a defense platform that could be expected to be under direct control of the
platform’s battle management system, €.g., communication capubilities, weapons, sensors or
any sort of propulsion devices by which the platform’s velocity or attitude could be changed.
We refer to these components as technology modules, following [2]. They are the sensors
and effectors on each platform that comprise the means by which a platform can affect or be
affected by the external environment. Each technology module in our simulator consists of a
set of data structures and a set of functions that can be called by a platform’s battle manager.

1.2.2 MAIN COMPONENTS OF THE SIMULATOR
EVENT QUEUE

As in a conventional discrete event simulator, the simulation consists of the successive
evaluation of events, in the order in which those events occur. The events model the
interactions between objects in the physical system; e.g., a communication message being
sent from one platform to another, the launching of a weapon, or the appearance of a target
within the field of view of a sensor.

The events are stored in a central event queue, implemented as a linear doubly-linked list
ordered by the timestamps cf the events. During the initialization phase, a set of events are
placed in the event queue to model the launch sequences for the missiles.

The scheduler removes the earliest occurring event from the event queue and calls the
appropriate routines that model the occurrence of this event. This may involve the
interaction of a battle management system with the technology modules, which may in turn
cause new events to be posted to the queue. This process is repeated until no events remain
in the queue.

MISSILES

The simulator inputs a file containing a simple description of the threat scenario, consisting
of a specification of the launch sequence of the missiles, where a missile is an attacking
enemy ICBM aimed at some ground target. The current implementation uses a greatly
simplified model of the behavior of a missile; the trajectory of a missile is simplified to 45
degrees up in beost phase, constant height above ground in the orbital phase, and 45 degrees
down in the terminal phase. A missile is detectable only in the boost phase, and the success
of a defense platform’s shot at a missile is determined by a simple probability function that is
based on the distance of the missile from the platuform.

PHYSICAL MOVEMENT

The physical movement of satellites is also simplified. Currently, two types of satellite orbits
are provided. In the geostationary orbit, the satellite stays over the same point on the Earth’s
surface. The Walker orbits are a class of orbit where the orbital period is an integral divisor
of the Earth's period of rotation; they are designed to achieve a maximum density of
satellites over a given point on the Earth’s surface.

1.2.3 MAIN COMPONENTS OF THE SIMULATEE
PLATFORMS

C++, the programming language used to implement this simulation system, contains a
construct called a “class” used to define abstract data types. We used the class construct to
define a data structure that formed the basis of the “simulatee™ portion of the system. We
called this data structure the platform. Instances of the platform class are used to model each
defense satellite, ground station, or any other defense component capable of individual
actions that could affect the rest of the system. Each platform instance contains a unique
identifier, a set of attributes and a set of capabilities. Attributes are properties of a specific
platform, such as its orbital position and velocity, number of weapons expended, etc. A
platform’s capabilities are the set of technology modules that the user/architecture specifier
has declared to be components of the plaitform: which types of sensors, weapons or

communication systems are attached to this type of platform, and the battle management
software it executes.

DEPLOYMENTS

The user inputs a specification in tabular format of the deployment of the defense system’s
platforms: initial position and (for satellites) the type of orbit. It would be worthwhile for a
more realistic simulator of this type to model these assets being deployed over time, but our
pr-ototype has them all in place at the beginning of simulation.

BATTLE MANAGER ABSTRACTIONS

Our approach to the modelling of battle management computations probably distinguishes
our simulator from most discrete event simulators. The simulator must take into account the
fact that any defense platform can include a battle management computing system as a
component, and take care of executing the relevant portion of the platform's battle
management software each time an event occurs to which the platform is supposed to
respond. As a result, our event handling routine somewhat resembles the scheduler of an
operating system, since it must pass control to and from each simulated battle manager
whenever the battle manager executes, and resume control afterwards.

Our simulator does not model battle management programs as being in continuous execution;
this is not possible within the context of a discrete event simulator. Furthermore, we felt that
it would be a natural and useful abstraction for the battle management computing system on
a platform to be represented as being inactive until an event occurs that is of concern to it.
At the simulated time at which the event occurs, the simulator activates the program that
represents the platform’s battle manager and it executes a code segment designed to be the
response of that platform to that event. By calling a “delay” function, the simulated battle
manager is also able to schedule itseif for reactivation after a specified time interval
independently of any other event occurring in the simulation. We use the term “BMA” to
refer to these high-level, stimulus/response-structured specifications of the battle
management software aboard defense platforms. It can be thought of as an abbreviation of
“battle manager abstraction.”

In our prototype, the BMA specifications provided by the simulation user are expected to
contain C or C++ code segments. The user can declare variables within any of these
segments. Our simulator distinguishes a subset of these variables, which we call persistent
variables, or “pvars.” These variables are saved and restored by the simulator between
activations of a BMA, so that the writer of a BMA can safely assume that whenever a BMA
is activated, each pvar contains the same value left there in the previous activation. It might
be worth the memory consumption to treat all BMA variables this way, in order to simplify
the user's programming model. Further experience with our prototype may clarify this issue.

We have recently implemented a first prototype high~level language preprocessor that
accepts as input a battle management software specification based on this event—driven,
“stimulus-response” abstraction of battle management computations and outputs a C++
program that can be incorporated into a simulation. This high-level battle management
specification language and its preprocessor will be the subject of a future technical report. It
is a key aspect of our approach to the second issue, that of providing a user interface that
minimizes the effort necessary to specify the defense architecture to be simulated.

1.2.4 TECHNOLOS3Y MODULES

As part of the input to the simulation system, each platform is specified in a tabular format
which denotes which technology module types are assigned to which platforms. Each type of
technology module is expected to have associated with it a unique set of functions that the
BMA of a platform “equipped” with that technology module can call and, usually, a set of
events to which the simulator can activate the BMA to respond.

We implemented three technology modules in support of the simplified model of a defense
architecture that we used to debug our prototype simulation system: a weapon, a
communication facility, and a sensor.

The weapon technology module is a simple model of a laser. There was no attempt at realism
in the model beyond making the probability of killing a target a linear function of its distance
and requiring a delay period between successive firings of the weapon.

The communication facility :llows the sending of messages between the BMAs of different
platforms. Messages can be sent to specific recipients or broadcast to all other platforms. The
model assumes an unrealistic ability to directly communicate between any two platforms
without any storing-and-forwarding ever being necessary.

The sensor technology module we implemented is a quite abstract one which we called the
“staring” sensor. It is represented to be continously looking in a particular direction with a
specified viewing angle. Whenever a target enters or leaves its field of view, an activation
event is posted for its BMA.

Some may find this model of a sensor too abstract even for an architectural-level simulation,
because it ignores the time-dependent scanning behavior of a real sensor and assumes an
infallible discrimination capability, since it sees all of the targzts, and only the targets, within
its field ot view. Besides the trivial reply that the technology modules are designed to be
replaced anyway, our counterargument is that the abstraction is a faithful one, in the
following sense: In any conceivable battle manager, there will be a high-level
decision-making portion of the system that is presented with a list of targets that its sensor
systems have detected, so that it can decide what to do about them. This presentation will be
very similar to how our sensor abstraction hands the BMA a list of targets. In other words,
our sensor abstraction incorporates the scanning control, tracking and discrimination that
would be part of the battle manager in a more detailed simulation model, but its interface to
the BMA is quite simular to the interface that the scanning, tracking and discrimination part
would have to the decision-making p..it of the battle management software.

This technology module abstraction discussion actually raises a quite interesting design issue
with respect to the replacement of technology modules with more realistic ones. Whenever
this is done, the interface between the BMA and the technology module is likely to have to
change, to become more detailed. The issue of how, in the course of changing the level of
detail in a technology module, to systematically adjust this sliding boundary (with its
associated hierarchy of increasingly detailed interfaces) between what is represented as part
of the BMA and what is represented as part of the technology module seems worthy of
investigation in its own right.

1.2.5 INPUT/OUTPUT

Presently, the tables that specify platform configurations and components are manually
created, but we are prototyping an interactive user interface for this purpose. The battle

management algorithms are also manually inserted into the simulator, but this will be
changed when we interface the high-level language preprocessor to the simulation system. As
the simulator executes, it writes into a file a list of events that have occured in the simulation
in order of the simulation time at which they occured. We perform postprocessing on this
event history file after completion of the simulation run in order to maximize user flexibility
in deriving information from the event history. In this postprocessing step, the event history
data is inserted into a database management system. The user can then query this database
in many different ways. We have also successfully prototyped a graphics software package
which extracts information from the event history database and can represent position and
motion of platforms and targets over a specified interval of simulation time as seen from a
specified point of view. This graphics package is built upon the orbital display software
developed within the graphics task of the same SDI Communications Research contract [3].

1.3 PLANS FOR FURTHER WORK ON THE SIMULATOR

The ISI simulation effort is a basic computer science research project, and as such is not
intended to produce a complete system suitable for detailed SDI architecture studies. That
would require a larger-scale deveiopment effort that is riore suited to be undertaken by
defense industry software development organizations. Our goal as computer scientists was to
address the most difficult desigr problems inherent to this kind of simulation software system
in such a way that our solutions to them were reflected in the overall design of this prototype.
The measure of our success will be the degree to which more detailed models of defense
architectures, system components, and the physical environment can be added to the
simulator without necessitating changes to the overall structure of the simulation software.

We are currently working on a partial test of the hypothesis that our software design will be
robust under the addition of more detailed models, by specifying a few, more detailed
defense architectures, accompanied by some more detailed technology modules.
Additionally, we intend to implement a prototype of our design for an interactive “front end”
that supports the specification of the configuration and components of a defense
architecture. This will incorporate the high-level battle management specification language
preprocessor mentioned in the previous section. We also plan to prototype new simulation
data output collection and reduction facilities.

We intend for this phase of the research to culminate in a sequential simulation prototype
that is a “finished product” in the sense that it should be feasible for a team of software
professionals to input their own architectural specifications to our simulator and revise or
replace our technology modules or environmental models without hands-on assistance from
us. In the future, we plan to focus our attentinn on the remaining and most challenging
research issue for simulators of this kind: how to improve their execution performance via
parallel execution.

1.5 ORGANIZATION OF THIS REPORT

The rest of this research report contains what we call our “Design Notes.” This text was
produced and updated throughout the design and implementation of the sequential simulator
prototype. It is of dual intent: first, to provide a high-level description of the software design
and second, to provide a recr rd of the design decisions that we made along the way, with
information about why we made them, what alternatives were considered, etc. The source
code of the main program of the simulation system and of the simple battle management
programs we used for debugging are included as an appendix, along with a copy of the
documentation maintained along with them in our source files. They illustrate, in particular,

the manner in which control is passed between the simulator and the battle management
programs provided by the user for execution within the simulation system.

1.6 ACKNOWLEDGMENTS

Several of the simulation interface design approaches used in this prototype were suggested
by Danny Cohen, in earlier drafts of [2].

h———f

CHAPTER 2. EVENTS AND THE EVENT QUEUE

As in most discrete event simulators, each event is is represented in our simulation system as
a data structure that contains variables indicating the name of a function to execute, the time
at which to execute this function, and the arguments to be passed to this function.

Such events are executed chronologically to simulate the real world activities, and the
simulation clock is advanced to agree with the timestamp of the event being simulated. The
collection of events to be executed is called event queue. Events are removed from the event
queue according tu the event time.

This chapter describes and discusses the design of such events and the operations of the
event queue, in the form of question-answering. The questions are:

® How is the event queue used at the top level in the main program?
® What are considered to be events?

® What are the data structures of event and event queue?

® What if two events have the same time stamp?

® How are all these events and functions interrelated?

® How does control switch between a BMA and the simulator?

® How are events initialized?

2.1 How is the event queue used at the top level in the main program?

In the simulator main program, there is a event scheduler that is mainly a “get~evaluate-put”
cycle of events. At each cycle, one event is popped from the event queue and is executed by
some function according to the event type. During the execution, the states of simulated
objects may be changed, and more events may be created. The loop continues until the
event queue is empty (at which time the simulation is done).

The main loop in the main simulator program looks like this:

while (current_event get_next_event() } // while queue is non-empty
{ switch (current_event->get_event_type())
{ case (SHOOT): // ... execute_shooting()
case (BMA SENSE): // ... call BMA
Ho.....

}

2.2 What are considered to be events?
In our simulator, events include:

1. BMA related activities:

(a). interaction between a BMA and the world: BMA_DELAY, BMA_INIT,
BMA_DELAY causes the BMA instance to be (re)activated after delay specified in
simulation time units. BMA_INIT causes the BMA instance to execute a specific
code branch which contains all user-level initialization code for that BMA.

(b). interaction between a platform/BMA and its devicess BMA_SENSE,
BMA_COMM;

BMA_SENSE occurs when a sensor detects a change in one or more of its targets

state. BMA_COMM occurs when a [inter-platform] communication message
arrives at a platform.
2. attacking-missile-related activities:
(a). interaction between a missile and a seasor: LAUNCH, PDESTROY (also see 3(b)
below);
LAUNCH causes a missile (ICBM) to be launched from its carrier. PDESTROY
indicates that a missile has probably been destroyed by a weapon.
(b). interaction between a missile and the defense system: PNUKE;
PNUKE occurs at the time that a missile is expected to reach its target. If the missile
has not been destroyed by the time of the event, a nuclear explosion occurs.
3. weapon-related activities:
(a). interaction between a weapon and the world: SHOOT;
(b). interaction between a weapon and a missile: PDESTROY;
4. sensor-related activities:
(a). interaction between a sensor and a target: SENSE_APPEAR, SENSE_DISAPPEAR,
SENSE_BLOWNUP;
(b), interaction between a sensor and its target table: SAMPLE;

5. physical-world-related information:

(a) interaction between the world and the simulator: PRINT_POS;

PRINT_POS occurs at a user-specified frequency over a user-specified interval of
simulation time, and causes position data for missiles and platforms to be saved for later
analysis and display.

2.3 What are the data structures of an event and the event queue?

The basic data structure of an event has the following fields:

(1) time stamp: a field that contains the time the event will occur;
(2) type: the type of the event;

(3) description: a type-dependent description of the event content.

In the case of a BMA-type event, the field of description contains the information of the
BMA instance ID and a label where control should go to (in the BMA code) when this event
is executed.

The event queue is structured as a doubly linked list of all events to be executed. These
events are ordered by their time stamp.

There are two major event queue operations: insert, and get_next_event. The insert
function inserts the current event in the queue at the point where all events after it have later
time, and all events before it have earlier or equal time. The get_next_event function pops
the first event from the queue and updates the head_event_queue variable.

2.1 What if two events have the same time stamp?

If two or more events share the same time stamp, the function insert orders these events by
means of their priorities (or type numbers) -- a fower number means a higher priority, and
will thus be inserted earlier in the event queue.

This is the priority of events starting from the highest one:

1: SHOOT,
2: PDESTROY,

: BMA_SENSE,

: SAMPLE,

: SENSE_APPEAR,

: SENSE_DISAPPEAR,
: SENSE_BLOWNUP,
: LAUNCH,

9: PNUKE,

10: BMA_DELAY,

11: BMA_COMM,

12: BMA_INIT,

13: PRINT_POS.

3
4
5
6
7
8

This order is assigned arbitrarily except that BMA_SENSE and SAMPLE events must have
higher priority than SENSE events. This is because of the sampling logic:

SAMPLE event represents a collection of one or more SENSE events
occurred a little earlier, and the BMA must be interrupted by the SAMPLE
event via BMA_SENSE event in order to respond to the information those
earlier SENSE events provide. Since each sampling period must be done
completely before another can start (the logic is explained in detail in
Chapter 5), BMA_SENSE and SAMPLE must be executed before SENSE
events which belong to the next sampling period.

2.5 How are all these events and functions interrelated?
Events and those functions called to execute the events are sometimes related to each other.

The event PRINT_POS works quite independently: it calls the function print_objects and
re-schedules itself to recur after a user—specified time period.

BMA events events activate corresponding BMA sections, and are posted by functions such
as sample. They have otherwise little interaction with other events and functions.

All other events and corresponding functions are closely related; their interrelationship is
described by the diagram in Figure 1. This diagram is divided into three columns: missile,
sensor and weapon. In each column, the right~hand-side has event names (in capital letters}
and the left—-hand-side has function names (in lower~case letters). A line between an event
and a function indicates their association. An arrowhead indicates the calling sequence of a
function and an event; e.g., “A —-> B” means A calls B, where one of A and B must be a
function and the other can be either a function or an event. Words marked near a
connection line is the condition of the calling asssociation between the function and the event
(e.g., “A --C--> B” means A calls B if C holds), or the mapping of the function calls (e.g.,
“1 to many” means a one-to-many mapping, or one function may create multiple events).

10

A0d1SIad

Auew-01-1
IMIIA UL

\‘o__mm_Elmo.:m%
\

JANOE J[Issiw __‘&‘

4!

SJudA3 °| aInbi4

\ g

szmmézml

1<m&<m5|mm2mm

TTINVS |

[eAsaiul awp)
ayy uy asuas 151 ay sI Ji

mozaoqmdmz&

/

Jeaddesipajeard

aptssia 1
1

ISUIS Ije[nuindde

4

ANANd

4J

aynud ajndaxa
| stige us
aqissyut Ji

™~

JUIAI Youne[INIIX

aanI9® alissIW xOAxu:/ AvaddV ASNAS 4\‘ O7towior-1 fmor ur opsstw Jr
> Sunjooys 9)ndAXI
HONNOVI
JIOOHS ~—] X0 100ys Jt »caﬁnoﬂg/
D 1eTj00Yys $IUIAI_youne| iUl
JUIAD uonauny JUIAD uornounj JU9AD uornounj
NOdVIM HAOSNAS ATISSIN
. N— S

2.6 How does control switch between a BMA and the simulator?

In the case of executing a BMA event, part of the user-defined BMA program would be
used as an external function to the simulator main program. Since the BMA program is not
pre—-defined, the major issue here is how to switch control from the simulator to the desired
location of the BMA and switch control back when it is done.

The strategy used is:

* a BMA event is set up with a BMA branching address consisting a BMA instance ID and
a BMA label. This BMA branching address is put into the event structure by the function
“delay” in the BMA program. When this BMA event is executed,

¢ the BMA ID is retrieved by function get_platform_id;

+ the BMA label is retrieved by function get_label; and

¢« a set of persistent variables for that platform instance is retrieved by a function
get_pvar_ptr; this set of persistent variables may be updated by a put_pvar_ptr
function; then

+ the BMA function is identified by a pointer to this function found by get_bma; and the
ID, label and persistent variables are arguments passed to this BMA function.

Therefore, the following statement in the simulator program will pass control to the
appropriate BMA function at the specific location: (*bma_fun) (label, pid, ptr_persistent).

The BMA function names should be provided by the user, but they are hard-coded as
“bma0,” “bmal,” and “bma2” in the current implementation. Labels may be assigned freely
by the BMA programmer, except that “label 0” is reserved for an initialization routine (see
Chapter 8).

A case statement in this BMA program switches the control to the corresponding piece of
code:

switch(label) {
case LABELO: // initialization

case LABEL1: // do something (sense, fire a weapon, etc)
/! which may create zero or more events;

and the case statement also ensures that control will go back to the main loop in the
simulator program automatically.

2.7 How are events initialized?

In the current implementation, the function init_event_queuae initializes the event queue to
call all instances of BMAs at time 0 with label 0. In other words, it is assumed that all BMA
instances are activated simultaneously at time 0, and all BMA programs will initialize their
capabilities (e.g., communication channels, sensors).

This initialization scheme would be more complicated but more realistic if each BMA
instance is activated in a certain deployment sequence. This deployment scheme or other
alternatives may be implemented in later versions of the simulator.

12

—

_—-—-—'———"

CHAPTER 3. BATTLE MANAGER ABSTRACTIONS

This chapter describes the battle manager abstractions, or BMAs, which are the part of the
“simulatee” that models the computations of the defense architecture’s battle
management/C3 system.

From a simulator programmer’s point of view, BMAs can be viewed as external
functions, to be provided as input by the defense system architect.

Each platform has one BMA which may or may not be the same as another BMA. Each
BMA is a function called with the following arguments:

1. label (entry point of the case statement),

2. platform_instance_id,

3. persistent_variables.

3.1 Label 0 is assigned as the initialization label

In the main “case” loop, there must be at least two case statements in order for the platform
to be useful. One of these two labels must be 0 (or its equivalent, LABELO), and the
corresponding case statement is meant to initialize all capabilities in this platform. The reason
that label 0 is reserved for initialization purpose is because all BMAs are called at simulation
time 0, with label 0, when the simulator event queue is being initialized. Once the BMA
high-level language preprocessor is incorporated, the initialization step will be completely
hidden from the user.

3.2 Other labels represent events relevant to the BMA

The sensor, weapons, communication, and propulsion capabilities associated with a platform
constitute its links to the simulated outside world. It is assumed that each such technology
module has one or more events related to it that are of significance to the BMA. When one
of these events occurs, the simulator activates the BMA by passing control to it at the label
associated with that event.

3.3 A BMA example

A (simplistic) example BMA program suggested by David Mizell was implemented in our
simplified debugging model. In this example, there are three kinds of platforms each uses a
BMA: HQ, GEO and CV, where HQ stands for headquarters platform, GEO stands for
geosync sensor platform, and CV stands for carrier vehicle platform. This example is
described below in the form of a set of production rules that roughly correspond to the syntax
of the high-leve! language for specifying BMAs that will soon be incorporated into the
simulator’s user interface. Each left~hand-side of a rule represents an event that causes the
simulator to activate the BMA so that it can respond to the event, and the right-hand-side is
the code that the BMA executes in response.

(1). HQ BMA:

receive target data from some GEO -> broadcast “weapons release”
message

(2). GEO BMA:

PEACE: targets appear -> send target data to HQ
receive “weapons release” from HQ —>

13

{ broadcast target data to CVs;
state := BATTLE

}

BATTLE: target appear ~> broadcast target data to CVs
target disappear -> broadcast target data to CVs

(3) CV Weapon Platform BMA:
PEACE: receive “weapons release” from HQ -> state := BATTLE

BATTLE: receive GEO sensor data ->
{ update target list;
while (shootable targets left and shots left) do
{ pick target;
shoot;
update count of number of shots left

}

14

CHAPTER 4. MISSILES

The missile package defines the behavior of a missile. A missile is defined as an attacking
enemy ICBM aimed at some ground target.

In this chapter, we describe the background of our design by answering the following
questions:

® What are boost, orbital and terminal phases?

¢ How do we simplify the missile behavior?

® How do we determine whether or not a missile is in the view of a sensor?
® What are the interrelationships between missile events and functions?

4.1 What are boost, orbital and terminal phases?

There are generally considered to be four phases in the launch-to-impact sequence for
ICBMs [4,5]:

(1). boost phase: the initial phase which is characterized by transit through the atmosphere.
The hot rocket exhaust make the missile easy to be detected by sensors. This phase lasts for
a few minutes;

(2). post-boost phase: the rocket ejects the nose cones and protective shrouds. It then
deploys the bus which houses the warheads and decoys. During this phase, some five
minutes, the missile is still in one piece and is still an attractive target, but less detectable;

(3). mid-course phase: thousands of warheads and decoys are deployed. It takes some
twenty minutes;

(4). terminal (or reentry) phase: the missile begin to enter the atmosphere on the way to the
target. Warheads and decoys can be easily detected, but time is very short (a few tens of
seconds).

In our simplified debugging mode!, we do not distinguish between (1) and (2) -~ both are
called "boost phase.”

4.2 How do we simplify the missile behavior?

The behavior of a missile is simplified in our simulator in many ways. Some basic
assumptions, among others, are listed here:

1. the trajectory of a missile is simplified to: 45 degrees up in boost phase; constant altitude
in orbital phase; and 45 degrees down in the terminal phase; one constant velocity in boost
and terminal phase and a different constant velocity in terminal phase;

2. a missile is detectable only when it is in the boost phase;

3. the success of a defense platform’s shot at a missile is determined by a simple probability
function (see Chapter 5).

4.3 How do we determine whether or not a missile is in the view of a sensor?

The logic is simplified. First of all, in our simplified debugging model, a missile is visible only
in its boost phase. Next, if a missile is seen at its launch point. it is seen throughout its boost
phase.

15

There are two functions to determine whether or not, and when, a missile has been detected
by a given sensor. These two functions are inview and outview.

The function inview checks if the launch point of the weapon is in the range of the sensor.
First, the function checks if the sensor’s viewing cone covers the whole hemisphere; if so and
if the launch point is in that hemisphere, or if not but the launch point is in the cone
projection area, then the missile will be in view starting a little while after the launch time.

The function outview estimates the time a missile goes out of the view of the sensor by
adding the boost phase time to the “in the view” time. The missile will be in the view until
the end of its boost phase or until until it is destroyed by a weapon.

4.4 What are the interrelationships between missile events and functions?

There are two events and three functions defined and interrelated in this package. The two
events are LAUNCH and PNUKE; the three functions are init_launch_events,
execute_launch_event, and execute_pnuke.

The function init_launch_events initializes all LAUNCH events according to predefined
times in a threat definition file. Each LAUNCH event is then executed by the function
execute_launch_event. This function uses the function inview to determine if any sensor
can see the launch and posts SENSE_APPEAR events for all such sensors. This function
also posts a PNUKE event for a possible hit on the missile’s target at the prediceted time of
impact.

A PNUKE event is executed by the function execute_pnuke which returns true if the
missile is still active at the time it is supposed to reach its destination.

The interrelationship is described in the diagram below:

function event

init_launch_events
\Q{to—many

LAUNCH

execut la nch event Amissile in view,; 1-to-many
cutefaunen- SENSE_APPEAR

\ (see chapter 6)
B

if missile | PNUKE

still activ

execute_pnuke

16

CHAPTER 5. WEAPONS

A weapon is defined in chapter 1 as a capability of a platform. Weapons are used by defense
platforms to shoot at targets (attacking missiles). The class of weapons might include various
kinds of lasers, particle beam weapons, kinetic energy weapons, etc. We only implemented a
simple model of lasers in our first prototype.

This chapter addresses the following detailed issues of weapon package design:

® How do we simulate the shooting mechanism?

¢ How do we determine if a shot is effective? (What are Pk and Qk ?)
® Can a sensor see a weapon?

® Does a weapon have a special trajectory?

® How are events and functions interrelated?

5.1 How do we simulate the shooting mechanism?
Firing a weapon can be done at any time as long as the following constraints are met:

(1). availability: that is, there is one or more weapons left, or in the case of a laser, there is
enough energy to fire another laser shot;

(2). operational delay: A finite time is required to load or aim a weapon, or, in the case of a
laser, to recharge the laser device.

The function shoot_ok checks these constraints and returns true only when the operative
contraints are met, in which case the function shoot_at posts a SHOOT event scheduled to
occur after a delay (currently, a constant delay regardless of the distance between the
platform and the target).

In our simplified debugging model, we assume any available weapon can be fired without
malfunctioning. However, a “sure fire” weapon is never a “sure kill” one. The uncertainty of
the kill depends on the distance between the weapon and the target, the killing-energy
carried by the weapon, and also errors and fuzziness of the target information, errors from
the estimation of the position and time of the target, and errors from the environment
(deflection due to the weather or the surface material of the attacking missile, and so on).

5.2 How do we determine if a shot is effective? (What are Pk and Qk ?)

We determine whether a shot is successful by means of two probabilities: Pk and Qk. Pk is
the probability of the shot being successful.. In the current implementation Pk is only a
function of the distance between the weapon and the target. A more detailed
implementation might include effects of target size, IR brightness and cross-section of the
target, angle of intercept, accuracy of tracking, etc. Qk is a random on the interval (0,1). By
doing this, we are able to say a shot is an effective kill if and only if PK > QK.

The evolution of this idea is described below. Originally, we had only Pk, the probability of a
successful shot. Each time the weapon was fired, the shot was considered to be successful if
the probability of a successful shot was greater than some constant (epsilon):

if Pk() > epsilon, shot was successful

The following objection was raised: suppose Pk() returned the value 0.9 on 10 different
occasions. One would then expect that 9 of those 10 shots would be successful. However, if

17

epsilon was set to 0.8, then all of those shots would be successful. The solution proposed was
to roll a random number in the interval (0...1], and compare this number (returned by Qk())
against the number returned by PK():

if Pk() > Qk(), shot was successful

The function execute_shooting does all that, and if Pk() > Qk() it posts event PDESTROY.
The execution of event PDESTROY is then carried out by function destroy_missile which
will kill the target.

5.3 Can a sensor see a weapon?

Our existing simple sensor models do not see weapons, and our existing weapon models do
not communicate, so the result of firing a weapon is not detectable. However, a BMA can
execute a time-out algorithm to determine whether a particular target has disappeared when
it should.

If the shot was a successful kill, the function destroy_missile marks the missile as
“destroyed” and checks which if the destruction event occurred in the field of view of any
sensor. A SENSE_BLOWNUP event is posted for each of those sensors. It is possible for
multiple PDESTROY events to be posted for the same missile; however, only the
[temporally] first PDESTROY has any effect.

5.4 Does a weapon have a special trajectory?

No. Unlike the missile, the trajectory of a weapon is not specified at all, only the location of
the target of the weapon is specified.

5.5 How are events and functions interrelated?

The following diagram shows the interrelationship between two events (SHOOT and
PDESTROY) and three functions (shoot_at, execute_shooting, and destroy_missile).
They are as explained in previous paragraphs.

function event

shoot_at
if shoot_ok . SHOOT

K

execute_shooting
if Pk>Qk & missile active

destroy_missile/ ~

if missile active
& in view;

SENSE_BLOWNUP 1-to~many
(see chapter 6)

PDESTROY

18

CHAPTER 6. SENSORS AND TARGETS

A sensor is a capability of a platform. A sensor may send a pulse of energy in a certain
direction and get a return (target information) from it, or perhaps just passively receive
energy (e.g., IR radiation from a boost plume) from a certain direction. The field of view of
a sensor can be either time-variant (a “flashlight” sensor) or time-invariant (a “staring”
sensor). Presently, only “staring” sensors are implemented.

A target corresponds to an intruding object (such as ICBM) detected by a sensor. The target
data reflects only what the sensor sees, not necessarily the “truth.” In other words, target
information may include some errors or fuzziness.

In this chapter, we will answer these questions:

® Why do we assume staring sensors?

® What are SENSE events?

® Why do we need the SAMPLE event?

¢ How do SENSE, SAMPLE events and their related functions interact?

® What is needed to prevent SAMPLE from failing?

How do we select the time interval D?

Why do we care about the longitude, but not the latitude of a staring sensor?
What is the angle of a sensor?

What kind of target information does a sensor provide?

6.1 Why do we assume staring sensors?

We had considered two types of sensors:

(1). flashlight sensors (this term was coined by Scott Carter and originated from Dick
Lipton’s “mosquitos and flashlights” phrase):

The sensor takes a “snapshot” of the targets in a particular direction at a
particular time. To use such sensors, the user of this simulator has to include
a non-trivial tracking algorithm in his BMA.

(2). staring sensors (term coined by Scott Carter):

This type of sensor is thought of as continuously sensing in a certain
direction and continuously maintaining a track list of all targets within its
field of view.

In the real world, a sensor may not be able to cover a large enough space and it may have to
scan from one end to another in order to catch the target (i.e., a flashlight sensor). We
designed the staring sensor based on our general design philosophy -- the philosophy of not
requiring the user to provide all “ten million lines” of BMA before he can use the simulator.
The staring sensor abstraction contains an abstraction of what, in a real system or a more
detailed simulation, would be part of the battle management system: the tracking algorithm
that builds and maintains the track file.

6.2 What are SENSE events?

A staring sensor is able to inform the BMA whenever a new target enters, leaves, or is
destroyed in its field of view. Each such instance can be simulated by a SENSE event.

19

There are three types of SENSE events: SENSE_APPEAR, SENSE_DISAPPEAR,
SENSE_BLOWNUP. These events indicate the appeara.ice, disappearance and destruction
of a missile in the field of view of the sensor, respectively.

There is one closely related type of event, SAMPLE, in this sensor package.
6.3 Why do we need the SAMPLE event?

Ideaily, a SENSE event can be realized by causing an activation of one branch of a particular
BMA instance. However, since the BMA instance would be activated by for each SENSE
event, it would react as if it never detected more than one sensing event at the same time —-
but in the real world, a BMA may behave differently when multiple targets present and when
only a single target presents. In other words, the above one~-SENSE/one-activation scheme
does not simulate very well the case of simultaneous, or nearly simultaneous,
appearance/disappearance of multiple targets in the range of the sensor.

To solve this difficulty, we decided that the BMA activation should occur for all SENSE
events that happen simultaneously or nearly sitaultaneously. The logic was changed so that all
SENSE events occurred in a certain time interval are accumulated, and the BMA instance is
only activated at the end of each such time interval.

Thus, a SAMPLE event is needed to implement both the accumulation of SENSE events
and the activation of the BMA instance at the end of a time interval.

The logic involved is that all sensing events are accumulated along D time units by the
function accumulate_sense, and a SAMPLE event is posted if and only if some target(s)
appeared, disappeared, or were destroyed at time t, {n~1)D <=t <= nD. At the end of that
time period, nD, the SAMPLE event is executed by the function sample, and a
BMA_SENSE event is posted which will activate the BMA instance.

The BMA in turn calls the function get_target which returns a list of targets which have
appeared, disappeared, or been destroyed in the time interval [{n~1)D,nD). It would then be
the responsibility of the BMA to decide what to do with these targets.

It is clear that exactly one SAMPLE event will be posted for each time interval as long as the
number of the SENSE events is no less than one. In the case that there is no SENSE event in
the time interval, there will be no SAMPLE event.

6.4 How do SENSE, SAMPLE events and their related functions inteiact?

The details of the interrelationships between the events SENSE and SAMPLE, and the
functions accumulate_sense, sample, and create_disappear are shown below, where
execute_launch_event and destroy_missile are functions found :in missile
package:

function event

execute_launch_event

(see chapter 4) \e\
if missile in view; 1-to-many

™ SENSE_APPEAR

/ destroy_missile

(see chapter 5)
if missile active & in view;

ﬁNSE_BLOWNU 1-to-many

accumulate_sense

.’ if is the first sense in the
/ time interval

!

if missile active &;in view SAMPLE
b

|

| sample

Y p

g

create_disappear

\ SENSE_DISAPPEAR

\ (BMA_SENSE)

21

The function accumulate_sense has the following logic:

(1.) if the calling SENSE event is the first one in that time interval, post a SAMPLE event;
(2.) for the SENSE_APPEAR event (the first SENSE or not), figure the time the target will
go out of view by calling function create_disappear.

(3.) for all types of SENSE event, append the sensed target to the target list.

The function sample has the following logic: for each target on the target list, if it is still
alive, post a BMA_SENSE event to activate the BMA.

When the BMA is activated, it calls the function get_target and gets target information from
this function, and it may do something about those targets ~- such as firing some weapons,
sending its information to other platforms, etc.

6.5 What is needed to prevent SAMPLE from failing?

Current implementation of the above one-SAMPLE/one-interrupt scheme is not robust,
however. This is because the logic relies on the use of function get_target in the BMA
whenever a BMA_SENSE is called. If the user does not provide the call to function
get_target, the whole logic fails.

Recall the first step of function accumulate_sense mentioned above, the condition of *“first
SENSE event” in the time interval is determined by the emptiness of the current
target_table for that sensing platform. Since the empty target_table entry is the result of
executing the get_target function, a SAMPLE event may never be created and the BMA
will never be interrupted again if the get_target function is missing from the BMA code.

The user should be warned with this potential problem and should always remember to use
the get_target function whenever there is a BMA_SENSE event. To solve the problem
forever, we should revise the code such that the condition of the first SENSE event in that
time interval is detected by an independent boolean variable, but not by the emptiness of the
target_table.

6.6 How do we select the time interval D?

The length of each sampling time interval, D, should really be determined by the platform
capability. This D represents the time interval between updates of a BMA of new information
from its sensor.

Therefore, if D is selected small, the BMA has relatively little amount of time to respond to
the possible targets. To the extreme of this, the BMA simply has no time to respond, or it is
forced to postpone its decision-making for a certain amount of cycles —— but this is a
duplicate of the sampling scheme and is, of course, not desirable.

On the other hand, if a large D is selected, the BMA may lose response time, and possibly
lose some accuracy in its target tracks. So it is important to select a realistic time interval D.
In practice, this D should be provided by the user, but for now it is arbitrarily set at one
second.

6.7 Why do we care about the longitude, but not the latitude of a staring sensor?

In the class staring_sensor a sensor is described by its longitude, view angle, and the ID of
the platform that owns the sensor, but not by its latitude. This is because in our simplified
model, all sensors are assumed to be mounted on geostationary platforms which must be

22

L

TS
Ly

above the equator all the time, so the latitude of any sensor is always known (latitude = 0).
This assumption was made only to simplify the initial implementation.

6.8 What is the angle of a sensor?

The “angle” of a sensor means how wide a field a sensor can see, that is, the angle of the
sensor’s viewing cone. A sensor is assumed to “stare” at the earth in the normal direction, so
the “angle” defines a unique viewing cone. It can be used to determine whether or not a
missile can be seen by the sensor at a given time (refer to Section 3.3).

6.9 What kind of target information does a sensor provide?

Each platform keeps a copy of its target_list which describes what this platform sees (via its
sensor).

Each target list may have a list of missile information, each of which include the missile ID, a
trajectory, target state and the time at which the target entered its current state (e.g. visible).

A target is always in one of its three states: INVISTOVIS, VISTOINVIS and
VISTOBLOWN. INVISTOVIS means thast the target is currently in a visible state, having
previously been invisible (from being out of the sensor’s field of view, beneath cloud cover,
etc.). VISTOINVIS means that the target is not currently visible to the sensor, either from
exiting the sensor’s field of view or from the missile ending its boost phase (i.e., the missile is
treated as effectively invisible once it has deployed reentry vehicles and decoys).
VISTOBLOWN means that the missile has been destroyed (as a result of a weapon firing) in
the field of view of the sensor (it is assumed that the sensor can differentiate between a
destructuion event and the normal behavior of the missile).

In our simplified debugging model, the target data provided by a sensor model is identical to
“simulation truth,” that is, the actual trajectory parameters of missiles used by the simulator
modules that implement the physical motion of missiles. The simulation software is
structured, however, so that a function could be included which introduces some “noise,” or
discrepancies between the “true” target data and that returned by a sensor model.

23

CHAPTER 7: COMMUNICATION
Our simulator treats communication as message passing between platforms.

In this chapter, we will try to answer the following questions:

® Who can talk and who can listen?

® What are the space and time constraints for communication?
® How does a BMA use the communication mechanism?

® What does the simulator need to do?

® What does the post office do?

® What is the timing calculation in the post office model?

® What is the difference between letters and messages?

® In what order are messages received?

® Can the receiver sort the incoming messages?

7.1 Who can talk and who can listen?

When we modeled the communication behavior of the platforms, we made the following
assumptions on their ability to talk or listen:

1. Those platforms that have the communication capability may both talk and listen to each
other.

2. A communication platform can send a message to one, a set of, or all other platforms at a
time.

3. A communication platform can receive any number of messages at any time.

4. A communication platform can send and receive messages via several different channels.

7.2 What are the space and time constraints for communication?

As far as space is concerned, we assume that:

1. there is no limit to the distance a message can travel,
2. there is no limit to the length of a message; and
3 a platform has unlimited buffering space for incoming messages.

However, a longer travel distance and a lengthier message do imply a lower probability of
successful transmission. This is implemented by a probability function Pc (suggested by
Danny Cohen): Pc = 0.997 * exp(-L/L0) " exp(-R/R0) where L is the length of the message,
R is the communication distance, and LO and RO are constants set to 5,000 bits and 20,000
km respectively. For simplicity, the current implementation sets L to 0.

As to the time constraints, we assume that:
1. the send operation takes time ST;

2. message traveling takes time DT;
3. nothing else takes any significant time.

24

7.3 How does a BMA use the communication mechanism?

In our model, a BMA can perform the following communication operations:

1. SEND message M to platform(s) Y via channel(s) CH, and (optionally) activate the
sender when the message is out.

2. BROADCAST message M to all platforms via channel CH, and (optionally) acuvate the
sender when the message is out.

3. SET the activation flag for this platform and this channel, and go to this label (in BMA
code, usually followed by a GET) when the activation event occurs.

4. GET the first message available for this platform and this channel.

A platform has to signal “GET" in order to get a message from its own message buffer. If the
receiver has requested to be activated upon the receipt of a message, an incoming message
will cause the activation of the receiver when it is the time to signal a “GET.”

The decision that the sender can also be activated was made because we wanted both send
and receive functions in a BMA program to return immediately. Since a send function takes
some time to complete the sending operation, the sender may want to be activated when the
send operation ic completed.

7.4 What does the simulator need to do?

Inter-platform comrmunication is modeled by a set of data structures and functions that are
needed in addition to the above send and receive functions. These data structures and
functions are mainly used to

. store the message M sent from source X;

. calculate sending operation time ST,

. calculate message traveling time DT;

. compute the probability of successful transmission Pc¢, and if this Pc is high enough, route
the message to its destination and interrupt the receiver when so requested; and

5. activate the sender when so requested.

E-NRVL IS

We call this set of data structures and functions the “post office,” because its functions can
be viewed as postal service functions.

7.5 What does the post office dc?

The post office i< designed as a 2-D array, in which each element is a mailbox, one for each
channel per platform. An outgoing message goes directly to the post office, and after some
processing (simulated by some delay time) it will be delivered to the destination mailbox.
When there is an incoming message, the destination platform will be activated by the
mail-man, if the activation flag on that mailbox is set. Whether the activation flag is set or
not, the receiver must go to his mailbox in order to get the mail.

7.6 What is the timing calculation in the post office model?

If the sender send a message at time T, it is assumed that the message is out at T+ST, where
ST is the sending operation time delay. The sender gets activated at T+ST if the flag is set.

For simplicity, it is assumed that this ST is independent of the number of destination
platforms. In other words, we assume that the time needed to send a message is fixed
whether the message is going to one or to many other platforms.

25

The time ST is calculated by comm_msg_queue::send_op_time. In the current
implementation, ST is set to zero. But we could also make it larger than zero, in order to
model different communication devices which take significant time to encode data or to set
up transmission links.

The message leaves the sender at time T+ST. In other words, it gets to the post office at
T+ST, since the post office covers anything between a sender and a receiver. This message
will be delivered to the destination mailbox at T+ST+DT, where DT is the message traveling
time froun sender Lo receiver.

In the current implementation, DT is calculated as the distance of sender from receiver times
a constant. It is done by the function delivery_time which is called by
comm_msg_queue::deliver.

7.7 What is the difference between letters and messages?

Other than “message” itself, there is a related data structure “letter” containing a pointer to
a message.

The reason for having letters is to allow a message to be in multiple lists simultaneously. For
instance, if message “A” is broadcast to all the platforms, a letter will be delivered to each
platform’s mailbox; but all of these letters will be pointing to the same message “A.”

A letter is an element of the linked list associated with a mailbox in the post office; it can be
accessed only by routines internal to the communication package. It is only a device to allow
the same message to reside in several mailboxes simultaneously.

When a receiving platform gets a message from the mailbox, a copy will be made of message
“A,” and this copy will be given to the platform. The BMA always receives a private copy of
the message. The BMA can do whatever it wants to with this copy; e.g., it can send this
message to other platforms, or delete it after reading its contents.

This is why a reference count is kept of the number of letters which are pointing at a message
at a given time. When the reference count reaches 0, the message is destroyed. The trick of
keeping a reference count of the number of letters currently pointing to the same message is
internal to the communication package, and is. completely transparent to the BMA.

7.8 In what order are messages received?

A message is received (and possibly processed) by the receiver only when the receiver
explicitly posts a get function. In this function, the receiver can only specify the channel
(i.e., the mailbox) he wants to get a letter from, he cannot specify the sender or anything
else.

In general, the receiving order of messages is precisely the arriving order of them, which has
nothing to do with their sending order. So one message comes from a nearby platform may
be received before another message sent earlier from a distant platform. However, if two
messages come from the same distance away on the same channel, the message sent earlier
will also be received earlier.

Letters in a mailbox are organized in their arrival time order, so the receiver simply pops the
top letter in that mailbox each time.

26

P~

7.9 Can the receiver sort the incoming messages?
Messages may have different “types” that can be known by the BMA.

The base class comm_message contains those fields that are common to all messages, e.g.
time message arrived at destination, reference count, sender’s ID.

A class (e.g., M1_message) is then derived from the base class for each message type; this
class contains the type-dependent fields for that message type (e.g., textptr, val, and cycle
tor an Mi_imessage).

The BMA programmer is required to construct a new message by declaring a variable of that
message type and passing the appropriate arguments to the constructor. The communication
package routines comm_msg_queue::send and comm_msg_queue::broadcast take a
pointer to the base class comm_message as a parameter. The BMA can pass a pointer to a
derived class, say M1_message, to these routines. Thus the communication package
routines will be oblivious to the type of the message.

The only drawback to this scheme is that the BMA will have to do an explicit conversion
(cast) of the pointer returned by the function comm_msg_queue::get. That is, since get
returns a pointer to the base class comm_message, this pointer must be explicitly cast to a
specific derived class in order to access the fields of that derived class. But, in comparison to
the overall advantages of using this scheme, this small inconvenience seems to be worthwhile.

A new message type can be declared by deriving a new class from the base class
comm_message.

27

e o

CHAPTER 8. PHYSICAL MOVEMENT

This chapter describe software routines that "moves” objects in the simulation. The software
is designed to be a simple approximation of real physical laws of motion.

8.1 Definitions

Objects assume different trajectories depending upon their types. There are three types
defined in our prototype: GEOSYNC, WALKER, and MISSILE.

GEOSYNC is a synonym for a geostationary or geosynchronous orbit, one where the satellite
is always over the same point on the Earth’s surface.

WALKER orbits are a class of orbit where the orbital period is an integral divisor of the
Earth's period of rotation (sidereal rotation is with respect to fixed stars rather than with
respect to the Sun). Walker orbits have the property that the satellite passes over the same
path on the Earth’s surface every N orbits (it turns out that N is usually on the order of 16).
Walker orbits are usually populated by M satellites, where M is a multiple of N (usually -
N**2). The result is to give coverage of a region of the Earth’s surface that is time-invariant.

WALKER orbits are designed to achieve a maximum (and constant in time) density of
satellites over a given point on the Earth’s surface. In a related function
traj::create_walker_orbit, arguments conviat and conviong are the latitude and longitude of
the convergence point (this is the one point through which all the sateilites pass), argument
nplat is the total number of platforms in the set of walker orbits, and i is the ordinal of a
given platform [i = 0 .. nplat -1].

WALKER orbits consist of a number of “rings.” Each ring is a circle whose origin is the
center of the earth and each ring contains a point directly above the convergence point
described above. The circumference of the circle is the orbital path the satellite follows.
Think of it as equivalent to slices of an apple. Within a given ring the satellites follow each
other at constant distance. Each ring is separate from its neighboring ring by a constant angle
(if the convergence point were the North Pole, the angle separating the rings would be a
longitude difference equal to 360 degrees divided by the number of rings).

To maintain constant time-average coverage, the number of rings times the period must
equal the sidereal period of rotation of the earth (-23h56m). The values of n for number of
rings that give reasonable solutions for low altitude orbits are in the vicinity of 16. At any
rate, the value of n specifies the altitude and period of the orbit.

28

CHAPTER 9. INPUT, OUTPUT AND GRAPHICS

In this chapter, the input files needed by the simulator, the output files generated by the
simulator and the software needed to support graphics animation of the simulation are
described.

9.1 Input to the simulator

In order to run the simulation program, some input data files are needed: a capability file, a
platform data file, and a threat file.

The capability file initializes the capability table. The information is read in via the function
init ~— a member function of capability_array, with the following format:

platform type

number of sensors, sensor type ...

number of communication channels, channel_number ...

number of weapons, weapon type ...

The names of BMAs will soon be included in the above format. However, at present time
they are hard-coded in the function capability_array::init, and their names are: bma0,
bma1l and bma2.

The platform data file specifies name, type and trajectory information for each platform. It is
read in via the function init_from_fila —— a member function of platform_list. Each field is
identified by the platform constructor function and in turn the functions create_traj,
create_walker_orbit or create_geosync_orbit.

In this platform data file, each line specifies one platform and has the following format:

platform name,

platform type,

trajectory type,
and the rest fields are options: if the trajectory type is geosync, then there is one more
argument for the longitude of the platform; if the trajectory type is walker, then there are
five more arguments: the total number of walker platforms, the ordinal of this walker in the
set, the number of rings in the set, and the latitude and longitude of the convergence point of
these rings.

The threat file specifies the launch time, place and destination of each attacking missile. This
information is read in via the function init_from_file —— a member function of missile_list,
with the following format:

lat'tude of launch point,

longitude of launch point,

latitude of target point,

longitude of target point,

launch time.

9.2 Qutput files

Several output files are generated by the simulator. These include an event history file,
errors, communication messages log file, target table, and position file.

Two other output files, namely “db.pos” and “db.evnt,” are generated by the simulator;
these files can be loaded into a database, and the information contained in them can be
accessed through SQL queries on the database.

29

W—L

The file “db.evnt” contains a listing of the events executed by the simulator, ordered by the
time stamp of the event. The file “db.pos” contains a list of platform and missile positions.
Each line in the file represents the position of an object at some instant in time; the positions
are generated in a time-driven manner by the simulator (see the description of the event
PRINT_POS). In both files, a record corresponds tG a line; the fields within a record are
separated by a special character (e.g., ‘|’) to enable the files to be easily loaded into a
database.

9.3 Graphics display package

Currently, SunUNIFY, a relational database management system, is used to store some of
the data produced by the simulator. Simplify, a graphic, mouse oriented interface to
SunUNIFY, is used to declare the entities, browse the database, execute SQL queries, and
generate simple reports. Simplify allows these queries to be saved in files for later reuse.

Currently, two types of entities have been declared; new entities can be easily added by
invoking the Schema option of Simplify. The first type of entity is EVENT; the fields in this
entity are the event id, the event type, and the time_stamp of the event; the primary key is
the event id. The second entity is POSITION, with fields object_type, object id, time, x, y, z
(3-d position coordinates), and plot (whether to plot this point); the primary key is a
composite field consisting of the object_type, object id, and the time.

Storing the data in the database allows very sophisticated post-processing of the simulator
output; the full power of SQL can be used to generate statistics and reports. It can also be
used to construct a file of positions which can serve as input to a graphics tool to display the
positions (trajectories) of missiles and platforms on the screen. Each record in this file
represents a point to be plotted. The format of each point/line-segment is (Z,X,Y,PLOT),
where (Z,X,Y) is a position mark and PLOT is an on/off bit indicating whether there should
be a line segment from the previous position mark to the current position or not.

The graphics tool we use to generate this information is the software developed by Richard
Bisbey's group (see [6]); it has been tailored for our simulator by Susan Coatney. This
graphics tool takes files of points to be plotted as input; files have been provided representing
a grid of the earth, and a map of the continents; a file containing the positions of the
platforms and missiles can also be created. The graphics package then generates a color
display of the earth, the platforms, and the missiles; the display can then be repeatedly
viewed from any requested angle. The graphic display has been very useful for debugging the
simulator code which deals with trajectories.

9.4 Detailed directions for generating graphics

The following is a sample of the sequence of commands a user would input to execute the
simulator and generate a graphical depiction of the results. The command to be executed is
preceded by the characters >>; a description of the command begins on the next line.

1. >> newsim

Execute the simulator, specifying the times at which the simulator should begin and stop
generating positions for platforms and missiles. The two files “db.pos” and “db.evnt” will be
automatically generated.

2. >> ¢d /tmp/mytut
You must be logged into a Sun workstation at this point. Change directories to /tmp/mytut;
this is where the database is located.

30

-

3. >> simplify

Execute simplify. Note that simplify must be executed from within suntools, and
/usr/unify/bin must be in your path. From the simplify window, choose the button marked
SQL.

4. >> delete position
Delete all the old records from the entity POSITION.

5. >> start load_pos

Execute the query to load records from the file “db.pos” into the entity POSITION. The file
“load_pos” contains the query to load the file; the query specifies an absolute path for the
file; this path must be wupdated if the file is moved (the current path is
/u3/mizell/fysicium/src/main/db.pos).

6. >> start create_pos_file

Execute the query to access the records in POSITION and create a file which is in the format
required by the graphics tool. The query is contained in the file “create_pos_file.” It selects
only those records with 0 <= time <= 30. It can easily be modified by editing
“create_pos_file.” The file “/tmp/mytut/posfile” will be created as a result of this query.

7. >> cd /ul/mizell/fysicium/graphics
Change directories to where the graphics tool is located.

8. >> sdi_graphics grid.nd earth3d.txt /tmp/mytut/posfile

Execute the graphics tool, passing the files to be plotted as arguments. The file “grid.nd”
contains a grid of the earth; “earth3d.ixt” contains a map of the continents. Tiie graphics
tool will request some input; once the requested input has been given, a color graphic display
of the earth, the platforms, and the satellites will appear in a separate window. The display
can then be viewed repeatedly from different points of view. If you wish to change the time
frame, exit this program, modify “create_pos_file” appropriately, execute it to create a new
posfile, then execute “sdi_graphics” again.

31

REFERENCES:
| 1] Stroustrop, Bjarne, The C++ Programming Language, Addison-Wesley,
| Reading, Mass., 1986.
(2] Cohen, Danny, “Simulation Interfaces,” informal memorandum, USC/ISI,
September 1987.
[3] Bisbey, Richard, “A Network Graphics System for Command and Control,”
Proceedings of the Symposium on Interoperability of Automated Systems, The
Hague, Netherlands, 1982.
[4] Rose, Frank, “The Strategic Defense Initiative,” IEEE Potentials, May 1987,
pp. 15-17.
[5] Zorpette, Glenn, “Monitoring the Tests,” IEEE Spectrum, vol. 23 no. 7, July
1986, pp. 57-66.
(6] Bisbey, Richard, Hollingworth, Dennis and Britt, Benjamin, “Graphics Language

(Version 2.2),” USC/ISI technical manual ISI/TM 80-18.1, May 1984,

32

APPENDIX A.

SIM.DOC

On-line documentation of the main simulation routine.

33

This file (simulator.doc) is a8 document for sirmulator.c, version 1.13;
written by Yu-Wen Tung, 12/1/87;

PURPOSE:

File simulator.c is the main program of the SDI simulation
software.

INPUT FILES:

This program requires three input files furnished by the user:
capability file, platform data file and threat missile data file.

The first file, capability file, initializes the capability table.
Each row in the table specifies types and numbers of the capability
of a particular platform, and has the following fields in the

indicated order separated by tabs or blanks, in four consecutive
lines as shown below:

1. platform_type
2. number of sensors, sensor type ...
3. number of communication channels. channei_number ..
4. number of weapons, weapon type ...
where dots indicate multiple (number, type) pairs are optional,

The second file contains a description of the defensive platforms.
Each platform is described by one line cortaining the following
fields in the indicated order, separated by tabs or blanks:
r 1. platform_name: a unique string which identifies
this platform,
‘ 2. platform_type: an integer in the range (0,1,2).
corresponding to the platform types PO, P1, P2,
3. trajectory_type: an integer in the range (0,1.2,3),
corresponding to the trajectory types UNDEFINED,
' WALKER, GEOSYNC, MISSILE (as defined by enum in traj.h),
4. trajectory_parameters: number of fields and their
meanings depend on the trajectory type.

The third file contains a description of all attacking missiles.
Each missile is described by one line containing the following:
1. latitude of launch point,
2. longitude of faunch point,
3. iatitude of target point,
4. longitude of target point,
5. launch time.

OUTPUT FILES:
The program logs the following information in several output files

as well as on the screen. It first asks the user what file name
he wants to use —- say “foo,” and then generates output files

34

eccordingly:

. foo.evnt: events poped from the event queue;
. foo.msgs: communication messages;

. foo.pos: platform positions;

. foo.err: error messages;

. foo.in: copy of the input platform data file;

. foo.trg: target table;

. db.evnt: event file in database format;

. db.pos: position file in database format.

O~NOOOEH WN -

OPERATION PRINCIPLE:

The main data structure of this program is the event queus,
and the main operation on the event queue is the get-eval-put
cycle. The initial events are placed one for each platform
created. The program gets one event at a time according to
the time stamp of the events, evaluates it according to its
type, then consumes it and puts zero or more event in the
event queue according to the event content. The program
terminates when the queue is empty.

The program does the following:
1. initial platform capabilities and trajectories;
2. initialize event queue, communication server and output files;
3. main simulation cycle:
while event-queue not empty:
{pop one event from the event queue;
print out the event to .evnt file;
evaluate the event according to its type
(BMA/SENSE/WPN/COMM);
remove the event}

RELATED FUNCTIONS:

1. capability_table.init():
reads from capability file and initialize capability table.
The variable capability_table is a global variable of type
capability_array, see file objects.c.

2. table_of_instance.init_from_file:
reads from platform data file and creates a table of platform
instances. The variable table_of_instance is a global
variabie of type platform_list, see file objects.c.

3. table_of_instances.size():
returng the number of platform instances. It is 8 member
function of class platform_list, see objects.h.

4. missile_table.init_from_file():
reads from threat missile data file and creates trajectories
of missiles. It is a member function of missile_list, see
file missile.c.

35

w——'——-—'——f

5. init_svent_queue():
initializes event queue. It cycles through the list of
platforms (table_of_instances) and posts an event for each
platform’s BMA with time_stamp 0. It is an external function
tor class event, see file event.c.

-

6. post_office.init():
initializes communication server. The variable post_office
is a global variable of type comm_msg_queue, and the function
init() is a member function of class comm_msg_queue, see file
comm.cC.

7. get_next_event():
simply pops the first event from the event queue which is
organized by time stamps of the events when they are inserted.
The popped event is called current_event and is then evaluated
according to its type.

EOF

36

APPENDIX B.

SIM.C

Source code of the main routine.

37

e

I o(f)amuldorc 118 11/24/87
~ smulator.c i the main program of the SDI sirmulalion software.
- nummmlmﬂu ondwheontamcdcxnpm

- Thﬂc Mcn[or , errors, 2. iNons and targets

Ale.
~ The only event type curmntly wsed iv BMA; SENSE and WPN type
mmma yet. (OLD)

~ Implemented events: BMA, SENSE, LAUNCH, SAMPLE (interval sensing), SHOOT,

DESTROY (s missile), PNUKE (poul’Nc ground hit), NUKE (grownd Ait).

written May, 20 by Riwi

uﬂdcﬂ/7/875’dcmnd COMM typs rvent

update 6/23/87 by de: changed all charf] to string

spdate 6/2{/87 by dec: changed post office init routine

update 6/25/87 by dc: changed include files to wae x_headerh files
update 6/30/87 by std. added output

update 7/13/87 by

update 8/6/87 by swsan nw : changes decause of event dass

update 8/6/87 by walsd for SHOOT, DESTROY, PNUKE end NUKE events
wpdate 8/11/87 by riwi and swsan : change sense events , destroy to pdestroy
delete

nuke event
update 0/1/87 by swsan:
update 9/2/87 by swsan:
update 9/3/87 by
update 9/18/87 by swsan: added event print for database
update 10/12/87 by suwsan: odded esent PRINT_POS to print positions
olﬂd/omacndni:dutocﬂclorthmphic:mch.
Added requcst for wser to input Gime frame in which to print

call to ¥mtsak

*/

#include <stream.h>
skinclude "stilities.h®
#include “cosm_header.2*
s#include "eveat_hesder.)*
#include “"sensor_keader.h®
#include *misaile_header.h*
#include “target_hsader.h"
winclude “wespon_header.h*
#include "fresstore.2*

]/ Nenctions wsed only by smulator.c

ostreamd&: operator>>(ostream& from, stimed var);

static vold write_logdata({ostream& to,string input_file_name,
string threat_file_name, string cap_file_name});

static vold output mnt(ltnn(&);

statle vold print_objects(ostream& to);

filebuf dbevnt; // weed only in smulator.c
filebuf dbpos; // weed only in smulator.c
main()

//comt << Tenter main\n®;

| indtiakise freestore package
init_freestore();

/] weed to point to popped event

evente current_event;

]/ current ladel with which BMA ss called
int label;

]/ i of current platform instance in case of a BMA event iype
platform_id pid;

/| id of current missle inst Jor misal V2

missile_id mid;

] pointer to the descriptor of current platform snstance
}] in case of a BMA event typs
platforme ptr_instance;

|| pointer to persistent variables of platform instance 38
pvar_ptr ptr_persistent;

suwsan: added BMA_SENSE,BMA_ COMM BMA _DELAY, BMA_INIT cvente

sim.c

10

20

40

main

70

main(sim.c)

80

// pointer to the dma function to inscke
bma_ptr bma_fun;

/] name of platform file to read

string input_file_name;

cout << "sams of platform file = *;
cin >> input_file_name;

]/ name of threat fle to read

string threat_file_name; 90
cout << "pame of threat file = *;

cin >> threat_flle_namas;

/] name of capablity fis to read

string cap_file_name;

cout << "same of caspadility file = ¥,
cin >> cap_flle_name;

[/ #et time frame for printing object positions
stime start_print, stop_print, delta_print; 100
cout << "start geaeratiag positioas at time: 9;
cin >> start_print;
cout << "stop gensratiag positions at time: °;
cin >> stop_print;
cout << "iaterval: *;
cin >> delta_print;
cout << "start: ® << start_print << " stop: ® << stop_print
<< * delta: * << delta_print << *\a*;

/] initiakise global output fils duffers 110

output_init(input_file_name);

/] Wind global outpwt file Wuflers to output streame

ostream dbevntout(&dbevnt);
cstream dbposout(&dbpos);
ostream evntout(&fbevnt);
ocstream posout(&fbpos);
ostream msgout(&fbmsg);
ostream trgout (&fbirg);

120
]/ write log data on ouiput files and stdout
write_logdata(cout,input_file_nam- threat_file_name,cap_file_name);
write_logdata(evntout,input_flle_name thrsat_file_name,cap_file_name);
write_logdata{posout,input_file_name,threat_file_name,cap_file_name);
write_logdata{msgout,input_file_name,threat_file_name,cap_file_name);
write_logdata(trgout,input_file_name,threst_file_name,cap_file_name);

]/ read from capabdity fle & initiakise capabidity table

{/ capability_table: global warialie of type capability_array

/] see objects.c 130
/] NOTE: capability_table MUST be initiakised BEFORE table_of instances

capability_table.init(cap_file_name);

/] wad from platform file & creats & tabie of platform instances
// tadle_of snstances: glodal eariable of type platform_list
/] see objects.c

table_of_instances.init_from_file (input_file_name);

/[LHS: global wariable; see global.c
// RHS: member function of class platform list; see objects.h 140

num_instances = table_of instances.sise();

//read the threat file
missile_table.init_from_file (threat_fille_name);

/] initiakine event quese
]| esternal function for class event; see event.c
init_event_queue (table_of_instances start_print);

/| initiakize communication server 180
]! vost_offize: global sariable of type comm_maeg_gueue;see comm.c

post_office.init(table_of_instances size());

[/ cowt << "begin simmlation... \n";

/] pop events
while (current_event = get_next_event()) { 39

>

/! wpdate global wariable with current simulation time
sim_time = current_svent- >get_event_time();
/] 3 cnnt' ot

current_event— >inc_evnt_counter();

/| pointer for tamet
targete curtarget;

// dways print event to output file
evntout << ecurrent_event;

// print current event to event database file
current_event— >dbprint(dbevntout);

events tmpevt,;

/| time for nest print of object positiona
stime next_print;

// evaluate event according to type
switch (current_event—>get_event_type()) {

case PRINT_POS:
/[print positions of all platforme & méissles
print_objecta(dbposout);

// ¥ event gueue is not empty
/[schedule another PRINT _POS event
v (! tmpewt—> empty_gueue()){

/1
[/ ¢ mot time to stop printing,
// schedule another PRINT POS event
if (sim_time <= stop_print){
next_print = sim_time + delta_print;
tmpevt = new event(next_print,
PRINT_POS);
tmpevt—>insert_event();
}
break;
case BMA_SENSE:
case BMA_COMM:
case BMA_DELAY:
cass BMA_INIT:
pid = current_event—>get_platform_id();
label = current_event—>get_label();
ptr_instance = table_of_instances|pid);
ptr_persistent = ptr_instunce—>get_pvar_ptr();
bma_fun = ptr_instance~ >get_bma();

]/ cdll bma code
(sbma_fun) (label , pid , ptr_persistent);
break;

case SENSE_APPEAR :

case SENSE_DISAPPEAR :

case SENSE_BLOWNUP :
pid = current_event—>get_platform_id();
curtarget = current_event—>get_target_ptr();
sccumulate_sense(curtarget, pid);
break;

case (LAUNCH) : mid = current_event—>get_missile_id();
execute_launch_event(mid);

break;

case (SAMPLE) : pid =
current_event - >get_platform_id();
sample(pid);
break;

case (SHOOT) : curtarget = current_event-> get_target _ptr();
pid = current_event—> get_platform_id();
execute_shooting(curtarget, pid);
break;

case (PDESTROY) : mid = current_event—>get_missile_id();
boolean resultpd = destroy_missile(mid);
if (resultpd)

40

main(sim.c)

160

170

180

190

200

210

220

230

main(sim.c)

evntout << ®SUCCESS" << ®\n®;

else
evatout << "FAILED® << ®\a%; 40
break;

case (PNUKE) : mid = current_event—>get_missile_id();
boolean resultpn = execute_pnuke(mid);
if (resultpn)
{

evntout << "SUCCESS* << *\a";
cout << "¥WE SHOULD BAVE GONE T0D NE¥-ZEALAND®

<< *"\n%; }
else 250
evntout << *FAILED" << *"\a%;
break;
default : sim_error("maia® E_ILEVENT);
break;
}
// free event
delete current_event;
cout << ®end simvlatioa\n"; 260
}
/¢ initiakise output file buffers for events, positions, messages,
« and errors.
¢ wntten by de 7-1-87
* modified by Wahd 7-2-87
*
static vold output_init(string& input)
extern char ssystem(char +); 270

]/ read mame of output files

string output_filename;

cout << "output file name = *;
cin >> output_flename;

/] open .ere® fil
string errfile = output_fillename + * orr*:
If (fberr.open(errfile.readstr(),output) == 0){
cout< <form("ERROR - canmot opez error file (simulator.msis)\n"); 280
exit(1);

}

/] open ".emt® file

string fllename = output_fllename + *.ovat®;

if (fbevnt.open(filename.readstr(),output) == 0)
sim_error(®simulator .maia [evat]® O_FILEWT);

/] open "db.ewnt® file
fliename = *"db.evat®; 200
if (dbevnt.open(filename.readstr(),output) == 0)

sim_error(®simslator .maia fdb.evnt]®,O_FILEWT);

/] open "db.pos” fie

fllename = *db.pos”;

if (dbpos.open(filename.readstr(),output) ==
sim_error(*simulator .main [db.poa]®,O_FILEWT);

/| open *.pos® file
string posflle = output_filename + ®*.pes”; 300
if (fbpos.open(posfile.readstr(),output) ==

sim_error("simulator .maia [pos)®,0_FILEWT);

/] open ".mege® fis

string megsfile = output_fllename + ®.mags”;

i (fbmaeg.open(msgsfile.readstr(),output) == 0)
sim_error(®simulator .meia (msge]*,O_FILEWT);

/] copy platform fie to *.in" file
string copy = ®cp * + input + * * + output_fllename + *.4a"; s10
if (system(copy.readstr()) = 0)

sim_error(®eimulator .maia(is)*,0_FILEWT);

/] open *trg" e
string trgfile = output_filename + * . trg®;
if (fbtrg.open(trgfile.readstr(),output) == 0) 41

main(sim.c)

sim_error(*simulator.main (trgl®,0_FILEWT);

}

/owmlq“amumdm»ubgmmd 320
* wamr mame, date, mname of platform description file, and
¢ name of misale description Nle.
v wniten by de 7-1-87
.
/
static void write_logdata(ostream& to,string input_file_name,
string throat_ﬂle_nnmc.ltring cap_file_name)

{
extern char sgetenv(char »);
extern long time(long stloc);
extern char sctime(long «); 330
chars us = *usga-;
long t = time((longe)0);
chare date = ctime(&:t);
i (to == cout){ // owipwt to stdont
to << "\nUSER = * << getenv(us) << “\a®;
to << "DAIR = * ¢ date;
to << ®PLATFORM FILE = * << input_file_name;
to << STHREAY FILE = » << threat_file_name;
to << SCAPABILITY FILE = * << cap_flle_name; 340
}else{ /] outpst to file
to << getenv(us) << “\a®;
to << date;
to << input_file_name;
to << threat_file_name;
} to << cap_file_name;
}
//Pﬁdmouoldiﬂdomaﬁaﬂuﬂckhum 380
/] been destroyed Uum&n[mibnndm
/ object type | id [2 [y | 5| plot
statle vold print_objects(cstream&: to)
position tmp_pos;
static int firnt = 1;
// print platform positions
plist_iterator next(table_of_instances);
platforme plat; seo
while (plat = next()){
to << "P | * << plat—->get_id() << » | LH
plat—>(ot_tr\i()—>cvd(&tmp_poa);
tmp_pos.dbprint(to);
/[do mot plot initial position of platforms
if (first) to << * | o\a";
else to << 7 | t\g¥;
}
370
/] print misnle positions
missile_list_iterator nextmiss(missile_table);
missiles miss;
while (miss = nextmiss())
if (miss—>get_state() 1= DESTROYED){
to << "N | * << miss—>get_id() << * | ¥,
mise—>get_traj()->eval(&tmp_pos);
f tmp_pos.dbprint(to);
/] do wot plot initial postion of messles 380
if (first) to << * | O\as;
alse to << * | f\ar;
}
first = 0;
}
/] This shoud go in global.c
1] overioadsd stream operator for type sisme
cstreamé: operator>>(ostreamds from, stime& var) 550

float tmp;
from >> tmp; var = (stime) tmp;
return from;

42

APPENDIX C.

BMA.DOC

On-line documentation of the
battle manager abstractions (BMA:s)
used to debug the initial prototype.

43

This file {(bma.doc) is a document for bma.c, version 1.3;
written by Yu-Wen, 12/3/87;

PURPQOSE:

e

BMAO:

BMA1:

Battle management abstraction, or BMA, is a software program
that specifies behaviors of defense platforms.

It is possible for two platforms to use the same piece of BMA
code, but each platform must have its own copy.

The BMAs collected in file bma.c are only examples. The real
BMA package is to be done by the designer of defense architect
to be simulated.

In this example, three different types of BMA are provided:
BMAD, BMA1 and BMA2, each is written as a function: bma0(),
bmat (), bma2().

This BMA code is designed for a headquarters platform that receives
target data from geosync platforms and sends a “weapons release”
message back. This decision-making headquarters platform has
only communication capabilities.

bmal(): is called with the following arguments:
1. label: either LABELO or LABEL1:
. if is LABELO, it will initialize communication channel 0,
: if is LABEL1, it will got a message at channel 0, if the
the message says "target appear,” send a “weapons release”
message back to the source platform (to LABEL1 of its
BMA code),
2. platform_id: has only one ID in this case.
3. pvar_ptr: pointer to the set of persistent variables to be
passed to the BMA code. There is none persistent variable
in BMAQ.

This BMA code is designed for a geosync platform that has sensor St

and communication channel CHANNELO. The function of this platform

is:

1. if targets appear in peace, then send a “target appear” message
to head-quarter,

2. if targets appear, disappear or are destroyed during a battle,
then broadcast target list to carrier vehicles.,

3. if a “weapons release” message is received from the headquarters,
then broadcast target list to carrier vehicles;

bma1(): is called with the following arguments:
1. iabei: LABELO, LABEL1 or LABEL2:
. if is LABELD, it will initialize communication channel 0

44

BMA2:

and sensor S1, so that an incoming sense event will call
LABEL2. Set state to peace,

: if is LABEL1, it will get 8 message at channel O, if the
the message says “weapons ralease,” broadcast a list of
targets to all carrier vehicles (to the LABEL2 of their
BMA codes), change the state to battle,

: it is LABEL2, then get target list. If it is in peace,
create a “target appear” message and send it to the
headquarters, and save the target list in the persistent
variables, otherwise create a “new targets” message and
send it to all carrier vehicles.

2. platform_id: has only one ID in this case;
3. pvar_ptr: pointer to a set of persistent variables which includes:

(1). peace: 1 represents peace and other integers represent

battle,

(2). list of targets.

This BMA code is designed for 200 Cvs (carrier vehicles); each has
some laser weapons and a communication channel CHANNELO. Each
CV functions as described below:

If receive target data from geosync sensor,

then update target list, and shaot targets while shootable targets

left and shots available.

bma2(): is called with the following arguments:
1. label: either LABELO or LABEL1:

: if is LABELO, it will initialize communication channel 0
and persistent variables;

: if is LABEL1, it will get a message at channel 0, if the
the message says “new targets,” update platform list of
targets, initialize list of left targets, pick fist of
targets and shoot while shootable targets
exist and there are available shots left.

2. platform_id: one of the 200 CVs.
3. pvar_ptr: pointer to a set of persistent variables which includes:

(1). list of targets,

(2). number of shots.

45

APPENDIX D.

BMA.C

Source code of the battle manager abstractions (BMAs).

46

gy

bma.c

/v O(#)tma.c 1.9 8/4/87
This i the source file of BMAs
Each BMA 1 precedsd by a description of its corresponding
platform type, and a description of its persistent wariables.

Every BMA < passed 3 arguments:

int label; label at which to begin
szecution of the BMA

platform_id instance_sd; td of the platform instance 10
for which th: BMA is being invoked

poar_ptre pears; posnter to the instance’s persistent warables

modified 6/10/87 by sec

update 6/23/87 by de: changed include fies

wpdate 6/2{/87 by dc: changed jcation package interface

update 6/29/87 by ajc: added call to print_pos to test trajectory

update 7/1 /87 by riw: change bmal to check trajectory+ icats

update 6/29/87 by dec: changed cornmunication package interface

update 8/11/87 by nwmi : a "real” dbma 20
update 11/4/87 by gc : try to find out why bma sant shooting

«/

#include <stream.h>

#include “bma_interface.h"

enum label_type { LABELO, LABEL1, LABEL2, LABELS },

/.O‘O“Oo".“" BMAQ vecvsssonncoscsnstronnsns

BMA for Plaiform HQO 30

recesve target data from GEO platform
—> send "weapon relecse” age to GEO

Platform type : PO

Capabilities :
Communications: CHANNELO

40
Perastent vanables:
NONE
+/
void bmaO(int label, platform_id instance_id, pvar_ptr pv)
[+ output streams for postions and messages and targets o/
ostream posflle(&fbpos) , magfile(&fbmsg) , trgout(&fbtrg);
/e pointer to persstent variables o/
/] pearl_ptr pears = (pvarg_ptr) pv; 50
const target_lists null_ptr = 0;
switch (label){
case LABELO: /¢ initialisation ¢/
[instiakise commumcation at channel0 «/
set_msg_flag (instance_id , CHANNELO , INTR_ON , LABEL1);
break;
case LABELL: /¢ for inpwt messages interrupts »/ 80

[+ get the message +/
comm_messages msg = get (instance_id , CHANNELO);
M2_messages target_appear_msg = (M2_messages) (mag);
target_appear_msg— >print(msgfile);
magfile.flush();
[+ f this is the mpht message +/
if (+(target_sppear_mag—>textptr) == *target appear®) {
[+ create & "weapon release” message +/
M2_messsges weapon_release_msg = new M2_message
(*weapon releass®, null_ptr); 70
/+ aend the message to GEO platform «/
platform_id GEO_id = get_platform_id ("GE00*");
send_msg (weapon_release_msg , GEO_id , CHANNELO ,
instance_id INTR_OFF , LABEL1)};
[+ froe memory <
delete target_appear_msg;

.ue{/}-waanocwﬁwmmoe‘/ 47
[+ ERROR s/

ettt

P

bma.c
80
break;
case LABEL2:
break;
case LABELS:
break;
default: sim_error(*bma0% E_ILLABEL);
00

}

Jeesvessesassves BMAL oavescssssvosvcvisssnases

BMA for Platform GEOO

targets appear in peace

—~> send “target appear” message to HQ
targets appear/disappear/blownup in battle

—> broadcast target kst to CVo 100
receive "weapon release” message from HQ

—> broadeast target kst to C7s

Platform type : Pl
Capabilities :

Sensors: Ss1
Communscations: CHANNELO

Persistent variablss: 110
int peace (1 them peace ese battle);
/ target_kate kst_of targets;
L]
void bmal (Int label, platform_id instance_id, pvar_ptr pv)

/v output s for positions and ages and targets +/
ostream posfiie{&fbpos) , msgflle(&fbmseg) , trgout(&fbtrg);

/* pointer to permstent variables o/
pvarl_ptr pvars = (pvarl_ptr) pv; 120

eonst target_lists null_ptr = 0;
switch (label){

case LABELO: /¢ inifialisation ¢/
/o indtiak jcation ot channelD +/
set_mag_flag (instance_id , CHANNELO , INTR_ON , LABEL1);
[+ initialiss staring sensor of
init_staring_sensor (instance_id , 0.3 , LABEL2);

o initiakiss pervistance wariables +/ 130
pvars—>pexe = I;
break;

ecase LABELL: /¢ for input messages interrupls ¢/
/o got the mussage o/
comm_messages msg = get (instance_id , CHANNELO)};
M2_messages weapon_relesse_msg = (M2_messager) (msg);
weapon_release_mag— > print(msgfile);
maghile. flush();
/o f this is the right message */ 140
if ((+weapon_releass_msg—>textptr)=="weapos release”) {
/* create & *mew targeis” message o/
trgout << "platform id ®* << instance_id << "\a%;
trgout << spvars->list_of_targets;
M2_messages target_msg = new M2_message
(*new targets® , pvars—>list_of targets);
[+ broadcast the message to CV's o/
broadcast_msg (target_msg , CHANNELO , instance_id ,
INTR_OFF , LABEL2 , P2j;
/¢ change sate to battle / 150
pvar—>peace = 0,

llu{)/tvlk'oo'cudlhn'dumuqco/
/* ERROR «f
[+ free memory +/

delete weapon_release_msg ; 48
break;

h———, —

bma.c

case LABEL2: /s for sensor interrupts »/ 160
[* get target kit +/
target_lists tglist = get_target (instance_id);
trgout << “platform id * << instance_id << *\p*;
trgout << otglist;

r——

/* in poace +/
if (pvars—>peace) {

[+ create a “target appear® message «/

M2_measages« target_appear_ msg = new M2_message

("target sppear®,null_ptr); 170

[+ send to HQ platform ./

platform_id HQ_id = get _platform_id (*HQo®);

send_mag (target_appear_msg , HQ_id , CHANNELO ,

instance_id , INTR_OFF , LABEL2);
/* save the target st in the persstance wariobles ./
pvars—>list_of_targets = tglist;

}
else {/+ in battle »/
[* create o mew tamgets message o/
M2_messages target_msg = new M2_message 180
(*sew targets* , tglist);
/¢ broadcat the message to CV' s/
broadcast_msg (target_msg , CHANNELO .
instance_id , INTR_OFF , LABEL? , P2);

1 break;
case LABELS:
break;

default: lim_ormr('bul',E_XLLABEL); 190
}

/o-oooo-..-n-uo- BMA®2 BOEELEINIOICOIS ISR UOINIES

BMA for Platform CV0 - CVigp

recaive GEO sensor data
—> { wpdate target kst ; 300
whde (shootable targets left and ahots lep) do
{ pick tamet ;
shoot;

update number of shots left;

}
Platform type : P2

Capabilities : 210
Weapon: KKV
Communications: CHANNELO

Persistent variables:

target_liste Kat_of targets
1 nt no_of shots
' ./

[+ update current kst of targets according to update_kist »/
vold update_target_list (target_lists update list , 220
target_lists current_list)

/e ¢ target_state==INVISTOVIS
add target to curvent_target kst
V target_state ==VISTOINVIS or VISTOBLOWN
find target and delete from current_target_list
L]
/
‘ .
target+ update_tpnt = update_list—>head() ;
targets tmp_update_tpnt; 230
[+ werate on wpdate kst «/
while (update_tpnt 1= NULL) {
tmp_update_tpnt = update_tpnt- >next();
If (update_tpnt->get_visibility()==INVISTOVIS) {
[+ remove the target from update kist s0 it
will not de destrpyed when update kst is deleted ./
update_list—->remove (update_tpnt);
49

—

[+ add appeaning target to curvent hat +/
current_list—>append (update_tpnt);

else {

/¢ delete all disappearing and blownup targets +/

missile_id mid = update_tpnt—>get_missile_id();

targets current_tpnt = current_list—>head();

fnt found = 0;

[+ search this target in current_kist «/

while ((current_tpnt 1= NULL) && Hound)

it (current_tpnt—>get_missile_id()==mid) {

[+ when found delete : remove and desroy «/
current_list— >delete_item (current_tpnt);
{ound=l;

else
current_tpnt = current_tpnt—>next();
[+ corresponding appearance target mot found then ervors/
if (!found)
cout << “error : disappesar and ao appear !%;

»;pdau_tpnt = tmp_update_tpnt;
}

struct int_list {
int axist;
int_liste next;

[+ initiakise targets_left kst «/
int_liste init_targets_left (int num)

int_liste last_item = O;

for (int i=0 ; i<num ; i++) {
int_lists item = new int_list;
item—>axist = 1;
item—>next = last_item;
last_item = item;

return (last_item);

}
[* froe targeta_iaht kit +/
void fm _targets_left (int_liste targets_left)
{ int_liste p = targets_left;
int_liste tmp_p;
while (p 1= NULL) (
tmp_p = p->next;
delete p;
p = tmp_p;
}
}

/o pick & target from the target hot o/

int pick_target (target_lists current_list ,
int_liste targets_left |,
platform_id instance_id)

[+ pick targets using phnow(targets , instance_id}
put exist=2 in targets_left for lhou targets which should be shot mow o/
target_list_iterator next (current_list);
targete current_target;
int_liste max_prob_p = O;
float max_hit_prob = 0.0;
int_liste p_left = targets_ieft;

[+ dterate on Kt of targets
find the target with the masimal prodability to be Mitted by this
Patform o/
while (current_target = next()) {
float hit_prob = pknow (current_target , instance_id};
cout << *hit prod * << Mit_prodb << '\n"
if ((hit_prob > max_hit_prob) && (p_left->exist)} {
max_hit_prob = hit_prob;
mnx_prob__p = p_left;
50
p_left = p_left~>next;

bma.c

3240

250

260

270

280

290

300

310

bma.c

}

/v the probabiity to kit > 0.

put 2 in the maz_prodb_p pointer +/ 320
if (max_hit_prob > 0.) {

max_prob_p~>exist = 2;

return (1);

else
return (0);

vold bma2(int label, platform_id instance_id, pvar_ptr pv)

/1

1

830
[+ output streams for postions and s and targets«/
ostream posfile(&fbpos) , ml(ﬂle(&fbmlg) trgout(&fbtrg);

/+ pointer to persstent wariables +/
pvar2_ptr pvars = (pvnr2 _ptr) pv;
const Int NUM_SHOTS =

switeh (label){

case LABELO: /s snitialization «/ 340
[+ snitidlize communication »
set_msg_flag (instance_id , CHANNELO , INTR_ON , LABEL1);
[+ tnitialize persigtance wariables +/
pvars—>no_of_shots = NUM_SHOTS;
pvars—>list_of targets — new target_list;
break;

case LABELL: /¢ for input messages interrupts »/
[+ get the message o/
comm_message+ msg = get (instance_id , CHANNELO); 350
M2_messages target_msg = (M2_message+) (mag);
target_mag— > print(magfile);
magfile.flush();
/% this is the right message «/
if (+(target_msg~>textptr)=="new targets®) {
/* update platform k& of taryets »/
update_target_list (target_msg—>tlist_ptr ,
pvars—>list_of_targets);
[+ free memory of
delete target_msg— >tlist_ptr; 360
delete target_msg;
[+ initialize Ket of left targets o/
int_lists targets left =
init_targets_left (pvars—>list_of_targets—>size());
[+ pick ks of targets «/
int shootable_targets ;
/* whde shootable targets exist and shots left o/
while ((pvars—>no_of shots > 0) &&
(shootable_targets =
pick_target (pvars—>list_of_targets , 370
targets_left, instance_id))) {

coul << "shootable targets for platform * << instance_id << *\n*;
[+ sterate om target kgt +/

targete current_target;

target_list_iterator next(pvara—>list_of_targets);

int_lists p = targets_left;

while (current_target = next()) {

if (p—>exist==2) 380

cout << “shooting at * << ecurreni_target << "\n;
shoot_at (current_target , instance_id);

[+ update number of shots »/

pvars—>no_of shots~—,;

/+ update targets_left : tamget was shot o/

p—>exist = 0;

P = p->next;
} /¢ end of target_kist iterator o/ 300

/* no mors shootable targets or no more shots +/

[* free tamgets_left memory +f
free_targets_left (targets_left}); 51

else {
|+ ERROR «f

break;
case LABEL3:

break;
case LABELS:

break;

default: sim_error(*bma3* E_ILLABEL);

52

bma.c

400

