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-rounding the nominal natural frequency. An additional set of versine profiles re

a-re

. < also constructed to permit motion at constant speed for velocity-limited systems.
"" These shaped force profiles are incorporated into a simple closed-loop system

with position and velocity feedback. The force input is doubly integrated to gener-
a:ate a shaped position reference for the controller to follow. This control scheme isq0

evaluated on the MIT Cartesian Robot. The shaped inpufs generate motions with
minimum residual vibration when actuator saturation is avoided. Feedback control

~compensates for the effect of friction. Using only a knowledge of the natural fre-

quencies of the system to shape the force inputs, vibration can also be attenuated in
modes which vibrate in directions other than the motion direction. When moving
several axes, the use of shaped inputs allows minimum residual vibration even when

? the natural frequencies are dynamically changing by a limited amount.
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Abstract

Dynamic systems which undergo rapid motion can excite natural frequencies that

lead to residual vibration at the end of the motion. This work presents a method .-
to shape force profiles that reduce excitation energy at the natural frequencies in -.

order to reduce residual vibration for fast moves. Such profiles are developed using a
ramped sinusoid function and its harmonics, choosing coefficients to reduce spectralS
energy at the natural frequencies of the system. To improve robustness with respect
to parameter uncertainty, spectral energy is reduced for a range of frequencies sur-
rounding the nominal natural frequency. An additional set of versine profiles are
also constructed to permit motion at constant speed for velocity-limited systems.

These shaped force profiles are incorporated into a simple closed-loop system
with position and velocity feedback. The force input is doubly'integrated to gener-.
ate a shaped position reference for the controller to follow. This control scheme is a

evaluated on the MIT Cartesian Robot. The shaped inputs generate motions with
minimum residual vibration when actuator saturation is avoided. Feedback control
compensates for the effect of friction. Using only a knowledge of the natural fre- S
quencies of the system to shape the force inputs, vibration can also be attenuated in
modes which vibrate in directions other than the motion direction. When moving
several axes, the use of shaped inputs allows minimum residual vibration even when a
the natural frequencies are dynamically changing by a limited amount.
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-;I;ransformation of positive predicates into their negative duals can introduce
universal quantification in the body of the defining clause soWalinsky had to attack this
difficult problem as wello Constructive implementation of 'universal quantifiers in general
requires unbounded searches, but in an important subcase implementation is practical.
Frequently, the universally quantified formula is an implication, allowing the antecedent
to "filter" instantiations of the consequent' He modifidethe SLD resolution procedure, to
handle this situation, and explored circumstances under which the resulting executions
are practical. r

3. Specific Accomplishments

Cliff Walinsky's thesis lays solid groundwork for systematic study of ncgation in
logic programming that preserves the declarative nature of the languages like pure
PROLOG, can be efficiently executed without major changes to present interpreters, and
allows programs to retain their constructive solutions. The work is a model of defining a
significant research topic, exploring and changing it as'rnare information is gathered, and
successfully obtaining results of the kind sought.

AFOSR support not only made possible the research described above, but also
provided for extra opportunities for Walinsky. He was invited to attend a Washington,
DC workshop as student observer. He was able to attend two major conferences (one an
international gathering in Australia which otherwise would have been beyond possibility),
to meet and interact with other researchers (and to thereby interest others in his ideas),
and ultimately to obtain employment in a prestigious institution where he will continue
to be a productive researcher. Several important logic-programming theoreticians visited
OGC and provided contact with the broader research community. J-L. Lassez and J.
Jaffar are at the core of the logic-programming group at IBM (Yorktown); Lassez invited
Cliff to join that group as a visitor in the near future. R. Topor (Melbourne) provided
some invaluable early direction for Cliff's work.

The one area in which Cliff was not as successful as we had hoped was in
publishing his ideas. He submitted papers to both logic-programming conferences, but
they were not accepted. The field is new, not always well defined, and very competitive.
There is a measure of politics in writing acceptable papers, particularly for conferences
with a high rejection rate. (We were able to learn that the difficulty is not in the ideas,
which should find acceptance in the more controlled arena of professional journals.)

The technical reports being submitted under separate cover give a complete
description of constructive negation:

Walinsky, C., "Constructive Semantics for Negation", Report CS/E 87-008, Oregon
Graduate Center, September, 1987.

Walinsky, C., "Constructive Negation in Logic Programs", Report CS/E 87-009,
4 Oregon Graduate Center, September, 1987 (PhD thesis).
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~Introduction

-':C 
h a p te r 1"e%

%W

• 1.1 Motivation:

2":'::The advent of microprocessor technology has brought about an entirely new way to
wr. 4 control production machinery. No longer do control engineers have to rely on analog
~circuits for controlling dynamic systems. Now, computers can be programmed and

, reprogrammed to produce a wide range of control actions in real time. Nficropro-
,,:, Cessor technology has enabled the power of computers to be cheaply installed in1 many dynamic systems. These capabilities have made the newly-developing field of
,o.'trobotics possible. Robots and other computer-controlled machines have become the W

,-24-

dominant components in automating production processes.

. Along with the opportunities that these microprocessor- controlled machines bring
- . has come a new set of challenges. For robots to perform assembly tasks economi-

callv they must be able to move from place to place very quickly. Such fast motions
!%' "will excite vibrations in the moving elements. Since robot structures are typicallyj
,;: only lightly damped, these oscillations require additional time to settle and hence

0S

,d.'.delay the start of the next task. Since each relative motion excites a different set of
.'.,.frequencies, the only way to avoid exciting any structural m odes using existing con -• trollers is to move sufficiently slowly. To achieve fast motions, an effective motion

. owl, I,,

I. % I.4..4%*X 1. Motvaton.4%. 'l



0 1.2: Literature Review: 9

%

control scheme is necessary that will not excite the system natural frequencies.

The goal of this research is to develop methods to reduce motion-induced vibra-

tion during fast moves. The assumption is that the motion itself is the main source
of system vibration. Thus. force prohles which do not contain energy at the system

natural frequencies produce motions which do not excite structural vibration and

hence do not require any additional settling time. The approach adopted here is

to remove the task of reducing vibration from the controller which ensures accurate

positions in the presence of disturbances. In this way, a simple control loop can

accomplish accurate positioning without the complexity required to suppress vibra- 0

tion. Structural oscillations are not damped out but avoided by judicious choice of

force inputs. This approach works as long as the motion itself is the only source

of vibration, which is usually the case in typical positioninig systems. Thus. this

work develops shaped input functions that can reduce residual vibration regardless -P

of which controller has been selected. In those cases in which even optimal regu- ,

lators fail to adequately suppress vibration, these inputs can significantly improve

performance.

1.2 Literature Review:

Many researchers have addressed the problem of controlling vibrating systems such

as robots and space structures. An excellent review of current theory and practice

in dynamics and control of large space structures has been presented by Nurre, et al.

I. A review of general control strategies is given by Bryson '21, with discussion of

specific control techniques applied to flexible systems given by Seltzer [31, Croopnik,

et al. 41. Joshi and Groom 151, Meirovitch and Oz 1'61.
These control strategies can be loosely organized into two main classifications:

terminal controllers and regulators. Terminal controllers take the system from an

initial stat to a final state while satisfying some optimization criterion. This is

% S

4%

.'' A :0

,'.- .- .- .- .- .- .- .- -. t .- . f - . . - . . - . - , . . . . , . - , . . , ,- - . . . - . . . . - .-t . . - . - .- . . . - , .



1.2: Literature Review: 10

also known as slewing when applied to space structures. Open-loop slewing is ac-
complished using a control input that is strictly a function of time, not explicitly

of the system states. To accomplish slewing maneuvers, control inputs are specified

-., as smooth time functions to minimize excitatiotu o( systeux teances. Aspinwall

7 shaped such a profile using a finite Fourier series expansion that minimizes fre-

quency content over a wide range of frequencies. but these functions take twice as

long as the corresponding time-optimal function to complete the motion. Other re- e

searchers have used performance indices'in combination with Pontryagin's principle

to generate "'optimal" control functions for performing open-loop slewing maneu-

vers. Various performance indices and system models have been used by researchers

- including Swigert '8'. Farrenkopf i9], Turner and Junkins [10), Turner and Chun

* 11 and Alfriend and Longman 121, Swigert also included a penalty on residual

amplitude due to natural frequency changes to allow limited variations in frequency.

Lisowski and Hale '131 included the control input and its derivative as additional

states and imposed smooth start and stop transitions on the control input function

4. to minimize excitation of higher resonant frequencies.

f-t-'. Additional open-loop functions have been developed by making use of cam profile

shapes. Such a forcing function was developed by Makino 14] to drive the SCARA

.- robot arm. Sehitoglu and Aristizabal [151 used a cycloidal motion profile to generate

smooth motions. However, no attempt was made to tune these functions to the

.-'.-' dynamics of the system to minimize both move time and residual vibration.

Another open-loop approach has been to use a series of appropriately-timed step

'- inputs to eliminate residual vibration upon completion of the move. This technique
"'f, has come to be known as posicast control. A detailed presentation of this approach

* is given in Smith "16,. An extension of this concept, incorporating robustness to

parameter uncertainties, is under development by Singer 171.

In addition to these open-loop slewing functions, researchers have also developed

closed-loop slewing strategies that utilize time-varying gains on feedback states.

ft.

ft%.-,%,I



1.2: Literature Review: 11

Breakwell '18] determined these gains as a function of remaining time to maneuver.
Juang, Turner, and Chun N9.20i determined time-varying gains using a terminal

constraint on the perforinance index that penalizes residual vibration. Experimental

results using this approach are presented by .Juang, Horta, and Robertshaw '21. :
Classical proportional-plus-integral-plus-derivative (PID) control has been uti-

lized on the Space Telescope Pointing Control System, as presented by Dougherty,

et al. 22,231. The stability properties of such a control scheme as applied to flexible %

systems is discussed by Hughes and Abdel-Rahman [24i.

A majority of control techniques applied to vibrating systems utilize regulator or

tracking control theory. Basically, the controller is designed to maintain a set-point

or to track a reference input. The terminal states are not incorporated into the de-

termination of constant feedback gains. The coupling between vibration regulation ,y"

and large-angle slewing is discussed by Baruh and Silverberg ,25j. The design of 6oi

modal controllers to control several dominant modes of distributed flexible systems

has been suggested by Meirovitch, et al. 126] and Balas 27] . Other researchers. such S

as Henrichfreise, Moritz, and Sieniensmeyer '281, have developed a detailed system

model that includes the vibrating states. An observer is constructed to estimate

the unmeasured states. This technique works well if the model accurately repre-

sents the actual system. Stability problems can arise if system parameters change

significantly. Another approach has been to utilize measurements at the tip of the

flexible member to generate control signals. Such an approach has been used by

Cannon and Rosenthal 291, Cannon and Schmitz 301, and Hollars and Cannon !311
to actively control both the rigid-body angle and the vibration of a flexible system.

Stability problems again may arise, however, when modeling errors exist because

actuator and sensor are not colocated.

An alternative to actively suppressing the vibration is to alter the damping char-

acteristics of the structure. Both passive and active methods have been proposed.

Alberts, et al. 32] added layers of viscoelastic material to a beam in order to add S

*% %
• " ... .,' ,% - .. - ... ,.-- - .,,-- .. ,,.% ." -- ' .. - ." " -'."",. "."-... ."."-. . .. , -"". ",.,-'""'.. ' V - " . ' .' ',' ,.- 6- , "-. "]



1.2: Literature Review: 12

passive damping. This reduced vibration and enhanced stability in the presence

of higher unmodeled modes. Active damping techniques have also been proposed,

*. which add distributed damping to beam-like structures. Silverberg 33] has devel-

oped a discrete implementation which approximates uniform distributed damping

with several discrete actuators. Burke and Hubbard 34! generated a distributed

control law by applying a piezoelectric film to the beam that alters its resistance to
bending when given a voltage signal. An extension of active damping is presented

by Finzi, Lanz, and Mantegazza [35], who developed a control law that adds both

mass and damping at discrete locations to reduce residual vibration.

All of these techniques have shortcomings when applied to physical systems.

Problems arise because of unmodeled modes, parameter variations, and nonlineari-

ties. Robustness of the control methods in light of these modeling errors is discussed

b Nesline and Zarchan '36, Kosut, et al. [37j, and Arbel and Gupta [381. Balas

1391 points out that the presence of unmo'deled modes can cause undesirable excita-

tion and potential instability. Radcliffe and Mote [40] discovered such an instability

when they tried to control the vibration of a rotating saw blade.

Some solutions to these problems have been proposed. Gupta [41] and Gupta. et

al. 42 have suggested a "frequency-shaped cost functional" that allows the feedback

control to be tailored to have less energy at frequencies corresponding to unmodeled

%,, system resonances. "Innovations feedthrough" and output feedback control have

been proposed by Balas F431 and Lin, et al. [44] to introduce terms in the control

, which can prevent instability due to unmodeled modes. Sesak, et al. '451 have

proposed a modified performance index which suppresses excitation of unmodeled

modes in a technique known as Model Error Sensitivity Suppression.

* A review of robust control techniques that ensure stability in the presence of

*-( parameter errors is given by Dorato [46]. Yamada and Nakagawa [471 have developed

a technique for designing a state feedback controller with constant gains which works

over a limited range of parameter variations. The effect of parameter uncertainties

.6

J'--

* %



1.3: Overview of Thesis: 13

on a controller designed for modal suppression is described by Calico and Moore

Some researchers have proposed adaptive control met-ods to compensate for

parameter variations. Several different approaches have been presented by lh and

Leondes '49i, Bar-Kana, et al. '50], Dubowsky and DesForges 51', Johnson 521,

Benhabib. et al. :53] and Potter and Ginter [54]. S

1.3 Overview of Thesis:

. The approach taken here, as described in several previous papers [55,56,57,58,59j, is

to generate smooth force profiles that have been shaped to reduce excitation energy J^-

at the system natural frequencies. These profiles are constructed by summing har-

inonics of the ramped sinusoid function using an appropriate choice of coefficients.

They result in fast motions while minimizing the residual vibration which occurs

at the end of the move. By minimizing energy in a band of frequency components

sdrrounding the nominal natural frequency, some variation in system parameters

can be tolerated without affecting vibration attenuation. A detailed development of

these force profiles is given in Chapter 2.

To put this approach in perspective, some results using alternative filtering tech-

niques are presented in Chapter 3. The use of filters removes energy from the input

at certain frequencies instead of building up a function with specified frequency

content. These two different approaches are compared.

Since the force inputs generated in Chapter 2 can only be directly implemented in

open-loop systems, Chapter 4 discusses closed-loop implementations. In any closed-

loop system, the actual force input is determined by a combination of reference and
*

feedback signals and hence cannot be prespecified. One approach to incorporate

these shaped inputs into closed-loop systems is to use a reference system model

to generate the reference trajectory. Results for this approach are presented along

L



1.3: Overview of Thesis: 14

differs from the actual system dynamics. Another implementation is then developed

that generates an appropriate position reference by doubly-integrating the shaped

force inputs. Because this approach treats the closed-loop system as an equivalent %

open-loop system. these shaped inputs must be tuned to the closed-loop natural

frequencies. Finally, the optimal regulator state feedback approach is studied in

some detail to point out several cases in which it fails to give adequate performance.

When used in conjunction with shaped reference inputs, however, residual vibration

can be significantly reduced. -

The force profiles discussed so far assume that the actuators which drive the

system can generate peak force regardless of the velocity. But since the force that

real actuators can provide decreases with speed, the system will eventually saturate

at some peak velocity. This has motivated the development of velocity profiles which

accelerate to peak velocity, travel at peak velocifty for some time, and then decelerate

to final position. The shaped inputs developed in Chapter 2 do not allow for any

motion at constant velocity. This limits system performance by requiring that the

peak force be kept sufficiently small. Thus in Chapter 5 a new set of force profiles

are developed using versine functions that allow motion at constant velocity.

To evaluate the practical implementation of these shaped inputs in actual sys-

tems, experiments were performed on the MIT Cartesian Robot. Chapter 6 discusses %

the simulation model of the experimental hardware that helped determine appro-

priate inputs. Chapter 7 presents details of the microprocessor implementation and

a set of response data indicating the usefulness of shaped inputs in reducing system

vibration. Chapter 8 presents a number of conclusions and recommendations for

future work.

%'
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Development of Shaped Inputs

Chapter 2

L2.1 Review of Previous Work:

In work done for my Master's thesis [55], 1 developed input functions constructed

from a ramped sinusoid and its harmonics. This function was the solution to a

boundary-value problem imposing zero magnitude and slope on the desired wave-

- form.. Harmonics are given by characteristic numbers that satisfy the boundary

..hV values. The fundamental ramped sinusoid function alone requires nearly 50% longer

than the time-optimal input to move a given distance with a given peak force. To

reduce this move time, harmonics of the ramped sinusoid were added to the funda-

mental. The coefficients of the harmonic terms were chosen so the resulting function

gives a least-squares fit to a single cycle of a square wave. A typical input function

consisting of five ramped sinusoid terms is shown in Figure 2.1. Its frequency spec-

trum, shown in Figure 2.2, has troughs at certain frequencies. The location of these

frequency troughs depends on the total number of terms used to construct the input

*function. If the system natural frequencies correspond to the trough frequencies of

a particular function, then that function generates much smaller residual vibration.

So the idea is to pick the input function with the appropriate number of terms.

*Unfortunately, the troughs in the input spectrum are very narrow. If the actual

*N VV AV N _
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* .2: 9.Relationship Between Inpat Spectrum and Residual Acceleration Amplitude:17 0

natural frequency is sufficiently different from the nominal frequency for which the i

function was developed, a considerable amount of residual vibration may still occur.

For this reason, a new method will be developed for determining the harmonic

coefficients of the ramped sinusoid functions. Functions will be generated having a

sufficiently wide trough in the frequency spectrum to accommodate errors in nominal

natural frequencies. The hope is that these functions will work not only for systems

'p having a static error in natural frequency but also for systems in which natural

frequency changes dynamically with time.

2.2 Relationship Between Input Spectrum and

Residual Acceleration Amplitude:

Before actually formulating the desired input functions, it seems useful to determine
%q

,,. the relationship between the input function spectrum and the residual acceleration

amplitude. The work presented here will restrict attention to a two-mass system

model (Fig. 2.3) which has one rigid body mode and one resonant mode. Mass
irn represents motor inertia, mass m, represents endpoint inertia, and k represents

transmission and structural stiffness. This is a good model to represent the first

mode of a single Cartesian robot axis, in which the endpoint position y, oscillates
p.p relative to the motor position ym where the force f is applied. Other axes can

be similarly represented, treating any cross-coupling between axes as disturbances.

Damping is neglected in this model since it serves to reduce vibration amplitudes.

All system parameters are treated in dimensionless groups (Table 2.1), leading to

the dimensionless transfer function shown in Figure 2.3. All positions are nondi-

0.- mensionalized with respect to final position 9f. and T, represents the time to move

the equivalent rigid-body mass the same distance yf using a square wave input hay-

ing peak force F. Errors in system natural frequency are represented by the ratio
•,A/4.v. where w't is the actual natural frequency and wN is the nominal natural
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Figure 2.3: Two-Mass System Model.

* 0

frequency.

For this system model with a single natural frequency, a direct relationship can

be derived between the magnitude of the input spectrum at the natural frequency

and the amplitude of the residual acceleration. The amplitude of the acceleration

of mass M2 (the unforced mass) after the input force f is turned off at time Tf is

given by

A- a.+ (2.1)

where

0 a. = -y(T) is the acceleration of 2 at time Tf,

J,= -,y,'y(Tf) is the jerk of M2 at time Tf, andL4 = ./-t(1 + Zt) is the natural frequency of the two-mass system.

Note that A in expression (2.1) represents the amplitude of free undamped vibration.

In order to determine expressions for a, and J,, it is necessary to use Fourier

transforms. The general expressions for a, and J, are given by
L1 I d >"

am (2.2)

* 0
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Z4

Table 2.1

Definition of Dimensionless Parameters

.vt/

* Ye

.4 Ye = -

Yf

ye-f

* S*

-. Re[F(,)Hj(.)' coswTf dw, (2.3)

4'where F(w~) is the Fourier transform of the input function, Ha,(w) is the Fourier%

integral representation of the transfer function. relating the input force f to " y

* and fI.(w) is the Fourier integral representation of the transfer function relating f

and fy

Any function f(t) which starts at time t 0 and ends at time t T1 will have

a Fourier transform of the form
*T1

4,~. r~)) f f(t)ejwt dt = FFR(w) + 'Fr(w)]e-J- (.4

where FR(w) and Fj(w) are the real and imaginary parts, respectively. Deriving

the Fourier integral representations of the appropriate transfer functions requires

the use of singularity functions as described by Papoulis 601. This leads to the

* following expressions:

%.. 2

M, + W W2 2j,

W W
HA)W)+6,o+WI 26
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€. where 6(w,) is the delta function defined by

- :(2 .7)W

for an arbitrary function o(,').

['sing these Fourier integral representations in the expressions for a, and J. gives

the following results:

A;,a FR(w:,) sin w-t- FI(o,) cos -f(2.8)
M1 - -1 2 .

FR,,) cos - FI(W) sin ±2-. (2.9)',a m 1 + M 2 1 2 I)

Inserting these expressions into (2.1) gives

.4 A !Fw,)(2.10)
M1 -r- m2

where

F(, ), = 2 vi (W ) + F'(W,,). (2.11)

With the following definition of the dimensionless frequency spectrum,

% F(F ! (2. 12)

where F is the peak force amplitude and T, is the move time, the expression for

%0.G residual acceleration amplitude can be rewritten in dimensionless form as

A%
A* = F ( i ) TfjF *(w ,.Tf)1. (2.13) -'- F,,.(m, ± M 2 )

These results show that only the frequency component corresponding to the

system resonant frequency v, contributes to residual acceleration amplitude. Of

course. the actual frequency spectrum of any given input function also depends on 71

its time duration Tf. The relationship (2.13) then establishes an upper bound on

the input spectral magnitude at the system natural frequency in order to achieve

• acceptable residual acceleration amplitude.

0

~ #' ~ .0
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It is interesting to apply this relationship to the bang-bang function developed in

my Master's thesis .551. This forcing function generates only peak force and switches

between positive and negative force levels to produce time-optimal response. As Ap-

pendix A shows, this function leaves the system with zero residual vibration only

because vibration excited in the first half of the move is removed in the second half.

Thus, spectral energy for the entire function is zero at the natural frequency and

(2.13) is satisfied. However, if the actual system differs from the nominal system.

spectral energy at resonance will not completely cancel and residual vibration re-

suits. Therefore, we will develop another input function that tolerates uncertainty

in natural frequency. -'

2.3 Development of Shaped Functions:
a'.q

We are now in a position to derive forcing functions that reduce residual vibration

when the system natural frequency is uncertain. We choose the ramped sinusoid

function and its harmonics to construct a series representation of the input, anal-

ogous to a Fourier series representation. The coefficients of each harmonic in this "'.-.

series will be chosen so that the spectral magnitude constraint is satisfied. Ramped .

sinusoid functions were selected as basis functions because of their odd symmetry

about t T 1 /2 (Fig. 2.4) and their smooth transitions in slope, which result in the

narrow frequency spectra of Figure 2.5. "

In order to allow for changes in system parameters, one goal in picking coeffi- S

cients in this series will be to reduce spectral magnitude in a sufficiently wide band

of frequencies surrounding the nominal natural frequency. The system natural fre-

quency is aossumed to vary by :10%. This variation was chosen based on a detailed

dynamic analysis of the MIT Cartesian Robot. Garcia Reynoso 2611 determined that

for two extreme locations of the moving axes, the maximum change in the first three

natural frequencies due to the change in geometric configuration is within ±10% of

*

% * - ,

'%"" *~

0
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Figure 2.4: Fundamental Ramped Sinusoid Function.
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Figure 2.5: Frequency Spectrum of Fundamental Ramped Sinusoid Function.
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the nominal natural frequency. Thus, functions which ha',, ow spectral magnitudes
N. , in a band of ±10% surrounding the resonant fz:quency would represent practical '-

0
inputs for such a robot system.

In general, the input functions can be represented by the following series expan-

% sion, where ,P;(t) represents a particular harmonic of the ramped sinusoid function.

cat is the characteristic number associated with each harmonic (defined in .55j" Be is

the coefficient for each harmonic, T, represents the time to reach a desired position.
and - is normalized time:

f(t) " (t) (2.14)
11 a- a

-, ¢( t - sinettr - cosaT (2.1.5)
W- -

r tiTf (2.16)

. The goal is to pick appropriate values for Be that will minimize move time T! and
minimize spectral magnitudes over a range of frequencies surrounding the system

natural frequency w.

To achieve this, we will combine these objectives into a single minimization prob-

lem to pick the coefficients Be. To minimize move time, we minimize the square of

the difference between the ramped sinusoid series and a single cycle of a squareIS
wave. This gives a least-squares fit to a square wave. A square wave is chosen

since it is known to give optimal move time for a rigid body. This alone determined

the harmonic coefficients in my Master's thesis .55]. To explicitly incorporate the

- constraint in the frequency spectrum, a second expression will be added to mini-

mize the squared magnitude of the frequency spectrumi F" at several frequencies .,

surrounding system resonance. A weighting factoi o determines relative weighting .1,

* between these objectives. The overall objective function J represents the quantity S
5%

to be minimized:

STI/ 2I J J "1 - (t)" dt -4- 1- f/(t)] dt
J f1 I= 1{ , ~ / 2 1 T

* %
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- VIwT,) F*(wT)12  (2.17)

,n this formulation, we have arbitrarily chosen I I frequencies surrounding resonance

to satisfy the spectral magnitude constraint. This provides enough frequencies to

Skeep spectral magnitudes small throughout the entire frequency band without the

need to integrate over all frequencies in this band. The upper and lower limits
'Ile

on frequency can be adjusted to give any desired frequency band. For a ±10%

frequency range. the bounds on the frequency wi are 0.9w, < wi < 1.1,,.

The coefficients of the harmonics Bt can be calculated by differentiating the

objective function J with respect to B, where r represents a particular value of the

index f. and setting the result to zero.

.J/OB, = 0 (2.t8)

This gives an expression explicitly in terms of B,, and Pt and P. which are known

%, functions of a, and at:
L

Bt I t = [: 2.19)

(2si.n+ - ,,i/cos+) 1  (2.0)
J' [ l - snat%

2 sin sin a,

.1'... = -a, cosa, -- 'T(cosa - i)]r ) .

~~%. ). 2r# f (2.21)
-. " , a + -I sin at

• *s, n c
A N

CCS-0

0 
OSa ( 2.1

". ':, . .. " " ': " .:, " " ' " - '- ', . . . . . , . ." ", , ." " -". . ,'" " :. ., "0 _ .. ,r -. -, .. ' ', . " " ,' .:. ., ., . ,,-X .". , '.' .' ' .," i, "- " , '% ' ,".2,
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I;= -'2co a, sin

-- cosar +--sina, (2.22)
2

If the final move time Tf is known, then I,, is known, and the coefficients Be can

be determined by simply solving the following set of linear equations. expressed in _

matrix form:

[I,;'[Bj = [It] (2.23)

Unfortunately. Tf is not known until the coefficients Be are known. The dependence S

of Tf on Be can be expressed in terms of the square wave move time T, and a scale

function F:

T= FT , (2.24)

where ____

k 3
F 5-L B (2.25) -

(In + m 2)YfT, = 2 F (2.26.)

SF is a scale factor which normalizes the peak of the function to 1. T, represents the

move time to cover a distance yj when the input is a single cycle of a square wave

of amplitude F. F is a function of at and Bt which ensures that the resulting

input signal brings the system to the desired final position. Since the ramped

sinusoid functions cannot supply as much energy for the same peak force as the

corresponding square wave, they will take somewhat longer to complete the same

move. This time penalty is represented by F. Due to the inherent coupling of Be and

F. an iteration scheme is necessary to correctly compute values for the coefficients

B,. This iteration procedure can be outlined as follows: %

1. Determine , ,T, for desired move distance and system parameters. ,

'2. Guess a value of F. (Note that F is slightly greater than 1.)

*'~~ ~ ~~ N' V A '.1 ~, N . ''' ~ % S

- • ..
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3. Solve for Bt by solving the matrix equation (2.23).

4. Normalize ramped sinusoid series expansion by determining the value for the

scale factor SF.

.5. Calculate r using expression (2.25).

6. Use the new value of U to update Bt.

7. Repeat until F converges to accept-able accuracy (error with respect to previous

value is less than 10- 5).

To improve convergence, every fourth value of F is updated using Aitken accelera-

tion: 
Iiri+

2 -
r--3- 

(2.27

.i+2 - 2F i+i + r (2.27)

Using the procedure putlined above, we can derive functions which satisfy our

objectives. We used a total of L = 15 terms for computational efficiency while

retaining enough mathematical degrees of freedom to achieve acceptable minimiza-

tion. A good compromise between minimizing move time and minimizing spectral

magnitude near the system natural frequency is achieved for a value of p = 10. Note

that larger values of p will give lower spectral magnitudes and slightly higher move

times. Functions were developed which minimize the frequency content at dimen-

sionless frequencies w,,T,/2r of 5, 10, and 15, respectively. Each of these functions

* minimizes spectral magnitude at 11 frequencies extending ±10% around resonance.
-.' These inputs are shown in Figures 2.6 to 2.8. The time function is shown in (a) and

-. '.-.. the frequency spectrum is shown in (b). Notice that the spectral magnitudes for
.-. :..the entire range of frequencies extending -10% about wT, have been significantly

attenuated. In comparison with the five-term raniped sinusoid function of Figures

*r2.1 and 2.2, the spectral magnitude near the nominal natural frequency has been
5.. attenuated by more than an order of magnitude (20 db).

k 

.0I
'"U %
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Figure 2.9: Simulated Acceleration Response for Nominal System With Ramped

Sinusoid Input;,wvT,/2ir = 10.

2.4 Open-Loop Simulation Results:

To determine the effectiveness of these shaped functions in meeting our goal, we

evaluated the response of the two-mass system to these inputs using computer siniu-

lations. These simulations were performed using a Runge-Kutta-Merson integration S

routine. A nominal value of ,,T,/27r = 10 was assumed in order to construct the

input function. This gives the final dimensionless move time as WTf /27r = 12. The

* response of the nominal: system to this input is shown in Figure 2.9 as the dimen-

sionless acceleration of mass M2 . The acceleration response is shown rather than

..- ' the position response because double differentiation accentuates the vibration sig-

nal. Notice that under nominal conditions, residual acceleration amplitude is nearly
-elk eliminated when the input has finished.

A more challenging test, however, is when the actual resonant frequency is dif-

. ,.ferent from the nominal frequency. If we assume that the actual frequency is only

@ _
"-"
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Figure 2.10: Simulated Acceleration Response for Actual System With Ramped

Sinusoid Input; NT,/27r = 10, WA/,IWN = 0.9.

90% of the nominal frequency and use the same input function derived in the nom-

inal case, the response in Figure 2.10 results. Notice that even with a 10% error in

resonant frequency, the input function still achieves nearly zero residual acceleration

amplitude.

These results can be compared with the square wave response to determine the

effect of shaped inputs on residual vibration. Square wave response is shown in

Figure 2.11. The square wave input generates considerably more residual vibration

than the ramped sinusoid input.

If only move time is compared, ignoring settling time needed to damp out residual

vibration, the move time ratio Tf/T, has a value of 1.2 for the ramped sinusoid

- function. Thus, we can achieve the desired vibration attenuation with a move time

only 20% longer than that required for a square wave. Since the optimal time to

complete the move without vibration is nearly the same as the square wave time,

S these functions only take 20% longer than time-optimal inputs. Because the ramped

X 1 1 1
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*; Figure 2.11: Simulated Acceleration Response for Actual System With Square Wave

" :nput; ,, NT,/21r = 10, WAIWN = 0.9.

4- sinusoid inputs nearly eliminate residual vibration, this extra time is more than

compensated for by the reduction in settling time.

2.5 Shaped Inputs for Several Natural Frequen-

cies:

The approach outlined in Section 2.3 can be extended to minimize excitation energy
at several natural frequencies. The new objective function can be expressed as

' J- - f(t)]2 dt + [-1 - f (0 dt

+ P WT'2 (T )T)2,F(T (2.28

where M is the total number of modes (natural frequencies) to attenuate, and Wi is

given by

(1<p), < (1 + ), I...,I1M (2.29)

56S
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where Pm represents the fraction of nominal frequency that determines the upper

and loafer bounds of the frequency band surrounding the nominal natural frequency

-' for the mth mode.

The remaining development follows exactly as before. A function that attenu-

ates three natural frequencies was constructed in this way. F, the dimensionless

frequencies ,,T,/'2- = 1.5, 5, and 10, with ±10% frequency bands. the resulting

shaped input function is shown in Figure 2.12(a). with the corresponding frequency

spectrum shown in (b). Notice that all three frequency bands have been attenuated

2.6 Shaped Inputs for Lightly Damped Systems:

The development so far has assumed that the system to be controlled has no inherent

damping. Damping has the effect of spreading out'the resonant peak dver a broader

range of frequencies. It will therefore also affect the vibration attenuation of inputs

that have been shaped for an undamped system. The following analysis is intended

to quantify the effect of damping on residual vibration. We will derive the residual

acceleration amplitude for a damped system in terms of characteristics of the shaped

input functions.

The model used to derive this relationship is similar to the undamped model of

Figure 2.3 with an additional viscous damping element b, as shown in Figure 2.13.

VFor this system, the peak residual acceleration anplittide of mass 2 after the input

force f is turned off at time Tf is given by

S a ' (2.30)

where

* a, is the acceleration of m2 at time Tf,

Jo= is the jerk of m 2 at time Tf,

* %,
W4%\*. 5. .
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Figure 2.13: Damped Two-Mass System Model.

, is the undamped natural frequency, given by

w V (~ (2.31)1

.is the damping ratio, given by

V = - - .(2 .3 2 )

Using the same technique as before, a, and J, can be represented in terms of

system parameters and input characteristics as follows:

1"i .-

ao -- F(t)H,(w)ej-rfdw (2.33)

= (w F()Hj(w,)e Tf dw (2.34)

where F(w) is the Fourier transform of the input function, H (,,) is the Fourier 'e

integral representation of the transfer function relating f to d. y, and H(.,;) is the

Fourier integral representation of the transfer function relating f and -y"

The ramped sinusoid functions under consideration have a Fourier transform

which can be written as

SF(',j)JF(w)e'2 (2.35)

%'
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This is a more spec;fic form of equation (2.4) in which FR(w) = 0. The Fourier

integral representations of the transfer functions are given by:
-"N% 1 w +j 2(wo,,a. -w'

H((2.) 36

-_ _ _ -2(w. -j2 #

Hj() m (n)j " (2.37)
Mtrs 1the72 w ;

After performing the required residue calculus to obtain the integrals, the square

of the residual acceleration amplitude can be expressed as

A'=- - "-+ FM2(-,V/1 ( 2 +j. ,)F( , 1- (, j(C). (2.38)

This gives residual amplitude in terms of the input Fourier transforms of complex

frequencies. These can no longer be expressed simply in terms of the input frequeny

spectrum as was the case for an undamped system (equation 2.10). However they

can be evaluated for the shaped ramped sinusoid function. In terms of real frequency

., the function Fr(w) can be expressed as

r, = FT <-.2 Bcza 2sin, -wT cos (3 p

SFT 1: at - (WTf) 2  (v;Tf) 2  e

where F is the peak force and SF is a normalizing scale factor. In order to evaluate

sin-s and cosines of complex arguments, the following identities are useful:

sin(X Y) = sin X cosh Y + j cosXsihY (2.40)
'%

cos(X Y) = cos X cosh Y - jsin XsinhY (2.41)

After considerably more algebra, the final expression for the dimensionless squared

residual acceleration amplitude is given by

. [ A T! \ e- '

(.40)2

(F,1(mj I ) )2 (SFni) (2

"4s 2ch" - 4c2sh 2 - 4L.', 1 - QTfsc - 4( .Tfshch - 2T](c ch -ssh
2) 0

BIBaea, [d4(a,)6(a) + 4('(1 - 1)4T] 1
r 2 Ot)2 (i ,)4T4] [O(,)2 -4(2(1-2T]1I (2.42) A
[Oct= 1 ( 4(2( 1 -- 4 Tf4

.1.



-, ---

2.6: Shaped Inputs for Lightly Damped Systems: 37 0

where s, c, sh, and ch are defined as

s sin,, v t (2.43) 0

c COS - 2T. (2.44)

sh = sinh q T! (2.45)

ch cosh - - (2.46)
2, ."

and the functions o(a) are defined as

a)= a' - - )(2.47)

This expression (2.42) gives the dimensionless peak residual amplitude for a

particular ramped sinusoid input as a function of the dimensionless frequency WTf.

This functiqnal dependence can also be expressed in terms of WT, using the known

value of F given by expression (2.25) for the particular input. When = 0, the

resulting function gives simply'a scaled frequency spectrum of the input, as given

by (2.13). There is a direct relationship between residual amplitude and input '.

frequency spectrum for an undamped system. For # 0, this functional dependence

on frequency is no longer proportional to the input frequency spectrum. S

For the ramped sinusoid input tuned to the undamped natural frequency W,,Tf2 =

10, constructed using the technique of Section 2.3, we can now investigate the effects

of system damping on the residual response. Note that for lightly damped systems,

the resonant frequency where response amplitude peaks is very nearly the same as

the undamped natural frequency. Figure 2.14 shows the frequency dependence of

the residual amplitude for " = 0. As expected, this looks similar to the Fourier spec-

trum of Figure 2.7. When C 0.1, the lobes which occur for C 0 disappear and

the curve becomes smoother, as shown in Figure 2.15. For C 0.3 more smoothing

takes place, as shown in Figure 2.16. Notice that the peaks which appear in Figure

2.14 )ecome lower and the troughs become more shallow as damping increases (Fig-

S '2.
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Figure 2.16: Residual Acceleration Amplitude as a Function of T,,'2, for Ramped

Sinusoid Input Tuned to wT, i2r = 10 t 10%; C 0.3.

tires 2.15 and 2.16). This implies that slightly higher residual amplitude will exist

for a lightly damped system than for an undamped one. In addition, because the

troughs bow up at their edges, the effective range of frequencies for which residual

amplitudes are small becomes narrower.

Simulation results using this ramped sinusoid input for a lightly damped system

= 0.1) are shown in Figures 2.17 and 2.18. Again, we plot the dimensionless

acceleration of mass n2 . Figure 2.17 shows the case when the dimensionless

system undamped natural frequency ,.,Tf coincides with the frequency for which

the ramped sinusoid has been tuned. Figure 2.18 shows the case when the system

undamped natural frequency is only 90% of the nominal tuned frequency. Notice

that for light damping, the residual amplitude is higher than for the undamped case.

The effect of damping is to raise the residual amplitude for frequencies near the limits 0

of the notch in the frequency spectrum. Since the natural frequency of the actual

system coincides with the lowest frequency which has been filtered from the input :%

spectrum, damped response gives higher initial residual amplitude. However, this

%."%"y ,-,•
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Figure 2.18: Simulated Acceleration Response for Actual Damped System with
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amplitude decays because of the presence of damping. Therefore, damped response

to the ramped sinusoid input for this lightly damped system is satisfactory. The

settling time for the damped system response to a square wave input is considerably

St re cde hlonger.

If the actual system has considerable inherent damping, then an alternative is

to incorporate the more complex damped expression (2.42) into the minimization

for determining the harmonic coefficients. Because of the complexity involved in

doing this, the simpler development assuming no damping is preferable since it gives

good attenuation over the frequency range of interest for lightly damped systems.

'IV, Since most practical systems tend to be only lightly damped, the inputs developed

assuming no damping are appropriate.

2.7 Closure:

This chapter has described a method of constructing force profiles for moving a

dynamic system while keeping excitation energy near the natural frequencies as

small as desired. A useful feature is that the depth and width of the notch in the

%0- frequency spectrum can be adjusted to allow for variation in the natural frequency.

Force profiles can be constructed for any number of natural frequencies occurring

in the physical system. As long as system damping is relatively small, these inputs

". generate motions with small residual vibration, even when natural frequencies are

uncerta'i
nc III

..
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Alternative Filtering Techniques

Chapter 3

3.1 Introduction:

In the previous chapter, a set of input functions were developed to produce relatively. '

fast motions for a vibrating system. These inputs were built up from a ramped."

~~siusoid and its harmonics in. an effort to increase the energy available for motion

while minimizing spectral energy near the natural frequency of the system. An :

alternative strategy would be to start with a single cycle of a square wave, which ,'

Sis known to give time-optimal rs o eand filter out an p crle eg erthe

natural frequency. €

Several methods for accomplishing this filtering are available. Two of these ,

techniques are discussed in the following sections and evaluated analytically. One

.!

method is simply to use an analog low-pass filter to pre-shape the square wave before, :

sending it on to the vibrating system. This requires that the filter cut-off frequency

be sufficiently below the lowest natural frequency to provide acceptable attenuation.

Another method is to use a notch filter to filter out only those frequencies that

correspond to the system natural frequencies. Such a filter is hard to implement':

W

in real time since an effective notch filter requires many poles which introduce _

large phase lag at higher frequencies. This tends to delay the system response

42S
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and lengthen the time needed to complete the move. So instead we will synthesize
a new time function that will serve as the notch-filtered input to the system. This

allows us to have the entire input waveform available for filtering, including future

values which would not be available to a filter in real time.

The square wave input can be filtered by removing frequency bands in its fre-

quency spectrum and then regenerating the time function by using the inverse

Fourier transform. This approach gives time functions described by sine integrals.

P" These functions must start earlier and end later than the square wave from which

they were derived in order to achieve the notched spectrum. This leads to unac-

ceptably long move times.

%

3.2 Analog Low-Pass Filter:

The simplest method to remove energy at system natural frequencies is to pass the

square wave through a low-pass filter. This attenuates all frequencies above the filter

cut-off frequency. The most important consideration is achieving a steep roll-off rate

at the cut-off frequency so that energy can be passed for frequencies nearly up to %

the lowest natural frequency of the system.

A particularly useful filter to accomplish this is a Butterworth filter, which has

the desired low-pass frequency response in magnitude, allows for any desired roll-off

rate. and is physically realizable. A fourth-order Butterworth filter was selected for

O* analysis here.

. The magnitude of the frequency response for an nth order Butterworth filter is

given by (see Papoulis [601, p. 105)

I HF( )I (3.1) 9

where .,, is the filter cut-off frequency and n is the order of the filter. Thus, for a

N 1'0
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Response.
%0t

3.3 Notch-Filtered Square Wave:

Excitation energy can be introduced above the lowest natural frequency by notching

out only the frequencies in the square wave frequency spectrum that correspond to

system natural frequencies. Such a notch filter will be implemented by generating

new filtered time functions from the square wave input. A similar approach has

been presented by Singer [621, who also has pointed out some of the drawbacks. S
For the sake of clarity, we will again restrict attention to a system model hav-

ing only a single natural frequency, as shown in Figure 2.13. Thus, only a single

0 frequency will be filtered from the spectrum of the square wave. To generate the S

filtered time function, we will analytically remove a band of frequency components

from the Fourier spectrum of the square wave. We will then produce a time function

corresponding to this filtered spectrum by taking the inverse Fourier transform.

L - -.z
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Figure 3.1: Magnitude of Frequency Response for Fourth-order Butterworth Filter.

fourth-order filter, the magnitude is given by

[HF(W) = . (3.2)

A plot of this frequency response as a function of the parameter w/ w is given

in Figure 3.1. Note the steep fall-off as ,/w, becomes greater than 1. In order

to attenuate the frequency content at the natural frequency by a factor of 100

([HF(W,,)1 = 1/100), the ratio u;/Io must be equal to 3.16, as can be verified by

the magnitude expression (3.2). A Butterworth filter with this cut-off frequency

was used to pre-shape a square wave before sending it on to the vibrating system.

A block diagram representation of this scheme is shown in Figure 3.2. The filter
*

transfer function HF(S) and the vibrating system transfer function H(s) are given

in terms of dimensionless parameters as follows:

H()3 1 (3.3)

*, HF(.) . (.)4 s + 2.613 ( 93) s3 + 3.414 (e) 2 + 2.613 s + 1

5/.
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::s)

~Figure 3.2: Block Diagram of Filtering Scheme.

'and

~2(s + 1
H(s) = s2(s 2 + 2(s + 1)' (3.4)

h," II

~end weassead w the fledsqaelaeainos as inpu tothssyt m si es units.r=10

",:: 3.3(a) shows the filtered input waveform, (b) shows the position response of the

Notice that the system does not settle down until ao,t/21r is near!y 16. Since the

•time-optimal response would have finished in time v,t/2-, = 10, this filtered input

_)- takes 60% longer than the time-optimal one. This is also 30% longer than the
! "he~~rampedepi inusoid inp~tutiopresented in Chapter 2, which only takes 20% longer than i

,:,:: Analog low-pass filters work, but they require considerably longer to complete the ;

0,, move. In the example above, the situation is especially favorable for the filter since
the natural frequency is relatively high, permitting a reasonably wide bandwidth for

. the filtered input. However, in fast systems the parameter a.,,T,/27r for the lowest
0 mode and for a typical move is closer to 1. To avoid vibration, the filtered signal
~bandwidth in these systems must be reduced considerably, which increases move

time even more. The conclusion is that move time can be significantly reduced if

'N.

some excitation energy is permitted in the input function above the lowest system

, natural frequency.

i .
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io"S
The Fourier transform of a square wave of height F and time duration T, is given

'% by the expression:

F(,;) = -(1 w~+ei (3.5)
" F'

, Since this expression applies for both positive and negative frequencies , removing

spectral energy at the natural frequency w, requires notching both -w, and -w,.

The filtered Fourier transform is given by

VIN F - - e-w)(1 - pe(-4-,,) - pa,( - an,)) (3.6)

where p w,,(w represents a rectangular pulse of height 1 and width AO centered

at a = w,. Notice that all frequency components in the two frequency bands about

. ±w, have been removed by essentially subtracting the original spectrum in the

* two regions specified by the pulses.

The inverse Fourier transform of the sum of these two rectangular pulses is given

by

1 pfpt= 0 pa i-,'On) + pa.(U - Wn) eJwtdw = 2 sin wt cos wt. (3.7)

27r irt

The filtered time function can be completely represented in terms of the unit step
0, J

i function u(t) and its time convolutions (represented by the symbol ') with the

sinusoidal function fp(t) of equation (3.7):

f'(t) = F [Mt) - 24t - T,/2) + 4t - T,)]

F- F[f(t) * u(t) - 2fp(t - T./2) * u(t - T,/2) + fp(t - T.) u(t - T,)] (3.8)

These time convolutions can be evaluated as

1 f m--A~sinr
fM(t) u(t) =- I(w,+Aw)t s dr. (3.9)

l

The integral on the right-hand-side is known as the sine integral, which is a tabulated

function. Thus, the above expression can be rewritten as

• f,(t) M u(t) = [si ((W, + A,,)t) - si ((W, - A )t)) (3.10)

do.
-M% %-%

%M I -. .~-.; v %. -
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Figure 3.4: Notch-Filtered Square Wave Time Function.

where the sine integral si is defined by
-. / sin /sin 7

si - rdr -nd (3.11),,:..t 7 2 0

Using these sine integral expressions, the time function f'(t) can be rewritten in

711 'terms of dimensionless parameters as

f'(w.t) F [u(w.t) - 2u (w,.(t - T,/2)) + u (w(t - T,))]

-F [si ((LO. --iw)t) - si ((W, - AW)t)l
2N

2 [si ((w, -- Aw)(t - T,/2)) - si ((w, - Aw)(t - T,/2))] (3.12)

+- [si((, - Aw)(t - T,)) - si1((, - Aw)(t - T.)).

'.9,,

A plot of this filtered square wave input computed as a function of time is shown in

Figure 3.4, for values of w, 1T,/2r = 10 and A. ,, = 0.1 (a ±10% frequency band).

To strictly maintain zero magnitude in the filtered frequency spectrum requires

that the input start before t = 0 and end after t = T,. This can readily be seen

* in Figure 3.4. In fact, the input function would need to occur for all time. If this

-p4
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input function is truncated by a window of half-width T, centered at t T,191

then the input is active in the range T,/2 - T < t < T,/2 4- Tt. Truncation of

the time function will give a nonzero frequency spectrum in the specified frequency

band. The Fourier transform of this truncated time function gives the dimensionless
, frequency spectrum as

F(T ) = F T-, f'(t)e-j-dt (3.13) r

When this integral is evaluated, the following expression results:

- '2(cos -- 1
2 :

[ -- cos .F(T,) -- sin ----F2(wT,) - 2F(wT,) - 2cos3,wTF 4 (3.14)

where F,1 F-., and F3 are functions of T, and F4 is a constant. To simplify the

.-.. representation of these functions, we define the following frequencies and coefficients:

-= (1 + A/w)(w,T + wT,/2) (3.15)

w2T = (1 - Aw/u,!(wrt + ,T,/2) (3.16)

";3T = (1 + ( -,,T,/2) 3.17)

I 4T = (1 - A/w,)(wT - wT,/2) (3.18)

- wsT =(1I- A4w/,)w,rt (3.19)

L6T (1 - a/w;)wTt (3.20)

4:

3 (3.21)

.4a, T
S(3.22)

.4

A3 3-(3.23) 4

Using these- parameters, the functions F, through I'4 can be written in terms of the

-"sine integral si, defined by (3.11), and the cosine integral ci, defined by V

"o Cosr 7 Cos r -
ci(t)- / dr n tl+ dr. (3.24)0

f Jt J7 o

4-. V-P F

*% %
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The functions can then be expressed as follows:

F(wT,) si(wT -- 32wT,) - si(w .T -,-3,.wT,)--si(w3T 33wT , )

J.-." -si'; 4 T - 3,,;T,) si(waT - 32wT,) - si(w 2T - 32w'T,) (3.25)

SSi - .33,.;T) - si(w 4 T - .33wT,)

F2(wT,) = -ci(wIT -t 3.T,) + ci(w 2 T 3 wT,) ci(w3 T + d3wT,)

-ci(W3T 3 .T,) - ci(w'T - T,) - ci(w2 T -3wT, (3.26)

-ci(w 3T - 33wT,) + ci(U4T - 3wT,)

If w.Tt= w,T,/2, then

* , F2.(wT.,) -ci(wiT -- 32wT,) t- ci(wU2 T + 3.wT,) - ci(wT - 3,.wT,)

% -ci(w2 T - /32wT,) - In 1w2T + 32wTj - In JwT + 32wT,1 (3.27)

-In 1wT - 32 owT,I + In I'w2 T - 32wT,

F3(waT,) =si(wsT -4- 31wT3) - Si(W 6 T + 3,w.T,) + si(w5T - 31woT,)

- -si(w 6 T - 31,,T,) (3.28)
1S

F4 = si(,,;,T) - si(w 2 T) - si(w,3T) - si(w 4 T) - 2si(W5T) -- 2si(,a 6T) (3.29)

A plot of this frequency spectrum, with values of wTY/2r = 10, Aw/,. = 0.1,

* and .a',T12 7r = 5 is shown in Figure 3.5(a). In this case, the input function has

been truncated so that only the portion for 0 < t < T, remains. The frequency %
4. e.

spectrum shows considerable spectral magnitude at the dimensionless frequency

w,,Y,/27 = 10, where the input should have been filtered. The considerable energy

which this input function contains at the natural frequency is a direct result of the

, truncation in time. N

If a longer portion of the input function is used, then the spectral magnitude

near the natural frequency will decrease. This is illustrated in Figure 3.5(b) and (c).

0 S

.1%
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Figure 3.5: Frequency Spectra of Truncated Notch-Filtered Square Wave: (c)

% .aT,/2r = 50.

In Figure 3.5(b), the input is truncated with a window of half-width .,,T,12r 15.

This corresponds to the function as shown in its entirety in Figure 3.4. In figure

3.5(c), the truncation window has half-width aT,/27r = .50. This corresponds to an

5-. input which lasts for a total dimensionless time of 100 multiples of 27'. This is an

order of magnitude longer to cover the same distance than the original square wave.

Yet the spectral magnitude near resonance is still more than an order of magnitude

larger than that of the corresponding ramped sinusoid function shown in Figure 2.7.

V,/. which only takes 25% longer than the square wave input. 5.

In summary, the time function produced by completely removing the frequencyI. components in a notch near resonance has infinite duration. When this input is

truncated in time, considerable energy still remains near resonance. As spectral

energy is reduced, the input function takes longer to complete. To achieve sufficient

6.
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filtering at resonance, so much of the input must be retained that the move takes J
much longer than necessary. The ramped sinusoid functions, in contrast, have lower

, spectral magnitude at resonance with a much smaller time penalty.

Before closing this chapter, it is worthwhile to comment on the use of continuous

Fourier transforms in the development of the preceding functions. It would have been

easier to take discrete Fourier transforms (FFT's). However, the resolution of these .

Fourier transforms is limited by the duration of the time function. With a square

wave input of duration t = T,, the discrete frequency components in the FFT occur

only at multiples of 27,1-T,. Everywhere in between, the FFT claims to be zero when S

in fact the continuous Fourier transform has discernible amplitude. This is a result

of the fact that the FFT assumes that the input function is periodic with period

T, when in reality it only occurs for time 0 < t < 7,. Should the actual natural -

frequency lie between these discrete frequency points, even zeroing out the adjacent

components will not zero the frequency component at the actual frequency in the f.

continuous Fourier transform of the filtered input. Increased frequency resolution

can be obtained by adding zeros to the time function from t = T. to= Tma=z > T,

thus giving frequency components at multiples of 2 ,r/Tax. However, this does not -:

alter the original problem. Therefore, even though the computation of continuous
Fourier transforms is more complex, it ensures that all frequency components are at

least ideally reduced to zero.

3.4 Closure:

We have preunted two alternative filtering techniques in this chapter to put the

work of Chapter 2 into perspective. Instead of constructing a function to look like

a square wave while maintaining some specified bounds in the frequency spectrum.

we tried here to filter out the specified frequency components of a square wave. A

simple low-pass filter can be used to remove all frequency components of the input

*K e S



3.4: Closure: 55

above the filter cut-off frequency. which is chosen to be somewhat less than the

lowest system natural frequency..A foarth-order Butterworth filter works quite well

in reducing residual vibration, but response time is relatively long because no input

energy is passed above the lowest natural frequency of the vibrating system.

Another alternative is to generate time functions from a square wave spectrum

that has had all frequency components removed in a band surrounding the natural

frequency. This produces alternative time functions to those specified by the ramped

sinusoid series, which are given in terms of sine integrals. These functions must start

considerably earlier and end considerably later than the corresponding square wave

in order to achieve sufficient filtering. Thus, move time is unacceptably long. -.

Therefore, although these filtering techniques present viable alternatives, both

the low-pass filter and the notch filter lead to considerably longer move time. The

ramped sinusoid functions, however, permit a simpler implementation of filtered

inputs without excessively increasing move time.

.%.
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Closed-Loop Implementation of

Shaped Inputs

Chapter 4

4.1 Introduction:

The shaped inputs developed in Chapter 2 are given strictly as functions of time.

This means that they can only directly be used in systems where the force can be

V ,specified as a function of time. Since closed-loop systems with feedback determine

control force as a function of system states rather than as a function of time, these S

shaped inputs can be specified directly only in open-loop systems. Because most

. physical systems experience disturbances, nonlinearities, and parameter uncertainty,

accurate performance cannot be guaranteed for open-loop control. Thus, we need

some way of incorporating these shaped inputs into a closed-loop control system.

In this chapter, we will present several methods for incorporating shaped inputs

into closed-loop systems. The first scheme directly sends the shaped force into the

vibrating system. This represents the feedforward portion of the control force. This

same input also goes into a reference model of the vibrating system to generate an

7. ideal response. This response is compared with feedback states and the error is used
0 as an additional control input to help generate the desired ideal response even when

S,56
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the actual system differs from the ideal system.
Some of the drawbacks of this method are then discussed, keeping in mind the il

limitations which actual systems impose on the controller. These observations serve

to motivate a different closed-loop implementation. In this new formulation, only 5
motor states are measured and a simple PD loop is used to achieve accurate positions

in the presence of disturbances. The shaped force input is converted into an equiv- ,

alent position reference trajectory and the motor feedback allows the closed-loop

system to follow this time-varying reference signal.

Once an appropriate closed-loop implementation has been developed, we look

more carefully at the optimal regulator formulation and indicate several cases in

which it fails to give adequate performance. Shaped reference inputs then serve to

augment the optimal regulator and minimize residual vibration.

4.2 Model-Reference-Based Control Scheme:

4.2.1 Overview of Concept:

The first closed-loop implementation to be studied involves the use of a reference

system model. This control scheme is not to be confused with Model Reference

Adaptive Control. State feedback is used to impose on the actual system the ideal

behavior of the reference system. The shaped force input is directly applied to both

systems. The error between the actual response and the ideal model response serves

to correct the control input to maintain the desired response.

A key feature of this control implementation is the use of the shaped force as a

direct feedforward input to the controlled system. The control input is thus specified

as a function of time as well as a function of the error states. The main advantage of

introducing a feedforward signal is the ability to deal with unwanted resonant vibra-

tions before they occur by proper frequency-shaping of the feedforward functions. '-

An outline of this approach was presented in an earlier paper [63). -
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Figure 4.1: Block Diagram of Model-Reference-Based Control Scheme.

The use of additional feedforward signals to reduce system tracking error is

quite common. Dougherty, et al. [22] suggest the use of acceleration feedforward

in the pointing control of the Space Telescope. A similar technique has been used0

to compute joint torques of serial-link robot arms. The acceleration of the refer-

ence trajectory is used to reduce tracking errors, as described by An, Atkeson, and

,' Hollerbach [64]. In each case, a feedforward signal derived from the reference is

directly fed to the system to reduce tracking error. However, no frequency-shaping

is done on the feedforward functions to reduce vibration.

4.2.2 Controller Specifications:

A block diagram of the proposal control scheme is shown in Figure 4.1. Since

Ain typical systems the motor position is usually measured instead of the absolute

endpoint position, we will do likewise here. Thus, an additional transfer function

H,(.) is necessary to obtain the endpoint position y: as a function of motor position

y . The coipensator G(s) represents the combination of a state feedback control

law and a state estimator. State feedback ensures that all the actual system states

approach the ideal reference states. Since only motor position is measured, theK.. remaining states are estimated using a steady-state Kalman filter.

To evaluate this control scheme, very simple models were used to represent the
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Figure 4.2: Damped Two-Mass System Model.

Table 4.1

Definition of Dimensionless Parameters

Uk
I

t" = ,,Nti 2 ,r U = (in1 +mi)y-%

* , _ Y f V .

Ym V

od.o oe tYe W

YeW=

ideal plant and the actual plant. A simple damped two mass, one spring model,

shown in rFig 4 ' represents a system with one resonant mode and one rigid body

mode. The control force u acts on mass in1 , while a disturbance force w acts on

m2, the mass-we wish to control. For the sake of generality, all parameters have N0
been nondimensionalized, as shown in Table 4.1, where yf is the final position of

the controlled mass, v is the measurement noise, and ,,,v is the nominal undamped

natural frequency, given by

= V (4.1)

MI M
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and ¢ is the damping ratio, given by

2 4.2) -

The ideal plant is assumed to vibrate at the nominal natural frequency ,;.v and

to have no disturbance force acting on it. Its transfer function relating the control

input u" to the motor position y/ is given by: -

(1+2)s 4- 2¢S + IHA(S)_ (4..3)
Hs (s) -

2(S2 +2.s + 1)I

This ideal plant is used to generate the motor position reference yO for the feedback

loop.

The actual plant is assumed to vibrate at a natural frequency denoted by WA,

which may be different from the nominal frequency u.N,. It also has a disturbance I
force zv acting on mass m 2. Therefore, it has two transfer functions associated with

the measurement y":

+ +)() 
.

y, (s) (_+___ )__ +___ "____+______,'HAW ( s ) N (4.4)s) ,,

[n addition, the endpoint position is given in terms of the motor position by

.! :(S) 2 '¢ t C &__ +

~s) ( -*- ) ' 2.(4.6)

additional nonideal characteristics, such as nonlinearities and unmodeled modes.
-n .'. '.a

but for simplicity these were neglected in this analysis.

The state-space formulation of the actual plant model is given by:

k = Ax + bu" + -tw*

y = cTx (4.7)
z* : cTx + vV"

II

C .
!*
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where x is the state vector consisting of endpoint position y: and its three derivatives,

.A is the dynamics matrix, b is the control input vector, -t is the disturbance input 01

vector, w" is the dimensionless disturbance force acting on in2, c is the output

vector :t is the noisy measurement of y*, and v* is the nondimensionalized noise A .1%
that corrupts the measurement ofy.

S

The feedback compensator shown in Fig. 4.1 represents the transfer function

equivalent of an optimal state feedback controller and a steady-state Kalman filter

applied to the plant model given by Equation (4.7). This approach was motivated by

an article by Bryson [65i that discusses a classical interpretation of optimal control

theory. Basically, quadratic performance index weightings are adjusted to achieve

desirable filtering properties in the compensator. The plant model used to construct

-- the compensator was assumed to have WA/N = 1, mi/rn2 = 1, and 0.1. •

In conventional Kalman filter design, white noise processes are assumed for w*

and v*. In designing this compensator, the spectral densities for w* and v* were

treated as parameters that were selected to achieve good filtering of the endpoint

position measurement at higher frequencies. Thus, the Kalman filter accommodates

disturbances and measurement noise as well as estimating unmeasured system states.

The feedback compensator was designed in two parts, as suggested by the sepa-

ration principle. In this development, u" is assumed to consist only of the feedback

component, i.e. no feedforward function is applied. The state feedback gains were

determined by minimizing the following quadratic performance index:

J= e + pu) dt (4.8)
2

The value of p was selected to be 1/49 so as to weight the penalty on endpoint

position error more heavily than control input. This leads to a set of constant

feedback gains on the system states.

The steady-state Kalman filter gains were determined so as to minimize the

expected value of

(z*- cx)2 dt (4.9)

000
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Figure 4.3: Magnitude of Frequency Response of Optimal Compensator.

given the spectral densities q and r for wo and v*, respectively. In analogy with the

optimal regulator problem, this minimum variance observer leads to a steady-state

Riccati equation which depends on the ratio r/q. A value of 1 was used here for

r/q to give a compensator capable of accommodating both plant disturbances and

measurement noise.

The final compensator transfer function for these weightings is given by:
.- _ _'__) 22(s -0.27)(s' + 0.12s + 1.5)

G(s) (4.10)
y(s) (s2 - 0.94s + 1.3)(s2 + 6.6s + 22)%.r '

* This transfer function can be represented in a frequency response plot. Such a

depiction emphasizes the filtering properties of the compensator, which depend on

the number of controlled states, a fact pointed out by Larson and Likins '661. A

." plot of the magnitude of the frequency response for our compensator is shown in

Fig. 4.3. Here the frequency is normalized to the resonant frequency of the system.

Near resonance, the compensator acts as a notch filter. Beyond resonance, higher

frequency- components are at first amplified by the full state feedback controller,

then attenuated by the Kalman filter.

% %' -
% %S
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This compensator has a pair of poles in the right-half-plane. These poles will

not appear in the closed-loop transfer function, but they could appear as closed-loop

zeros if a different compensator is used in the feedforward path. This can potentially

lead to poor transient response.

If the original plant for which the compensator is developed is more lightly

damped than = 0.1, then the characteristics of the compensator change. If the

open-loop damping ratio is assumed to be " 0.02, the compensator for the same

weightings as before has the transfer fifnction given by

u*(s) 22(s + 0.25)(s 2 - 0.025s + 1.3)

,:s) = yY(s) (s2 - 0.89s + 1.6)(s 2 + 6.6s + 22) (4.11)

Notice that this compensator has a pair of zeros in the right-half-plane in addition

to a pair of poles. This is common in optimal controllers for systems with lightly

damped poles. as pointed out by Martin and Bryson [67]. In the feedback loop,

.p '.~this is of no concern. However, if this same compensator is used in a tracking

controller to act on the rcference signal, then the nonminimum phase zeros occur in

Sthe closed-loop system and can cause poor transient performance. This is a result

of the fact that this compensator was derived for a regulator control. Typically,

a new compensator would be derived for a tracking controller that would have no

right-half-plane zeros.

-'N' The closed-loop transfer function between y, and y for " 0.1 is given by
y ,(s) 44(s + 0.27)(s 2 -4- 0.Is + 0.5)(s2 + 0.12s + 1.5)

y:(s) (s2 + 1.4s + 0.69 )(s 2 + 0.56s - 1.4)(s2 -t- 2.7s + 2.3)(s 2 -t 1.2s -3.1)
(4.12)

The right-half-plane poles of the compensator do not appear as right-half-plane ze-

ros because the same compensator is used in the feedforward path. The dominant
S

closed-loop poles (with the lowest natural frequencies) have damping ratios of 0.84 ,

and 0.24. Thus, the optimal regulator has replaced the lightly-damped open-loop

poles with more heavily damped closed-loop poles. The dominant closed-loop damp-

. ing ratio achievable with an optimal regulator depends on the control weight p, as

V ;N V

% % % % %0
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Figure 4.4: Closed-Loop Damping Ratios as a Function of Control Weight for Several

Open-Loop Damping Ratios.

shown in Figure 4.4 for several open-loop damping ratios. As control weight de-

creases, the damping ratio of the dominant closed-loop poles increases. Systems

having higher inherent open-loop damping can achieve larger closed-loop damping.' 
;

But even with an optimal controller, the maximum achievable closed-loop damping

ratio is limited.
*4..

4.2.3 Closed-Loop Simulation Results:

The control scheme suggested in Fig. 4.1 was used to determine closed-loop re-

sponses using the shaped functions of Chapter 2 as the feedforward inputs u . A

dimensionless time .NT, was used to specify move time relative to the resonant

period. The time T, represents the time to move the center of mass of the two-mass

N ;% system a distance yf when driven by an input force which is -F for the first half of

the move and -F for the -,econd half. Therefore, w/NT, is given by:

"NT = WN V/4(mt 2 m)yf/F (4.13)

...

" 0 6 " . . 0 • 4 ',

'Z.
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The actual dimensionless move time is somewhat longer than wvT, since the shaped

forcing functions do not provide as much energy for a given peak force F.

For this series of simulations. a value of 10 was used for the parameter ,.vT,/2,.

S.'. damping ratio was assumed to be 0.1. and mass ratio mlrm, was taken to be 1.

Three sets of simulations were performed. In the first, the actual plant was taken

to be identical to the ideal model, with dA, -;N 1. The control system generates

the required control input to produce the output that is called for by the forcing

function. Of course, when the controlled system is ideal, as we assume here, the

output exactly follows the reference input and no feedback correction is generated.

However, the feedforward function applied here leads to some residual vibration even

in the ideal system. Therefore, the reference input imposed on the feedback loop was IV

set to yf after the feedforward function ended in order to bring the system to rest.
) :]This response is shown in Fi,gure 4.5, with total control input in (a) and acceleration e

response ( :) of M2 in (b). Notice that the feedforward function alone brings the

system to final position with very little vibration for the feedback loop to damp out.

This gives negligible settling time with residual vibration nearly eliminated beyond

,-:v -, 2- = 13.- -,J

In the second simulation. the actual system was assumed to have a natural

frequency different from the nominal frequency, with -A/N = 0.9. The response S

under these conditions is shown in Figure 4.6. In this case, residual vibration takes
.'.

until ,1t 2" 14 before it settles. This is longer than the nominal system response

" of Figure 4.5 because the initial residual amplitude is higher for damped systems

. with an error-in natural frequency.

, When a disturbance is added to the model for the actual system with '; 4 ,', = .

the advantages of combining feedforward and feedback control become apparent.
17 i Figure 4.7 shows the response when a constant opposing disturbance force acts on

the end mass. A force of dimensionless amplitude 0.0003 was used. This represents

a disturbance having 30% of the peak force level of the input functions. Notice that

. .- • -. -. ..- .- , .. • - . - ,.-., . - ,-. - - - -. N,
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Figure 4.5: Simulated Response for Nominal System using Model- Reference- Based

Controller; a~,VT,12r 10, ( 0.1: (a) Control Force (b) Acceleration Response.



'' +' 4 ,,l ' -'- - ,. r r '. ' w- . r.. rnt - r . r -w 1

* 4.2: Model-Reference-Based Control Scheme: 67

N"1 I
&.0010

%0

700 4.0O 6. &O0 10.00 1-i I.0 16.00 MOO0 20.00 ,,2+
Dimensionless Time

1: -00o5 o

', Actual Closed-Loop Response to a Ramped Sinusoid Input

.(a)

0S &0005

"2 0.0000 2.00 4.00 6. &00 10.00 1100 64.00 1600 100 20.00Dimensionless Time

-'. ".Actual ClosedLoop Response to a Ramped Sinusoid Input

.(b)

"':'" Figure 4.6: Simulated Response for Actual System using Model- Reference- Based '

",'Controller-,;,,vT,/2r 10, 0" =01, W+A/1,V= 0.9: (a) Control Force (b) Acceleration-
0- Response.

'p1. ".s ,,, 
".001

'14,

OW L% L



4.2: Model-Reference-Based Control Scheme: 68

0 0.0010

4 ~0000

2.00 4.00 6. 0 &00 10.00 1 00 14.00 16.00 100 20.00i" Dimensionless Time

• &0010, 
,"

Closed-Loop Response to a Ramped Sinusoid Input with Disturbance

(a)

&.0010

0.0010

S0.0000z 2.00 4.00 6 &00 10.00 1 00-14.00 16.00 18.00 20.00

Dimensionless Time

.&.000~

.&0015

pAp91

pp Closed-Loop Response to a Ramped Sinusoid Input with Disturbance

A (b)

%

Figure 4.7: Simulated Response for Nominal System using Model- Reference- Based

Controller with 0.0003 Disturbance Force: WNT 8/27r =10, =0.1: (a) Control

S Force (b) Acceleration Response.

% %"%

j



4.2: Model-Reference-Based Control Scherne: 69,

the total control input differs from the feedforward function at the start because

the feedback loop has recognized that output motion is lagging behind the reference

input. Beyond this initial transient, the control input is just as before except it 0

includes a constant force offset to oppose the disturbance. Settling time remains

essentially the same as without the disturbance. Thus. the model-reference-based
control scheme achieves response comparable to that for an open-loop system, even

in the presence of a disturbance force.

4.2.4 Discussion: N

Although this feedforward/feedback control scheme seems to work quite nicely, it

has a number of drawbacks. First, derivatives of the reference position y, undergo

* a sudden jump to zero when the feedforward input ends in order to ensure that S

any residual vibration remaining in the ideal system is damped out. This reference

discontinuity could lead to a control input that excites vibration if the actual system

differs significantly from the nominal system.

Second, the feedforward inputs have been constructed. on the assumption that X

-- the only dynamics of interest are the reference model dynamics. However, if the

actual system is sufficiently different from the reference model, additional dynamics

will exist. This can be illustrated by determining the transfer function between yO

and u; in terms of the compensator G(s), reference system model H(s), and actual

system HA(S):
YT,(S) H a(s)

S- (s) _ G )s) (1 G(s)Hv(s)) (4.14)

- u (s) 1I - G(s)HA(s
As long as HA(s) = H.v(s), only the dynamics of HV(s) occur. But if HA(S)

H.v(s), then more complicated dynamics exist which have been ignored in the design - ",

of the feedforward inputs. More specifically, the natural frequencies of the closed-

loop system will appear, although these have been neglected in the design of the

feedforward inputs. These additional dynamics could potentially reintroduce energy

i into the system at the natural frequencies to cause undesirable vibration. Because

% o .. ,

-,, o.,
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-~~ Ac+,o..( S~1z+tw%
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Figure 4.8: Block Diagram of PD Controller with Shaped Reference Input.

of these potential difficulties, we looked for an alternative method of incorporating

shaped input functions into a closed-loop system.

~4.3 Proportional-Derivative Control with Shaped

,4

e cReference Input:

,"4.3.1 Introduction:

'.'," The model- reference-based control scheme presented earlier was based on the premise ',

-,]1 that a feedforward function could be tuned to a nominal system whose response

could then be imposed on the actual system. An alternative formulation would use

, ., whatever closed-loop system has been configured as the basis for tuning the shaped..,

• input functions. Such an idea has already been proposed in connection with the

- . posicast _ 'ntr-ol concept developed by Smith [16, page 3381. In this section, the
afrequency-shped inputs will be tuned to the closed-loop natural frequencies.

In many respects, the new closed-loop system model of Figure 4.8 resembles

3that of Figure 4.. But there are important differences. First of all. the shaped

y,,,', force input no longer acts as a direct feedforward input to the control force. For

-,- sufficiently stiff systems, this extra input has little effect on the response and was
left out for simplicity. (Further discussion of the effect of a feedforward input is

-- d , _W'j~ii M
% 

%-
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presented in Section 4.3.5.)

Another important difference is the use of a simple proportional-derivative (PD)

compensator instead of the optimal compensator presented earlier. There were a

number of reasons for doing this. Motor position and velocity are readily available

for measurement in most practical systems. Thus, no estimator with its inherent ii
sensitivity to parameter errors and unmodeled modes is required to obtain additional

unmeasured states. Since actuator and sensor are colocated, the system is much

more robust to modeling errors which otherwise could lead to instability.

The full-state optimal compensator is designed to remove the resonant charac- •

teristics of the vibrating system by replacing them with its own set of dynamics. In
¢-..- this way, the compensator is trying to suppress the resonant vibration, whether it

be excited by the motion or by a disturbance. However, the assumption underlying0
the present work is that the motion itself causes the vibration and that a judicious

:' choice of input should be able to prevent" the resonant vibration from occurring at

'- all. To fully test this hypothesis, a simple compensator was used that does not try

to suppress the resonant vibration. Such a compensator also keeps the controller

simple to make it easy to implement on existing servo systems.

When a simple controller gives adequate positioning accuracy and disturbance

rejection, development of shaped inputs to reduce residual vibration is easier than

development of an optimal regulator to suppress vibration. An optimal regulator

,.. requires a system model with reasonably accurate values of the system poles and

zeros. Since the zeros are difficult to determine and are likely to vary, system

performance will suffer. Developing shaped inputs, on the other hand, requires

only a knowledge of the poles (natural frequencies), which can be determined to

reasonable accuracy.

In more complicated systems in which an optimal regulator is necessary to ensure

stability and disturbance rejection, the use of shaped inputs can still give beneficial

results. Conditions for which shaped reference inputs are useful in conjunction

*. %

,.%4, N%%

* *J. .4,
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with optimal regulators are described in Section 4.4. Thus, the use of a simple

PD controller in the following discussion is not intended to preclude more complex

compensators. but rather to highlight the advantages of shaped inputs.

A final difference in the new control scheme of Figure 4.8 is that the reference

system model has been replaced by a double-integrator. This system element gener-

ates the position reference from the shaped force profile. Its use is further clarified ,

4, in Section 4.3.3. The compensator used on the reference y,' is the same as the PD

compensator to ensure good tracking.

4.3.2 Tuning Shaped Inputs to Closed-Loop Systems:

Since the effect of feedback is to alter the dynamics of the open-loop system, the
* 

0

shaped inputs should be tuned to the closed-loop system, rather than the open-

loop system. In this way, the controller can operate as designed to ensure accurate

motion in the presence of disturbances, while the force inputs can be shaped to

avoid exciting any closed-loop resonances that occur.

To implement this strategy. the closed-loop system is treated as an equivalent

open-loop system. Figure 4.9 shows this equivalence in block diagram form. Note

that at this stage, the input to the equivalent open-loop system is treated as a force

input u which can be prespecified.

Once the equivalent open-loop system has been characterized using the given

functions for G(s) and H(s), its natural frequencies can be identified and the shaped

force input can be derived as detailed in Chapter 2. Note that the frequencies which

are to be filtered from the input spectrum are the closed-loop natural frequencies.

- Consider the ideal system model presented in Figure 4.2 with transfer function

relating motor position y to control force u* given by equation (4.3). The effect
of closing the loop around this system using the PD controller can be seen in a

root locus plot as a function of feedback gains (Figure 4.10). The damping value

is assumed to be 0.1, with mr/M 2  1. For simplicity in seeing the trend, we have -

VL
4-b%
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. :- Figure 4.10: Root Locus of Closed-Loop Poles with PD Controller as Function of

Feedback Gains k, = k2; =0.1.

system would merely move away from and ultimately return to its starting position.

Instead of specifying a force profile, we need to specify a position trajectory.

One way to do this would be to use the nominal open-loop reference system or

even the nominal closed-loop system to generate a position profile from the system

response to the shaped input. As pointed out in the discussion on the model-

reference-based control scheme, bhis element in the block diagram will introduce its
own dynamics into the closed-loop transfer function. Since the shaped inputs are

tuned to the closed-loop natural frequencies, it makes no sense to introduce the open-

0 loop natural frequencies which have not been attenuated in the force profiles. Using

the nominal closed-loop system to generate a position trajectory simply reintroduces

the closed-loop natural frequencies.

* Perhaps the easiest way to generate the position trajectory is to use a simple

rigid-body mass having the combined value m, + rr 2. This is equivalent to retaining

only the double-integrator in the dimensionless transfer function of equation (4.3).

eliminating the additional resonant frequencies. This generates a position trajectory

[::.--a

-7-,..
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that can be directly followed by the PD controller, while retaining the frequency-

shaping characteristics of the original force profile.

It is worth noting that the double-integrator is not intended to act as a filter.

In fact, as simulations will show, a doubly-integrated square wave used as position ..

trajectory still generates considerable residual vibration.-S
4.3.4 Closed-Loop Simulation Results:

Using the damped system model of Figure 4.2 with parameters ,vTs/2r 10,

, = 0.1. ml/rn2 = 1, k, = k2 = 4, and the force profile of Figure 4.11, we obtained

three sets of simulation results. The feedback gains k, and k2 were chosen to give

critically damped response for the equivalent rigid-body system with closed-loop

bandwidth twice the natural frequency. In the first simulation, the nominal system

with WA/', = 1 was used. This response is shown in Figure 4.12. The actual control

force is shown in (a), while the acceleration of mass m2 is shown in.(b). The residual

vibration has indeed been eliminated. Notice also that the control force differs from

the shaped force profile because of the feedback control action. Residual amplitude

is very nearly the same as that of the open-loop response of Figure 2.17.

The second set of results were obtained from an actual system model having

. / .'AP-V = 0.9; that is, the actual open-loop natural frequency was assumed to be

'A 10% less than the nominal natural frequency. Since this error puts the actual natural .. .

frequency at the extreme low end of the spectral notch, the damped response is

expected to give some initial residual amplitude. Because the PD controller gives

very lightly damped closed-loop poles, the actual response shown in Fig. 4.13 takes

longer to decay than that with the optimal compensator (Fig. 4.6). However, the

initial residual amplitude is smaller for the PD controller because the input has been

tuned to the actual closed-loop dynamics. The model-reference-based controller

introduces additional dynamics when modeling errors are present which increase

* the initial residual amplitude.

*
b%., %
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A third simulation gives the results when a constant opposing force of dimen-

sionless amplitude 0.0003 acts on mass m. This represents a disturbance which

is 30% of the peak input force. The ratio A,.).4,N is again assumed to be 1. This

response is shown in Figure 4.14. Notice how the closed-loop feedback compensates ii
for the disturbing force, while the shaped input reduces residual vibration.

To point out the advantages of using the frequency-shaped profiles, we also :

simulated the response to a square wave force input u . These results are shown in

Figure 4.15. At the end of the mc-ve. considerable amplitude of residual acceleration

remains that must be damped out by the relatively lightly damped clos, d-loop

controller. %

4.3.5 Effect of a Direct Feedforward Input: S

If the shaped force input, u of Figure 4.8, is fed directly into the controlled system.

the new block diagram will look like Figure 4.16. The transfer function between y,.

and u; when this feedforward input is included is given by

_H 4 (s) (2k k) (4.15)
U(S) 52J - (k, - k2s)HA-.,,

This compares with the transfer function when feedforward is absent:

%Y (S) HA(S)., y~s) a~a)(k,. ki) (41.16) ,V

u (s) s2'1 + (k, -t- k2s)HA(s)l k .-..(16

Basically, then, the feedforward input generates an additional acceleration reference

signal. This will tend to improve tracking performance by enhancing the higher-

frequency components of the input function ut.
V" ?

As the transfer function (4.15) makes clear, the use of a direct feedforward signal .._ -.

will enhance frequencies of the input function a,; above the break frequency given by

v TT. For a system which is relatively stiff, with large k1, this effect is insignificant.

In our simulations, we used a value k, = 4. This suggests that adding the di-

rect feedforward connection only serves to enhance frequencies which are twice the

No

0* %0
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.,.s HA (S)) We (S)

NN

Figure 4.16: Block Diagram of PD Controller with Shaped Reference Input Including

a Direct Feedforward Input.

natural frequency of the system and higher. When the dimensionless closed-loop

* natural frequency ;cT,/i2,r is 7, this suggests that only dimensionless frequencies of

14 and greater will be enhanced by feedforward. As the frequency spectrum of Fig-

ure 4.11(b) shows, there is very little energy in the shaped ramped sinusoid inputs

above wT,1'2r = 14. Thus, we would not expect feedforward to markedly affect the

response in this case.

However, for systems which are relatively compliant, the additional feedforward

input can make a difference. For the sake of argument, assume that for a particular

move distance, force level, and inertia value, the dimensionless closed-loop frequency

%., .AcT,/27r is 2. Also, assume that the position loop is relatively compliant, with a

value k, = 0.25. This suggests that a direct feedforward input will amplify the

frequency components of the shaped input above wT,1/2r = 1. This represents a

significant part of the input spectrum. as shown in Figure 4.17(b).

Simulation results comparing responses with and without feedforward are shown

in Figures 4.18 and 4.19, respectively. The total control input u" is shown in (a),

with the acceleration of mass m2 shown in (b). The response does lag behind a[small amount when the direct feedforward signal is left out. But even under these

conditions, the advantage in using feedforward is minimal.

Thus, the effectiveness of a direct feedforward signal contributing to the control

.%

*% 0
r.p,. -*
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Figure 4.17: Ramped Sinusoid Input Tuned to ,,T,/2ir = 2 ± 10%: (a) Time
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4.4: Suppressing Vibration Using Optimal Regulators: 86

effort is related to the stiffness of the position loop. For a relatively stiff control loop, '

feedforward can be left out with very little effect on performance. For compliant 0

systems, the use of a feedforward input may speed up the response. This would

be especially useful for improving the performance of feedback loops which require

small position gains for stability.

4.4 Suppressing Vibration Using Optimal Reg-

ulators:

4.4.1 Introduction:

The preceding section has emphasized the use of shaped reference inputs to reduce

residual vibration. The PD compensator that was used to achieve accurate positions M

does not actively suppress vibration. Instead, excitation of system natural frequen-

cies is minimized by using appropriately shaped reference inputs. This approach

highlights the effectiveness of shaped inputs but ignores vibration suppression that

can be achieved by more sophisticated compensators. Optimal regulators can serve

as effective controllers to actively suppress vibration for systems having several nat-

ural frequencies. This section discusses optimal regulators and identifies several

conditions for which they do not sufficiently reduce residual vibration without the ,I_.

use of shaped inputs. I"..
"

Two different cases for which optimal regulators cannot adequately suppress

vibration will be investigated. First, we will show that optimal regulators can only

achieve limited closed-loop damping ratios for the higher frequency modes. Second,

we will describe a system having a mode which is nearly unobservable and therefore

cannot be adequately compensated.

In both of the examples used to illustrate these conditions, we will apply linear-

0 quadratic-regulator (LQR) theory to develop a state feedback controller. Feedback S

* 0

~ ' "NN
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.%~~ -. .4,-

4.:

""Figure 4.20: Block Diagram of Optimal Regulator State Feedback Controller.

gains were determined by minimizing the following performance index,

1 r + puIAt,(.7

iwhere y2 represents the dimensionless endpoint position whose deviation from a

'N desired trajectory we wish to minimize, and u" is the dimensionless control effort of

the actuator. We will assume that all system states are available for measurement

to simplify the analysis.

State feedback derived from the optimal regulator formulation is augmented by

a reference input to bring the system to the desired position. The complete closed-

loop system is shown in Figure 4.20. The system state vector x is multiplied by the

state feedback gain vector k, . The reference position y, is multiplied by a position

gain k, that causes endpoint position y: to follow the reference.

- Finally, the reference is generated by doubly integrating a square wave force

4-* profile u . Typically a simple step reference would be used to achieve the desired

position. But since we recognize that real actuators are force-limited, we will follow

* a realistic position trajectory which achieves time-optimal motion for the equivalent

rigid-body. The task of the state feedback regulator is to maintain this trajectoryr by minimizing vibration in the actual system.

L'. Results using this control scheme with the integrated square wave input will ._ ,
S 0

be compared with results using the rai,1ped sinusoid force input to generate the

F1~
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Table 4.2

Definition of Dimensionless Parameters

.2• .4
~~t* = ,;it/i2,r_

.u
Y: Ye

Y~f

(MI + m2 + m3 )Y 1 2 .N

* ,

reference. The shaped force input is also transmitted directly to the system as a

feedforward signal to improve response, as indicated by the dotted line in Figure 4.20.

The same controller is used regardless of reference input. These comparisons for the S

two cases being considered serve to illustrate the importance of carefully shaping the

reference input to minimize residual vibration when the optimal regulator cannot

do it alone.

4.4.2 Limited Closed-Loop Damping Ratio:

* Even though optimal regulators are designed to actively damp out system vibration,

they are limited in the amount of additional damping they can impose on the system 'I.

modes. To illustrate this phenomenon, we will look at the response of a lightly- %

* damped three-mass system (Fig. 4.21). The dimensionless parameters used for

this system are defined in Table 4.2, where yf is the final position and W is the

undamped natural frequency of the first mode of vibration. The second mode is

given in dimensionless form as w2 / 1 . Damping ratios for the first and second modes

are (I and (2, respectively. The transfer function relating the endpoint position y:

, ,,

4',V ' \ *.



0 4.4: Suppressing Vibration Using Optimal Regulators: S9

:: f.- x ,3 Vax

i M2

', " Figure 4.21: Damped Three-Mass System Model.i

, to the control effort a* is given by:

:',r, .' u'~~Y(s) s( _2 ,s + 1)Is 2( so +  , 2 1 ] 48)-"" ""

-- 4 2 j 1)1 / ( E J)

r., *An optimal state feedback regulator was designed for this system using a control

t&_- ,weight p = 1/49. This weighting penalizes endpoint vibration more heavily than the

; . , control effort. System parameters were chosen so that UJ2/1w = 2. and C, = C2 = 0.1. %

Results whnthe square wave freprofile generates the reference for a dimensionless J

move time wT,1i21r = 1.5 are shown in Figure 4.22. The control effort u* is shown in

! , ~ ~(a) and the endpoint acceleration *' in (b). Even though the first mode bration is ., "

• " damped out quickly by the state feedback regulator, the second mode continues to .,

--- ]oscillate for several cycles. This suggests that the optimal regulator is less effective

":"at actively damping out the higher frequency. In fact the damping ratio of the most

y .:. lightly-damped closed-loop poles is only 0.15.

• To explain why optimal regulators give lower closed-loop damping ratios for-'

" ~~higher modes, we will look at the typical configuration of poles in optimally regulated; ,"- "

systems. As the control weight p approaches zero, all the closed-loop poles which do .

'_ not go toward the open-loop zeros will approach a Butterworth configuration in the

."-. left-half-plane 68]. In general, a lightly-damped n-mass system like that of Figure.

' ? 4.21 will have 2n open-loop poles and n - I real zeros. Thus, n+1 closed-loop poles

".--- will approach the Butterworth configuration. Such a model has been shown to be a '

." , , good representation of dynamic systems, Eike industrial robots, having transmission

00
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compliance and structural flexibility [691. The number of masses contained in the

model will go up as more vibration modes are included. As the number of masses

n increases, the closed-loop poles closest to the imaginary axis will become more

and more lightly damped. For r = 2. the damping ratio is 0.5; for n = 5. it is

only 0.26. Even with infinite control effort available (p = 0), these closed-loop poles

cannot achieve higher damping ratios than those dictated by the Butterworth pole

configuration.

Often, these ideal pole locations cannot be achieved in practice because of band-
'I

width limitations. Since the dynamics of real systems cannot be precisely known.

some modeling error can be expected. Ignoring some of the higher natural frequen-

'o cies in the system model may lead to instabilities unless control gains and hence

bandwidth are reduced [361. Some modeling errors can lead to a flip in the rela-

tive locations of open-loop poles and zeros which can also drive a system unstable

129]. Again, bandwidth must be reduced to guarantee 'stability. Under these cir-

cumstances, some of the higher frequencies will not be adequately suppressed by the

.. ." optimal regulator and lightly damped residual vibration can be expected. o,

g ,.. When we use a shaped ramped sinusoid force profile to generate the reference

trajectory for the optimal regulator, residual vibration of the second mode can be

reduced. The ramped sinusoid input function we used was constructed to minimize

excitation energy at two frequencies: ,uT,/2ir = 1.5 and w,T,/27r = 3. This time
function is shown in Figure 4.23(a), with its frequency spectrum in Figure 4.23(b).

* Response of the three-mass system to this reference input is shown in Figure 4.24.

Notice that residual vibration has been minimized for both natural frequencies.

Because an optimal regulator cannot always guarantee well-damped response, it is .- ,

helpful to use shaped reference inputs to generate motions which do not excite the

lightly-damped modes.

J1.
* %
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_ I
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%

Figure 4.25: Two-MNass System Model Exhibiting Weakly Coupled Torsional and

e ~Translational Mlodes.

7 :-

* 4.4.3 Nearly Unobservable Modes:

Another case in which optimal regulators fail to give adequate performance is in

systems having nearly unobservable modes. This occurs when the system consists

of several subsystems that are only weakly coupled. A simple example is a Cartesian

robot whose axes are not exactly orthogonal to one another. In that case, -ocion
0

in an axis can excite vibration in the other axes. Such systems are characterized by

transfer functions having open-loop pole and zero pairs that almost cancel. These

poles cannot be adequately compensated using an optimal regulator.

0.A good system to illustrate this kind of behavior is shown in Figure 4.25. This

system is basically a two-mass system but the second mass M 2 can exhibit rotation

as well as traslation. This rotation is resisted by a torsional spring K and damper

SiB. Such a model may be used to represent a positioning axis riding on linear 

bearings, which have a certain finite stiffness. The endpoint position y, will sense

both the translation and the rotation of the second mass as measured at the edge a

* distance ft from its center of mass. To accurately position this mass, the endpoint
01'

!i'P
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Table 4.3

Definition of Dimensionless Parameters

0 Ye
Ye 

Y

WYf

22

(In + M 2 )YfWl

must undergo pure translation. That will be the goal of the optimal regulator.

Because any asymmetries in friction on opposite sides of mass M 2 will cause it to.9,

pivot, the line of action of the force transmitted through the spring k and damper

b will be a certain distance E2 from the center of mass of M 2 . For simplicity, mass

m, will be assumed to be square, with sides of length 2cl. Thus. its mass moment

of inertia I is given as
2 M 2 6. (4.19)

% ~3 V

Dimensionless parameters can be defined as shown in Table 4.3. The desired final

position y! is used to normalize endpoint position y, The undamped natural fre- ,

quency w, corresponds to the frequency for the purely-translating two-mass system

(Fig. 2.13). Another natural frequency 1 2 corresponds to torsional vibration of

mass in2 :

o W2 =y- (4.20)

In dimensionless terms, this second mode frequency is given as w2 /, 1W. Damping ra-
A tios of the first and second modes are (I and (2. Additional dimensionless parameters

used in this model are the ratios m2/Mt and 2/ct. -

'-a

... ..
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a,. The transfer function relating the endpoint position y: to the control effort uI
/can be expressed as

y:(s) 0.17(s - 5.0)(s2 -- 0.02s + 4.7) (4.21)
" s) .2(s2 + 0.2s + 1.0)(s - 0.02s -+- 4.0)

for parameter values rn, m= I, 6/ 1 =- 0.1, ,2' 1 2, and ( = 2 0.1. Notice

the presence of a lightly damped pair of zeros nearly canceling the lightly damped

poles representing the second mode. The existence of these zeros near the vibrating

poles is characteristic of systems having weakly coupled subsystems. In this case,

the torsional mode is only weakly coupled to the remaining two-mass translating

system.

An optimal regulator can be derived for this plant model and combined with a

. reference input to follow a specified trajectory. Control weight p = 1,149 was used to

determine the state feedback gains. Rigid-body response to a square wave force was

used as a reference trajectory (Fig. 4.20). Results for a dimensionless move time

, 1T,'27r -- 1.5 are shown in Figure 4.26, with control force u° in (a) and endpoint

acceleration j" in (b). The second mode continues to vibrate for a considerable time

after the system reaches the desired position. In fact. the closed-loop damping ratio

for this mode is only 0.03.

4, This response can again be explained by making reference to the closed-loop

pole configurations of optimal regulators. As control weight approaches zero, some

of the closed-loop poles approach the open-loop zeros. As the transfer function (4.21)

* makes clear, two of these poles will approach a pair of very lightly damped zeros.

having dampihg ratio of 0.005. No matter how high the controller bandwidth is

made (p small-), this pair of poles will always dominate and give vibratory response.

When the reference trajectory is generated from a doubly-integrated ramped

sinusoid input (Fig. 4.23) and a direct feedforward signal is added, then the response

"- of Figure 4.27 results. The system undergoes the same move (A1 T,/2r = 1.5).

Notice that this time the residual vibration has been eliminated, even though the

same state feedback compeniator was used.

r ,V
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These examples illustrate the advantage of using frequency-shaped reference in-

puts in order to improve the performance of state feedback control systems. When

banctwidth limitations prevent adequate damping ratios of higher modes, or when

nearly unobservable modes prevent effective compensation by optimal regulators.

the use of shaped inputs can significantly reduce residual vibration.

4.5 Closure:

This chapter has presented two alternative methods of incorporating a shaped force

input into a closed-loop system. The first technique uses a reference model of the

open-loop system to impose the desired performance on the closed-loop system.

With modeling errors, however, this control scheme can introduce closed-loop nat- -

ural frequencies tha will not be attenuated by force profiles tuned to the open-loop

natural freqtiencies. Therefore, a second implementation was presented that tunes

the shaped inputs to the closed-loop natural frequencies. A simple rigid-body model

of the system generates a reference position profile from the shaped force. A simple

PD compensator is used to illustrate the effectiveness with which shaped inputs
alone can reduce system residual vibration. Then. several cases were presented

for which even an optimal regulator provides inadequate performance. The use of

shaped inputs in those cases helps provide good response with minimum residual

.%, vibration.

i S
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Shaped Inputs for

Velocity-Limited Systems

Chapter 5

5.1 Introduction:,

In generating force profiles up to this point, we have assumed that the systems 5

to be controlled can always reach peak velocity. Since all these inputs resemble a

single cycle of a square wave, the move consists of only acceleration and deceleration

regions. No time is spent coasting at the peak velocity. If the system has a maximum

allowable speed, the force input must be scaled down until the peak speed achieved o%

W during the move falls within the velocity limit. This can lead to unnecessarily long

move times for longer moves. An alternative is to develop a new set of force profiles

that allow motion at constant velocity and give velocity waveforms resembling a

trapezoid. Such force profiles will be developed in this chapter.

.4 Velocity limits can occur in physical systems for a number of reasons. Typically,

peak motor velocity is limited by saturation in the amplifiers. With a limited supply

voltage available to the amplifier, the motor can accelerate only up to a speed where

this voltage just cancels the voltage drop across the winding resistance and the back

4-, emf voltage. A plot of motor velocity as a function of time for a typical amplifier -

100
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Figure 5.1: Motor Velocity for a Typical Saturating Amplifier.

giving full voltage output is shown in Figure 5.1. Notice that a-velocity limit is

reached gradually. Other possible reasons for limiting peak velocity are requirements

S. on the speed with which balls can circulate in a lead. screw or requirements on
decelerating large inertial loads.

In this chapter, we will develop open-loop force profiles, analogous to the ramped

sinusoid functions of Chapter 2, that accelerate a two-mass system to a specified

velocity. These open-loop functions will be used directly to accelerate this system to

peak velocity, and will then be incorporated into the closed-loop scheme presented
0

in Chapter 4. Finally, a complete force profile will be constructed, consisting of

acceleration, dwell, and deceleration regions, to achieve any desired position.

5.2 Development of Shaped Functions:

Typical systems with velocity limits approach peak velocity gradually. The accel-

eration during this period is constantly decreasing. Thus, the force or torque that

10•
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can be applied during acceleration is a maximum initially and then decreases. Since

the exact nature of this allowed force variation with time depends on the type of 0

amplifier being used, as well as other system characteristics, we decided against

trying to model this time-varying force signal. We chose instead to approximate
the open-loop force profile by assuming that the acceleration (and deceleration) are

constant. This can be accomplished by using constant force during acceleration and

deceleration. While the system is coasting at the peak velocity, the input force is

zero. This is only true under ideal conditions when no damping to ground or friction

is present. However, feedback control can be used to compensate for this effect.

The trapezoidal velocity waveform that results from the use of constant accel-

erating and decelerating force pulses is necessarily slower than the actual velocitv

* profile if saturation is to be avoided. But acceleration and peak velocity can be ad-

justed to give a trapezoidal profile that optimally fits within the actual achievable

profile. Details of this development are given in Chapter 6. -Thus, even though a

trapezoidal velocity waveform is not the best response that a particular system can

.. ,.. achieve, it serves as a reasonably fast reference response that avoids saturation.

In order to produce a trapezoidal velocity profile having a constant velocity

region where the speed remains constant, the force profile must consist of three

regions: acceleration, dwell, and deceleration. Ideally, the acceleration and deceler-

ation regions resemble rectangular pulses in order to optimally utilize the available

force. However, with their large discontinuities, these pulses cau.e considerable vi-

. bration when applied to the system. Thus, a smooth version of a rectangular pulse is

needed that has energy removed at the system natural frequency. This force profile

will accelerate the system to peak velocity.

* Such a smooth profile can be constructed from a versine (1-cosine) function, 

shown in Figure 5.2. Notice that there are no discontinuities in slope at the beginning

and end. When higher harmonics of this function are added to the fundamental.

* a function resembling a rectangular pulse can be created. The coefficients of the

.. %

VM % t,,



5.2. Dcvelopment of Shaped Functions: 103

~1.00 -

W 0.90 -

= 0.80

Z 0.60

0.40 - %m

0.20

0.10

0.00 -%.-uo.oo L
0.00 0.10 0.20 030 .40 o0.50 0.60 .jO an o." 1.oo

Normalized Tine

Fundamenatal Versine Function

Figure 5.2: Fundamental Versine Function. -1

harmonics can be chosen to minimize the energy of the resulting function at the

system natural frequency. This requires that the frequency spectrum of the function

be minimized at the natural frequency. This can be accomplished by performing an

optimization in a manner analogous to that done for the ramped sinusoid functions
of Chapter 2. Preliminary discussion of this development is soon to be published 701.

Shaped input functions will be constructed for a two-mass system as before (Fig. e.0

5.3), having undamped natural ,aequency Le, and dimensionless parameters as given

in Table 5.1. The parameter vp represents the peak velocity and TR represents the

time to move the equivalent rigid-body mass to peak velocity vr, using a rectangular

pulse input having peak force F. As in Chapter 2, dimensionless parameters use the

nominal natural frequency (,,v, while the actual natural frequency WA is represented

by the ratio W'W,v. To simplify the derivation of the shaped versine inputs, an

undamped system model will be assumed, which has a damping ratio of zero.

In general, the input functions can be represented by the following series expan-

6 d y
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sion, where Bt is the coefficient for each harmonic, and Tp represents the time for Ii
the versine response to reach peak velocity:

L:' f t) = "Bt P;(t) (5.1)

Cos (5.2)

The goal is to choose appropriate values for Bt that will minimize the time Tp1

and minimize the magnitude of the frequency spectrum over a range of frequencies -

surrounding the system resonant frequency W,.

.ITo achieve this. we will combine these objectives into a single minimization prob-

leni to pick the coefficients B,. To minimize T, , we will minimize the square of the

difference between the versine series and a rectangular pulse. In addition, a sec-

ond expression will be added to minimize the squared magnitude of the frequency

spectrum F at several frequencies w, surrounding the system resonance. A weight-

ing factor p determines relative weighting between these objectives. The overall

objective function J represents the quantity to be minimized.

J JT=- , - f(t)]2dt + p'(WTR)2 F*(w p (.4)
' 0=1

In this formulation, we have chosen 11 frequencies surrounding resonance to satisfy

- the spectral magnitude constraint. The upper and lower limits on frequency can

,' be adjusted to give any desired frequency band. For a 410% frequency range, the R

bounds on the frequency u;, are 0.9w,, < Ai < 1.

The coefficients of the harmonics B, can be calculated by differentiating the

* objective function J with respect to B,, where r represents a particular value of the 0

index t, and setting the result to zero. This gives an expression explicitly in terms

of B, and I' :
L

E Bt It = 1 (5.5)

2'.'

* r

% - %a %'a * * Pa P~p W ~ P -

* WaP,.W*%P'a.*r
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where

r2 '1 e2 r2

+42r iR) (2r)2 - ( 2-r)2 -,r2 (5.6) 

( =(5.7)
1.5 r =

If the time T, is known then I' is known and the coefficients Bt can be deter-

mined by simply solving the following set of linear equations, expressed in matrix

form: "

where 1; is a vector of l's. Unfortunately, T,, is not known until the coefficients B1  I
are known. The dependence of T, on Bt is given by

T= [v TR (5.9)

where

SF -t (.11)

(in1 -m2)vP

SF is a scale factor which normalizes the peak of the function to . TR represents the

time to reach peak velocity vp when the input is a rectangular pulse of magnitude F.

rv is a function of Bt that ensures that the resulting input signal brings the system

to the desired velocity. Since the versine functions cannot supply as much energy for

the same peak force as the corresponding rectangular pulse, they will take slightly

longer to reach peak velocity. This time penalty is represented by Fv.

S."Due to the inherent coupling of Bt and Fv, an iteration scheme is necessary toW

correctly compute values for the coefficients Bt. This iterative procedure is com-

pletely analogous to that for the ramped sinusoid functions of Chapter 2:

1. Determine w,TR for given peak velocity and system parameters.

% -%
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2. Guess a value of v. (Note that v is slightly greater than l)

i 3. Solve for Be by solving the tuatrix equation (5.8). 4

4. Normalize the versine series expansion by determining the value for the scale

factor SF.

5. Calculate Fv using expression (5.10).

AA

V6. Use the new value of Lv to update Be.

7. Repeat until rv converges to acceptable accuracy (error with respect to pre- 5

vious value is less than 10- '- ).

Using the procedure outlined above, we can derive functions that satisfy our

.. objectives. We used a total of L = 15 terms for computational efficiency while
retaining enough parameters to achieve acceptable minimization. A good compro-

mise between minimizing acceleration time TP and minimizing spectral magnitude

is achieved for a value of p = 10. Note that larger values of p will give lower spectral o

"magnitudes and slightly longer acceleration times. Results for two nominal values of

* the dimensionless parameter,,;,T" 2,'r (7 and 10), minimizing spectral magnitudes at

11 frequencies extending ±10% around resonance, are shown in Figures 5.4 and 5.5.

The time function is shown in (a) and the frequency spectrum is shown in (b). No-

*5:* - tice that the spectral magnitudes for the entire range of frequencies extending = 10%

about wTR have been significantly attenuated.

5.3 Shaped Versine Inputs for Several Natural

Frequencies:

The approach outlined in the previous section can also be extended to iminimiize

excitation energy at several natural frequencies. The new objective function can be 'V

%. " , .

"a,¢ ". € ' % ' 's. ,.,.', - ,- ,,, , , .. " , .%," .- % e . .. , -. ,% .r - ;€ '4' " "' "' .5.. "



05.3: Shaped Versine Inputs for Several Natural Frequencies: 108

g.00

S0.900

0.70

z 0.60

0.5

0.40

0..30

0.20

0.10

0.0 2.00 4.00 6.00 8.00 lamS 12.00

Dimensionless Time

v. ' Versine Input

(a)

*~1~* .n 0.00

-10.00

* * 4-0.00

.30.00

.4.0 -

- ~.. .0.00

-70.00

490.00
*I

-100.00
- 0.00 5.00 10.00 15.00 20.06 25.00

Dimensionless Frequency

% Frequency Spectrum of Versine Input

(b)

*Figure 5.4: Versine Input Tuned to wTR/27r =7 ±10%: (a) Time Function (b)

Frequency Spectrum.



5.3: Shaped Versine fnputs for Several Natural Frequencies: 109

0.90

O.8O

z 0.60

0.50 0

0.20

0.100

& - 0.00 2.00 4.00 .0 8.00 10.00 12.00 14.00 16.00

Dimensioaes Time

Versine Input

(a)

S 0.00

*.10.00S-20.00

-30.00
Vl 40.00-

i.50.00
.60.00

N" ~.70.00

• .90.00 -_

.100.00 -
0.00 5.00 10.00 15.00 20.00 25.00

Diniensionlee Frequency

Frequency Spectrum of Versine Input

V . ( b ), , -

Figure 5.5: Versine Input Tuned to wTR/27r = 10 - 10%: (a) Time Function (b)
W- 6Frequency Spectrum.

S .



0 5.4: Shaped Versine Inputs for Lightly-Damped Systems: 110

expressed as

JL 1- f(t)]2dt - (,,TR)'jF*(aT') j2 (5.12)

where M is the total number of modes (natural frequencies) to attenuate, and , is

given by

(I - p,) , < a, (-p, ,, i-m,. 11m (5.13)

where pm represents the fraction of nominal frequency that determines the upper

and lower bounds of the frequency band surrounding the nominal natural frequency
0

w,,, for the mth mode.

When this minimization is carried out as before, a new set of coefficients are de-;,,,%

termined. A versine input attenuating three natural frequencies at ,T,/."27r = 1.5.

.- 5. and 10 with 10% frequency bands is shown in Figure 5.6(a), with corresponding

frequency spectrum in (b). Notice that all three frequencies have been attenuated

as specified.

5.4 Shaped Versine Inputs for Lightly-Damped

Systems:

In section 2.6 of Chapter 2, we presented results that showed the effect of inherent
4.-

system damping on the residual acceleration amplitudes when the system is driven

by a particular shaped input. We can now apply those results to the versine functions

-? developed here. We will use the single-resonance model (Fig. 5.3) for simplicity. ,

The entire development follows exactly as in Chapter 2, except that the Fourier

transform of the versine function is expressed as

"F() - F2(L) -  2 (.5.14)

• - her

.0.* FTp- B( 2re)sin~ I
w Fa SF 2-, 2Tr - - , ().1.5)

irll
4:

-* - 5f..% ,:::' . . . "I- ' " "x. -. . . . .
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F is the peak force, and SF is a normalizing scale factor. This modifies the expression I
for the square of the residual acceleration amplitude to be in terms of FR(w) rather

than FI(,) as in (2.38):

"42 , , 2 e-c' r TP q
. = 4 - - + 1C.',)FR(- ,v t 2 + jC.5,). (3.16)

Mjn 1 M-

When the expression for FR(w) is inserted into (5.16), the dimensionless residual

acceleration amplitude can be expressed as

2 T 2  s 1 2 C 2

)2 A e-w( S ch' +csh 2

(A*) (F/(m i ) =s 4 (wno) (wTp) %

L L BtB,(2rt)2 (2rr )2 [(27rf)(2irr) + 4<2(1 ( 2 )(wTU) 4 ] (.)'
0 E F- (5.17)'7r -- ~ jw~i

where s. c. sh. and ch are defined as

s= sin - . (5.18)

T,
c = cosw, , (3.19)

sh =sinh j (3.20)2
ch = cosh (3.-1

and the functions P(27rt) are defined as

(27't) 2 - (1 - 2<2 )(w,,T')2 . (5.22)

Expression (5.17) gives the dimensionless peak residual amplitude for a versine

input as a function of the dimensionless frequency wTp. Using the known value of

Fv for a particular versine input, this functional dependence can also be expressed

in terms of ;TR.

Some typical plots showing this functional dependence for several different values
of ( with.a versine input tuned to wo,TR/2r = 10 are shown in Figures 5.T to 5.9.
For the case when = 0 (Figure 5.7), the plot of residual amplitude as a function

C';.

- -. "

% %
:"Z a "''.
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Figure 5.9: Residual Acceleration Amplitude as a Function of OTRI27r for Versine

Input Tuned to w,,TR = 10 - 10%; c" = 0.3.

of frequency resembles the frequency spectrum of the versine input (Figure 5.5). It

differs from the frequency spectrum because it represents a,TR times the frequency

spectrum. As C increases from = 0.1 in Figure 5.8 to " = 0.3 in Figure 5.9,

the residual acceleration function becomes smoother, the valleys rise and the peaks

V drop. In general, the range of frequencies over which good vibration attenuation is

maintained is reduced as the damping ratio increases.

For lightly damped systems, the effect of damping is small enough that ver-

sine inputs with notched frequency spectra will work quite well. For more heavily

S damped systems, the expression (5.17) for residual acceleration could be inserted S
into the objective function J of (5.4) in place of the frequency spectrum. This would

ensure small residual vibration over the specified frequency range.

* 0

5.5 Closed-Loop Simulation Results:

The force profiles that we have just developed are suitable for open-loop implemen-

tation, where force inputs can be directly specified. In closed-loop systems, however,

",.

-- S.',
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the for,, input is typically determined by the combination of a reference trajectory

and several feedback signals. Thus. only by specifying a reference trajectory can the

force input be affected.

We will again use the closed-loop control scheme proposed in Section 4.3 of

Chapter 4. A damped two-mass system model is used as the plant (Fig. 4.2).

Motor position and velocity are measured and fed back with gains k, and k2 as

shown in Figure 4.8. This represents a simple PD controller. The control input

U' is generated from a reference signal y: and from the motor feedback position 'U
and velocity. An advantage of this control scheme is its stability robustness when

system parameters change. Stability robustness improves when actuator and sensor

are colocated at the motor.

The force profile used in this control scheme must be tuned to the closed-loop
!natural frqece.For the PD feedback lopwith kt k 4. the dominant ,'7.

closed-loop natural frequency Fs 70% of the open-loop natural frequency. Thus, the "
natural frqenis Fo7h0Pedb o opwtth 2 = te domnan

versine force profile should be tuned to a natural frequency which is 70% of the

open-loop natural frequency.

Once the proper force profile has been tuned to the closed-loop system, the %

corresponding reference trajectory can be determined. The reference trajectory Y,

is generated by doubly integrating the force profile ud. This generates a position S

reference signal which contains very little energy at the specified closed-loop natural

frequency.

* For a system model with parameter .vTR/2-r 10, where av represents the

nominal open-loop natural frequency, the shaped input must be tuned to c TR2r =,.

7, where wc corresponds to the closed-loop natural frequency. This force profile is

shown in Figure 5.4(a). Using this force profile in the closed-loop control system

leads to the simulation results shown in Figure 5.10. The actual control force u" is %

shown in (a), while the endpoint acceleration of the mass distant from the motor is

shown in (b). When the force ends near the dimensionless time of 15, the system

00

% • % %

% %" %""',.. :: [. : - ; -.. .. .- .. . - . .. ,' .. ''' 'x,,.%,x,,..,.-w,
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has reached peak velocity. As the acceleration signal indicates, the system achieves

peak velocity with very little vibration remaining as it begins its constant velocity "

region. dpe

The situation described above represents the case when the closed-loop natural

frequency is known exactly. When the actual system frequency differs from the

nominal natural frequency for which the inputs were constructed, the simulation

response of Figure 5.11 results. In this case, the ratio of actual natural frequency to

nominal natural frequency was assumed to be WA/aN = 0.9. Notice that the residual

vibration has increased compared to that when no error in natural frequency exists. ,

This is due to the effect of damping. However, the response is still quite good despite

the error in natural frequency.

It is instructive to compare these results with the response obtained by simply

using a rectangular pulse as the force profile. Simulation plots for that case are

shown in Figure 5.12, again with control foree in (a) and endpoint acceleration in

(b). Notice that considerable vibration occurs when peak velocity is reached after

11 dimensionless time units, and this has not decayed to the level achieved by the

shaped profile even after 20 dimensionless time units. Thus., the shaped versine

profile achieves peak velocity with considerably less vibration than the rectangular

pulse.

5.6 Development of Shaped Inputs to Reach a
Spr

Specified Position:

So far in this chapter, shaped inputs have been developed in order to accelerate

a vibrating system to peak velocity with minimum residual vibration. In order toF;ii arrive at a desired position, the system must also be brought from peak velocity to .' .

rest usin5 a shaped decelerating force profile. This can be accomplished by using

-- exactly the same force profile as for acceleration but with the opposite sign. The

0 4,%
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,) only remaining parameter to be determined is the tine for which the system moves ,

at peak velocity.

In order to ensure that the system arrives at the desired final position yf. the

dwell time Td at which the system moves at constant velocity v should be deter-

mined as follows: -

Td =L - TP (5.23)
Up

In dimensionless form, this can be rewritten as

IaN,, i = ; - ,,;NT . (.5.24)

A typical force profile, with the corresponding velocity profile and position tra-

jectory is shown in Figure 5.13. Notice that the velocity resembles a trapezoidal
7.. profile. -0..a .

**.. ,,

For a dimensionless distance y; giving a dwell time of jvTd =avTp for the
versine input, the simulated nominal system response with PD feedback is as shown

in Figure 5.14. Notice that the acceleration amplitude remains low after both the

acceleration and the deceleration phases of the motion.
In comparison, the rectangular pulse input for the same distance y; has a dwell

time of ,,,vTd = y; - w.VTR. This is longer than the dwell time for the versine input

since the system accelerates and decelerates more rapidly with the rectangular pulse

input. System response for the rectangular pulse input is shown in Figure 5.15. As
before (Figure 5.12), there is considerably more vibration after acceleration and

deceleration with the rectangular pulse input than with the versine input.

.:' A comparison of move times shows that the rectangular pulse input is faster

if the additional settling time is ignored. But this time advantage is lost by the

0 %' additional time required for the vibration to settle. For longer moves, the versine

time penalty becomes comparatively smaller because the longer acceleration time

becomes a smaller fraction of total move time. This can be seen by expressing total

*
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ified Distance with Versine Input; y;/27r = 28.6, w,vTR/2r = 10, wcTR/ 2 7r = 7,

= 0.1: (a) Control Force (b) Endpoint Acceleration Response.
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move time as

.V Tf =22'NTp .T -,,=v- rv.vTR. (5.2-5)

The effect of rv > 1 becomes smaller as the distance y; increases. Thus, the time

penalty in shaping the inputs becomes less important for longer moves. .

An additional advantage of versine inputs is that for a given set of system pa-

rameters and peak velocity, only a single shaped function needs to be derived for

all moves which are long enough to at least reach peak velocity. This can greatly

simplify the computations needed to develop inputs for any desired position. In

comparison, the ramped sinusoid inputs need to be rederived for each new position.

For distances which are short enough that the system cannot reach peak velocity,

the ramped sinusoid inputs are preferred. This is because they only reduce vibra-

tion at the end of the move, while the versine inputs reduce vibration after both

the acceleration and the deceleration phases. These more stringent constraints on

the versine input generally increase the total move time compared to the ramped

sinusoid input. Thus, ramped sinusoid inputs should be constructed for all moves

which can just reach peak velocity. For all longer moves, the versine inputs should

be used.

5.7 Closure:

This chapter has presented the development of a new set of functions that can

be used for systems having a velocity linit. Shaped versine inputs can accelerate

Ar1 and decelerate the system with very little residual vibration. The total time to

cover a specified distance is longer for these shaped inputs than for rectangular

pulse inputs. But rectangular pulse inputs generate residual vibration that requires

additional time to damp out. For longer moves, the time penalty associated with

shaped versine inputs becomes less important. With moves long enough for the ."A

system to reach peak velocity, the versine input need only be constructed once andS

. e. 1L ' .
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only the dwell time must be altered to arrive at any desired position. For shorter

moves, the ramped sinusoid functions of Chapter 2 must be determined for each

desired move distance.
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Modeling the MIT Cartesian

Robot iiii
Chapter 6

6.1 Introduction: A
Having presented a set of shaped force inputs and a control scheme in which they can -

be incorporated, we are now in a position to apply these inputs to a physical device

the MIT Cartesian Robot 171,72]. This chapter will develop a detailed model

of the robot structure, actuators, and digitally-implemented control loop. Once

this model has been verified by experimental results, it will be used to determine

optimum parameters for the velocity profile generating a specified motion.

The MIT robot was designed for stiffness and speed. A schematic is shown

in Figure 6.1. A Cartesian configuration was chosen in order to minimize coupling

".: between axes and to simplify trajectory calculations. This arrangement also permits

higher stiffnesses. The cantilevered top frame permits maximum access to the robot

workspace. Structural members are constructed of steel box sections welded and

bolted together. Moving elements are made of hollow aluminum weldments for

maximum stiffness-to-weight ratio.

- The moving elements - X,Y, and Z carriages - move on cam rollers stiffly

1260,,. .I
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Ls + R r- :

Figure 6.2: Block Diagram Model of Actuator.

~preloaded against ground steel ways. Three Aerotech DC permanent magnet motors

. drive the axes. Ground ball screws convert motor rotation to translation of the X

; ... and Y carriages. The Z-axis uses a rack and pinion drive. Further details on the

design and construction of the MIT robot can be found in Vaaler _71 and Podoloff

,A -,t

SPower for the Aerotech motors conies from an Autoniatix pulse- widt h- nodu-
lating amplifier. which uses both current and tachometer feedback. Motor voltage is.

, ~supplied by varying the pulse width-of a t9.4 kHz pulse generator having a supply ',

voltage of 150 volts. The inductance in the motor effectively filters this pulsing
' ' signal to generate smooth motion. Further details on the amplifier are contained in

¢, -,Nussbaum i73] and Drlik [741.

6.2 Actuator Model:

'%F e BDA block diagram model of the actuator can be developed by representing the dy-

rnamics of the amplifier and the DC motor. This model is shown in Figure 6.2. For

dthe time being, the robot axis is treated simply as a rigid-body inertia, with viscous

damping and friction. oan

The input to this model is a voltage command V,t e which specifies the desired •

.A *%



6.2: Actuator Model: 129 0

, _e4 ]A
9S +

K

Figure 6.3: Block Diagram Model of Closed-Loop Controller.

velocity. This is compared with the tach velocity signal and amplified in the pre.m-

plifier section. This generates a current command V, which is compared with the

measured current signal to regulate the pulse width of the voltage signal Vm to the

motor.

The motor model includes the effects of winding resistance R and inductance L.

The motor generates a torque ,, proportional to current i and develops a back emf

voltage proportional to rotational velocity w.

The transfer function relating the speed w to the velocity command V,,, can be

expressed as

KT K( s )KTK p(pK6,1
- (R+Ka.mpKeurB' B(R+KapKc.,)+KT(KampKpreKeach+Ka) (61

seL s2 + JL

Treating this actuator model as a single block to represent the hardware, a coam-

plete block diagram of the closed-loop position controller implemented in software

is shown in Figure 6.3.

Computer control of the robot is achieved by a hierarchical software architecture.

A PDP lt/23 minicomputer runs FORTH words that download commands to a set

of Intel 8031 microprocessors, one for each axis. The PDP 11/23 is also connected to
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a VAX 780 running in UNIX that can be used for generating complicated trajectory ." .

profiles and for plotting data. A detailed presentation of the computer controller

can be found in Benjamin ;751.

In the block diagram of Figure 6.3. the position measurement is obtained from

an optical encoder mounted behind the tachometer on each motor. Velocity is ,. 1_%

calculated by dividing the difference in encoder counts by the sampling time interval.

Each encoder generates 4000 counts per revolution and the servo loop runs at 1.500

Hz so the velocity information obtained from these differences is quite satisfactory. I
Because of the limited resolution of the analog-to-digital converter, this differenced 0

velocity is more accurate than the tachometer signal.

The proportional and derivative feedback gains ai e implemented in microcode

on the microprocessors. Since motor position is obtained in encoder counts and S

the actual velocity command to the amplifiers is calculated as an equivalent 12-

bit count to the digital-to-analog converter, the values for K , and K, used in the

equivalent analog representation of Figure 6.3 differ from the digital counts Kpd

and I ,d specified in the computer. The relationships between these two sets of

parameters are given by:

Kp =KpK , KD/A (6.2)

Kx = KvdKencKDiATamP (6.3)

where

K,,, 4000 counts/21r rad

KDI. = 10V/2047 counts

T,,,p = 0.667 msec. ,

The digital feedback gains used during actual tests were Kpd 0.9 and K. 7.5."

The response of the X-axis to a step change in position setpoint of 56.55 radians

on the actual robot is shown in Figure 6.4. The velocity is shown in (a), the motor

current in (b), the motor position in (c), and the motor velocity in (d). A number of

signals saturate during this step response. The velocity command voltage saturates

_W *1%
* t07V
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Table 6. t

Actuator Model Simulation Parameters

Kpre = 4.3 Ktach =0.024 Volt sec/rad

K K = 23.8 Jx = 2.053 x 10' kg - mni _

K, = 0.333 Jy = 2.780 x 10- kg - m

L = 0.0158 h B 0.0055 Nm - sec

R = 2 Qr =0.7 Nm

KT = 0.5 Nm/amp KP = 3.11

KB = 0.5 Volt - sec/rad K, = 0.04

at =10 volts, the current command at ±-5.4 volts. Maximum motor voltage is 150

volts and the current saturates at 8 amrps. This response served as the basis for ,-,.

evaluating the simulation model. ....

Parameters for the simulation model representing the robot under position con-

trol were determined from measurements and specifications. Values for these pa-

rameters are given in Table 6.1. Some of these values, in particular Ka, and K.,

had to be adjusted in order to make simulated transient response agree with the

actual data of Figure 6.4.

When saturation is included in the robot simulation model, the simulated step

response for the same 56.55 radian step is shown in Figure 6.5. Notice that the model ,
captures the same dynamic behavior that the actual system exhibits. While the

system is accelerating, motor voltage is saturated. As motor speed increases, so does

the back emf voltage. More motor voltage goes into overcoming the back emf losses

so that motor current begins to decrease. This reduces the rate of acceleration

and eventually motor velocity reaches a maximum value near 200 radisec. The

simulation model predicts this behavior quite well, and therefore will serve as a ,.4

good testbed for trying out various inputs before implementing them on the actual S

a * ,t .7

0 %. pA %%

Jk 21?'ZL
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hardware.

6.3 Structural Resonance Model:

Before the simulation model can be used to predict the vibration response, it must
be modified to include the structural resonance of the lowest mode of vibration. We

will concentrate on those modes which have dominant motion in the X-direction.

Both open-loop and closed-loop determinations of the structural natural fre-

quencies were made. These were based on the extensive work done by Garcia 61!

to determine the mode shapes and frequencies of the MIT Robot. A piezoelectric

% accelerometer (B&K 4371) was mounted at the bottom of the Z-axis measuring in,.-Ij

.... the positive X-direction. Open-loop measurements were performed using a Struc-

tural Dynamics Analyzer (HP 5423A). A random noise signal was used as a velocity

command input directly to the X-axis antplifier. Acceleration was measured using I
the accelerometer and a charge amplifier (B&K 2651). The analyzer was used to de- -.

termine the transfer function between random noise input and acceleration output- ' :

%%% The magnitude of this transfer function is shown in Figure 6.6(a), for the X-axis

located in front (-X) and the Y-axis midway in its total travel.

* Closed-loop measurements with the proportional-derivative controller of Figure

6.3 were performed by moving the X-axis over a distance of 0.23 m (9 in.) corre-

0 404 sponding to the step setpoint of 56.55 rad. The Y-axis was in the same position as
before. The analyzer was used to record the residual acceleration signal after the

final position was reached (in 0.5 sec.). The magnitude of the Fourier transform of

this residual vibration is shown in Figure 6.6(b).

0 These two measurements indicate that modes with dominant X-direction occur at O

12, 40, 51, 63, 70, 76, and 83 Hz. Most of these modes show up in both open-loop and

closed-loop measurements. The 12 Hz mode in particular does not appear to change ha..

* frequency despite the addition of the feedback controller. Since this mode dominates 4 6

%O1

%4.'-. -
* *',, a"-
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ku k

3b, %

Figure 6.7: Resonant Model of First Mlode of Robot. 0

the closed-loop residual vibration, we will use that frequency in a structural model,..

,...,.

of the robot. Concentrating on a single mode simiplifies the modeling ahd still allows'-" -

us to test the effectiveness of the shaped inputs on a realistic representation of an 31. ,.

actual system. '

The detailed modal analysis of the robot performed by Garcia :'61! showed that .

the 12 Hz mode consists of the entire robot structure rocking back and forth on the

floor in the X-direction. This requires a slightly different resonant model than the

two-mass model used so far. This new model is represented in schematic form in '0

Figure 6.7. The spring kb and damper bb represent the stiffness and dissipation of'-

"II

the floor, while mb represents the mass of the nonmoving robot structure. Notice in

,V.

particular the reaction force f due to the taotor pushin c ginstrucura i odel
move the axis m. Damping b and friction is assumled to exist between the movinglalo

axis and the nonmoving structure.

This resonant model can be inserted into the block diagram of Figure 6.2 with
the addition of a transmission re rob converting rotation to translation in the ball

screw. The transfer function model to be inserted in place of the rigid-body model e

tw-asmdlue s.a.Ti.e.odli ersne i ceai omi A,,S'j
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4N

* ~~~-- iss shwrnFgre68 hr

4, Figure 6.8: Block Diagram Model of Structural Resonance. "

.. j
is shown in Figure 6.8, where

.'.'.. _ (SI + S + ".,

V 'Flarnb rn3

1 35'

f,,. q3s) + + -1)__92 + (bo bL + k) . + k b PR

1.2.
-I The measured motor velocity w actually represents the relative velocity between

the axis and the robot base. The acceleration as measured by the accelerometer is

the absolute acceleration of the axis. Thus, the simulations give the second derivative

* of y, as the accelerometer output. Values for the additional simulation parameters

are given in Table 6.2.

Including the resonant model in the simulation gives the results shown in Figure

6.9 for a step setpoint of 56.55 rad. The motor current is given in (a) and the
0

absolute acceleration of the axis in (b). This compares with the actual X-axis step

response of Figure 6.10. The biggest difference in the responses is the oscillation of

...- the currenit signal at the natural frequency in the simulation. This does not occur inF the actual system response. This suggests that the encoder mounted on the motor

%

-[ki.,,-
* i'
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Figure 6.9: Simulated X-Axis Response to 56.55 rad Step Setpoint Including Struc-
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Table 6.2

Resonant Model Simulation Parameters

r = 0.004 m/rad (1 inch/rev) '1
m,, = J/r 2 = 126 kg

b, = B /r = 337 N - sec/m

mb = 500 kg

bb 1546 N -sec/m

kb = 2.9875 x 106 N/rn

* cannot adequately measure the vibration of the structure for the controller to damp

it out. This also explains why the open-loop and closed-loop natural frequencies

are nearly the same. However, the resonant model is still 'useful in evaluating the

performance of the system to the proposed shaped inputs.

6.4 The Effect of Actuator Saturation:

In order to test the versine inputs in the simulation model, the closed-loop controller

of Figure 6.3 must be changed slightly. In this casc, only the position reference

%, is used as the signal to be followed. The velocity is simply compared with zero.

* However, in order to ensure good reference following, the velocity of the reference

trajectory should be included. This arrangement is shown in Figure 6.11, with both

0 ,,t and its time derivative being used as reference inputs.

0- The reference position trajectory 0 ,,t is again determined by doubly integrating

.5. the shaped force (torque) profile through an inertia. Thus, 9 ,t(s) = r(s)/Js2 .

: Since the velocity saturates near 200 rad/sec and the torque saturates near 4 Nm (8

amps), the torque profile must be chosen to remain within these limits. Because the

4.+ shaped inputs are constructed assuming no friction or damping to ground, additional

*~ 0
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''V

Figure 6.11: Closed-Loop Controller Including Reference Velocity.

torque must be available beyond the maximum torque used in the shaped profile.

This can be accomplished by using a maximum torque r, for the shaped input of

2.9 Nm and a peak velocity wp of 189 rad/sec. For these values, the dimensionless

parameter w,TR127r = (w,/2r)J,'p/r, for the 12 Hz mode has a value of 1.44. The

shaped torque profile tuned to this parameter is shown in Figure 6.12 along with

its simulated response. The reference velocity trajectory specified by the torque

waveform of Figure 6.12(a) is shown in Figure 6.12(b). Simulated motor current, S

motor velocity, and endpoint acceleration are shown in Figure 6.12(c), (d), and (e).

A considerable amount of vibration remains despite the use of a shaped versine

input.

A comparison of the desired and actual velocity profiles will help explain this

response. As Figures 6.12 (b) and (d) make clear, the actual simulated velocity can-

not keep up with the reference velocity profile. Even though the system does finally

reach the desired peak velocity, it does so more slowly than specified. A look at the

current waveform of Figure 6.12(c) shows a noticeable drop-off in current in exactly

the same region where velocity begins to lag behind. This current saturation was* 0



6.4: The Effect of Actuator Saturation: 144

0 3.00

S0.10 0.20 0 .0 0. 0.60 0.70 0.0 0." 1.00
• Time (sec)

.2.00

-3.00

X-Axis Simulation with Versine Input

(a)

Figure 6.12: Simulated X-Axis Response to Versine Input with 7,= 2.9 Nm and

= 189 rad/sec: (a) Reference Torque Waveform.

also observed for the step response of Figures 6.4 and 6.5. Basically, the saturation

in the amplifier prevents the system from following the specified input waveform.

As a result, the response behaves differently from the desired response and leads to

residual vibration.

This test highlights the importance of specifying an input waveform which will

0 not cause the amplifier to saturate. Once saturation does take place, some residual

vibration is to be expected even when properly shaped inputs have been specified.

% X 4.N

-*'" "" ,S .. ". .. "
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Figure 6.12: Simulated X-Axis Response to Versine Input with T, = 2.9 Nm and

wp, = 189 rad/sec: (b) Reference Velocity Trajectory (c) Motor Current.
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6.5 Development of Nonsaturating Velocity Pro-

files:

As the previous section makes clear, amplifier saturation may prevent the shaped

inputs from minimizing residual vibration. Even though the current waveform never

exceeds S amps, it still saturates when sufficient motor velocity is reached. A new

velocity profile must therefore be developed that takes this velocity-dependent, s;-

uration into account.

rhe parameters of the velocity profile that are to be determined are acceleration

and peak velocity. The acceleration is proportional to the peak amplitude of the

shaped torque profile used. There are two different saturation phenomena that

should be avoided. First, the maximum specified current should never exceed 8

anps. Second, the specified current should never exceed the level that is achievable

with increasing back emf losses.

Incorporating these constraints into a determination of velocity profile parame-

ters requires some assumptions on the shape of the reference input torque waveform.

This reference input ignores friction so its peak torque level must be low enough that
when the controller calls for extra torque to compensate for damping and friction, "

the total torque will be within saturation levels. Since viscous damping torque is""

proportional to velocity, we must determine the correspondence between torque and

velocity at the critical points when either reference torque or velocity are at max- -V--

imum values. Since the reference torque profile is a complicated function of time

that also depends on the parameters for which it was tuned, relating torque and

velocity analytically can be difficult. Instead. we will make some conservative as- -: .,

sumptions that should apply for all inputs to be considered. We will assume that .

the reference torque near maximum velocity a,, is 1/2 of its peak value r, and that

the peak reference torque occurs for a velocity as high as 2w/3. ,

Keeping these assumptions in mind, we will proceed by specifying the constraints

% W, , br Ir r V W

% % %

%~ ?

LV0
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on the reference torque in order to avoid amplifier saturation. With current satu-

rating at 8 amps, the peak motor torque that can be generated is 4 Nm. Thus, peak
N

reference torque plus the torque required to overcome friction and damping must

"." never exceed this value:

7r - Bwp r/f,j, < 4 Nm (6.6)-.'
3 

-0

In addition, the torque required at maximum velocity should not exceed the limit

imposed by back emf losses. This current limit occurs as a result of the saturation l WO

of the current command V.. Steady-state current i can be expressed in terms of V,,

and .; from Figure 6.2 as follows:

;:"Kamp, - K sw I.. lie
-'.' i =(6.7)

R + KyiPKcur,

0 Thus. the second torque constraint at peak velocity , is given by

1 [KamV.- K,-
-r, + Bw, + rf k < KT (6.8)

,2.L R + K,,,p c

These constraints can be expressed in terms of a linearized acceleration a, defined S
:4. as

af upT (6.9)

where T, is the time required for the versine input to reach peak velocity 'ep. Peak 0

reference torque r, is related to this acceleration by the expression:

-r, = rvJa. (6.10)

where rv is the time-scale factor associated with the versine input defined by (5.10). %

Thus, the constraint expressed by (6.8) using the equality establishes a relationship

between a and , that will just avoid current saturation. This relationship can be

*.." rewritten as

a = C1 - C2WP (6.11) -. ,,

where c1 and c2 are constants resulting from the substitution of (6.10) into (6.8).

6 r0
-.. . .-.- * . ~ * %
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% To determine the best values of a and , for fastest response without saturation,
we will try to minimize the total move time Ti given by i

)~ - 'prp 0 "--

T = 2T+ = -- -T- TP (6.12)
lapp

where 0 is the desired angular displacement. Our goal is to express T in terms of 0

and ,; only, and then to determine that velocity which minimizes Tf for a given 9.

This can be done by expressing T, as wp/a from (6.9) and substituting for a from

(6.11). The result is the time T expressed as a function of wp. For 0 = 56.35 rad,

this function is plotted in Figure 6.13(a). A value of 1.75 was assumed for Fv to

represent a typical versine function. With the help of expressions (6.10) and (6.11),

.,...: " Tf can also be plotted as a function of r,., as shown in Figure 6.13(b). The constraint a-'

of (6.6) was included in these figures to ensure that the 4 Nm saturation torque is
not exceeded. This limit causes the discontinuities in these curves.

, - For the rotation of 56.55 rad, minimum Tf occurs for a peak velocity of roughly

145 rad/sec and a peak reference torque of about 2.75 Nm. Since the shaped torque

profile calls for half peak torque at a speed just below peak velocity rather than -,

at peak velocity as was assumed in this development, we will use the parameters

-1" 150 rad, sec and r, 2.75 Nm to generate versine inputs for the rotation of

56.55 radians. This corresponds to an axis velocity of 0.6 m/s (2.0 ft/s) and an

accelerating force of 688 N (155 lbf). For larger moves, the same approach can be

used. In general. as move distance increases, more time is spent at peak velocity.
i- ., ,,

Thus. the peak torque which will minimize move time will be lower and peak velocity -

will be higher to minimize the time spent at constant velocity. %

For the parameters selected, the versine input for the single-resonance model of

* Figure 6.7 gives the simulated response shown in Figure 6.14. Notice that this time

the residual vibration, shown in Fig. 6.14(e), has indeed been eliminated, in part

because the amplifier current no longer saturates.

With these values for r, and w, and the known X-axis inertia, the value for

TR Jw/r, becomes 0.112 sec. We can now determine an appropriate versine

%,%

'..--
V V V.5/,:€¢. :.',.'¢ . ,-'.-' '',_,. ;",, .". .. ".-,.%..:%"3'.-,,b...,-4i . ,', -', , ,;
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Figure 6.14: Simulated X-Axis Response to Versine Input with r, = 2.75 Nm and

,= 150 rad/sec: (a) Reference Torque Waveform.

input using this time value to normalize the natural frequencies for the actual robot.

This input profile is constructed to minimize spectral magnitude at four frequencies

(12, 40, 70, and 84 Hz), with a ±20% band about 12 Hz and ±10% band about the S

others. Such a shaped input is shown in Figure 6.15(a), with its frequency spectrum

-- in (b). This input was used to perform tests on the robot which are discussed in e

Chapter 7. 1" "

6.6 Closure:

This chapter developed a detailed model of the MIT Cartesian Robot in preparation

for performing experiments. This model includes the effects of actuator saturation

and the first structural resonance of the robot. Simulation results with the versine

input indicate the importance of avoiding current saturation to ensure that resid- 0
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; ual vibration is indeed minimized. Parameters for the velocity profile were then U
"' determined which avoid current saturation and still generate fast motion. These

parameters were used to construct a versine input to run the X-axis on the actual ,

* robot. Experimental results are discussed in the next chapter.

~2Xk
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Experimental Results I
Chapter 7

• 7.1 Introduction:

-'. '. This chapter will present experimental results for the ITCartesian Robot using :

, ~the versine input developed in Chapter 6. These responses will be compared with :"

~the step response and the response to a rectangular pulse input. Robustness to

.,variation in natiir-, frequency will be illustrated by performing tests on the X-axis

for several different positions of the Y-axis. The effect of modal coupling between %

-] axes will be illustrated by generating motion in Y and measuring vibrations in X.
-" ! An advantage of the shaped versine input is its ability to avoid the excitation of any '''

specified natural frequency, including modes that vibrate in directions orthogonal -

... ' , '

• to the motion and cannot be measured.

. 7.2 Micpr ocessor Implementation:

This chaptBefore presenting experimental results, we will describe the implementation of time-

varying setpoints in the control microprocessors. Sinc e reference signal used
by the controller presented il einsrae by perforin ts generated by doubly

-U integrating the shaped force profile, it represents a continuously- varying function

.1 '*. specified* ". " '€ - *". naua rqeny.nldn moe tha vibrat in directions orthogonal€',¢

7. Mg:Iroproceso PImplementtion:
%*
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of time. The controller as configured by Benjamin [751 takes a constant setpoint

as reference to be followed. This generates a step response but does not allow

the implementation of time-varying setpoints. Thus, some of the software for the

microprocessors must be changed.

Since the microprocessors are connected to a VAX computer (see Figure 7.1), the

time-varying setpoints could be stored in the VAX and sent to the microprocessors

at each time step, or stored directly in the microprocessors. Because the VAX and

the micros run on different internal clocks, the setpoints are stored directly in the

micros to ensure that the correct setpoint is synchronized with the servo time step.

Thus, before each move, a file of setpoints is downloaded to memory in the micros.

These setpoints are generated by doubly integrating the desired force profile.

To read these setpoints sequentially, using a different memory location at each

time step, the framework program that controls the operation of the micros must be

modified. The new code, in Intel 8031 assembly language, is g'iven in Appendix C.

At the start of the move, the beginning memory location is read. Then, each new

time step increments the memory location to read the next. setpoint, and so on. A

,'ontrol bit is ubcd to signal the micros to use a time-varying setpoint. rather than

the constant step setpoint.

In order to introduce both the position reference and the velocity reference as

called for by the controller of Chapter 4, the derivative of the sequence of position

setpoints must be obtained. This is easily accomplished by computing the difference

* in reference setpoints in each time step. This difference is then compared with the

actual differenced velocity and the resulting velocity error and position reference are

used in the PD servo loop as originally configured by Benjamin.

0
U.

%.. % 0-

-,.h~~~~,. ra kMhxm &
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7.3 Experimental Setup:

In all of the tests performed, the acceleration was measured in the X-direction.

A B&K 4371 accelerometer was mounted at the bottom of the Z-axis facing the

-X-direction. The accelerometer signal was conditioned by a B&K 2651 charge

amplifier, giving an output of 0.1 volt for I g (10 in/s 2 ) of acceleration. Garcia's

* work suggests that accelerations on the order of 1 g are to be expected in the

-A transient response. Since the analog-to-digital (A//D) converter which sends this ,

data to the microprocessors for storage has a range of ±10 V, the accelerometer

signal must be amplified. Therefore, an Analog Devices AD521 chip was configured --

into an instrumentation amplifier with a gain of 105.

ALI data taken for each move was stored on the micros during the motion and

then transferred to the VAX for analysis and plotting. This data was stored in the

same block of memory as that containing the setpoints, writing over the setpoints

used for the previous time step. In order to ensure that this data does not write

over any setpoints which are yet to be used, data was only taken every other servo

time step, at a rate of 750 Hz.

In order to avoid aliasing of the acceleration signal when sampled at 750 Hz.

it has to be filtered before entering the A/D converter. To retain fidelity of the S

vibration signal up to 100 Hz but effectively remove any frequency components .

above the Nyquist frequency of 375 Hz, an Ithaco model 4112 low-pass filter was

used. Its cut-off frequency was set at 160 Hz to sufficiently attenuate the signal at

375 Hz.

Because of the limited memory on board the micros, the acceleration signal was

stored on the Y-axis micro, while the current signal measured by the amplifier was

stored on the X-axis micro, along with the encoder position and the amp velocity

command signal for the X-axis.

The residual acceleration signal and its frequency spectrum were measured using

an HP 5423A Structural Dynamics Analyzer. The accelerometer output was sent to -

,
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both the analyzer and the micro A D converter. The analyzer was triggered as soon

as motion began, with a sufficient time delay to start taking the measurement only -

when motion had stopped. In this way, only the residual vibration was measured.

Before acceptable data could he obtained, an additional change had to be made 7- t
Ar

in the amplifiers. Initial tests using a nonsaturating reference input showed con- q

siderable current oscillation during the constant velocity portion of the move. This

oscillation did not occur for the saturating step input. Perhaps saturation precluded

this oscillation because the current signal was kept at its extreme value.

Since the current oscillation during the constant velocity phase is also picked up

by the accelerometer, it tends to degrade the performance. Further tests indicated %

....__ that this oscillation has nothing to do with the input being used. In fact, the preamp

gains were originally chosen for maximum servo stiffness without going unstable

(Drlik ?741 ). Thus, the amplifiers were only marginally stable. To solve this problem,

resistor R100 which sets th6 preamp gain was removed from the X-axis amplifier.

Likewise, resister R83 was removed from the Y-axis amplifier. (These resistors are

identified in schematics given by Nussbaum '73]). Replacing the resistors reduces

the inner loop servo stiffness of the amplifier and greatly improves the current signal

at constant velocity.

The FORTH commands used to generate motion for the experimental tests are

summarized in Appendix B. These FORTH words are defined in Appendix D. Once V.-

the robot had completed its motion and data had been stored, the data was copied .,
* 0from the micros to the VAX. There, the numbers were converted into appropriate

units and plotted. These results are described in the next section.

* 0
7.4 Experimental Tests on X-Axis:

Witl, thc Y -axis in the middle of its workspace, the X-axis was moved from zero to

*- 0.23 m (9 in.) in the -X-direction. Three types of reference inputs were used: a step,

.. ,

"Mp
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an integrated rectangular pulse input, and an integrated versine input. By doubly

integrating the rectangular pulse input and the versine input, a smooth reference

profile is achieved that the system can follow. Total motor rotation during this move

was 56.535 rad. The results for a step reference input are shown in Figure 7.2, those

for the integrated rectangular pulse input in Figure 7.3, and those for the integrated

versine input in Figure 7.4. In each case, the current signal is shown in (a), the WC=

motor position in (h), the motor velocity in (c), and the endpoint acceleration in

(d). The current signal is nonzero even when the a.,cis has reached its destination

because of stiction in the moving elements. 0

The step response reaches the final position most quickly but also generates

the most residual vibration. The shaped versine force input with reference torque

7,= 2.75 Nm and peak velocity p = 150 rad/sec takes about 20% longer, but it

generates much lower residual vibration.

The rectangular pulse force input used here 'o generate a smooth reference pro-

file for comparison with the versine response was selected to have the same move

time as the versine input. Its peak torque therefore is less than 2.75 Nm. The

reason for choosing this input, rather than a pulse of equivalent peak torque, is that

the parameters r, and w, chosen for the versine do not prevent saturation for the

rectangular pulse input. Saturation occurs because the reference acceleration for the ;

rectangular pulse is much higher than for the versine input. Since saturation tends

to increase residual vibration, the rectangular pulse peak torque was scaled down to

1.31 Nm to make total move time equal to that of the versine input. As the results _

of Figure 7.3 show, the use of a smooth reference input based on a rectangular pulse

helps compared to the step input, but it still generates more residual vibration than

the versine input.

The frequency spectrum of the residual vibration resulting from the three dif-

ferent inputs are shown in Figures 7.5, 7.6, and 7.7. Notice that the integrated

versine reference reduces the vibration of the 12 Hz mode by 20 db compared to the

N'vs-:
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Table 7.1

Residual Endpoint Motion (mim)

Step Reference 0.230 1
Rectangular

Pulse Reference 0.028

Versine Reference 0.014

step reference and by 8 db compared to the integrated rectangular pulse reference.

Further attenuation of the 12 Hz mode is impossible since the ambient noise in the

building generates the remaining excitation. Figure 7.8 shows the frequency spec-

trum of the robot excited only by ambient noise. Notice that the peakat 12 Hz is

at -30 db, the same level as that for the versine input.

The versine reference also reduces the residual vibration at 40 Hz, compared with

either the step or the rectangular pulse reference. However, modes at 68 Hz and o.%

75 Hz remain despite the low excitation energy which the versine function has at

these frequencies. Perhaps some excitation energy from lower frequencies is exciting

these higher modes due to some nonlinearities in the robot structure. Regardless ,-

of their origin, these modes contribute only 0.5 micron to the residual amplitude.

A comparison of the residual vibration at the endpoint measured in mm (rather

than acceleration units) for the three inputs is shown in Table 7.1. These values

were determined by doubly integrating the acceleration amplitudes. If we assume %

* that a single frequency at 12 Hz dominates, then the amplitude of the endpoint

position oscillations can be approximated by dividing the acceleration amplitudes

by the square of the frequency.

00 i%
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7.5 Robustness to Variation in Natural Frequency:

Garcia -61] determined that the robot modes with dominant X-direction change
natural frequency by 10% depending on the location of the Y-axis. Therefore, tests

were performed with the Y-axis in the extreme left (Y = 0) and extreme right (-Y)

positions to see this shift in natural frequency and to determine whether the same

versine input will work equally well for all cases.

Results for X-axis motion with the Y-axis to the left are shown in Figures 7.9

to 7.11. and with the Y-axis to the right are shown in Figures 7.12 to 7.14. The

same three reference inputs are used as before. The acceleration signal is shown in
"" (a) and the frequency spectrum of the residual vibration in (b). The two different

step responses show a shift in the first natural frequency from 11.5 Hz when the

Y-axis is to the left to 13 Hz when the Y-axis is to the right. Despite this variation
", ", in natural frequency of roughly 10%, the same versine input effectively reduces the. L

residual vibration at that mode in both cases. In fact, the attenuation is the same as

it was previously for the Y-a:ds in the middle, the position for which the waveform 0

was originally specified.C- One additional phenomenon shows up in the frequency spectrum when the Y-

axis is to the right. For that configuration, an additional mode at 33 Hz appears

that did not appear when Y was in the middle. The mode shapes measured by
.~i-r Garcia L611 indicate that the 33 Hz mode consists of the top frame twisting about

the middle (Figure 7.15). Therefore, this mode is difficult to detect in X when Y

is in the middle, but rather easy to detect when Y is to the right. A new versine

input can be developed which reduces the energy at 33 Hz. This new time function

is shown in Figure 7.16(a), with its spectrum in (b). The response of the X-axis

to this input with the Y-axis to the right is shown in Figure 7.17. Notice that the

residual vibration at 33 Hz is reduced by 8 db when the input is filtered at that

-frequency.

o0N I "

",',,--7..;';..-'2."-;.'.-'-;';. . -'-.-,.-.- %.-.'--,'.-':,- -. .-. '., %-,,. -,,. ..- -,w, .,. -.,,, , , .. .: -'
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Figure 7.15: Measured Mode Shape for 33 Hz.
A- -

7.6 Modal Coupling Between Axes:

The 33 Hz mode in which the top frame twists involves motion in both the X and

Y directions when Y is to the right (-Y). Thus. motion in Y is likely to excite

this mode and hence cause vibration in the X-direction. Without a detailed three-

dimensional model of the robot, this mode would be very difficult to damp out using

a conventional modal controller for Y-motion. However, running the Y-axis with the

versine input which attenuates this particular frequency ensures that no excitation

occurs in the X-direction.

Experimental results for vibration in X when the Y-axis is moved a distance

of 0.20 m (8 in.) using a step, rectangular pulse. and the versine reference of Fig.

7.16 are shown in Figures 7.18. 7.19. and 7.20. These reference inputs have been

constructed for a Y-axis inertia of 2.7T 10-' kg-m 2. Motion took place in the

rightmost part of the workspace. The step response shows considerable excitation

of the 33 Hz mode in X from the motion in Y. However, the versine input effectively

% .'
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*'-.; reduces excitation of this mode by 8 db. Thus, even when the vibration cannot be
):'j measured in the axis of motion, the shaped inputs can avoid excitation of vibration __

occurring in orthogonal directions to the motion.

7.7 Time-Varying Natural Frequencies:

If both the X and Y axes are moved using the versine inputs, then the variation in

Y-position will continuously alter the natural frequencies which would be measured

statically at each succeeding Y-position. Such a test would determine whether

.the shaped inputs can reduce residual vibration for dynamically varying natural

frequencies. The acceleration in the X-direction when moving the X-axis a distance

of 0.23 m (9 in.) and the Y-axis a distance of 0.20 m (8 in.) is shown in Figure 7.21.

rhe residual vibration at 12 Hz has again been reduced to the ambient level of -30

db'as before. Thus despite the dynamic variation in resonant characteristics during
the move, the versine input is still capable of attenuating the residual vibration.

7.8 Discussion:

The shaped versine reference inputs were tested on the MIT Cartesian Robot to •

NNdetermine how effective they are at reducing residual vibration under actual condi-

tions. When moving in a single direction, the versine input is capable of bringing

the residual vibration down to the level existing only with ambient noise. This holds

true even when the location of the Y-axis is changed and the natural frequenciesL.1' vary. "

Running the X-axis for different static positions of the Y-axis gives the same

*attenuation of residual vibration. And when both axes are moved simultaneously.

causing a dynamic variation in natural frequencies, residual vibration still remains

low. Finally, for modes which can be excited by motion in an axis orthogonal

*." to the dominant vibration, the use of shaped inputs can significantly reduce such

* 0
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Conclusions and Future Work

Chapter 8

8.1 Conclusions:

Experimental tests done on the MIT Cartesian Robot indicate the effectiveness of

shaping inputs to generate motion with minimum residual vibration. Such inputs

allow the use of a simple PD controller to achieve accurate position without the

need for complex controllers to damp out vibration during motion. However, this

technique does not preclude the use of a more sophisticated controller to suppress

vibration. The shaped inputs will always improve the residual vibration response

generated by the motion, especially in cases when optimal regulators cannot provide

adequate vibration suppression.

This approach is especially effective when dealing with complex three-dimensionalS
structures with mode shapes in directions other than the motion direction. For such

systems, the modes in the non-motion direction are only weakly coupled to the

dynamics in the motion direction. As a result, these modes cannot be sufficiently

compensated, and they will exhibit considerable off-axis vibration if lightly damped. 5

These vibrations can be reduced during motion using shaped reference inputs tuned

' to the off-axis natural frequencies. %

* Shaped force inputs were developed as sums of ramped sinusoid harmonics by

187 '.
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picking the cuefficients to minimize excitation over a range of natural frequencies.

This allows for uncertainties in the determination of the natural frequencies and O

dynamic variation in natural frequency during motion. An additional set of inputs

was developed using versine inputs to permit motion of constant speed for systems

whici are velocity-limited.

Shaped inputs were constructed on the assumption that the system to be con-

trolled has no damping or friction. This simplifies the determination of coefficients ,"..e1

for these functions. The presence of mbdal damping does reduce the effectiveness

of the inputs but only near the limits of the frequency band where spectral energy

", has been minimized. This effect can be ignored for lightly-damped systems.

__ The presence of friction can easily be compensated for when these shaped force

inputs are incorporated into a closed-loop feedback system. All that is required -

is that the shaped force profile be converted into a shaped position reference by

%4 double integration. The feedback loop compensates for friction without altering the

vibration-reducing properties of the shaped inputs.

Despite these advantages, there are a number of drawbacks to this method.

While conventional controllers only require a step reference, these inputs require a

series of time-varying reference setpoints which must be recomputed for each move

distance. This is not a problem, since trajectory controllers already compute appro-

priate trajectories to achieve a desired move. But it does increase the computational

and storage requirements of the controller.

A more severe disadvantage is the requirement that the actuator never saturate

during the motion. In order to ensure that residual vibration is minimized, the

actual response must closely follow the response called for by the shaped reference

input. If the actuator saturates, actual response lags behind and more residual - S

vibration occurs. To ensure that no saturation occurs, the forces used for the motion

must be reduced until the entire force profile fits within the saturation limits. This

significantly increases the time needed to complete the move using shaped inputs S

-4.*: -\fS
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0~ S.2: Future Work: 189 6

rather than a step reference. However, settling time due to residual vibration has

been greatly reduced.

8.2 Future Work:

Several additional studies are motivated by this work. First of all, it would he useful

to investigate the use of shaped inputs for large variations in natural frequency. such

as occur when the robot configuration changes significantly (e.g. PUMA Robot) )r

when picking up a heavy workpiece.,. -'

A new set of inputs could be developed that compute coefficients to take into .,e

account modal damping for moderately-damped systems.

An entirely new set of functions could be developed that are based on more

realistic assumptions about the allowable force profile. The actual motor torque

for a typical amplifier saturates as a function of velocity rather than saturating at

a constan, limit. It would be useful to use more complicated saturation profiles
S

than a square wave or a rectangular pulse in developing shaped inputs resembling .

, these profiles. Such inputs could also be constructed to include the effects of friction

and damping to ground. This would ensure that these inputs lead to actual torque

profiles which maximally utilize the available torque without saturating.

Because feedback plays an important role in determining the actual torque pro-

file, it would be interesting to evaluate the effect of this feedback. If the feedback

* signal intrcduces energy at natural frequencies which have been filtered out of the 0

shaped input, then considerably more residual vibration will ocur. It would be

useful to study the interaction between feedback and the shaped inputs and deter-

mine whether different feedback compensators would improve performance. Perhaps

the use of acceleration feedback, either from the motor or from an accelerometer

mounted at the end point, would improve feedback compensation. ,

It would also be useful to evaluate the effect of actuator bandwidth on the* 6

%

o %, ,
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q.2: Future Work: 190

residual vibration attenuation of shaped inputs used in closed-loop systems.

These additional studies would answer further questions concerning the use of

shaped inputs for generating motion in physical systems. These inputs have already

been shown to reduce residual vibration for motion of a Cartesian Robot. With

additional studies, inputs shaped to achieve minimun residual vibration and mini-

mum move time may become an important element to control the vibration of actual

dynamic systems.
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Frequency pectrum of-

~Bang-Bang Function

.A

[ _ Appendix A -

Chapter 2 presented a direct relationship between residual acceleration ampli--'
tude of a two-clss system and the frequency spectrum of the input forcing function

~~used to generate the motion. Since this result applies for any input function, it -

'.'i should also apply to the bang-bang function developed in my Master's Thesis 5.
The bang-bang function is a generalization of a square wave forcing function that

always produces peak force and switches between positive and negative levels a given

tnumber of times. This input function is known to give time-optimal response.

WW

; For the undamped two-mass system model of Figure 2.3, the appropriate bang-

Th bngbang function consists of three switches, as shown in Figure A.. The first and third

switches, occurring at times tj and t3 respectively, are symmetric about the second

b uswitch at t c, which happens halfway into the move. The input is turned off at the

final time T,. The switch times tI, t2, and t 3 satisfy the following expressions:

1 - 2 cosw,,tj + 2cos ;,,t 2 - 2cos-0t 3 +cosT 1 =0 (A.l) L

t2 = T1/2 (A.2) ,A

= T! - (A.3) %

.b
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+S t3 .

jo~

P9 Lj

"'4'* "

Figure A.1: Three-Switch Bang-Bang Forcing Function.

Making the appropriate substitutions, (A.1) can be simplifed to

2 cos .5 "2cos ( , t) -- 1 =0. (A.4)

This expression must be satisfied by tj and Tf in order to ensure zero residual

vibration for the two-mass system. ,.

- The frequency spectrum of the three-switch bang-bang function can be deter-

mined by taking the Fourier transform as follows:

, .. F (,, ) = (t)e -jw 'd t (A 5 ) O

00.1

When the required integration is performed, the frequency spectrum can be repre-

sented as: "}" 2F T ,,'r T/

!F(w)I = F'cos - - 2cos w 2 - I + V (A.6)
-:co 2 " s 2 %

At the frequency corresponding to the system natural frequency , spectral mag-

.:',. V
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nitude is given by

= -- )cos 2 2cos, - ti - I (A.7)

Substituting the expression (A.4) into (A.7) gives the final result:

SF( ,)j = 0 (A.8)

Thus, the bang-bang function developed to eliminate residual vibration can be shown 41%

to have a frequency spectrum having no energy at the natural frequency. This is

consistent with the relationship (2.13) derived in Chapter 2.

NA Since the bang-bang function contains no spectral energy at the system natural

frequency. we might conclude that this input never excites the system at its natural

frequency. However, the sharp tr.nsitions in the forcing function suggest that many _

frequencies are excited by this input, including the system natural frequency. In

fact what is happening is that the inpu.t does excite the natural frequency in the

first half of the move and then totally reverses the phase of the excited vibration in

the second half of the move to bring the system to rest when the function is over.

-% To prove this assertion, we will look at the frequency spectrum of the first and

second half of the bang-bang function separately. The Fourier transform for the first

half of the move is given by

F = f(t)e-"Jtdt = F- - 2+ . (A.9)

The Fourier transform for the second half of the move is given by

F2 (W) = J (t)e =t [ - 2e -  t - e-
Jf- e- . (A.10)

Since the frequency spectrum depends only on the magnitude of expressions (A.9)

and (A.L0). we will restrict attention to the bracketed quantities. These can be

shown to have the same magnitude and opposite phase. Thus, whatever energy is

5 present in the input at the natural frequency daring the first half of the move is S

* . . .. . . . a '. - * a- % aa a i
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removed in the second half. This leaves the system without residual vibration when

final position is reached.

Evcii though the bang-bang function produces no residual vibration, it does so

only because the input is precisely phased to cancel in the second half any vibration

"generated in the first half. Thus, the vibration in the second half mu.t have exactly"
I7)

the opposite phase to that of the vibration in the first half. [f there is any error in the ,

natural frequency for which this input was tuned, cancellation will be unsuccessful

and residual vibration will result.

"%
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2 Commands to Generate Robot

Motion W.,

Appendix B

. -.- C.- ..C.

Many of the FORTH commands necessary to move the robot were defined by
.. -.%

Benjamin .751. Several additional commands were written in order to allow the
servo routines to follow time-varying reference setpoints. -

The servo control loops run in the 8031 microprocessors at a 1500 Hz update rate.

" At each pass through the loop, various memory registers are checked to determine

subsequent action. Calibration, data-taking, and control output are specified by

setting appropriate bits in these memory registers using the corresponding FORTH

words.

The commands used to conduct experiments can be divided into three groups:

* initialization, motion, and data-storage. The initialization section sets up the micro- •

processors, allocates data storage, stores setpoints, and zeros the axis position. The

motion section actually generates the motion. The data-storage section transfers -" d

data from the micros to the VAX for processing and plotting.

A typical sequence of commands to generate X-axis response to a versine refer-

- ence input would be given as follows:

202
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Initialization:

PREP*~

XAX IS

900 E-3 PGAIN

2 T-MULTIPLIER ,

9806 EADDR . .

INITDATAVARS

YAXIS

8156 E-ADDR

INITDATAVARS

XAXIS

SET-LOAD /U/!ECKL/DATA/VERSI.DAT *

SET-LOAD /U/NECKL/DATA/VERS2. DAT

START-CAL INFO

(move axis to zero position) S

Motion: ".,

(lift red stop button)

GO*

XAXIS

DATA_&_MOVE*

Data- storage:
S%

XAXIS DATATO_VAX X.DAT N

YAXIS DATATOVAX X-ACC. DAT

0

Most of the commands for initialization were developed by Benjamin i75! and are

defined there. PREP* initializes the X and Y-axis microprocessors and downloads .. "

the servo routines from the VAX. The subsequent commands stiffen the position

gain and allocate memory for data-taking. The SET-LOAD command (as defined in

r-
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*: Appendix D) downloads the setpoints given at each servo time step from files on "

the VAX and stores them in successive memory locations on the microprocessor.

START-CAL INFO alerts the servo routine to look for the calibration zincro-switch

to set. As the X-axis is manually moved in a negative direction, the position in ,

encoder counts will appear on the terminal display. After the calibration micro-

switch has been reached, the position count will zero out, and the axis will be at its

*€ zero position.

To generate motion, all limit switches must be cleared and the red stop but-

ton must be released. Once this has been done, GO* activates the servo routines e
-:. to enable the amplifiers and generate a voltage command output. The command

DAT -. MOVE* (defined in Appendix D) tells the servos to look at successive mem-

ory locations for setpoints and sets up data-taking. Position, current, and amplifier

% command data are stored in the X-axis microprocessor, while acceleration data is
%_4.Y

stored in the Y-axis micro. In'order to generate a simple step response, the con-

mand DATAIMOVE* would be replaced by 36000. DATA&SET* to generate a 36000 2

count move while taking data.

The data-storage commands simply take the data stored on each microprocessor
and transfer them to do unit conversions and to generate graphic plots.

%
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Microprocessor Assembly Code

Appendix CN

The 8031 microprocessors which run each axis are programmed with three dis-

0 tinct pieces of software. In addition, routines have been burned into PRONs residing

on the micro cards to facilitate communication and interrupts.

The three software programs are written in 8031 assembly language and consist

of a framework program, servo loops, and mathematical routines. The servo loops

(LOOPS.ASS) and mathematical routine s (MIATH.ASS) have been retained as de-

veloped by Benjamin 751 without changes. The framiework program establishes the

sequence of events during each servo clock cycle. A revised version of this program

(FRAMESET.ASS) was written to allow for time-varying position setpoints.

A copy of the assembly code for FRAMIESET.ASS is given on subsequent pages.

A majority of this program remains unchanged from the framework program FRAMIE.ASS

written by Benjamin. Two additional sections were added to permit time-varying

setpoints. Section 3 checks whether tixne-xvarying setpoints are called for and if so
fetches the setpoint value from the appropriate memory location. This memory

. address is incremented during each pass through the framework routine.0

Section 3 also determines the change in setpoint from the previous pass. This

is a discrete representation of reference velocity. Section 4 then determines the

* difference between this reference velocity and the measured velocity to generate a

205
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..

S* Micro-Processor Based Control Program
Mike Benjamin

* modified by Peter Meckl, 11-5-87 -

reads time-varying se3tpoints if so enabled h1

. (located at Starting Address of Data Block+3
and following); Data Rate must be 2 or more

uses velocity error (rather then merely S

measured velocity) in PD loop

changed 'jnb acc.7' to 'Jnc' in data-taking routine
to ensure that it stops at right address '

* ' modified by FGH, 3-31-86 ***

saves Force data rather than Setpoint data

* . ignore* trouble, encoder overrun bit. _

Pro-Defined Registers (all numbers base 8) %
r Req 40: Bit 0 - Jump to RAM bit set by START com'nd in commications program
Reg 41: Bit 0 - Enable Bit - Set to enable out put to amplifiers

Bit I - Calibrate Bit - Indicates Calibration Routine should be run ,
Bit 2 - Calibration Indicator - Set by this program to indicate that

axis was calibrated.
Bit 3 - Amplifier Select Bit - Set for use with Automatix Amps

Cleared for use with MIT ampa S

Req 44: Bit 0 - Enable data taking %
Bit 1 - Set externally to save Position Data %
Bit 2 - Set externally to save A/D Data
SA Bit 3 - Set externally to Save Output Data
Bit 4 - Set by this program to indicate full data buffer

- cleared by PDP-11
Bit 5 - Set by program to indicate data taking in progress

- cleared by program
Bit 6 - Set to enable time-varying setpoint

. :- Cleared by program at the end of the move
Bit 7 - Set by this program to indicate that move with time-varying

setpoints is in progress
- Cleared by program

Reg 45: Data Rate - Data is saved every N-th time through control loop
Req 46: Starting Address of Data Block - low byte

* ;Reg 47: - high byte. 5
Req 50: Ending Address of Data Block - low byte
Reg 51: - high byte

,. ; Req 52: Current Address of Data - low byte
Req 53: - high byte

Req 54: Sampling Time - low byte
Rog 55: - high byte

* Req 56: Address of Servo Routine - low byte
Reg 57: - high byte O

Req 60,61,62: Current position of axis (Reg 60 is least significant)
Req 63, 64,65: Current Setpoint for axis

Re 66,67: Two's Comliment integer representation of OUTPUT value for
_ ,-, ;amplifiers - Loaded by Servo Subroutine

Req 70: Used by servo subroutine to calculate output in micro-notation

NW - 'w -W l w



0 208

Req 71 -122: Scratch pad for servo routines
Reg 74,75,76: Must be Loaded with the Speed for use in the Servo subroutine
Req 114: Current Address of Setpoint - low byte
Reg 115; - high byte ,.
Req 116,117,120: Change in Setpoint in micro-notation
Req 121.,122: Must remain unused to avoid conflict with velocity transitions

when Using above registers (114-120) -- (see loopsvel.ass?
Req 123, 124, 125, 126, and 127 Scratch pad for add and multiply routines
Req 130 - 177: Stack Registers

MAIN SERVO FRAMEWORK PROGAM4 ba0i anVsrsoil o
This code runs on a timed interruptbaianisrpoilefrNI

Reading Encoder and updating position counts F
Loading Time-varying Setpoint,3 - if so enabled
Checking for calibration pulse - if we are in calibration mode
Chocking Limit Switches and Enable Bit

Taking Data
outputinq values to PM4 aMlifier3

10000;TI)Mfl 0 Interrupt routine at 10000

Section 1: push items onto stack and restart timer.

dlr tcon.4 ;stop tiIa 0 for a moment FF-
*push psw ;store things away

Push dpI '
*Push dph

push &cc
setb psw.3 ; select register bank 1
moy tho,55 ;load starting counts
mow t10,54
setb tcon.4 ;restart timer 0

Section 2: Read current Position and update higi bytes of count 4

mow dptr.,#154000 ;address if fore* d/a
movz Odptr, a ;start convert
mow 76, #1 ; initialize sign/exp byte of speed
mow 74,#0 ; mit Imb of speed to zero

mow dptr, *140000 ; address of encoder count
mow rO,#60%
mow r5,*0 ;initialize high byte of change ,%~
mova a, Sdptr ; fetch current encoder reading
clr c

* subb a, OrO ;New-readinq - Old-roading - Low-change
mow r4,a ;r4 - low-change

mow 75, a 3sedI - low-change

mnb acc.7,pos ;Jump ahead if positive change
mow rS,#377  ;set Migh-change - -1
mow 76, *201 ;change sign of speed
clr c

*clr a
* ubb a,75 ;take abs value of change for speed

mow 75,a ;store as the hmb Of speed

p08 mow a,frO
clr c
addc a, r4 ;Nev-reading - Low-change + old-reading
mow @to,& ;Stash new reading
inc rO

IN III

Q'A.11 1
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nov a,SrO ;fetch old-high-reading
addc a,r5 ,New-bigh-readinq

u - old-high + high-change
mov @rO,a ;stash new-high-reading
inc rO
Mov &,Gro ;fetch old-very-high-reading
addc a,r5 ;New-very-highA

nov GO~a -old-very-high + high-change
mov rO~a;stash new-very-high-reading

Section 3: Load current setpoint and determine change in setpoint by
looking at lowest byte change

push dpI ;save pointer address to encoder count
4--.'?ush dph

mnb 44.6,cal ;Skip this if no time-varying setpointk
jb 44.7,read ;move ia in progress - skip on
may dph,47 lIoad in starting addr. of data block
nov dpl, 46

%inc dptr ;first serpoint located at S ADR+3
inc dptr

inc dptr
*may 1lS,dph ;Store starting addr. Of SetPOints

may 114,dpl
3*tb 44.7 ;set indicator that move is in Progress

read may 120,#l ;initialize siqn/exp byte of change
may 116,#O ;init 1mb of change to zero
may dph, 115 ,load setpoint data pointer
may dpI, 114
mayx a.Qdptr ;read low byte of new sotpoint (lb)
May r6,a ;temporarily store new setpoint lb
may rO. *63 ;point to low byte of Current setpoint
clr C
3ubb a, IrO ;New-readinq - old-readingr - Low-change

.4cjne a.#177,neof ;skip if More setpoints coming
'4. d 44.7 ;end-of-setpoint-file reached (&-177)

dlr 44.6 ;Use same setpoint from now on
) sjnP Cal

neof may 117,a ;store as hub of change - Low-change
Jnb acc.7,Plu3 ;Jump ahead if positive change .

may 120,#201 ;reverse sign of setpoint change .

clr a
subb a,117 ;take abs value of change

%may 117,a ;Store as hub of change

Plus may a,rE ;stash new setpOint low byte
mov @rO,a
inc dptr
mayx a. Qdptr ;fetch medium byte of new setpoint
inc rO
mov *rO,a ;stash medium byte of new setpoint

* inc dptr
mayx a.@dptr ;fetch high byte of new setpoint
inc rO

%may #rO,a ;stash high byte of new 34tPOint
inc dptr
may 115,dph ;store pointer to next setpoint
may 114,dpl toPcotllronein

Section 4: Determine velocity error as position change - setpoint change to
cofr oPDcnrlercneto

11 P I , 1 ,1 ' ' 1 1 10 I



xrl 120,#200 ;change sign Of setPOint velocity term %

moy r0, #74 ;point to position change P. .
toy rl, #I16 ;point to -setpoint changeq*'Icall add2 ;add -> 974 - @74 - @120

cal pop dph ;rstore encoder count addr. pointer

pop dpl 0

. Section 5: Calibrate Axis if required

inc dph ;inc dph once to access enc status
jnb 41.1,bb ;bit 41.1 indicates that we are in

calibration mode
jb 41.2,bb ;bit 41.2 indicates we are calibrated
movx a, @dptr ;fetch encoder status
anl a,#1 7  ;check for calib A A & B & Zero pulse
cjne a,#13,bb ;if not at calibration pt skip ahoad
dec dph ;set dptr to encoder count register
nov a,#0 ;accum - 0
movz: fdptr, a ;clear count
inc dph ;restore dptr
mov rO,160 ;rO - pointer to position A setpt blk
clr a

zap mov @rOa S
inc rO

cjne rO,#66,zap ;Jump back to clear more if necessary
setb 41.2 ;set to indicate calibration occured!

%

; Section 6: Initialize Output to zero and check for shut down conditions

bb clr a
mov 67,a ;Reg 67.66 -0
mov 66,a

% jb 41.0,lim bit 41.0 is enable
sjmp out if not enabled - jump to output

..check for limit switches or encoder overrun.

im movx a,@dptr fetch encoder status
anl a,60 ;check for overrun flaq or limit trip
jz cont ;if none are set keep going!!
clr 41.0 c clear enable bit
sImP Out ;if some have been tripped - BAIL OUT

Section 7: Jump to servo Routine

cont acall load ; load subroutine loads addresses
Icall servo ; actual address for servo provided by

; load subroutine from Req 56 & 57 _

Section 8: Data taking

jb 44.5,dtO0 ;we are currently takinq data - skip on
% jb 44.4,out data buffer is full - move on

Jnb 44.0,out ;not taking data at present

* mov r3,Il ; Start takinq Data - Initialize things
ov 53,47 ; load in starting addz. of data block
mv 52,46
setb 44.5 ;set indicator

dtO djnz r3,out r3 is countdown for when to take data

all tests have been passed - time to take data
nov r3,45 initialize r3

Z M w "= 
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mov dph,53 ; load data pointer :"."
mov dpI, 52
jnb 44.1,dtl ; ar, we saving position data?
mov a,60 ;et position from registers 60 & 61
movx @dptr,a stash
inc dptr
mov a, 61
moyx @dptr,a
inc dptr 

'

"tl jnb 44.2,dt2 are we saving A/D data? --
A push dp-

push dph save dptr
nov dptr,*154000 addr of A/D data
movx a,@dptr fetch A/D reading
pop dph %estore
pop dpl etr
movx Qdptr, a stash
inc dptr
nov a,#0 high byte is zero
movx @dptr,a
inc dptr

dt2 Jnb 44.3,dt3 are we saving output data?
mov a,66 get output from registers 66 t 67
movX @dptr,a stash r
inc dptr

4,,;, nov a, 67
movx @dptr,a
inc dptr

dt3 mov 53,dph store away data pointer
mov 52,dpl
moV a,51 is data buffer full?
clrc
Ssubb a, 53 subtract high bytes of data addresses
Jnz out data not full
clr c
may a,50
subb a, 52 subtract low bytes
subb a,#1I subtract an extra 1 7
jnc out positive answer - keep going

;data block is full - stop data taking
m y 51,53 ; update end of data block markers
mow 50,52
setb 44.4 ; raise flag
clr 44.5 ;lower flag 5

% ,Section 9: Output to Motor

% out jb 41.3,aout jump if we are using Automatix Amps
,-,-clr a

mov r2,#O initialize for disabled ampP%
nb 41.0,put if we are not enabled jump ahead

mo r2,#1 set for forward motion
may a,67 S
jnb acc.7,posl teat sign

negl mov r2,#3 negative output
clr c
clr a
subb a,66 change sign
sjmp put

posl mv a,66
* put may dptr,#152000 address of PWM Hag for MIT amps

movx Odptr, a output magnitude

%
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moy a, r2
may dptr,#l50000 address of P164 status
may: @dptr,a output status G direction bits
sjmp popr

;The following command causes initialization to occur at original location
;but gives extra room to finish framework program.

-10600

aout may r2,#O *initialize enable command to zero
jnb 41.0,apos jump if we aren't enabled
inc r2 r2 Used later far Status byte

apos may dptro#152000 dptr m base address of latch card's d/a
may a,,66
mayx Idptr, a output lowest four bits
inc dpI ineriment pointer
swap a swap nibbles
mayx Idptri output mid 4 bits

p...inc: dpI incriment, pointer
may a,67

S In a,*lO compliment bit-ll to change into right
;format for d/a

mayx Gdptroa output high 4 bits
inc dpi incr~int pointer
movx Idptr, a output to latch convention
may dptr, Il5000(6 dptr - address of enable register
may a~r2
may:x ldptr. a output enable bit

Section 8. Pop Stack and return from interrupt

popr pop acc
pop dph

S. pop dpi
pPO Popw leave things as they were found

reti

servo nap bogus label to fill in Icall
instruction

*Subroutine LOAD -moves the address of the suervo subroutine to the end %
of the two bytes directly following the lcall instruction.

* This allows changing the subroutines by writing the address of the new %'
* servo routine into locations 56 57 *f internal RAN.

*load pop dph get program counter address
,from stack

pop dpI and load Into data pointer
inc 3P
Inc dptn'.
iny a,7fth ihbteo evortn ad.
movay: 7 fetrtre high bt address oin adr

* incdptrastrJuptades
may s,4 ethlo bt

Nv ma 56 fetc lowbyt
ret dpc~

rot.

r nitialization Section -this program is run Only Once
at the start of operation

-10700 ;this, code goes at micro-addz 10700
init drc 40.0 ;lclear jump to ran flag

'41 1 I I l l
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mov tmod,# ;configure timer zero in mode I
nov 55,0#375 initialize servo rate registers for
mov 54, #164 1. 5 kl~z sampling
nov thO,55 ;load starting counts
nov tlO,54
3 etb tcon.4 ;start up timer 0
nov jec, #203 ;enable comm, and timer interrupts
mov ipc, #2 ;set priority of servo loop high%

.1' ov a, #316
anI 44,a ;clear start data and data full bits
nov 112, #377 ;Initialize amplifier Max.
nov 113, #7

wait jnb 40.0,wait ;check which is startup flag *S

clr 40.0 ; leave cleared before jumping to RAM
Push psv
anl psw,#347 ; select register bank 0
nov dpI, rO ; load data pointer
nov dph,rl

clr a
*jmp Sa+dptr ;jMP to ran

-he following label is purely for the assembler to check that the above
coda fits before mmry location 11000.

5'. -11000

The following bogus label is so that the assembler will know where the
math services are.

-12000

add2 nop,

CJ.
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FORTH Commands

Appendix D

The FORTH language operates as a hierarchy of definitions, in which more .. ,.

complex words are built up from simpler words. These definitions are stored in a

dictionarv when compiled, which resides on the PDP 11/23. Most of the FORTH

words needed to run the experiments were already contained in this dictionary.

Additional words were defined in a file on the VAX called /u/meckl/forthi/data-

send.fth and were added to the dictionary on the PDP 11/23 using the FORTH

comm nandl:

INTFRPRETVAXFILE /U/MECKL/FORTH/DATA-SEND. FTH %

The following glossary of FORTH words describes what each command does and

specifies the input and output for each word. FORTH operates on a stack, so input

and output is specified by the expressions surrounded by parentheses and separated

by a double hyphen. The first expression represents the input to be placed on the

stack, while the second expression represents the output returned from the stack.

One or both of these may be absent.

DATATOVAX (FILENAME-- ) . .

reads data from the microprocessor specified by MN and transfers it to

the file FILENAME on the VAX. ,

2 14
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VAX-TQJ4ICRO (FILENAME -

transfers the contents of FILENAME 0o1 the VAX to the microprocessor

specified by MN.

SET-L.OAD (FILENAME -

transfers a sequence of setpoints from FILENAME on the VAX to ther

microprocessor specified by MN starting at an actual memory location

gliven at the start of the file.

ENABLE-MOVE (-

~1 signals the framework routine for microprocessor specified by MN to start

* servoing to setpoints from successive memory locations.

DATA-kYOVE (-

starts servoing to setpoints from successive memory locations for mnicro

scified by MN while taking data for position, Ai D input, and amplifier

cornman d.

DATA-k-MOVE*(--)L.
6

does DATA-&YOVE for axis specified by MIN while reading V, D data on

other axis micro without moving that axis.

DAT-&-MOVE** (-

dloes DATA-&-MOVE for X-axis and servos to setpoints from successive

memory locations in Y-axis micro while reading A D data on that axis.

0, V

'N.-N
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DATL-&.SET* (DJOUBLE INTEGER -

signrals the framiework routine for icrpocso specified by MN to start

following setpoint given by DOUBLE INTEGER while reading data for po- W0

sition, A/D input, and aniplifier cornmand fromi the mioving axis, and

A D input only from the other axis mnicro without mnoving that axis.

N....
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