
IW f ur AFOSR.. 88-0 618

December 1987 LIDS-P-1721

00In
COMMUNICATION ASPECTS OF

PARALLEL PROCESSING

Cineyt Ozveren*

Laboratory for Information Decision Systems

Massachusetts Institute of Technology

Cambridge, MA 02139 D'Tic
December 4, 1987 E 3 0198

,, Parallel processing was motivated by the need to solve very large computa-

tioal robems suh a th nuerial oluion ofpsxialdifferential equations '

in the context of computational fluid dynamics, structural mechanics, image

processing, etc. This report survey. recent literature on parallel processing al-

gorithms for mainly rings, meshes, and hypercubes. These algorithms include

vector, matrix computations, fixed point iterations and linear equation solvers.

A group property of above topologies has also been explored in an attempt to

develop tools for algorithms and performance analysis. Some special sparsity

structure of the iteration dependencies has also been examined. A necessary

and sufficient condition for the reducability of a dependency matrix with sparse,

nonzero extended diagonals has been derived. "

Work of the author supported in part b-- the Air Force Office.
of Scientific Research under Grant AFOSR-88-O032 ... +

DISTRIBUTION STATEMENT A

Appved kwr public M.IS="
Mt o Unlimited 8 . 5 29 067

u%

REPORT DOCUMENTATION PAGE

A. sIOT secuUYv C&AMICATION IL. AGSTO&CTIVS MARKINGS

CU~jv CAMPCATINAUWORTY2. OISTRIGUTIOtdAVAILA41IY? OP REPORTr

UNCLASIFIEDApproved for public releae

Spf9OCAMING OAGANIZATION REPORT MUNINISI S. MOWI1TONIN 144 A 1.0 I1Sfjz-If a ?

, 4AUI Op PGAPOXMIP4G ORGANIZAION4 b OPPICS S'VMOOL 7& NAmE Op 'dONITONIG 00GANIZATIOPI

Massachusetts Inst of Tec If aPP-4-da
APOSR

oA000414 (CUP. SIG Md ZIP COW), Mh ̂ CORE$$ (city. seats &%d ZIP Ca"),

Cambridge, MA 02139 BLDG #410
Bolling APB, DC 20332-6448

M. AW OP PUNOINtGAUFOG4NIIN8 ob. 0 9Cma SYtagOL. 9. PROCUREMENT INGTRUmoN 1OE4r,,,CAyIaN fNuMSIn

AFS MAFOSR- 88-0032t
lb. AOGNIS vClov. Sft Ind Zip CO.&) I0. SOURCE Op PuNVOING MO06

PNOISNAM P*@jScT TAft WveoN wUNir

BLDG *410 1 LAMEN*T No. 406 1410 N.o

Boiling APB, DC 20332-6448 61102F 2304 Al
1,. TITLE vI~hwow bwdp 0111110ft80"

mitAtonAspects of Parallel Pro essing
12. PoENSONAL. AUTOR4S1

13& Typo PN RoPON? 13b6 TIME COvEIO 14. 0OP~ NEpMONT (y, Xa.. Barti i, P~aG couNTr

Reprint IPROM ____- 88/12/04
id, SUPPO.SMIKNTAPI 060TTIOM

17. COSATi CO0lS 11 S..8a.CT7 TIMS ICORURUO OR MWuIW* 8IAf*#II 4014 UWI~fY &V OitmUMPI

Pt§L JOOUP SUE. GO.

19. A8ETNACT 1COnuAm. On RIWmW It f e*41"" Sone-f 1V 61000 9Un1'

SEE REVERSE

2Q, OISVNIGUTIONI*VAILAGILYY OP ASST&&- 21 ALSNACT SECURITYv CLASSIPICATION

UNC1.*SSIPvvO/UNLIMI0 ZXSAM4a AS XP - - -tNCLASSIFFIED

2241 NIAME OP NI4SPONSIGLI I'4O1 V#OUAI. 22. TILIONONG NUMOER 22. 09,106 SYMI0i.

James M Crowley, Maj, USAF dofdwn Code

00 FORM 1473,83 APR 02-67 502 080IS

19.

Parallel processing was motivated by the need to solve very large computa-

tional problems, such as the numerical solutions of partial differential equations

in the context of computational fluid dynamics, structural mechanics, image

processing, etc. This report surveys recent literature on parallel procesing &I-

gorithms for mainly rings, meshes, and hypercubee. These algorithms include

vector, mat, ix computations, fixed point iterations and linest equation solve,..

A group property of above topologies has also been explored in an attempn to

develop tools for algorithms and performance analysis. Some special sparsity

structure of the iteration dependencies has also been examined. A necessary

and sufic ot condition for the red ucability of a dependency matrix with spares,

nonzero extended diagonals wa been derived.

I INTRODUCTION

1 Introduction

This report surveys some recent literature on communication aspects of parallel

processing. Parallel processing was born out of the need to solve very large compu-

tational problems, such as the numerical solutions of partial differential equations

in the context of computational fluid dynamics, structural mechanics, image pro-

cessing, etc. [I]. Suppose that we have a large scale computational problem and

n identical computation units, or processors, connected via some communication

network or "topology". It will be assumed that there is a relatively small number

of powerful processors (like the Intel hypercube, 128 microprocessors 17]), as op-

posed to many simple processors (like the Connection Machine, 65000 processors).

The processors cooperate in solving the computational problem. Each works on a

different part of the problem and exchange information according to need or some

schedule. The primary goal here is to minimize the total time needed to solve the

problem.

1.1 Motivation

As a motivation, let us consider the following classes of problems:

Problem 1.1 Consider a fixed point problem given by the iteration:

:1k + 11 = f(-[A]) (1)

where :[k] is an N dimensional vector. Given an initial value x10), the serial al-

gorithm iterates until i/(xjk]_- x[k - 1])'(zjk] - x[k - 1]) < e for some given error

tolerance e. Suppose that A i8 a "dependency matrix", /i], for f in iteration (1),

i.e. aij is nonzero if and only if f, is a function of x,. Then from a parallelization

1 INTRODUCTION 2

point of view, the above problem is equivalent to the iteration:

x[k + 11= Ax[k] (2)

A special case of Equation 1 is when x corresponds to the lexicographic ordering of

variables defined on a grid where the iteration for each variable depends only on

its immediate neighbors. A typical example of this is solving a partial differential

equation, of say two variables, numerically by discretizing it over a two dimensional

array of points and using a Jacobi type of an iteration, /14]. 00

Problem 1.2 Consider solving a set of N linear equations of N variables:

Ax = b (3)

given b and a square, invertible (for simplicity) A. A numerically sound way to solve

this is by first finding a QR decomposition of A and then doing a backeubstitution

to find x (see /4]). QR decompositon reduces A to an upper triangular matrix using

orthogonal transformations. These are simultaneously applied to b. The modified

set of equations can now be solved iteratively by first calculating xN and then using

this to calculate zN-, etc. However, this approach may be undesirable for large and

sparse A since it does not make use of any sparsity structure of A. An alternative

approach is to use the conjugate gradient algorithm (see [41). This algorithm is an

iterative one that is guaranteed to terminate in N steps and executes the following

in its main body:

rk = 7hlrk-1/r1_2rk_2 (4) nFor

0 0 i ~Pk rh..1 + i3 hP &-I (5)

a£ = r1-r 1 1/pkAp (6) t1o

xk= xh1 + akpk (7) -Iton/

/. Availability CodesAvaif and/or) iD1st Special

1 INTRODUCTION 3

rk = rk-1 - a&Apk (8)

where xo = 0,ro = b, = o,p, = b. Also, the algorithm terminates if /rf[k'r[] < C.

Parallelization of this algorithm is considered in [7/ in the framework of solving

elliptic and hyperbolic equations using multigrid methods. They also consider a

parallel preconditioner for the above algorithm, which is based on the Fast Fourier

Transform. This preconditioner estimates the inverse of A above and uses it to

improve the convergence rate of the conjugate gradient algorithm. of

Suppose that for each problem above, the variables in question are distributed

among some processors. Based on the following types of interconnections between

these processors, or networks:

9 Ring

* Mesh

9 Hypercube

which are explained in Section 2.1, this report analyzes the following standard com-

putations:

" Exchange information with another processor.

" Inner product of two vectors.

" Matrix-Vector multiplication.

" Matrix-Matrix multiplication.

" Matrix transpose.

These in turn motivate consideration of the following standard traffic distributions.

1 INTRODUCTION 4

" One to one: This is mainly due to one particular processor exchanging infor-

mation with another processor.

" Broadcast (Accumulation): In this case, one processor sends the same message

to all the other processors. This comes up, for example, when the termination

of an algorithm, decided on by a designated processor, is communicated to all

the other processors. Accumulation comes up in calculating the inner product

of two vectors such that their corresponding entries are stored in the same

processor.

" Multinode Broadcast (Accumulation): In this case, all processors broadcast.

For example, when a copy of a vector needs to be stored in all the processors,

each processor broadcasts the entries it stores. Multinode accumulation is

identical to multinode broadcast.

* Scatter (Gather): In this case, a particular processor sends a different message

to every other processor. For example, a designated processor distributes a

vector over all the other processors. Gather is the dual of scatter, in that a

particular processor receives different messages from every other processor.

" Multinode Scatter (Gather): This is equivalent to matrix transpose if a num-

ber of rows (or columns) of a matrix are stored in each processor.

1.2 Overview and Outline

Saad and Schultz [12,13] present algorithms for the standard traffic distributions

above with no specific application in mind. Bertsekas and Tsitsiklis [1] improve

these algorithms and discuss applications to the standard computations above and

V. V. .£W V N.

I INTRODUCTION 5

to numerical computations such as the fixed point problem. They also discuss im-

plementation aspects and timing trade-offs very thoroughly. Both of these studies

consider various classes of networks. McBryan and Van de Velde 17] concentrate on

hypercubes and discuss general purpose algorithms, such as the standard compu-

tations above, and numerical solutions of elliptic and hyperbolic equations. They

present results and performance plots for the various algorithms that they imple-

mented on the Caltech and Intel hypercubes.

Unfortunately, there seems to be a lack of mathematical tools that could ease the

analysis of different algorithms by taking advantage of common features of different

classes of networks and the repetitious nature of the standard traffic distributions.

In particular, it is not clear why certain networks are easier to analyze than others.

Therefore, all the algorithms are essentially regenerated for different classes of net-

works and for different traffic distributions. I will try to improve on this by using

group theory in describing certain classes of networks.

Section 2 defines the classes of networks considered in this report, presents best

known algorithms for the standard traffic distributions and concludes by using group

theory to derive some general results. Section 3 presents algorithms for the standard

computations and the two problems discussed above. It also presents algorithms

for iterative problems where the A matrix has some "regular" sparsity structure.

Section 4 summarizes conclusions of the author and discusses possible extensions of

the work surveyed in this report.

2 RESULTS ON STANDARD TRAFFIC DISTRIBUTIONS 6

2 Results on Standard Traffic Distributions

Efficient algorithms for standard operations motivated in the previous section are

known for various classes of networks. A network is in general represented by a

graph G = (N, A) as a collection of nodes, N, and bidirectional arcs, A. An arc

(i,j) E A is assumed to represent a full-duplex link (communication can proceed

in either direction simultaneously) between the nodes i, j E N. Also, I will assume

that each link provides an error free message pipe (i.e. it is assumed that if an error

occurs, it is detected and corrected in a negligible amount of time. This is not a

very realistic assumption in general. However it is consistent with the assumptions

of the papers surveyed and the consequences will be briefly discussed in Section

4). Note that the arcs constitute a measure of distance for the set of nodes, i.e.

d(i,j) = 1 if (i,j) E A and in general the length of the shortest path between i and

j. A path is specified as a sequence of neighboring nodes (distance 1 apart).

Suppose that a traffic distribution is specified in terms of messages of length

l4j to be sent from node i to node j for various pairs of nodes, that are not nec-

essarily neighbors. In a communication network, a major problem, given a traffic

distribution, is how to schedule these messages such that total communication time

is minimized. This is termed routing. Routing is typically solved locally (at each

node) since otherwise communication overhead to gather traffic information and

then distribute routing results would be very excessive. This in general is a hard

problem. For parallel processing algorithms considered in this report, traffic distri-

bution is known a priori and it is assumed that the network belongs to a class which

is "regular" in some sense. This enables one to precisely specify the path followed

by each message and makes the timing analysis much easier. Different types of

networks will be compared using the following criteria (as given in [11):

2 RESULTS ON STANDARD TRAFFIC DISTRIBUTIONS 7

" Diameter: Maximum shortest path distance between any pair of nodes. The

time to transmit a message between any two nodes is at most a multiple (de-

termined by the communication cost) of the diameter, assuming no queueing

delays at the intermediate nodes.

" Connectivity: Provides a measure for the number of "alternate" paths con-

necting a pair of nodes. Node (arc) connectivity is defined as the minimum

number of nodes (arcs) that must be deleted before the network becomes

disconnected. If a network has arc connectivity k, then there are at least

k parallel paths, i.e. paths with no arcs in common, between any pair of

nodes (max flow - min cut theorem [8]). This is important for reliability pur-

poses. Also, the communication between any pair of nodes can be parallelized

by splitting the message into several parts and sending each on a different

path. If there is no other traffic crossing these paths and the overhead cost t
for communication is low (not a valid assumption in general) then the total

communication time for this message is reduced by a factor of k.

" Flexibility: Ability to efficiently run a broad variety of algorithms. For exam-

pie, an algorithm may be most suitable for a particular type of network. If

this network can be imbedded in another network (in a way that preserves the

neighborhood structure), but perhaps not vice versa, then the latter network

is more flexible than the former since it can run algorithms for both.

2.1 Classes of Networks

Let us review the following classes of networks and their properties:

I..J,

-- " ' " m llldid iblda~l i~l
i

HI i i

2 RESULTS ON STANDARD TRAFFIC DISTRIBUTIONS 8

/

Figure 1: n Node Ring

2.1.1 Rings

A ring with n nodes, is illustrated in Figure 1. It has diameter n/2, a'd arc

connectivity 2. It will be assumed that the nodes are indexed consecutively by

integers, as in the figure.

2.1.2 Mesh

An n node d dimensional mesh is a d dimensional array of n = nn 2 ... nd nodes

({ni) is a positive, noninzreasing sequence of integers). It is assumed that the nodes

are indexed as d-tuples (x.... sz) where each zi is an integer modulo n,. Only the

immediate neigbors are connected, i.e. two nodes are connected only if their indices

differ by one only in one coordinate. A wraparound mesh is one where two nodes

are connected only if their indices differ by one modulo nj only in some coordinate

i. This report only considers wraparound meshes due to their symmetric structure.

An example of such a mesh is illustrated in Figure 2. A wraparound mesh has

diameter (n, + ... + nd)/2 and arc connectivity 2d.

Let us now consider imbedding a ring into a mesh with the same number of

nodes. What is meant by imbedding is a one to one map that preserves neigh-

2 RESULTS ON STANDARD TRAFFIC DISTRIBUTIONS 9

2 1)

io,

Figure 2: A Two Dimensional 5 x 3 Wraparound Mesh

borhood structure, i.e. neighbors are mapped to neighbors. For simplicity, let us

consider two dimensional meshes. First recognize each, say, row of the mesh as a

ring. Then, join the second row with the first to form another ring (for example,

see Figure 3). To do this, break a link in the first row, and its counterpart in the

second row. Join the nodes at the end points of these liks. Next, join the third row

with the second, in the same fashion. Note that here, a link different than the one

picked in the previous case should be used. Proceed likewise with the other rings.

At the third step, the link picked at the first step can be used, etc. Therefore,

we never run out of links to pick. This can be extended to higher dimensions in

a straightforward way. Also, using above approach, conditions can be derived for

imbedding a ring in a mesh with more nodes.

2.1.3 Hypercube

Let Hj represent a d-dimensional hypercube, see for example Figure 4. It has 2'

nodes. Assume that these nodes are indexed by binary numbers of length d bits,

B. Then two nodes are connected if and only if their indices differ by one bit. The

distance between two nodes is given by the number of bits they differ in. This

i l* ~ - ~ ~ ~ ~ ~ **%***~?

2 RESULTS ON STANDARD TRAFFJO DISTRIBUTIONS 10

>(~

.~ ~ ~ ~ (.

2 RESULTS ON STANDARD TRAFFIC DISTRLBUTIONS 11

~011
oo

" 0'
clo

Figure 4: Hypercube, d = 4

is termed the Hamming distance and it can be calculated using the exclusive OR ,

function (XOR). XOR of two bits is 0 if they are equal and 1 if different. Let a

a nd b be two nodes in a hypercube, then aXORb is defined as the binary number

obtained by XOR of corresponding entries of a and b. Hamming distance, dh,(a, b),

is the number of I's in aXORb. .

Any ring with an even number of nodes can be imbedded in a hypercube of .

equal or more nodes. First of all, note that a d dimensional hypercube consists of

two d-1 dimensional hypercubes with corresponding nodes connected. Let us firstk

consider rings with 2" nodes. Clearly, we can perform this imbedding when d = 2.

Suppose we can do it for some d. For d + I take two d dimensional hypercubes

with a ring imbedded in each. Now, break the rings at some link in one hypercube %

p

2 RESULTS ON STANDARD TRAFFIC DISTRIBUTIONS 12

and the corresponding link in the other. Connect the corresponding nodes of the

two hypercubes at either side of these links. We thus have an imbedding in the

d + 1 dimensional hypercube (see Figure 5). This corresponds to traversing the

nodes in one hypercube in the reverse direction of the other and generates the so

called Binary Reflected Gray Codes (1,11,71. In general, when the ring has an even

number of nodes, r, it can be imbedded in a hypercube with equal or more nodes

by joining the corresponding r/2 node portions of the rings at lower dimension. If

a ring has an odd number of nodes then it cannot be imbedded in a hypercube

since a hypercube has no cycles (i.e. no paths that finish at the nodes they start)

with an odd number of nodes, [111. A mesh with even ni can be imbedded in a

hypercube of dimension flog nil + ... + flog nd] (all logs are base 2). Using the

imbeddings of a ring each column can be imbedded in a hypercube of dimension

flog nil. Corresponding nodes of these hypercubes form a hypercube of dimension

[log n2]. Thus, they may be combined by n2 node rings. Higher dimensions are

imbedded similarly.

For all the network classes above I assume that communication can be carried

out simultaneously on all links of a node in both directions. In [7], it is implicitly

assumed that a node can transmit on only one link and receive on another at any

given time. Although in practice it seems to be possible to transmit and receive

on more than one link at a time, if not all links, I will consider both extremes

for hypercubes. I refer to them as type 1 and type & Bertsekas and Tsitsiklis [1]

consider both extremes for all networks.

* * Miw- ~(
' ' ' ' " ' r " ' " : ' ° " " ' ";" ' ' -" " ° " ' "- "

2 RESULTS ON STANDARD TRAFFIC DISTRIBUTIONS 13

Figure 5: Imbedding a Ring in a Rypercube, d 4

2 RESULTS ON STANDARD TRAFFIC DISTRIBUTIONS 14

0000 0001

0010-0011

0100 OlGI010

0110-0111

1000> -1111L

100 101i

1110 -1111

Figure 6: Tree Used for Broadcasting in a Hypercupe of Dimension d

2.1.4 Trees

A tree is any connected network with no cycles. Note that a tree with n nodes has

exactly n - 1 links (see for example Figure 6). Thus all trees have arc connectivity

1. The tree in Figure 6 has diameter 7. In general, trees are not very practical as

physical networks due to their low connectivity. However, they are useful concep-

tually since they prevent data duplication in broadcast situations. Specifically, a

spanning tree of a network, which is a subgraph of the network that includes all the

nodes but has no cycles, is important (for example, Figure 6 is a spanning tree of a

4 dimensional hypercube).

2.1.5 Fully Connected

Examples of these are shared memory, crossbar switch Oust like a phone system

switch board), broadcast bus (every node is tapped on to a bus and only one can

transmit at a time). I will not consider these networks since, as the number of

nodes increases, shared memory and the switch network become impractical to

implement, and time available for each node to transmit on a broadcast bus goes

to zero. However, I should note that implementing switches on every node of a

; ,(

2 RESULTS ON STANDARD TRAFFIC DISTRIBUTIONS 15

hypercube to connect the incident links would relax the speed constraints on the

local processor to keep up with transmissions on each link.

2.2 Standard Traffic Distributions

I will present algorithms for some standard traffic distributions on the network

classes discussed above. I will assume that all messages are of unit length, and

in most cases, present results in terms of the order of time needed in units of the

transmission time of a unit length message. This will be denoted by O(e). If f is

O(g) but not o(g) then f will be termed Od(g), i.e. strictly order g. If the best

possible algorithm for a problem is known to be O.(g) and we have an algorithm that

is O(g) then that algorithm will be termed eficient. It is assumed that transmitting

a message of length I over a link takes c + Iv units of time. Here c represents fixed

costs, such as the propagation delay, and v represents variable costs, such as the

transmission time.

2.2.1 One to one

In this case, one node sends a message to another node. The easiest way to do this

for the rings is just to send the message along the shortest path, which requires time

(c + tv)a where , is the length of the shortest path. Note that this may be bounded

by (c + Iv)n/2. A better approach is to send part of the message through the

alternate longer path, specifically a portion proportional to the length of the paths.

In this case, total transmission time may be bounded by (c + v)n/4. In 112], the

message is divided into smaller messages and pipelined through the shortest path.

This yields an equation for the total transmission time as a function of the number

of messages, which can be minimized to yield the optimum number of messages.

(.

2 RESULTS ON STANDARD TRAFFIC DISTRIBUTIONS 16

A-. B -* B~
. *g

Figure 7: Parallel Paths on a Mesh

Yet another way is to send these smaller messages through both paths in a pipelined

fashion. In general, one to one ring algorithms are O,(n).

For a mesh, it is shown in 112] that there are four parallel paths between any

two nodes a, b of a two dimensional grid with wraparound (recall that we already

know this fact from the Min-Cut Max Flow Theorem). In particular (see Figure 7),

" If a and b are aligned on the grid, then these paths can be chosen to be of

length d(a, b) + 2 each.

* If a and b are aligned, in either the horizontal or vertical direction, but are

not neighbors, then four paths can be chosen to be of length d(a, b) + 4.

" If a and b are neighbors, then four paths can be chosen to be of length d(a, b) +

6=7.

Thus, as in rings, the message could be divided into smaller messages, and can be N

sent through these parallel paths in a pipelined fashion. In general, one to one grid

algorithms are O.(ni).

For hypercubes, it is shown in [13] that there are d parallel paths between any

two nodes a, b of a hypercube. If d(a, b) = i then i of these paths are of length i and

2 RESULTS ON STANDARD TRAFFIC DISTRIBUTIONS 17

the rest are of length i + 2. To illustrate this, note that a path can be chosen by

equalizing the differing bits of a and b in some order. Suppose, this order is chosen

in the direction from right to left. The first path is chosen starting from the first

differing bit from the right and propagating to left. The second path is chosen by

starting from the second differing bit, circulating and finally finishing with the first

differing bit from the right. In this fashion, i parallel paths can be chosen. For the

rest, first flip a bit that is identical in a and b. Then correct all the differing bits,

there are i + 1 of them now, in any order but leave the previously correct bit to the

last. Since there are d - i bits common to both a and b, d - i additional paths can

be chosen with length i + 2 each. For type d, the message can be divided up and

pipelined along these parallel paths. The resulting algorithm is O,(d). For type 1,

pipelining is not useful but the message could still be divided up into pieces. Each

piece should be sent to a different neighboring node one by one. It is slightly better

if the nodes that are further away are started from. The algorithm is still Oa(d) but

the coefficient is doubled.

For all the above networks, pipelining is a final touch of optimization, otherwise

they are of the same order.

2.2.2 Broadcast

In this case, a node sends the same message to ail other links.

For rings, all nodes have two links and the best strategy would be to transmit

on both sides of the broadcasting node. Here, the algorithm is O.(n). In [12], an

algorithm of the same order of transmission time is given for the pipelined case.

For meshes, a similar strategy could be used. The message should be transmitted

outward from the broadcasting node, but special attention should be paid to the

* Vi

2 RESULTS ON STANDARD TRAFFIC DISTRIBUTIONS 18

fw

0--,.b

Figure 8: Broadcast Directions on a Mesh

direction of broadcast at each level so that no message is duplicated (see Figure 8

for illustration). Details of this algorithm and a variation based on splitting the

message into a horizontal and vertical part are given in [12]. In both cases, the

algorithm is lower bounded by the maximum ni, i.e. it is O,(ni).

For hypercubes, algorithms for this in [13,1,7] are all based on the same idea.

There is no difference between type 1 and type d. The property that Hj consisists of

two H,-, with corresponding nodes connected, is used. The broadcast node sends

its message to the adjacent Hd- 1 . Now, we have two parallel broadcast problems on

two Hd-i. Proceeding iteratively, the message is broadcast in d steps. An alternative

representation of this algorithm is the tree in Figure 6. This tree is illustrated for

node 0. The corresponding tree for any other node a can be generated by performing

an XOR of a and each node on the tree. Note that this is a permutation of the tree

such that the root is node a and the neigborhood structure is preserved. This is

formally proved in Section 2.3.

The dual of the broadcast problem is accumulation, which can be executed in

the same amount of time by reversing the steps of above algorithms.

2 RESULTS ON STANDARD TRAFFIC DISTRIBUTIONS 19

2.2.3 Multinode Broadcast

In this case, all nodes broadcast their own messages.

For rings, the algorithm in 1121 uses broadcasting in a round robin fashion around

the ring. Each node receives a message from one direction and transmits it at the

next step on the other direction. This requires O,(n) time, but additional savings,

by a factor of 2 can be made by broadcasting in both directions simultaneously.

Note that this is efficient since every node can receive two messages at every step

and there is a total of n messages.

For meshes, the best algorithm in [12] is based on two passes. at the first step,

a multinode broadcast is performed on each, say, horizontal ring of the mesh. Note

that after the first pass, each node has nj messages corresponding to its horizontal

counterparts. These messages are then broadcast along vertical rings, requiring a

total of O.(n) time. Note that this algorithm is efficient since each node can receive

4 messages at a time and there is a total of n messages.

For hypercubes of type 1, multinode broadcast can be done using the vector shift

algorithm of 17]. A ring with 2" nodes is imbedded in a d dimensional hypercube.

Multinode broadcast can be equivalently formulated as storing a vector of length

n, whose elements are originally assigned to the processors in a one to one fashion,

in each processor. The elements of this vector are shifted one by one along the

ring until all processors receive the vector elements. This algorithm is O.(n) and

efficient since each node can receive at most one message at a time and there is a

total of n messages. For type d, there are various multinode broadcast algorithms

in [13] and only one of them is efficient (Optimal Total Exchange Algorithm). It is

0,(n/d), or O.(n/ log n), and efficient since there are d links from each node and a

total of n messages to be received. However, this algorithm requires all nodes, at

N Na

2 RESULTS ON STANDARD TRAFFIC DISTRIBUTIONS 20

each step, to scan the messages they currently hold to decide on which messages

to send to their neighbors at that step. This requires processing time by the host

processor and, depending on the particular architecture, it may take a considerable

amount of time. A better algorithm is presented in Section 2.3.

2.2.4 Scatter, Gather

In the case of gather, one node receives a different message from every other node.

Note that gather is a special case of multinode broadcast. Furthermore, every node

has to receive n different messages. Thus, the algorithm for each network has a

lower bound of n divided by the number of links from each node in that network.

The multinode broadcast algorithms achieve this bound. Therefore, they are also

efficient for gather ([13] has a gather algorithm for hypercubes which is not even

efficient). Note also that a dual of gather is scatter. Efficient algorithms for scatter

can be achieved by reversing the traffic streams of a gather algorithm.

2.2.5 Multinode Scatter or Matrix Transpose

In this case, every node sends a different message to every other node. For rings

if we let each node scatter in turn, we have an O(n2) algorithm. Note that the

messages corresponding to one node traverse n/2 links on the average. Since there

are n nodes with n messages each and a total of n links, each link transmits an

average of n'/2 messages. Therefore, the above algorithm is efficient.

For meshes (the algorithm in [12] is wrong since for example, a processor on the

diagonal never sends any messages to the processors in its row), say of dimension 2,

first at each row we have a multinode scatter of messages destined for each column

(in parallel), then we have a multinode scatter of these messages at each column (in

-I -

2 RESULTS ON STANDARD TRAFFIC DISTRIBUTIONS 21

parallel). Thus we have a multinode scatter of messages n1 units long over a ring

of n2 processors and a multinode scatter of meessages n2 units long over a ring of

ni processors. Therefore, the algorithm is O(njn2 + n2n2) = O(nin). Note that the

messages corresponding one node traverse O,(n, + n2) links on the average. Since

there n nodes with n messages each and a total of 2n links, the above algorithm is

efficient. For higher dimensional meshes, the corresponding algorithm will have the

same order.

For hypercubes of type 1, the algorithm in [7] uses a matrix transpose inter-

pretation. Suppose that we have an n x n matrix whose rows are distributed over

Hd (n = 2d). First divide the matrix into four blocks and exchange off diagonal

blocks. This corresponds to exchanging messages between corresponding nodes of

two Hd-. Then divide each block into four sub-blocks and apply the above step

to each block (see Figure 9). Iterating until we have 1 x 1 sub-blocks completes

the algorithm. Note that at step i of the algorithm, 2d-2i- 1 = 2d- 1 messages

are exchanged between each pair of nodes. Since there are d steps, the algorithm

is O(d2d) = O(dn). For multinode scatter, each node transmits O,(n) messages,

where each message goes through O.(d) nodes on the average. Since each node

can transmit one message at a time and there are n nodes, the above algorithm is

efficient. For hypercubes of type d, consider the following algorithm in [1]: This

algorithm has two parts. First, a multinode scatter is performed in each Hd-i and

in parallel each node sends the data for the other hypercube to the corresponding

node (2 d- I messages). Then, a multinode scatter is performed on each Hd- 1 for

these messages. It can be shown inductively that this algorithm is O.(n). Note

that this algorithm can also be generated from the above algorithm for type 1.

While off diagonal blocks are exchanged, diagonal blocks can be transposed (this is

2 RESULTS ON STANDARD TRAFFIC DISTRIBUTIONS 22

Figure 9: Matrix Transpose Algorithm for Hypercube Dimension 3, Type 1

Ring Mesh Hypercube
Type 1 Typed

One to One n ni d d
Broadcast n ni d d
Multinode Broadcast n n n n/d
Scatter n n n n/d
Multinode Scatter n' nin dn n

Table 1: Orders of algorithms for standard operations on regular networks

the first part). Then, off-diagonal blocks are transposed (this is the second part).

Note that this algorithm is also efficient.

The results presented in this section are summarized in Table 1.

2.3 Group Properties of Some Networks

It turns out that the nodes of rings, meshes and hypercubes can be indexed such

that the set of indices is a group under some operation. Morover, neighborhood

structure and the shortest path between any pair of nodes can be described in a

natural way using this operation. A group is defined as follows [10]:

p

2 RESULTS ON STANDARD TRAFFIC DISTRIBUTIONS 23

Definition 2.1 A group is a set G with an associative binary operation : Gx G --

G such that:

1. There is an element e in G with

e * a = a for all a E G

2. For every a E G there is a b in G with

b*a= e

(Then b is the inverse of a, denoted by a-'.)

Moreover, a group is abelian if * commutes.

For rings, let Z. be the set of integers modulo n. Then Z, is an abelian group

under addition modulo n, call this *7. The shortest path distance on a ring d,(a, b)

for any a,b E Z. is given by min(a ,. b,a -1 *, b).

For meshes, suppose that the nodes are indexed consecutively along each di-

mension by Z., x x Z, = M. Let a,b E A and a = (a,,... aj),b = (b1,... bd).

Then k is an abelian group under addition, e = a *. b, such that c, = ai *, b or

=j = aj + b, (mod ni). Then, the shortest path distance between any two points

a,b E . is:
d

d.(a,b) = Zmin(a *, b-. a,' *, b,)

For hypercubes, define a function 9& : B --+ Z as the number of l's in a binary

number. Note that B is a group under bit by bit XOR, *,%, and the shortest path

distance, which is the same as the Hamming distance, is given by dh(a, b) = gih(a*hb).

Note that the inverse of any element in B is itself.

Consider a network such that the indices of nodes form an abelian group G

under some operation ,, such that the shortest path distance between any two

,N

Ia

2 RESULTS ON STANDARD TRAFFIC DISTRIBUTIONS 24

nodes a, b E G satisfies d(c * a, c * b) = d(a, b) for all c E G. Specifically, it is

important that arcs map to arcs. Note that this is satisfied by rings, meshes and

hypercubes. Suppose that we have an algorithm for broadcast from node e (the node

whose index is the identity element in the group). In particular, this algorithm is

specified as a set of distinct directed arcs Aj that transmit a message at step i

of the algorithm. Let (a, b) E Ai and consider c * (a, b) = (c * a, c * b). Since

d(c * a, c * b) = d(a, b) = 1, c * (a, b) is also an arc. Moreover, since broadcast from e

sends the message from e to all other nodes and operating on these nodes by some

node c is just a permuation of the nodes such that e maps to c, transmitting over

the arcs c * A, at step i achieves broadcasting from node c. Therefore, it is sufficient

to construct a broadcast algorithm from one node. The rest can be generated from

this.

A straightforward approach to multinode broadcast is to let each node broadcast

simultaneously using a broadcast algorithm. Recall that for the broadcast from

node e, its message is transmitted over the arcs A, at step i. This algorithm may

be generalized to multinode broadcast such that at step i, the set of directed arcs

Ai.. = a * Ai (* of each element of Ai by a) transmit the message corresponding to

node a. Let (X, I) be an arc and r,(z, y) be the number of Ai,. that contain (z,y),

i.e. r,(X,Y) is the number of messages that need to be sent on arc (x,y) at step i.

Thus step i takes

r = max r(z,(XY)(u,yW)EAd,. sEQ

units of time. The sequence of sets Ai should be picked such that total completion

time of the algorithm, &- r,,~, is minimized. I claim the following:

Proposition 2.2 Given Ai, let (z, y) E Ai and

(z, y) = {(z, w) auch that (z,w) E A, and x * y- = z * w-}

* ~ ~ ~ ~ ~ o %C v~*p.* .

2 RESULTS ON STANDARD TRAFFIC DISTRIBUTIONS 25

Then,

r,(x,y)- IA(X,Y)l

Proof: First of all, let (z,w) E A(x,y) and a = y * w-1 (note that a E G. Then,

(a * z,a * w) = (y * w - ' * z,y) = (x,y) (using commutativity). On the other hand,

Let (x, y) E Ai,. for some a. Then, (x, y) = (a * z, a * w) for some, but only one,

(z,w) E Ai. We have, x*y-I =a*z*w- *a- 1 - z*w - 1. 90

Note that we can apply the above result to all Al, individually. But also,

R(a * x,a * y) = a * R(x,y). Thus,

rmi,i -= max ri (, y)
(z,V)EAi

i.e. we only need to look at the arcs for node e, and we have:

rm.,i = max IP (X,y)I (9)

In short, we wish minimize the number of arcs that carry traffic in the same

direction at the same step. For hypercubes, these arcs correspond to arjs that flip

the same bit. Note that the tree in Figure 6 would lead to a multinode broadcast

in O(n) steps. Conceptually, we should be able to generate a tree with about n/d 0

levels and at most d arcs at each level such that all arcs at the same level flip a

different bit. I propose the following: Consider a tree generated by d major steps

and some minor steps in each major step. At major step i, all nodes with labels

that have exactly i bits equal to 1 are connected to the other elements of the tree

generated upto step i. In each minor step corresponding to step i, d of these nodes

are connected to any previously generated element of the tree such that each arc

corresponds to a different bit flip. The tree is generated when finally node 1 (a

2 RESULTS ON STANDARD TRAFFIC DISTRIBUTIONS 26

06o10 0110 1o
I000 o (300

001 001 % .

Figure 10: Multinode Broadcast Tree for Hypercube of dimension 4

-.t. G k

Figure 11: Multinode Broadcast Tree for a Mesh

node with index all ones) is connected. The total number of minor steps is bounded

by (')/d + I (see Appendix B). Such a tree for d = 4 is illustrated in Figure 10.

This algorithm is O.(n/d) and efficient.

Note that above procedure is a proof that the multinode broadcast algorithm,

described previously, for rings work. Similarly, a broadcast tree may be generated

for a mesh, as in Figure 11, that produces an efficient multinode broadcast algorithm

(compare to Figure 8). Note that this approach could also be applied to multinode

scatter problems or any other problem such that the transmissions for all the nodes

can be generated from the transmissions for one node using the group operation.

3 APPLICATIONS 27

3 Applications

This section presents applications of standard traffic distributions of the previous

section to vector, matrix computations, linear equation solvers and fixed point prob-
~lems.

3.1 Vector Computations

Let us first consider computation of the inner product of two vectors. This is

important for calculating the termination condition of a relaxation algorithm (for

example checking to see if the norm of the error vector is small enough) and also

constitutes a basis for matrix-vector multiplications. Suppose that two given vectors

of length n each are distributed over n processors in a way that corresponding entries

of each vector reside in the same processor. Let each processor calculate that portion

of the inner product corresponding to the entries it holds. It then sends its result

to another processor which adds it to its own computation and sends the result to

another processor etc. The result is finally summed up at a designated processor.

Thus, we have an accumulation (of the designated processor) problem. In relaxation

algorithms, when this inner product is the norm of the error vector, if this norm is

small enough then the designated processor sends a termination message to all the

other processors. This is a broadcast problem.

Next let us consider a problem of shifting a vector by a certain amount. This is

particularly interesting and important (since it constitutes a basis for matrix-vector

multiplication, etc.) for type 1 hypercubes. In this case, ordering of distribution

over the processors of the hypercube is important. In particular, assuming that

the vector has n elements, each consequtive entry of the vector will be distributed

If 1 1 ' , r 4" 4 r. I

LM

3 APPLICATIONS 28

according the embedding of a ring into the hypercube (as generated using Binary

Reflected Gray Codes). As a result of this imbedding, nodes that have logical

distance 2 " on the ring, for some k, have physical distance 2 on the hypercube

[1]. The algorithm in [7] uses this to construct a logical hierarchy of the ring in

the hypercube (see Figure 12). The important issue here is that at level k of this

hierarchy, there are 2k parallel cycles corresponding to connections of each node with

the nodes of logical distance 2". Thus, it takes two units of time to shift a vector by

2 k elements, for any k > 1 and one unit of time for k = 1. Consider shifting a vector

arbitrarily by some amount a > 0. We can assume that a < 2' since shifting by 2' is

the same as not shifting at all. Also, we can assume that a < 2 d since shifting in

one direction by a is the same as shifting in the other direction by 2' - a and when

a > 2' we could save on the number of shifts by shifting in the other direction. Let

us take the binary expansion of s, i.e. let a = N .- b0. In 171, they achieve this

shift by a combination of shifts depending on which bits of a are set. Since shifting

by one requires one step and the rest require two steps each, they have an algorithm

that works in O(2(d - 2) + 1) time in the worst case. Note that for a shift by 7,

this requires shifting by 4, shifting by 2 and finally shifting by 1. However, it would

take less time if this vector was first shifted by 8 and then shifted in the reverse

direction by 1. To generalize this, one needs to solve a shortest path problem. It

can be shown that any shift can be done in at most d steps, an improvement by a

factor of two (see Appendix A).

3.2 Matrix Computations

Let us first consider how to store a matrix in n processors. Let us assume that the

matrix is n x n. There are three main forms of storage considered in [7] and [1]:

-.. ~? ~ **~ ~*. ~

3 APPLICATIONS 29

LOGICAL frMUCTUft(PHYSICAL IS~tUtRE

710 011

I 1110

* 1010

Figure 12: The logical hierarchies of rings in a 16-node hypercube and the commu-
nication channels used to implement them.

3 APPLICATIONS 30

" By rows: Store each row in a processor.

* By columns: Store each column in a processor.

" By diagonals: The matrix A is converted into diagonal form D (see Figure

13) and D is stored by columns.

Note that conversion from storage by rows to by columns and vice versa requires

multinode scatter. For each case above, we have the following algorithms:

" Suppose that the matrix is stored by rows and each processor has a copy of

the vector. Then in O(n) computation time the product is calculated and

entry p of the resulting vector is stored in processor p. If we are running a

relaxation algorithm, we need to redistribute the entries of the vector to all

the processors. Thus we do a multinode broadcast.

" Suppose that the matrix is stored by columns and processor p has entry p of

the vector. Each vector multiplies the column and the vector entry it stores.

Then in O(n) computation time, we have n vectors that are distributed over

processors and need to be summed up. Since we want processor p to have

entry p of the resulting vector, each processor needs to gather corresponding

entry from every other processor. Here we have multinode gather. Note that

alternatively, the entry may be added up at the intermediate processors. In

this case, we have a multinode accumulation which would make the total

cost of running the algorithm same as the storage by rows. However, as

each processor accumulates its message, intermediate nodes need to add the

different messages destined for the same node and form a new message. Thus,

in practice, depending on the particular architecture this form of storage could

3 APPLICATIONS 31

00 01 02 03 0405] 00 11 22 33 44 s5s1
10 II 12 13 14 15 50 01 12 23 34 45

A-(30 31 32 33 34 35 30f 41 52 03 14 25A-20 21 22 23 24 25 40 51 02 ii 24 35

4041 42 43 44 4 203142304 "1
L20 3, 42 13 04- 51 52 53 54 55 J 10 21 32 43 54 05

Figure 13: Conversion of A to Diagonal Form D

result in longer running time than the previous one, but perhaps the same

order of magnitude.

e Suppose that the matrix is stored by diagonals and processor p has entry p of

the vector. Then an algorithm can be constructed that consists of n successive

shifts by one, and O(n) computation before each shift (see [71). They argue

in [7] that this storage is portable in the sense that it does not bias A towards

either row or column storage. This seems to be a reasonable argument for

hypercubes of type 1. However, if the same storage is used for hypercubes of

type d, corresponding calculation would take time by a factor of d larger than

that of either row or column storage.

When multiplying two matrices A and B, the most favourable case is when A

is stored by rows and B is stored by columns. The algorithm would be to perform

n successive matrix-vector multiplications. The resulting matrix is stored by rows,

in a total of O(n2) computation time and n multinode broadcasts.

Wd%

3 APPLICATIONS 32

3.3 Fixed Point Problems with Sparse A

Fixed point problems can simply be solved by a repeated application of the matrix-

vector product considered above. However, for sparse A, this approach may not

be very efficient. Some forms of sparsity structure are examined below. When

necessary, applications to hypercubes of type d are used for illustration. In what

follows, it is assumed that A is a square matrix of dimension N x N where N = mn

and n is the number of processors as usual.

3.3.1 Banded

Suppose that A is distributed among the processors in blocks of m rows, and sim-

ilarly, z is distributed in blocks of m elements. Moreover, corresponding blocks

of A and z reside in the same processor (for example, first m rows of A and first

m elements of x are stored in the same processor) and the consecutive blocks are

stored in neighboring processors (for example, for the hypercube, the imbedding of

a ring into the hypercube would be used). To define what is meant by banded let

us first consider the notion (of [7]) of an eztended diagonal. An extended diagonal

p of A is the set of entries (aj such that j - i = p or i - j = n - pl. The sym-

metric counterpart of this diagonal is the set of entries {aj such that i - j = p or

j - i = n - p). When an extended diagonal is nonzero, it will be assumed that

its symmetric counterpart is also nor zero. A matrix A will be termed banded with

width b if extended diagonals 1,... b and their symmetric counterparts are nonzero

and the rest of the matrix is zero. It will be assumed that b is a multiple of m,

say b = rm. Then the corresponding fixed point iteration ,:an be computed by r

consequtive shifts in both directions. Each shift consists of transmitting m elements

of z to a neighbor. Since the links are bidirectional, shifts to both directions can be

p.

3 APPLICATIONS 33

done in parallel and thus the algorithm takes O(mr) communication time. There

is also O(m) computation after each shift. Note that, on a hypercube of type d,

this method will be preferable to the matrix-vector multiplication method of the

previous section if roughly, r < n/d.

3.3.2 Mesh

In certain cases, such as the 5-point discretization of a partial differential equation

using the Jacobi method (see [14]), the "dependency graph" (i.e. the graph gener-

ated by modelling each variable as a node, and defining an undirected arc between

nodes i and j for all nonzero aij of the dependency matrix) may be a wraparound

mesh. Distribution of variables among n processors is modelled, in [7], as a prob-

lem of dividing a rectangle into n regions with minimum perimeter to area ratio.

They assume that the mesh is N, x N 2 = n1p1 x f p2 and the number of available

processors is njn2 . In this case, they argue that, to minimize communication, the

mesh should be divided into squares with pip2 points each, if possible (otherwise

near square rectangles). Each processor is assigned one of these rectangles. The

dependency graph for the processors is then a wraparound mesh itself. At each

iteration of the fixed point computation, each processor exchanges data with its

horizontal and vertical neighbors. Recall that wraparound mesh consists of rings

in horizontal and vertical directions. Thus, a shift by one in each direction of all

horizontal and vertical grids may be done in parallel. This algorithm takes roughly

O(y-'p2) communication time (on the appropriate mesh or type d hypercube).

In 9-point discretizations, the dependency graph includes diagonal connections

(see Figure 14). Suppose that this graph is N x N and n = p for some integer p that

divides N. As before, the graph could be divided into r x r squares where r = N/p.

N ki I I

3 APPLICATIONS 34

Figure 14: 4 x 4 Mesh Corresponding to a 9-Point Discretization

'IN

Figure 15: Decomposition of Diagonal Exchange

In this case, we have a similar p x p graph for which data corresponding to r points

need to be exchanged on the vertical and horizontal directions, and 1 point on the

diagonal directions, at each iteration. The data exchange can be performed on a

pxp mesh of processors in two steps. Suppose that diagonal exchange is divided into

its horizontal and vertical components as in Figure 15. At the first step, horizontal

and vertical exchange takes place. This also covers the first components (horizontal

or vertical) of the diagonal exchange. At the second step, the second components

of diagonal exchange take place. Thus data exchange completes in r + 1 time unii.

'a y. -

3 APPLICATIONS 35

3.3.3 Scattered Off-Diagonals

This section analyzes fixed point iterations where A, N x N, has p extended diag-

onals, ro,ri,. .rp-1 nonzero (see Figure 16). In [1] it is noted that a special case of

the above where ri = (i + 1)k and N is a multiple of k (see Figure 17), is undesir-

able when the matrix-vector multiplication method above is applied. However, this

problem can be divided into k disjoint problems, each indexed by i E {0,... , k - 1}.

Problem i corresponds to iteration of variables {i, k + i,..., N/k - 1 + i}. For

the general case, group theory is useful. Let G be the group of integers modulo N

with group operation of addition modulo N. In general, decomposition into disjoint

problems relies on finding Rp = [ro] * [rl] *".-, [)-], where [a] denotes the set of all

powers of a, which is a subgroup of G, [10], and [a] * [b] = {a* • b', for some i and j}.

The disjoint problems are Rp and its cosets, [10]. I first make the following claim:

Proposition 3.1 Rp = [To] * [Ti] * ... * I,-1] = [qp] where qp = gcd(ro, ,rp-1, N).

Proof: I prove this inductively. First, ITo] = [q1]: Since ro = q9 for some integer s,

ITo] c [q1]. Let a E [q1J then a = q, for some h. Note that h E G. Since a, above,

and N are relatively prime and s E G, [a] = G and thus for any h E G, there exists

some w E G such that h = 8". Therefore, a = q1 = rw E [to].

Suppose, Rp = [qp], then Rp+1 = [qp] * [r.] = [qp] * [s] where 8 = gcd(rp,N). On

the other hand, N = qp+i(q/q,+i)(a/qp+i)w for some w. Thus,

,R+, = [N/(/eqp+,)] * [Nw] * N/(qp/q,+,)] * [N/w]

= [N/(./qp+) * [N/(qp/qp+i)] * [N/w]

= lqp+,]

3 APPLICATIONS 36

Note that there are exactly qp cosets of [q]. To summarize, we have the following:

Proposition 3.2 For a fixed point problem, or a matrix-vector multiplication prob-

lem, where A is structured a& above, the problem can be divided into qp diajoint

problems (i.e. A is reducible to a block diagonal form) and moreover, the indices of

the variables that belong to each problem are given by [qp] and its cosets. 06

If the number of available processors, n, is less than or equal to qp then one

or more subproblems can be assigned to each processor appropriately. (If n < qp,

depending on the problem, it may be better to distribute some of the subproblems

over all the processors to balance the computation load on the processors.) If n = qp,

then there is no communication cost, and the computation executes n times faster

than the serial one. If n > qp, say n = mqp for simplicity, then m processors could

be assigned to each problem. In this case, if possible, either band or grid structure

could be exploited as above or a straightforward matrix-vector multiplication type

of an algorithm could be applied.

In general, comparison of a parallelized fixed point iteration to its serial version

is hard because the performance is strongly coupled to the sparsity structure of

A and how it is exploited. In the case of linear iterations with dense A, a serial

algorithm takes O(m2 n2) computation steps. For hypercubes of type d, parallel ver-

sion takes 0(mn/d) communication steps and 0(m 2) computation steps. Typically,

computation is much faster than communication (for example for Intel hypercube

[71). Thus, for moderate m, communication will dominate computation and paral-

lelization will be beneficial when unit communication cost to unit computation cost

is roughly less than md/n. For large m, computation will dominate and paralleliza-

tion will be O(n2) faster than the serial version. Another criterion given in Ill and

WI ~ ,-

3 APPLICATIONS 37

rr

Figure 16: Scattered Extended Diagonals (entries nonzero only along the lines in-
dicated)

Figure 17: A Special Case of Scattered Extended Diagonals

(7] is the communication penalty, which is defined as the ratio of communication

time per iteration to computation time per iteration. In this case, communication

penalty is O(n/dm) which approaches zero as m increases implying that processors

are fully utilized.

1*£

3 APPLICATIONS 38

3.4 Linear Equation Solvers

3.4.1 Orthogonalization

Let us first consider the QR decomposition (Q is not constructed explicitly, but

the same transformations are applied to 6). Suppose that A is mn x inn and

stored by rows. In this case the dimension of the matrix being worked on de-

creases with each step. To preserve effective use of each processor, suppose rows

p, p + n,--- , p + (M - 1)n are stored at processor p. At each step, one column is or-

thogonalized. At step i, each processor first orthogonalizes that piece of the current

column it stores, and this takes O((m - i/n)(mn - i)) computation time. Then the

remaining part of the column (one entry per processor) need to be orthogonalized.

However, the resulting transformation must to be applied to the rest of the rows.

This can be achieved either using Modified Gram-Schmidt or a series of Givens

transformations, [4], over a tree (such as the tree in Figure 6). In either case, the

required communication time is O(d(mn - i)) and the computation time is also

O(d(mn - i)). Summing this over mn steps, we get O(dm'n2) communication time

and O(m 3 n 2) computation time. Backsubstitution takes O(mn) time. The serial

version of this algorithm takes O(m 3 n3) computation steps. Thus parallelization is

favourable when unit communication time to computation time ratio is roughly less

than mn/d. Communication penalty is O(d/(m + n)) which approaches zero as m

increases.

3.4.2 Conjugate Gradient

In this section, I calculate the execution time of Equations (4-8) of the first section.

All vectors and the matrix A, mn x inn, are assumed to be distributed by rows. The

calculations below assume a type d hypercube. Equation (4) relies on computing

'A1- :Ww - -

3 APPLICATIONS 39

a single inner product. Recall that this takes O(mn/d) time. Equation (5) is

immediate after Equation (4). Equation (6) requires a multinode broadcast (Note

that rkApk can be computed at the same time with Ap since every processor has

a copy of pt), and thus takes 0(mn/d) communication time. If A is sparse, this

may of course be further improved, if possible, using the approach of Section 3.3.

Equations (7) and (8) are immediate after Equation (6). Thus each iteration takes

a total of O(mn/d) communication time and O(mn) computation time. In the

serial version each iteration takes O(m 2n&) computation steps. Therefore, if the

communication to computation ratio is roughly less than mnd, it will be preferable

to parallelize. Note that the iterative version is faster, by a factor of O(d2), than the

QR decomposition approach above even in the worst case convergence of mn steps.

Furthermore, the iterative version can be made faster if A is sparse. Note also that

the communication penalty is 0(1/md) and approaches zero as m increases.

,' "'

4 CONCLUSIONS AND FURTHER QUESTIONS 40

4 Conclusions and Further Questions

This report has surveyed part of the recent literature on the communication aspects

of parallel processing. Among the topologies considered, hypercubes have the best

properties in terms of diameter, connectivity, and flexibility. For the standard oper-

ations, efficient algorithms are known for the popular topologies. From a practical

point of view, matrix vector product seems to be the most important computation.

This computation, for dense A, is rather straightforward. However, exploiting the

sparsity structure of A is a hard problem in general.

As a tool for exploring structures of "regular topologies" and analysing timing

properties of algorithms for these topologies, the application of group theory was

proposed and carried out to some extent. An interesting result was presented on the

reduceability of a sparse matrix with nonzero extended diagonals. One could argue

that such matrices may not be found in practice since if the matrix is reducible, then

this perhaps can be recognized at the modelling stage. However, the matrix may

be "almost reducible" in the sense that appropriate extended diagonals are 0(f) for

some small e. This would correspond to weakly coupled subproblems of the large

scale problem. Then a processor can be assigned to each subproblem and a two time

scale update could be carried out, i.e. variables corresponding to each subproblem

are updated frequently with respect to other variables in that subproblem and are

updated at a slower rate (perhaps bounded by communication time) with respect

to the variables in other subproblems.

The algorithms considered in this report were essentially synchronous. Although

the processors operate asynchronously in principle, each processor waits for all the

variables necessary for an update before performing that update (local synchroniza-

tion, [1]). This may potentially lead to some reliability problems. In particular, if

- ~,~. ""'. o " ,

4 CONCLUSIONS AND FURTHER QUESTIONS 41

a message is lost while being transmitted (for example when a link goes down),

depending on how these losses are treated by the particular network, it may be de-

layed arbitrarily. This would in turn lead to an arbitrary delay in the update of the

particular processor the message is destined for. Since other processors will wait for

the results of this update in their next update, execution of the algorithm would be

delayed arbitrarily. A potentially more robust approach is the use of asynchronous

algorithms, [1]. Typically, in this case, each processor performs the updates as

many times as possible regardless of whether it has the most recent values of the

variables in other processors. A major drawback of these algorithms is that their

convergence properties are much harder to analyze.

Another aspect of reliability is the extent of damage caused by a failure, such

as a link or node crash, on the overall communication properties of the network.

For example, when a link crashes, a natural remedy would be to reroute the packet

through an alternate path. However, there could conceivably be other packets using

the links on this path, and they will be delayed due to the rerouted packet. For

example, for the algorithms considered in this report, the precise scheduling of the

messages would be disrupted and communication time estimates would not be valid

anymore. Note that the nodes are generally aware of the current traffic distribution.

The network may use this to its advantage by implementing a different (perhaps

pre-calculated) schedule.

I believe that the recent developments on the control of Discrete Event Dynamic

Systems, [2,3,5,6,91, may be used to address robustness problems. In particular, the

work of Ramadge and Wonham [91, Lin and Wonham [61 and Cieslak et al. [2]

could be helpful in designing a local control that reacts to link failures. The work of

Cohen et al. [3] could be used in analyzing the effects of the traffic distribution and I

4 CONCLUSIONS AND FURTHER QUESTIONS 42

the times at which the messages are introduced into the network, on the queue sizes.

Finally, perturbation analysis of Ho (5] might be useful in analyzing the effects of

small changes in the scheduling on the overall performance.

p
1~

tr

A MINIMUM DISTANCE ON A HIERARCHICAL RING 43

A Minimum Distance on a Hierarchical Ring

This appendix formulates the problem of finding the optimal combination of shifts

on a hierarchical ring in a hypercube to achieve an arbitrary shift, as a shortest

path problem and shows that this can be done in at most d steps. Consider the

following scalar linear system:

z[k + I] = 2xkl +uk

where u[k] is restricted to 1 (forward shift), 0 (no shift), -1 (reverse shift). Let z

be the desired amount of shift and consider a minimum energy control problem to

reach z in the above system in some number of steps. Let us plot the state space

of this system and formulate this as a shortest path problem where absolute values

of u[i] are the arc lengths. Figure 18 illustrates this for a 32 node ring. Note that

initial input of -1 is omitted due to the symmetric nature of the state space and we

do not need to consider any states larger than 16 since we can equivalently achieve

it by reversing the shifts. The numbers in squares beside the states are the shortest

path lengths. For example, a shift of 7 can be achieved by a shortest path through

0, 1, 2, 4, 7, with a corresponding length of 2, and input string 1, 0, 0, -1 which

corresponds to a forward shift by 2" = 8 and a reverse shift by 1. The graph for

larger rings can be generated by bulding on this ring. A ring with 24 nodes will

have a graph with d - 1 levels. At each level, maximum shortest path length of

an even numbered state is the same as maximum shortest path length of an odd

numbered state in the previous level. On the other hand, maximum shortest path

length of an odd numbered state is one plus maximum shortest path length of an

even numbered state in the previous level. It can be shown inductively that at level

k, maximum shortest path for an even state is k/2 and odd state is k/2 + 1 if k

B MULTINODE BROADCAST TREE FOR HYPERCUBES 44

0 -4

Figure 18: State Space for a 32 Node Ring

is even, and (k + 1)/2 for all states if k is odd. Recall that shifts that are nozero

powers of 2 take two steps. Also, note that exactly one shift of an odd numbered

node will be a single step shift and all shifts of even numbered nodes take two steps.

Therefore, it follows that arbitrary shifts require at most d steps for hierarchical

rings with 2d nodes on a hypercube.

B Multinode Broadcast Tree for Hypercubes

To prove the existence and the timing properties of a multinode broadcast tree for

hypercubes as derived in Section 2.3, 1 will use the equivalence classes defined in

[13). Let A(d, i) be the set of d bit binary numbers with exactly i ones. Divide this

B MULTINODE BROADCAST TREE FOR HYPERCUBES 45

set into disjoint equivalance classes using the relation: aSb if and only if a = Sib

for some positive integer j, where S is the left cyclic shift operator.

In each minor step of the tree construction, an equivalance class is connected.

Note that in all the equivalance classes, there is an element with a one in the first

bit and other elements are shifts of this element. Given an element of A(d,i), if we

change a one entry of this number to a zero, the resulting number is an element of

A(d, i -1). Therefore, all elements of an equivalance class of A(d, i) can be connected

to elements of A(d, i - 1) in a way that each connection flips a different bit. To prove

that the number of minor steps in a major step is bounded by (#)/d+ 1, it suffices to

prove that at most one equivalance class of A(d, i) has less than d elements (others

have exactly d elements).

Proposition B.1 There are ezactly [eqivalance classes of A(d,i).

Proof: Let us first prove that there is at most one equivalance class with less than

d elements in it. Let a E A(d, i) and j be the smallest integer such that a = Sia.

Suppose j < d and without loss of generality, assume that a has a one as the

rightmost bit. Denote the positions of ones in a by integers modulo d such that e is

the position of the rightmost bit. By the property of cyclic shift, ones are located

at [j], that is, at j, 2j,... etc. By the proof of Proposition 3.1, [j] = [p1 where

p = gcd(nj). Also, e - e and thus pi = d. Therefore, given i, p is unique and

furthermore, it exists if and only if i divides d.

Using the fact that A(d, i) has (?) elements, we achieve the desired result. *.

Note that the tree in Figure 10 can be improved by filling the gaps (see Figure

19). However, if d is prime, then all equivalance classes (except for the one corre-

sponding to i = d) have d elements and improvement is not possible. Note that

Caltech hypercube has dimension 5 and Intel hypercube has dimension 7, 17.

B MULTINODE BROADCAST TREE FOR HYPERCUBES 46

111 11. 007 0000

Figure 19: fImprovement of Multinode Broadcast Tree for Hypercube d =4

REFERENCES 47

References

[1] D. P. Bertsekas, J. N. Tsitsiklis, Parallel and Distributed Algorithms, Chapter

1, Prentice Hall, Inc., to be published.

121 R. Cieslak, C. Desclaux, A. Fawaz, P. Variaya, "Modeling and Control of Dis-

crete Event Systems", Proceedings of CDC, Dec 1986.

[3] G. Cohen, D. Dubois, J.P. Quadrat, M. Viot, "A Linear System Theoretic

View of Discrete Event Process", Proceedings of CDC, Dec 1983.

[41 G. H. Golub, C. F. Van Loan, Matrix Computations, Johns Hopkins University

Press, 1983.

[5] Y. Ho, "Performance Evaluation and Perturbation Analysis of Discrete Event

Dynamic Systems", IEEE Trans. on Automatic Control July 1987.

[61 F. Lin, W.M. Wonham, "Decentralized Supervisory Control of Discrete Event

Systems", University of Toronto Paper, July 1986.

17] 0. A. McBryan, E. F. Van de Velde, "Hypercube Algorithms and Implemen-

tations", Siam J. Sci. Stat. Comput., March 1987.

[8] C. H. Papadimitriou, K. Steiglitz, Combinatorial Optimization, Prentice-Hall,

Inc., 1982.

[19] P.J. Ramadge, W.M. Wonham, "Supervisory Control of a Class of Discrete

Event Processes", University of Toronto Paper, Nov 1985.

[101 J. J. Rotman, The Theory of Groups, Allyn and Bacon, Inc., 1965.

REFERENCES 48

[111 Y. Saad, M. H. Schultz, "Topological Properties of the Hypercube", Yale Uni-

versity Report, February 1985.

[12] Y. Saad, M. H. Schultz, "Data Communication in Parallel Architectures", Yale

University Report, March 1986.

[131 Y. Saad, M. H. Schultz, "Data Communication in Hypercubes", Yale University

Report, August 1987. b

[14] G. D. Smith, Numerical Solution of Partial Differential Equations: Finite Dif-

ference Methods, Clarendon Press, Oxford, 1985.

S

p.,

S

