
SECURITY CLASSIFICATION OF THIS PAGE (When Da. Rnered), i
REPORT DOCUMENTATION PAGE READ INSTRUCTIONS

BEFORE COMPLETING FORM

1. REPORT NUMBER 2 GOVT ACCESSION NO 3. RECIPIENT'S CATALOG NUMBER

AFIT/CI/NR 88- 5O
4. TITLE (and Subtile) S. TYPE OF REPORT & PERIOD COVERED

P CL0 SIIIcA(TIok) HE'THOVoLOG'y AtO THESIS

Ln P-t TP-ILVAL MO. Tb 32P)(T 6. PERFORMING OqG. REPORT NUMBER

7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)

OA JI L Lr. ,.U 6 L&

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK

AFIT STUDENT AT: AREA & WORK UNIT NUMBERS /
~~ ~ xA AFI ITDN AT: o"X o i OV fRs T/V/

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

1988
13. NUMBER OF PAGES

14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office) IS. SECURITY CLASS. (of this report)

AFIT/NR U
Wright-Patterson AFB OH 45433-6583 UNCLASSIFIED

15a. DECL ASSI FICATION/DOWN GRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

DISTRIBUTED UNLIMITED: APPROVED FOR PUBLIC RELEASE

PTIC
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different from Report) AUG

SAME AS REPORT ""

H
I. SUPPLEMENTARY NOTES Approved for Publlie'Release: JAW AFR 190-I

LYNN E. WOLAVER/y a ,- s? I i O4
Dean for Resea rk6 ndI'rofessional Development
Air Force Instit e of Technology
Wright-Patterson AFB OH 45433-6 83

19. KEY WORDS (Continue on reverse side if necessary and Identify by block number)

20. ABSTRACT (Continue on reverse side it necessary end Identify by block number)
ATTACHED

DD I JAN73 1473 EDITION OF I NOV 65 IS OBSOLETE UNCLM1SSI-iE_
SECURITY CLASSIFICATION OF THIS PAGE (When Dats Entered)

11 r Ir , , s, A_ ..-": ".: ',' :-;":" "S",7, ,'"-,-' : : :-; ,F %*:1," ;w'"-"""' -'.-.:" '

ABSTRACT

A Classification Methodology arid Retrieval ModelP

to Support Software Reuse (December 1987),

Daniel Lee Ruble, A.A., Del Mar College; .

B.S., Texas A&I University;

M.C.S., Texas A&M University

Co-Chairs of Advisory Committee: Dr. Sallie V. Sheppard
Dr. William M. Lively

Studies have shown that reusing existing software can reduce devel-

opment costs, speed up the development process, and provide a more reliable

product. A software classification methodology and retrieval model have

been developed to support the organization and location of reusable soft-

ware components. This capability required the design and development of

three cooperating processes: (1) an organization for the reusable software col-

lection, (2) a method for describing software components, and (3) a mecha-

nism to access (locate and retrieve) the desired software component.

A faceted classification scheme and retrieval model were designed to

overcome the deficiencies found in existing software reuse systems. These

deficiencies include a lack of retrieval support for the developer, static clas- .-

sification schemes based on enumerative techniques which are difficult to %WI

expand or modify, and limited descriptive capabilities based on keyword re-

trieval technology. The retrieval model resulting from this research is one -

of the key components needed for large-scale software reuse.
"NYM

iv

The faccted classification model from library science was used to de-

sign a software classification methodology based on an analysis and synthesis

process. An analysis of the reusable software components is used to con-

struct the classification. A synthesis process can then be used to describe

items in the collection. The faceted methodology is adaptable to changes

and growth in the target collection, concise in its descriptive format, facili-

tates automation, and supports citation order changes to adapt the organiza-

tion to different users. Application of the faceted classification methodol-

ogy to a test collection is pres~tnted.

A formal retrieval model was designed using a combination of tech-

niques from the boolean and vector space information retrieval models. The

retrieval model uses attribute tuples to represcnt both the software compo-

nents and user queries. The retrieval mechanism combines direct attribute

matching from the boolean model with a similarity heuristic to provide rel-

evance estimation. The general principles used to design the classification

methodology and retrieval model were informally verified by experience

with a rapid prototype'system constructed as part of the research. Based on

these initial experiences, the faceted classification methodology and hybrid

retrieval mechanism appear to provide an effective retrieval system for

reusable software components.

D T I-
co APeYossl'I)n ForINSPECTED NT 7.I

_T!"

D " 1L;, .

% 4t

I,

p.

A CLASSIFICATION METHODOLOGY AND RETRIEVAL

MODEL TO SUPPORT SOFTWARE REUSE

A Dissertation

by

DANIEL LEE RUBLE

Submitted to the Graduate College of
Texas A&M University

in partial fulfillment of the requirements for the degree

DOCTOR OF PHILOSOPHY

.'

December 1987

Major Subject: Computer Science

S."

A CLASSIFICATION METHODOLOGY AND RETRIEVAL

MODEL TO SUPPORT SOFTWARE REUSE

A Dissertation

by

DANIEL LEE RUBLE

Approved as to style and content by:

Sallie V. Shepp William M. Livelv
(Co-Chair of Committee) (Co-Chair of Committee

W. H-omner Ca isle Marietta J. Tretter
(Member) (Member)

Glen Williams
(Head of Department)

December 1987

4.

p~ ', '45 rw f J' * . % . .- 5 f. 5

q .. l

iii

ABSTRACT

A Classification Methodology and Retrieval Model

to Support Software Reuse (December 1987)

Daniel Lee Ruble, A.A., Del Mar College;

B.S., Texas A&I University;

M.C.S., Texas A&M University

Co-Chairs of Advisory Committee: Dr. Sallie V. Sheppard
Dr. William M. Lively

Studies have shown that reusing existing software can reduce devel-

opment costs, speed up the development process, and provide a more reliable

product. A software classification methodology and retrieval model have

been developed to support the organization and location of reusable soft-

ware components. This capability required the design and development of

three cooperating processes: (1) an organization for the reusable software col-

lection, (2) a method for describing software components, and (3) a mecha-

nism to access (locate and retrieve) the desired software component. _ .

A faceted classification scheme and retrieval model were designed to

overcome the deficiencies found in existing software reuse systems. These

deficiencies include a lack of retrieval support for the developer, static clas-

sification schemes based on enumerative techniques which are difficult to

expand or modify, and limited descriptive capabilities based on keyword re-

trieval technology. The retrieval model resulting from this research is one

of the key components needed for large-scale software reuse.
Il

iv

-\ The faceted classification model from library science was used to de-

sign a software classification methodology based on an analysis and synthesis

process. An analysis of the reusable software components is used to con-

struct the classification. A synthesis process can then be used to describe

items in the collection. ,The faceted methodology is adaptable to changes

and growth in the target collection, concise in its descriptive format, facili- NO

tates automation, and supports citation order changes to adapt the organiza-

tion to different users. Application of the faceted classification methodol-

ogy to a test collection is presented.

A formal retrieval model was designed using a combination of tech-

niques from the boolean and vector space information retrieval models. The

retrieval model uses attribute tuples to represent both the software compo-

nents and user queries. The retrieval mechanism combines direct attribute

matching from the boolean model with a similarity heuristic to provide rel-

evance estimation. The general principles used to design the classification

methodology and retrieval model were informally verified by experience

with a rapid prototype system constructed as part of the research. Based on

these initial experiences, the faceted classification methodology and hybrid

retrieval mechanism appear to provide an effective retrieval system for

reusable software components.

S-,

To Pat, Robin, and Christy

11

,ff 'I

ACKNOWLEDGEMENTS

First, and foremost, I would like to thank Dr. Sallie Sheppard and Dr.

William Lively for their support, guidance and encouragement throughout

my graduate program at Texas A&M. They were always there to listen and

advise, during the best and worst of times. I wish to thank Dr. Homer

Carlisle and Dr. Marietta Tretter for serving on my committee and always

being available for counsel. A special thanks goes to Dr. John Mclnroy for

his support as an adjunct committee member and to Dr. James Smith for

representing the Graduate Council.

I would like to thank all my friends and colleagues here at Texas

A&M for their support, helpful suggestions, and warm friendship, especially

Dave Umphress, Scott Teel, Marcus Brown, Craig Murra, Steve Moffett, and

A! Crn.'ford.

Finally, I would like to thank my best friend and wife, Pat, and my

daughters, Christy and Robin, for their love and understanding. This work

is dedicated to them.

'4.

A'',4** ~~- ~ '~.. % 4 V %

vii

TABLE OF CONTENTS

Page

1. INTRODUCTION

1.1 Background 1
1.1.1 Impetus 2
1.12 Types of Reuse 4
1.13 Current Status 5

1.2 Research Overview 7
13 Overview of Following Sections 9

2. REVIEW OF PREVIOUS WORK _ _10

2.1 Software Reusability 10
2.1.1 Reusable Code 13

2.1.1.1 Functional Collections 14
2.1.1.2 Libraries in Industry 17
21.13 Software Factories 20
2.1.1.4 Programming Languages and Environments 21

2.12 Application Generators 24
2.1.2.1 The Draco System 25
2.1.2.2 KBMC _ 27

2.13 Transformation Systems 27
2.13.1 PSI Program Synthesis System 31
2.13.2 TAMPR 33
2.13.3 Programmer's Apprentice .. 34

2.2 Information Retrieval _35

2.2.1 Boolean Retrieval Systems_ 36
2.2.1.1 Stairs 38
2.2.1.2 Liars 39
2.2.13 1-akyr -. 40

2.2.2 Vector Space Retrieval 41
2.2.2.1 Smart 42
2.22.2 Sire 42
2.2.2.3 Caliban _ 43

2.23 Probabilistic Information Retrieval 44
2.23.1 Harter's Model __ 45
2.23.2 University of Massachusetts System. 45

23 Classification Schemes and Techniques 46
2.3.1 General Classification Terms -......... ... 46
2.3.2 Types of Classification Systems

2.3.3 Library Classification__- .52
23.3.1 Dewey Decimal Classification -53
2.33.2 Universal Decimal Classification 55
2333 Library of Congress 57
233.4 Bibliographic Classification 6
2335 Colon Classification _2....6

497,

viii

Page

2.3.4 Software Classification 64
23.4.1 General Schemes 64
23.4.2 Program Libraries 65
2.3.4.3 Software Directories. 66

2.4 Summary and Conclusion 67 "

3. CLASSIFICATION OF SOFTWARE COMPONENTS 69

3.1 Design Objectives .70
3.1.1 General Classification Objectives 70
3.1.2 Software Classification Objectives 72 "

3.2 Selection of a Classification Model 3 -73
3.2.1 Identification, Location, and Precision _.._____74
3.2.2 Collocation, Organization, and Structure 76
3.2.3 Expansion and Automation __ 76
3.2.4 Selection Summary .78 .8

3.3 A Faceted Scheme and Classification Methodology __78
3.3.1 Basic Concepts
3.3.2 The Methodology 79 A.

S.3.3 The Faceted Scheme .82333.1 The Analysis Phase 83

3.33.2 The Synthesis Phase 89
3.4 Application of the Faceted Methodology-- _90

4. SOFTWARE COMPONENT RETRIEVAL ____93

4.1 Functional Requirements-...... ..-.............
4.1.1 Query Formulation 9.
4.1.2 Relevance Ranking.. 95
4.1.3 Vocabulary Control ____96
4.1.4 Collection Reordering 98

4.2 Design Decisions for the Retrieval Mechanism________ 8
4.2.1 The Retrieval Model ___ _98"
4.2.2 Query Formulation and Vocabulary Control 101
4.2.3 A Similarity Heuristic. 102
4.2.4 Facet Reordering 104

4.3 Design of the Retrieval System -04.,__
43.1 Control Structure.10....
4.3.2 User Interface and Vocabulary Control . _ 107
4.3.3 Phased Retrieval Mechanism .107

4.4 Rapid Prototype Implementation I I
4.4.1 Rapid Prototype Support 110(
4.4.2 Control Structure of the Rapid Prototype...............11...-1
4.4.3 Support Routines- 113",

,,

- 1 5A-0 ~ ~ P *.. ~.

ix

Page

5. EXPANDING THE SOFTWARE COLLECTION 116

5.1 Selecting Another Software Domain- -116
5.2 The Modification Process. __118

5.3 Modifying the Prototype Schedule_.. . 119
5.4 Results and Conclusions- _.----_..--- 121

6. SUMMARY, CONCLUSIONS AND FUTURE WORK _ 123

6.1 Summary of the Research -123""
6.1.1 Software Reuse - ----- 124
6.1.2 Faceted Methodology ___.._124.
6.1.3 Retrieval Mechanism _. 126
6.1.4 Rapid Prototype - - --..-.. 127,

6.2 Results and Conclusions. _.128
6.2.1 Rapid Prototype - - - -. - --- -. 128
6.2.2 Faceted Classification-_ 130
6.2.3 Retrieval Mechanism134

6.3 Future Work 134
6.3.1 System Enhancements _135,,
6.3.2 Additional Research136 .

6.3.2.1 A Classification Assistant ---------- 136
6.3.2.2 Other Software Development Products 137
6.3.2.3 Reuse Environment Integration 137
6.3.2.4 Thesaurus Construction 138
6.3.2.5 Retrieval Based Upon Reuse Metrics 138

REFERENCES_ _ 140

APPENDIX 1 - SOFTWARE COMPONENT SCHEDULE 1 .151

APPENDIX 2 - SOFTWARE COMPONENT SCHEDULE 2 .155

VITA--______.159__
'S

-- F

!1I

W!
x

LIST OF FIGURES

Figure Page

1. Software life cycle: (a) traditional model and (b) reuse model 12

2. Draco System Overview 26

3. A Draco Statistics Reporting Domain 28

4. Transformation System Overview 29

5. Literature Hierarchy 48

6. Computer Language Hierarchy -49

7. Faceted Classification Example 51

8. Enumerated Classification Example 51

9. Subject Scattering in DDC 55

10. DC18 Music Class 75

11. Constructing a Faceted Classification 80

12. Retrieval System Control Hierarchy (first level). 105

13. Retrieval System Control Hierarchy (second Level) -105

14. Retrieval System Control Logic ., 106

15. Facet-based Query Construction: (a) Form menu and
(b) Activity menu 112

16. Ranked Output from the Prototype 115

17. Ranked Retrieval Output: (a) from default citation order and
(b) from modified citation order 133

i:~

'I

-' ,I.

K 7

1. INTRODUCTION

Software is expensive. The U. S. Department of Defense alone will

spend over $30 billion per year on software by 1990 [Horowitz and Munson

1984], and Ramamoorthy et al. [1984] project the cost of software in the

United States will approach 13 percent of the Gross National Product during

the same time frame. These figures, while staggering, only represent a por-

tion of the total cost of computer software. Canceled projects, faulty

software, delayed software, and maintenance costs make the actual amount

much higher. There are several factors contributing to this tremendous

growth in software cost such as increasingly complex requirements for new

software systems, a shortage of qualified software professionals, and a lack

of significant improvement in software development tools and methodolo-

gies. For the foreseeable future, there is little doubt that software costs will

continue to rise. Software reuse is viewed by many experts as a promising

near term solution to this problem. A classification methodology and

retrieval mechanism to support software reuse is the focus of the research

reported herein.

1.1 Background

Studies have shown that a large percentage of computer applications

contain common functions. A California study [Jones 1984] of commercial

banking and insurance applications reported nearly 75 percent of the

This dissertation was prepared in the format of ACM Comnputing Surveys.

Poe1

2

functions identified existed in more than one program. Goodell [1983]

examined over 1300 application programs at the Burroughs Corporation and

identified only 24 unique primary functions. The well known study of busi-

ness applications at Raytheon [Lanergan and Grasso 1983, 1984] revealed that

60 percent of their programs were performing essentially similar functions.

During the last 20 years, productivity in software development has

only increased by 3 to 8 percent per year. However, software engineering

experts estimate that software reuse can increase productivity by at least an

order of magnitude [Horowitz and Munson, 1984; Jones 1984; Lanergan and

Grasso 1983, 1984; Boehm and Standish 1983; Standish 1983, 1984]. Reusing

existing software systems or portions of existing software products can

reduce development costs, speed up the development process, reduce testing

requirements, and provide a more reliable product.

1.1.1 Impetus
,'

The concept of reusability is not new. It is a general engineering N

principle derived from the desire to avoid duplication and to capture com-

monalty in classes of similar tasks [Wegner 1984]. Wegner uses a

manufacturing analogy to view software as a capital investment and explain

the economic incentives for its reuse.

Machine tools of the industrial revolution and software tools
such as compilers are both reusable resources. Moreover, any
reusable resource may be thought of as a capital good whose
development cost may be recovered over its set of uses.

Reuse can eliminate a large percentage of the development process for each

reused component with a corresponding decrease in cost [Pedersen 1984; Yeh

3

et al. 1984a; Wegner 1984]. Thus, there are several incentives for the reuse of

software components: economics, reliability, manpower, and time. Reusing

software reduces the cost and manpower required by reducing the amount

of specification, design, coding, and testing which must be accomplished.

Maintenance, which represents the largest percentage of cost and manpower

in the software life cycle, is also reduced by using components of proven

quality and reliability which are well documented and easier to understand

[Harrison 1986; Lanergan and Grasso 1984]. Reusing reliable components

which have been thoroughly tested over time also reduces the potential for

errors. The time required for developing new applications can be shortened

by reusing existing software components which eliminates a portion of the

normal development process [Cavaliere and Archambeault 1983].

The largest user of software systems, the U. S. Department of Defense

(DOD), has recognized the importance of software component reuse in two

recent initiatives, the development of the Ada® language and the Software

Technology for Adaptable, Reliable Systems (STARS) program [Batz et al.

1983; Boehm and Standish 1983; Druffel et aJ. 1983; Horowitz and Munson 1984;

Litvintchouk and Matsumoto 1984; Mathis 1986; Rauch-Hindin 1983; Wegner

1983, 1984]. The STARS program is a major DOD effort to improve software

embedded in mission-critical systems by improving software practice. A

primary objective within the application-specific area of the STARS

program is the development of a reusable software technology [Batz et al.

® Ada is a registered trademark of the U. S. Government, Ada Joint

Program Office (AJPO)

I,

4

1983; Druffel et al. 1983]. The first step listed by Batz within this objective is

the development of "cataloging procedures needed for describing and ware-

housing software," for its subsequent reuse.

The second initiative, the Ada programming language, was developed

as the standard language for all DOD embedded software systems. It

incorporates several major features which support reusability including

generic program units, separately compilable modules, and information

hiding (the separation of interface specifications from the module body).

1.1.2 Types of Reuse

Software component reuse can occur in many different forms. The

simplest and most familiar form of software reuse is the purchase of existing

commercial packages like word processors, data base management systems,

networking systems, and small business applications. These software prod-

ucts are often reused thousands of times (purchased by many customers).

Software development environments and tools such as editors, compilers,

and debuggers offer a similar example of reuse.

Subroutine libraries provide a different form of reuse. These collec-

tions provide a set of modules for a small application area where each

module has a precise purpose and is fixed except for a few parameters which

affect its operation in a well defined manner. The numerical analysis

library from IMSL [1984] is one example of this form of reuse. Other forms

of software reuse closely related to subroutine libraries are operating system

service calls and built-in language subroutines such as sine, string handling "

functions, and square root.

5

Products from the software development process other than code can

also be reused. Since coding is only 10 to 15 percent of the total development

cost [Ramamoorthy et al. 1984], reuse of requirements, specifications, or

design products can result in even larger gains in productivity. The Draco

system [Neighbors 1984] is an example of the reuse of analysis and design

components from a particular application domain. After analyzing a new

domain, a Draco domain analyst creates a "domain language" which describes

the objects and operations within the application area. A system analyst can

then specify a "program" to Draco using this new domain language and via a

transformation process (requires human guidance), Draco will produce

executable code. Each time Draco converts a domain language program into

executable code, the analysis and design information for the application

domain is reused. The reuse of domain analysis and software development

knowledge has given rise to several other forms of reuse such as application

generators [Horowitz and Munson 1984], prototyping environments

[Ramamoorthy et al. 1984], knowledge based programming paradigms

[Waters 1985a, 1985b], and automatic programming systems based on formal

specifications and transformations [Kaiser and Garlan 1987; Balzer et al. 1983;

Topping and Baumel 19851.

1.1.3 Current Status

It can be seen from the discussion above that reusability covers a wide

spectrum of schemes and techniques ranging from simple library collections

to application generators to knowledge based approaches. Terms such as "off

the shelf software", "parts-based programming", and "software factory" have

become associated with the concept of reusable software. Reuse has been

6

recognized as one of the major productivity techniques for the 1990's

[Harrison 1986].

Several reuse projects such as ReadyCode at Raytheon [Lanergan and

Grasso 1983, 1984], the General Purpose Component system at AT&T [Afshar

1985], and the Reusable Code system at Hartford Insurance [Cavaliere and

Archambeault 1983] have had limited success. The reported successes,

however, are only small-scale applications of reuse technology within limited

application domains. Although useful for concept verification, they do not

provide the essential elements necessary for the large-scale application of

software component reusability.

One of the critical elements required for large-scale software reuse is

a retrieval mechanism, a technique for locating the desired software compo-

nent if it exists [Batz et al. 1983; Chandersekaran and Perriens 1983; Curtis

1983; Freeman 1983; Grabow et al. 1984; Harrison 1986; Horowitz and Munson

1984; Jones et al. 1985; Lubars 1986; Mathis 1986; Ramamoorthy et al. 1986;

Rauch-Hindin 1983; Standish 1984]. Reuse will only be valuable if the effort

to describe, locate and reuse an item is less than the effort to create a new

one. Current systems provide only minimal retrieval assistance to the

developer or no assistance at all. Locating the software component to be

reused is often a manual process assisted only by a printed catalog.

A major study conducted for the Navy by Hughes Aircraft Corpora- .

tion surveyed 19 state-of-the-art software development methodologies I

concerning software component reuse and concluded that an effective

retrieval mechanism was a key factor missing in every system examined

[Grabow et al. 1984].

'.V

7

None of the methodologies used in large-scale development
efforts provided a reliable way of storing and retrieving
items the retrieval of the correct item from the library
was a manual process. (which was often so difficult that it
was easier to code a new item than look for one to reuse.)
the crux of the problem is our inability to precisely describe
what a software component does.

Classification, the ability to organize and describe items in a collec-

tion, is the core of any effective retrieval technique. Current reuse projects

have incorporated static classification schemes which are simple to create

for small collections, but difficult to expand as new items are added to the

collection (this is referred to as the "re-classification problem"). Static

classification schemes provide only minimal descriptive capabilities and are

usually limited to keyword retrieval techniques, frequently implemented in

the form of printed catalogs. Using these schemes, the retrieval of a

particular item from anything other than a very small collection becomes a

laborious, frustrating task. The software classification methodology devel-

oped as part of this research addresses these deficiencies by providing a

flexible schedule which is easy to expand and a rich descriptive capability

which can be customized to the target domain.

1.2 Research Overview

The objective of the research described herein was the design and

development of a classification methodology and a retrieval model to sup-

port software component reuse. The primary motivation for this research

was to improve reuse technology, thus reducing the cost of software

development, especially for large-scale applications. The focus of an

effective retrieval model is the capability it provides for describing I1

, VV 8

(selecting) the desired set of items. As part of this research, a faceted

classification methodology was developed to provide this descriptive

capability for software components. The resulting retrieval model is based

on a consolidation of three research areas: (1) software component reuse, (2)

information retrieval theory, and (3) classification schemes and techniques.

It extends previous research in the area of software reuse by providing a

retrieval mechanism for locating a desired software component within a

large collection of items. The necessary cataloging and description capabili-

ties are supported by a faceted classification scheme which is easy to use,

extremely adaptable to changes and growth in the target collection, and

concise in its descriptive format. It is a major improvement over existing

keyword-based retrieval models and does not suffer from the expansion (re-

classification) problems inherent in many other classification schemes.

Software component reuse is generally defined to be the use of source

or object code developed for one application in a different application

[Grabow et al. 1984]. This research extends the definition to include the

reuse of other software products produced during the software life cycle

such as requirements, specifications, designs, or test plans. This set of

reusable products will hereafter be referred to as reusable software

components. The approach taken was to study the problem of software

component reuse and survey the domain of classification theory to identify

feasible classification schemes that could be or have been applied to

software. A faceted classification scheme for software components and a

formal retrieval model were developed. The retrieval model was

implemented as a rapid prototype using a data base management system

modified to include the retrieval mechanism as a front end. The rapid

9

prototype supported the retrieval of code fragments from a collection of

data structure algorithms. A subset of the International Mathematics

Scientific Library collection was then added to the original software W.

collection to validate the classification methodology in a different domain.

The implementation and operation of the rapid prototype were then

analyzed to determine the feasibility and utility of the retrieval model and

faceted classification methodology in supporting the retrieval of reusable

software components.

1.3 Overview of Following Sections

Section 2 surveys the relevant research in software reusability, the

dominant information retrieval models, and classification schemes and tech- 'V.

niques, in particular, classification in library science and existing schemes

used in software classification. Section 3 discusses the objectives and goals of

a methodology for classifying and describing software components. A

faceted software classification methodology is presented with the results of
I

its application in a test domain. In Section 4, the design of a formal software

retrieval model is described along with its implementation as a rapid

prototype. Section 5 examines the addition of new components to the
I

faceted classification scheme. Experiences and conclusions from the

development of the faceted classification methodology and retrieval model

and suggestions for future work are presented in Section 6.

-NUMI Y0k . ,W W' .7'~ ki R '

10

2. REVIEW OF PREVIOUS WORK

Reuse, with its significant economic incentives, has become a major
L-

component in many current efforts to improve software productivity.

Analysis has shown [Boehm 1981; Standish 19841 that the cost of software is

usually an exponential function of its size; halving the size of the software

which must be created (by reuse) would therefore reduce the cost by much

more than half. Standish [1984] appropriately stated the motivation behind

reuse with a modified quote from Bertrand Russell, "Software reuse has the

same advantage as theft over honest toil." A survey of the literature re-

vealed three research areas related to the development of a software classi-

fication methodology and retrieval model to support software component

reuse: (1) software reusability, (2) information retrieval theory, and (3)

classification schemes and techniques. The major contributions in each of

these areas will be addressed as they relate to the research reported herein.

2.1 Software Reusability

It has been recognized for some time that a fundamental weakness in

the software development process is its focus on creation. Each new

software system is constructed from scratch as if no other system like it had

ever been developed. The study on Reusable Software Implementation

Technology conducted by Hughes Aircraft Corporation for the U. S. Navy

[Grabow et al. 1984; Huang 1985] found this to be true in a study of 19 current

software development methodologies which covered a cross section of

research, commercial, and industrial methods. The first two conclusions

reported from this study were:

f '
, , J ,. -, •- - ,a -, -J",-,, .-J -,',' ". "-, •" - - "-'., • .. ,.","-" - " " ".-."",. . ,..' '-,'" ¢ a'C ,.' "," '.".' .'-,:-.?.''- p

1. No credible methodology was examined which purported
to provide the reuse of source code between dissimilar
a ppl ica tions areas. In fact, where source-code level reuse
occurs at all, it happens within fairly narrow application
areas.

2. None of the methodologies used in large-scale
development efforts provide a reliable way of storing and
retrieving items from a code-level library. Some
methodologies were able to implement libraries, but the
retrieval of the correct item from the library was a manual
process.

This is obviously an undesirable situation since studies have shown

that a large percentage of applications contain common functions [Jones

1984; Goodell 1983; Lanergan and Grasso 1983, 1984]. While software

development methodologies do not support reuse, cognitive research has

shown that reuse (the use of analogies) plays an important role in the

process actually used by software developers [Silverman 1985; Soloway and

Ehrlich 1983, 1984]. When confronted with a new problem, most developers

consider how solutions to previous applications might be used. This includes

not only solutions from the developer's past experience, but also information

from documents, plans, and algorithms taken from each phase of the

software life cycle. Silverman [1985] suggests that "as soon as a solution (even,"

a bad one) exists to a new problem domain, it is human nature to reuse that
solution", anid proposes a revision to the traditional software life cycle model

shown in Figure 1(a). This revision, Figure l(b), acknowledges reuse of

components ranging from requirements to code fragments and suggests

development of tools and techniques to support reuse.

*%*S-~~S, ~-%-~.~a; ~ a './ ... f p . p*' 'a,~ J~ a.

12

P

Incrementsal Changes

Idn't caton_ Deelop nd Dsosal .

alnd Test Maintenance"

S.:

I.

Incremental Changes

Recuirements Design ---- Overtio

Idenrtification Develop and Disosal
and Test Maintenance

Sof tvare
Comonent
Collectilon

(b)

Figure 1. Software life cycle: (a) traditional model
and (b) rIuse model

L

: 4.

13

As described in Section 1, reusing software can imply the repetitive

execution of application programs, the repetitive use of software develop-

ment tools, the reuse of code fragments or subroutines from functional

libraries, the reuse of components in a "software factory" setting, the reuse of

analysis and design knowledge in transformation paradigms, or even the

simple reuse of spreadsheet templates. This variety has created confusion

concerning the meaning of "software reuse".

The type of reuse pertinent to the research reported herein involves

the use of a software component in a situation other than the one for which

it was originally created and with less effort than would be required to

create a new component. The repetitive execution of application programs

% or software development tools is not included as their use does not usually

require sophisticated retrieval support. Previous research falling under this

definition of software reuse includes reusable code, design reuse, and

transformation systems. Each of these areas builds on work from the

preceding domains making the boundaries somewhat indistinct. The major

research contributions in each area are discussed below with particular"
emphasis on the associated classification and retrieval aspects.

2.1.1 Reusable Code

Reusing code fragments or subroutines is the "typical" view of

software reuse. It is one of the oldest software engineering concepts with

origins that can be traced back to the use of assembly language macros

[Chandersekaran and Perriens 1983]. The concept of a reusable software

component industry is almost two decades old. McIlroy [1976] proposed such

4; ,"

14

a software industry at the 1968 NATO Software Engineering Conference.

Manufacturing facilities would produce and distribute standard

interchangeable software components in a manner similar to the production

and distribution of hardware components. This idea is still attractive and

frequently mentioned as a viable option [Standish 1984; Wegner 19841. Past

research in code reuse has been concentrated in the areas of libraries and

software factories.

2.1.1.1 Functional Collections

Subroutine libraries have been the most popular form of code reuse

and are the area of software reuse most closely related to this research.

Often referred to as functional collections, such libraries usually consist of

functionally similar components (subroutines or functions) designed for the

solution of very specific problems within a limited application domain. The

most successful collections have been in the field of scientific programming

such as the International Mathematics Scientific Library [IMSL 1984], a

collection of Fortran subroutines for common mathematical and statistical

problems. Typical of functional collections, each IMSL subroutine has a

precise purpose and is fixed (i.e., not meant to be modified) except for a few

parameters which affect the operation in a predetermined manner. This

"black box" approach promotes using the subroutine without knowledge of

the internal algorithms or design/performance information. Reuse is

restricted to a function or subroutine call.

A printed reference manual is the only mechanism available for

locating a desired subroutine in the IMSL collection and the cumbersome

classification scheme provided can force even knowledgeable IMSL users to

S I - -

15

spend hours searching for the correct routine. The IMSL reference manual

groups the subroutines by functional areas. These groupings are then listed

alphabetically as follows:

A - Analysis of variance
B - Basic statistics
C - Categorized data analysis
D - Differential equations
E - Eigensystem analysis
F - Forecasting
G - Generation and testing of random numbers
I - Interpolation
L - Linear algebraic equations
M - Mathematical and statistical special functions
N - Nonparametric statistics
0 - Observation structure
R - Regression analysis
S - Sampling
U -Utility function
V - Vector-matrix arithmetic
Z - Zeros and extrema

Although a fundamental guideline for classification schemes is to keep

related topics close together (collocated), the IMSL organization

intermingles statistical, mathematical, and other groupings. A user selecting

the wrong cluster name (keyword) will be misled. An example from Curtis

[1983] illustrates this organization problem.

If one wanted to perform a discriminate analysis, one would
find little help looking under the D's. One must have
enough statistical knowledge to know that discriminate
analysis is a multivariate statistical technique. So, look
under the M's, right? Wrong, the M's are devoted to
Mathematical and Statistical Special Functions. In reading
down the list, one must recognize that multivariate statistics
provide an analysis of the structure underlying a set of
observations. Therefore, for discriminate analysis one must
go to the O's. One finds there a procedure for "multivariate
normal linear discriminate analysis among several known
groups" with the marvelously mnemonic title of ODNORM.

.

- - - --- - - '.4 *

':.4p.~ .. - .

16

Using printed reference manuals for locating desired items is the

standard technique in functional collections. The Statistical Package for the

Social Sciences [SPSS 19841 and the UNIX Programmers Workbench

[Kernighan 19841 are examples of other popular functional collections

limited to simple reference manual type retrieval.

A recent innovation in the area of functional collections is a library

of "objects" to support the object oriented methodology of software

development [Booch 1986]. These objects (abstract data types) represent both

the data structure of the entity involved and the actions which can be

performed on that entity. A library organization for abstract data types

(ADTs) has been developed at Brigham Young University based on a

"knowledge structure" of is-a relationships [Woodfield 1985; Embley and

Woodfield 1987]. The objects in the library are implemented as Ada

packages. Each ADT is a pair (ADT-descriptor, ADT-implementation-set) ,

where an ADT-descriptor describes the ADT and an ADT-implementation-

set is a set of one or more Ada packages implementing the ADT. The

developers, however, found the design of suitable descriptors for the ADTs

based on this organization a more difficult problem than was originally

envisioned. The object oriented library currently supports only two forms of

cataloging and retrieval. The first, search by name, is not expected to be of

much help to users since the names chosen by the library-administrator arc

not widely known or easily remembered. The second technique uses

keywords to locate candidate ADTs. Once an appropriate ADT is found,

users can browse other related ADTs via the is-a structure to locate the best

ADT for reuse.

% - %', -"-°%P. . " - . ° * ° ° .. - - - . * IL

17

Functional collections have been a successful form of reuse. One

reason for their success is that they concentrate on a small domain of well

defined problems. Each collection is also usually limited to routines written

in a single programming language. Reference manuals are typically the

only retrieval mechanism available for locating components within these

collections. Reference manuals can be adequate for locating items in very

small collections, but retrieval becomes a problem as libraries grow in size.

The successful examples of reuse in functional collections did inspire the

investigation of reusable code libraries in industry.

2.1.1.2 Libraries in Industry

The economic incentives favoring reuse and the success of functional

collections suggested similar applications in industry. The majority of these

projects have been based on the functional collection model with a limited

library of routines concentrated in a small domain. They do, however,

demonstrate that the reuse of code in industrial environments can result in

significant productivity improvements.

The ReadyCode system at Raytheon's Missile Systems Division was

one of the first and most successful of these projects [Grabow et al. 1984;

Horowitz and Munson 1984; Lanergan and Grasso 1983, 1984; Rauch-Hindin

1983; Jones 1984]. The project targeted the information processing systems at

Raytheon comprised mostly of common business applications written in

Cobol. The ReadyCode research team examined over 5000 existing Cobol

programs and identified three major application categories: editing and

selection programs (29%), updating programs (26%), and report programs

(45%). A small subset of representative programs was then selected and

(4%.AsalsbstslceSn

18

studied in closer detail. The research team concluded that over 40 percent of

the code in these programs was redundant and could be standardized. Three

prototype Cobol logic structures (select, update, and report) were developed

and placed in production programming environments for testing. The

positive results from this study were used to implement the ReadyCode

system.

The ReadyCode library contains two types of reusable components,

Cobol source code modules and Cobol logic structures, which can be

combined to produce business data processing programs. The Cobol source

code modules implement common business routines such as date aging, part

number validation, and tax calculations and are used to complete the logic

structures. The Cobol logic structures are skeletons (templates) of programs

with prewritten identification divisions, environment divisions, data

divisions, and procedure divisions. Logic structures are not complete

programs (some parts are missing or incomplete) but serve as basic outlines

for the intended application. Seven basic logic structures were initially

identified and then augmented with various options (for example, one

version with an imbedded sort and one without).

The ReadyCode system has been used to develop over 50 system

applications at three different Raytheon plants with an average of 60

percent reusable code [Lanergan and Grasso 1983, 1984]. Programmers found

that using well-documented routines with consistent styles resulted in

programs that were easier for everyone to read and understand, thus

reducing the maintenance effort. Overall, the ReadyCode system has

produced a 50 percent increase in software productivity. ReadyCode

so,. ,,. ,,,, .,, ,; .; -- ,," ,. .V2. ". "'"- "'- ."'"." i ." ,.?.".• '".i' " '; ; ;,"- '"'"4 .'.% ,,

19

demonstrated the significant productivity gains and reduced maintenance

costs available via the simple application of basic functional collection reuse

technology, albeit on a small scale. As with functional collections, however,

location of a desired component in the ReadyCode library is limited to

eitner a keyword search or manual inspection of a module directory.

Many other reusable library projects have followed Raytheon's %

successful pattern. The Reusable Code system at Hartford Insurance

[Cavaliere and Archambeault 1983] is another library of Cobol business

applications containing program skeletons, algorithm templates, and source

code modules. NASA-Ames has implemented a reusable library containing

mostly Fortran modules [Jones et al. 1985] and the GPC system developed at

AT&T Information Systems supports a library of reusable modules written

in C [Afshar 1985]. The somewhat unique reuse library at Electricite de

France in France contains a collection of abstract data types (packages) for

scientific programming written in Fortran [Meyer 1982], while the

Restructured Naval Tactical Data System (RNTDS) library contains modules

written in the CMS-2Y language for reuse during the construction of real-

time embedded shipboard software [Grabow et al. 1984]. Although each of
J-

these libraries varies somewhat in purpose and structure, there is one V-

common characteristic which limits their size and reuse potential.

Components within each of these libraries must either be selected manually

from a printed catalog or by browsing an online directory using keywords.

The retrieval techniques and static organization of these libraries were

ported unchanged from the functional collection model. The problem of

software classification was avoided by keeping the collections small.

,I]

-~ -- * ww,~ * - U U U U U UjqU.W1

20

In one application with a larger library, the catalog has evolved to

overshadow the reuse library it supports. This catalog, the Bechtel Catalog

of Computer Programs (BECCAT), is used at the Bechtel Corporation for

cataloging software related to nuclear engineering design applications

[Dumlao and Cook 1983]. Software in the catalog is indexed by subject,

acronym, title, and host hardware. BECCAT is maintained by three

professional librarians in the Bechtel Data Processing Library office. The

average monthly cost for maintaining the catalog is over $5000 and the

printing cost for one edition of the catalog in 1982 was over $6000.

2.1.13 Software Factories

The next development in code reuse was the Japanese software

factory [Jones et al. 1985; Jones 1984; Matsumoto 1984; Tajima and Matsubara

1984]. A software factory is usually a separate division within a company

organized for large scale software production. Standardized development

methodologies and extensive automated support are used to maximize

productivity. Software reuse is given a high priority. More than just a

reusable code library, the software factory reflects a total management

commitment to software reuse. Software factories train their programmers

to reuse software and management strategies encourage (demand) reuse.

For example, changing productivity indicators such as lines of code to the

number of modules reused is a common practice [Prieto-Diaz 1985].

The Toshiba software factory [Matsumoto 1983, 1984; Matsumoto et al.

1981] manufactures software for real-time process control. Production rates

in excess of 20,000 lines of code per person-year have been achieved with a

reported reuse rate of about 50 percent. An object oriented development

r' - ~ .
- A'

21

methodology is used at Toshiba based on the reuse of abstract data types in

the form of Ada-like packages. Each package is documented by a

Description for Reusers (DFR) using a notation similar to SADT which

describes graphically the function and interfaces of the packages. The DFR

includes requirements and design information as well as the source code.

The software factory at Hitachi, Hitachi Software Engineering (HSK), is

similar in overall operation [Tajima and Matsubara 1984]. Reusability,

however, is supported by a library of standard templates for frequently used

programming structures. An automated environment called Skips II helps

developers customize a selected template. HSK programmers are assigned

exercises every month which encourage use of the template library.

Software factories like Toshiba and HSK have been very successful.

Their success, however, is derived as much from standardized methodologies

and automated development environments as it is from software component

reuse. Their reuse libraries are based on the simple functional collection

model. Each library concentrates on a single application domain, supports

only one programming language, and relies on either manual inspection or

keyword type searches for locating a desired component.

2.1.1.4 Programming Languages and Environments

The demonstrated increase in productivity and quality made possible

with the simple reuse technology discussed above has renewed research

interest in software component reuse. Several recent initiatives in the areas -I

of languages and software development environments have had reuse as a

major emphasis. The design, development, and required use of Ada had a

majoi impact on programming languages since its sponsor, the DOD, is one

ION

,&,

22

of the largest users of software systems in the world. It was recognized at

design time that certain language features could enhance software

reusability and their inclusion in Ada was given a high priority [Ichbiah

1983; Druffel et al. 1983; Horowitz and Munson 1984; Mathis 1986; Rauch-

Hindin 1983; Wegner 1983, 1984]. Some of Ada's mechanisms which support

reusability include: (1) a variety of programming units such as subprograms,

tasks, and packages; (2) the separation of interface specifications from the

module body (information hiding); (3) generic program units; (4) separately

compilable program units; and (5) strong typing [Gargaro and Pappas 19871.

An Ada package consists of a specification part which contains the input

and output parameters, data types, structures and procedures used by the

package and a package body part that contains the code to implement the

functions (actions). This separation of visible specification part and hidden

function part supports both object oriented (abstract data type) and black

box reuse paradigms. Packages with the same specifications can be

interchanged without affecting other parts of a software system.

Ada's generic facility is another key feature which supports reuse. A

generic program unit in Ada is a parameterized template for generating

software components [Ledgard 1981]. A generic template can be instantiated

(copied and completed) for different data types by specifying appropriate

actual parameters. This allows a family of reusable software components to

be specified by a single generic definition. These features are reinforced by

the standardized usc of Ada as the language for all DOD embedded software

systems.
d,

;* -, -'' ' " ,, ' ' ' '. -, , ' . , - . , , ° . -. - . , . . , - . . -. % . -, . - .. - - - . - . , -'

23

Several recent research projects have verified the utility of Ada's

reuse mechanisms. The High Level Simulator (HLS) project [Litvintchouk

and Matsumoto 1984] is a prototype simulation system providing a catalog of

reusable modeling components. The HLS project relied heavily on Ada's

generic mechanism to create classes of modeling components. A library of

reusable software metric primitives implemented in Ada was developed by

Pollock to support the study of software complexity metrics [Pollock 1985;

Pollock and Sheppard 1985]. The separate compilation, generic program

units, and package features of Ada were each cited as attractive reusability

mechanisms.

Other languages are also providing mechanisms to support reuse.

Modula-2, developed by Niklaus Wirth [Rauch-Hindin 1983], provides

information hiding, strong typing, and separate compilation facilities.

Smalltalk [Deutsch 1983; Wegner 1984] is an example of a growing collection

of languages modeled after the object oriented development paradigm.

These languages are based on the concept of data abstraction and

hierarchical inheritance which originated in the Simula language. Objects

with operations on an internal state are the primary language component.

Operations and states may be inherited from previously defined classes

which allows functionality to be incrementally defined in terms of previous

functionality. Every object is described by (is an instance of) some class.

Classes are arranged in a hierarchy with the property that if class A is a

subclass of class B, then all operations implemented in B are available in

instances of A. This allows new classes that are similar to old classes to be
implemented with an effort that is proportional to the degree of

dissimilarity. Lisp flavors and Objective-C qre examples of other languages

-w0-

24

based on the class hierarchy concept [Ledbetter and Cox 19851. Experimental

languages such as CONCISE [Gladney 1983] and BB/LX [Lenz et al. 19871

developed at the IBM Research Laboratory are extending language research

in the areas of abstract data types and generic operators.

Work on reuse features in languages quickly migrated into

development environment related areas. Environments can promote reuse

by providing standardization, a common language interface, development -

tools and databases to assist reuse, and portability across hardware. The Ada

Program Support Environment (APSE) and Kongsberg System Architecture

(KOSAR) are examples of this approach [Wasserman and Freeman 1983;

Wegner 1984; Pedersen 1984]. Other development environments such as the

RPDE [Harrison 1986], AXE [Oskarsson 1983], SoftwareBase [Yeh et al. 1984a,

1984b], and SPS [Boehm et al. 1984; Wartik and Penedo 1986] present

individual approaches to software reuse. Many of these projects have noted

the need for research concerning component classification and retrieval

mechanisms.

2.1.2 Application Generators

As noted in the previous subsections, code reuse can improve software

productivity and quality. Approaches which reuse other elements of the

software development process, however, offer potentially larger

improvements since they represent a larger portion of the total development

cost. Application generators seek to reuse the analysis and design products

of a specific problem domain [Biggerstaff 1984]. The typical application

generator provides a nonprocedural language interface designed for a

nontechnical person to use, often in the form of menu selections. The

J5

'5

, .,

25

generator system then combines these input parameters with its internal -.

domain knowledge to produce an executable program.
p

2.1.2.1 The Draco System

The Draco system [Neighbors 1984] extends the typical application

generator model described above. Draco uses a different problem-domain-

specific-language to describe the objects and operations in each given

problem domain. It contains mechanisms for defining new problem domains -

I
as special-purpose domain languages and for converting statements in these

new languages into executable programs [Partsch and Steinbruggen 1983].

At the lowest level, Draco contains domains that represent executable

computer languages (currently only Lisp is implemented). New domain

languages are defined by describing their syntax in a Backus-Normal-Form

like formalism and defining their semantics by mappings from statements in

the new language to statements in a previously defined domain language.

The user can then formulate a problem solution (program) in terms of the

new domain language. The essential steps are shown in Figure 2. As

currently implemented, the user must interact with Draco to guide the

refinement of a domain language program into executable code. 1v

Since the prototype system became operational in 1979, only 10 Draco

domain languages have been constructed [Neighbors 1984]. The system 1j

designers conclude that developing a good domain analysis and language

implementation is a harder problem than originally envisioned. For

example, a domain analysis done for tactical display systems was over 100 .4

pages long. ..

:4

26

Perf orm~
Domain
Analysis

Domain-specif ic
Language, X

Parser Uoer

Interacts
During

Translation

Executable
Program

Figure 2. Draco System Overview

27

Several important questions remain unanswered about the practical

use of the Draco approach. One is the efficiency of the final executable

code since new domain languages are defined in terms of other domain

languages. Another concern is the potential growth in domain languages

which must be simultaneously mastered. Figure 3 shows a possible domain

organization for a system which produces formatted statistical reports. The

new statistics reporting domain language is defined in terms of 5 other

domain languages. The designer of the new language must be familiar with

the other 5 languages. Will this approach facilitate or hamper debugging

and maintenance?

2.1.2.2 KBMC

The Knowledge-Based Model Construction (KBMC) system, which

focuses on a single domain, represents the more typical approach to analysis

and design reusability [Murray 1986]. KBMC supports discrete simulation

modeling within the domain of queuing systems. No simulation language

expertise is required of the user, who interacts with KBMC by describing

the structure and components of the system to be modeled. The analysis and

design information internal to KBMC is then "reused" to generate an

executable simulation model in the simulation language SIMAN.

2.1.3 Transformation Systems

The boundary between application generators and transformation

systems is sometimes difficult to determine. Biggerstaff [1984] uses the

Draco system to demonstrate this problem, arguing that Draco could be

classified in any one of three different categories: (1) a problem oriented

IS

es{l 9 ~~I ~ 4~~ UU % U ~ ~ . * ~ . *. U

28

Program Input -description of the
desired system in terms of the
problem domain

FomtCalculatio

OeaigExecutable -

s t eTrL Lnguag

Executable '

Code

Figure 3. A Draco Statistics Reporting Domain a-

N

K: . V

29

language, (2) an application generator, or (3) a transformation system. In

general, a transformation system takes high-level specifications (in predicate

calculus form, algebraic form, relational form, or declaration form) and

transforms them into executable programs. The transformation process

successively refines each abstract concept into a more and more concrete

function until a final executable state is reached. A typical transformation

system is pictured in Figure 4. The high-level problem specification is input

to a composer which arranges the problem parts for internal system use and

performs interface and consistency checks. The refinement process then

translates the problem specification into the target language via an iterative

transformation process. An optimizer works with the transformation

module to eliminate inefficient implementation decisions.

Problex
Specif cation

COMPOSE

Implementor -- 4REFIRE Reusable
4 Transformations

OPTIMIZE

Executable
*m Program

Figure 4. Transformation System Overview

, rI

30

Originally, transformation-based systems were presented as a new,

"revolutionary paradigm" for software development [Balzer et al. 1983; Green

et al. 1983]. This new paradigm would change the focus of software

development and maintenance from the source code level to the more

abstract specification level. Actually, this "revolutionary paradigm" is only a

different form of software component reuse. The transformations house the

reusable software components in these systems which can include analysis

and design information as well as reusable code fragments or patterns -

[Horowitz and Munson 1984; Nourani and Jones 1985; Biggerstaff 1984].

Transformations are usually represented as either schema-based, pattern

matching rules or as algorithmic procedures. A schematic rule contains an

ordered pair of program units (schemes). When a match for the first scheme

is detected, it is replaced by the second scheme in the rule with appropriate

parameter substitution (analysis, design, or code reuse). An algorithmic

transformation expresses the algorithm directly in a procedural language

(code reuse).

The specification language (usually a wide-spectrum language) is a

critical element of the transformation paradigm and is a limiting factor in

current transformation technology [Partsch and Steinbruggen 1983]. It has

been noted that many of the specification languages are more difficult to

understand than the corresponding executable programs produced by the

transformation system - a situation which does not improve software

productivity or quality [Horowitz and Munson 1984]. GIST, a popular

specification language used in several transformation systems, is one

example. It is so complex and difficult to use that a paraphraser was

developed to translate GIST specifications into a more understandable form

- ' - -'A'>: ."S':' . -SUS.SS...,...%. : ! . " " % %S" , .. % P. . . .

31

with disappointing results for the developers. With the paraphraser, several

specifications "proven" correct and used for some time were found to contain

serious defects [Balzer 1985].

Transformation systems, with one exception, currently exist only in

research environments as experimental tools and are generally limited to a

restricted range of small pedagogical problems. A representative selection

of these systems is presented in the following sections.

2.13.1 PSI Program Synthesis System

The PSI system, developed during the late 1970's at Stanford, is

designed to generate an executable program from a formal description

(GIST specification) of a problem [Green et al. 1979; Green 1976; Kant and

Barstow 1981]. PSI is a modular transformation system composed of several

integrated subsystems including a parser, an interface moderator, a program

model builder, a code generator, and an optimizer. The program model

builder (PMB) accepts partial program fragments as input and constructs a

complete program model in an abstract modeling language [McCune 1977].

The incomplete program fragments are completed by the PMB through the

use of internal procedural rules (reuse) or by querying the user for

additional information. The completed program model is then transformed

into a target language by the code generation module, PECOS.

PECOS [Barstow 1979] uses the abstract program model produced by

the PMB and applies transformations that reuse design or coding

information to produce an executable Lisp program. The transformation

process consists of small step-by-step refinements of the program description

*!- -- , w- .~ 'N 'JN ~ N ~ N N~

32

using a task oriented control structure. In each refinement cycle a task is

selected and an appropriate pattern (transformation) is applied. A task may

generate subtasks which are refined in a last-in, first-out sequence. When

several transformations are applicable, the refinement is split with each

transformation applied in a different branch of a tree of program

descriptions. The root of the tree is the original abstract program model and

the tree's leaves are programs in the target language. To keep the tree a

reasonable size and produce efficient programs, the optimizer module,

LIBRA, rejects certain possible refinement branches. LIBRA [Kant and

Barstow 1981] contains reusable information about algorithm efficiency in

the form of heuristics and analytic cost estimation which is used to prune

the tree of partially refined programs and direct the order of further

expansion. The PSI system has been successfully demonstrated on problems

such as computing prime numbers and sorting linked lists but relies on

human interaction to guide the transformation process.

The PSI research team has been responsible for several follow-on

transformation projects [Smith et al. 1985]. Cordell Green and one PSI

subgroup working at the Kestrel Institute used the technology in PECOS

and LIBRA to develop the CHI system. The goals for CHI were to improve

the transformation process (make it less dependent on human interaction)

and develop a more usable specification language. The resulting

specification language, V, has been transferred to commercial applications

by Reasoning Systems, which markets a transformation-based software

development system called REFINE. REFINE can be customized to specific

problem domains by extending V via the addition of "knowledge packs"

(domain specific transformations). REFINE has been selected by the

.r,%.

33

Lockheed Missiles & Space Company as the basis for EXPRESS, a research

program to develop a transformation-based software development

environment [Topping and Baumel 1985; Baumel et al. 1986].

A second major weakness of the PSI system was its dependence on

human guidance during the refinement process. The development of
'C

Glitter, another offshoot of PSI, investigates methods for automating more

of the refinement process by reducing the distance between the high-level

specification and the final target language [Fickas 1985]. The work and

experience from these projects provided the impetus for a long-range

research plan, the Knowledge-Based Software Assistant (KBSA), underway

at the Kestrel Institute [Green et al. 1983]. The KBSA plan outlines 5, 10, and

15 year research goals for improving automatic transformation system

technology.

2.13.2 TAMPR

The Transformation-Assisted Multiple Program Realization

(TAMPR) system, developed at the Argonne National Laboratory, is an

example of a special purpose transformation system [Boyle 198Q, Boyle and

Muralidharan 1984; Partsch and Steinbruggen 1983]. TAMPR was developed

to adapt numerical algorithms to special problem or software environments

via transformations. The numerical algorithms are represented as abstract

prototype programs. Different sets of transformations called realization

functions can then derive mathematical subroutines with the desired

properties from the abstract representation. The transformations developed

for TAMPR mainly focus on the transition of Basic Linear Algebra

subroutines to in-line Fortran code.

4.4

34

The MENTOR transformation system [Nourani and Jones 1985;

Partsch and Steinbruggen 1983] uses a processing model similar to TAMPR.

A tree-manipulation language, MENTOL, makes transformations on

algorithms represented as abstract syntax trees. The transformations are

implemented as tree-rewriting operations.

2133 Programmer's Apprentice

The Programmer's Apprentice (PA), developed at MIT [Waters 1985a,

1985b; Rich and Waters 1983], consolidates reuse techniques from each of the

areas presented above: a reusable library, reuse of analysis and design

information, and reuse via transformations. The PA system provides five

major functions: (1) a library which contains program plans (program

fragments), (2) a plan editor for modifying program plans, (3) a coder which ,.',

transforms a plan into Lisp code, (4) an analyzer which can construct a plan

from a section of program code, and (5) a drawer to graphically display a

plan.

A programmer uses the PA by selecting plans from the library and

filling in unspecified portions with Lisp code or by modifying the existing

code. A plan is composed of segments, each defined by input and output

parameters and a set of specifications. Relationships between plan segments .

are described by "dependency links" which represent data or control flow."

The PA plan library is hierarchically organized from general

abstractions to more specific implementations. For example, a plan about

the concept of a loop could be specialized into an enumeration loop or a

I'

35

search loop. No classification scheme or retrieval support is provided for the

plan library. A user must specify the desired plan by name.

The research projects and industrial applications described above have

demonstrated the enormous potential of software component reuse.

However, in almost every study, whatever the form of reuse, a component

classification scheme and retrieval mechanism have been cited as critical

missing elements. Current techniques employ either printed reference

manuals or simple keyword matching systems.

2.2 Information Retrieval

Bartschi [1985] defines information retrieval (IR) as the process of

searching for specific information stored among a great number of

information items. Salton [Salton and Mcgill 1983] extends this definition to

include the representation, storage, organization, and accessing of

information items, where each information item consists of both the

description that characterizes it and the actual information item. The

overall objective of an IR system is to retrieve all the relevant items from a

collection, while at the same time, retrieving as few of the non-relevant

items as possible. This is in contrast to data base retrieval which selects only

matching items. IR systems can vary significantly in surface characteristics,

but are usually based on one of three underlying models: (1) boolean

retrieval, (2) vector space algorithms, or (3) probabilistic methods.

Vi

C,

36

2.2.1 Boolean Retrieval Systems

The boolean retrieval model, which offers simplicity and efficient

operation, is used as the basis for most large commercial retrieval systems

such as Lexis, Medlars, Dialog, BRS, Stairs, and the New York Times

Information Bank [Croft and Ruggles 1983; Doszkocs 1983; Faloutsos 1985;

Hafner 1981; Salton et al. 1983; Salton 19861 The basic boolean model consists

of an information item file and one or more directories (inverted files) of

indexing terms (descriptors). For each descriptor in the inverted file, there

is an associated list of information item numbers identifying each item

which has been assigned to that descriptor. A simple boolean algebra can

then be created by combining the descriptors with the set operators 77

,%

intersection, union, and negation. Boolean expressions in a query can then

be evaluated by simply merging the lists of item addresses belonging to the

descriptors in the query. The information items themselves are not involved

in the query evaluation. For example, a query about the concept

"information retrieval" might be stated as "INFORMATION AND

RETRIEVAL". A boolean retrieval system would use the following

procedure to identify the relevant information items:

1. Use the inverted index to retrieve the item numbers
associated with the term INFORMATION. Call these item
numbers Set 1.
2. Use the inverted index to retrieve the item numbers
associated with the term RETRIEVAL. Call these item
numbers Set 2.
3. Compute the intersection of Sets 1 and 2. Call these item
numbers Set 3.
4. Use the information item file to retrieve the items
identified by the reference numbers in Set 3.

-S

I

I

..'S ' '*..* ' ,%5~5 ~ ~ *J ~ ~ ~ I

37

A similar procedure would be used for the OR operator with union

substituted for intersection in step 3. Set difference is usually used to

implement negation.

The simplicity and efficiency of the boolean model are offset by several

disadvantages [Salton et a!. 1983; Biswas et al. 1985; Bartschi 1985]. First, the

size of the output obtained is difficult to control. Depending on the

assignment of terms to information items and the actual combinations of

terms used in the query, either a large amount of output can be obtained or

possibly, no items will be retrieved at all. Second, the retrieved items are not

ranked in order of relative relevance. Each item retrieved is assumed to be

as important as any of the other retrieved items. Third, there is no

capability for assigning importance factors to the terms in the query or the

descriptors in the inverted files.

These disadvantages derive from the retrieval of only items that fully

match a given query. For example, if a query contains 10 descriptors joined

by the AND operator, an item indexed by 9 of the 10 descriptors would not

be retrieved. Similarly, combining the 10 descriptors with the OR operator

would result in a large number of retrieved items, even items with only one

of the requested descriptors would be retrieved. Bartschi [1985] describes this

as the "all-or-nothing response". Items that do not contain all the index

terms are treated exactly as items that contain none of the index terms.

Recent work has introduced index term weighting, similarity measures,

query term weighting, and fuzzy set theory as techniques for providing

relevance measures in boolean retrieval systems [Bookstein 1980, 1981;

Bartschi and Frei 1983; Bartschi 1985; Radecki 1981; McCune et al. 1985; Buell

Jh

38

and Kraft 1981a, 1981b]. A similarity measure, also called an association

measure, is a technique for estimating the similarity between a given item

and a particular query. Several systems discussed below incorporate these

ranking techniques.

2.2.1.1 Stairs

The Storage and Information Retrieval System (Stairs) from IBM is

somewhat unique in IR systems - no data bases are made available by its

manufacturer, IBM. Most commercial IR systems provide large collections

of information (e.g., Dialog, a simple boolean IR system, offers over 125 data

bases) [Croft and Ruggles 1983; Salton and Mcgill 1983]. The Stairs user

purchases only the IR software for use with private data bases. Stairs is

based on the boolean retrieval model but can operate in two modes. The

first mode, called SEARCH, is the basic boolean retrieval m,-iel described

above (all-or-nothing) with no relevance ranking of retrieved items [Salton

and Mcgill 1983]. The second mode of operation, RANK, uses term

weighting of index terms to provide a ranked order of items. The value of a

term associated with a particular information item is determined using the

following formula:

l. ftd x fts
Value of term =

ndr

where ftd is the frequency of the term in the document, fts is the frequency

of the term in the retrieved set, and ndr is the number of documents in the

retrieved set containing the term. A final value is calculated for each

'C

5 !P. . -'L . ,. . , =, . .-. , . . .r w .

39

information item by summing the values of all terms which match query

terms.

Stairs is considered to be a powerful, state-of the-art IR system.

Recent large-scale tests conducted by Blair and Maron [19851 disappointed

the IR community, revealing Stairs retrieved less than 20 percent of the

items relevant to the searches. The average precision from the 40 test cases

was about 75 percent, with recall averaging less than 20 percent. Recall and

precision are generally defined by the following formulas:

Number of relevant and retrieved
Recall =

Total number relevant

Number of relevant and retrieved
Precision =

Total number retrieved

Experiments with several other commercial IR systems [Salton 1986] have

shown similar results and are used to argue for the development of better

N retrieval models.

2.2.1.2 Liars

Liars, the Louisiana Information Access and Retrieval System, was

developed at the Louisiana State University to serve as a testbed for

studying different schemes relating to fuzzy set retrieval techniques [Buell

and Kraft 1981a, 1981b; Kraft and Buell 1983]. Liars contains two major

components; a high-level user interface which retrieves items from the

_,

40

collection by invoking the second component, a database management

system (Lorelei) extended to support IR requirements. Boolean queries are

input to the system with "weights" optionally attached to each term. A

mathematical module then accesses the inverted files and computes the

retrieval status value for each relevant information item, ranking them for

final output. The separation of major functions into individual modules

supports experimentation using different retrieval strategies. Changing the

fuzzy set model in the mathematical module does not affect other

components in the system. It is interesting to note that Liars and Lorelei

were both written in interpreted Business Basic.

2.2.13 Fakyr

Fakyr is another IR research system, but on a much larger scale than

Liars. Developed at the Technische University in Berlin, Fakyr is a boolean

retrieval system supporting ranked retrieval, fuzzy retrieval, retrieval by

classes, relevance feedback, and a variety of clustering techniques [Bollman

et al. 1983]. Fakyr represents 45 man years of effort and consists of over

130,000 lines of PL/1 code and 30 assembler subroutines.

Fakyr has been used to test over 40 association measures and fuzzy

retrieval strategies with some enlightening results. One association measure,

the E. Konrad and H. Zuse, sometimes produced better results than the other

techniques. It was not revealed until the end of the experiment that the E.

Konrad and H. Zuse measure was actually a disguised random function.

Experiments involving fuzzy set based retrieval techniques concluded that

fuzzy set retrieval is no better than the simpler term weighting technique

for relevance ranking. Preliminary results from work in progress indicate

I'

41

that clustering techniques can improve retrieval performance and that

certain hypotheses accepted in the past need to be re-examined (Salton's

cosine measure and the measure of Tanimoto may not be the best

association measures).

2.2.2 Vector Space Retrieval

The vector space retrieval model was developed in response to the

disadvantages of boolean retrieval (no ranking of retrieved items, no control

of output size, and no importance weighting of query terms), and is based on

the concept that items with many descriptors in common with the query are

probably more relevant to the user's request. In the vector model, both

information items and search requests are expressed as sets of weighted

terms (attribute vectors) of the form I = (i1 i2, in) and Q = (ql, q 2, qn) "

where 1b and qb represent the weight (importance) of term b in item I and

query Q respectively [Salton 1982; Bookstein 1983]. With both queries and
information items represented as attribute vectors, similarity measures can

be computed between a given query and each stored item to produce a

ranked output of relevant items [Radecki 1983].

The vector space model provides importance weighting of index and

query terms, ranking of the selected output according to relevance, and

some control of output size using threshold values to limit the number of

items presented to the user. However, selection of a particular similarity-

measure appears to be completely arbitrary and none have been shown to be

consistently superior. Several examples have been documented [Radecki

1983] where existing similarity measures actually produce erroneous results.

These disadvantages coupled with the computational overhead of

~.'

42

maintaining frequency counts for each index term in each information item I

in the collection have kept vector space IR systems limited to relatively

small collections in research environments.

2.2.2.1 Smart

The Smart IR system was developed at Harvard in the 1960's as an

experimental tool for the evaluation of vector space retrieval concepts

[Salton 1971]. Smart is based on the classic vector space retrieval model

described above with the cosine of the angle between the item vectors and a

query vector used as the similarity measure. For two decades, Smart has-

served as a testbed for experiments with similarity measures, automatic

indexing schemes, clustering techniques, and most recently with relevance

feedback research [Salton 1981, 1982, 1986; Salton and Wu 1981; Salton and

Mcgill 1983]. It is interesting that during this lengthy period of study, no

large-scale comparison with a boolean system has been reported. One set of

tests claiming a 40 percent improvement for vector space retrieval was
.%,

reported by Salton [1986], but the item collections were too small for a valid

evaluation.

2.2.2.2 Sire

The Syracuse Information Retrieval Experiment System (Sire) is a

hybrid system combining concepts from both the boolean and vector space

retrieval models [Salton et al. 1983, Salton end Mcgill 1983]. Retrieval in Sire

is a two phase process. First, a boolean query is processed using the standard
5"

inverted file technique. The information items selected by this process are "

then ranked during the second phase using techniques from the vector space

-5

"o -5

• • • •

43

model. Weights assigned to each term in the selected items are used as input

to a cosine similarity measure for ranking the final output. Before the I .

cosine measure is computed, the original query is "flattened". All original

query operators are replaced by OR operators. The query (A AND B) OR

(C AND D) would become A OR B OR C OR D (the query vector

(A,B,C,D)). This illustrates another disadvantage of the vector space model;

representing queries as attribute vectors destroys the boolean structure.

22.23 Caliban

Caliban is an experimental IR system developed at the Swiss Federal

Institute of Technology (ETH) for use on small personal computers

[Bartschi and Frei 1983; Bartschi 1985]. As part of the design effort to move

away from boolean technology, the usual inverted file retrieval structure

was replaced with a tree structure. Each fixed-sized node contains structural

information, the name of the node, node type, and a link to the attached

data itself. The actual data is stored as a separate linked list to

accommodate variable-sized information items.

To retrieve information using Caliban, the user specifies a "virtual

information item" (fills out a template describing the item). Weights may be

assigned to query descriptors to express their relative importance. However,

as in other IR systems based on fuzzy set logic, this eliminates the use of

boolean operators for describing queries. To simulate the NOT operator,

Caliban allows negative weights for query terms. A term can be excluded

from a query by assigning it a high negative weight. The similarity measure

is computed as the sum of the products of the query term weights and index

term weights along the tree path to each matching information item

44

[Bartschi and Frei 19831. To improve recall, item clustering can be simulated

by including entire subtrees in the retrieval response.

2.23 Probabilistic Information Retrieval

The third and newest direction of IR research is on probabilistic

retrieval models. In the probabilistic model, items are selected whose

probability of relevance to a query is largest [Bookstein 1983; Croft and

Ruggles 1983; Maron 1983; Salton 1986]. The probability of an item's relevance

to a particular query is determined by P(relevance/item). What

characteristics and mechanisms can be used to determine this probability

have not been discovered.

Current experimental systems (only a handful exist) use simple

characteristics such as term frequency or expected retrieval costs as

estimates of relevance probability [Van Rijsbergen 1979]. The term

frequency approach is based on the assumption that index term distribution

over the relevant items is different from their distribution over the non-

relevant items [Robertson et al. 1981; Bookstein 1983; Robertson et al. 1983].

Several years of research have produced very little progress in this area. As

Rijsbergen states, "The probability ranking principle assumes that we can

calculate P(relevance/item) this is an extremely troublesome assumption

... we do not know which are the relevant items, nor do we know how many

there are so we have no way of calculating P(relevance/item)." Current

prototype systems employ an estimating technique to determine the

probability of relevance coupled with an iterative relevance feedback

mechanism to improve the estimate [Bartschi 1985; Maron 1983]. Bartschi also

describes another major problem with the probability model, the "curse of

z. .-.",""." ,,...": .-,",,.',,' .- '€.."'',",-",":',',,"":.'."',"',% ",'.:- "'",. "'"- '",'"'," ',','-'. .'" :''" I"

p45

dimensionality". The large number of descriptor terms for each information

item in a large collection makes the calculation of actual probabilities

impractical. Only a few prototype IR systems using the probabilistic model

have been implemented - with rather disappointing results.

2.23.1 Harter's Model

The probabilistic scheme based on the assumption that different term

distributions exist over the sets of relevant and non-relevant items is called

Harter's model. Experiments with a prototype system based on Harter's

model have been conducted at the University of Cambridge [Robertson et al

1981]. Using a test collection of 11,000 items from the National Physical

Laboratory, a 10 percent recall measure was achieved with precision at the

49 percent level. This poor performance was attributed to the "estimation"

problem (how to calculate the probabilities).

2.23.2 University of Massachusetts Systen

A probabilistic IR system has been developed for a collection of

bibliographies, reference works, and technical reports for the Department of

Computer and Information Science at the University of Massachusetts

[Croft and Ruggles 1983]. Employing term frequencies and relevance

feedback techniques, the retrieval model uses a four step process:

1. Initially rank the information items using term frequency
counts (a combination of probabilistic and vector space
techniques).
2. Obtain relevance judgments from the user for the top 10
ranked items.
3. Expand the query using a subset of the terms from the
relevant items.
4. Rerank the collection using probability parameters
estimated from step 2.I'

I',

,

,W, n .7 ;' . .. ,, 'd .! P ,d , -j'., , a, j. W Y VORtW M W77"j T(M,7

46

This system is actually a simple vector space IR model with a weak

probability estimation scheme thrown in as a final step. It is obvious that a

great deal of work remains to be done to make probabilistic retrieval a

usable technique.

The retrieval systems and underlying models described above each

have unique strengths and weaknesses. Boolean systems offer simple

implementation methods offset by an "all-or-nothing" retrieval process. This

approach is unsatisfactory for software component selection. Vector space

models provid,. ordered retrieval based on an item's relevance to the query,

but the similarity measures used in existing systems have not been validated.

Different similarity measures are needed for software component selection

and ranking. The probabilistic model remains ill-defined and unusable.

2.3 Classification Schemes and Techniques

This section introduces the basic concepts of classification theory as

derived from a review of library science literature. General classification

terms and techniques are presented to provide the background for

subsequent discussion of the major library classification schemes and

research. Existing software classification schemes are surveyed concerning

their potential for classifying software component collections for reuse. ,
.0

23.1 General Classification Terms

Classification is the process of distinguishing things or objects which

possess a certain property or characteristic from those that lack it and

grouping things or objects which have the property or characteristic in

"'

"" " " " " " " " " " ° " "- , % % " % ' . . . " " "% " "% " " %' '" % % % % '" ' h

47

common into a class or category [Chan 19811. The word "class" is derived

from "clasis", the calling together of Roman citizens in groups according to

their degree of wealth [Buchanan 1979]. Classification displays the

relationships between things and between classes of things providing a form

of abstraction which allows generalization over a large body of knowledge.

Buchanan [1979] identifies two types of relationships between classes;

syntactic and hierarchical. Syntactic relationships involve a grammatical

connection between classes to represent a subject. These relationships may

be simple (elemental), superimposed, compound, or complex. Simple

relationships define one kind of thing only, such as "automobiles".

Superimposed relationships are simple relationships with more than one

characteristic. "Convertible automobile", for example, is a kind of vehicle

defined both by form and type of top. Complex and compound relationships

deal with more than one kind of thing. A complex relationship is like a

chemical mixture, the elemental compounds are separable. A compound

relationship is more like a chemical compound where the elements fuse and

cannot be separated. The subject "comparing flight characteristics of bees

and airplanes" is an example of a complex relationship, and "sight in bats" is

a compound relationship.

The second type, hierarchical relationships, was originally derived

from the fields of logic and philosophy, and can represent a natural

relationship such as genus to species (e.g., animals - mammals) or a broader-

narrower type of relationship where natural orderings may not exist (e.g., '"

software metrics - validating software metrics). A hierarchical structure

progresses from the general to the specific, dividing the subject into

vI

48

successive stages of classes and subclasses. The characteristic used for

dividing each class is called a facet [Chan 1981]. In Figure 5, the class

literature is divided into three facets; language, form, and period.

In hierarchical relationships, a class which contains another is said to

be superordinate, the contained class is subordinate to the containing classes.

Coordinate classes share the same immediate superordinate class but are

neither superordinate or subordinate to each other. Classes which are

neither broader nor narrower than each other while not sharing the same

immediate superordinate class in the same hierarchy are said to be collateral.

In Figure 6, the class Functional is subordinate to Languages, superordinate

to Lisp, APL, and SASL and coordinate with the class Imperative. The

Literature

(Languagc) American English German French Italian

* "

)I I I I I,"
(Form) Poetry Drama Fiction Essays Speeches

I I
• (Period) Early Pre-Elizabcthan Elizabethan

Figure 5. Literature Hierarchy

~I!

49

Languages
" II

Imperative Functional

I" I I I I I I

Cobol Pascal Fortran Lisp APL SASL

'2

Figure 6. Computer Language Hierarchy

classes Cobol, Fortran, and Pascal are coordinate with each other, collateral

with the classes Lisp, APL, and SASL and subordinate to the class

Imperative. The coordinate elements on each level form an array (e.g., in %

Figure 5, American literature, English literature, German literature, etc.). A

chain is a linked string of elements with each element representing a lower

level of the hierarchy (e.g., Literature, English literature, English essays,

Elizabethan essays).

There is not always a natural hierarchy of the facets in each class.

For example, literature may be divided first by language and then by form,

but could also be divided first by form and then by language. The order of

the facets specified by the classification system is called the citation order.
p.

A classification schedule provides a list of all classes and their relationships

in a prescribed order.

50

23.2 Types of Classification Systems

There are two general types of classification schemes; enumerative

and faceted. Enumerative schemes take a subject area and divide it into

successively narrower classes listing all the elemental, superimposed, and

compound classes arranged in order of their hierarchical relationships. This

"listing" of all possible subjects is the major disadvantage of the enumerative

scheme [Buchanan 1979]. Any subject (class or subclass) which does not

appear in the schedule cannot be classified (located in the collection).

The second type of classification scheme, faceted, is more of a

building block approach emphasizing subject analysis and synthesis [Chan

1981]. An analysis process is used to construct the classification schedule.

Subjects to be classified are analyzed and divided into their elemental terms "

(e.g. things defined by only one characteristic). Only the elemental terms

and their relationships are listed in the faceted schedule. Recurring divi-

sions are not repeated in each major class as they are in the enumerated

scheme. The elemental terms are listed separately for application to all

subjects as needed. Synthesis is then used to express a superimposed, com-

plex, or compound class by assembling its elemental parts from the facets

according to the citation order. Since the analysis and synthesis process

plays such a major role, faceted systems are also called analytico - synthetic

classification in the literature [Chan 1981; Buchanan 1979; Vickery 1960]

Figures 7 and 8 illustrate the difference between a faceted scheme and

an enumerative scheme for identical subject areas. Simple, stiperimposed,

and compound classes are listed ready-made in the enumerative version,

W 4'

51

(process facet) (animals facet)
Physiology (by habitat subfacet)

Respiration Water animals
Reproduction Land animals

(by zoologists' taxonomy subfacet)

Invertebrates

Insects

Vertebrates

Reptiles

Figure 7. Faceted Classification Example

Physiology Water insects
Respiration Physiology of water insects
Reproduction Respiration of water insects

Reproduction of water insects
Water animals Land insects

Physiology of water animals Physiology of land insects
Respiration of wa*:r animals Respiration of land insects
Reproduction of water animals Reproduction of land insects

Vertebrates
Land animals Physiology of vertebrates

Physiology of land animals Respiration of vertebrates
Respiration of land animals Reproduction of vertebrates
Reproduction of land animals Water vertebrates

Physiology of water vertebrates
Invertebrates Respiration of water vertebrates

Physiology of invertebrates Reproduction of water vertebrates
Respiration of invertebrates Land vertebrates
Reproduction of invertebrates Physiology of land vertebrates

Water invertebrates Respiration of land vertebrates d.
Physiology of water invertebrates Reproduction of land vertebrates r

Respiration of water invertebrates Reptiles
Reproduction of water invertebrates Physiology of reptiles

Land invertebrates Respiration of reptiles
Physiology of land invertebrates Reproduction of reptiles

Respiration of land invertebrates Water reptiles
Reproduction of land invertebrates Physiology of water reptiles

Insects Respiration of water reptiles
Physiology of insects Reproduction of water reptiles

Respiration of insects Land reptiles
Reproduction of insects Physiology of land reptiles

Respiration of land reptiles
Reproduction of land reptiles

Figure 8. Enumerated Classification Example

4 .-

52

demonstrating how complicated and inflexible an enumerative scheme can

be. In the third edition of the Universal Decimal Classification, the faceted

class "literature" is listed on one page. The same class in the Dewey Decimal

Classification (DDC 18), an enumerative scheme, occupies 40 pages

[Buchanan 19791. Langridge [19731 states that the facets listed in the 100 pages

of the Colon Classification (faceted) will specify more subjects than all the

volumes of the complete Library of Congress scheme, an enumerated system

covering more than 6000 pages.

2.33 Library Classification

There are five major library classification schemes, where major is

uscd in the sense of historical importance or wide spread use. The schemes

are: Dewey Decimal Classification (DDC), Universal Decimal Classification

(UDC), Library of Congress (LC), Colon Classification (CC), and

Bibliographic Classification (BC). Classification schemes are usually

identified as either enumerative or faceted as described in the preceding

section, but these terms are relative when attempting to describe actual

systems. Classification experts generally agree that CC is the only

completely faceted scheme and LC is the most enumerative followed closely

by DDC, but the agreement ends there. Prieto-Diaz [1985] lists BC as closest

to CC and puts UDC near the middle as a combination of both. Langridge

[1973] reverses this arrangement, with UDC closest to CC and BC in thc

middle. Relative positions on a scale from faceted to enumerative

illustrating Langridgc's arrangement are shown in the diagram below:

LC DDC BC UDC CC

enumerative faceted

53 '-

p.

Prior to the publication of DDC in 1876, most library classification

schemes were based on philosophical hierarchies of knowledge and

documents were numbered according to fixed locations on the shelves. Each

book had a fixed location. This fixed location technique predominated in

most libraries until the end of the nineteenth century [Taylor 1985].

2331 Dewey Decinml Classification ,

Melvil Dewey (1851-1931) was an assistant librarian at Amherst College

when he developed the DDC. First published (anonymously) in 1876 as a

pamphlet for library classification, Dewey's scheme introduced the ideas of

relative location and relative indexing as an alternative to the fixed location

arrangement [Chan 1981; Taylor 1985; Foskett 1982]. Using relative location

(putting the numbers on the books instead of on the shelves), a new book

could be inserted into the middle of an existing sequence instead of always

being added to the end (the usual practice for fixed arrangements).

The DDC is the most widely used library classification system in the
world, and is used in over 85 percent of the libraries in the United States and

Canada [Michael 1976]. Dewey based the DDC in part on an earlier scheme

devised by W. T. Harris who based his scheme on an inverted order of

Francis Bacon's classification of knowledge [Bloomberg and Weber 1976;

Comaromi 1976; Chan 1981; Taylor 19851. Dewey arranged his scheme into 10

main classes with each class divided into 10 divisions and each division into

10 sections [Osborn 1982; Bloomberg and Weber 1976]. The 10 main classes

are:

000 Generalities
100 Philosophy and related disciplines

4 gr.p' . .. 4, f f /% p4 %* N* . ~ %

ftf /B *

-,v , ,, . . . , , . . - . F. -. -, - - M a-,-

54

200 Religion
300 Social sciences
400 Language
500 Pure science
600 Technology (applied sciences)
700 The arts
800 Literature
900 General geography and history

DDC is basically an enumerative scheme listing all elemental,

superimposed, and compound classes. The nineteenth edition consists of

three volumes listing over 21,000 topics [Foskett 1982]. It is interesting to

note that recent editions of the DDC have included limited means of

expansion by synthesis in some sections.

DDC is not a classification by subject but by discipline. A given

subject may appear in any number of disciplines with the various aspects of

a subject being listed together in the relative index. This means the DDC

scatters subjects, violating one of the fundamental functions of classification,

namely the collocation of materials on the same subject and related subjects

[Bloomberg and Weber 19761. Figure 9 shows how subjects on different

aspects of railroads are scattered throughout the DDC collection.

The DDC scheme also demonstrates another limitation of

enumerative classification. The schedule has been subdivided into 1000 main

sections numbered 000-999. There is no possibility of adding more. New

W! sections, such as computer science or electrical engineering, are added at

lower hierarchical levels. This has created some sections with very deep

hierarchies while others remain quite shallow. For example, "Understanding

the microprocessor" has a DDC code of 621.3819583, but in the logic division

(160), none of the sections are subdivided and two are vacant [Osborn 1982].

. % ,

. .. - - - - - - ..- - - - - -% • . % . - - -. - . -. % % - , " " . . % % . . - . , - % . ." '

55

Aspects of Railroads DDC Number

Railroad building 625.1
Railroad economics 385.1
Model railroading 625.19
Railroad law 343.095
Government control of railroads 350.875
Railroad safety 614.863
Bibliography of railroads 016.385
Railroad station architecture 725.31
Fiction about railroads 808839356

Figure 9. Subject Scattering in DDC

233.2 Universal Decimal Classification

The UDC was developed in 1894 by two Belgian lawyers, Paul Otlet

and Henri LaFontaine, as a universal classification scheme for all published

literature [Foskett 1982; Taylor 19851. Their initial work was based on

expanding the DDC (with Dewey's permission) and resulted in the First

International Conference on Bibliography in 1895. After 10 more years of

work, the Manual de repertoire universal bibliographique was published in 1905.

The UDC was quickly adopted by many libraries in Europe where it is still

the dominant scheme. Over the years, the development of UDC as a

universal bibliography was abandoned, but its development and use as a

library classification scheme continued.

UDC retained DDC's decimal notation and follows the basic outline

of DDC in its 10 main classes, but to suit its universal purpose there are

many more detailed subdivisions. The major contribution of UDC to
d

56

classification theory was its synthesis of complex subjects [Taylor 1985;

Prieto-Diaz 1985]. UDC introduced auxiliary schedules and a special

notation to connect and relate terms listed in these separate schedules. UDC

was the first major classification scheme to use such a system of common

facets and synthesis [Chan 1981]. This powerful feature is, however, also the

source of a major weakness in UDC; its notational complexity. Table 1

shows the various symbols which can be used to form complex subjects. The

overloading of the equal sign, colon, and parenthesis symbols with multiple

meanings adds to this unnecessary complexity. For example, 61(038)-=20=50

denotes "Italian - English dictionary of medicine". The synthesis comes from

61 medicine, 038 dictionary, 20 English, and 50 Italian. A second example

from Foskett [1982] shows the length of the notation when using the colon to

combine foci. The notation 6693.621.785:621.643.2 represents the "anneali.g of

copper pipes" (669.3 copper, 621.785 annealing, and 621.643.2 pipes - fluid

distribution).

Table 1. Synthesis Indicators in UDC

Symbol Meaning

+ Combining two separate numbers
/ Combining two or more consecutive numbers
* Relationships between two subjects

Similar to the colon sign
Language

(0.) Form
(119) Place
(=0/9) Race and Nationality

Time
A/Z Alphabetical subarrangement .
.00_ Point of view
=05._ Persons

57

The international aspect of UDC is both an advantage and

disadvantage. The revision process, as in many international ventures, is

slow and clumsy as it moves through a network of committees and experts.

The schedules for 681.3 (computers) were compiled in the late 1950's and early

1960's, eventually being approved for publication in 1965. They have not

been updated since.

Despite these problems, UDC is used by a large number of libraries,

particularly in Europe, Latin America, and Japan. It has been selected as

the official classification scheme for scientific and technical libraries in the

Soviet Union and Eastern Europe. UDC has demonstrated the utility of

faceted classification, especially for highly specific subject areas.

2333 Library of Congress

The Library of Congress (LC), founded in 1800, originally classified

its collection by size (folios, quarto, octavos, etc.). In 1812, a new system based

on Benjamin Franklin's Library Company of Philadelphia was adopted. Two

years later, British soldiers burned the Capitol destroying the entire 3000

book library. Thomas Jefferson offered to sell his library of 6000 books to

Congress to replace the lost collection. Jefferson's classification system,

which came with the books, was used by the LC until the end of the

nineteenth century [Foskett 1982; Taylor 1985 Chan 1981].

When the library moved to a new building in 1899, Dr. Herbert

Putman, the new Librarian, decided to reorganize and re-classify the entire

collection. After studying the available classification schemes, the LC staff

decided to design their own special scheme to fit the library's collections and

a'

"oI

58

unique services. The typical classification approach based on the theory of .

knowledge mapping was not used. Instead, separate schedules were

developed by specialists for each individual class based on the needs of the

library. This technique is called literary warrant [Foskett 1982; Chan 1981].

The schedules, each containing an entire class or subclass, were developed

and published separately. For this reason, the LC scheme is often called "a

coordinated series of special classifications" [Chan 1981; Taylor 1985]. LC is

essentially an enumerative scheme, and as would be expected, its schedules

are voluminous covering more than 6000 pages in 37 separate volumes. Any

subject not specifically listed in the schedules cannot be classified by LC.

LC consists of the following 21 major classes:

A General works and polygraphy
B Philosophy and religion
C History: auxiliary sciences
D History: general and old world
E-F History: America
G Geography; anthropology; folklore
H Social sciences
J Political science
K Law
L Education
M Music
N Fine arts
P Language and literature
Q Science
R Medicine
S Agriculture
T Technology
U Military science
V Naval science
Z Bibliography and library science -1

22

"'I

-'%

. ,. .,... -.-... ..- ,...-.. -.-.-. -....----.- ,----- .- . ..-......... '-..... '-.- --. .. .?:.:. -- . "

i Pi '47 IL17- TW ,-u.---

59

Each class contains its own index. There is no general index for the

complete LC collection. This separation of schedules even extends to

revisions. New editions of individual schedules are prepared and published

as needed, independent of one another. The LC notation is mixed letters

and numbers. Main classes are denoted by a capital letter, sections by a

second capital letter, Arabic numerals (1 to 9999 with no decimals) are used

for divisions, and Cutter numbers, if necessary, for individual books (e.g., Q

Science, QA Mathematics, 76 Computer science). Decimal numbers were

added later as a way of inserting new subjects where no room existed in the

schedule (e.g., Q Science, QA Mathematics, 76 Computer science, .6 Software).

LC notation does not enforce a hierarchical order, and recent editions of

many schedules are adopting alphabetic arrangements. Foskett [19821 points

out that the growing use of alphabetical arrangements in LC reflects a

mark and park" philosophy, abandoning the very purpose of classification.

For example, all books related to computer software are grouped in class

QA76.6 and ordered alphabetically by author name. No further subdivision

of software, a very general subject, is provided in LC [Prieto-Diaz 1985]. An

example of LC's lack of hierarchy is provided in the TX724 subclass [Chan

1981]. TX724 represents Jewish cookbooks. When a number was needed for

Oriental cookbooks, the number TX724.5 was assigned. Oriental cookbooks

is certainly not a subdivision of Jewish cookbooks.

LC has been adopted by many academic and research libraries. While

Michael's survey [1976] found 85 percent of all libraries in the United States

and Canada using DC, among libraries A ith holdings of more than 500,000

volumes, over 62 percent use LC. The two reasons given for use of LC were: %

(1) the orientation of LC toward research collections, and (2) the economic

% ;"-SCA

60

advantage offered by the LC cataloging services. However, the lack of a

predictable basis fo, subject ana!ysis and no logical hierarchy make the use

of LC in automated retrieval systems impractical.

233.4 Bibliographic Classification

BC is a mixture of enumerative and faceted schemes. Developed in

1908 by Henry Evelyn Bliss, BC has been more popular as a scholarly artifact

than as a practical classification system. This is mainly due to the time span

required for its completion. The outline for BC was published in 1908, but

completion of the schedules took Bliss the rest of his life [Foskett 1982; Mills

1972]. Volume I which contained the common facets and classes A to G was

not published until 1940. Volume II, with classes H to K, followed in 1946,

and Volume III and the index were not published until 1953. ,..

Bliss considered the order of basic classes as the most important part

of a classification scheme and based his order of classes on three major

principles: collocation of related subjects, subordination of special to general,

and gradation by speciality [Bliss 1985]. However, Bliss found the consistent 4

application of these principles difficult in practice. The following example

from the Literature class shows a violation of the first principle, collocation.

YE Elizabethan, Jacobean and Caroline periods
of English literature
YEI Poets
YEN Drama -Shakespeare's contemporaries
YEP Dramatists
YEW Caroline period
YF Shakespeare

--P6"",6

61

In order to obtain a two letter base notation (YF) for a subject likely to have

a large amount of literature (Bliss had a passion for short notation), Bliss

ignored the collocation principle. General works of the Caroline period

(YEW) are separated from individual authors of the same period (YEI and

YEP), and Shakespeare (YF) is separated from his contemporaries (YEN).

BC supports two forms of synthesis; common facets which may be

applied anywhere in the schedule, and private facets for special subject areas

[Foskett 1982]. It is confusing that Bliss recognized the potential of synthesis

and provided for common facets, but implemented BC mainly as an

enumerated scheme. For example, Bliss provided a common facet C for

indicating founder in the main class Religion (P), and then proceeded to

enumerate Buddha, Mohammed, and Christ as PJC, PKC, and PNB

respectively.

Bliss was a critic of the complex notation used in CC and UDC, and

wanted a shorter scheme for BC. The main classes are denoted by capital

letters and common subdivisions by the numerals 1 to 9. Place subdivisions

are shown by lower-case letters with a comma used to indicate language and

period divisions [Langridge 1973]. This creates a problem, however, since the

notation for language and period are identical and both are indicated by

using a comma. Bliss also did not provide any guidance for the filing order

of the different symbols. He actually confused the issue by sometimes filing

lower-case after upper-case (e.g., CIg after CIG), but in other situations

reversing the order (e.g., HYe before HYA, not after HYE). BC has been

adopted by only a handful of libraries, mostly in Great Britain.

-- ,p

62

233.5 Colon Classification

Shiyali Ramamrita Ranganathan is considered by many to be the

leading theorist in the field of classification, and his Colon Classification S

(CC) published in 1933 has been a significant influence on modern

classification systems [Gopinath 1972; Chan 1981; Foskett 19821. The scheme's

name came from the role of the colon symbol (:) as the only facet indicator

in the first edition of CC.

CC was the first completely faceted library classification scheme.

Most subjects are compounds specified by linking together elemental terms

from different facets (categories). In CC, all facets are related to one

another in a fixed citation order expressed by Ranganathan as PMEST

(Personality, Matter, Energy, Space, and Time) [Langridge 1973; Chan 1981].

Personality, Matter, and Energy are specific for each class and are first in

the citation order. Time and Space are treated as common facets which can

be applied to any division and follow PME in citation order. Subjects are

composed from the elemental terms in different facets using a "facet

formula". The general facet formula (overall citation order) is PMEST.

A major disadvantage of CC is its complex notation which combines

arabic numerals, capital and lower-case letters, Greek letters, brackets, and

several other punctuation marks [Foskett 19821. The Generalia classes are

represented by arabic numerals with the other main classes using mostly

W

-j
m p A~ \ (s f ',< % &'% A, 'W U .

63

capital letters mixed with a few Greek letters. Basic elements within each

class are shown by arabic numerals as illustrated below.

L Medicine
2 Digestive system
27 Large intestine
27219 Vermiform appendix

Common subdivisions are marked by lower-case letters, capital letters, or

arabic numerals (adding to the confusion). The punctuation marks serve as

facet indicators with the following meanings:

connecting symbol for Personality
connecting symbol for Matter
connecting symbol for Energy
connecting symbol for Space
connecting symbol for Time

The following examples demonstrate the synthesis process and the

complexity of the notation: p

1. M7:8.56163'N66 Textile printing in Lancashire in 1966
M useful arts

M7 textiles
:8 textile printing
.56163 Lancashire
'N66 1966

2. V2,6:2'N5 Constitution of local bodies in India to 1950

V history
2 India
,6 local body
• 2 constitution
'N5 1950

tt

64
qh

The concepts of faceted analysis and concept synthesis developed by

Ranganathan are major contributions to modern classification theory.

LaMontagne [1961] compares enumerative classification schemes to tourist

conversation books which are composed of ready-made phrases and

sentences, while faceted systems are more like dictionaries which a classifier

can use to construct subjects as needed. Gopinath [1972] notes that the

faceted classification model is better suited to automated applications than

enumerated schemes. Organized as separate lists (facets) of simple terms

with a prescribed combination order, automation of the faceted model is

potentially a simple process. The complex notation and intricate synthesis

rules of CC, however, have prevented its widespread use in large libraries.

2.3.4 Software Classification

Computer Science classification schemes have developed ad-hoc as the

computer field has grown. The first general classification scheme for the

computer discipline was not published until 1960 [Ralston 1981; Sammet 1982].

It listed 33 subjects arranged in alphabetical order with no subdivisions.

Software classification schemes can be divided into three categories:

(1) general computer science schemes such as CR, (2) program libraries (e.g.,

GAMS and IMSL), and (3) software directories which list application

programs. In general, these schemes are enumerative and are characterized

as having poor logical arrangements [Prieto-Diaz 1985].

2.3.4.1 General Schemes
.

The ACM Computing Reviews (CR) was the first general computing

classification scheme. The first edition, published in 1960, contained 33

, , ,... . . ;. , r. i 7. . ,t ,.. -. . ..r. ,-- 21.

65

subjects enumerated alphabetically. The CR was revised in 1964 and did not

change again until the third edition was published in 1982 [Sammet 1982;

Ralston 1981]. The 1982 CR scheme is based on the AFIP's Taxonomy of

Computer Science and Engineering [AFIP 1980] with an organization similar

to the DDC. This enumerated hierarchical scheme is limited to only a three

level hierarchy with 11 main subject classes [Sammet 19821. Lower level

classes are not assigned a notational code and are kept as lists of terms to

facilitate expansion of the scheme.

The main purpose of the CR classification scheme is to organize

collections of computer science literature. Although it was not designed for

classifying software components, it has been used as the basis for some

software libraries such as the Reusable Software Library for Ada packages

developed at Intermetrics, Inc. [Burton et al. 1987].

2.3.4.2 Program Libraries

Computer program libraries, as discussed in section 2.1, are mostly

functional collections of small, single function programs or subprograms for

solving specific problems. The typical classification is by the type of

problem they solve. The IBM Users Group, SHARE, published one of the

first software classification schemes in 1963 [SHARE 1963]. The SHARE

scheme is a hierarchical enumerative scheme similar to DDC with 22 main

classes grouped according to the type of problem solved [Bolstad 1975]. It is -A

heavily biased toward mathematical software with several of the classes

devoted to mathematical problems having up to 6 hierarchical levels. The

other main classes (not mathematical) contain only 3 levels.

- - - aA. .S-

66

The Guide to Available Mathematical Software (GAMS)

classification scheme developed by the National Bureau of Standards was

derived from the SHARE scheme [Boisvert et al. 1983, 1985]. It is a tree

structured hierarchy with 19 main classes for mathematical and statistical

software. The process used for subdividing the main classes is described as

being similar to a course syllabus arrangement [Boisvert et al. 1983]. "Within

each we tried to place core subjects before more specialized subjects, as one

might find subjects arranged in a course syllabus." This technique resulted

in the separation of classes which logically should have been collocated. The

IMSL library [IMSL 1984] and SPSS [SPSS 1984] are examples of other

program library classifications derived from the SHARE scheme.

23.43 Software Directories

The tremendous growth in commercial software packages has created

a new spin-off industry of software directories (catalogs). Each different

directory has its own unique classification scheme usually based on division

by application area. The schemes change continuously (since they are

enumerative) attempting to reflect the rapid turnover of commercial

software.

The most sophisticated scheme was developed by International I

Computer Programs (ICP). It is hierarchical with a decimal notation similar U

to DDC. Classes are based on application area with substantial revisions

published twice each year. The schedule of one edition usually cannot be

used to locate software in another edition. One change from the 1983 edition .

to the 1985 edition is illustrated below:

'V I-"I

67

1983 1985

35 Finance 41 Banking and finance p
35.1 Banking 41.1 Bank management
35.1.1 Bank management 41.1.2 Operations support
35.1.1.1 Bank planning
35.1.1.2 Bank operation

The continuous revision of classification schemes is due to the large

growth in commercial software and the enumerative nature of the schemes.

For example, the 1980 edition of the International Directory of Softwaretp

(IDS) listed 3200 products [IDS 1980]. The 1982 edition [IDS 1982] contained

2250 new or different products for a 70 percent change in only two years.

These schemes typically list classes only at a very general level. The 1982

edition of IDS lists 199 programs under class 52.0, Inventory Control. The

user is left with the task of inspecting each one to make a selection.

Current software classification resembles the early history of library

classification. The schemes are enumerative, inflexible, and too general to

be of much help to the user. A different scheme is used for each collection

of software with no plans for a single universal classification system.

2.4 Summary and Conclusion

This section surveyed the areas of software reusability, information

retrieval, and classification theory. Several models of software reuse were

examined, establishing the impetus for reusing software components and the

need for a software classification scheme and component retrieval system.

An analysis of the three information retrieval models revealed several

t

68

useful techniques, but overall a disappointing recall and precision

performance level.

The history of library classification shows an evolution from
Up

enumerative schemes toward the use of faceted techniques. Enumerative

schemes are too voluminous, difficult to expand, and time consuming to

compile for rapidly changing subject areas. Faceted schemes are easier to

expand, facilitate automation, and are significantly smaller. Software

classification appears to be following an evolutionary pattern similar to that

of library classification. Current software classification schemes are mostly

enumerative like the early library schemes and suffer from frequent

revisions to accommodate changes. To date, software classification has not

taken advantage of the faceted approach. It would appear advantageous to

do so, especially for large, heterogeneous software collections. The possi-

bility will be examined in Section 3.

'S~

.5.,
5.

i .5.
['i-x , " • ,'----'.'-'.,," 4 , r " ," ," €" .,-.,r .,.. . .r ,,.," ," r f~ " t °-- ° r r ' r r S..¢

69

3. CLASSIFICATION OF SOFTWARE COMPONENTS

Classification is an organizational tool providing a systematic order to "|

a set of concepts or items, and displaying their relationships. Classification

provides the capability to answer membership questions (e.g., to say whether

or not a given concept belongs to a certain class or, to describe the

characteristics by which it does not belong). One of the reasons large

libraries of software components have not been successful is the lack of a

relevant organization (i.e., no appropriate software classification scheme).

Finding the desired component in a large, unorganized collection is

analogous to finding a book in a library which has no card catalog and

where all books are arranged alphabetically. Unless the exact title of the

desired book is known, locating it will be mostly a matter of chance. A

library designed for software reuse also must be organized to aid users in Id

locating a particular component.

The design and development of a software component classification

methodology and scheme is presented in this section as a three stage process:

(1) definition of the design objectives, (2) selection of an appropriate

classification model and set of techniques from the domain of classification

theory, and (3) development of the classification scheme and related

classification methodology. This section describes and examines each of .%

these stages, concluding with a demonstration of the classification

methodology on a collection of software components.

i5:

N-

70

3.1 Design Objectives

The primary purpose of this classification scheme is to organize a

collection of software components to facilitate reuse. Library science

provides a mature classification technology from which general objectives

and philosophies for the development of classification schemes can be

drawn.

3.1.1 General Classification Objectives

The supporting principles for traditional classification theory were

originally derived from the areas of logic and philosophy, specifically from

the field of logical division (dividing a class into subclasses). The main

classification principles derived from logical division are:

1. The characteristic of division must produce at least two
classes (e.g., the characteristic of sex when applied to the class
of "humans" does produce two classes; when applied to the
class "mothers", it does not produce t , o classes).

2. Only one principle of division should be used at a time to
produce classes. Otherwise, some elements would appear to
belong in multiple classes (a cross-classification problem).

3. Subclasses must completely exhaust their superordinate
class or all concepts (subjects) will not be classified.

4. No step of division should be omitted when successively
dividing a class into smaller and smaller subdivisions.

Langridge 11973] cautions that these principles are an ifcal and cannot

alwavs be totally satisfied in actual applications. It may)e impossible to

c,tablish mutually exclisive classes for all items in a collection (principle 2)

or even know what the correct number of steps is for dividing a class into

subdivisions (principle 4). There is also no absolute judgment about a

-A!

" '- "- " ' ' ' " '' ' " "" " ' " " '' ' ' '' ' ' ' " ' ' ' " .' "" " ' ' ' "' . " . ' ' ' " " '' " ' ' ' "" " ' " " " l".' - . ". ,, ,, . ""'. .""" . "'"" . "". . .."""."..".".". . .."".". .". ..""' "." " . ,, " ' . " "2"": " : . ,'."v -. ,. ,

71

particular classification scheme being right or wrong, only that some are

better for a given purpose than others [Buchanan 1979, Langridge 1973].

Traditional classification schemes can vary widely in form and

organization as described in Section 2. However, in addition to the

principles of logical division, most classification schemes recognize the

following general objectives [Chan 1981; Buchanan 1979; Vickery 1960]:
a,.

1. A classification scheme's main purpose is to help the user
identify and locate an item in the collection. This implies a
collection may need to be organized in different ways
(viewpoints) for different groups of users. The organization
should satisfy the needs of the users.

2. A classification scheme should group like subjects together
based on certain characteristics. The characteristics may
vary according to the purpose of the scheme, but related
classes should be collocated in each scheme. ;t
3. The organization should be hierarchical where possible.
Classes which depend on other classes, are developed from
other classes, or are developed later than other classes should
generally follow them in the hierarchy.

4. The schedule (list of all classes and their relationships in a
prescribed order) should contain terms which are generally
used and understood by the intended user community.

5. The scheme should be flexible since changes and expansion
will always occur. Rigid systems can dislocate their general
sequence of classification when new terms are "patched" into
full classes, and eventually entire categories must be re-
classified (given a new mapping) when the order becomes too
irregular.

6. The citation order (order of combining classes) must
support the first three objectives. Classes cited first will be
collocated while those cited last will be scattered within the
collection. Increasing quantity, dependence order, part to
whole, concrete before abstract, later in time, later in
evolution, spatial, and alphabetical are examples of possible
citation orders. Since citation order determines the
arrangement of subjects within the collection, it must be
based on the needs of the users.

' - •1. , , - -p-- .. ". - " " . ". -'-* -" - . *c ". ' . ,a ,. ' a' " a " " .- ,-----'""''' - '''"- '-"

72
p.

7. The scheme should facilitate automation. Many of the
traditional systems are based on illogical organizations or use
such complex notations that automation i. practically
impossible.

8. A concise and simple notation (set of symbols used for

identification of classes, the shelving of documents, and
arranging entries in a catalog) is an important objective of
library schemes since they are concerned with the physical
location of documents and books. Complex notations have
caused the obsolescence of several schemes. However, since
physical collocation of software components is not
important, a separate notation is not needed for software
classification.

3.1.2 Software Classification Objectives

The objectives and principles outlined above provide a general set of

guidelines for the design and development of classification schemes. As they

were specialized to support the specific arena of software component

classification within a reuse environment, some of the objectives were

modified based on the following assumptions: (1) large collections

encompassing thousands of software components will exist, (2) reuse will

become a common practice, and (3) reuse will expand beyond the code level

to include all products from the software development life cycle (i.e.,

specifications, designs, requirements). The specialized objectives are

presented below.

1. The software component classification scheme's main
purpose is to assist the user by identifying and locating a
particular set of potentially reusable components.

2. The structure and concepts used in the scheme should be
similar to those used by software developers working in a
particular application area.

3. The scheme and descriptive attributes developed should
provide precision for discrimination among similar
components.i '
.I

73

4. The scheme should support an automated retrieval
mechanism which provides relevance ranking of retrieved
components.

5. The citation order should be adjustable to meet the needs
of different users. This implies a reordering of classes to
adapt to changes in importance. For example, one user may
consider language an important attribute while another
needs performance as the main criteria for selection.

6. Flexibility and expandability will be important
considerations. Computer science is a rapidly changing field.
The scheme should be easy to modify (expand without
causing re-classification problems.

These objectives and principles were used to compare and judge the

basic classification models. The selected model then served as the

foundation for the development of a software component classification

scheme and methodology.

3.2 Selection of a Classification Model

There are only two basic models for classification schemes. The first

type, enumerative, lists every subject in the schedule that can possibly occur.

It is the more traditional method characterized by the division of knowledge

into successively narrower classes including all the elemental, superimposed,

and compound subjects which the scheme can classify. The classes arc

usually arranged in an order displaying their hierarchical relationships. The

Decimal Classification is an example of an enumerative scheme. It divides

the universe of knowledge into ten main classes, each main class into ten

subclasses, each subclass into ten, and so on.

The second method, faceted, is a product of modern classification

theory. It uses a building block approach which composes subjects from

,I.

•1 i - - - ii * - .1 - • --

74 I

their elemental terms. Faceted schemes list only basic (elemental) subjects

arranged in catugories (facets) along with their generic relationships. The

elementary terms can then be combined to form compound subjects

(synthesis). Faceted schemes are also called "analytico-synthetic" to describe

the techniques involved in their development and use.

Both of these classification models will be evaluated using the general

and specific objectives listed in the previous section with particular emphasis

placed on the software component classification objectives.

3.2.1 Identification, Location, and Precision

The first objective (general objective 1 and specific objective 1) states a

classification scheme's main purpose is to assist the user in identifying and

locating an item (or set of reusable components) in the collection. The

synthesis capability in the faceted scheme is well suited to this purpose.

Highly detailed and complex subjects can be described with the exact

amount of precision required (specific objective 3).

Enumerative schemes cannot provide the same level of detail for

large collections. The fixed citation order in enumerative schemes can even

hinder location of a desired item. Buchanan [1979] provides an example of

this problem from DC18, a widely used enumerative scheme. Figure 10

shows a portion of the Music class from the DC18 schedule. The citation 'a

order hinders location of certain subjects by scattering them illogically. For

example, works on brass instruments in general are separated from works on

particular brass instruments, such as trumpets, by the class of woodwind

instruments. Similarly, works on single-reed instruments are separated from

"'a

75

788 Wind instruments
78801 Brass instruments
78805 Woodwind instruments
788.056 Reed instruments

788.1 Trumpets 1

788.2 Trombones
788.4 Horns

788.5 Flutes
788.6 Single-reed instruments
788.62 Clarinets

788.7 Oboes

788.8 Bassoons

Figure 10. DC18 Music Class

those on reed instruments in general by classes about individual brass

instruments. The class flutes, a woodwind instrument, is confusingly located

in the middle of the brass instruments. It is illogical that the class SINGLE-

REED INSTRUMENTS (e.g., clarinets, saxophones) has been enumerated,

but the class DOUBLE-REED INSTRUMENTS (e.g., oboes, bassoons) is not

listed although many of the individual double-reed instruments are

enumerated. This example demonstrates how an enumerative scheme can

hamper the identification and location of some items. A collection of

software components using this type of organization would not promote

reuse.

r.

"I

a.......

76

3.2.2 Collocation, Organization, and Structure

Both enumerative and faceted schemes can support a hierarchical 1
organization equally well, where appropriate (general objective 3). However,

faceted schemes are more adaptive to the structure and concepts familiar to

the users (general objective 4 and specific objective 2) since only elemental

classes and their generic relationships are listed in the schedule.

Enumerative schemes must list each possible compound class ready-made, a

time consuming and complicated process frequently causing collocation

problems and omission errors (general objective 5).

The citation order of a faceted scheme can easily be changed to meet

the needs of different users (specific objective 5) since only generic

relationships between facets (representing a very simple hierarchy) are

involved. The fixed citation order in enumerative schemes cannot be

changed without a complete (and miassive) re-classification which would be

prohibitive for large collections.

3.23 Expansion and Automation
54

Computer software is a rapidly changing discipline. This requires the

classification system to be easy to modify and expand (general objective 6

and specific objective 6) without associated re-classification problems. If the

elemental classes for a new compound class are already present in a faceted

scheme, inserting the new class is trivial (nothing has to be done at all). If

the new compound class contains new elemental classes, they only have to be

added to the correct facet or subfacet. No re-classification is involved. In an

enumerative scheme, new compound or superimposed classes must be given

Ir -. -V L " I IL Ky-.4_V

77

special locations. When new elemental classes are added, all the new

superimposed and compound classes they will generate must also be added.

This often causes the hierarchy to become malformed as it is forced to grow

deeper in certain disciplines when new classes cannot be added at the

appropriate level.

A classification scheme should facilitate automation in general

(general objective 7) and, for the software component reuse arena, an

automated retrieval mechanism with relevance measuring capabilities

(specific objective 4). Enumerative schemes in general are not easy to

automate. Certain sections of enumerative schedules usually contain

illogical organizations (collocation problems) or malformed hierarchies

resulting from expansion difficulties. These problems destroy the general

principles and structure which make automation possible. When these

problems are combined with the complex classification rules and methods

needed for most enumerative schemes, it is easy to see why automation is

not usually attempted.

Faceted schemes provide a model which is better suited to
automation. Organized as separate lists (facets) of terms with well defined

combination orders for synthesis of superimposed and compound classes,

automation is potentially a simple process. The generic hierarchy between

facets provides a ready-made tool for determining relative relevance

measures. For example, it would be possible to program a search for the

concept "England" in a UI)C library (faceted) since it is always given the

notation "(42)". However, the same search in DC (enumerated) would not be

C.i

78

possible. In DC, England can be specified using several different notations

which also have other meanings (e.g., are overloaded).

32.4 Selection Summary

An analysis of the design objectives reveals the enumerative model

satisfies only a handful of the requirements. Enumerative schemes can be

intractable or even hinder location of a desired item, frequently fail to

collocate related items, are not easily changed (flexible) to meet the needs of

different users, are difficult to expand without re-classification problems,

and do not facilitate automation. The survey of existing schemes for

software classification in Section 2.3 confirms the disadvantages of this

model for software component classification.

The faceted model, on the other hand, satisfies all of the general and

specific design objectives except one, the requirement for a simple notation

(general objective 8). The synthesis process provides a detailed descriptive

capability for complex subjects, but this often results in a lengthy, complex

notation. However, since notation is not necessary for software components

(i.e, physical collocation is not important), this is not a serious disadvantage.

A faceted scheme can accommodate an expanding collection of software

components providing precise classification of highly specific subjects,

flexibility to meet user needs, and a good basis for automation.

3.3 A Faceted Scheme and Classification Methodology

This section presents a faceted methodology and classification scheme

developed as part of this research for classifying software components. First,

'%

p ,79

the basic concepts to be used during the classification process are explained.

Then the methodology is described with examples demonstrating each stage.

A complete classification scheme is presented in the final section.

33J Basic Concepts

A faceted classification scheme lists only elemental classes, differing

from the more traditional schemes which assign fixed slots to all subjects

(elemental or compound) in an enumerative sequence. The clcmental

classes, called foci, are organized into categories called facets. A facet

contains all the foci which are kinds of the same things. It is possible to

have groupings of foci within a facet called subfacets. Subfacets are a

product of the single characteristic principle of logical division. Subfacets

are created by the application of one characteristic of division on the foci

within a facet [Buchanan 1979]. Combination order is the order facets are

cited to form a composite subject, and citation order is the overall order of

the classification schedule (the order of facets, the order of subfacets within

facets, and the order of foci within subfacets).

33.2 The Methodology

A faceted classification methodology involves two main processes as

the name "analytico-synthetic" implies. The first part, analysis, is the

construction of the faceted scheme using the technique of literary warrant.

Figure 11 illustrates this schedule construction process. Using literary

warrant, subjects to be classified are analyzed into their elemental terms,

and these terms are then grouped into homogeneous , mutually exclusive

facets. Each facet is determined by a single characteristic of division. Facet

I-.

80

Software N
Components

Analyze
Elemental Terms

'

*FIFL
GroupTes

Divide into
Subfacets

-

Determine
Order

Wa

ClassificationScheme

Figure 11. Constructing a Faceted Classification

81

analysis is therefore analogous to the traditional rules of logical division.

After the facets and subfacets have been defined, the citation order is

determined using the objectives and principles described in section 3.1.

log

General guidelines for the construction of faceted schemes based on

literary warrant abound in library science literature [Buchanan 1979;

Vickery 1960; Prieto-Diaz 1985; Chan 1981]. These guidelines, however, are

usually designed for document classification systems. The methodology

described below is a consolidation of these techniques, specialized for

application to software component classification.

1. Analyze a representative sample of the software
components to be classified into their elemental classes.

2. Group the elemental classes into facets using the single
characteristic principle of logical division.

3. When necessary, apply different characteristics of division
within facets to produce subfacets. This may become an
iterative process and include the regrouping of facets.

4. Select an appropriate order for foci within the facets and
subfacets based on the needs of the users.

5. Put the subfacets in order within their facets.

6. Determine the combination order for the facets which will
be used in constructing compound subjects (a facet formula).

The second part of a faceted scheme is the synthesis of superimposed,

complex, or compound subjects. This involves assembling the elemental

classes in the prescribed order to express the desired subject. Both parts of

this methodology will be explained in more dctail in the following sections

as the methodology is used to construct a classification scheme.

6'

'a

' - " " -- : i
:

"' -: " " -"
:

"r "1 - : ...'
' y

' = - / _ I . . . 1 l - I

- i , . J', . 4S . V .i .i '*
-

.x .. - t . P r - . e. . ,2,.,, ,: .,UJ, ,

1 82

333 The Faceted Scheme

In this section, the methodology developed in the previous section is

described in detail as it might be applied to a specific set of reusable

software components. The first step in the classification process, analysis of

terms, is actually preceded by a preparatory step, the selection of a subject

field. To provide a manageable context for this phase of the research, the

familiar area of canonical data structure algorithms (i.e., searching, sorting)

was chosen. Sedgewick [1983], Tenebaum and Augenstein [1981], Wirth [1976],

and Knuth [1973] were the primary sources for this collection of components.

The following sample set containing five algorithms will be used to

demonstrate the faceted methodology.

1. A selection sort written in Pascal which sorts an array of
integers. The routine was written for the VAX AOS
environment and sorts over 2000 values per second.

2. A routine to sort strings of characters contained in an
array. It is written in Fortran for the IBM VS environment
and uses a simple bubblesort technique. It requires over
500K bytes of memory.

3. A specification for a search algorithm written in Ada.
The algorithm searches for a given word in a binary tree
using a preorder search technique. Each node in the tree
contains a single word.

4. A Basic quicksort routine that runs on an IBM/PC
compatible MS/DOS microcomputer sorting about 25(0) real
numbers per second. The numbers are held in a linked list.

5. An Ada routine to sequentially search a linked list and
locate a particular word. Each node contains one word but
there is no limit on the number of nodes allowed. It was
developed on a VAX using AOS.

.' [----------------------------- --v

83

333.1 The Analysis Phase

The construction process begins with an analysis of a representative

sample from the target collection to identify the elemental classes. During
this stage, it is important to recognize synonyms and homonyms. Only one

class should be created for each concept (synonyms), but it is also necessary

to ensure that different concepts form different classes (homonyms). An

analysis of algorithm (1) provides the foci PASCAL, SORT, ARRAY,

INTEGER, SELECTION, VAX, AOS, and 2000 PER SECOND. Algorithm

(4) yields the additional foci BASIC, QUICKSORT, IBM/PC, MS/DOS,

SORT, REAL NUMBERS, 2500 PER SECOND, and LINKED LIST. The

complete analysis of all five routines produced the following list of

unordered elemental classes:

Pascal Basic bubblesort
sort quicksort 500K bytes
array IBM/PC Ada
integer MS/DOS sequential
selection real numbers word
Vax linked list node
code strings binary
AOS Fortran tree
2000/second specification preorder
2500/second VS search
character

Consolidation or elimination of some terms may occur during subsequent

steps in the process, but it is important to identify every elemental class

possible during the analysis stage.

Step 2 is the grouping of foci into facets. This action is based on the

single characteristic of division principle combined with general knowledge

about the subject area and needs of the users. From the list of simple classes,

o • - % IP .% ' .V.. o"

At MMRSIFICATION METHODOLOGY AMO RTRIEV*L NOVEL TO 22
SUPPORT SCFTMAWE REUSE(U) AR FORCE INST OF TECH
WRIUET-PRTTERSON AFB OH P L RUBLE 1966

L4MLMIFIED RFIT/C/I-6- F/0 12/5E~h-hh-5hEEl!mmhhhhhhhmh

I. A

11.6 Ina

%'

Pb,

e., .'r '., ,Z. .' , ',.,'e'e.'Z ¢. 2-J.','.1".11"1 ". ." . . 2N ,25'e. : ,v .". . .". . ,,-¢'-.....,..,.

84

several facets such as language, algorithm, and data structure are suggested.

Facet groupings for the example collection are given below:
S

(Language facet)
Pascal
Basic
Fortran
Ada

(Data Structure facet)
array
linked list
node
tree

(Algorithm facet)

selection
quicksort
bubblesort
sequential
binary
preorder

(Operating System facet)
AOS
MS/DOS
VS

(Hardware facet)
Vax
IBM/PC

(performance Rate facet)
2000/second
2500/second

(Memory Requirement facet)
500K bytes

(Activity facet - the function of the component)
sort
search

(Focus facet - object that is the focus of the activity)
integer
real
strin
woro

character

'i

85

(Form facet - the type of the component)
code
specification

This first approximation of facets is based on a small collection of

information. The characteristics of division may be changed during

subsequent stages of the development process as more items are added to the

collection and more information becomes available about the needs of the

users.

The next stage determines if any of the facets can be divided by

additional characteristics to form subfacets. The logical division principle

concerning the application of only one characteristic of division at a time is

used during this step. Ignoring this principle can create cross-classification

problems, or fail to provide a class for a concept as the following sequence

from the London Education Classification demonstrates [Buchanan 1979].

Teenagers

(educands beyond usual age of formal education)

Adult
Parent
Housewife
Older person

These foci are from the Educands facet (people who are being educated). It

is obvious these classes are not mutually exclusive. A housewife may be an

older person, a parent, and an adult. More than one characteristic was used

to produce this set of foci. Three of the foci are classes determined by age,

one focus represents occupation, and the other people by relationship.

.%'

5' .* - S * ~ *.d,* "!

86

There is no indication of the preferred class for superimposed or compound

subjects (cross-classification) and it is not possible to express the class

TEENAGERS WHO ARE PARENTS (missing class).

The formation of subfacets should also take into account the purpose

of the schedule. For locating reusable components, it appears that only two

facets in this small demonstration collection need to be divided into

subfacets: Performance Rate and Memory Requirement. Performance Rate

contains classcs dcfincd by amount (2000 and 2500) and by time unit (second).

Similarly, the possible characteristics of division in the Memory

Requirement facet are memory amount (500K) and type of measurement

(bytes). Adding a few additional elemental classes to make the example

more meaningful and dividing these two facets into subfacets produces:

(Performance Rate facet)

Perfornance amount (sub facet)
1-99
100-999
1000-1999
2000-2999
3000-3999
4000-4999
5000 or more

Performance time unit (sub facet)
per minute
per second
per microsecond

(Memory Requirement facet)

Memory amount (sub facet) - expressed in K
1-99
100-199200-299
300-399
400-499
500-599

-. 9

, , d'S-

87

600-699
700-799
800-89
900 or more

Type of memory measurement (subfacet)
words
bytes

This completes the process of subfacet grouping in this sample

collection. In larger collections, the division process can be iterative with

subfacets being divided into subfacets until all possible characteristics of

division have been exhausted.

The next two steps in the process place the foci and subfacets in order

within facets. This will be demonstrated in Section 3.4 with a larger

collection of components. The final step then, is the choice of combination

order between facets. Combination order determines the order in which

elemental classes are cited when constructing superimposed, compound, or

complex classes. While there are general principles for citation order

suggested in the literature (i.e. decreasing concreteness, principle of purpose,

consensus, wall-picture), the need of the users is always of primary concern.

The general principles of order are only used when the needs of the users

cannot be determined or vary too widely to be accommodated by a single

order. The purpose of the scheme developed in this research is to aid users

ir locating a software component for reuse. Therefore, FORM is the most

significant facet in the collection, corresponding to the phase of the

development cycle the user is interested in. Purpose and consensus suggest

the ACTIVITY (furntion) of the component qv the sconJ facet. A large

number of texts and software catalogs use this arrangement. It then seems

F 88

logical to follow the function with the main object of the action and then

with that object's location. This places the FOCUS facet third, followed by

the LOCATION facet.

The remaining facets are not as easy to order. Their use and

importance is not based on any general principle, and user needs in this area

vary to a large degree. An adjustable citation order is needed for these

facets, and this will be an important feature of the automated model. At

this point, an order based on the author's criteria will be used to complete

the schedule as listed below:

(Form facet) (Hardware facet)
code Vax
specification IBM/PC

(Performance rate facet)(Activity facet)
search Performance amount (sub facet)
sort 1-99

100-999
(Focus facet) 1000-1999

integer 2000-2999
real 3000-3999P
string 4000-4999
word 5000 or more
character

Performance time unit (sub facet)
(Location facet) per minute

array per second
linked list per microsecond
node
tree

(Memory Requirement facet)
(Language facet)

Ada Memory amount (sub facet)
Basic (expressed in K)
Fortran 1-99

* Pascal 100-199
200-299

(Algorithm facet) 300-399
binary 400-499
bubblesort 500-599
preorder 600-699

89

quicksort 700-799
selection 800-899
sequential 900 or more -'

(Operating system facet) Type of measurement (subfacet)
AOS words
MS/DOS bytes
VS

333.2 The Synthesis Phase

A faceted classification schedule contains only elemental classes.

Synthesis is used to assemble superimposed, complex, and compound classes.

The synthesis process is based on the combination order for the scheme.

This allows a subject to always be consistently classified. The following -

component will be used to illustrate the synthesis process.

This Pascal routine sorts an array of integers using the
selection sort technique. It was written for the IBM/PC
environment using MS/DOS.

Using the demonstration schedule developed above, the first facet in the

combination order is FORM. The elemental class from FORM which

describes this component is "code". The second category in the facet formula

is ACTIVITY which provides the term "sort". Next the FOCUS class

"integer" would be added to the descriptor followed by the LOCATION term

"array". The synthesized description assembled thus far is:

code (Form), sort (Activity), integer (Focus), array (Location)

Continuing with the synthesis process, the LANGUAGE facet supplies the

term "Pascal" and the ALGORITHM class is "selection". From

OPERATING SYSTEM, the elemental term "MS/DOS" would be selected

90

and "IBM/PC" describes the HARDWARE category. This software

component does not require classes from the PERFORMANCE facet or the

MEMORY facet. Thus, a complete class description for this software

component is given by the terms:

code (Form), sort (Activity), integer (Focus), array (Location),
Pascal (Language), selection (Algorithm), MS/DOS (Operating system),
IBM/PC (Hardware)

3.4 Application of the Faceted Methodology

The preceding section described the faceted methodology for con-

structing a software classification scheme, and applied it to a demonstration

library of five components for illustration. This methodology has also been

used in the domain of data structure algorithms with the objective of

producing a reasonably complete schedule which can be easily expanded. As

noted by Vickery [1960], a schedule is never complete; "the task is never

completed - new discoveries and hence new terms will occur unceasingly - so

that the classifier can never produce a complete schedule."

The procedure used for the analysis stage of this scheme included

examination of data structure and algorithm texts to identify as many

elemental terms as possible. This list of terms was then augmented by

descriptors from software directories and other software classification

schemes resulting in a list of 325 terms. Eliminating synonyms reduced this

list to 277 elemental classes. During step 2, the grouping of terms into facets,

a new facet (PRECISION) was identified to characterize the numerical

precision of certain components. Subfacet division, the third step, produced

several additional subfacets. The ACTIVITY facet was divided into "Simple

91

Function" and "Application" subfacets, FOCUS produced "Simple Object" and 91 1

"Area" subfacets, and "Data Structure" and "Device" subfacets were identified
M

in the LOCATION facet.

The discussion of foci order within facets was deferred in Section 33.3

because the example was too small to demonstrate it properly. This larger

collection of 277 classes provides a better context for viewing foci

arrangement with the following conclusions. First, none of the traditional

principles of order such as chronological order, developmental order, spatial

order, order of increasing complexity, or order of increasing size provides a

satisfactory order over all the foci in the schedule. Closer examination of

the terms reveals small clusters with various relations, but no overall

principle of ordering for the entire scheme to indicate that one term should

precede or follow another. Vickery [1960] suggests an alphabetical order be

used in such situations, although it is not generally favored over the other

ordering principles. In this type of situation where no other ordering

applies, alphabetical order does at least provide a recognizable order for the

user and an arrangement to guide later additions to the scheme.

Step 5, the ordering of subfacets within facets, was also deferred in

Section 3.3.3. The principle of increasing complexity is a logical choice for

subfacet order in this collection, planing simple function before complex

applications in the ACTIVITY facet and simple objects before larger areas

of concern in the FOCUS facet. The suggested schedule for data structure

algorithms including all 277 foci covers several pages and is included as

Appendix 1. The order of facets and subfacets is summarized below in

outline form.

4,

92)

Form
Activity

simple function
application

Focus
simple object
area

Location
data structure
device

Language
Algorithm
Operating system
Hardware
Performance rate

performance amount
performance time unit

Memory requirement
memory amount
type of memory measurement

Prccision

The construction of this schedule demonstrates the utility of the

faceted methodology as an organizational tool for collections of reusable

software components. The general design principles of collocation,

description and identification, use of familiar terms, and a citation order

based on user needs were verified. The remaining objectives concerning

retrieval automation, an adjustable citation order, and schedule expansion

will be examined in Sections 4 and 5 using this schedule for data structure

algorithms as a baseline.

,1

",A

'%

I -[l[I] "A ''A / /,l~'% l • mu*I: 'Aun .

93

4. SOFTWARE COMPONENT RETRIEVAL

Software component reuse offers significant benefits and savings, but

is only practical if developers can easily locate a component to reuse.

Locating a particular component in a large software collection requires the

application of three cooperating processes: (1) an organization for the

collection, (2) a method for describing components based on that

organization, and (3) a mechanism to access (locate and retrieve) the desired

component or set of components. The faceted classification system

presented in Section 3 provides two of the necessary elements: the

organization and descriptive capability. This section presents the design and

implementation of the third element, the retrieval mechanism. The

functional requirements for a softwarc component retrieval mechanism are

specified in Section 4.1. Sections 4.2 and 4.3 discuss the design of the formal

retrieval model and the design of the automated retrieval system,

respectively. The design incorporates the classification scheme for data

structure algorithms which was presented in Section 3. The implementation

of this design as a rapid prototype is presented in tie final section.
pp.

4.1 Functional Requirements

The main objective of this software component retrieval system is to

return a set of reusable components which satisfy a given description of the

characteristics of a desired component. The functions required to provide

this capability include query formulation, relevance ranking of retrieved

components, a method for vocabulary control, and provisions for user

reordering of the software collection.
Il

Mk

P - ~ A~ V ~ - - P ~ ~ **~p.)pP p~p~pp

94

4.1.1 Query Formulation

The retrieval mechanism should provide adequate support for query

formulation. Queries should be concise and easy to form, yet describe the

characteristics of the desired component as completely as possible to

distinguish it from similar components. These two objectives have

conflicting realizations. As the size of the descriptor in the query increases,

so does its descriptive power (resolution). When the descriptor is small, the

precision decreases. This relationship suggests a compromise is necessary.

Both objectives cannot be maximized at the same time. The descriptor size

should be short, yet fully describe the relevant attributes of the component.

Increasing the descriptor size to increase precision can produce long,

complex descriptions. For example, some specification languages used to
F

describe programs produce descriptions as large or larger than the original

programs they seek to describe [Balzer 1985; Horowitz and Munson 1984;

Nourani and Jones 1985]. Such lengthy descriptors may reduce the benefits F

of reusability.

Bartschi [1985] suggests a similarity relation exists between concepts

expressed in the query and concepts in the items of the collection which "

imposes a limit on the possible query forms. Query forms should correspond

to the representation of items in the collection. Natural language, sets of

query descriptors, and descriptors combined by operators are the typical

forms of queries in most retrieval systems. Whatever the representation,

query formulation must answer the questions: How can the desired item be

described? How should the underlying information structures be

represented? How does the user find sensible query terms to use? What

.5..

'-

]1 °'5%

95

means are provided to interconnect query terms? Which combinations of

query terms can retrieve relevant items and reject irrelevant ones? An

effective softwarc component retrieval system should address each of these

requirements.

4.1.2 Relevance Ranking Y

The retrieval mechanism should not simply locate and return only

components which exactly match the query. Selected items should be

ordered based on their relevance to the query. Relevance ranking can assist
-"

the user in selecting the best component to reuse. Return of an unordered

group of components places the evaluation burden on the user, making

selection of the appropriate item a tedious manual process and negating the

b-enefits of reuse (or eliminating reuse altogether). The "all-or-nothing"

approach of traditional boolean systems is an example of unordered 0

retrieval. The retrieved items in boolean systems are indistinguishable from %,

one another and are all treated as equally relevant to thc query.

N

Information retrieval research has produced a variety of techniques

for relevance estimation including term weighting, threshold values, fuzzy pj

set theory, clustering techniques, and similarity measures. Term weighting is

used to express the relative importance of a concept. It can be applied to

either the index term (descriptor) of an item or to a query term. Query term

weighting is used to indicate the relative importance of a descriptor in a I
query. For example, the qucry 't1 AND t2" gives no indication of which

descriptor, t1 or t2 , is more important to the user. The weighted query "(t1,

0.8) AND (t2 , 0.3)" however, supplies the additional information that items
wwith characteristic t1 are more relevant to the user's needs than items having

'I

96

only characteristic t2. Similarly, items possessing both concepts, t1 and t2 , are

considered more relevant than items having only characteristic t1 or only

characteristic t2. Query term weighting can also be used as a threshold

value. Items in the collection are judged based on whether or not they reach

a certain threshold for each characteristic and by what degree they surpass

that level. Threshold values are accumulated for all query descriptors and I.

then are used to order the items which exceed the threshold value.

Fuzzy set theory has been applied to retrieval systems in a variety of

ways as a means of providing relevance measures. The objective is to

estimate the degree of fit between the query and each item in the collection

as a fuzzy set with unsharp boundaries. The "all-or-nothing" retrieval

paradigm is replaced by a process with intermediate degrees of matching.

Several combinations of weighting schemes and measurement formulas have

been suggested in the IR literature for use as fuzzy set mechanisms.

Clustering techniques are usually added to these systems to reduce the

search space and computational workload when searching large collections.

Items in the collection with similar characteristics are grouped together in a

cluster. Clusters are then treated as single entities during the initial search

process. Clustering is similar to the collocation principle used in

classification theory.

4.1.3 Vocabulary Control

The retrieval mechanism should provide vocabulary control and a

well-structured index language. When using a retrieval system, a user has a

better chance of locating the desired item if the terms in the query are the

same as those used by the system to describe that item (e.g., an item indexed

,'. .. ' -' -' .'.-'. '. ',...'.-' .'. -'.-'.-'.-. v ,-,."--'--- -:',"-". " ." ".. .. -.", ,'i,..,. -." 5.".' N.

97

by "ship" will not be retrieved by a query containing the term "boat"). The

terms which can be used to describe items in a collection form an index

language (a language used to describe items and queries). In IR technology,

two types of index languages are recognized: pre-coordinate and post-

coordinate [Van Rijsbergen 19791. Pre-coordinate indicates that terms are

coordinated at the time of index creation, while post-coordinate means that

terms are coordinated at query formulation time. The vocabulary of an
A%

index language may also be controlled or uncontrolled. A controlled

vocabulary is a list of approved terms to be used with a particular collection.

Other descriptors are not allowed as index terms in a controlled vocabulary.

The general guidelines available concerning index languages indicate that

simple languages without overly complex controls are preferred. The

author's experience with large commercial retrieval systems suggests that

vocabulary control can significantly improve retrieval performance.

Developing an index language requires decisions in several areas. A

method must be selected to distinguish between homographs (terms with the

same spelling which may or may not be pronounced the same). One common

technique is to qualify the terms with another word (e.g., PITCH(bitumen),

PITCH(music), PITCH(baseball), PITCH(slope)). Failure to distinguish

homographs can result in reduced retrieval precision. Semantic

relationships such as equivalence (synonyms) and hierarchy (genus to species.

or part to whole) should also be included in the index. One frequently used

technique for handling semantic relationships is a systematic arrangement

which groups related terms together (i.e, a classification scheme) [Foskett

19821. Well-formed semantic relationships in an index language can improve

query precision and recall performance.

"-. ." .,,;'?" ??. .. ,'7 " " '',' 2.. '-- -.--.,.-? "'''"':;";'''':''" 1

98

4.1.4 Collection Reordering

An automated retrieval system should be able to reflect user specified

query term importance. One way to provide this capability is to reorder the

categories in the collection to indicate the relative importance of each

group. The semantic arrangement (collection order) of many retrieval

systems is static, reflecting only the criteria of the developers. Users with

differing needs do not always agree with these criteria. If the order of the

collection is fixed, it will not serve the needs of these users effectively. The

capability to reorder categories to reflect the importance of each group to

an individual user would improve both precision and recall. An automated

retrieval system should be able to provide this capability via an adjustable

citation order.

4.2 Design Decisions for the Retrieval Mechanism

A retrieval mechanism to support software component reuse should

satisfy the functional requirements outlined above. The design decisions for

the retrieval mechanism included: selecting a retrieval model, query

formulation and internal representation, selecting a similarity measure for

relevance ranking, and collection reordering to reflect individual user's

needs. These design decisions and accompanying rationale are discussed

below.

4.2.1 The Retrieval Model

Selection of a retrieval model to use as the basis for the retrieval

mechanism was a major design decision. The three models (boolean, vector

4

** %'..- . '. . Y, .. f .- j-u 5, '- ,. 5 ,. -,- - .rC-. 4* ,-,-.c''''.' -''.-""' .- ''''--:'-'; ' -,. " ' ' ?, - . . " : . ''"- ;".

99

space, and probabilistic) described in Section 2.2 were analyzed using the

functional requirements outlined in Section 4.1. The functional

requirements combined with the probabilistic model's incomplete definition

quickly narrowed the possibilities to either the boolean or vector space

model.

Boolean technology offers simple and flexible query formulation, and

the internal processing structure based on inverted file manipulation is

extremely efficient. These features make the processing of large collections

possible. However, the boolean model does not support importance

indicators for query terms or the use of similarity measures for relevance

ranking. The basic boolean model alone does not satisfy the functional

requirements for software component retrieval.

The vector space retrieval model was developed in response to the

disadvantages of boolean retrieval. Weighting of index and query terms to

indicate importance, and relevance ranking of selected items are directly

supported. But to provide these capabilities, the vector space model loses the

simple boolean query structure, and the selection of an appropriate

similarity measure to provide relevance ranking is a problem as noted in

Section 2.2.1.3. The large amount of additional computations required for

query evaluation limits vector space retrieval systems to small collections.

Neither model supports all the requirements for a software

component retrieval mechanism. Therefore, a hybrid model was designed in

this research which combines the basic boolean and vector space retrieval

models, incorporating the organizational structure provided by a faceted

classification scheme. Using the vector space approach, each software

1(X)

component in this hybrid retrieval model is represented as a tuple of

attributes

C k =< c , c2 . , c i, . , c n >

where each ci is an attribute term from some facet F i. Each query is

similarly defined as a tuple of attributes:

Qt = < a1, a2, - -, ai,., an >

This representation for components and queries provides potential capabili-

ties for term importance weighting and component relevance ranking. The

design uses an ordering on the facets (either the citation order or user

supplied order) to indicate term importance and to measure relevance as the

following example illustrates. Let the ordering F 1, F2,..., Fi,..., Fn indicate

facet F i is more important than facet Fj whenever i < j. A query expressed

as q = < a1, a2, a3 > would indicate term a1 (from Facet F1) as most

important and term a3 (from Facet F3) as least important.

An efficient matching function is one of the advantages of the

boolean model. Modifying that basic model to reflect term importance by

ordering the attributes yields a matching function M represented as:

M(qt) = IC I Cl = a, A c2 = a2 A... A cn = a}

A match is indicated when attribute c1 of a particular software component

tuple matches query attribute a1, and component attribute c2 matches query

attribute a2, and so on for all the attributes in the tuple. However, this

function will return the empty set if there are no exact matches. Retrieving

components which almost match the one requested and ordering them byi "a
'..

101

relevance requires the use of a similarity measure as in the vector space

model. S

42.2 Query Formulation and Vocabulary Control

The two major requirements for query formulation are: (1) queries

should be concise and easy to form, and (2) queries should adequately

describe the desired component. In the retrieval model designed in this

research, the index language uses elemental terms from each facet in the

software classification schedule to form the query tuple. This design

satisfies both objectives. The elemental terms from the classification

schedule provide users with ready-made descriptors. For example, in the

query:

q = <code, search, word, tree, Ada, VS>

the term "code" was obtained from the FORM facet, "search" from the

ACTIVITY facet, and so on. Since the software components in the

collection were classified using the faceted scheme, queries formed from the

same schedule should be able to fully describe the desired components.

This index language formed by using terms from the classification

schedule provides additional features. It is pre-coordinated (coordinated at

the time of indexing) and controlled (limited to the terms in the schedule).

Homographs, synonyms, and term hierarchies are identified and included in

the schedule when it is constructed.

V

102

4.23 A Similarity Heuristic

The matching function, M, defined in Section 4.2.1 can only determine

exact matches between the set of software components C and the set of user

queries Q. A similarity measure is needed to locate components which

almost match the query but are not exact matches. Vector space retrieval

supports this closeness principle, but the similarity measures suggested in the

IR literature have not been validated. The geometry-based measures used in

vector space research can sometimes produce unpredictable and erratic

results. A heuristic approach was used to design a more appropriate

similarity measure for software components.

Closeness, when selecting a software component for reuse, implies a

match on critical attributes in the query, but possibly not on every

characteristic. A component not matching "all" of the desired attributes may

still be reusable, if the nonmatching attribute(s) is not critical or can be

compensated for easily. For example, the query

q = < code, search, word, tree, Ada, VS >

indicates the attributes "code" and "tree" are more important than the

operating system attribute, "VS". Given the components

C1 = < code, search, word, tree, Ada, AOS >

C2 = < code, insert, word, tree, Ada, VS >

it is easy to determine that C1 is more relevant to the reuser's query q than

component C2. All attributes in C1 match the query exactly except the least

important, the operating system. Reusing component C1 in this situation

'S

~ ~ *.- *'' ~!s*'~ ~S 'S ~M?.,,~h- U *~S.S~s~a. JM'J€I

103

would not require much additional effort. C2 also matches all attributes in

the query except one. However, the unmatched characteristic is the second

most important attribute, that is the function of the code, making reuse

unacceptable.

The similarity heuristic described above was used to extend the

boolean matching function defined in the previous section. A "match-

anything" characteristic, shown as "*" in the following examples, was added.

The extended matching function with the "match-anything" characteristic

shown for facet i becomes

M(qt) ={fC cl =a 1 A c2 =a 2 A... A (ci =a i V ci A

A cn =an}

and can be used in conjunction with facet ordering to measure component

relevance to a given query. In this design, the retrieval mechanism

automatically invokes the similarity heuristic which alters the internal

representation of the query by inserting the match-anything characteristic

successively, starting with the least important term. This allows the

retrieval mechanism to search for items which almost match the query. To

illustrate, when the similarity heuristic is applied to a query q = < a,, a2 , a3,

a4, a5 >, after exact matches have been found a5 would be replaced by * and

the search repeated, then a4 and so on. Thus for the two components

C1 = <a 1, a2 , a3, a4 , * >

C2 = < a1, a2 , a3 , *, a5 >

both matching a given query except for the "," characteristics, then

component C1 will be judged more relevant to the query than component C2.

104

The fourth attribute matched in C1 is more important than the fifth

attribute matched in C2. This combination matching function and similarity

heuristic included in the retrieval model provides the desired requirements

of efficient retrieval, term importance, and relevance estimation.

4.2.4 Facet Reordering

Unlike retrieval schemes for collections of books and documents, the

citation order of a software component classification scheme can be

rearranged since the physical collocation of components is not required.

This ability to be reordered has been used to advantage in the retrieval

mechanism design developed in this research where the facet order can be

changed by the user to reflect term importance, relevance ranking, and

component clustering. An adjustable citation order allows the user to tailor

the collection to a specific set of needs, improving system performance. The

faceted scheme's simple list structure and generic relationships between

categories directly supports the design of this capability.

4.3 Design of the Retrieval System

The retrieval mechanism developed in Section 4.2 forms the nucleus

of an automated software component retrieval system. This section presents

the other elements of the system's design. The system uses a query language

based on the facets of the faceted classification methodology described in

Section 3. A user composes queries by listing appropriate attribute values.

ordered by decreasing importance. The internal retrieval process embodies

three phases reflecting the boolean, vector space, and similarity heuristic

,U

stages of its design. The design decisions and rationale used in developing

this automated software retrieval system are given in the following sections.

.'.

43J Control Structure

A modular control structure was selected for the retrieval system to

facilitate implementation, testing, and debugging, and to encourage future

experimentation. The central control kernel involves two levels of the

control hierarchy as shown in Figures 12 and 13. In the first level of the

F|
ain %

Reordering Retrieval Components Components %

Figure 12. Retrieval System Control Hierarchy (first level)

CompDonen t,
Retrieval

Quer Phs hsI Phs I
Formulation Retrieval Retrieval RetrievaYBl

Figure 13. Retrieval System Control Hierarchy (second level)

.

106

control hierarchy (Figure 12), the main module provides system initialization

and establishes the default facet order (citation order). The user can then

specify a different facet order or initiate component retrieval.

The second level of the control structure, illustrated in Figure 13,

supports query formulation and the hybrid retrieval mechanism. The

retrieval mechanism is designed as a three phase process with each

individual phase located in a separate module. This allows any single

retrieval phase to be modified or replaced without affecting the rest of the

system. Query formulation is also located in a separate module.

The main control logic of the retrieval system is shown in Figure 14

using a pseudo code format. The process begins with a determination of the

facet order followed by construction of the query. The retrieval mechanism

initialize facet order
if user selects then

input new facet order
endif
formulate the user query
perform Phase I retrieval {boolean model}
if number retrieved < threshold then

perform Phase II retrieval {equivalent descriptors)
endif
if number retrieved < threshold then

perform Phase III retrieval {heuristic model}
endif
if number retrieved > 0 then

rank by relevance
output ranked component list

else
report no components retrieved

endif

Figure 14. Retrieval System Control Logic

. I

107

is structured as a three phase process with the execution of each phase

controlled by the results of the previous phase. The final step in the process

is to rank the retrieved items and output the ordered results. These pro-

cesses are elaborated in the following sections.

43.2 User Interface and Vocabulary Control

A controlled vocabulary for the index language affects both the user

interface and query formulation process. Using the faceted classification

schedule as the basis for query construction supports both the design of the

user interface and the controlled vocabulary. Each facet or subfacet group

can be presented to the user as a set of menus. This aids the user in selecting

the most appropriate descriptor for each attribute while, at the same time,

limiting the possible choices to only terms allowed in the index language.

When a particular facet is unimportant in a query or the user wishes to ex-

pand the retrieved set of components, the match-anything characteristic is

available as a possible attribute in each set of menus. This design, based on

the faceted organization, provides efficient query formulation, vocabulary

control, and use of a pre-coordinated index language. After the user forms a

query, the system initiates the phased retrieval process.

4.3.3 Phased Retrieval Mechanism

The retrieval mechanism is integrated into the system design as a

three phase process with different phases reflecting the boolean, vector

space, and heuristic attributes of its design. After a query is presented to

the system, the execution of each phase is internally controlled by the
system without further user interaction. The results of each phase controls

.R~

108

the execution of subsequent phases to provide the most relevant components

available in the software collection for each query. Phase I is activated first. p

Designed around the boolean model, Phase I searches the software collection

for exact matches of the query tuple. If located, components with matching

characteristics are ranked as the most relevant candidates for reuse. A user

selected threshold value is used to control the number of retrieved compo-

nents. If the threshold is not reached during this phase, the second phase of

the retrieval process is activated.

Components with attributes that are almost equivalent to the terms

in the original query might also satisfy the users' needs. This reverses the

role a thesaurus normally plays in retrieval systems (i.e. vocabulary control)

in that the thesaurus is used here to expand the query, automatically

forming new queries with the almost equivalent descriptors. The new

queries are then used to retrieve matching components using a least-

important to most-important order. That is, queries with almost equivalent

descriptors replacing the least significant facet descriptor are processed first,

followed by those replacing the next least significant descriptor, and so on.

For example, given the query

Q1 = < code, total, real, array, Fortran, PC/DOS, double >

a thesaurus search on the least important descriptor, "double" (from the

Precision facet) would locate the almost equivalent attribute "single", and a

new query, 02' would be constructed.

2= < code, total, real, array, Fortran, PC/DOS, single >

After retrieving components for query Q2, almost equivalent terms for the

next least significant term, "PC/DOS", would be used. Using the almost

equivalent term "MS/DOS", queries Q3 and Q4 would be constructed and

processed.

Q3 = < code, total, real, array, Fortran, MS/DOS, double >

Q4 = < code, total, real, array, Fortran, MS/DOS, single >

This process is continued until the component threshold level is reached or

until no more equivalent terms can be located in the thesaurus. The

thesauri used in many information retrieval systems are created and main-

tained by the system developers, and cannot be changed by the users. For

software component retrieval, a fixed thesaurus might not reflect the expe-

rience level or requirements of each user. The capability for each user to

modify and specialize the thesaurus would improve retrieval performance.

Phase III contains the similarity heuristic designed in Section 4.2.

Beginning with the least important facet descriptor, the retrieval system

replaces query terms with the match-anything characteristic. Following

each replacement, the query is automatically reprocessed against the

component collection. Query Q1 above would be modificl to retrieve

components close to the desired attributes by first replacing the least

important descriptor, "double", with the match-anything attribute. This

generates the new query Q5

Q5 = < code, total, real, array, Fortran, PC/DOS, * >

, ,i
'. .- - - .-- - - - - . - - - b*

110

After query Q5 is processed, the system substitutes the match-anything

characteristic for the next least significant descriptor, and so on. During

each phase of the retrieval process, duplicate components already found are

not re-listed. When the retrieval process is completed, the selected

components are presented to the user by order of relevance to the query,

namely in the order which they are retrieved.

4.4 Rapid Prototype Implementation

The development of a faceted software classification methodology

and retrieval mechanism to support software reuse was the focus of this

research. A rapid prototype was implemented to demonstrate the feasibility

of this approach. A data base management system was used for rapid

prototype support with the retrieval mechanism added as a front end

process. Constructing the prototype involved the selection of appropriate

development tools, and implementation of the retrieval control structure,

support routines, and user interface. Each of these areas is described below.

S,%

4.4.1 Rapid Prototype Support

The purpose of a rapid prototype is to examine the main features of a

system's design as a working system to determine if they satisfy the

functional requirements. Prototyping tools are chosen to support a rapid

implementation of the system without the usual concerns for efficiency or

completeness. The main tool needed to support the rapid prototyping of the

software retrieval system should provide data base-like facilities for manag-

ing the software collection and should easily manipulate tuple structures to

• , ~...,....-,.--)- --....- ... '' ' ''- - •....-.-.-.- '.. .. .-. -... -.-. %'5 . .. ,-.'.

facilitate implementation of the formal retrieval model. Additionally, a

programming capability is needed to implement the phased retrieval

mechanism and modular control structure in the retrieval system design.

KnowledgeMan, a relational data base management system developed

by Micro Data Base Systems, Inc., was selected as it meets the criteria

outlined above [KnowledgeMan 1985]. Developed for IBM PC compatible

microcomputers, KnowledgeMan provides the features of a sophisticated

data base management system, an internal command language similar to

Pascal for programming support, an interactive editor, and a screen

interface manager.

4.4.2 Control Structure of the Rapid Prototype

The main control process for the rapid prototype was implemented

directly from the modular control structure design presented in Section 43.1.

The first level of the control hierarchy provides system initialization,

collection management functions, and establishes the default facet order or

user specified facet order. The second level of the control structure supports

query formulation and the phased retrieval mechanism.

Query formulation uses an index language based on the terms in the

faceted classification schedule for data structure algorithms described in

Section 3. Using KnowledgeMan's screen interface manager, the user

interface was implemented as a set of menus. A user composes a query by

selecting the appropriate attribute from each menu. Each menu represents

the attributes from one of the classification facets. An example of the facet- 'A

based menu approach for query construction is shown in Figure 15. The user

..,

,**, - %- + *+ % + - % -- . - • -

112

COMPONENT FORM MENU

Select the FORM of the component

1. Requirements
2 Specification
3. Design
4. Test plan
5. Code
6. Commercial package
7. Data

Enter selection number: 5

(a)

Component description: Form = code

Select the main ACTIVITY of the component

Simple function (subgroup)
1. add/increment/total/sum 14. empty
2. access 15. encryption
3. append/attach/concatenate/join 16. evaluate
4. close/release/disconnect 17. exchange/swap '5

5. compare/relate/match/test 18 expand
6. compress 19. format
7. copy 20. input/read/enter
8. count/enumerate/list 21. insert/push
9. create/produce/generate 22. merge
10. data reduction 23. modify/update
11. decode 24. move
12. delete/remove/erase 25. open/connect
13. divide/division 26. don't care

Enter selection number or zero (0) for next screen: _

(b)

Figure 15. Facet-based Query Construction: (a) Form menu and
(b) Activity menu

)'

)'

113

first selects a characteristic from the FORM facet illustrated in Figure 15(a).

Then the system presents the next menu, in this case the ACTIVITY facet,

shown in Figure 15(b), and so on. If a user wants to ignore a particular facet

during query construction, a "don't care" option is provided.

The three phase retrieval mechanism is implemented as three

separate modules in the rapid prototype with a fourth module to control

execution of the other three. Given a query tuple, the retrieval controller

first activates the Phase I retrieval process to search the software collection

for exact matches of the query. If located, components with matching

attributes are ranked as the most relevant. If the user supplied threshold

value is not reached during the first phase, the retrieval controller activates

the second phase of the retrieval process. The Phase II module searches for

items that "almost" match the query. A thesaurus implemented as a

KnowledgeMan table is used by the system during this phase to automati-

cally construct and process new queries. The third phase implements the

similarity heuristic designed in Section 4.2. This module replaces the least

important query descriptor with the match-anything attribute and repro-

cesses the query. If the threshold has not been reached, the next least

important query descriptor is replaced, and so on.

4.43 Support Routines

Although implementation of the rapid prototype followed the main

control structure design presented in Section 4.3.1, several additional routines

were needed to provide system support functions A module was developed

to interface with the software collection and select the appropriate sets of

software clusters for a given query (a screening process). This routine used

"p
-p.""

114

the collocation principle of the faceted classification methodology to reduce

the search space for the phased retrieval mechanism. Only the selected

clusters are passed to the retrieval controller for further processing.

An important design feature of the retrieval system was user

reordering of facets to indicate relative importance. A routine was imple-

mented to provide this capability using menu selections for a consistent user

interface. The user is asked to indicate the most important category, the

next most important, and so on in turn. A global data structure is

maintained by this routine to indicate the current facet order.

A support routine was also needed to produce the final ranked output

of retrieved software components. This routine is invoked by the retrieval

controller when the phased retrieval process is completed. The software

components are tagged with relevance indicators during the retrieval

process. The output routine uses this information to display the selected

components by order of relevance, noting any variances from the original

query. A sample of the ranked output is shown in Figure 16 for the query:

q = < code, sort, string, array, Fortran, bubblesort, AOS,

VAX, 100-999/second, 200-299K bytes, * >

The component Bubsort, listed first in the output, matches all the given

query attributes. The component listed second, Bubsortmt, matches all the

query attributes except memory requirement which is measured in words

for Bubsortmt instead of bytes as requested in the query. Bubsortmm, the

third most relevant component for query q, needs a slightly different

amount of memory, and so on.

:a

115

Components Retrieved

L Bubsort
2. Bubsortmt with memory measurement = words
3. Bubsortmm with memory amount = 100-199
4. Bubsortpt with performance time unit = minute
5. Bubsortpr with performance amount = 1-99
6. Bubsortos with OS = TOPS
7. Bubsortalg with algorithm = insertion
& Bubsort with language Basic
9. Bubsortloc with location = list

Figure 16. Ranked Output from the Prototype

Construction and operation of the rapid prototype verified the

general principles used in the design of the faceted organization and

software retrieval model. The design supports query formation, efficient

retrieval, term importance, component clustering, and relevance estimation.

A detailed evaluation of the prototype system is presented in Sectior 6.

~*- &*,' a P~U.Im~VVI ~ ~ * 'J ~ ~ .\ % . * . aS

116

5. EXPANDING THE SOFTWARE COLLECTION

The faceted classification methodology and component retrieval

mechanism produced positive results when applied to the data structure

algorithm domain described in Section 3. But other classification schemes

devised for small, special collections have worked equally well in many cases el

[LaMontagne 1961; Foskett 1982]. However, problems and limitations can

arise when these schemes are extended or applied to more general situations.

The remaining area to be examined in this research then is the expansion of

the software collection. Will the faceted methodology be hospitable when

adding software components from a different domain?

To provide an answer to this critical question, the faceted classifica-

tion methodology described in Section 3 was applied to another set of soft-

ware components. This expansion experiment involved the selection of a

different software domain, and application of the faceted methodology and

component schedule developed for the data structure domain to representa-

tive components from the new domain.

5.1 Selecting Another Software Domain

Components from the domain of data structure algorithms were used

to construct the original schedule. Since this set of components could have

had unknown intrinsic attributes favorable to the faceted technique, the

components chosen to test the expansion capabilities of the scheme were

selected to differ as much as possible from the data structure collection used

for the first test (i.e., not be code fragments and not be oriented around data

i...........

117

structure algorithms). Other requirements desired for the selected set of

components were that they be well documented and available for examina-

tion to support the classification process. The test collection should also

contain a reasonable number of components, since a small collection would

not adequately test the modification process or stress the classification

scheme. Finally, the selected domain should not have been previously classi-

fied using a faceted scheme, since this might predispose the characteristics of

the components to the faceted methodology and bias the results of the

experiment.

A subset of the International Mathematics Scientific Library [IMSL

1984] was selected to meet these requirements. IMSL components are not

code fragments, but complete Fortran subroutines. The IMSL subroutines

provide common mathematical and statistical functions, and are not con-

cerned with data structure algorithms. A printed reference manual contains

the documentation for each subroutine with the subroutines grouped into

chapters using an organization based on enumerative classification. Since

the complete IMSL collection contains over 600 components, the test collec-

tion was limited to subroutines from Chapter B (Basic Statistics) and

Chapter D (Differential Equations). The first step in the faceted methodol-

ogy is to analyze a representative sample of the software components into

their elemental classes. The subroutines selected to form this representative

sample are listed below.

Bdcoul Dcadred Dblin
Bdcou2 Dcsqdu Dblind
Bdltv Dcsqdud Dcadre
Bdtab Dgear Drvte
Bdtabd Dgeard Drvted

I

118

Bdtrgi Dgeara Dverk
Bdtrgid Dgearad Dverkd
Bdtrgo Bdtrgod Dmlin
Dmlind Bdtwt Dpdes
Bdtwtd Becor Dpdesd
Drebs Becord Drebsd

5.2 The Modification Process

The addition of new components to a faceted classification scheme

requires the same basic analysis process that was used to construct the origi-

nal schedule. First, the components to be added are analyzed to identify

their elemental classes. Then, the existing classification schedule is exam-

ined to determine the presence of any of these new elemental classes. For

the elemental classes which are already present, no further action is re-

quired. If the analysis produces elemental classes that are not in the original

schedule, then the schedule must be modified by adding the new terms to

the correct facet or subfacet. The following steps outline the modification

process.

1. Analyze the software components to be added to the
schedule into their elemental classes.

2. Eliminate from the list of new terms any classes which are
already present in the original schedule.

3. Group the new elemental classes into facets using the
single characteristic principle of division.

4. When necessary, apply different characteristics of division
within facets to produce subfacets.

5. Insert the new terms into the original schedule
maintaining the citation and foci order.

6. Adjust the combination order for facets (the facet
formula) to accommodate any new facets that were added.

- -A

119

This modification process was used in the following section to expand the

original classification schedule.

5.3 Modifying the Prototype Schedule

The process of adding the IMSL test collection to the original sched-

ule began with an analysis of each software component in the sample to

identify its elemental classes. Homographs, synonyms, and hierarchical rela-

tionships need to be recognized and handled during this analysis phase, just

as they were during construction of the original schedule. Analysis of the

new components in the IMSL test collection listed above produced 297

elemental classes. This is within the expected number of terms since the

original schedule contains 11 facets. However, a large number of the ele-

mental terms were duplicates (i.e., the Form of every subroutine was "code",

the Language of every subroutine was "Fortran"). Removing duplicate terms

and eliminating synonyms reduced the list to 38 unique classes. The second
p.

step in the modification process removed from the list of new terms any

elemental classes which were already present in the original schedule. Ten

of the terms were found to already exist in the original schedule, reducing

the number of new terms for insertion to 28. The next step involved group-

ing the new classes into facets. This process produced 4 facets with the new

terms grouped as indicated below:

Activity (facet) Algorithm (facet)

differential equations Adams method
differentiation adaptive rombergfrequency counting extrapolation
integration finite difference
parameter estimation Gaussian

-U - ~ ~ ~ ~ U~VV -U V V~ V~* . *Sp*'.SU

120

partial differential equations Gears method
transgeneration in core

letter value summary
Focus (facet) method of lines

multivariate data
cubic spline one-way table
function out of core
matrix quadrature
observations runge-kutta
system of equations two-way table

Location (facet)

subprogram

The fourth step, when necessary, divides the facets into subfacets. Within

the Focus facet, all the new terms were grouped into the Simple Object sub-

facet, and the one new term in the Location facet was placed in the Data

Structure subfacet.

Activity (facet) Algorithm (facet)

differential equations Adams method
differentiation adaptive romberg
frequency counting extrapolation
integration finite difference
parameter estimation Gaussian
partial differential equations Gears method
transgeneration in core

letter value summaryFocus (facet) method of lines

multivariate data
simple object (subfacet) one-way table
cubic spline out of core
function quadrature
matrix runge-kutta
observations two-way table
system of equations

Location (facet)

data structure (sub facet)
subprogram

r- -"

121

The final two steps in the modification process integrate the new terms into

the original schedule and adjust the combination order when required. The

28 new elemental classes from the IMSL test collection were integrated into

the existing schedule for data structure algorithms contained in Appendix 1. '

The expanded schedule, which grew from 275 to 303 elemental classes, is

included as Appendix 2. ,.

5.4 Results and Conclusions

The hospitality of the faceted classification methodology developed

for software components was the focus of this experiment. Overall, the

faceted schedule was found to be easy to expand. There was no evidence of

any re-classification problems like those normally encountered when ex-

panding enumerative schemes. The modification process was not difficult.

Having the original schedule available during the analysis phase simplified

the classifier's task in that the original schedule could be used in suggesting

facets and elemental classes which characterized the new components. Many

of the new terms were already listed in the original schedule, even though

the test collection contained components significantly different from those

used to form the original schedule. No modifications beyond the addition of

new elemental terms were necessary. The original 11 facets were adequate

for the expanded collection and no new subfacets were required.

The test collection was a subset of software components from a

special library of mathematical routines. Based on the classification process,

some interesting observations about the application of a faceted scheme to

special software libraries can be made. For example, tailoring the classifica-

I * -, . -_ . -. - - -. . - p -. - - -
I.

122

tion schedule to fit only the IMSL collection would be an easy process and

would produce a compact, effective classification system. Several of the

facets in the original schedule could be completely eliminated for this

special case. The Form facet, for example, is unnecessary since "code" is the

only choice possible for IMSL components. Likewise, Fortran is the only

language these routines are written in, making the Language facet

superfluous. Finally, anyone seeking a particular IMSL subroutine would

already be aware of the general hardware and operating system require-

ments, so these facets could be eliminated as well. The classification scheme

could, therefore, be reduced from 11 to 7 facets. The complete schedule

would be extremely concise, requiring only 34 elemental terms. This same

tailoring process could be applied to other domain specific software libraries.

The faceted classification model can provide a powerful organizational tool

for these special software libraries in a small, flexible format.

As additional software components are added to the collection, it

appears that increasing numbers of the new elemental classes would already

be present in the original schedule. Adding the complete IMSL collection of

over 600 subroutines would mostly affect the Algorithm facet since many of

the subroutines contain unique mathematical algorithms. This preliminary

work with the faceted methodology indicates that many of the other facets

in the schedule would quickly stabilize, requiring fewer and fewer additions

as more components are added to lie collection. The classification process

also becomes easier as the classifier's experience grows and more terms

become available in the schedule. Adding the IMSL components was not

difficult, and it is anticipated that expanding into other domain areas would

yield similar results.

123

6. SUMMARY, CONCLUSIONS AND FUTURE WORK

Studies have shown that reusing existing software can reduce devel-

opment costs, speed up the development process, and provide a more reliable

product. The major goal of this research was to support software component

reuse by developing the capability to locate (retrieve) a desired component

within a large collection of items. This capability required the development

of three cooperating processes: (1) an organization for the software

collection, (2) a method for describing components based on thai

organization, and (3) a mechanismi to access (locate ard retrieve) the desired

component or set of components. A faceted software classification

methodology was developed to provide the organization for the collection

and to facilitate component description. With the faceted classification

scheme providing the underlying structure, techniques from information

retrieval theory were used to design a hybrid retrieval mechanism. A rapid

prototype was then implemented to determine the feasibility and utility of

this approach. This section summarizes the research, presents conclusions

which can be drawn from the rapid prototype, and uses the experience and

insights gained to make recommendations for future work.

6.1 Summary of the Research

This research can be partitioned into four phases: (1) a detailed study

of software reuse, (2) development of a faceted software classification

methodology, (3) design of a software retrieval mechanism, and (4)

construction of a rapid prototype of the retrieval system. Each of t:.ese

phases is summarized below.

124

6.1.1 Software Reuse

During the first phase, a detailed study of software reuse was

conducted. Reuse was found to occur in many different forms ranging from

the repetitive execution of commercial packages and software development

tools, to reuse of code fragments and subroutines, to the reuse of analysis

and design knowledge in transformation paradigms. The impetus for each

type of reuse, however, was the same: economics. Although reusable

software components may be more expensive to develop initially, reusing

software can increase productivity and reduce overall development costs as

the expense of the reused component is amortized over its uses. Several

studies and industrial projects have documented the potential of software

reuse. However, these projects have been limited to small-scale applications.

The lack of a software classification scheme and a retrieval mechanism are

routinely listed as factors limiting current reuse technology. Software reuse

will only be practical on a large scale when developers can easily locate a

component to reuse. Classification and retrieval capabilities are a

cornerstone for successful large-scale software reuse and became the focus of

this research.

6.1.2 Faceted Methodology

The second phase of the research involved the design of an

organization for software collections. Organization (classification) provides

a basis for describing items in the collection and the capability to answer

membership questions. Library classification science provided a mature

body of knowledge which served as the background for this phase of the

research. The history of library classification shows an evolution

oI

-°. , ,V 9 . V ~~..~ .~ *

125

progressing from enumerative schemes toward the use of faceted techniques.

Enumerative schemes take a subject area and divide it into successively

narrower classes listing all the simple and complex subjects which can ever

be classified by the scheme. This enumeration (listing) of all possible

subjects is one of the major disadvantages of the enumerative method. The

more modern classification technique, faceted, is based on a subject analysis

and synthesis process. The subjects to be classified are analyzed and divided

into their elemental terms. These terms and their relationships are listed in

the classification schedule. Synthesis is then used to form more complicated

subjects from the elemental terms as needed by assembling them according

to the citation order. Since the analysis and synthesis process plays such a

central role, faceted schemes are also called analytico-synthetic classification. ,

The general objectives for classification schemes found in library

science were combined with the needs of software classification to form a set

of functional requirements for the software scheme. These requirements

were used to compare the two classification models. Enumerative schemes

were found to be complicated, difficult to automate, time consuming to

construct (years or decades), inflexible and difficult to expand without re-

classification problems, and unresponsive for rapidly changing subject areas.

Faceted classification was designed to overcome many of these disadvan-

tages. A faceted scheme is easy to expand, facilitates automation, supports

the description of complex subjects, and has a significantly smaller schedule.

The faceted model was used to develop a classification method-logy

specialized for reusable software components. The methodology employs an

analysis technique based on literary warrant to construct the classification

schedule. Components to be classified are analyzed into their elemental

", o . . - ,. ,.- ,- ,- .- ,- -, ,, , -, ., --.- .- • ., -.- -..- ,--.--._. - , , ' '-.-' %.',-_ ,' % _,,'' _'. . ,' ,3 ,, '..' .' '2 ''," " ' '' ' ..',,

126

terms, which are then grouped into facets and subfacets using the single

characteristic of division principle. To complete the schedule, a citation

order is established to guide the users during the synthesis process. Synthesis

is used to assemble superimposed, complex, and compound classes from the

elemental terms in the schedule. This classification methodology provides a

flexible descriptive capability for items in the software collection. The

faceted methodology was successfully demonstrated on a test collection of

components selected from the domain of data structure algorithms and later

expanded by the addition of components from the IMSL collection.

6.13 Retrieval Mechanism

A retrieval mechanism was developed during the third phase of the

research. The field of information retrieval theory provided three models

which could be used as the basis for designing the software retrieval

mechanism. The probabilistic model was quickly eliminated, leaving the

vector space and boolean models as possible candidates. An evaluation of ,

each model indicated certain strengths and weaknesses, but neither model

supported all the requirements for software component retrieval. Since

some features from each model were needed, a hybrid mechanism was

designed using features from both the boolean and vector space models

combined with the descriptive structure provided by the faceted

methodology. In the design of the formal retrieval mechanism, each

component in the software collection was represented as a tuple of

attributes, with each attribute being an elemental term from some facet in

the faceted classification schedule. Queries were also represented as

attribute tuples using a similar format. This structure supported the design

£ 'L , . t! I . , ; t,, - - K,
:

- ."-' J J - t ; ,i _: ..- . . - ...

127

of a relevance measure for ranking retrieved items, a technique for

vocabulary control, and the capability to reorder the collection to reflect

term importance.

The retrieval mechanism itself was designed as a three phase process.

The first phase, designed around the boolean retrieval model, searches the

software collection for exact matches of the query tuple. Software

components which exactly match the query are considered the best

candidates for reuse. The second phase of the retrieval mechanism searches

for components with attributes that are almost equivalent to the terms in

the original query. A thesaurus containing almost equivalent terms is used

to modify the original query, automatically forming new queries with the

almost equivalent descriptors. The new queries are then used to retrieve

components which might also satisfy the users' needs. Phase III of the

retrieval mechanism implements a similarity heuristic designed to locate

components "close" to but not exactly matching the query. Beginning with

the least important facet descriptor, the similarity heuristic successively

replaces query terms with a "match-anything" characteristic. Following each

replacement, the modified query is reprocessed against the component

collection. Thus, the similarity heuristic selects software components which

match the important attributes in the query, although they may not match

every attribute.

6.1.4 Rapid Prototype

A rapid prototype of the retrieval system was implemented based

upon this design using KnowledgeMan, a relational data base management

system, as the implementation vehicle. Query formulation in the prototype

" IkI

128

used an index language based on the terms in the faceted classification

schedule. Using KnowledgeMan's screen interface manager, the user inter-

face was implemented as a set of menus with a user composing a query by

selecting the appropriate attribute from each facet's menu. The query is

then evaluated using the phased retrieval mechanism described above which

returns a list of reusable components to the user ordered by relevance. A

user selected threshold value controls the number of components selected.

The rapid prototype provided an arena in which to examine the retrieval

mechanism.

6.2 Results and Conclusions

Conclusions can be drawn from several different areas of this

research. The rapid prototype demonstrated the feasibility of the faceted

classification methodology and hybrid software retrieval model. The faceted

scheme provided a supportive and flexible organization for the software

collection and the retrieval model produced encouraging results using the

test collection. Specific results and conclusions are presented in the

following sections.

6.2.1 Rapid Prototype

The purpose of the rapid prototype was to examine the utility of a

faceted classification methodology and hybrid retrieval mechanism as the

basis for software component retrieval. Implementation and operation of

the prototype confirmed the general principles used in selecting the faceted

scheme and in designing the retrieval mechanism. Description synthesis

seems to support the formation of specific queries customized to an

M129

appropriate level of precision for each component collection. Organized as

separate lists of elemental terms, faceted classification does facilitate

automation. Translating the scheme into a working prototype was a

straightforward process. Tying the retrieval process to facet order directly

supported term importance and created an instrument for relevance

measurement.

Using a data base system to construct the rapid prototype allowed the

system to be implemented in less than two weeks and supported the primary

functions of the retrieval mechanism. However, execution was somewhat

slow as expected with the overhead of frequent service calls to the data base

system and screen manager. Using the KnowledgeMan screen manager to

implement the user interface turned out to be a poor implementation

decision. The construction of each screen (menu) was a tedious process and

the static nature of each resulting menu did not support the flexibility of

the faceted scheme.

Most existing collections of reusable software components rely on

printed reference manuals for locating a desired component, and therefore,

could not be compared to this automated retrieval system. Information

(document) retrieval systems are usually evaluated and compared in terms of

recall and precision with measurements in the area of 3(0% recall and 70%C"g

precision considered as good. The small test collection of software

components developed during this research precludes a valid statistical study

of recall and precision, but preliminary results appear to indicate

improvement over traditional document retrieval systems. The precise

index language and controlled vocabulary provided by the faceted scheme

77

'S

," ,.. .,. ,_ ,,, .. ,, ,, ,, . ,,".' '. '..,,' '-. .'. ." - . - . .. -- . . -' .:-' -S

T-V V. -VWV L - w -1. N V -I k. W% 1 LaX7 .

130II

may contribute to the retrieval capability. Forming a hybrid retrieval

mechanism using the most effective techniques from the boolean and vector

space retrieval models added to the prototype's capabilities by combining the

efficiency of direct attribute matching with term importance indicators and

relevance ranking.

As a preliminary test of the prototype's performance, the following

evaluation was performed on approximately 30 sets of queries. First, a query

was manually evaluated against the component collection to determine the

most relevant software components and their associated order of relevance.

Then, an identical query was processed by the prototype system. In each

test, the prototype produced results matching those from the manual

evaluation. While the small test collection cannot provide irrefutable

results, these tests support the design decisions made and indicate a potential

for similar results using larger software collections.

Query formulation based on the synthesis process of faceted

classification provided a simple but effective user interface. Selecting the

appropriate descriptors from lists of elemental terms in each facet elimi-

nated the need for complex query construction rules or user expertise

concerning retrieval languages. Adjusting the citation order to fit

individual user needs appears to provide added user support by tailoring the

organization of the software collection to better fit a particular query.

6.2.2 Faceted Classification

The faceted classification methodology is a useful organization

technique for collections of reusable software components, since the

%p

131 i

synthesis capability it provides is well suited to the description of detailed

and complex subjects. A faceted classification system is easy to modify and I

expand as was demonstrated in Section 5 when the IMSL subroutines were

added to the test collection. Faceted schemes also facilitate automation. The

simple relationships between facets, a schedule structure composed of

separate lists of terms, and a well defined combination order for synthesis of

complex subjects can be directly translated into a computer model. .

Faceted schemes are quite flexible and can be adapted to different

collections or different users. The adjustable citation order implemented in

the rapid prototype provided dramatic results, indicating how effective this

technique can be in improving retrieval performance. Tailoring the

component collec,.ion to fit the user's requirements supports effective query

formulation and efficient retrieval. The following example illustrates how

retrieval can be affected by modifying the citation order.

The default facet order, shown below, is provided by the prototype

system and corresponds to the classification schedule developed in Section 3.
p

Form
Activity
Focus
Location
Language
Algorithm
Operating system .,
Hardware '"
Performance rate
Memory requirement
Precision

1%
J5e

132

Using this default order, a query with the following characteristics was

constructed and processed:

I=< code, sort, string, array, Fortran, bubblesort, AOS,

Vax, 100-999/second, 200-299K bytes, *>

The ranked output obtained from query G 1, shown in Figure 17(a), lists 9

software components by decreasing order of relevance. Then the facet order

was modified to indicate a different term importance as follows

Form
Activity
Focus
Precision
Memory requirement
Performance rate
Hardware
Operating system
Algorithm
Language '

Location

and the same query was reprocessed. The new component ranking shown in

Figure 17(b) has changed significantly. The component Bubsortloc which

was ranked as only the ninth most relevant component for the first query,

became the second most relevant component for the same query using the

modified facet order. This demonstrates the potential power and flexibilitv

an adjustable citation order can provide for software component retrieval.

A user can easily specify different query descriptor importance by simply

reordering the characteristics without the need for complex attribute

weighting schemes.

! p

o4-

16,V,, , I,,, ,, ,: Uk Ix .. . U ,7 CT7 W5 R-10 11 n - i NW N- 31, dw- lo- ,I -,

133

Components Retrieved ,'

1. Bubsort
2. Bubsortmt with memory measurement words
3. Bubsortmm with memory amount = 100-199 %
4. Bubsortpt with performance time unit = minute
5. Bubsortpr with performance amount 1-99 -.
6. Bubsortos with OS = TOPS
7. Bubsortalg with algorithm insertion
& Bubsortb with language Basic '
9. Bubsortloc with location = list

(a)

p

Components Retrieved
S._

1. Bubsort
2. Bubsortloc with location = list
3. Bubsortb with language = Basic
4. Bubsortalg with algorithm = insertion
5. Bubsortos with OS = TOPS
6. Bubsortpr with performance amount 1-99
7. Bubsortpt with performance time unit = minute
& Bubsortmm with memory amount = 100-199
9. Bubsortmt with memory measurement = words

(b)

Figure 17. Ranked Retrieval Output: (a) from default
citation order and (b) from modified citation order.

134

6.23 Retrieval Mechanism ,

A formal retrieval model and phased retrieval system were designed

using a combination of techniques from the boolean and vector space

information retrieval models. This hybrid design resulted in a retrieval

mechanism providing efficient retrieval via direct attribute matching as in

the boolean retrieval model, where the terms in the query tuple are matched

with the attributes in each software component tuple. Efficient retrieval

was also supported by item clustering which is often used in the vector space

retrieval model to reduce the search space. Component clustering was

provided in this design by the facet groupings in the faceted classification

schedule. The citation order (or user supplied facet order) from the faceted

schedule was used to indicate term importance (weighting) in the query

tuples, and was combined with the similarity heuristic to provide relevance

estimation. The feasibility of this design was demonstrated by the

construction and operation of a rapid prototype system with the retrieval

tests described in Section 6.2.1 indicating the utility of the retrieval

mechanism.

6.3 Future Work

This research has shown that an effective organizational scheme and

retrieval system can be developed for reusable software collections. It

provides a beginning and suggests several areas for enhancements and

further research.

," '.' , '.': ., "0';-"Z" ,'-;-,- .? "--Y;-.¢. " ". -, '.., %%% ?. %'?'.- ',-%%% 5..?;.;....:z....., .,...,\,:, "

135

63.1 System Enhancemnents

The rapid prototype verified the general principles used in

developing the faceted classification methodology and in designing the

retrieval mechanism. However, several extensions can be suggested in both

areas to overcome current limitations and enhance future work with the

system. The retrieval system, constructed as a rapid prototype, is

understandably inefficient. Building the rapid prototype as a front end to a

data base management system created severe overhead problems. Every

system action required several calls to the data base system and then

internal manipulation of the corresponding results. To support further

expcrimentation with larger software collections, the design should be re-

implemented as a complete system using standard software engineering

techniques.

Retrieval systems are usually evaluated and compared in terms of

recall and precision. Although the preliminary results were encouraging,

the small test collection developed during this research prevented a valid

study of these measures. This suggests several possible extensions. First, the

faceted classification methodology should be applied to more software

components, especially those from other domains. This would provide a

suitable number of components for testing the retrieval system and extend

the range of knowledge concerning the faceted methodology and its utility.

With a larger software collection available, a second experiment could

examine the recall and precision performance of the retrieval mechanism.

In Section 5, the expandability of the faceted scheme was examined by

adding subroutines from the IMSL collection to the original test schedule.

)- " . - . r ," , . - , . € ,.
°

' - . " . '. , € " .' - . . - - - . ' - - " " ' ' * - . - ", " "

1-36

This experiment provided an interesting observation about the application

of a faceted scheme to special software libraries. The general set of software 5

facets can be tailored to fit a special library for a given domain by

eliminating the unnecessary facets. For the IMSL components, it was noted

that the Form, Language, Hardware, and Operating System facets could be

eliminated. The retrieval system could be extended to automate this

"subsetting" capability for building reusable libraries for specific domains.

This would provide better user support and reduce the system's search space.

63.2 Additional Research

The results of this research have been encouraging, but there is a

need for additional research to make the faceted methodology and retrieval

model applicable to large-scale software reuse. Several areas for future

work including a classification assistant, organization for other software

development products, and software retrieval reuse metrics are suggested in

the following sections.
4.

6.3.2.1 A Classification Assistant L

The manual construction of a faceted classification schedule for a

large software collection would be a labor-intensive process. Automating

the construction or modification of a faceted schedule could make the

scheme more practical. for example, the test collection developed during

this research contained 11 facets. Analyzing 30 new software components to

be added to this schedule would produce over 300 elemental terms. An

automated assistant (possibly knowledge-based) could aid the classifier by

identifying homographs, synonyms, and duplicate terms (similar capabilities

5'

137

exist in many editors and word processors). The assistant might also suggest

various facet and subfacet groupings based on different user specified

characteristics of division. This capability could even be extended to

automate production of the interface menus used for query formulation.

63.2.2 Other Software Development Products

The faceted schedule developed during this research was oriented

toward source code components. Additional work is needed to test the

classification methodology on other products from the software

development process such as specifications, requirements, and designs.

Reuse of these more abstract forms could produce potentially larger

benefits. One goal of this additional research might be to determine if one

classification schedule would be adequate for all such products or would

separate organizations be required for each different development product.

63.23 Reuse Environment Integration

The effective application of software reuse on a large scale will

require more than just a retrieval system for locating components. A

support environment is needed to integrate all the tools necessary for

effective software reuse. The retrieval model and classification

methodology designed during this research should be integrated into an

existing reusable software development environment and evaluated for its

utility and effectiveness. This evaluation could include not only

measurements such as precision and recall, but also studies comparing the

time spent searching for and modifying a component for reuse with the time

it would take to develop a new component instead. The ReadyCode system

.1

f *, . , -. . . . , , *. o -.. S ,S. ' , _ .- ,_ .. ,,,, _._- -. _' ..q.. '_. * . " ' ' .,-'.- ',

138

at Raytheon [Lanergan and Grasso 1983, 19841 and the Reusable Code system

at Hartford Insurance [Cavaliere and Archambeault 19831 are possible p
candidates for this type of research.

63.2.4 Thesaurus Construction

Section 4 described the use of "almost equivalent" descriptors during

the second phase of the retrieval process to automatically generate new

queries. These descriptors were selected from a thesaurus which contained

almost equivalent terms for some of the original query attributes. For the

rapid prototype implemented during this research, the thesaurus of almost

equivalent terms was constructed by hand. Two areas for additional

research are suggested concerning this thesaurus. First, the construction of

the thesaurus could be automated to improve the construction process and

produce a richer, more complete thesaurus. The second area concerns

specialization of the thesaurus for individual users. Depending on the

software domain to be reused, the application area, or user experience level,

a user may want to use different almost equivalent terms for some

descriptors instead of those provided in the original thesaurus. A

knowledge-based approach might be useful for automating the specialization

process if the general guidelines (rules) could be identified.

6.3.2.5 Retrieval Based Upon Reuse Metrics

To support large-scale software reuse, the reusable parts collection

may contain thousands of software components. Reuse metrics might be

useful in this context to help guide the retrieval mechanism to the most

relevant components for a particular query and user. Retrieval based upon

'p

..... -... .. .'. -" "... .." '. '- " ,.,- - -" .'" .''.- ;'"" .- .'"

139

reuse metrics might become a fourth phase in the retrieval mechanism

designed during this research. Using the components selected as reuse

candidates by the first three retrieval phases, the fourth phase could further

refine the selection process by using the reuse metrics as evaluation

measures. A limited study of reuse metrics as retrieval indicators was

reported by Prieto-Diaz [1985] suggesting such metrics as lines of code, the

number of variable references, and the number of subroutine calls. For

example, given two software components selected for reuse by the first three

phases of the retrieval process with identical relevance measures, the reuse

metrics might select one as a better candidate by assuming it is less complex

because it has a smaller number of variable references. This basic beginning

provides the impetus for additional work in reuse metrics for retrieval

which might provide a valuable tool for software retrieval technology.

Based on these initial experiences, the faceted classification

methodology and hybrid retrieval mechanism appear to provide an effective

retrieval system for reusable software components. This work serves as a

first step and encourages additional research to support software reuse.

p.

5%%%

pJ t' ~ ~ ~ ~
1

dpP~E *~

140

REFERENCES

AFIP 1980. Taxonomy of Computer Science and Engineering. Compiled by the
AFIPS Taxonomy Committee, AFIPS Press.

Afshar, S. K. 1985. Software Reuse Via Source Transformations. In
Proceedings COMPSAC 85 Computer Software & Applications Conference,
IEEE Computer Society Press, New York, 54-61.

Balzer, R., Cheatham, T. E. Jr. and Green, C. 1983. Software Technology in
the 1990's: Using a New Paradigm. IEEE Computer, Nov, 39-45.

Balzer, R. 1985. A 15 Year Perspective on Automative Programming. IEEE
Transactions on Software Engineering, SE-11, No. ll(Nov), 1257-1268.

Barstow, D. R. 1979. An Experiment in Knowledge-Based Automatic
Programming. Artificial Intelligence, Vol. 12, No.2(Aug), 73-119.

Bartschi, M. and Frei, H. P. 1983. Adapting a Data Organization to the
Structure of Stored Information. In Information Retrieval Research
edited by R. N. Oddy, S. E. Robertson, C. J. Van Rijsbergen and P. W.
Williams. Butterworth & Co., Ltd., London, 62-79.

Bartschi, M. 1985. An Overview of Information Retrieval Subjects. IEEE
Computer, Vol. 18, No. 5(May), 67-84.

Batz, J. C., Cohen, P. M, Redwine, S. T. and Rice, J. R. 1983. The Application-
Specific Task Area. IEEE Computer, Vol. 16, No. 11(Nov), 78-85.

Baumel, L. S., Machovec, K. W, and Sayrs, B. G. 1986. Application Language
Issues Report. Internal Lockheed Missiles & Space Company Report
D-060736, (Jan), Austin, TX.

Biggerstaff, T. J. 1984. Foreward, IEEE Transactions on Software Engineering,
SE-10, No. 5(Sep), 474-476.

Biswas, G., Subramanian, V. and Bezdek, J. C. 1985. A Knowledge Based
System Approach to Document Retrieval. In The Second Conference of
Artificial Intelligence Applications (Miami Beach, Fl, Dec 11-13), IEEE
Computer Society Press, New York, 455-460.

Blair, D. C. and Maron, M. E. 1985. An Evaluation of Retrieval Effectiveness
for a Full-Text Document Retrieval System. Commnunications of the
ACM, Vol. 28, No. 3(Mar), 289-299.

Bliss, H. E. 1985. A Bibliographic Classification: Principles and Definitions.
In The Theory of Subject Analysis, edited by L. M. Chan, P. A. Richmond
and E. Svenonius, Libraries Unlimited, Inc., Littleton, CO., 75-85.

-e % .

-rff
V -.

141

Bloomberg, M. and Weber, H. 1976. An Introduction to Classification and Number
Building in Dewey. Libraries Unlimited, Inc., Littleton, CO.

Boehm, B. W. 1981. Software Engineering Economics, Prentice-Hall, Englewood
Cliffs, NJ.

Boehm, B. W. and Standish, T. A. 1983. Software Technology in the 1990's:
Using an Evolutionary Paradigm. IEEE Computer, Vol. 16, No. 11(Nov),
30-37.

Boehm, B. W., Penedo, M. H., Stuckle, E. D., and Willams, R. D. 1984. A
Software Development Environment for Improving Productivity.
IEEE Computer, Vol. 17, No. 6,(June), 30-42.

Boisvert, R. F., Howe, S. E. and Kahaner, D. K. 1983. The GAMS
Classification Scheme for Mathematical and Statistical Software.
SIGNUM Newsletter, Vol. 18, No. 1(Jan), 10-18.

Boisvert, R. F., Howe, S. E. and Kahaner, D. K. 1985. GAMS: A Framework
for the Management of Scientific Software. ACM Transactions on
Mathematical Software, Vol. 11, No. 4(Dec), 313-355.

Bollmann, P., Konrad, E. and Zuse, H. 1983. FAKYR - A Method Base
System for Education and Research in Information Retrieval. In
Research and Development in Information Retrieval, edited by Gerard
Salton and Hans-Jochen Schneider, Springer-Verlag, Berlin, 11-19.

Bolstad, J. 1975. A Proposed Classification Scheme for Computer Program
Libraries. SIGNUM Newsletter, Vol. 10, No. 3(Nov), 32-39.

Booch, G. 1986. Software Engineering with Ada, Benjamin/Cummings
Publishing Company, Menlo Park, CA.

Bookstein, A. 1980. Fuzzy Requests: An Approach to Weighted Boolean
Searches. Journal of the American Society for Information Science, Vol. 31,
No. 4(July), 240-247.

Bookstein, A. 1981. A Comparison of Two Weighting Schemes for Boolean
Retrieval. In Information Retrieval Research, edited by R. N. Oddy, S. E.
Robertson, C. J. Van Rijsbergen and P. W. Williams. Butterworth &
Co., Ltd., London, 23-34.

Bookstein, A. 1983. Explanation and Generalization of Vector Models in
Information Retrieval. In Research and Development in Information
Retrieval, edited by Gerard Salton and Hans-Jochen Schneider,
Springer-Verlag, Berlin, 118-132.

Boyle, J.M. 1980. Software Adaptability and Program Transformation. In
Software Engineering edited by H. Freeman and P. M. Lewis, Academic
Press, New York, 75-93.

142

Boyle, J.M. and Muralidharan, M. N. 1984. Program Reusability Through
Program Transformation. IEEE Transactions on Software Engineering,
SE-10, No. 5(Sep), 574-588.

Buchanan, B. 1979. Theory of Library Classification. K.G. Saur Publishing, Inc.,
New York.

Buell, D.A. and Kraft, D.H. 1981a. Threshold Values and Boolean Retrieval
Systems. Information Processing and Management, Vol. 17, No. 3, 127-136.

Buell, D.A. and Kraft, D.H. 1981b. A Model for a Weighted Retrieval System.
Journal of the American Society for Information Science, Vol. 32,

*. No3(May), 211-216. :4

Buell, D. A. and Kraft, D. H. 1983. LIARS: A Software Environment for
Testing Query Processing Strategies. In Research and Development in
Information Retrieval, edited by Gerard Salton and Hans-Jochen
Schneider, Springer-Verlag, Berlin, 20-27.

Burton, B. A, Aragon, R. W, Baily, S. A, Koehler, K. D. and Mayes, L. A.
1987. The Reusable Software Library. IEEE Software, Vol. 4, No.
4(July), 25-33.

Cavaliere, M. J. and Archambeault, P. J. Jr. 1983. Reusable Code at the
Hartford Insurance Group. In Proceedings of the Workshop on
Reusability in Programming (Newport, RI, Sep 7-9), 273-278.

Chan, L. M. 1981. Cataloging and Classification. McGraw-Hill Book Company,
New York.

Chandersekaran, C. S. and Perriens, M. P. 1983. Towards an Assessment of
Software Reusability. In Proceedings of the Workshop on Reusability in
Programming (Newport, RI, Sep 7-9), 179-182.

Comaromi, J. P. 1976. The Historical Development of the Dewey Decimal
Classification System. In Major Classification Systems: The Dewey
Cenntenial, edited by K. L. Henderson, University of Illinois Graduate
School of Library Science, I11, 17-31.

Croft, W. B. and Ruggles, L. 1983. The Implementation of a Document
Retrieval System. In Research and Development in Information Retrieval,
edited by Gerard Salton and Hans-Jochen Schneider, Springer-Verlag,
Berlin, 28-37.

Curtis, B. 1983. Cognitive Issues in Reusability. In Proceedings of the
Workshop on Reusability in Programming (Newport, RI, Sep 7-9), 192-197.

Deutsch, P. L. 1983. Reusability in the Smalltalk-80 Programming System. In
Proceedings of the Workshop on Reusability in Programming (Newport, RI,
Sep 7-9), 192-197.

'A

-. w !Vi$ ~ % V ~ * ~ **** *.* ~ a~'~..

- - -
Ip

143

Doszkocs, T. E. 1983. From Research to Application: The CITE Natural
Language Information Retrieval System. In Research and Development
in Information Retrieval, edited by Gerard Salton and Hans-Jochen
Schneider, Springer-Verlag, Berlin, 251-262.

Druffel, L., Redwine, S. and Riddle, W. 1983. The STARS Program: Overview
and Rationale. IEEE Computer, Vol. 16, No. 11(Nov), 21-29.

Dumlao, M. and Cook, S. 1983. Cataloging Software. Special Libraries, Vol. 74,
No. 3(July), 240-245.

Embley, D. W. and Woodfield, S. N. 1987. A Knowledge Structure for
Reusing Abstract Data Types. In Proceedings of the Ninth International
Conference on Software Engineering, IEEE Computer Society Press, New
York, 360-368.

Faloutsos, C. 1985. Access Methods for Text. Computing Surveys, Vol. 17,
No.l(Mar), 49-74.

Fickas, S. F. 1985. Automating the Transformational Development of
Software. IEEE Transactions on Software Engineering, SE-11, No. 11
(Nov), 1268-1277.

Foskett, A. C. 1982. The Subject Approach to Information. Linnet Books,
Hamden, CT.

Freeman, P. 1983. Reusable Software Engineering: Concepts and Research
Directions. In Proceedings of the Workshop on Reusability in Programming
(Newport, RI, Sep 7-9), 2-16.

Gargaro, A. and Pappas, T. L. 1987. Reusability Issues and Ada. IEEE
Software, Vol. 4, No. 4(July), 43-51.

Gladney, H. M. 1983. A CONCISE Experiment in Program Reusability. In
Proceedings of the Workshop on Reusability in Programming (Newport, RI,
Sep 7-9), 207-214.

Goodell, M. 1983. Quantitative Study of Functional Commonality in a
Sample of Commercial Business Applications. In Proceedings of theWorkshop on Reusability in Programming (Newport, RI, Sep 7-9), 279-286.

Gopinath, M. A. 1972. The Colon Classification. In Classification in the 1970's,
edited by Arthur Maltby, Linnet Books, Hamden, CT, 53-86.

Grabow, P. C., Noble, W. B. and Huang, C. 1984. Reusable Software
Implementation Technology Reviews, Hughes Aircraft Company,
Fullerton, California, N66001-83-D-0095.

Green, C. 1976. The Design of the PSI Program Synthesis System. In .
Proceedings of the Second International Conference on Software Engineering
(San Francisco, CA, October 13-15), 4-18.

144

Green, C., Gabriel, R. P., Kant, E., Kedzierski, B. J., McCune, B. R, Phillips, J.
V., Tappel, S. T., and Westfold, S. J. 1979. Results in Knowledge Based
Program Synthesis. In Proceedings of the Sixth International Joint
Conference on Artificial Intelligence (Tokyo, Japan Aug 20-23) IJCAI,
342-344.

Green, C, Luckham, D., Balzer, R, Cheatham, T. and Rich, C. 1983. Report on
a Knowledge-Based Software Assistant. Report KES.U.83.2, Kestrel
Institute, Palo Alto, CA.

Hafner, C. D. 1981. Representation of Knowledge in a Legal Information
Retrieval System. In Information Retrieval Research edited by R. N.
Oddy, S. E. Robertson, C. J. Van Rijsbergen and P. W. Williams.
Butterworth & Co., Ltd., London, 139-153.

Harrison, W. 1986. A Program Development Environment for Programming
By Refinement and Reuse. In Proceedings of the Nineteenth Annual
Hawaii International Conference on System Sciences, Vol. 2A, Western
Periodicals Company, North Hollywood, CA, 459-469.

Horowitz, E. and Munson, J. B. 1984. An Expansive View of Reusable
Software. IEEE Transactions on Software Engineering, SE-10, No. 5(Sep),
477-487.

Huang, C. 1985. Reusable Software Implementation Technology: A Review
of Current Practice. In Proceedings COMPSAC 85 Computer Software &
Applications Conference, IEEE Computer Society Press, New York, 207.

Ichbiah, J. D. 1983. On the Design of Ada. In Proceedings of the IFIP 9th
World Computer Congress (Paris, France, Sep 19-23), Elsevier Science
Publishing Co., Inc., New York, 1-10.

IDS 1980. International Directory of Software 1980-81. Computing Publications
Ltd., England.

IDS 1982. International Directory of Software 1982-83. Computing Publications
Ltd., England.

IMSL Library Reference Manual, 1984. IMSL, Inc, Houston, TX.

Jones, T. C. 1984. Reusability in Programming: A Survey of the State of the
Art. IEEE Transactions on Software Engineering, SE-10, No. 5(Sep), 488-
493.

Jones, B., Litvintchouk, S., Mungle, J., Krasner, H., Mellby, J. and Willman, H.
1985. Issues in Software Reusability. ACM SIGSOFT Software
Engineering Notes, Vol. 10, No. 2(Apr), 108-109.

Kaiser, G. E. and Garlan, D. 1987. Melding Software Systems from Reusable
Building Blocks. IEEE Software, Vol. 4, No. 4(July), 17-24.

!S

r .~ . ~ ~ ,

145

Kant, E. and Barstow, D. R. 1981. The Refinement Paradigm: The Interaction
of Coding and Efficiency Knowledge in Program Synthesis. IEEE
Transactions on Software Engineering, SE-7, No. 5(Sep), 458-471.

Kernighan, B. W. 1984. The UNIX System and Software Reusability. IEEE
Transactions on Software Engineering, SE-10, No. 5(Sep), 513-518

KnowledgeMan Version 2.0 Reference Manual, 1985. Micro Data Base Systems,
Inc., Lafayette, IN.

Knuth, D. E. 1973. The Art of Computer Programming, Volume I Fundamental
Algorithms. Addison-Wesley Publishing Company, Reading, MA.

Kraft, D. H. and Buell, D. A. 1983. Fuzzy Sets and Generalized Boolean
Retrieval Systems. International Journal of Man-Machine Studies, Vol. 19,
No. 1(July), 45-56.

LaMontagne, L. E. 1961. American Library Classification. The Shoe String
Press, Inc., Hamden, CT.

Lanergan, R. G. and Grasso, C. A. 1983. Reusable Designs and Code: A
Strategy for Designing Software with Maintenance in Mind. In
Software Maintenance Workshop Record (Naval Postgraduate School, Dec
6-8), IEEE Computer Society Press, New York, 55-56.

Lanergan, R. G. and Grasso, C. A. 1984. Software Engineering with Reusable
Designs and Code. IEEE Transactions on Software Engineering, SE-10,
No. 5(Sep), 498-501.

Langridge, D. 1973. Approach to Classification. Linnet Books, Hamden, CT.

Ledbetter, L. and Cox, B. 1985. Software-ICs A Plan for Building Reusable
Software Components. Byte, June, 307-316.

Ledgard, H. 1981. Ada An laroduction. Springer-Verlag, New York.

Lenz, M., Schmid, H. A. and Wolf, P. F. 1987. Software Reuse through
Building Blocks. IEEE Software, Vol. 4, No. 4(July), 34-42.

Litvintchouk, S. D. and Matsumoto, A. S. 1984. Design of Ada Systems
Yielding Reusable Components: An Approach Using Structured
Algebraic Specifications. IEEE Transactions on Software Engineering, SE-
10, No. 5(Sep), 544-551.

Lubars, M. D. 1986. Code Reusability in the Large Versus Code Reusability
in the Small. ACM SIGSOFT Software Engineering Notes, Vol. 11,
No.l(Jan), 21-28.

h
°

'

0I
* . . . , .S " " " - ,'4 ." , r p" * 'r ","< "0 r ." , ," , ' 0 -",- '

-- .' '4Ji-l~llt .Iil id~lS"L k dd dll r~~ ,1 " - 1 I

146

Maron, M. E. 1983. Probabilistic Approaches to the Document Retrieval
Problem. In Research and Development in Information Retrieval, edited by
Gerard Salton and Hans-Jochen Schneider, Springer-Verlag, Berlin,
98-107.

Mathis, R. F. 1986. The Last 10 Percent. IEEE Transactions on Software
Engineering, SE-12, No. 6(June), 705-712.

Matsumoto, Y, Sasaki, 0, Nakajima, S., Takezawa, K, Yamamoto, S., and
Tanaka, T. 1981. SWB System: A Software Factory. In Software
Engineering Environments edited by H. Hunke. North-Holland
Publishing Company, New York, 305-318.

Matsumoto, Y. 1983. Some Experiences in Promoting Reusable Software:
Presentation in Higher Abstract Levels. In Proceedings of the
Workshop on Reusability in Programming (Newport, RI, Sep 7-9), 228-234.

Matsumoto, Y. 1984. Some Experiences in Promoting Reusable Software:
Presentation in Higher Abstract Levels. IEEE Transactions on Software
Engineering, SE-10, No. 5(Sep), 502-512.

McCune, B. P. 1977. The PSI Program Model Builder:Synthesis of very High-
Level Programs. SIGART-SIGPLAN Symposium on Artificial Intelligence
and Programming Languages, Vol. 12, No. 8(Aug), 130-139.

McCune, B. P., Tong, R. M., Dean, J. S. and Shapiro, D. G. 1985. RUBRIC: A
System for Rule-Based Information Retrieval. IEEE Transactions on
Software Engineering, SE-11, No. 9(Sep), 939-944.

Mcllroy, M. D. 1976. Mass Produced Software Components. In Software
Engineering Concepts and Techniques, J. M. Buxton, P. Naur, and B.
Randall, Eds, Petrocelli/Charter, Brussels 39, Belguim, 88-98. From the
1968 NATO Conference on Software Engineering.

Meyer, B. 1982. Principles of Package Design. Communications of the ACM,
Vol. 25, No. 7(July), 419428.

Micheal, M. E. 1976. Summary of a Survey of the use of the Dewey Decimal
Classification in the United States and Canada. In Major Classification
Systems: The Dewey Centennial, edited by K. L. Henderson, University of
Illinois Graduate School of Library Science, Urbana-Champaign, 47-58.

Mills, J. 1972. The Bibliographic Classification. In Classification in the 1970"s,
edited by Arthur Maltby, Linnet Books, Hamden, CT, 25-52.

Murray, K. J. B. 1986. Knowledge-Based Model Construction: An Automatic
Programming Approach to Simulation Modeling. Ph.D. Dissertation,
Computer Science Dept., Texas A&M University, College Station, TX.

Neighbors, J. M. 1984. The Draco Approach to Constructing Software from
Reusable Components. IEEE Transactions on Software Engineering,
SE-10, No. 5(Sep), 564-573.

147

Nourani, C. F. and Jones, G. A. 1985. Software Reusability - A Perspective.
In Proceedings of the Eighteenth Annual Hawaii International Conference on
System Sciences, Vol 2, Western Periodicals Company, North
Hollywood, CA, 447-456.

Osborn, J. 1982. Dewey Decimal Classification, 19th Edition. Libraries Unlimited,
Inc., Littleton, CO.

Oskarsson, 0. 1983. Software Reusability in a System Based on Data and
Device Abstractions - A Case Study. In Proceedings of the Workshop on
Reusability in Programming (Newport, RI, Sep 7-9), 160-166.

Partsch, H. and Steinbruggen, R. 1983. Program Transformation Systems.
Computing Surveys, Vol. 15, No. 3(Sep) 199-236.

Pedersen, J. T. 1984. The Kongsberg Approach To Achieve Reusable
Application Software. In The First International Conference on Computers
and Applications (Beijing, China, June 20-22), IEEE Computer Society
Press, New York, 787-794.

Pollock, G. M. 1985. A Design Methodology and Support Environment for
Complexity Metrics Via Reusable Software Parts. Ph.D. Dissertation,
Computer Science Dept., Texas A&M University, College Station, TX.

Pollock, G. M. and Sheppard, S. 1985. The Use of Ada in Implementing a
Rapid Prototyping System. In Proceedings of the Third Annual National
Conference on Ada Technology (Houston, TX, March 20-21), 145-151.

Prieto-Diaz, R. 1985. A Software Classification Scheme. Ph.D. Dissertation,
Department of Information and Computer Science, University of
California, Irvine.

Radecki, T. 1981. A Model of a Document-Clustering-Based Information
Retrieval System with a Boolean Search Request Formulation. In
Information Retrieval Research edited by R. N. Oddy, S. E. Robertson, C.
J. Van Rijsbergen and P. W. Willams. Butterworth & Co., Ltd.,
London, 334-344.

Radecki, T. 1983. Generalized Boolean Methods of Information Retrieval.
International Journal of Man-Machine Studies, Vol. 18, No. 5(May), 407-439.

Ralston, T. 1981. The Proposed New Computing Reviews Classification
Scheme. Communications of the ACM, Vol. 24, No. 7(July), 419433.

Ramamoorthy, C. V., Prakash, A., Tasi, W. and Usuda. Y. 1984. Software
Engineering: Problems and Perspectives. IEEE Computer, Vol. 17,
No.10(Oct), 191-207.

Ramamoorthy, C. V, Garg, V. and Prakash, A. 1986. Programming in the
Large. IEEE Transactions on Software Engineering, SE-12, No. 7(July),
769-783.

Ir
C * *

148

Rauch-Hindin, W. B. 1983. Special Series on System Integration. Electronic
Design, Vol. 31, No. 3(Feb), 176-194.

Rich, C. and Waters, R. C. 1983. Formalizing Reusable Software Components.
Working paper Number 251, MIT Artificial Intelligence Laboratory,
Cambridge, MA.

Robertson, S. E., Van Rijsbergen, C. J. and Porter, M. F. 1981. Probabilistic
Models of Indexing and Searching. In Information Retrieval Research
edited by R. N. Oddy, S. E. Robertson, C. J. Van Rijsbergen and P. W.
Williams. Butterworth & Co., Ltd, London, 35-56.

Robertson, S. E. Maron, M. E. and Cooper, W. S. 1983. The Unified
Probabilistic Model for IR. In Research and Development in Information
Retrieval, edited by Gerard Salton and Hans-Jochen Schneider,
Springer-Verlag, Berlin, 108-117.

Salton, G. 1971. The Smart Retrieval System. Prentice-Hall, Inc., Englewood
Cliffs, NJ.

Salton, G. 1981. A Blueprint for Automatic Indexing. ACM SIGIR Forum, Vol.
16, No. 2(Fall), 8-38.

Salton, G. and Wu, H. 1981. A Term Weighting Model Based on Utility
Theory. In Information Retrieval Research edited by R. N. Oddy, S. E.
Robertson, C. J. Van Rijsbergen and P. W. Williams. Butterworth &
Co., Ltd., London, 9-22.

Salton, G. 1982. A Blueprint for Automatic Boolean Query Processing. ACM
SIGIR Forum, Vol. 17, No. 2(Fall), 6-24.

Salton, G., Fox, E. A. and Wu, H. 1983. Extended Boolean Information
Retrieval. Communications of the ACM, Vol. 26, No. 12(Dec), 1022-1036.

Salton, G. and McGill, M. J. 1983. Introduction to Modern Information Retrieval. %
McGraw-Hill Book Company, New York.

Salton, G. 1986. Another Look at Automatic Text-Retrieval Systems.
Communications of the ACM, Vol. 29, No. 7(July), 648-656.

Sammet, J. E. 1982. The New (1982) Computing Reviews Classification
System - Final Version. Communications of the ACM, Vol. 25, No. (Jan),
13-25.

Sedgewick, R. 1983. Algorithms. Addison-Wesley Publishing Company,
Reading, MA.

SHARE Reference Manual, 1963. IBM Users Group.
Silverman, B. G. 1985. Software Cost and Productivity Improvements: An

Analogical View. IEEE Computer, Vol. 18, No. 5(May), 86-96.

WP1

149

Smith, D. R, Kotik, G. B., and Westfold, S. J. 1985. Research On Knowledge-
Based Software Environments at Kestrel Institute. IEEE Transactions
on Software Engineering, SE-11, No. 11(Nov), 1278-1295.

Soloway, E. and Ehrlich, K. 1983. What Do Programmers Reuse? Theory and
Experiment. In Proceedings of the Workshop on Reusability in
Programming (Newport, RI, Sep 7-9), 184-191.

Soloway, E. and Ehrlich, K. 1984. Empirical Studies of Programming
Knowledge. IEEE Transactions on Software Engineering, SE-10, No.5(Sep),
595-609.

SPSS 1984. Statistical Package for the Social Sciences. McGraw-Hill, New York.

Standish, T. A. 1983. Software Reuse. In Proceedings of the Workshop on
Reusability in Programming (Newport, RI, Sep 7-9), 45-49.

Standish, T. A. 1984. An Essay on Software Reuse. IEEE Transactions on
Software Engineering, SE-10, No. 5(Sep), 494-497.

Tajima, D. and Matsubara, T. 1984. Inside the Japanese Software Industry.
IEEE Computer, Vol. 17, No. 3(Mar), 34-43.

Taylor, A. G. 1985. Bohdan S. Wynar Introduction to Cataloging and Classification.
Libraries Unlimited, Inc., Littleton, CO.

Tenenbaum, A. M. and Augenstein, M. J. 1981. Data Structures Using Pascal.
Prentice-Hall, Inc., Englewood Cliffs, NJ.

Topping, P. C. and Baumel, L. S. 1985. System Specification for LMSC's
Expert Requirements Expression and System Synthesis Environment
(EXPRESS). Internal Lockheed Missiles & Space Company Report
(Apr), Austin, TX.

Van Rijsbergen, C. J. 1979. Information Retrieval. Butterworths & Co., Ltd.,
Boston, MA.

Vickery, B. C. 1960. Faceted Classification: A Guide to Construction and Use of
Special Schemes. Aslib, London.

Wartik, S. P. and Penedo, M. H. 1986. Fillin: A Reusable Tool for Form-
Oriented Software. IEEE Software, Vol. 3, No. 2(Mar), 61-69.

Wasserman, A. I. and Freeman, P. 1983. Ada Methodologies: Concepts and
Requirements. ACM SIGSOFT Software Engineering Notes, Vol. 8.
No.l(Jan), 33-50.

Waters, R. C. 1983. Formalizing Reusable Software Components. Working
Paper Number 251, MIT Artificial Intelligence Laboratory, Cambridge,
MA.

-4

150

Waters, R. C. 1985a. KBEmacs: A Step Toward the Programmer's
Apprentice. Technical Report No. 753, MIT Artificial Intelligence
Laboratory, Cambridge, MA.

Waters, R. C. 1985b. The Programmer's Apprentice: A Session with
KBEmacs. IEEE Transactions on Software Engineering, SE-11, No.
ll(Nov), 1296-1320. ,

Wegner, P. 1983. Varieties of Reusability. In Proceedings of the Workshop onReusability in Programming (Newport, RI, Sep 7-9), 30-44.

Wegner, P. 1984. Capital-intensive Technology and Reusability. IEEESoftware, Vol. 1, No. 3(July), 7-45. "

Wirth, N. 1976. Algorithms + Data Structures = Programs. Prentice-Hall, Inc.,
Englewood Cliffs, NJ.

Woodfield, S. N. 1985. Object Oriented Libraries. In Proceedings of the
Phoenix Fourth Annual International Conference on Computers and
Communications, IEEE Computer Society Press, New York, 4245.

Yeh, R. T., Roussopoulos, N. and Chu, B. 1984a. Management of Reusable
Software. In IEEE Fall COMPCON 1984, IEEE Computer Society
Press, New York, 311-320.

Yeh, R. T., Mittermeir, R., Roussopoulos, N. and Reed, J. 1984b. A
Programming Environment Framework Based on Reusability. In
Proceedings of the International Conference on Data Engineering (Los
Angles, CA, April 24-27), IEEE Computer Society Press, New York,
277-280 t

4.

I,

'S.

I-
,N

~''S- %.*~. ~ d & '9
.11 ~

151 .

APPENDIX I

SOFTWARE COMPONENT SCHEDULE I

Form search/find/locate
sort/order/rank

requirement start/initialize
specification split
design subtract/decrement
test plan transpose
code traverse
commercial package
data application (subfacet) %.

accounting
administration

Activity banking
communication %

simple function (subfacet) compiler ,%

add/increment/total/sum interpreter
access linker
append/attach/concatenate/join management
close/release/match/test security
compare translator
copy transportation
count/enumerate/list utilities
create/produce/generate
data reduction
decode
delete/remove/erase Focus
divide/division
empty simple object (subfacet)
encryption array '
evaluate blank/space
exchange/swap character/alphanumeric
expand digit/number
format directory
input/read/enter expression
insert/push file
merge graph
modify/update heap
move integer/number
open/connect key
output/print/echo/write/list line
queueing list/linked list
remove/pop logical
rename

'I.

.. . - . ,. -, • ... , , - , ;, ,. , ,,,- ,, • , ,,, , , . ,- ,. , ,, ;.. -,':,. ,, 1,

152

node tree
numeric word/name
page
pattern device (subfacet)
pointer ALU
queue cache
real/floating point channel
record controller
set CPU

stack disk
statement/instruction/sentence joy stick
string keyboard
tab memory
table/relation modem
text mouse
tree network/LAN
word/name pipeline

plotter
printer

area (sub facet) processor
* accounts payable array processor

accounts receivable front-end processor
commercial loan parallel processor
computer languages vector processor

(see languages) optical scanner
database register
word processing screen/CRT/console

sensor
tape
track ball

Location

data structure (subfacet)
array Language
buffer
directory Ada
expression Algol
file APL
graph Assembler
heap Basic
line C
list/linked list Cobol
node Fortran
pointer Lisp
queue Pascal
record PL/1
set PSL/PSA
stack Prolog
statement/instruction/sentence Refine
string
table/relation
text

-~

153

Algorithm quicksort
radix

absolute radix transformation
acyclic random
after recursion
alaising relational
ASCII relative
AVL selection
balanced sequential
batch shellsort
before simulation
best fit straight
binary tagged
bisection undirected
bubblesort variable
content
deque
directed
distributed Operating system
division
EBCIDIC AOS
enumerate CICS
EOF CP/M
exchange GCOS
Fibonacci GENERA
FIFO ISIS
first fit MCP
fixed MS/DOS
floating MVS
folding MVT
hashed RSX11
heapsort TOPS
hierarchical TSO
index sequential UNIX
indexed VS
insertion
inverted
inverted list
least squares
linked
midsquare
multiway
natural
network
next fit
n-ary
online
partition
parallel
polyphase
postorder
priority

4
4j

.I-, •. - -. 0 -% "% . . • . '"" . " - """ . " ' % " . ' . % " . " " " , " .°m. ' % -

154

700-799
Hardware 800-899

900 or more
Burroughs 76xx
CDC Cyber
CDC 66xx type of memory measurement (subjacet)
DEC VAX words
DG Eclipse bytes
DG Nova
Honeywell 60xx
HP 3000
IBM PC Precision
IBM System 38
IBM 30xx single
IBM 43xx double
Intell 8080
NCR PC
PDP 11
Symbolics
Univac llxx
Zilog Z80

Performance rate

performance amount (sub facet)
1-99
100-999
1000-1999
2000-2999
3000-3999
4000-4999
5000 or more

performance time unit (sub facet)
per minute
per second
per microsecond

Memory requirements

memory amount (sub facet)
1-99

100-199
JA 200-299

300-399
400-499
500-599
600-699

6 a.

155

APPENDIX 2

SOFTWARE COMPONENT SCHEDULE 2

Form open/connect
output/print/echo/write/list

requirement parameter estimation
specification partial differential equations
design queueing
test plan remove/pop
code rename
commercial package search/find/locate
data sort/order/rank

start/initialize
split
subtract/decrement

Activity transgeneration
transpose

simple function (sub facet) traverse
add/increment/total/sum
access
append/attach/concatenate/join application (subfacet)
close/release/match/test accounting
compare administration
copy banking
count/enumerate/list communication
create/produce/generate compiler
data reduction interpreter
decode linker
delete/remove/erase management
differential equations security
differentiatic n translator
divide/division transportation
empty utilities
encryption
evaluate
exchange/swap
expand Focus
format
frequency counting simple object (suhfacet)
input/read/enter array
integration blank/space
insert/push character/alphanumeric I
merge cubic spline
modify/update digit/number

move directory

• I * I I l I t . . *1 .1" .]! i i 1 *l li * 1 * . . .1

156

expression heap
file line
function list/linked list
graph node
heap pointer
integer/number queue
key record
line set
list/linked list stack
logical statement/instruction/sentence
matrix string
node subprogram
numeric table/relation
observations text ,
page tree
pattern word/name
pointer
queue
real/floating point device (subfacet)
record ALU
set cache £

stack channel
statement/instruction/sentence controller
string CPU
system of equations disk
tab joy stick
table/relation keyboard
text memory
tree modem
word!name mouse

network/LAN
pipeline

area (subfacet) plotter
accounts payable printer
accounts receivable processor
commercial loan array processor
computer languages front-end processor

(see languages) parallel processor
database vector processor
word processing optical scanner

register
screen/CRT/console
sensor

Location tape
track ball

data structure (sub facet)
array
buffer
directory
expression
file
graph

-.- -- -- - - - - - -- '

157 15

Language folding
gaussian

Ada Gears method
Algol hashed
APL heapsort
Assembler hierarchical
Basic in core
C index sequential"1W
Cobol indexed
Fortran insertion
Lisp inverted
Pascal inverted list
PL/1 least squares
PSL/PSA letter value summary
Prolog linked
Ref ine method of lines

m idsq uare
multivariate data
multiway

Algorithm natural
network

absolute next fit
acyclic n-ary
Adams method one-way table
adaptive romberg online
after out of core
alaising partition
ASCII parallel
AVL polyphase
balanced postorder
batch priority
before quadrature
best fit quicksort
binary radix
bisection radix transformation
bubblesort random
content recursion
deque relational
directed relative
distributed runge-kutta
division selection
EBCIDIC sequential
enumerate shellsort
EOF simulation
exchange straight
extrapolation tagged
Fibonacci two-way table
FIFO undirected
finite difference variable
first fit
fixed
floating

'j ' .

,, "" ." .": .. .- ". g." '" "'-'.o,,'. g 2 2" ., g..,,Z'." -- - e'Vrla. a- 2 - .--- ¢ 2* J 2 gL- y ?-..-?. N "."."

158

Operating system

AOS performance time unit (subjacet)
CICS per minute
CP/M per second
GCOS per microsecond
GENERA
Isis
MCP Memory requirements
MS/DOS
MVS memory amount (subjacet)
MVT 1-99
RSX11 100-199
TOPS 200-299
TSO 300-399
UNIX 400-499
Vs 500-599

600-699
700-799

Hardware 800-899
900 or more

Burroughs 76xx
CDC Cyber
CDC 66xx type of memory measurement (subjacet)
DEC VAX words
DG Eclipse bytes
DG Nova
Honeywell 60xx
HP 3000
IBM PC Precision
IBM System 38
IBM 30xx single
IBM 43xx double
Intell 8080
NCR PC
PDP 11
Symbolics
Univac llxx
Zilog Z80

Performance rate

* performance amiount (sublacei)
1-99
100-999
1000-1999

-

2000-2999
3000-3999
4000-4999
5000 or more

:,e

