
OTII fiLE CI' ISIReprintSerie
ISIIRS-88-204

March 1988

0
0o

University k.
(0of Southern

Brian Harp
Robert Neches

NOTECARDS: An Everyday Tool
for Aiding in Complex Tasks

Reprinted from Workshop on Architectures
for Intelligent Interfaces: Elements and Prototypes,

held in Monterey, March 29, 1988.

DTIC
MAY 1 6 1988

7. -is w-aim"

INFORMATION
SCIENCES

INSTITUTE 238211
4676 Admiralty Wa} l/farina del ReVCfiforia 9692 6

88 5 1"5 U'..

Unclassified - - - -

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
la REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

Unclassified
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION /AVAILABILITY OF REPORT

This document is approved for public release,
2b. DECLASSIFICATION /DOWNGRADING SCHEDULE distribution is unlimited.

4 PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S) .

ISVRS-88-204

6a. NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

USC/Information Sciences Institute (if applicable)

6c ADDRESS (City; State. and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

4676 Admiralty Way IAb

Marina del Rey, CA 90292

8a. NAME OF FUNDINGISPONSORING Sb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applic.ble)

Air Force Logistics Command DARPA MDA903-86-C-0178 F33600-87-C-7047
8c. ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS
Air Force Logistics Command DARPA PROGRAM PROJECT TASK WORK UNIT
Wright Patterson Air Force Base 1400 Wilson Blvd. ELEMENT NO. NO. NO. ACCESSION NO.
Dayton, Ohio 45433-5001 Arlington, VA 22209

11 TITLE (Include Security Classification)

NOTECARDS: An Everyday Tool for Aiding in Complex Tasks [Unclassified]

12. PERSONAL AUTHOR(S) Harp, Brian; Neches, Robert

3a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) uS. PAGE COUNT 28
Research Report FROM _ ___TO ____1988, March 2 -

16 SUPPLEMENTARY NOTATION
Reprinted from Workshop on Architectures for Intelligent Interfaces: Elements and Prototypes,
held in Monterey, March 29, 1988.

17 COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP
09 02 expert systems, hypertext, intelligent interfaces, notecards

19 ABSTRACT (Continue on reverse if necessary and identify by block number)

- N Most current notecard systems don't take advantage of the semistructured nature of notes, making
retrieval and analysis difficult and requiring manual maintenance of the notes contained in the
system. In addition, all current notecard systems are self-contained, forcing the user to maintain the
relationships between notes and the domain knowledge bases. By exploiting the semistructured
nature of notes, it is shown that notes can aid in several areas, including: capturing information not
typically in intelligent systems, accessing that information, graceful degradation in intelligent
systems, and reasoning using this additional knowledge. A system is proposed that contains
structures for capturing semistructured information, a number of note types useful in reasoning in
varied domains, and the control mechanisms necessary in a notecard environment. A prototype has
been built and integrated with a knowledge base browsing tool, and is currently being expanded in
capability as well as being integrated into a second domain. :

20 DISTRIBUTION /AVAfl.ABILITY OF ABSTRACT / 21. ABSTRACT SECURITY CLASSIFICATION ,
0UNCLASSIFIED/UNLIMITED 3 SAME AS RPT. 3DTIC USERS Unclassified

22aNAME OF RESPONSIBLE INDIVIDUAL Sheila Coyazo 22b TELEPHONF (Include Area Code) l. iYMBOL

Victor Brown 213-822-1511 0 ,DO FORM 1473,B4 MAR 83 APR edition may be used untilexhausted SECURITY CL.ASSIFICATION OF THIS PAGE %

All other editions are obsolete.
Unclassified

S%

r~ 0 *~*%"~-.* , .. , ~ *

151 Reprint Series

ISIIRS-88-2040
March 1988

of Sout hern
Californiia

Brian Harp

Robert Neches '-

NOTECARDS: An Everyday Tool
for Aiding in Complex Tasks

Reprinted f romn Workshop on Architectures
for Intelligent Interfaces: Elements and Prototypes,

held in Monterey, March 29, 1988.

Acces -ion For

NTIS GRA&I
DTIC TAB

D T(C Justification
~\Copy

spec ial.

Of-0

LA/WRMAM[ON
SCIENCES 213/822-1511

INSTITUTE 4676 Admirally Way/Marina del Rey/California 90292-66 95

r'and in part by the Air Force Logistics Command under Contract No. F33600-87-C-7047, Views and conclusions contained in this
report are the authors' and should not be interpreted as representing the official opinion or policy of DARPA, the AFLC, the

U t SS. Government. or any person or agency connected with them.

*1

ISI Reprint Series
This report is oe in a series of reprints of articles and papers written by ISI

research staff and published in professional journals and conference

proceedings. For a complete list of ISI reports, write to

Document Distribution
USC/Information Sciences Institute
4676 Admiralty Way
Marina del Rey, CA 90292-6695
USA

A..

NOTECARDS: AN EVERYDAY TOOL FOR
AIDING IN COMPLEX TASKS*

Brian Harp, Robert Neches "

USC / Information Sciences Institute
4676 Admiralty Way

Marina del Rey, CA 90292
(213) 822-1511

-.%

A Introduction N

Paper notes are used for many tasks in our everyday life, whether it be a software profes-
sional using notes to remember bugs that need to be fixed or homemakers keeping track
of chores to be performed. In intelligent computer systems, notes are potentially impor-
tant because they can capture supplemental information about objects in a knowledge
base (information not captured in traditional knowledge representation); for example,
peripheral domain knowledge or interactions between a system and a user. This paper

presents research in use of notes and the status of TINT (The Intelligent Note Taker), .
a medium for organizing and capturing such information in an electronic notes system.

Our research on the use of notes, and consequently TINT, is intended to address .-.four key problems:4

1. The lack of organization beyond ad hoc structure and references, imposed and
maintained solely by the user's self-discipline, makes it difficult for users to keep
track of their notes as the collection grows in size.

2. That same lack of organization means that large amounts of useful information

contained in the notes is largely inaccessible to any system. k it

o Th rearch described in this paper was supported by DARPA under contract #MDA-903-86-C-
0178, and by the Air Force Logistics Command under contract abu33600-87-C-7047. Te ontets of l
paper represent he views and conclusions of the authors, and do not reflect the policies or beliefs of the
sponsoring agencies.

Our eserch n te ue ofnots, ad cnseuenty TNT, s itened tadres
four ey poblem, -V

3. The lack of a mechanism foi recording semistructured knowledge, and commu-
nicating that knowledge to a system, limits users' abilities to guide intelligent
systems that have gotten into boundary areas of their knowledge.

4. The lack of structure of notes limits the ability of an intelligent system to assist
in sharing of notes between users.

The key feature that distinguishes our approach from other notecard systems is that
it is based on a formal representation for capturing the content of notes and exploiting
their semistructured nature. Also, because of the knowledge representation language
being used, notes can be linked to other notes or knowledge base objects in an arbitrary
fashion and the links are formally represented so notes can be easily found and reasoned
about after their creation. Our goal is to provide a note environment that, when cou-
pled with a domain specific knowledge base, will assume responsibility for the task of
organizing, reasoning about and maintaining interrelationships between notes and note
abstraction hierarchies.

This paper will first describe related research involving notes. Next, some of the sup-
porting control mechanisms for an intelligent notes system will be discussed. Following
that, note types will be presented and their use and functionality described, leading
finally to a discussion of future work necessary to make notes a complete and domain
independent computer tool. X0

Please note that the interface design issues discussed in this paper focus on con-
ceptual interaction between the user and machine, as opposed to creation of interface
objects such as menus and windows. The examples in this paper will be taken from two
domains in which systems are being built at ISI. BEAMER (Bom Expert Assistant
for Managing, Evaluating and Reviewing) focuses on tools that aid Air Force material
planners in stocking repair shops with the appropriate components in a timely manner.
More generally, BEAMER will produce tools that aid users in the task of data review.
The other domain is knowledge base and database browsing, maintenance and repair,
where BACKBORD[Yen87] and TINT are integrated to help knowledge base developers
in the task of building and maintaining knowledge bases/databases.

2 Recent Work

Note systems currently are both commercial products and objects of research. Xerox
PARC has developed a commercial hypertext system [Halasz87] with a component called_0
Notecards. This system allows a user to create and store notes. However, the repre-
sentation of notes is very shallow, and it appears there is very little in this system that

1 BOM stands for Bill Of Materials; BEAMER is being built in cooperation with Sacramento Air
Logistics Center under funding from Air Force Logistics Command Headquarters.

2

%S

actually allows reasoning about notes. Their system gives the user a template for a note
and allows the user to fill in the information and store that note in a hierarchical file
system. The user is expected to perform all actions on notes by hand (e.g., organizing
and modifying). Because the notecard system is self-contained and not integrated with
any knowledge representation system, the user must also manually maintain the rela-
tionships between notes in the notecard system and objects in the domain knowledge
bases.

In most other hypertext systems, notes can be thought of as nodes. Nodes are
pieces of text that are linked together by the user using linking facilities supplied by the
system. It appears that the only organization capabilities (other than arbitrary linking
of nodes) offered by these systems is that some allow the user to create node types.
For example, the Design Journal developed in the MCC Software Technology Program,
provides four node types for the designer to use - notes, goals/constraints, artifacts and
decisions. These types provide no structural uniqueness to nodes, but help the user,
by using a unique color or icon for each type, in differentiating the types of nodes they
are working with. See [Conklin87I for a description of the Design Journal and other
hypertext systems.

In contrast, our research has focused much more on representing notes in a way that
allows reasoning about their semantics. Representation based on semantics allows a
number of added capabilities:

" utilization of notes in applications in an integrated manner (see Section 3)

" efficient capture of knowledge (see Section 5)

" organization and reasoning about the notes (see Section 5 and Section 6).

Recent work done by Malone, et al.[Malone87] has given some insights into semistruc-
tured information that can be applied to a general notes environment. Their work has
been focused on electronic mail messages, showing that the semistructured nature of
mail is exploitable by using AI techniques for more explicit representation and reason-
ing. The research discussed in this paper is philosophically similar, but pushes Malone's S

ideas of semistructured information representation further. Our system is domain inde-
pendent and suggests a generalization to a multipurpose knowledge-based approach for
representing semistructured information.

3 The Impact of Notes in Intelligent Systems

This section will briefly discuss three implications of our approach on the design and
use of intelligent systems. First, the problem of capturing outside knowledge will be
considered - that is, information relevant to a system's reasoning that either was not

3

"S. J

anticipated in the system's design, or could not be formalized. Next, the problem of 0
dealing with open worlds will be considered, in which systems need to take account of
outside knowledge to overcome the limitations of their own knowledge. Third and finally,
the issue will be raised of sharing knowledge, capabilities, and interface consistency
across system components.

3.1 Representing Semistructured Knowledge

A note environment extends and aids traditional input of knowledge. Typically, the
knowledge representation language used in a system limits the type of information that
can be captured. For instance, in a frame-based system, a user can fill in attribute 0
values of an object, add new objects and add new attributes. However, most frame
based systems don't allow the user to input meta-information during execution of the
system. This is because meta-information is assumed to be static and known during
development of the system. Therefore, it is encoded into the knowledge base or the
control mechanism and not directly accessible. S

In the note environment, the user is free to attach information in the form of notes to
any entity that the system formally represents, and the system can use that information
in its reasoning in the future. For instance, if users acquire some relevant information ,
about an attribute of an object, they can add a note that references that attribute.
In the future, the user will have access to that information because it is linked in S
the knowledge base. (This is assuming that the knowledge representation language
of the system captures these entities in a sufficiently rich way, as is the case with k '0

the NIKL[Kaczmarek86] and LOOM[McGregor87] knowledge representation languages
used in TINT.) In LOOM, a concept roughly corresponds to a frame in a frame based
system, and a role roughly corresponds to a slot in a frame based system. However, in
LOOM, unlike most frame based systems, roles are concepts with a domain and a range
role. This allows a system using LOOM to reason about roles just as it reasons about
concepts. Thus, in the notes environment, notes can reference roles as well as concepts.

Notes allow the user to add knowledge that the system can reason about without
having to express all of the information in as strict a formalism as is usually required in
a traditional expert system representation. It is sometimes the case that the existence
of certain types of information about objects in a knowledge base may be useful in
reasoning, even though the information can be only partially represented in the system.
Notes facilitate the capture of information that is not completely within the domain
knowledge, yet has relevance to it in some way. They allow a system to utilize the fact F
that certain information exists to do further reasoning.

4
J. 6.

4,.-"IP

Ip!

' " 'b ,',,,. , - e, ." " , ,- -, -. , , ,, . - - -. - - . . .S

3.2 Graceful Degradation .

Graceful degradation is a problem in most intelligent systems today. If peripheral
knowledge can't be represented using the representation language of the expert system,
or if some situation was not anticipated in the design of the system, it is simply notK
included in the system knowledge base. When the system reasons past the boundaries
that this imposes, the system either does meaningless things or nothing at all. Notes will
help this problem in that the peripheral information can now be captured and placed .

appropriately in the knowledge base, which means that a system can at least realize.
that it needs to collaborate with the user when it runs into these boundary situations. '

An example from the BEAMER system should clarify this point. Consider the case
where a material planner observes data indicating that a particular kind of circuit card : ,: ,:

has been used at a much higher rate than normal. The function of the BEAMER ::
system is to help the planner' determine the causes of such conditions. Based on the
findings, the planner can take action or at least know why the condition is taking place.
Imagine that, in this case, the planner discovers that extra circuit cards are required
from inventory because a high number of them are found to be faulty when they are ...
installed.

BEAMER specializes in the data about components. This is necessary if BEAMER -.
is to aid the user in the task of data review. However, it is not feasible for BEAMER to".,

monitor the mechanics to see why the components are being used at such a high rate,
nor is it feasible for the system design to anticipate all possible reasons or variants for :

this situation. This case is on the boundaies of the scope of the system; the system "

has a model of the problem, but not of all the causes of the problem. Therefore it must .
ask the user to handle the conditions involving causes that it doesn't have represented,
as in this example. It should be noted that some domains can be modeled completely.
However, even when this is feasible, it results in a very large representation, which may , ,
not be necessary. '

Let us consider a related example, in which an excessive number of component .
#11222-' is being required by the shop, and the system is trying to determine whether
it should increase its predicted value for the Future usage rate of that component.
There may be a number of reasons that component is being used excessively, all of which
are outside the system's capability to infer. Assume that the predicted value should be ..
increased if the component's mean time between failures has dropped, if the defect rate' . _

in replacement units has increased, or if past usage rates had been underreported. Any .
of these conditions will support a decision to increase the predicted rate. In this case,
it is the presence of reasons, rather than the specific reasons themselves, that justifies "'

2 The word planner" refers to the material planner and should not be construed as a component of -"

thi knowledge base system. .-
'In this paper, knowledge base entities like objects and attributes will be in bold face type ...

_.

S

the increase.
Consider how this example would have to be handled in a conventional rule-based

expert system approach. A conventional expert system would need to maintain a data
structure representing a hypothesis, with various rules adding support or denial for
that hypothesis. If the user had knowledge bearing on that hypothesis which was
not captured by one of those rules, the only way to affect the behavior of the system
is to manipulate the system's internal representation to modify the support for the
hypothesis. In addition to the handicap of having to work in those terms, the user
would have difficulty in finding a place to record the basis for the intervention, and so
the system could not generate an explanation or justification of the outcome that would
take account of the user's added knowledge.

On the other hand, since the information necessary to make this decision is that there
is justification to increase the percentage, any information that justifies the increase
is acceptable. If this system were reasoning with notes, any note that captured the
justification for a increase is acceptable. Therefore, the system developer doesn't have
to include in the reasoning all possible rules to support a hypothesis. In this example, ,
attaching an Increase usage rate note to the appropriate field of the component
could prompt the system to increase the percentage when it analyzed that component.
In addition, the system can use that note as justification for the increase and the user,
or any outside auditor, can see why the system took the action. •

In the notes paradigm, if there is required information from outside the central
domain, the system could provide the user with possible sources of information. The
user would then have to retrieve the appropriate information (just as they have to do if
a rule base is asking specific questions) and input it as notes linked to the appropriate
objects. The system would use the note type and the structured content of the note to
continue reasoning. In addition, after notes are in place and the expert system reasons
down the same path in the future, it is in a position to recognize that its own knowledge
was insufficient, and that an accurate conclusion will require collaboration between it
and the user. Present-day systems are not capable of handling this, nor can they capture
the connections between outside knowledge and their own domain knowledge'.

The notes environment also enhances communication between a user and a system
because it gives systems the ability to generate notes or partial notes. These notes

.,A will aid the user's understanding of the system and why the system is performing in a
particular way. For instance, the BEAMER system may detect a discrepancy in data
about a particular piece of equipment for which a planner is trying to ensure availability
of parts. BEAMER will automatically create a note for that discrepancy and attach
the note to the appropriate objects in the knowledge base. The note will contain some

4 One of the rules for building successful expert systems is that the domain be bounded so that the
knowledge of the domain can be "separated" from other knowledge. In practice this is usually difficult
to do.

"6 '-
* .1%

description of the discrepancy, probably a textual description of the formal constraint
that was violated. However, the user can enhance this note by adding text or additional
referents. In the future, the system may use the note by recognizing that it exists and,
because of the note's type, refrain from further analysis until the note has been removed.
In addition, the note is a reminder to the user to look into the problem and resolve it.
Thus, notes provide a good intermediate representation that allows the system and the
user the ability to work together, to keep track of their activities, and to create a more " .
understandable model of the domain. "

The system-generated notes described above are especially useful when there is the
potential for a considerable number of messages being printed to the user at one time.
For instance, in most systems today, when an illegal value is put into a slot in a frame,
a message is printed to the user saying the val ae is illegal. In a system where there are
a large number of constraints applied at once to data, there may be twenty or more
messages at one time. The user cannot hope to resolve all of the problems that are 40
generated by an action. Instead, one needs a system that marks the problems in a
knowledge base and allows the user to address each problem at a time of their own
choosing. System-generated notes are one answer to this problem (see Section 5.3 for a
more detailed discussion).

3.3 Note Integration

As was mentioned in the introduction, a major benefit of the TINT notes system is -7
that the notes are represented in the same knowledge base representation language as
the domain knowledge bases. This allows users access to notes that have been created,
as easily as they can access other knowledge base objects. Functionality defined for .

knowledge base objects will be as applicable to notes as it is to the other objects. In ad-
dition, notes and other knowledge base objects can reference each other in a completely
integrated fashion.

Our note environment supports multiple-user integration, another useful aspect of "
integration. Notes capturing information specified by one user can easily be made
accessible to other users if it is appropriate. For instance, in the example in Section 3.2 S

where excessive use of a circuit card was being investigated to decide whether to increase
its predicted usage, the decision to increase was influenced by a note explaining that
the defect rate had increased. It is quite common for items such as this to appear as
components of several different kinds of equipment, including equipment handled by
someone other than the material planner who may have recorded the original note. S

In the future, when knowledge bases are shared among a set of users, other materials
planners will have access to that information and will be able to utilize it making
decisions about other equipment items that have the same circuit card as a component.

7

-4. ,

- ~ 1_ a h

4 TINT 0

TINT (The Intelligent Note Taker) is a prototype environment supporting the research
in the use of notes. TINT currently doesn't recognize ali of the different typep of
notes cited in the previous section, but has a representation of a generic note with the
attributes specified previously and an interface that allows creation and manipulation
of notes.

NIKL[Kaczmarek86,Robins86 5 has been chosen as the knowledge representation
and classification system for representation of notes. This choice was made for a number
of reasons. The most important is that NIKL requires that objects are represented in
formal and precise way. This allows NIKL to classify objects, organizing them on the
basis of subsumption relationships. This is especially valuable when trying to -ecognize
important features and group objects into classes and subclasses. Another advantage of
using NIKL for representaton of notes is tha the note knowledge base will be completely
compatible with other knowledge bases that have been developed for other domains.
This integration is important because it means the notes are available at no cost to an
applications developer; it comes with the development environment and is compatible
with any other NIKL knowledge bases.

When notes are created, the NIKL concept representing the note is created and
classified into the note network. The location of the concept in the network will depend
on the referent or referents of the note, the creator of the note and the subsuming
concepts specified for the note. The referents of a note also link the note directly to the

appropriate concepts in the knowledge base. " t
Some key manipulation features of note systems have been identified and imple-

mented. Figure 1 shows the TINT interface. The lower left form is a checklist for N
creating a note. It allows the user to fill in the attributes by typing in object names 0

or choosing then from the knowledge base via assorted browsing mechanisms. The v%

other forms surrounding the checklist in Figure 1 are being used to browse a knowledge
base to find the referent for the note being created. This capability was integrated
into the TINT system from BACKBORD ([Yen87], a knowledge base browsing and v "
retrieval system developed at ISI). Here the user is selecting the use-it menu option
on Item.2840-00-037-9688TB, which will make that object the Refnrent of the note
being created. If the user had chosen to enter values from the keyboard, an editor would
have been invoked in which to -nter the information. When the user has completely
filled out the note, they choose the done option at the bottom of the note-creation
checklist. This executes a function that creates a concept representing the note, clas-
sifies it in the note hierarchy, and makes the appropriate links to the other knowledge
base objects.

'LOOM(McGregor87], the successor of NIKL, will replace NIKL in TINT shortly.

S

8'e l

IJ

.?

G) WX

u r

0

w ii

C6. LQ

CDz
LQI

0 0

%

.26

NQ

There are also a number of ways to retrieve notes. A user can evaluate NIKL
commands in a lisp environment to view concepts in the knowledge bases. Alternatively, W. .6

the BACKBORD[Yen871 knowledge base retrieval system can be used to completely or
partially specify descriptions of notes and then retrieve them from the knowledge base
based on the attributes that the user cited. BACKBORD is based on the retrieval by
reformulation[Tou821 paradigm and allows users to retrieve knowledge base objects by
successively reformulating a description based on other objects.

Our experience with using BACKBORD has made us realize that being able to
browse knowledge bases (as opposed to just retrieving information) for verification of
construction, correctness of classification and consistency is very beneficial to knowl-
edge base developers and knowledge engineers. Knowledge engineers often take notes
about parts of the knowledge base that appear incorrect, listing errors that need to be
corrected, etc. These notes are unorganized and usually sufficiently cryptic that only
the person writing them knows what they mean. Based on this observation and the
fact that the browsing capability was inherent in BACKBORD, we concluded that the
notes facility would give organization and structure to the notes generated and that,0
when coupled with browsing capability, it would be a powerful tool for knowledge base
development. This insight caused us to integrate TINT with BACKBORD so that the
user could browse the knowledge base and add notes where necessary in the knowledge
base.

5 Note Types

To understand the requirements for representing notes and reasoning about notes, a
number of domains are being analyzed to determine common characteristics. It appears
that notes, even though they are used for many different purposes, can be grouped by
common attributes. These note types, defined by their particular attributes, can be used
in a variety of domains. The idea of note types is not a new idea. As was mentioned
in Section 2, some hypertext systems allow a user to define note types, primarily for A
ease of recognizing notes. However, notes types in these systems typically are not used
in reasoning. The following sections will briefly discuss some of the note types and cite
examples of how they are used in BEAMER and knowledge base browsing environments.
Keep in mind that a note instance may have a number of these defined supertypes from
which it inherits attributes and functionality.

There are a number of note attributes that will be referred to in this discussion. The
attributes and their definitions are:

* Notenarne : the name of this note

* Referent : the knowledge base object(s) that the note references

10

3% %

" Author: the person or system that created the note .

" Content : the body of the note, which may be either text or a structured data
object.

These attributes define the root object of a note type-subtype hierarchy. This object
will be referred to as a generic note in further discussion. Note that subtypes may differ
from a generic note either by having more specialized values for one of these attributes
or by having additional attributes.

5.1 Generic Notes

A Generic note is the most general note type, and all of the attributes of this note

are inherited by its subtypes. This note can be used to capture any semistructured

information that cannot be classified as a more specialized note type. The Referent of
the note could be a class, an object or a list of classes or objects. Note also that, since

notes are objects in a knowledge base, a note or class of notes could be a Referent -
value as well. V

5.2 Demon Notes

A Demon note is a like a Generic note except that it has a Condition attribute.
This attribute specifies the conditions for creation or linking of the note in a knowledge

base. The conditions may either be defined for a type of note or for an instance of
a note. If these conditions apply to a note type, then a new instance of that type is
created each time the conditions are met. Of course, if the conditions are specified for

an instance of a note, that instance already exists when the conditions are met. ,
Once the note instance exists, it is linked to the Referents, which are either specified

by the creator or are derived from the conditions that made the note active. For example, %
when browsing knowledge bases, a developer may want a note to appear when there 1017

are more than five instances of a ccrtain class of object. This note would serve as a

reminder to inspect the instances and decide whether new classes are appropriate for

those instances. Such a Reminder note would be defined as a subtype of Generic

notes and of Demon notes.
Continuing with the example above, when five or more instances are classified under

a class of objects, the Reminder note is created by the system and put in the knowledge
base. The note will reference the class object and each of the instances that are of that '.. %

class. In addition, the user will be shown, via the interface, that this note has been 4.

created. The user can then retrieve the Referents of the note and take appropriate e..'
action.

11, .

3-. '

An example from BEAMER is as follows: A planner may want a note created to
remind them to change the status of a component when it arrives in the material supply
center. In this situation, if components for a piece of equipment cannot be obtained
from a supplier, planners put that piece of equipment in a parts Status referred to as
Awaiting-parts. This status is applicable until the parts arrive in the material supply
center, at which time the status of the piece of equipment is set to Active-repair. There
are a number of other actions that the planner must do when this condition is met, thus
it is not appropriate for the system to take action without notifying the planner. If
the planner has a Demon note defined to become active when a component's Status
showed that it was no longer Awaiting-parts, the planner simply needs to input the
Status of the parts and the system will remind the user of the consequences of the r
change of information. The planner may not be able to take immediate action on this
situation, and the note will provide a visible message to the planner until they can *1.

perform the necessary actions.

5.2.1 Timed Note

A Timed note is a Demon note that has a specialized Condition attribute which
refers to time only. It is similar to the remind facility in UNIXTM. It will allow users
to create notes that are to become active at some specified time in the future. One A
could imagine being able to specify notes that are displayed every year on January 1st
or every month on the 15th.

5.3 Discrepancy Note

A discrepancy is defined as a constraint that has been violated. A Discrepancy note
is a subtype of Generic note but its Contents attribute is restricted to be some form
of description of the discrepancy that prompted creation of the note. In addition, a
Discrepancy note is classified as a Resolved Discrepancy Note if it has a Reso- -
lution attribute that contains the response to the discrepancy, initiated by either the
user or the system.

A Discrepancy note is created whenever a constraint has been violated. A number
of constraint violation types exist. One type is a formal system constraint violation (e.g.,
the value restriction on an attribute is the constraint, and a violation of that constraint
is that the wrong type of value is put in an attribute) which is generated by the system.
Another type is a user-described constraint violation, where a user observes a problem
in the system and creates a note to capture that problem. One can think of these
problems as constraints that the user has on the system and that are violated by the
current representation. A user-described violation is specified as uninterpretable text
(uninterpretable by the system).

12

V ~ %

A Discrepancy note is defined as active until it is resolved, at which time it be-
comes inactive. The Resolution of a note can be specified in a number of different I

ways (see Section 5.4 on resolution notes below). It could be a note created by the user
that describes the actions taken to resolve the discrepancy. Alternatively, the Resolu-
tion could be a system function or rule that resolved the discrepancy and prompted the
creation of the Resolution note. In summary, formally representing Discrepancy
notes, and their resolutions, allows the application system to manage discrepancies and
problems, instead of making a user perform this task. Following is a discussion on both
types of Discrepancy notes.

5.3.1 System Discrepancy Notes 0

Typically, in AI systems today, certain types of constraints can be defined and imposed
on knowledge bases. However, if a constraint is violated, the message provided to the
user is usually canned text. It is left up to the user to keep track of the violations and
examine the knowledge base to understand what caused the violation to occur. This o
is done in a debugging style of interaction. The user must decide if the constraint is
correct and there truly was an error in the data, or whether the constraint was incorrect
and should be modified.

In systems where constraints are applied to large amounts of data, there may be a
large number of discrepancies generated at one time and it is not feasible for a user to O
handle all of these potential violations immediately. For example, in the knowledge base
browsing environment, when a new knowledge base is inspected by a developer and the
knowledge base constraints are applied, there may be many problems in the knowledge I.. '
base. The user would not find a list of error messages scrolling across the screen very .0

helpful. It is much more useful if the system creates notes for each discrepancy and
gives the user the capability to address the notes as they see fit. It may also be the
case that a change made by the user could resolve a number of discrepancies. If the
problems are just listed for the user and not related in any way to the knowledge base,
there is no way to apply resolutions to multiple, related violations. Capturing these
discrepancies in notes allows these relations to be exploited and explicitly represented.

This note type has a specialized Content attribute that requires the specification of
the discrepancy to be system-interpretable. (More work has to be done to understand
how tightly constraint violations and Discrepancy note can be integrated.) In addi-
tion, the Author attribute of the System discrepancy note is specialized to be the
system. S

5.3.2 User Discrepancy Note

This note type is the same as a System discrepancy note except that the contents of
the Discrepancy attribute is textual (i.e., uninterpretable by the system). In addition,

13

iI

the Author attribute of the note is restricted to be a user and not the system. A
situation in which a User discrepancy note would be used is shown in the following
example: a developer may be browsing a knowledge base with isa hierarchies to verify
consistency and debug existing problems. The developer may observe that an object
is in the wrong part of the hierarchy and want to mark that object as needing action.
This could be done using a User discrepancy note. The user can attach ? User
discrepancy note suggesting that the object be moved and is then free to continue
browsing the knowledge base, knowing that he/she can come back to that note and move
the object at a later date. In addition, this note will remain active until a Resolution
has been specified for it. Accessing that note (and thus any of its Referents) can be
accomplished by using the system-understandable attributes of notes (i.e., the note type,
known classes of Referent value, etc.). The BACKBORD system is useful in locating
objects in a knowledge base in this manner, and is described above in the discussion of
TINT in Section 4.

User discrepancy notes can be resolved in the same way as System discrepancy
notes. A user could create a note that specifies an action has been taken to resolve
the discrepancy. Alternatively, the system may be able to automatically resolve a User
discrepancy note if the system can reason about actions and their relation to the
discrepancy. In the example above, the system may have a representation that allows
it to detect when an object has been moved from the position at which the note was
attached and conclude that that action resolved the "misplaced object" problem. It
could then take action to remove the Misplaced object note. In this case, if the
move occurs, the system will create a Resolution note, designate the move command
(in its system interpretable form) as the Resolution value, and put the note in the
Resolution attribute of the Discrepancy note. Of course, this type of note could be
dangerous if the user was not notified before the system resolved the discrepancy, since
inaccurate resolutions would be used to resolve problems that existed for other reasons. %

The effect of putting the resolution in the Discrepancy note is that the Discrep-
ancy note becomes inactive. One of the benefits of this approach is that the user can
see the events that took place in creation and resolution of the discrepancy. In systems
that just list the problems, no record of the events is captured for future use.

5.4 Resolution Note

A Resolution Note is used to resolve Discrepancy Notes. This type of note can
be created either to capture the handling of a pre-existing discrepancy, or to anticipate
discrepancies that may appear in the future. (In the latter case, the note type required
is really a subtype of both Resolution Note and the Demon Note.) For instance,
a user could create a resolution note that says, in effect: "if circuit card #112343 is
found to be used excessively, the reason is because the cards are defective when brought

14

into the inventory center. The data being collected on this part are correct". This note
would become the Resolution of the Discrepancy note generated each time the data
for that circuit card went out of bounds on a different piece of equipment. Again, this
type of note can be dangerous if inaccurate or out-of-date resolutions are used.

A Resolution note has an added attribute which is called the Discrepancy. Its
value is the discrepancy that it resolves; the purpose is to maintain a bi-directional link
between the Discrepancy note and the Resolution note. Establishing the back- A
pointer from the discrepancy to the resolution also will cause the system to reclassify the-,?
Discrepancy note; it will then become a Resolved Discrepancy Note. In addition,
the Resolution note should receive the same Referents as the Discrepancy note
that it resolves. 0

There are a number of subtypes of Resolution notes, with the differences between
them revolving around the kind of response and the Author of the response. For
instance, for some kinds of discrepancies, the appropriate response is merely to generate
an account that explains the cause of the discrepancy. In the data review task of the
BEAMER system, as an example, material planners must investigate whenever it is S

determined that there is a discrepancy between the actual cost of materials used in
overhauling an item and the cost estimate that was used to set the fixed price which
customers are charged. It is often the case that the data on actual costs is accurate.
Since Air Force practice is to fix the price of an overhaul job for two years at a time,
and that price is then recomputed based on the assumption that the recorded data is 0

accurate, all a materials planner can do in this case is to note that the discrepancy
was investigated and record what factors had changed to invalidate the current cost
estimate. Such a note would be an instance of a subtype of Resolution Note that we
refer to as an Explanation Note. Such notes provide, as one of their side-benefits, an
easy way for a system to filter out recurring discrepancies and refrain from re-presenting
already-explained problems to the user.

Another subtype of note is an Action Record Note, which records an action
taken in response to a Discrepancy Note. This in turn has several subtypes, such
as External Action Record Notes, User-initiated Action Record Notes, and
System Action Record Notes. The first of these three is used to record actions taken,.5
to resolve the problem that went outside the boundaries of the information system (e.g.,
fraud was suspected and the FBI was called); typically, these would be actions generated
by the user, although the user might be following a system-generated recommendation P.wi,

in doing so. The latter two subtypes record actions taken within the scope of the
information system, either by the user or by the system.

For an example of a User-initiated Action Record Note, consider the case
discussed in Section 5.3.2, where a discrepancy was created during browsing because an ,%

object was found to be incorrectly placed in the knowledge base. In response to that
discrepancy, the user might execute an interactive command to move that object to a

kW15 -'

rt"

Q!, O-

more appropriate place. The record of that move having been accomplished constitutes
the resolution of the original discrepancy.

System Action Record Notes serve to record actions taken automatically by a
system. For example, in the current Air Force information system for material planners,
called G005M, the user is given 90 days to make a revision when the actual usage rate for
some component differs from its predicted usage. If the user takes no action by the end
of that time, the G0.m system automatically alters the predicted rate to correspond "
to the actual rate. .o record is kept to indicate that the system has done so. This
is unfortunate, because if the user wishes to review or question the system's actions
at a later time, there is no convenient way of finding out which among thousands of
database records the system has acted upon. In BEAMER, which is intended to provide
a friendly interface between materials planners and systems like G005M, the system's
action would be recorded in a note, and therefore would be retrievable later on.

The use of both user- and system- generated Resolution notes as a mechanism for
recording history is potentially very important. There are a large number of situations
in which it is crucial to have an "audit trail" that captures the relationship between 7

concerns or observations and the conclusions or actions that resulted from them. This
need is particularly strong in areas such as data review and analysis tasks which lead
to decisions having significant financial costs or risks. We believe that in applications
where the set of possible actions is reasonably bounded and well-understood, such as
the BEAMER system, it should be possible for the application to maintain a model of
the relationship between application-specific discrepancies and their possible resolution
types. Such models can be used both to guide users in how to respond to discrepan-
cies and to automatically detect when users have taken actions to resolve them, thus
providing a higher quality of help and automatic maintenance of audit trails with no
additional demands upon the user.

6 Note Manipulation Mechanisms

The notes system will have a number of support facilities as part of the note environ- 0

ment. One capability that is clearly needed is the ability to specify arbitrary criteria
for retrieving and ordering notes. One use of that utility will be in creating lists and
agendas of notes that the user can use in performing necessary tasks. For instance, a
user may want to resolve problems in a knowledge base, fixing the oldest problems first.
To perform this task, they may want a list of discrepancy notes ordered by date. This S
list could be generated by having the query utility first retrieve unresolved discrepancy
notes and then order them according to date.

Computing the scope of a note is another mechanism that needs to be supported in a
note environment. For example, one needs a way of specifying how a note is propagated

16

: 4A %-LVI% twl S

when it is attached to a class of objects. In some cases, a note may be intended to
reference a class object and not its children. In other cases, the note may be intended
to be propagated to all children of that class.

A rich retrieval language is necessary in order to retrieve notes and other domain
objects in an arbitrary way. Direct links are easy to support and they are handled by
most frame or object systems. Other links are "indirect" (or inferred) references, and
are more complicated because they relate objects in the hierarchy that do not explic-
itly reference each other, but that have some higher-level relationships. An indirect
link is portrayed in the following example. Assume the user wants to retrieve from the
knowledge base all notes that are relevant to John Doe, a mechanic with a particular
area of expertise. To do so, the system must know how note objects relate to people0
objects. Assume also that the class of People is represented in the knowledge base
and that Mechanic is a subtype of People. John Doe is an instance of Mechanic.
In addition, Mechanics have an attribute that specifies their area of mechanical Ex-
pertise (e.g., F100 engines). The notes that are relevant to the Expertise of John
Doe are the Notes that have the same Referent as the Expertise of John Doe. In0
other words, instances of Notes are retrieved if the Referent of the Note is the same
as the Expertise of John Doe. This example describes an indirect relationship be-
tween Notes and John Doe. It is desirable for the retrieval system to be able to infer%%
that notes relevant to John Doe's Expertise are relevant to John Doe himself. It
seems unrealistic to believe that all indirect relationships can be explicitly stored in the
knowledge base. For this reason the capability to compute relationships upon request
is desirable.

7 FUTURE GOALS

The following are open areas of research that must be explored to complete a notes
environment. The understanding of different types of notes and their characteristics
is incomplete. A note epistemology is necessary to understand the role of notes in
applications so that general note types for a note environment can be realized.

The user interface for notes is an area where empirical work must be done to develop
an interface system that will allow the flexibility and generic note operations necessary
to successfully move TINT to multiple domains. Because the notes represent knowledge
that is very often at the perimeters of the domain knowledge, the notes interface needs
to be flexible enough to relate notes to all aspects of a domain knowledge base, yet
organization of the notes should be sufficient to allow a user to quickly gain access to
notes from perspectives that are not fully realized in the domain.

Graceful degradation is a fourth area of research that will be aided by the develop-
ment of notes. Paradigms will be investigated whereby notes can capture knowledge on N

17

%[%

.7 *.*7.t

%~

.% -6

the periphery of the domain of the expert system. Notes will be developed to capture . ,

the reasoning of the system and thus give the user a better understanding of what the
system is reasoning about.

Finally, there is still much work to be done in characterizing the links between
concepts, including both direct and indirect references. A language for specifying and %

reasoning about links between notes and application domains is an interesting area that
could draw on related research in semantic nets.

8 Conclusion

This paper has argued for a paradigm in which notes are more than just personal re-
minders for an individual user. Over and above that use of notes, we view them as
a medium for exchanging information between an individual user and other intelligent
agents - including both humans and expert systems. In the framework described above,
notes are represented as semistructured information objects. This means that they have
principled formal semantics governing linkages between notes, and that individual notes

have internal structure that is dependent on their classification in a type hierarchy. We V..
refer to notes zs semistructured because the specification method for their internal struc-
ture defines attributes (or, fields) for each note type, and may - or may not - require
that all values of those attributes be represented in machine-interpretable form. Thus,
systems can be built that are certain to understand some aspects of any note ttey en-
counter, without necessarily having to understand their entirety. We have identified four
major deficiencies in present-day information systems which our approach is intended
to address:

" Note systems today embody unprincipled approaches for organizing and interre-
lating notes, making it difficult for the user to manage their own note collections
as they grow in size.

" Because of this lack of organization, there is no way for a system to analyze or
interpret a user's notes, which means that they cannot help the user by organizing
or augmenting notes, nor can they benefit from useful information locked within
them.

" Intelligent systems today lack the ability to capture semistructured information
and use it in reasoning about the domain.

" Because of the lack of structure in note systems today, it is difficult to allow
sharing of notes between users.

18

- ..

The practical embodiment of our theoretical approach is TINT (The Intelligent Note
Taker), a system under development which we are testing in several disparate applica-
tions. TINT will help address these problems by aiding users in a number of areas:
explicit representation of semistructured information, graceful degradation of expert
systems, and integration of semistructured information into expert systems. Compared
to other note systems, our approach utilizes a much more formal knowledge representa-
tion language (NIKL/LOOM). This formal representation allows some unique control
strategies that enable a system to use notes in reasoning past the boundary conditions
of a system and allow a more coherent interaction between the user and a system.

Briefly, the specific features of TINT that address the four issues raised above are as
follows. TINT represents specifications of note types and their attributes as concepts in
the NIKL / LOOM knowledge representation languages. These languages have a formal
semantics, classify new concepts according to those semantics, and manage inheritance
accordingly. In TINT, notes are not directly linked to each other. Instead, they have
a Referent attribute that links them to concepts found, or created, in an application-
dependent knowledge base; connections between notes are determined from connections
between concepts in the knowledge base. This enables the system to provide some very
powerful tools for maintaining the organization of a system of notes: these range from
classification-based reasoning to ensure consistency and completeness in establishing
connections, to browsing and retrieval aids for finding and inspecting them.

The use of a formal representation language for notes also means that the internal
structure of notes is specified in a manner which assures both that the meaning of "z "
attributes is represented and that the definitions of new note types are consistent with
pre-existing types. This, in turn, means that structure has been provided to enable
the system to analyze and interpret a user's notes; the system can therefore become
involved in manipulating those notes, both by helping the user to organize them, and by .,'-.

understanding how to add notes of its own in a way that will fit into the organization and
be meaningful to the user. Because the structure of notes are defined in a language with
formal semantics in TINT, the system is in a position to reason about an individual note
based on its place in a hierarchy of note types and the semantics of its attributes. This
provides a basis for operating with partial understanding of notes, even in situations
where the specific values of some of an individual note's attributes are not machine-
interpretable, and thereby points to a resolution to the issue of enabling systems to deal
with semistructured information.

We envision versions of TINT which access large knowledge bases shared by a number - 0

of users, although we have not yet implemented this aspect of our theory. When this
comes to pass, notes associated with knowledge base concepts will become accessible to
other users, as well as to the expert systems that might be performing tasks on behalf .
of those other users. TINT is indifferent to the source of notes in its mechanisms that .- -
ensure rigor, comprehensiveness, and comprehensibility in the placement and retrieval

of notes. In a multi-user setting, we would expect it to continue to be effective in
those respects. Thus, the approach provides a mechanism for ensuring that information
entered by one user would be channeled to any other participating agents with need for ... ".

it - without requiring that these needs be anticipated by a user or application developer.
Both TINT, and the model of semistructured information objects underlying it, are

very much work-in-progress at this point in time. Both will be in a state of flux as
to their specifics for some time to come. Nevertheless, progress to date encourages us
to believe that this work represents a promising approach to providing a much more
collaborative style of human/computer interaction than is possible today.

9 Acknowledgements

We wish to thank John Granacki for his positive and persistent critiquing of this paper.

XL

References

[Conklin87 Conklin, J. 1987. Hypertext: An Introduction and Survey. In Computer,
20:17-41.

[IHalasz87] Halasz, F., Moran, T., Trigg, R. 1987. Notecards in a Nutshell. In Computer
and Human Interaction and Graphics Interface Conference, 45-52. . r

[Kaczmarek861 Kaczmarek, T., Bates, R., Robins G. 1986. Recent Developments
in NIKL. In Proceedings of the National Conference on Artificial Intelligence, P..%e %
Philadelphia, PA, August. 0

[Malone87] Malone, T., et. al. 1987. Intelligent Information-sharing Systems. In Coin-
munications of the ACM, 30:390-402.

[McGregor87] McGregor, R., Bates, R. 1987. The Loom Knowledge Representation
Language. In Proceedings of Knowledge-Based Systems Workshop. 0

[Robins86] Robins, G. 1986. The NIKL Manual.

[Tou82] Tou, F., Williams, M., Fikes, R., Henderson, D., Malone, T. 1982. RABBIT:
an Intelligent Database Assistant. In Proceedings of the National Conference on
Artificial Intelligence, 314-318.

[Williams84l Williams, M. 1984. What Makes Rabbit Run. In International Journal of
Man-Machine Studies, 21,333-352.

20

........ 20

'-V
1%

0
~? .P
-V
'I.

0
fYen87] Yen, J., Neches, R., DeBellis, M. 1988. Backbord: Beyond Retrieval by Refor-

mulation. In Proceedings of Workshop on Architectures for Intelligent Interfaces:
Elements and Prototypes, Asilomar, CA, March.

.p.

0

4

0
jI

S

r ~

* V

P

*~\If.

S

- V.
-V.

.1** -

9

0

.1~21
~ A

K
1
1v ~J

\~4~ap *' ~ 4
VI~~ . A ,~ ~*

