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ABSTRACT

Processing systems which incorporate rather narrow frequency windows are

often used for underwater sound measurements. When sound is being received

which has bounced off the rough bottom of the ocean, some of the energy being

received has returned from points on the bottom which are far from the point of

specular reflection between source and receiver. Some Doppler shift is associatedI

with these off-specular reflections when compared with the specular point. In

this way, frequency spreading occurs. Thus, some of the energy returning from 0

the bottom is lost, as it is outside the frequency window used by the receiver.

It is the goal of this thesis to produce an approximation of this loss, to test the

approximation and to understand how the loss level is affected by environmental

parameters.

A theoretical approximation for the bottom loss integral is derived for the

case of a stationary measurement point and an approaching source. Reflections 0

from the hard, rougher basement are included as well as the energy returned

by the overlaying sediment. The final result is compared with the calculations

of a computer-based complete model, and conclusions are made concerning the ]

validity of the model and areas for future research.
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Chapter 1.

THE GENERAL PROBLEM
1.1. Introduction

A source moves through the water with velocity v. at bearing /3 towards

a receiver with speed vr and bearing Or. Single frequency steady state sound

emanating from this source travels through the water column to the bottom,

where it reflects in such a way that it reaches the receiver (Figure 1, p. 9). The -

water column in general has a sound velocity profile which may make the angle

which the sound hits the receiver, the source, and the bottom all different. The

point where the sound returning from the bottom would be expected to strike if

the bottom were perfectly flat is the specular point. The receiver tunes his filter

so that the center of the filter is on the frequency of the sound returning from

the specular point. This is also the least-time path. The sound at this specular

point is, in general, Doppler shifted with respect to the sound emanating from the

source by an amount Af 0 . Note also that this specular point is not necessarily

equidistant from the source and receiver, since they are not necessarily at the 0

same depth.

The bottom consists of a layer of sediment covering a hard basement (Figure

2, p. 10). At the water/sediment interface, some of the sound energy is reflected,

and some is transmitted. The transmitted sound will propagate through the -

sediment, strike the bottom or refract, and emerge from the sediment downrange. ".

The sediment will in general have a sound velocity profile of its own. This allows ]

the sound transmitted into the sediment to refract before it hits the basement.

The sound propagating through the sediment is attenuated by the sediment by

an amount e- '1 , where -1 is an absorption coefficient and I is the total distance

travelled in the sediment.

V %
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If the sediment is not perfectly smooth, some energy will return from

reflection points different from the specular point. Sound from these points is

Doppler shifted with respect to the specular point. If the receiver has a narrow

filter, some of the energy may be Doppler shifted out of the frequency window of

this filter, and thus cannot be detected. Obviously this represents a bias in the

energy reported by the receiver system.

We can assign a probability of such a reflection occurring at a point (X, y) if

we calculate the slope the sediment must have to reflect energy to the receiver 0

at that point. Assigning a probability of such a slope occurring gives us a weight

to give to the energy returning from the off-specular point (X, y). A similar

situation exists in the basement. This probability is assumed Gaussian in slope. •

For instance, the probability of the basement having a slope in the z-z plane of

magnitude S.b is
S2 /02
4e Z61 b •

where ob is the rms slope of the basement, which is different from the rms

slope of the overlying sediment. Of course, the same formula applies to the ,

sedimentary layer with the sediment slope a. replacing the basement slope in

the above equation. Thus, these probability functions reflect the roughnesses of

the surfaces. It should be noted that in this model, we are dealing with energy

quantities, not pressure quantities. In other words, all summing is assumed .% %

incoherent.

The source is assumed omnidirectional. The receiver may have a beam S

pattern associated with it. It is assumed that the beam is perfectly centered

on the specular point. This beam pattern, when projected onto the bottom, will I.
also weight the sound energy returning from an (x,y) point by some function

B(x, y).
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We will be referring to slopes on the bottom a great deal, and it is essential

to have a clear understanding of them. Since we have assumed plane wave (the

Kirchhoff Approximation) reflection, for energy to reach the receiver from any

off-specular point, the bottom at that point must be tilted. See Figure 3, p. 11.

This tilt can be broken down into slopes in the x-z plane and slopes in the y-z

plane, termed x-slope and y-slope and denoted Sx and Sy respectivcly. They are

calculated as rise over run, or -- and 6, where h is the height of the bottom

locally. If the bottom is tilted at an angle of 15 degrees from horizontal in the

z-z plane, S,, = tan(15).

It is also important to know which angles are which. Towards that end, some 0

explanation is given:

0 , is the angle of specular reflection off the sediment.

* Ob is the angle of specular reflection off the basement.

O w is the angle of incidence into the sediment at a general (z, Y,) point.

* Or is the angle of sound in the sediment after it has been refracted by the

water/sediment interface at a general (x, y) point.

0 01 is the angle formed by the line from the source to the (X, Y) point and the

sediment surface (assumed flat).

0 02 is the angle formed by the line from the receiver to the (z, Y) point and

the sediment surface (assumed flat).

*0 1 is the azimuthal angle from the source to the (x, y) point
i .-.KI

02 is the azimuthal angle from the receiver to the (X, Y) point ':"

1.2. The System Loss Integral

Having now seen that only some of the energy reflected at the interface is

picked up by the receiver, we can now formulate the total system loss associated

with frequency limiting and Doppler shift. It is the ratio of energy picked up
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by the receiver to the total energy which reaches the receiver location. Starting

with the latter, if we integrate the energy returning to the receiver point from

a differential area dzdy over the whole ocean floor, we will get the total energy

returned to the receiver point. In mathematical terms, this can be written00
Et =f Wdzdy,

where W is the amount of energy reflected from the (X, y) spot taking into account

probabilities, reflection, transmission and reflection, absorption, and whatever S

else is necessary.

The energy picked up by the receiver is the sum over the whole bottom

of the energy which is not rejected by the filter because of its Doppler shift. o

Furthermore, the energy is weighted by the beam pattern of the receiving

hydrophone. In mathematical form

Ep = B .Wdxdy,

where B is the projection of the beam pattern onto the bottom, and the integral

is no longer over infinity but limited by frequency. The total system loss is thus

f f B. Wdzdy

f fo 'Wdxdy

For the purposes of this development, it will be convenient to split this integral

up into two parts

ff ! B.Wdzdy ffwB.Wddy (1)

f f ' B Wdxdy f f 'Wddy1
Now the term on the right is strictly beam pattern dependent and the term on

the left is associated with the frequency limiting. It is this term which is the

topic of this thesis.

For clarity, It should be pointed out that here we are estimating system

loss, not bottom loss. The two are very different. System loss is a bias in the
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energy measured by a system due to some system limitations. Bottom loss is the

difference between the energy incident on the bottom and the energy returned

by the bottom.

1.3. The Assumptions

If one were to go ahead and plug exact mathematical forms for all the

quantities previously discussed into (1), the resulting integrals would be very

complex, and probably solvable in series form only, if at all. Looking ahead, the

weighting function W which represents the energy returning from an (x, y) spot

is going to involve at least a Gaussian probability multiplied by some dissipation

function D(x, y). The difficulties in integrating Gaussians to finite limits are

well known, and the methods used are often involved and lack simple closed

form solutions. In an attempt to keep the math manageable, I intend to solve

a very specific, approximate problem in a closed form rather than attempt to

solve the general, exact problem approximately using other methods. It is hoped

that the result will give a good approximation to the real loss without needing

a computer. However, it is noted here that these other methods do exist and

further research into the possibilities they offer should be done in order to get a

better understanding of the processes involved in this complex problem.

The methods used here are basically an extension of the methods of Zabal

and Brilll1,21 to two layers. Most of the assumptions made by them still apply

here. They are: I
* No diffraction (wavelength much smaller than bottom variations) %

* Acoustic path are not affected by height variations

* Bottom has isotropic and homogenous slope statistics

• No shadowing

* Weighting is Gaussian in slope VN,

S. m

K .&
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* Incoherent summing of energy reflected off the surface

* Only one bounce is important (no multiple bounces in the sediment)

* Omnidirectional receiver

Note the last restriction. We are going to restrict the scope of this study to

the case of a receiver with a uniform or omnidirectional beam. That is to say

that B in equation (1) is equal to unity. Thus, the right hand side of equation

(1), the one associated with losses due to beam pattern, has a value of unity, and

the terms in the part associated with frequency loss are greatly simplified. Thus

the total loss equation becomes

L= = f fo fWdxdy (2) •

Now we invoke a great number of simplifying assumptions which will make our

integral manageable. In the end, we will test some of these assumptions for

validity and see the effects of violating some others.

In order to get a grasp on the types of assumptions to make, let's now

formulate our weighting function W. The slope probabilities are used to weight

the energy returning from the (x, y) spot. On the sediment, we only need to

account for the (energy) reflection coefficient and the probability of the slopes

associated with an (x, y) point. Thus for the sediment,

W e = R (x, y) . - s 2. 82

For the basement, we need to take into account the transmission into the

sediment, the dissipation through the sediment, the reflection off the basement, ,

and the transmission back into the water as well as the probability of the slopes

existing. Thus, the total energy through the sediment is
(2 S2 )l2

Wb Rb( , Y). (1- R.(x D(Z!)e 2

bo %N-
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The total weighting function W is the sum of W, and Wb.

First, we assume that the water has an isovelocity profile, as will the sediment. -

The sediment has a different sound velocity from the water above it. As will be

seen later, an isovelocity profile allows us to use straight line geometry in our

calculations of angles and slopes. Second, we will assume that the source and

receiver are at the same depth, which is probably not too restrictive if the water

is deep and the source and receiver are near the surface. Now we can say the

horizontal range travelled over the bottom from the source to the specular point

is
R h

R tan(.)

We will assume that the reflection coefficients, both off the sediment and

off the basement, are constant over the entire bottom. The (energy) reflection

coefficient Rb off the basement is chosen to be 0.25, as is used in the full model *V "

we will compare with later. It represents the reflection off a granite basement.

The reflection off the sediment R, will be given by the reflection at the specular

point as calculated using classical plane wave theory (Figure 2, p. 10).

R(x,y) = \pscssin(Ou) - pwcw sin(r) '2

pacs sin(Ow) + pwc. sin(6r.) )

where Ow is the angle of incidence into the sediment at the (x, y) point and is in

this case the specular angle 0,. 0, is the angle of the sound in the sediment after -

it has refracted. If we are below a critical angle, then 0r at the specular point

does not exist. Note that by assuming constant sound speed in the sediment,

no refraction can take place in the sediment. All energy that penetrates the

water/sediment interface hits the basement. In the real ocean, this is not true:

if the angle of incidence is low enough, energy that penetrates into the sediment

will refract before it hits the basement. Note also that if we are below a critical

angle (ie Ss. cos(G ) _> 1) then W is zero.
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Likewise, we will assume that the total dissipation of sound as it travels

through the sediment is constant over the whole bottom. This is the same as

assuming that the total path length in the sediment is constant over the whole

bottom. We will again use the value at the specular spot as the value everywhere,

D = 10- 2c "in(Gb)

where eb is the specular angle for the penetrating path. The total length traveled

in the sediment is represented by 2s sin(Ob) It is important to note that eb is not

just arccos(-' cos(04)) because of the extra range travelled in the sediment. It

must be calculated independently, and the calculation is not trivial. We will see

this later. 0

All of these assumptions are later tested using a full model that employs

numerical integration of equation 2.

""C.'.
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Chapter 2

THE DERIVATIONS 0

2.1. Introduction

Now we will re-state the weighting function using the assumptions just made.
(S .2, +S2, Ia2 - (S2 +S2)la2 .

e-+ (1 +-) 2  e Rb + b b)•
W = R, +(1-R .R, . (3)

where now RS,Rb, and D are not functions of (x, y). In order to have any hope

of integrating this function, we need to write the function strictly in terms of

(z, y). The slopes Sz 8 ,,b and Sy,,yb are the only quantities remaining that change

with the (x, y) point. We are fortunate that these quantities end up being well

approximated by simple linear functions of z and y. If this were not true, the

problem would be intractable. JI

2.2. The Sediment Slopes 0

It is shown in Appendix A that the slope in the x-z plane necessar for

specular reflection on the bottom is given by

s =, cos(Oi) cos(41 ) - coS(0 2) cos(0 2) (
=~. sin(01) + sin(02) ' (4)

where the angles used are illustrated in Figure 4 on p. 24. Also from Appendix

A, the slope of the bottom in the y-z plane is given by
'.7

S = cos(e1) sin(401) + cos(92) sin(-2 ) (5)
sin(0,) + sin(02)

Since straight line propagation is assumed, we can use side ratio relations to

replace the trigonometric functions. Examination of Figure 4 (p. 24) shows that

cos(01) = sin(e 1)- h

cos(02) = , sin(02) = (6) I

N.,
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cos(0 1 ) = sin(c 1 ) =

COS(02) =-- sin(402) = Y

Starting with Sy, plugging equation (6) into equation (5), some simple algebra

will yield the equation. -

Sy = B..Y, Bs= , (7) V

which is as simple an equation as one could hope for, a simple multiplier of

y. Unfortunately, we are not so lucky with S.. When we plug equation (6) into

(4), we end up with

R (b- a) z 8=h (b +a.) h ' ():.,

where

a = (R + X)2 + h2 + y2 ,

b = V(R -X) 2 + h2 + y2 . %

We will now assume the the slope in the x-z plane does not depend on y.

Setting y = 0 in (8) still leaves us with a difficult equation. If we assume that

z2 < R2 + h 2 , we can approximate the equation (8) by a linear term

Sz -, A, • x...

where A, will be the derivative of equation (8) with respect to x evaluated at

the point z = 0. Carrying out that derivative (Appendix B), As is found to be
h

As _ (9)
h2 + R2  9

So now we can use two simple linear terms to get the slopes in the sediment in

our weighting function

Sz As • x, Sy= B,. y. (10)

I



14

2.3. The Slopes of the Basement

When calculating the slopes in the basement, we must take into account the

refraction that will in general occur at the water/sediment interface (Figure 2,

p. 10). Remember that we have assumed that the velocity in the sediment is

constant, so the angle at which the sound hits the basement is the same as the

angle that it has after it refracts the water/sediment interface. Summing up the

ranges in the water and in the sediment, we get

tan(=w) tan(O r'

where Ow is the angle into the sediment and 0r is the angle into the basement

and the (x, i) point. Converting tan to cos (in order to use Snell's Law)

tan(Ow) = 1 - cos(0 )2co (o .)

Similarly for tan(Or). Using Snell's law, S

coe CS cos(OW)
cos(O,)= "co() , .

using the third equation to substitute in the second, and the second into the

first, you would see that the resulting equation for 0r in terms of x and y would

be difficult. It is in fact transcendental, as is shown in Appendix C. Instead, we eh

will take a much simpler, approximate, approach. We will replace the height of Z

the source and receiver h by an apparent height h. for calculations of slopes on

the basement over the whole basement. In other words, as far as an observer on

the basement can tell, the source (and receiver) are at a height h. different from

h due to refraction. We can then carry out the same sort of analysis as for the

sediment slopes by just replacing h by ha in equations (7),(8), and (10). Thus

the slope in the y-z plane on the basement is given by

Sy h0  
(1h.a
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It now remains to calculate h.. We will end up with the same transcendental '

equation as before. Appendix C gives an approximate apparent height formula

which we will use in our calculations. It is good whenever the ratio of sediment

sound speed to water sound speed at the water/sediment interface is not too far

from unity, which is often the case.

The slope in the x-z plane is given by

SXb = R (b -a) + x
h,(b+a)

In the real ocean, the roughness of the basement is much greater than on the

sediment. This is because the basement is made up of hard rock instead of

the soft mud or clay deposited on top of it. We cannot make the small slopes

approximation as we did before to get the x-z slopes in a workable form. Using

the tangent slope approximation, we would end up with equation (10) with h

replaced by ha. ;7

Szb= Ab• z, Ab h" (12)

Figure 5 on page 25 plots Sxb .vs. x using equation (12) and the "true"

equation, equation (8) with h = h., y = 0. For convenience, the slopes have

been converted to angle equivalents in degrees.

For Sb less than 6 degrees, we can see that the line from equation (12) and

the curve from equation (8) agree quite closely. On the sediment, RMS slopes are

usually between 1 and 6 degrees. Since the point where the slope equals the RMS

slope of the surface corresponds to the 3 dB down point of the gaussian function,

the 3 dB points of the probability function on the sediment are well matched,

and the Gaussian given by e-(SS/O8) 2 /u8 and e-(As'x/oa) 2 /Ors fall off at near the

same point. Unfortunately, RMS slopes in the basement are sometimes as high

4,, .-.,
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as 22 degrees [3]. We can see that the point where the line Ab 'x crosses 0.36 (tan

(22))is way off the plot of Figure 5, whereas equation (8) crosses 0.36 at about

14000 yards. As a result, the weighting function e-(Abz) 2 /O'b falls off much too

far away from the specular point compared with e-(Sxb/ab)lab. The frequency

loss will be much too high, so this is not an acceptable approximation. We will

still be using a line Szb = Ab • x. but instead of using the derivative method, we

will use a two point matching technique. We will make the S, approximation

match at the specular point (where it is equal to zero) and directly underneath

the source. This point was not chosen arbitrarily. Examination of the full model

showed that the probability function usually dies off somewhere near the source.

Further, the equations are greatly simplified at this point. Thus, by matching

the point where the probability vanishes, we insure that the probability function

covers about the right sized area on the bottom. The slope function (8) evaluated

at the point x = R comes out
R V/4-R 2 + h.2 - h. R ."

Szb lx=R= ha + R Fh h {  (13) "
%/R- a +

We will say that

- Ab .x, Ab .(14)

2.4. The Weighting Function

Now looking at our integral as it stands, we see

Jf (A2 2+B2)/a2 d2.2 2 2 2(5

Ra +Bs_ -- + R (1 - R,) 2 D b a )" dxdy. (15)--

Taking the sediment integral first, we see that the resulting integrand is a

perfect Gaussian. The integral is therefore an error function. Assuming that 0

the limits in f delineate a box in the x-y plane, we could state the final solution

-~~~~V I~~~AP~p I
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in terms of error functions. However, error functions are not implemented on

most calculators, or even in many computers. Furthermore, the limits may not

be simple numbers, but instead describe a curve on the z-y plane. It is thus

desirable to try to get the weighting functions into a form we can integrate to

obtain a closed form solution. In order to get this integrand into a form we can

integrate, approximate the function

A2 :2  
S

where the RMS slope has been absorbed into As, so that now

h 1
A 8 =s = • -,

by a cosine function

o; elsewhere

See Figure 6 on page 26. The two functions have a unity value at the point 0

z = O,y = 0. They have the same behavior away from the specular. Because the

cosine "bulges" more than the exponential, they can be matched at one other.'

point, which for simplicity will be picked as the point where they equal I/e.

Setting the left hand side of (16) equal to 1/e, we find z = 1/As. Therefore

cos(Ai/As) = 1/e, 'I
or

A, A8* arccos(1/e). (17)

Doing the same thing for the term involving y, we get 9

A2 - Bs. arccos(I/e), (18)

where

1
U8.h rs /'" U

0#,

* .,
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So we can now approximate our Gaussian weighting function on the sediment

CA2,,2-B 
2 2

°2

by the integrable function

AIA 2 cos(Aix) cos(A 2 y). (19)

Note that the approximate weighting function is defined to have a value 0 for

or I y " Thus, the new weighting function has values only within

a box on the (z, y) plane. This must be remembered later when we integrate so

that the limits do not take the weighting function outside the defined area. The

variables A, and A 2 are necessary to normalize the new weighting function, and

take the place of a. in the denominator of equation (15).

An exactly analogous thing is done for the basement functions with the result

- 2 - A 3 A 4 cos(A3X) cos(A 4y), (20)

where

A xb I=RA RoRb

1Bb -" - -

haab

A3 = Abarccos(1/e),

A 4 = Bbarccos(1/e). .

If we now define the integral of (19) over both z and y

fL L cos(AIz)cos(A 2y)dzdy
1 3 L

as a function f(LI, L 2 , L 3 , L 4 ) for the sediment and g(M 1 , M 2 , M 3 , M 4 ) for the -VI

basement, then the loss equation becomes.

= Rs f(L 1,L2 ,L3 ,L 4 ) ++Rb(1 -_Rs) 2 Dg(Mi,M 2 ,M 3 ,M 4) (21)
Rsf(-r , 2 r  -r) + Rb(1 R.) 2Dg(- ' 2" I e2X , 2A2' , 2 7 2W 2X4 2Tr4' --A ;Fr3)
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where At

f(Li,L 2 ,L 3 ,L4) = (sin(AlL 2) -sin(AILI)) (sin(A 2 L4 ) -(sin(A 2L 3 )), (22)

and

g(M,M,M,M 4) = (sin(A3 M2 ) - sin(AsMi)) (sin(A4 M 4 ) - (sin(A4 M3 )).

(23)

These integrals represent the total volume underneath the approximate weighting

function surface limited to a box in the (z, y) plane. The integral in the 0

denominator is over all of the bottom, so it is limited by the limits imposed on the

approximate weighting function. Because of the normalizaticn, the denominator

of (21) has a value of 0

Rs + RbD(1 - Rs) 2 .

The term in the numerator is the frequency limited part. How the frequency

limits present themselves is considered in the next chapter.

It is convenient to discuss the effects of the approximate weighting function.

Looking at Figure 6 on page 26, we note that the cosine has no tails, so that the

weighting function equals zero everywhere outside a box on the z-y plane. All •

of the volume under the surface described by the weighting function is localized

around the specular point. This is not true for the Gaussian. Consequently,

the Gaussian weighting function will always predict some small loss, whereas

the cosine will predict exactly zero loss if the frequency limits encompass the

whole box. However, in these cases, the losses predicted are less than 1dB and

are negligible for this work. Also, the cosine is "fatter". For small frequency 0

windows, the fraction of volume within the frequency window will be larger for

the cosine than for the exponential. Consequently, the approximate weighting U
function will tend to underestimate the losses for small frequency windows. This S

ends up being a good tendency, as will be explained later.

p .%I
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2.5. The Limits rSS

All that remains to get a number from equation (21) is to put limits on the

area to be integrated in the numerator, ie to define L, - L4 in terms of x and

y given f limits. This requires a knowledge of how the frequency is shifted over

the bottom. It can be shown [41 that the Doppler shift at the receiver referenced

to the specular point is

Af = V, cos(f3. - 0k) cos(0 ) + yr cos(13r - 02) cos(0 2 ) - Afo,

where v, and vr are the source and receiver velocities, fl, and , are their bearings

away from the specular direction, and Afo is the Doppler shift at the specular

point referenced to the source.

Af0 =V COS(PS) + VrCOS(3r)) cos(€s) (24)
C

It should be noted that we are dealing with fractional frequency shifts of the

form Y here.

Using the same identities for the trigonometric functions as were used on the

slope calculations, we get •

's vCOS(#.) R + x v. vsin(3.) y r cos( (3r) R - x vr sin(3r) Y
Af--vco(/', R+ b bsn/'~ A fo.

c a c a e b c b ,

If we now take the case of a stationary receiver and the source approaching •

directly (i38 = 0, Vr = 0) then the above equation simplifies to

fvjR + x fts R+z
c, a C, /(R + X) + y2 + h2

If we are given the frequency limitation of the processor used, we can set the

absolute Af to a constant in the above equation, and solve for a curve on

the (x,y) plane. Since the receiver is assumed to have a symmetric band of

frequencies that it will detect, we can do the same for the negative Doppler

Prf
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shift, and get a second curve. It is the area between these two curves that the

receiver picks up sound from. All other points on tb p bottom reflect sound that is S

Doppler shifted outside the processor's frequency band. Finding and plotting the

x-y curve resulting from the equation above, we get the following x-y relation,

which is then plotted for a frequency window of ±0.0001 (relative Doppler shift)

on Figure 7 (p. 27).

(R + x) 2 (l - P) -yl - (Ph)2 , P = c(&f+Afo)

As you can see in Figure 7, and as is apparent from the equation, the area

to be integrated over is the intersection of two hyperbolas. We want to integrate

over the bottom when the areas are bounded by straight lines. So we will again

make an approximation that the area detected over the bottom is a box.

Setting z = 0 in equation (25) we get

y = ±(R/P) 2 -R2 - h2 , (26)

which we will use as the y limits of our box. Setting y = 0 we get
x = R -- V p 2 + y 2 + h 2

S=-R± N/+f- (27) "

The part pertaining to the negative sign on the square root in the x term

represents the part of the hyperbola mirror imaged to the other side of the •

source, and is a leftover of the hyperbola equation. So only the positive sign . 14

on the square root is used in determining the limits on x. Two limits on x are

obtained, one corresponding to each sign on Af, which is buried in P. The limits S
~.1

LI- L 4 and M, - M4 are computed from these relations and given in Sect. 2.6.

Note that the box is always going to be smaller than the area between the

two hyperbolas. Hence, these limits will tend to overestimate the system loss.

Hopefully, this tendency of the limits to overestimate the loss will offset the

VS
.- ~r.~rr w.y r* *~.rv d

* * z*~,. ~ . .~ .
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projected tendency of the approximate weighting function to underestimate the a
loss. 0

Note that the frequency limited area on the bottom is symmetric about the z-

axis (the source receiver line). We can reduce the math somewhat by calculating
the partial energy for positive y/ only, and multiplying by two. Thus, f and g

lose one argument apiece.

f(LI,L 2, L3 ) = 2 L2 f cos(Aix) cos(A 2y)dxdy,

= 2sin(A2 L3)(sin(AiL 2) - sin(AiLi)) (28),

and similarly

g(Mi, M 2 , M) = 2 sin(A 4M 3 ) (sin(A3 M 2) - sin(A3M 1)). (29)

In this study, for simplicity, we have defined the frequency restricted area as

being approximately a box. However, these weighting functions can be integrated 0

in a closed form for areas generated by arbitrary lines. One can see that by

putting together line segments, very complex areas of the bottom could possibly

be delineated, and much closer approximations to the true area be made. .

2.6. The Final Solution

Gathering all of the above math into one statement, equation 30, the

frequency loss of a system with a window of 2Af is approximated by

s Rf(L 1,L 2 ,L 3 ) + Rb(1 - Rs) 2Dg(MI,M 2 ,M 3 ) U
R. + RbD(1 - Rs) 2  (

where

f(LI,L 2 ,L 3) = 2sin(A2 L 3)(sin(AIL 2 ) - sin(A 1 L1)),

g(Mi, M 2 ,M 3) = 2sin(A4Ms) (sin(A3M 2) - sin(AMi)),

A,=~~ol A 3 =~bi-a~a(/)i ~~~A 9 -- ~(h2+R2) ,Roa b  , .

-A'

;~. v
-, -,, ,-I "! , , - ,,"- ',"" " " ' " '" , ' '€ " ii le~ "e" _,€' e"'!'-' i',- i' 
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R/4R 2 + h 2-ha R

Sxb Ix=RE- aV4R+2 + ha

h

Ta-n(9)' h . P h+s,

A2 =arccos(1/e) A 4 = arccos(1/e)

has ' hab '

Re (pace sin(Os) pwCw sin(Ob)
Lp, + o sin(O.) + p)c,. sin() -

Li = max ,-R+ (cos(O) + CA f /V,) 2  ,(2A 1

L2 = Min ( -R+ (cos() -)

/ I 
%V -cs( 

. --. f V

3= Min - )2 + R 2 + h2)
2A 2' C.,Af/VS - cos(9.)

M, =max A3 + V(COSOb)+ C.Af /V) 2

M =min ( ,'-R + C/(,Aeb /V

="'(2A3 '- + V (COS(Ob) -c qfv)2

RS

= m ~ /(R (~)2 + R2 + h

Remember that the approximate weighting functions are zero outside the first

hump of the cosine, so we must be careful not to integrate past that point. That

is the purpose of the min's and max's in the above equations. Also, if the specular

angle is below the critical angle, all the terms involved with g (ie. the apparent

height, M1-M6) are not needed and need not be computed.

Granted, the formulas are long and involved, but they represent a closed form %

approximation that can be done on any hand calculator once the environmental *1I*_

factors are set.

4C'
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Chapter 3

THE TESTING

3.1. Introduction

Since this derivation is meant to reasonably accurately model a physical

problem, it is necessary to test the solution. In this case we will be testing

against a very involved, long, time consuming numerical model.

Equation 30 was coded into a computer along with the full model. One change 0

was made. The apparent height was calculated exactly using the computers

solution for the specular basement path. This was done to keep errors involved -

with the apparent height from affecting the closed form solution too badly in the ,

some of the later tests. More study should go into the calculation of the apparent

height. This is discussed later.

3.2. The Full Model

Now we will test all of the assumptions and formulas we have derived. To do

this, we will compare the results to those of a full bottom scattering model [4].

This model uses ray tracing techniques to set up tables of range .vs. angle into A.

the sediment for both the water and the sediment. It then iterates over a grid on "'N

the bottom, finding the angle into the sediment at each point by searching the ray

tables for the correct range. Having done this, the program assigns a Gaussian

probability to the point, calculates the reflection coefficient at the point using

the actual angle into the sediment at that point, the absorption at the point (if .J.

it is doing the sediment penetrating path) and the Doppler shift at the point. It

keeps a running sum of the energy coming off the bottom, and also a running

sum of the energy returning for which the Doppler shift is witb;n the range given.
This model assumes a general SVP in the water column, an empirical SVP in

the sediment, and will also handle a beam pattern associated with the receiver.
,%zl
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For these tests, the beam pattern was set equal to unity for all (x, y).

The model takes as inputs sediment thickness, density, and sound speed, 0

a water SVP, source and receiver depths, and source and receiver speeds and

bearings. It assumes a rather complicated empirical formula for the SVP in

the sediment which has two parameters associated with it which determine

the steepness of the gradient right under the water/sediment interface and the

curvature of the SVP throughout the sediment.

3.3. The Assumptions 0

First we will test the assumptions we initially made regarding the reflection

coefficient and the absorption in the sediment being constant over the whole

bottom. A short summary of the nature of the reflection curves is in order here.

Harking back to classical wave theory, the reflection as a function of angle of

incidence is given by

2SSPsCs sin(O.) - pwc. sin(O))
R( (, y) = Rpacs sin(Gw) + pUc. sin(Or)I

Three cases appear. When the speed of sound in the sediment is greater than .,

that in the water, there exists a critical angle, below which all energy is reflected •

back into the water, and no energy enters the sediment. In the ocean, these

critical angles generally occur between 0 and 20 degrees. When c. < c. and

p wc > pses or cw > cs and pwcw < psCs an angle of intromission occurs where S

there is total transmission. Generally speaking, plots of reflection .s. angle

take on the three shapes in Figure 8, which is found on page 38. In the real

ocean, case number three never occurs because of the nature of ocean sediments: S

they are always denser than the water above them.As can be seen, the reflection

coefficient appears to stay rather constant for angles less than 10 degrees and

angles greater than 40 degrees. Under 10 degrees, the reflection coefficient is

low for cases of intromission angle and high for cases of critical angles. Since

•!
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it is the change of the angle of incidence at off specular points that leads to

changes in reflection coefficient over the bottom, we expect the greatest variation

of reflection coefficient over the bottom to occur when the specular angle falls

on an area of the reflection curve where there is a lot of change, for instance if

the specular angle falls near a critical angle. On the other hand, if the specular

angle is up near sixty degrees, then we would expect the reflection coefficient to

vary little over the bottom. .

In fact this is the case. A plot of reflection coefficient R, •vs. x,y position

was made (Figure 9, p. 39) for cases with critical angles. We can see that the

reflection coefficient does not change noticeably except in the one case where the

critical angle is close to the specular angle. In this case, there is a great change 0

of reflection coefficient over the bottom. However, in the end, this violation of

our assumption does not hurt us as the frequency losses at these low angles are

so small that they can be assumed to be zero.

Similar plots were made of total dissipation D in the sediment .vs. x,y -."

position (Figure 10, p. 40). While there is some variation, about 10 percent,

we do not believe that it is significant because, by using the absorption at the

specular, the variation gets worse as we get further away from the specular point.

But far from the specular point, the weighting function is falling off rapidly, so

the errors in the absorption approximation are reduced from being weighted less. ]

3.4. The Slopes

Next the full formulas for the slopes as a function of z and y were checked 0

(equations (7) and (8)). This was done in both the sediment and the basement to

allow an evaluation of our apparent height approximation. In Figure 11 on page

41, the x-z slope is plotted over x and y. The top surface is the models' iterative S

solution, and the bottom is equation 8. The x and y scales are chosen to get

~ ~ % - % ~ Is. . 7
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full coverage by the weighting function, and the exact scales are not important

except that they are the same for the two plots. It is obvious in Figure 11, which

applies to the sediment, that equation 8 is giving an accurate x-slope calculation.

Figure 12 on page 42 shows the same calculation for the basement, but only the

positive x axis is plotted. In all these plots, y was set equal to zero in the

calculated slope but not in the full model slope in order to get a grasp on how

badly the assumption that S_ is independent of y hurts. Because of the increased

roughness of the basement, the plot goes out much further in x and y, and the

x slope shows some dependence on y in these plots. However, equation 8 with

h replaced by h. is still very accurate. This instills confidence in the use of the

apparent height to account for refraction in the sediment.

The equation for the y slope was exact, and no testing had to be done for

it. During debugging, some plots of y slope were made, and the calculation is

correct. 

As shown in Figure 5 (25), the linear approximation for z-slope on the

sediment, equation 12 is a good one due to the small rms roughness of the

sediment. No further testing of the linear approximation of Sx was done.

In the basement, the linear approximation to the x-slope is not as good, as is

illustrated in Figure 13 (p. 43). For simplicity, the slope is shown only for y = 0, U
on the source receiver line. The error is not large and, as will be seen next, the

weighting functions have the right shape.

3.5. The Weighting Function a

Having now verified our slope approximations, we will see about our cosine

weighting function. The approximate weighting function, equation (19), over the I
bottom for the sediment gives the surface of Figure 14 (p. 44), and the real

weighting function is also given. We can see that, though obviously the two

-. . * n. - - - , i' n. "
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surfaces are not identical, they do have the same shapes, and most importantly,

they fall off at the same point. Similar surfaces were plotted for other specular ,

angles, and the agreement was as good.

Exactly the same surfaces were examined for the basement. These surfaces

were very similar to those in Figure 14. Again, though the cosine weighting

functions were obviously different from the Gaussian functions, the cosine

functions had a similar shape and they fell off at approximately the right point.

As a final check of the kernel of the integral, the full model was run for each

environment and two loss numbers were generated. The results are tabulated

and plotted in Figure 15 on page 45. The "Full Model" loss is the loss the

full model calculates. The "Approximate" loss is the loss calculated using the

cosine weighting functions, the constant reflection coefficient, and the constant

absorption coefficient. However, the frequency limits are not those given by

equations 26 and 27 but were selected in the exact same manner as the full model.

In other words, the "Approximate" loss is exactly the same as the "Real" loss

except that the new quantities for the weighting function W have been inserted.

The top curves are for a thin sediment (40 yards), while the bottom curves are for

a thicker sediment (800 yards). We can see good agreement everywhere, which ell m

instills confidence in the approximations we have tested so far. It should be noted

that these losses were calculated for a Af of 0.0001, which is very low. This was

done so that larger losses would be obtained, and errors thus magnified. In

practice, frequency windows smaller than 0.0005 are rare, since that corresponds

to a filter Q of 2000. 0

3.6. The Limits

Having now gained some confidence in the weighting function to be used, we

will check the limits, and thus the final answer.
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Contour plots were made showing the areas both inside the hyperbolas and

inside the boxes of equations 26 and 27. They were very similar in appearancc

to Figure 7 (p. 27). As is to be expected, the area inside the box is always

smaller than the area between the hyperbolas, which would manifest itself as an

over-approximation of the loss. However, the approximate weighting functions

tend to under-estimate the loss, so some of the errors tend to cancel themselves

out.

3.7. Regions of Accuracy

Looking at Figure 16 on page 46, we see the losses calculated from equation

30. compared to those of the full model. Here, a height of 5000 yards and a Af

of 0.0001 were used. A plot of the errors is also given in Figure 16. You can see

that the numbers generated by equation 30 are generally within 1.5 dB, which is

good for such an approximate solution. It was apparent from other similar runs

that the approximate, closed form solution is doing a good job of estimating the

frequency loss in all types of environments where the assumptions made are not

violated (isovelocity profiles, same source and receiver depths, etc).

An attempt to devine an understanding of the sources of the the errors in

figure 16 will now be made. For low angles, the errors inherent in the approximate

weighting functions appear to dominate. At these low angles, the weighting N

functions on the bottom become very elongated in the x direction, almost like a

tunnel. We can some effect of this in figure 14 (p. 44), which was made for a .. "

specular angle of 400. Also, looking at equation 9, we cn see that A, is becoming 0

very mall, as at these low specular angles, the range R is very large. Scince the

approximate weighting function goes as cos(Aix) and A, is proportional to A.,

which is small, x must get very large before the weighting function drops off. S

Also, most of the frequency limiting goes on in the x direction. That is, the
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tunnel is truncated in the lengthwise direction, but not in the width direction.

The aproximate weighting function does not fall off in the 7 direction as fast

as the gaussian weighting function, so the loss is under-estimated. As the angle

increases, the weighting functions begin to match a little better, and now the

errors made in the frequency approximations begin to dominate the errors. The

errors increase at higher angles mostly because the total loss increases. As a

fraction of the total loss, the errors stay fairly constant.

Now, one by one we will violate the assumptions made in the beginning of

the derivations, to check what sort of errors they introduce when compared to

real world situations.

First, we will introduce a water sound velocity profile into the full model.

A reasonable one was chosen (one which happens to be 5000 yards deep to

correspond to the runs we made before) , and the points and plot of the profile

are shown in Figure 17 on page 47. When run with a frequency window of 0.0001

and no gradient in the sediment, as before, and the source and receiver both at

67 yards, we get the values and errors in Figure 18 (p. 48). The introduction

of the SVP doesn't appear to have adversely affected the errors, and a marked 5

similarity between Figure 16 and 18 is noted. This is because instead of using

the real range between source and receiver, the closed form solution generates H
an apparent range, similar to the apparent height. If you will remember, the S

range was calculated as h/ tan(O.). Now with a SVP introduced, this is not the

true range, but a range extrapolated from the specular angle, as shown in Figure I
19 (p. 49). This range is used in calculating the slopes and in the limits, and

compensates for the the refraction in the water in much the same way that the-"zF..

apparent height compensates for the refraction into the sediment. Thus, for the

most part, the weighting function is still as correct as before. So the introduction

of a water SVP does not affect the accuracy of the approximation too badly.
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For the same reason the introduction of a velocity gradient into the sediment

does not hurt us too badly, as long as the sound velocity at the bottom of the U" v

sedimentary layer is used to calculate the apparent height, which will take into

account refraction in the sediment, and the reflection coefficient, which will keep

the sound from refracting before it hits the basement. If the sound refracts before

it hits the basement, then the reflection coefficient will be one if the sound speed

at the bottom of the sediment is used to calculate the reflection coefficient. In

other words, if the sound refracts before it hits the basement at the specular

point, it will appear to the basement as if the specular angle is below the critical

angle. An illustration of the apparent range is given in Figure 19 on page 49.

The errors resulting from adding the sediment SVP are shown in Figure 20 on

page 50. Although the full model uses a complicated function of sound velocity

with depth, for the high initial gradients chosen for this test, the gradient in

the sediment is essentially constant. Again, the effect was not detrimental when -

compared to the already existing errors. Note also that, because the SVP in the

sediment is always positive, the travel path in the sediment will be longer, which

should decrease the loss a bit and perhaps increase the accuracy of the closed ]

form solution by decreasing the importance of the basement path.

Also note how the errors are tending more towards over-estimation, even for

the lower specular angles. This is due to critical angle limiting, which the closed

form solution ignores. At the specular point, the angle into the sediment is above
the critical angle. However, as we move out in z towards the receiver, there is"I

a point where the sound entering the sediment is below the critical angle, and

no reflection off the rougher basement can occur. Thus, no energy is returned

from these far off-specular points in the real case. However, we have ignored the

variation in the reflection coefficient in the derivation of the closed form solution. 0

Thus, as far as the simplified equation can tell, there is energy returning from
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those far off-specular points. Thus too high a loss is reported.

Introduction of a sediment sound speed gradient creates another problem: .,

the calculation of the apparent height can no longer be done with the simple

equation of Appendix C because the sound speed ratio between the water at the

water/sediment interface and the bottom of the sediment will be significantly
, .

different than one now. That is why the "real" apparent height generated by the

full model is used in this study. It was necessary to separate errors caused by

the weighting functions and estimated limits and the errors caused simply by the

apparent height being wrong. The errors in apparent height can make very large

errors in the estimated loss. So while the equations in Appendix C are good for

thin sediments where the highest losses occur, they are not used here. However,

the full model is not needed to get a good estimation for the apparent height. A

simple program to solve the transcendental equation will do the job sufficiently

accurately. It should be noted that the errors given in Figure 20 also include the 5

water SVP as well.

We will now offset the source and receiver depths. We expected this to have

the worst effect of the three assumption violations. Shifting the relative positions

of the source and receiver skews the weighting function on the bottom from front 4
to back, especially in shallow water. The approximate weighting functions will no

longer resemble the true weighting functions by any stretch of the imagination.

I expected this to severely hurt the closed form approximation,...

The depth of the receiver was used as h in the equations, as it was felt that

the receiver depth was more likely to be known. Figure 21 on page 22 shows the

errors and values obtained by running with the same water and sediment SVP as

table 4, but now the source is 33 yards deep and the receiver at 200 yards. We

see some increase in the errors, but still they remain below 2 dB. We believe that

the reason is because a change of 167 yards between source and receiver depth

SP,=



is insignificant in 5000 yards of water. 
37

Lastly, as a worse case test, a shallow water profile (1800 yards as opposed to ."

5000 yards) with a strong surface duct, the receiver and source displaced across

the duct (at 6 and 100 yards respectively) and a steep gradient in the sediment

was run and compared to this simple model. Again the receiver depth was used as

h, and the sound velocity at the Lottom was used as c,,, and the sound velocity at

the bottom of the sediment used as c,. Errors do occur, as shown in Figure 22 (p.

52), but still within 2 dB. For such a grossly overstretched model, the agreement

is quite acceptable, although not entirely unexpected. We have seen that most

of the approximations are taken care of by the closed form derivation. Only the

lack of error caused by the shifting of the source and receiver is unexplained.

I currently believe that, at low angles, the weighting function is so tunnel like

that skewing it front to back makes little difference, and that at high angles,

the frequency limiting is taking such a small part of the weighting funLion that

again the skewing is not seen. .

- ;-,%

N .. N



r~r '~ ~y~ ~ u~r ~i~ ~~ ~j~ (

38

.7m

CL 0 0
A ~

C.

L) o
-- k

C% V)

C~.j 0

co OWO

- e

C6

v0

v L

CJ %~

L).

C.)
C-. CV

C69

%



39
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Approximate Basement Slope
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Thick Sediment Thin Sediment

Full Full
Angle Model ApOrox Angle Model ADorox

10 0.000 D.0000 10 0.0000 0.0000
20 1.5433 1.3726 20 3.0594 4.3718
30 3.2033 3.1334 30 7.0491 7.5295
40 4.2231 4.1195 40 8.8706 9.2774
50 6.2583 6.0740 50 10.7007 10.8219
60 7.4048 7.2397 60 11.5946 11.6714
70 8.3838 8.2024 70 12.4078 12.5192
80 8.6003 8.3725 80 11.7977 11.5474

14-

12 6S

10

8-

6 - LOSS FROM FULL MODEL

ApDroximate Loss
4

I /

I 'I I

10 20 30 40 50 60 70 80
ANGLE (deg)

Figure 15 Test of the Approximate Integral Kernel
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THICK SEDIMENT (400 YDS) THIN SEDIMENT (40 YDS)
Full Closed Full Closed

Angle Model Form Angle Model Form

10 0.0000 0.0000 10 0.0000 0.0000
20 1.5433 1.2205 20 3.0594 2.2044
30 3.2033 3.0348 30 7.0491 7.5709
40 4.2231 4.1700 40 8.8706 9.7696
50 6.2583 6.6207 50 10.7007 12.1022
60 7.4048 7.1788 60 11.5946 12.8310
70 8.3838 7.5390 70 12.4078 13.1379
80 8.6003 7.7259 80 11.7877 13.0049

FREQUENCY LOSS (dB)

2

1 ^THICK SEDIMENT

Ay

20 40 60 80 .L \

-1 \ ANGLE (deg)

5\-

.--THIN SEDIMENT

-2 •

ERROR (FULL MODEL - CLOSED FORM), dB

Figure 16 Errors for the Assumed Case
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SOUND SPEED (ftl/sec)
4800 4900 5000 5100

1000
DEPTH SPEED

0.0 4909.00
60.0 4910.02

3000 325.0 4914.52
650.0 4920.05 ;

.1000.0 4926.00
1500.0 4916.00

5000 2000.0 4908.00
2500.0 4896.00
3000.0 4892.00
3500.0 4890.00

7000 4000.0 4891.00
5000.0 4894.00
6000.0 4908.00
7000.0 4920.00

9000 9000.0 4950.00
11000.0 4980.00
13000.0 5010.00
15000.0 5030.00

11000

13000 )

15000
DEPTH (ft)

Figure 17 Sound Velocity Profile
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THICK SEDIMENT (400 YDS) THIN SEDIMENT (40 YDS)

Full Closed Full Closed
Angle Model Form Angle Model Form

10 0.0005 0.0000 10 0.0005 0.0000
20. 1.2067 0.9188 20 2.5726 1.7438
30 2.6771 2.6642 30 6.6305 7.0399
40 3.8927 3.7808 40 8.6316 9.2608
50 6.0069 6.2074 50 10.6117 11.5691
60 6.3189 6.7641 60 10.7686 12.3069
70 7.1823 7.1229 70 11.5598 12.6123
80 8.4251 7.3087 80 11.7416 12.4804

FREQUENCY LOSS (dB)

2 1
Thick Sediment

20 40 60

ANGLE (deg)

Thin Sediment', -,-

-2 U
ERROR (FULL MODEL - CLOSED FORM). dB

Figure 18 Errors with Water SVP Introduced

', , U
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THICK SEDIMENT (400 YDS) THIN SEDIMENT (40 YDS)

Full Closed Full Closed ;. %

Angle Model Form Angle Model Form

10 0.0005 0.0000 10 0.0005 0.0000
20 1.1169 .8331 20 1.1169 1.6222
30 2.2681 2.5609 30 5.2938 6.9252
40 3.3644 3.7109 40 8.2442 9.1742 "..-

50 5.6380 6.1269 50 10.1879 11.4776
60 5.9329 6.6905 60 10.7874 12.2222
70 6.9211 7.0474 70 11.3718 12.5270

80 7.9117 7.2270 80 11.5665 12.3904

FREQUENCY LOSS (dB)

2

w

ANGLE (deg)
W Thick Sediment.X

-1 \/ ..

\ / Thin Sediment
vS-2 -"=

ERROR (FULL MODEL- CLOSED FORM). dB

Figure 20 Errors with Water and Sediment SVP's
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THICK SEDIMENT (400 YDS) THIN SEDIMENT (40 YDS)

Full Closed Full Closed , ,

Angle Model Form Angle Model Form

10 0.0003 0.0000 10 0.0003 0.0006

20 1.0942 0.8373 20 1.0942 1.6231

30 2.1179 2.5666 30 5.1116 6.9280

40 3.1042 3.7172 40 7.8053 9.1782

50 5.8210 6.1335 50 10.0497 11.4812

60 6.0133 6.6972 60 10.5838 12.2266

70 7.1507 7.0541 70 10.7558 12.5314

80 6.1600 7.2337 80 10.6462 12.3948 5

FREQUENCY LOSS (dB)

2-

V.,

1 I1I-

,.,"""".,, ANGLE (deg) ,"'

\\ Thick Sediment -

'\ - / -.. ,

-2 Thin Sediment

ERROR (FULL MODEL - CLOSED FORM). dB

Figure 21 Errors with Water and Sediment SVP's and Source and Receiver
Offset (Source: 100 yd., r'eivor- 600 vds)

SV1I. I
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THICK SEDIMENT (400 YDS) THIN SEDIMENT (40 YDS) K :

Full Closed Full Closed
Angle Model Form Angle Model Form

10 0.0001 0.0000 10 0.0001 0.0000
20 0.8808 0.8776 20 0:8808 0.7751
30 2.1937 2.6267 30 5.3325 7.0768
40 3.2721 3.7794 40 7.5981 9.3076
50 6.2073 6.2002 50 10.8821 11.6180
60 6.3543 6.7639 60 11.4587 12.3576
70 6.4311 7.1210 70 11.4935 12.6628
80 6.5106 7.3004 80 10.9034 12.5280

FREQUENCY LOSS (dB) %

2

11

ca Thick Sediment
- ~I

-- " I I I I I -"

~20%'x 40 /' 60 80

SANGLE (deg)w L,.

/ /--
-1 /I [ -

\// 1 Thin Sediment "

-2 -

ERROR (FULL MODEL - CLOSED FORM). dB

Figure 22 Errors with Cross-Duct Source-Reciever
Positions and Shallow Water and Sediment SVP

,.I



53

Chapter 4

THE RESULTS

4.1. Introduction T

Now that a closed form solution for the loss has been found, it is desirable to

look at the final solution and see what factors most influence the loss and how.

Throughout this work, the values used for sediment density, sediment sound

speed, and sediment thicknesses were take from the BLUG (Bottom Loss Up

Grade) data base [3]. Some of these numbers, especially the sediment density

ratio values p, are significantly different from those reported by Hamilton [5i and

others. This is due to the empirical nature of the BLUG data. The sea floor

parameters were used to fit a geo-acoustic model of the sea floor to measured

bottom losses, and are at times unrealistic 16]. It is felt that they model the

behaviour of the bottom reasonably well for the full model used here. A table of •

sediment properties and their ranges is now given.

Sediment Parameter, symbol Range of Values

Thickness,s 40 to 2200 yards
Attenuation, a8  0.007 to 0.030

Sound Speed Ratio, X 0.998 to 1.04
Density Ratio, p 1.6 to 4.0

4.%

Table 1. Sediment Parameters

4.2. The Environmental Effects

By definition, the loss will be high whenever the total area that reflects U
significant sound back to the source is larger than the area that the receiver can

detect. For a given source speed and filter bandwidth, the points the receiver can

detect remain approximately the same. So the loss is therefore governed mainly .l

by the size of the area that returns significant sound. As far as the approximate

solution is concerned, that area is governed by the RMS slope of the surface doing

A
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the scattering. For the sediment, these numbers correspond to RMS slopes of 1-6

degrees. For the rocky basement, the RMS slope is approximately 20 degrees. Not

The higher roughness fo the basement means that sound is returned from a much

larger area on the bottom for the basement path than for the sediment path. This

is intuitively obvious. If the limits in x, y imposed by the frequency limitations

of the receiver are about the same for the basement and sediment, then a much

smaller fraction of the basement energy will be detected than for the sediment

path. Thus, one would expect that the loss will be high whenever the ratio of

basement energy to total energy returned is large. The total energy returned is

the denominator of equation 30,

Rs + D(1 - R.) 2 Rb.

The second term represents that part of the energy returned which is due to the

basement path. Thus, the ratio of basement energy to total energy will be high

when the second term dominates, or when

" the total dissipation, D is high

" the sediment reflection coefficient, R, is low, and

" the reflection coefficient of the basement, Rb, is high.

Looking first at the behavior of the dissipation ratio D, which is given by

D = 10 2 s8trs/ sin(Ob)

where 2s sin(Ob) represents the total path length in the sediment at the specular

point and as is the absorption coefficient of the sediment. We can see that
the dissipation ratio approaches its maximum value of unity as 2Sas/sin(Ob)

approacnes zero. Sin(b) ranges from zero to unity, so the argument of the

exponential ranges from -oo to -2sas. As Ob grows small, the argument of the 0.

exponential gets very negative, and D approaches zero. Assume that

arccos (W-cos(O))

%..S
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In the BLUG data base, the sound speed of the sediment is always expressed as

a ratio to that of the water above it, Cw/Cs, and that ratio (x) ranges from about
.998 to 1.04. So a critical angle usually exists. Below this critical angle, Ob=O ,

and the dissipation ratio D is zero. Above the critical angle, 0 b is not zero, and

the argument in the exponent approaches 2sas. At low angles, the basement

path returns little or no energy, because the path length in the sediment is very

long. Much absorption occurs, resulting in a very small dissipation ratio. This ,

accounts for the low losses calculated for low specular angles. At high specular

angles, the total path length approaches twice the sediment depth. Thus, the

dissipation ratio will be small if the sediment is very thick, and larger for thinner

sediments. The BLUG data base allows for sediment between 40 yards and 2200 r

0. yards deep. a. ranges from .007 to .038 nepers/yard. Thus, for thinner sediments

and lower ces, the dissipation ratio approaches unity. In these areas, higher losses

at higher specular angles could take place.

The reflection coefficient is governed by two environmental parameters: %

sound speed ratio X, and density ratio p. Like the sediment sound speed, the

sediment density is expressed as a ratio to the density of the water above it, .

and in the BLUG data base, that ratio ranges from 1.6 to 4.0, roughly. This is

twice the range reported by Hamilton [5]. Due to the empirical nature of the-.-
BLUG data base, Spofford [61 reports artificial values as high as 6.0 in order to

account for the high reflectivity of some sediments. This is artificially high, and

Spofford acknowledges this. However, if good modeling of the reflectivity of the

sediment is hoped for, these artificially high values serve the purpose. At low
%

angles (< 20"), the reflection coefficient is governed mainly by the sound speed

ratio cs/Cw. This is because the sound speed ratio determines the location of

the critical angle, below which perfect reflection occurs, and it is this feature of

the curve which dominates low angle behaviour of the reflection coefficient. At
'A,_

.. .. . . . . . . . .
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high angles, the density ratio ps/pw dominates. This is because the range of the

sound speed ratio is much smaller than that of the density ratio. In the BLUG

data base, sound speed ratios range from 1.04 to 1.6, where the density ratios

range from 1.6 to 4.0. Plots of reflection coefficient curves will show that they

remain relatively constant for high enough angles (> 300), and this constant

is determined in large part by the density ratio. For high losses to occur, the

reflection coefficient of the sediment must be low. So we can expect high losses

when the specular angle is high and the density is low. At low angles, the critical

angle prevents high losses from taking place.

It should be noted that at high angles, it is the action of the reflection coeffi-

cient that dominate over the effects of the absorption. If the reflection coefficient

is near one, the properties of the sediment are inconsequential, as no sound

returns from the basement path anyway. Only when significant transmission at

the water/sediment interface takes place does increased dissipation ratio due to

the thin sediment lead to higher loss.

The reflection coefficient of the basement is not a well understood quantity

because of the difficulty of making measurements of the basement properties. A

constant value of 0.25 was used here. If the reflection coefficient of the basement

were higher, then the losses would be much higher.

Now lets look at a group of loss curves generated by the approximate solution

(Figure 23, p. 58). These curves were run with a set of sediment parameters

spanning the BLUG parameters: psIpw = 1.6,4.0, cs/cw = .998,1.04 and s =
S

40,400 yards. The attenuation coefficient as was a constant 0.007, the lowest

value generally found in the BLUG data base. Note that the lower set of curves S.

correspond to the higher density. This is due to the higher sediment reflection %I

coefficient, as expected. At low angles, the losses almost always tend to zero

because of the increased absorption and the high reflection coefficient below the

%
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critical angle. There is one exception, line 8. The closed form approximation

assumes isovelocity velocity in the sediment,so there is no critical angle. Also,

%the sediment is so thin that little absorption takes place, so the dissipation ratio ,,+

is high enough to allow for some loss even at 100.

3.3. The System Effects

The system only controls the loss in one way for this derivation: through

the filter bandwidth. Obviously for wide bandwidths, the loss will be small. For

instance, for a Af of 0.0032, we can expect at most 3 dB of loss. In our case,

with a Af of 0.0001, for a total bandwidth of 0.0002, we predict losses as high

as 13 dB.

[7!
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Chapter 5

THE CONCLUSIONS

5.1. The Conclusions

For the case of a stationary, omnidirectional receiver and an approaching,

moving source, the frequency loss may be approximated by

L = R9f(L1,L 2, L3 ) + DRb (1 - Rs) 2g(MIM 2,M3) (30)
- R,, + DRb(1 - 1?)2 (0

where

f(Li,L 2 ,L3) = 2sin(A2L3)(sin(AiL 2) - sin(AiLi)),

g(Mi, M 2 , M 3) = 2 sin(A4 M3) (sin(A3M 2) - sin(A3Mi)),

A, = ae(h2+R2), A3

R V/4R 2 + h - ha RSxb lx=R-" T '4-R + ha2 - h + -Tia '

R= -h ha r--, h + s ,

tan(98)' ha +S

cos(/e) A 4  co(/e)
A 2 = haos ' hab

R.=(p~ca sin(Os) - pwlc,~i(b %2

pcs sin(Os) - PwC. sin(Ob) ' U,

Ll =ax -R+ (csO h)2 f/v - 1 ,
Li =max A R +V(cos(0 +e)Af/v.) 2

L2 mini -R +--
l,%2A , ,'.,- V,,. . . . . ..

, ' . . - . . . - .. ...m..(-.-.-....)2 + R 2  + h2)

L3 mi 2A2 (CW~ f V' -c s(3-

- 9.' 
.

SI' *4~%
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M = max A, -R + o)
2A3(COS(Ob) +cAf /V.) 2  % ./

(7r ________h2 __

M2=min -,-R+ -1a
2A 3  (cos (b) - C.A f/v.) 2  '

M3=min arR) h

This equation agrees with a much more complete, numerically evaluated model to

within 2 dB for a frequency window ratio of 0.0002. It should be good whenever
the frequency is not too high (< 5000 Hz), when the bottom can be modelled as

a rough, hard basement covered by a sediment, and when the water is reasonably

deep (>2000 feet).

5.2. Areas for Further Research

The possibilities for this type of analysis to be expanded to more complex

problems is great. The first type of analysis that comes to mind is to estimate

losses due to beam pattern limiting. If the projection of the beam onto the
a,

bottom can be delineated as simple lines or regions bounded by lines, then the

method remains the same as far as the weighting functions go. The limits on the

integral will do the changing for us. Once they are approximated as simple lines, "

then the integration is closed form, and the equations, though messy, could be 0

evaluated on a hand calculator. Their accuracy will depend mostly on the ability

of the beam pattern on the bottom to be delineated by polygons.

Time limiting should also be very amenable to these weighting functions,

as time limits generate ellipses on the bottom, and are thus better fitted than

frequency analysis to being depicted as boxes. As far as the area on the bottom,

the frequency limitation is the most difficult loss to model.

This analysis could be taken to more layers. As a first approximation to

volume reverberation in the sediment, simply adding more terms to the top of

: ... . .. . . ....- .. .. . .'.'.." " ". ..
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equation (30), each corresponding to a different layer, might suffice. Their sound

speds can be different, generating a different apparent height for each layer.

The tricky part would be determining their densities and roughnesses, although

simple linear interpolation might suffice. Of course, with each layer, the equations

will get more and more complicated. However, if even a small laptop computer

is available, the possibilities are endless, as the math so far is very fast when

implemented. 0

Some research should be done into the effect of having the source moving

with a bearing other than 0 degrees. No attempt was made to test the closed

form solution against sources with a component of velocity perpendicular to the

source-receiver line.

I. I
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APPENDIX A

DERIVATION OF THE X- AND Y-SLOPE EQUATIONS

Referring to Figure (Al), we introduce at the point of interest, (x,y) a

coordinate system 4, t, q. In the terminology of vector systems this is Euclidean

3-space E 3 . The ray path of the incident ray is represented by a unit ray at

the point (x,y) (See Figure (Al)). The components of this vector, called -

are the projections Oi, tii, i onto the axes, which are the scalar products of the

components with the three orthonormal basis vectors, the three unit vectors in
the t,Y7, directions. In terms of the angles shown, the vector i is completely

defined by

Z 77i Cos( 1 sin(01)  .-
sin(01) 2.%

You'll notice (bi) = c1.C l co,&.),

Similarly the direction of the reflected ray path at the point (X, y) is defined

by a vector XJ as shown in Figure (Al) and calculated below

XZ=I 1rT = cos(0 2) 02)sin 2, .
sin(02)

Again I & J= 1.

: and fr define a plane. The normal to the section of the bottom causing

the specular reflection is in this plane. Denote the unit vector in the direction of

the normal by N. Then

N = )Fi + fl;&.

To define N we need to know a and 3. The specular reflection requires that

the angle of reflection and the angle of incidence are equal. Viewed from the

direction perpendicular to the plane containing x and xCr and N the geometry

is as shown in Figure (Al). It is easily seen that U
cos(¢) Z) =cc + 0N, 6) = (9 -6) = ( , )6) + 8,

%,,
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so is some constant times the sum of X and X. Setting No to ;- + then

N-i. - 'ln.

Therefore

( COS) s(0') + cos(02) cos(02)
= cos(1) sin()+ cos(02) sin(4 2 )

sin(81) + sin(02)

The slopes of the bottom can be found by determining the equation of the bottom

plane. Let 0, 77, be any point in this plane. The vector of that point is

But all such vectors are normal to N, so

( -) =O-.On+7, .n + . .= o.

According to figure (Al), the slopes in the 0, 7 direction, denoted S. and Sy are

found as follows. Solve for .

_(On +r !_n"

Then

and 0

Plugging in we get

SS_~ COS(0 1 ) COS(* 1) - c0S(82) cos(4 2 ) '

- sin(Oi) + sin("2 )

os(8,)sin(o,) + COS(0)sin( 2)ii
S sin(0 1 ) + sin( 2)

- .,. -vv ~ ~",%' * "w"
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APPENDIX B

DERIVATION OF THE LINEAR COEFFICIENT

FOR SEDIMENT SLOPES

Given that

Sx R %v/(R + x) 2 + h 2 - v/(R- x) 2 + h 2 +x i

h %1(R + x) 2 + h 2 + /(R - x)2 + h 2 h

Then

asx
ax

R h+ R+x R - x:z((V/(R + X) 2 + h2+ v/rR ) + -,( (R+ + +  %/R- )
-,((R+ x) 2 + h-R+h)( R(R -x)2 + h2

(R (+ X) 2 +h 2 -_V(R _x)2 +h2)( %vR+X)2k2 - (R-X)2+h2)1

(/(R+X) 2 (R) 2 +h 2 h2 + 1 ) 2  h'

evaluated at x=O becomes

R 4R 1 h 2 h
4(R2 + h 2) h h(R 2 + h 2 ) R 2 +h "

.-_

Iv .'%

hi,-

S,.
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APPENDIX C

FORMULAS FOR THE APPARENT HEIGHT

The apparent height will be used to account for refraction at the wa-

ter/sediment interface. For an illustration, see Figure C1. Given the specular
.. 0

reflection angle off the sediment, 0,, we can calculate the total range from the

source to the specular point as

h
R = tan(08 ) 0

Now, the specular basement path has the same total range, but a different angle

into the sediment due to the range that gets travelled in the sediment. Summing

ranges,

R= h +
tan(0i) +tan(0 2 )'

where h is the height of the source over the ocean floor and s is the depth of the

sediment. If s << h then 01 - 0s and the apparent height is given as

ha R tan(arccos(--cos(0.))).

The above height will always exist when needed because if we are below the

critical angle, the apparent height need not be calculated.

If the range traveled in the sediment is not negligible, then the problem is -. o

somewhat complicated. Pushing forward, we know from Snell's law that -.

cos( () os(82 )
Cu, Cq

and from basic trigonometry
COS2

tan(02 ) ( 1 - cos 2 (02)
cos(02) '

so that s

C2

tan(0B) = ULcos(82 )CSCOS(02)
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Plugging in, we get
0

R h S cos(0 2 ) cos(02)

1 - (02) cos 2 (62) 1,-.- 2 .(
Cs

If cw/cs is not too different from one, then we can ignore it in the denominator

of the first term, yielding

hc,,, ..

c+ tan(02) tan(02)'

or

h. Rtan(02) = h + s.

CS INX
This approximation is good for EL not very different from one, which happens

often.

S

Sr%

%

. .:'..1

S.,'_
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