OTTIC FILE COP

AD-A196 456

AFWAL-TR-87-3098

UNSTEADY LOW-SPEED WINDTUNNEL TEST OF A STRAKED DELTA WING, OSCILLATING IN PITCH

PART I: GENERAL DESCRIPTION AND DISCUSSION OF RESULTS

t trading the calify the set of the trading the structure of the set and the set and set at a structure of the set

. .

.

A. M. Cunningham, Jr.

GENERAL DYNAMICS FORT WORTH DIVISION P. O. Box 748 FORT WORTH, TEXAS 76101

R. G. den Boer C. S. G. Dogger E. G. M. Geurts A. J. Persoon A. P. Retel R. J. Zwaan

NATIONAL AEROSPACE LABORATORY (NLR) AMSTERDAM, NETHERLANDS

APRIL 1988

FINAL REPORT FOR PERIOD JUNE 1985-AUGUST 1987

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED

FLIGHT DYNAMICS LABORATORY AIR FORCE WRIGHT AERONAUTICAL LABORATORIES AIR FORCE SYSTEMS COMMAND WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433-6553

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture use, or sell any patented invention that may in any way be related thereto.

This report has been reviewed by the Office of Public Affairs (ASD/PA) and is releasable to the National Technical Information Service (NTIS). At NTIS, it will be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

DON W. KINSEY Project Engineer

FOR THE COMMANDER

ALFRED C. DRAPER Acting Chief Aeromechanics Division

"If your address has changed, if you wish to be removed from our mailing list, or if the addressee is no longer employed by your organization please notify <u>AFWAL/FIMM</u>, *N-PAFB*, OH 45433 to help us maintain a current mailing list".

Copies of this report should not be returned unless return is required by security considerations, contractual obligations, or notice on a specific document.

Gr. Ku

BOHDAN G. KUNCIW, MAJ, USAF Chief, Aerodynamics & Airframe Branch Aeromechanics Division

UNCLASSIFIED

SECURITY CLA	SSIFICATION O	F THIS PAGE					
		REPO		ON PAGE			Form Approved OMB No. 0704-0188
1a. REPORT S	ECURITY CLASS	SIFICATION		16. RESTRICTIVE	MARKINGS		
UNCLAS	SIFIED			None			
2a. SECURITY	CLASSIFICATIO	IN AUTHORITY		3. DISTRIBUTION	AVAILABILITY OI	F REPORT	
2b. DECLASSI	FICATION / DOV	WNGRADING SC	HEDULE	is unlimit	ed	releas	e; distribution
4. PERFORMIN	G ORGANIZAT	TION REPORT N	UMBER(S)	5. MONITORING ORGANIZATION REPORT NUMBER(S)			
ļ							
				AFWAL-IK-8	7-3098, PAR	1 1	
6a. NAME OF	PERFORMING	ORGANIZATION	6b. OFFICE SYMBOL (if applicable)	7a. NAME OF MC	Wright Apro	NIZATION	i al Laboratoriae
Gener	al Durtamic	e		Flight Dyn	amice Labor	atory/	AFWAL/FIMM
6c. ADDRESS	(City, State, an	nd ZIP Code)		76. ADDRESS (Ch	y, State, and ZIP	code)	
P.O. 1	Box 748	•					
Fort V	Worth TX	76101		Wright-Pat	terson AFB	OH 4	5433-6553
8a. NAME OF	FUNDING / SPC	ONSORING	86. OFFICE SYMBOL	9 PROCUREMENT	INSTRUMENT ID	ENTIFICA	TION NUMBER
ORGANIZ	ATION		(If applicable)	F33615_95	C-3013		
	(A)			F 3 3 0 1 3 - 0 3 -			
BC. ADDRESS	icity, State, and	a ZIP Code)		TU. SOURCE OF F	UNDING NUMBER	TACH	WORK LINIT
				ELEMENT NO	NO	NO	ACCESSION NO.
				62201F	2404	10	94
11. TITLE (Inc	lude Security C	lassification)					
UNSTE	ADY LOW-SP	PEED WIND 7	FUNNEL TEST OF A ST	RAKED DELTA W	IINC, OSCILL	ATING	IN PITCH,
PART	L: CENERA	L DESCRIPT	TION AND DISCUSSION	OF RESULTS			
12. PERSONA	L AUTHOR(S)			_ 、			
LI3a TYPE OF	REPORT	M., Genera	al Dynamics* (See	Reverse)	RT (Year Month	Day) 1	5 PAGE COUNT
FINAL FROM Jun 85 TOAug 87 1988 April 140				140			
16. SUPPLEM	ENTARY NOTA	TION					
17.		CODES	18. SUBJECT TERMS	(Continue on revers	e if necessary and	lidentify	by block number)
01	01	308-9800	Unsteady Fl	low, Vortex Fl	low, Wind Tu	nnel I	lest
20	04	f	{				
19. ABSTRAC	(Continue on	reverse if nece	essary and identify by block	number)	······································		
Result	s of a wir	d tunnel a	test of an oscillat	ing straked w	ting. The r	enort	provides unsteady
airloa	ds and pre	essure dist	tributions for a ra	ange of incide	ences (-8 to	50 de	e,) and ampli-
tudes	(1 to 16 d	leg.). The	e wind speed was 80) meters/secor	d. which pr	ovided	l reduced fre-
guenci	es up to (0.50 based	on root chord. Th	ne zeroth and	first harmo	nic as	s well as the
contin	uous time	history o	f the pressure and	overall loads	s were measu	red.	Flow visualization
was pe	rformed fo	or flow of	30 meters/second u	using a pulsat	ing laser 1	ight s	sheet.
This p	art preser	nts the dea	scription of this w	vind tunnel te	est and prel	iminar	cy discussions of
result	s obtained	i from the	test. Details are	provided on	the model.	instru	mentation and
suppor	t system a	as well as	test program condi	ition/run numb	er cross-re	ferenc	ce tables for use
with t	he data ba	ase present	ted in parts II thr	ough VI of th	is report.	Mode 1	l geometry and
force	data proce	essing prod	cedures are present	ed in the app	endices. A	lso pr	resented in the
append	<u>ices are</u>	updated va	alues of force data	obtained fro	<u>m the stead</u>	<u>y test</u>	s (See reverse)
20. DISTRIBU	TION / AVAILAB	ILITY OF ABSTR		21. ABSTRACT SE	CURITY CLASSIFIC	ATION	
AJ UNCLAS	SIFIED/UNLIMIT		AS RPT. DTIC USERS	UNCLASSIE	TED		
ZZA. NAME O Don JJ	r RESPUNSIBLE			(513) 255-2	nciuge Area Code	1 22C. Ο Λ ΈΓΙΑ	TETMBOL
DD Form 14	73. JUN 86		Provinus aditions	$\frac{1}{2} \left(\frac{1}{2} \right) \frac{1}{2} \left(\frac{1}{2} \right) \frac{1}{2} $	SECHOITY		
						<u> </u>	
					UNCLA	JOITIE	

49.4

14.

12. PERSONAL AUTHOR(S) CONTD

*	den Boer, R. G.,	National	Aerospace	Laboratory,	The	Netherlands
	Dogger, C. S.,	11	11	11	81	11
	Geurts, E.G.M.,	**	**	78	11	**
	Persoon, A. J.,	**	11	11	11	**
	Retel, A. P.,	**	**	11	**	1.
	Zwaan, R. J.,	11	*1	17	11	11

Att But Ath Bat the art and and an art art art

19. ABSTRACT CONTD

of the model suspended by a wire balance.

Accesio	on For					
NTIS DTIC Unactor Justific	CRA&I TAB ounced ation					
By Distrib	By Distribution /					
A	vailability	Codes				
Ust	Avali an Speci	d / or at				
A-1						

FOREWORD

This report summarizes the results of the windtunnel test of an oscillating straked wing conducted under a cooperative program of research between General Dynamics Fort Worth Division, Fort Worth, Texas, and the National Aerospace Laboratory (NLR), The Netherlands. The model and support system was designed and fabricated at NLR under a separate program with General Dynamics and NLR funding. The test preparation, windtunnel test and reporting were performed at NLR under Air Force Contract F33615-85-C-3013, for the Flight Dynamics Laboratory of the Air Force Wright Aeronautical Laboratories, Wright-Patterson Air Force Base, Ohio. The work was administered by Mr. D.W. Kinsey of the Aeromechanics Division (AFWAL/FIM). Additional technical monitoring support was provided by Mr. T. Cord of the Flight Control Division (AFWAL/FIG).

The program manager and principal investigator was Dr. A.M. Cunningham Jr. at General Dynamics and Mr. R.G. den Boer was the principal investigator at NLR. Mr. den Boer was assisted by the following NLR specialists: C.S.G. Dogger, E.G.M. Geurts, A.J. Persoon, A.P. Retèl and R.J. Zwaan.

This report consists of six parts. Part I presents a general description of the model and test program and a discussion of the results. Part II contains the steady pressure distribution plots and the major part of the zeroth and first order harmonic unsteady pressure distribution plots. Part III contains the remainder of the unsteady pressure distribution plots and plots of the steady and the zeroth and first order harmonic unsteady overall loads. Part IV contains time history plots of the unsteady pressures and overall loads. Part V contains power spectral density plots of the overall loads at harmonic oscillation and time history plots of overall loads for (1-cos) model motions. Part VI contains results of the flow visualization program.

ACKNOWLEDGEMENT

-4-

5 8.7 S. T. S. F. F. F. S. S. S.

Sectored The sector sector of

The authors wish to express gratitude to Mr. N.G. Verhaagen of the Aerospace Department of the Technical University of Delft for his cooperation in preparatory tests.

The authors make reference to the following persons who contributed substantially to this project: Messrs. T. Horsman, Ph. Kok, E.W.M. Slijkerman. Reference is also made to Mr. H. Kannemans, who was involved in an orientating windtunnel test up to December 1, 1983, when he started working at the Flight Test Instrumentation Department of NLR, and to Mr. J.J. Horsten, who was principal investigator up to September 1, 1985, when he entered the service of Martinair.

-5-

CONTENTS

			Page
LI	ST OF	TABLES	7
LI	ST OF	ILLUSTRATIONS	8
LI	ST OF	SYMBOLS	11
1	INTRO	DDUCTION	14
	1.1	Motive	14
	1.2	Some physical aspects	14
	1.3	Objectives	15
2	TEST	SETUP	16
	2.1	Windtunnel	16
	2.2	Model and model support	16
	2.3	Model instrumentation	17
	2.4	Model excitation	19
	2.5	Equipment for measurement of overall loads and pressures	19
	2.6	Equipment for flow visualization	20
3	PREP	ARATORY TESTS	21
4	PROCI	EDURES	21
	4.1	Measurement of overall loads and pressure distributions	21
		4.1.1 Transfer functions	21
		4.1.2 Time recordings	22
	4.2	Incidence, blockage and dynamic pressure distribution	22
		4.2.1 Incidence	22
		4.2.2 Blockage	23
		4.2.3 Dynamic pressure distribution	24
	4.3	Flow visualization	24
5	TEST	PROGRAM	25
	5.1	Overall loads and pressure measurements	25
		5.1.1 Steady tests	25
		5.1.2 Unsteady tests	25
	5.2	Load measurements at (1-cos) inputs	26
	5.3	Flow visualization experiments	26

:

1.5

CONTENTS (Cont'd)

Page

6	PRESENTATION OF RESULTS	27
7	BRIEF DISCUSSION OF SOME RESULTS	28
	7.1 Overall loads	29
	7.2 Pressure distribution	30
	7.3 Vortex core positions	31
8	FINAL COMMENTS	32
	8.1 Deformation and accuracy of the balance	32
	8.2 Instrumentation	33
	8.3 Backlash in wing support bearings	34
	8.4 Visualization	34
	8.5 The effect of the wire suspension blocks	34
9	CONCLUDING REMARKS	35
10	REFERENCES	35
22	Tables	
46	Figures	
AP	PENDIX A: MODEL GEOMETRY	117
AP	PENDIX B: NON-AERODYNAMIC LOADS ON THE MODEL BALANCE	124
AP	PENDIX C: UPDATED VALUES OF THE PITCHING MOMENT COEFFICIENT	1 30

OF THE MODEL SUSPENDED IN WIRES

(138 pages in total)

:

-7-

LIST OF TABLES

Page

. Cab. Bak. Bak. To

TABLE	1	Positions of pressure transducers and accelerometers	37
TABLE	2	Vibration modes with corresponding frequencies of the	
		installed model	38
TABLE	3	Dynamic pressure distribution (model at zero lift)	39
TABLE	4	Steady test program ($\beta = 0 \deg$, $V \sim 80 m/s$)	40
TABLE	5	Unsteady test program ($\beta = 0 \deg$, V ~ 80 m/s)	41
TABLE	6	Unsteady test program ($\beta = 0 \deg$, V ~ 55 m/s)	49
TABLE	7	Unsteady test program ($\beta = 0 \text{ deg}$, V ~ 30 m/s)	52
TABLE	8	Unsteady test program ($\beta = 5 \deg$, V ~ 80 m/s)	54
TABLE	9	Unsteady test program ($\beta = -5 \text{ deg}$, V ~ 80 m/s)	55
TABLE	10	Runnumbers for which plots are presented of time histories of the pressure distributions	56
TABLE	lla	Runnumbers and corresponding plotnumbers of time histories and power spectral densities of overall loads at harmonic oscillation (V ~ 80 m/s, β = 0 deg)	58
TABLE	11Ъ	Runnumbers and corresponding plotnumbers of time histories and power spectral densities of overall loads at harmonic oscillation (V ~ 80 m/s, β = 5 deg)	61
TABLE	lic	Runnumbers and corresponding plotnumbers of time histories and power spectral densities of overall loads at harmonic oscillation (V ~ 80 m/s, β = -5 deg)	62
TABLE	12	Unsteady test program ((1-cos) inputs) ($\beta = 0 \text{ deg}$, V ~ 80 m/s)	63
TABLE	13a	Visualization test program (photographs) at $x/cr = 40.42$	65
TABLE	13Ъ	Visualization test program (photographs) at $x/cr = 65.88$	66
TABLE	13c	Visualization test program (photographs) at $x/cr = 96.82$	67
TABLE	14	File organization on DELTA model tape	68
TABLE	15	Example of a print of a steady testrun	69
TABLE	16	Example of a print of unsteady testruns	70
TABLE	17	Vortex core positions at section 1, a = 18.94 deg, da = 3.58 deg, f = 1.88 Hz	71
TABLE	18	Vortex core positions at section 2, a = 18.93 deg, da = 6.93 deg, f = 6 Hz	71
TABLE	19	Vortex core positions at section 2, a = 22.45 deg, da = 3.79 deg, f = 1.13 Hz	72
TABLE	20	Vortex core positions at section 2, $\alpha = 22.41 \text{ deg, } d\alpha = 7.57 \text{ deg, } f = 1.13 \text{ Hz}$	72
TABLE	21	Vortex core positions at section 2, $\alpha = 22.42 \text{ deg, } d\alpha = 6.98 \text{ deg, } f = 3 \text{ Hz}$	73
TABLE	22	Vortex core positions at section 2 at 22.42 deg, $\alpha = 22.42$ deg, $d\alpha = 6.88$ deg, $f = 6$ Hz	73

LIST OF ILLUSTRATIONS

Fig	. 1	Body fixed coordinate system	74
Fig	. 2	The flow about a straked delta wing under incidence	74
Fig	. 3	Principle of laser light screen technique	75
Fig	. 4	Principle of the support mechanism	75
Fig	. 5	Wing planform and model instrumentation (dimensions in mm; pitching axis x/cr = 73.27 %)	76
Fig	;. 6 a	Frontview of the model and the support mechanism (pressure measurement configuration)	77
Fig	. 6 b	Frontview of the model and the support mechanism (visualization measurement configuration)	77
Fig	. 6c	Smoke tube attachment	78
Fig	;. 7	Block-diagram of the test setup for measurements of forces, moments and pressures	7 9
Fig	. 8	Test setup for the flow visualization	80
Fig	. 9	Dynamic pressure distribution around model at zero lift	81
Fig	. 10	Principle of unsteady flow visualization	82
Fig	. 11	Steady normal force and pitching moment coefficient vs. incidence	83
Fig	. 12	Example of a plot of the pressure coefficients of a steady testrun	84
Fig	. 13	Example of a plot of the pressure coefficients of an unsteady testrun	84
Fig	. 14	Example of the time history of the pressure distributions	85
Fig	. 15	Example of overall aerodynamic loads vs. incidence, derived from the recordings at harmonic oscillating model	86
Fig	. 16	Example of the time history of the balance signals at a (1-cos) model motion	87
Fig	. 17	Zeroth and first order harmonic components of the unsteady normal force coefficient (da ~ 3.5 deg, f = 3 Hz, β = 0 deg, V ~ 80 m/s)	88
Fig	. 18	Zeroth and first order harmonic components of the unsteady pitching moment coefficient $(d\alpha \sim 3.5 \text{ deg, f = 3 Hz, } \beta = 0 \text{ deg, V} \sim 80 \text{ m/s})$	89
Fig	. 19	First order harmonic components of the unsteady pitching moment coefficient at 3 and 8 Hz $(d\alpha ~ 3.5 \text{ deg, } \beta = 0 \text{ deg, } V ~ 80 \text{ m/s})$	9 0
Fig	. 20	Real part of first order harmonic components of the unsteady pitching moment coefficient vs. frequency ($\alpha \sim 18.9 \text{ deg}, \beta = 0 \text{ deg}, V \sim 80 \text{ m/s}$)	91
Fig	. 21	Imaginary part of first order harmonic components of the unsteady pitching moment coefficient vs. frequency ($\alpha \sim 18.9$ deg. $\beta = 0$ deg. V ~ 80 m/s)	92

.

LIST OF ILLUSTRATIONS (Cont'd)

			rage
Fig	g. 22	Zeroth order harmonic component and real part of first order harmonic components of the unsteady normal force coefficient vs. amplitude ($\alpha \sim 18.9 \text{ deg}$, f = 3 Hz, β = 0 deg, V ~ 80 m/s)	93
Fig	g. 23	Zeroth order harmonic component of the unsteady side force coefficient vs. amplitude ($\alpha = 35.9 \text{ deg}, \beta = 5 \text{ deg}, V \sim 80 \text{ m/s}$)	94
Fig	g. 24	Zeroth order harmonic component of the unsteady tangential force coefficient vs. amplitude ($\alpha = 18.9 \text{ deg}, \beta = 0 \text{ deg}, V ~ 80 \text{ m/s}$)	95
Fig	3. 25	The effect of sideslip on the zeroth and first order harmonic components of the unsteady yawing moment coefficient at various frequency amplitude combinations ($\alpha = 18.9 \text{ deg}$, V ~ 80 m/s)	96
Fig	g. 26	The effect of sideslip on first order harmonic components of the unsteady rolling moment coefficient ($\alpha = 18.9 \text{ deg}$, V ~ 80 m/s)	97
Fig	g. 27	Development of steady pressure distribution with incidence ($\beta = 0 \text{ deg}$, $V \sim 80 \text{ m/s}$)	98
Fig	g. 28	Influence of angle of attack on the zeroth and first order harmonic components of the unsteady pressure distribution	99
Fig	g. 29	Influence of amplitude on zeroth and first order harmonic components of the unsteady pressure distribution	100
Fig	3. 30	Time history of the pressure distribution of section 2	101
Fig	g. 3 1	Photographs showing the time history of the flow at section 1 ($\alpha = 18.94$ deg, d $\alpha = 3.58$ deg, f = 1.88 Hz)	102
Fig	g. 32	Time history of the vortex core positions at section l ($\alpha = 18.94$ deg, $d\alpha = 3.58$ deg, $f = 1.88$ Hz)	103
Fig	g. 33	Photographs showing the time history of the flow at section 2 ($\alpha = 18.93$ deg, $d\alpha = 6.93$ deg, $f = 6$ Hz)	104
Fig	g. 34	Time history of the vortex core positions at section 2 $(\alpha = 18.93 \text{ deg, } \alpha = 6.93 \text{ deg, } f = 6 \text{ Hz})$	105
Fig	g. 35	Photographs showing the time history of the flow at section 2 ($\alpha = 22.45$ deg, d $\alpha = 3.79$ deg, f = 1.13 Hz)	106
Fig	g. 36	Time history of the vortex core positions at section 2 $(\alpha = 22.45 \text{ deg, } \alpha = 3.79 \text{ deg, } f = 1.13 \text{ Hz})$	107
Fig	g. 37	Photographs showing the time history of the flow at section 2 (α = 22.41 deg, d α = 7.57 deg, f = 1.13 Hz)	108
Fig	g. 38	Time history of the vortex core positions at section 2 ($\alpha = 22.41$ deg, d $\alpha = 7.57$ deg, f = 1.13 Hz)	109
Fig	g. 39	Photographs showing the time history of the flow at section 2 (α = 22.42 deg, d α = 6.98 deg, f = 3 Hz)	110
Fig	g. 40	Time history of the vortex core positions at section 2 $(\alpha = 22.42 \text{ deg, } \alpha = 6.98 \text{ deg, } f = 3 \text{ Hz})$	111

-9-

:

NOROGE STRATES STATES STATES SATES SATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES

1.14" all 1.18"

1222222

M. C. S.

LIST OF ILLUSTRATIONS (Cont'd)

		Page
Fig. 41	Photographs showing the time history of the flow at section 2 (α = 22.42 deg, d α = 6.88 deg, f = 6 Hz)	112
Fig. 42	Time history of the vortex core positions at section 2 $(\alpha = 22.42 \text{ deg, } d\alpha = 6.88 \text{ deg, } f = 6 \text{ Hz})$	113
Fig. 43	Photographs showing the time history of the flow at section 3 (α = 22.29 deg, d α = 15.19 deg, f = 1.13 Hz)	114
Fig. 44	Influence of amplitude on the time history of the vortex core positions	115
Fig. 45	Influence of frequency on the time history of the vortex core positions	115
Fig. 46	The effect of the wire suspension blocks	116

WINNIN 2020070 DESERVICE REPRESE REPRESE

ANTICO RELEVAN

10000000

[7,7,7]

03020500

•

-11-

1.1

1.1.1.1.1

12.4 6.41

LIST OF SYMBOLS

ALPHA, a	wing incidence	(deg)
Ъ	local wing span	(m)
bw	wing span (bw = 0.8000)	(m)
BETA, β	sideslip angle	(deg)
c	local chord	(m)
CD	wing drag force coefficient	
C1	wing rolling moment coefficient	
(Cl)m	mean wing rolling moment coefficient (Cl)m = l/(Q*S*bw)	
(C1)1	unsteady wing rolling moment coefficient (Cl)i = l/(Q*S*bw*da) (Cl)i = Re(Cl) + i Im(Cl)	
CL	wing lift force coefficient	
Cm	wing pitching moment coefficient ref. axis = rotation axis x/cr = 73.27 %	
(Cm) m	mean wing pitching moment coefficient (Cm)m = m/(Q*S*cr) ref. axis x/cr = 73.27 %	
(Cm)i	unsteady wing pitching moment coefficient ref. axis x/cr = 73.27 % (Cm)i = m/(Q*S*cr*da) (Cm)i = Re(Cm) + i Im(Cm)	
Cn	wing yawing moment coefficient	
(Cn)m	mean wing yawing moment coefficient (Cn)m = n/(Q*S*bw)	
(Cn)i	unsteady wing yawing moment coefficient (Cn)i = n/(Q*S*bw*da) (Cn)i = Re(Cn) + i Im(Cn)	
CN	wing normal force coefficient	
(CN)m	<pre>mean wing normal force coefficient (CN)m = N/(Q*S)</pre>	
(CN) 1	unsteady wing normal force coefficient (CN)i = N/(Q*S*da) (CN)i = Re(CN) + i Im(CN)	
Ср	pressure coefficient	
(Cp)m	mean pressure coefficient	
(Cp)i	unsteady pressure coefficient (Cp)i = p./(Q*da) (Cp)i = Rē(Cp) + i Im(Cp)	
cr	root chord (cr = 0.7855)	(m)
CT	wing tangential force coefficient	
(CT)m	mean wing tangential force coefficient (CT)m = T/(Q*S)	

16:22:32:33 522222 1 <u> 5:5:5:5:5</u>

-

:

LIST OF SYMBOLS (Cont'd)

(CT)i	unsteady wing tangential force coefficient (CT)i = T/(Q*S*da) (CT)i = Re(CT) + i Im(CT)	
CY	wing side force coefficient	
(CY)m	mean wing side force coefficient (CY)m = Y/(Q*S)	
(CY)1	unsteady wing side force coefficient (CY)i = Y/(Q*S*da) (CY)i = Re(CY) + i Im(CY)	
(d)i	unsteady displacement of accelerometer relative to angular displacement of the wing (d)i = Re(d) + i Im(d)	the (mm)
D	wing drag force	(N)
DALPHA,da	harmonic oscillation: amplitude of unsteady wing incidence (1-cos) inputs : magnitude of wing incidence variation	(deg,rad)
f. FREO	frequency	(Hz)
HARM	harmonic component (HARM = 0: mean) (HARM = 1: first harmonic)	
i	SQRT(-1)	
1	wing rolling moment (figure 1)	(N [.])
L	wing lift force	(N)
m	wing pitching moment (figure 1) ref. axis x/cr = 73.27 %	(Nm)
MACH	freestream Mach number	
n	wing yawing moment (figure 1)	(Nm)
N	wing normal force (figure 1)	(Nm)
NO	number of pressure transducer	
P	pressure at model surface	(Pa)
ps	static pressure	(Pa)
pt	total pressure	(Pa)
PHI, φ	phase angle	(deg)
Q	dynamic pressure	(Pa)
REDFR	reduced frequency, REDFR = pi * f * cr/V	
RUN	run number	
S	wing area (S = 0.2640)	(m**2)
t	time	(s)
T	wing tangential force (figure 1)	(N)
Т	stagnation temperature in settling chamber	(deg C)

LIST OF SYMBOLS (Cont'd)

Т	harmonic oscillation: period of oscillation (l-cos) input: duration of (l-cos) input	(s) (s)
v	freestream velocity (ms**-1)
x	chordwise coordinate in wing reference plane apex: x=0 (figures 1, 5)	(m)
x'	coordinate in direction of longitudinal test section axis (see figure 9)	(m)
xref	reference x-value	(m)
у	spanwise coordinate in wing reference plane (see figures 1, 5); y-axis is the rotation axis; x/cr = 73.27 %	(m)
у'	spanwise coordinate (see figure 9)	(m)
yref	reference y-value	(m)
Y	wing side force (see figure 1)	(N)
Z	coordinate in plane of symmetry normal to wing reference plane (see figures 1,5)	(m)
z '	coordinate normal to x'-y' plane (see figure 9)	(m)

GREEK

a, ALPHA	wing incidence	(deg)
d _a , DALPHA	harmonic oscillation: amplitude of unsteady wing	
	incidence	(deg,rad)
	(l-cos) input: magnitude of wing incidence	
	variation	
8,BETA	sideslip angle	(deg)

B	t b -	
φ , PHI	phase angle	(deg)
τ	pulse width	

SUBSCRIPTS

a	adjusted
8	geometric
m	mean
í	unsteady
ref	reference

1 INTRODUCTION

1.1 Motive

Straked wings are currently becoming common features of advanced fighter aircraft. The strakes are designed to generate vortices from highly swept leading edges which stabilize flow over the wing and provide additional lift up to high angles of attack. In this way the strakes contribute much to high maneuvrability. The vortex lift capability of straked wings has been extensively explored and experimental data concerning aerodynamic loading are available for various planforms and Mach numbers. Advanced calculation methods to predict the vortex flow are maturing.

The knowledge of unsteady loading on straked wings is less developed, both in the cases where the loading is due to wing oscillations - as required for aircraft stability and flutter analysis - and in cases where fluctuations in the flow are induced by vortex burst (or vortex breakdown) as required for stall and buffet predictions. The common practice in flutter analysis, for example, is that flutter clearance calculations for straked wing fighters are still based on attached flow without leading edge vortices. This is necessary because a lack of adequate calculation methods for unsteady vortex flow which must be validated by experiment. The immediate question then arises if such a procedure can guarantee sufficiently conservative predictions, or, if so, is it unreasonably conservative.

This situation has given rise to a cooperative project of General Dynamics (GD) and the National Aerospace Laboratory (NLR), with funding provided by the Air Force Wright Aeronautical Laboratories (AFWAL), concerning a windtunnel experiment with an oscillating straked wing. This experiment will extend the knowledge of unsteady vortex flow, and provide a data base for the validation of computer codes for unsteady airloads.

1.2 Some physical aspects

A brief description of some physical aspects of the unsteady vortex flow is given here. First the main characteristics of the steady flow are considered. In figure 2 a straked wing at incidence is shown. Vortices are shed from the leading edges of the strake and the wing. The sharp strake leading edges generate vortex sheets even at low incidence which roll up spirally into the strake vortices and flow downstream over the wing. The vortices induce strong lateral velocities at the strake upper

-14-

surface, giving rise to suction peaks at the position of the vortex cores (see upper left inset). When the lateral velocities are large enough, secondary flow separations occur, leading to secondary vortices spiralling opposite to the primary vortices. **VALUE**

At moderate incidences vortex sheets start to develop from the wing leading edges, starting at the kinks. As a result, the spanwise pressure distribution now shows two pressure peaks (see upper right inset).

At higher incidences vortex burst or vortex breakdown occurs initially for the wing vortices followed later by the strake vortices. An important consequence of vortex burst is that the corresponding suction peaks become weaker and that the vortices lose their ability to produce additional lift. A normal behaviour of vortex burst is that it will move upstream when the incidence increases. At still higher incidences largescale boundary layer or stall separation occurs, starting often at the trailing edge.

The explanation of the above vortex flow becomes increasingly complicated in case of interactions of strake and wing vortices, their influence on vortex burst and flow separation and, at high enough speeds their interaction with shock waves. The analysis of these phenomena is still the subject of many investigations (e.g. Ref. 1).

When the straked delta wing is oscillating, the strength and the position of the wing and strake vortices will oscillate. As the vortices are being fed through the vortex sheets emanating from the leading edges, it is to be expected that the oscillations of vortex strength and position will lag the wing oscillation. Phenomena like vortex burst and stall separation have shown hysteresis effects in steady measurements so that it might be conjectured that in the unsteady case these effects will cause an additional lagging.

1.3 Objectives

With the description of the problem area in section 1.1 and the various physical aspects in section 1.2 as background the objectives of the windtunnel experiment were formulated as follows:

- to obtain a physical insight of the vortex flow
- to set up a data base of unsteady aerodynamic data for computer code validation; and
- to study the dynamic aspects of vortex bursts, up to high angles of attack at which vortex breakdown occurs close to the strake leading edge.

-15-

-16-

In order to achieve these objectives, some basic decisions were made:

- a. The experiment was restricted to low speeds to keep the already complicated flow from being further complicated by compressibility effects. Continued experiments in future may hopefully cover the transonic speed range.
- b. Preference was given to a balance to measure the overall aerodynamic loads. Because of the large pressure gradients it was expected that no practical grid of pressure pickups installed in the windtunnel model would be dense enough to provide accurate aerodynamic loads through integration. Measurements of pressure distributions would only be applied in a few strategically chosen sections.
- c. The aerodynamic load and pressure measurements would be supplemented with information about the flow above the model upper side. Flow visualization was used to study the position of the vortices and vortex cores, development of vortex burst, etc. Application of a laser light screen technique in a previous windtunnel test had already proven to be feasible (see Ref. 2) to study the position of the vortex cores in steady flow (see Fig. 3). Also the means to apply a chopped laser light screen were investigated for unsteady flow.

2 TEST SETUP

2.1 Windtunnel

The tests were conducted in the low speed windtunnel LST $3x2.25 \text{ m}^2$ of NLR in the Noordoostpolder (North-East Polder) of The Netherlands. The tunnel is a closed-type windtunnel and has interchangeable test sections with a total length of 8.75 m. The test sections are provided with turntables in the floor and ceiling. The tunnel has a maximum attainable windspeed of about 85 m/s.

2.2 Model and model support

An overall view of the test setup is shown in figure 4. The geometry of the model is indicated in figure 5. It is a straked delta wing, with a span of 800 mm, a root chord of 785.5 mm and tip chords of 120 mm. As the model was not intended to represent a real aircraft, the parts which might complicate the aerodynamics, like fuselage and empennage, were left out. The outboard wing has an NACA 64A005 airfoil and a leading edge sweep of 40 deg. The strake has a sharp leading edge with a sweep of 76 deg. The spanwise cross-section of the strake has a diamond shape with a half top angle of 11.4 deg (see figure 5). At the centre, the diamond shape is rounded with a radius which varies linearly from 0 mm at the apex x=0 mm, to a radius of 80 mm at x=333.7 mm and back to a radius of 0 mm at x=437.0 mm. At the kink in the leading edge, where the strake joins the wing, the thickness distribution is smoothed. Second Basilian Process Barland Basilian

The middle of the main wing was thickened to accommodate the balance. The sides of this thicker region were rounded with a radius of 80 mm and the top is a flat surface, parallel to the model reference plane (see Fig.5). A more detailed description of the model geometry is presented in appendix A.

The model was designed (see Ref. 3) and fabricated at NLR. It was made of a magnesium alloy to reduce inertia loads. The overall mass of the model, including its instrumentation, but without the balance was 5.9 kg. The instrumentation is described in section 2.3. For the visualization tests a smoke tube was attached to the lower side of the model, with its opening very close to the apex (see Fig. 6b-c). The optimal position of the smoke tube was determined in a separate test (see Ref. 4), although during the final test the tube could be shifted in x- and z-directions and its incidence could be changed.

The support mechanism (see Figs. 4,6a), also designed and built at NLR, was mounted on the turntable in the floor of the test section to allow model sideslip. By a system of struts the model was supported in such a way that it could perform a pitching motion about an axis at 73.3 % root chord. The support elements were aerodynamically shaped and two of them were used as conductors for the instrumentation wiring.

2.3 Model instrumentation

The instrumentation of the model consisted of:

- 1 six-component balance,
- 1 displacement transducer,
- l temperature transducer,
- 9 accelerometers,
- 42 miniature pressure transducers.

The location of the instrumentation in the model is indicated in table 1 and figure 5.

-17-

For measuring the forces and moments an existing six-component balance (NLR 635) was used. With this balance forces and moments can be measured up to: 450 N in tangential force, 1200 N in side force, 3000 N in normal force, 90 Nm in roll, 110 Nm in pitch and 70 Nm in yaw.

With a Sangamo AFG 5.0 S linear variable differential transducer (LVDT) mounted between the model and support, the oscillation amplitude and the mean steady wing incidence were measured. This provided the correct geometric incidence which included the deformation of the balance.

The vibration modes were measured with five Endevco 2220 C accelerometers of the piezo-electric type (range: up to 10E4 m/s^2) and with four Kulite GY-155 accelerometers of the piezo-resistive type (range: up to 500 m/s^2).

Three types of pressure transducers were used:

- 10 Endevco 8507-5

- 12 Kulite CQL-080-5D

- 20 Kulite XCS-093-5D

These transducers were mounted in such a way that they were electrically isolated, free of local model deformation and not influenced by the model accelerations. They were divided over four strategically chosen sections:

- a spanwise section on the strake to obtain data in the conical flow region for the verification of conical flow phenomena (10 pressure transducers at x/cr = 0.4042),
- a spanwise section just behind the kink to show the development of the leading edge wing vortex starting from the kink (18 pressure transducers at x/cr = 0.6588),
- a spanwise section at the rear part of the main wing for measurement of buffet phenomena (8 pressure transducers at x/cr = 0.9682),
- a chordwise section at the main wing panel to show the development of vortex burst as a function of incidence (8 pressure transducers at 2y/b = 0.4000).

The sensitivity of the pressure transducers shows a small variation with temperature. By measuring the temperature of the model with a Unicurve thermistor, UUT 45J1, the correct sensitivity of the pressure transducers could be applied.

-18-

2.4 Model excitation

Excitation was provided by an electro-hydraulic shaker system, designed by Keelavite Hydraulics Ltd. It consists of a hydraulic power supply, a combined linear actuator and servovalve and a feedback control unit (see Ref. 5). The hydraulic actuator could deliver a maximum static force of 13000 N and a dynamic force of 8000 N at a total piston stroke of 35 mm at low frequencies to 16 mm at 16 Hz.

The hydraulic actuator was suspended in a box which was bolted rigidly to the turntable. The piston was connected to a crank which converted the linear motion into a rotational motion. By the driving rod this motion was transmitted to the yoke, which supported one side of the balance. On the other side of the balance the model was clamped. During most of the runs the model was forced into a sinusoidal motion. In a limited number of runs, a (1-cos) motion was used.

2.5 Equipment for measurement of overall loads and pressures

The windtunnel tests were performed using a computer controlled multi-channel transfer function analyzer, called PHAROS (Processor for Harmonic Analysis of the Response of Oscillating Surfaces). A description of this system is given in reference 6. The system is capable of analyzing the incoming data from 48 channels simultaneously. By means of a switch panel this process was conducted twice at each test point so that 96 different signals could be recorded.

In figure 7 a block-diagram of the test setup is shown, including the PHAROS system. The two-phase oscillator of PHAROS controlled the hydraulic actuator, which provided the model excitation. The response signals of the instrumentation were acquired by PHAROS for analysis. The electrical signals were fed through conditioners into transfer function analyzers to obtain the mean component and the real and imaginary parts of the harmonic components. These data were then stored on a disc of the computer and a quick-look analysis was made. The analysis of each test run was performed in about 3 minutes, including plots and tables of all measured quantities (see also section 4.1). Thus, immediate access to detailed preliminary pressure and force data was possible during the test.

-19-

2.6 Equipment for flow visualization

In figure 8 a schematic overview is given of the visualization test setup. On the left-hand side a top view is shown of the windtunnel test section with the windtunnel model and the flow visualization equipment beside it. The smoke tube underneath the strake injected smoke into the flow in upstream direction near the stagnation point. In this way the smoke, mixed with air, was sucked into the vortices over the model. By means of a 5 Watt argon ion laser and a cylindrical lens, a light screen was formed which was perpendicular to the model reference plane when the model was placed at its mean incidence. The flow patterns were made visible by the light scattered by the smoke particles in the light sheet which is shown in the figure at the right.

In order to record the flow characteristics at fixed phase angles with respect to the model motion, a chopped laser light screen was used. By means of an acousto-optic modulator the laser light screen was made intermittant. The modulator was controlled by a special device developed at NLR, which generated electronic pulses in phase with the same digital oscillator signal that controlled the model motion. The pulse signal was then converted into an amplitude-modulated high frequency signal by a driver which excited the acousto-optic modulator. When no modulation was applied, the laser beam was interrupted by a mirror and reflected to a black absorber. In case of 100% modulation the modulator deflected the laser beam about 6 mRad. After that the beam passed the interrupt mirror and was led into the optical parts, including a cylindrical lens, to produce the light screen.

The optical elements could be rotated about the optical axis to place the light screen perpendicular to the wing, when the model was at mean incidence. At a distance of 2.50 m downstream of the rotation axis of the model an Olympus OM4 (35mm SLR) photocamera was installed with its optical axis in the symmetry plane at the same level as the rotation axis of the model. Photographs were taken by remote control with a 250 filmback and a 100 mm lens. The photographs were taken to determine the vortex core position at different phase angles of the model motion.

To enable the study of phenomena like vortex burst, also video recordings were made with a Charged Coupled Device (CCD) camera, positioned beside the tunnel wall.

00.01010000

-20-

PREPARATORY TESTS

3

The model was supported by a structure consisting of several struts (see Fig. 4). To estimate the interference with the flow, steady measurements were performed in a separate preparatory test with the model suspended by wires to an overhead balance system (see Ref. 7). Support interference corrections were derived, which were applied later in postprocessing the results of the main test. In the results of this preparatory test as presented in reference 7, the pitching moment is affected by the drag of the wires, which yield an additional pitching moment. Only the force in the wire attached to the front of the model is used to derive the correct pitching moment as presented in appendix C.

In a separate test (Ref. 8), the vibration modes of the model (on the balance) and the support system were measured. All resonance frequencies were far beyond the highest excitation frequency in the test program (see table 2). Therefore, the influence of elastic deformations of model and support mechanism was negligible.

Another preparatory test was carried out to determine the optimal position of the smoke tube with respect to the model. Use was made of an oscillating dummy model with an adjustable smoke tube. A steady laser light screen was applied. The test was performed in a small windtunnel at the Delft University of Technology, Department of Aerospace Engineering. In this test the optimal conditions for the smoke generation were also investigated (see Ref. 4). The same dummy model was used in a later windtunnel test in which the equipment and procedures for the unsteady flow visualization were tested.

4 PROCEDURES

4.1 Measurement of overall loads and pressure distributions

4.1.1 Transfer functions

The main objective of these measurements was to determine the transfer functions between the mechanical motion of the model as input and the pressures and overall loads as output. By using the PHAROS system (see section 2.5), the zeroth and first harmonics of the measured signals were obtained and stored on the discs of the PHAROS computer. Next, the data

-21-

of the balance were corrected for inertial and gravitational loads, according to the method of appendix B. All quantities were normalized with the response of the displacement transducer for the model motion. Then a quick-look printout of all measured quantities was produced online in tables and plots. The complete procedure of data acquisition and presentation required about 3 minutes for each test run.

After the windtunnel test the final data reduction of these harmonic data was made on the HP21/MXE computer of the PHAROS system. The aerodynamic quantities obtained after each test run were:

- one chordwise and three spanwise distributions of the mean steady pressure coefficients (Cp)m
- one chordwise and three spanwise distributions of the unsteady pressure coefficients Re(Cp) and Im(Cp), normalized with the angular displacement of the wing derived from the output of the LVDT
- zeroth and first harmonics of force and moment coefficients, measured with the NLR 635 balance, again normalized as mentioned above

- amplitudes and displacements, derived from accelerometer signals normalized as mentioned above.

4.1.2 Time recordings

Time recordings of pressures and overall loads were also made to enable the study of:

- higher harmonics in case of strong nonlinearities
- power spectra in case of vortex burst and strong flow separation effects
- cross-correlation functions in space and time when following the development of vortex burst and boundary layer separation.

In the processing of the recordings of the overall loads to time history plots of overall aerodynamic coefficients, the procedure indicated in appendix B is used.

4.2 Incidence, blockage and dynamic pressure distribution

4.2.1 Incidence

In this windtunnel test, a very large range of incidences and amplitudes was covered. Although the output of the LVDT was proportional with its elongation, the elongation itself varied nonlinearly with the incidence. During the experiment this nonlinear relationship was not vet determined and a preliminary relationship between output of the LVDT and incidence and amplitude was used. For that reason these preliminary adjusted values (as and das are presented in the tables which give an overview of the test program (tables 4 to 12). However, in the postprocessing the nonlinearity was taken into account and the correct geometric incidence (ag) and amplitude (da) were obtained. These values (measured by the LVDT) were not influenced by the deformation of the balance. Next. additional corrections to ag were applied to enable comparison to freeflight conditions, as the incidence was affected by the presence of the support system and the windtunnel walls. First a zero-lift correction was applied to correct for the influence of the support system. This correction (-0.05 deg) is the difference in incidence at zero lift, between the steady tests in wires (see Ref. 7) and the steady tests on the strut support. In both tests the wing model was equipped with wire suspension blocks. Secondly an upwash correction according the method of references 9 and 10 was applied to take into account the influence of the tunnel walls.

4.2.2 Blockage

いたいないないない ひとうちんちんちん

Due to the presence of the model in the test section, the effective dynamic pressure is increased by so-called "blockage" effects. The solid blockage can be neglected, due to the small volume of the model. The wake blockage is primarily caused by the flow separation (bluff body drag) and can be estimated from the lift vs. drag curve according to the method of references 9, 10 and 11.

During the windtunnel test the lift vs. drag curve, determined previously for the model suspended by wires (see Ref. 7), was used to adjust the tunnel speed in such a way that the dynamic pressure, corrected for blockage effects, was almost independent of the incidence. In the postprocessing, correction for the blockage effect is done on basis of the lift vs. drag curve as measured during the steady part of the test with the model on the struts.

-23-

In order to get some information of the dynamic pressure distribution around the model in relation to the dynamic pressure, measured by the tunnel reference system, some dynamic pressures were measured for zerolift conditions. The pressures were measured in a plane normal to the longitudinal test section axis (y'-z' plane) at the position of the pitching axis of the model. The pressures measured by the tunnel reference system were corrected to values in the empty test section. The dynamic pressures measured by the pitot static tube, divided by the dynamic pressure in the empty test section (Qref) are given in table 3 and figure 9. These data were intended for possible future investigations, but were not used in this report.

" NOTES TO SUPPLY AND THE PARTY TO SUPPLY TO S

4.3 Flow visualization

In figure 10 the principle of the chopped laser light screen technique is shown. The upper part of the figure shows the time history of the model motion and the lower part shows the time history of the light pulses which generate the laser light screen. The phase difference between model motion and light pulses could be varied over the entire period of 360 deg. The pulse duration could be varied between 1 and 8 deg.

For recording vortex position data, the Olympus OM 4 still photo camera was used (see figure 8) with Kodak Tri-X as film, upgraded to 1600 ASA.

As the light screen was present only during a fraction of the cycle (2.2 % maximum), several pulses were needed for one exposure. Consequently the quality of the photographs was strongly influenced by the model motion during the light pulses (depending on pitch rate and pulse width), and the time-averaging effect, i.e. the number of pulses needed for one exposure. This was not a serious drawback. In a preparatory test (see section 3), the photographs taken were very suitable for the purpose of determining vortex core positions at different phase angles of the model motion.

For qualitative dynamic information the CCD video camera was used. Although this camera has a smaller resolution than the photocamera, a complete picture could be generated from each light pulse, due to the high sensitivity.

TEST PROGRAM

5

5.1 Overall loads and pressure measurements

5.1.1 Steady tests

The steady tests, performed at zero sideslip and at a velocity of 80 m/s, covered an angle of attack range of -8 to 50 deg. To enable comparison with the steady test of the model suspended by wires (see Ref. 7), steady tests were performed with the model supported by the struts, both with and without wire suspension blocks mounted in the wings. The effect of the wire suspension blocks had to be examined to determine their effect on the zero lift correction (see section 4.2.1).

A survey of the steady test program, including the run numbers, is shown in table 4.

5.1.2 Unsteady tests

The unsteady tests covered a wide range of incidences (-8 to 50 deg), frequencies (1 to 16 Hz) and amplitudes (1 to 16 deg). Most of the pressure and load measurements were performed at 80 m/s windspeed, zero sideslip and at harmonic oscillation, with reduced frequencies based on the root semi-chord up to 0.5. A survey of this part of the unsteady testprogram, including the runnumbers, is shown in table 5.

The influence of the windspeed was studied by repeating a number of runs at 30 m/s (same windspeed as in the visualization runs) and 55 m/s (see tables 6 and 7). The frequencies were adjusted at the same time to correspond with the reduced frequencies as applied in the 80 m/s runs. At 80 m/s also runs with sideslip were performed (see tables 8 and 9).

In all runs with harmonic oscillation, the zeroth and first harmonic components of the pressures and overall loads were measured, and time recordings were made. A survey of the runnumbers for which time histories of the pressure distributions are presented is given in table 10. Table 11 presents a survey of the runnumbers for which time history plots of the overall loads at harmonic oscillation are presented. In this table the components of the balance and the corresponding power spectral density plots with their plotnumbers are indicated. In total, about 1000 runs with harmonic oscillation were performed. In the results of the steady measurements (see figure 11) some characteristic incidence ranges can be distinguished:

up to 9 deg: attached ("linear") flow

9 to 19 deg: fully developed vortex flow

19 to 36 deg: vortex burst extending from trailing edge

beyond 36 deg: vortex burst penetrating the strake, almost fully stalled flow.

Special emphasis was placed on incidences which marked transition of the flow characteristics, or were typical for the flow characteristics in some incidence range. These actual incidences were 9, 19, 22, 36 and 42 deg, which correspond to the adjusted incidences referred to in the tables ($\alpha a = 8$, 18, 22, 38, 46 deg). At these incidences a dense grid of amplitude and frequency values was measured.

5.2 Load measurements at (1-cos) inputs

This part of the test program consisted only of unsteady runs in which a (1-cos) signal was used as input, to simulate maneuvers. Time history recordings were made of the response signals of the six components of the balance, using the model motion signal as a reference.

The adjusted incidence (aa) at the start of the input is varied from 8 to 46 deg. The duration of the (1-cos) inputs is varied from 0.083 to 0.500 s, the magnitude of the wing incidence variation was 8, 16, 24 and 32 deg. A survey of the test program, including the runnumbers, is presented in table 12. At the same test conditions, also the first half (increasing incidence) and second half (decreasing incidence) were performed separately, with some time in between to allow the flow to stabilize.

5.3 Flow visualization experiments

The intention of the flow visualization program was to obtain information about the flow over the upper side of the model. This was done at the five characteristic incidences, mentioned in section 5.1.2, both by photographs and video recordings as described in sections 2.6 and 4.3 at a low windspeed (30 m/s) to obtain good smoke visualization. A survey of the test conditions is given in table 13 a through c.

During the visualization tests the phase angle of the pulsation with respect to the model motion was varied over a complete cycle in steps of

-26-

45 deg. At three chord positions, corresponding with the location of the pressure transducers, at five incidences, amplitudes and reduced frequencies corresponding with the 80 m/s runs, the smoke patterns in the light screen were registered on photofilm to determine the positions of the vortex cores, as well as on video, to obtain qualitative data of the dynamic flow phenomenae. Over 1200 cases were completed.

6 PRESENTATION OF RESULTS

The presentation of the test results is given in six parts of the report. The present part, part I, contains some examples of the test data and surveys of all testruns. Some general figures, derived from the test are also given.

Parts II and III present the plots of the zeroth and first order harmonic components of the pressure distributions for the runs as presented in the tables 4 through 9 in this part. In part III the zeroth and first order harmonic components of the overall loads, plotted vs. incidence, amplitude and frequency are also presented. The printed values have also been included on microfiche. All harmonic data are available on magnetic computer tape in order to enable easy data handling. The corresponding formats are given in table 14. Table 15 gives an example of a print of a steady test run and table 16 of an unsteady test run as presented on microfiche. The test conditions have been listed on the right-hand side in the upper table. The steady and unsteady pressures of the four sections are given as pressure coefficients together with their sectional coordinates. The overall forces and moments, obtained from the balance are presented as steady and unsteady aerodynamic coefficients. The sign definitions of the body-fixed coordinate system are given in figure 1. The corresponding pressure plots are shown in figures 12 and 13. The displacements derived from the accelerometers are presented both relative to LVDT 2 and in absolute form. LVDT 2 is the transducer in the model, whereas LVDT 1 is the transducer in the hydraulic actuator. When the pressure transducers or the accelerometers did not operate properly the values were not presented. In the next chapter more attention will be given to these harmonic data.

Part IV presents the plots of the time recordings of pressures and overall loads for the runs with harmonic excitation. A survey of the run-

-27-

numbers for which these pressure plots are presented in part IV is given in table 10 of this part and an example of such a time recording for the four sections and the eight phase angles is presented in figure 14. Table 11 presents a survey of the runnumbers for which the time histories of the overall loads are plotted; an example of the overall loads vs. incidence, derived from the time recordings of the balance signals is given in figure 15.

Part V presents a selection of the power spectral density plots of the overall loads at harmonic excitation, corresponding with the time history plots of the overall loads as presented in part IV (runnumbers, component and plotnumbers are presented in table 11 of this part). The responses of the overall loads to (1-cos) input signals (runnumbers presented in table 12) are also presented. An example of such a time history is given in figure 16. 100 Section 20

Part VI presents the results of the flow visualization by prints as well as plots of the variation of the vortex core positions during a cycle of the model motion at various incidences, amplitudes and frequencies. This part presents some selected cases in tables 17 through 22, which will be discussed further in section 7.3. The corresponding photographs and plots of the measured positions of the vortex cores for the 8 phase angles are presented in figures 31 to 43. When measurement of the vortex core positions was impossible no values were presented in prints and plots. The photographs for the eight phase angles at the aft lightsheet position, x/c = 96.82 %, are also included. Although it was impossible to measure the core positions in many of these photos, they still provide substantial qualitative information about the flow phenomena under these conditions. Some plots (figures 44, 45) are also enclosed in this part to demonstrate the influence of amplitude and frequency on the time history of the vortex core position.

7 BRIEF DISCUSSION OF SOME RESULTS

In this chapter a selection of windtunnel test data is discussed. A summary description was also given in reference 12 and a preliminary analysis of harmonic data is presented in reference 13.

-28-

7.1 Overall loads

20000

The variation of the steady normal force coefficient and the moment coefficient with incidence is shown in figure 11. The different types of flow are also indicated. Up to about 9 deg, a linear variation of CN and Cm with incidence is observed. Beyond 9 deg the slopes increase due to the development of vortex flows over both the strake and wing. At about 19 deg incidence, vortex burst starts at the wing trailing edge. Suction at the aft part of the wing is diminished, while suction on the front part still increases due to the increase of the strength of the strake vortex. Beyond 19 deg incidence, the vortex burst moves upstream, however, both CN and Cm still increase, though, at a smaller rate than before. At about 36 deg the increase of suction at the upstream part of the wing due to increasing incidence and the drop of suction at the downstream part of the wing due to the growth of the vortex burst region, counterbalance eachother which leads to maximum values of CN and Cm. Beyond 36 deg the flow over the entire wing and strake collapses rapidly into an almost completely separated flow.

The effects observed in the steady plots are also reflected in the unsteady plots. This is demonstrated in the figures 17 and 18. A very distinct change in the unsteady pitching moment coefficient is observed at about 19 deg (onset of vortex burst) and at 36 deg where the phase angle of the unsteady pitching moment changes about 180 deg. The effect of frequency on the first harmonic components of the pitching moment coefficient is shown in figure 19.

Figure 20 shows the real part of the first harmonic of the pitching moment coefficient vs. frequency for several amplitudes. At the selected incidence of $a = 18.9 \deg \operatorname{Re}(\operatorname{Cm})$ is independent of the frequency (this corresponds with the upper part of figure 19) but does depend on the amplitude. This amplitude dependence is very well organized at this incidence. Both frequency dependence and amplitude dependence show up in the imaginary part of the first harmonic of the pitching moment coefficient (see figure 21).

The results of the three force coefficients vs. amplitude are shown in the figures 22 through 24.

In figure 22 the zeroth harmonic and the real part of the first order harmonic component of the normal force coefficient is presented versus amplitude at $\alpha = 18.9$ deg and f = 3 Hz. At this low frequency Re(CN) decreases with amplitude at the higher amplitudes, as can be expected from the steady CN versus α curve, presented in figure 11.

Figure 23 shows the zeroth harmonic of the side force coefficient vs. amplitude for 3 frequencies at $\alpha = 35.9$ deg and $\beta = 5.0$ deg. The range used as vertical axis of the graph is less than 1 % of the total range of the balance (also see section 8.1), however, a good distinction can be made between curves for various frequencies. Figure 24 shows the zeroth harmonic of the tangential force coefficient vs. amplitude for 2 frequencies at 18.9 deg incidence. The effect of the frequency results in a shift of (CT)m while the shape remains the same.

Figure 25 shows the effect of sideslip on the unsteady yawing moment coefficient. In the plot all measured amplitude frequency combinations for one particular incidence are shown. The trends for only one amplitude frequency combination are indicated in the figure. A similar treatment is shown in figure 26 for the effect of sideslip on the first harmonic of the rolling moment coefficient. In the left part of the figure the frequency is kept constant and the amplitude is varied, while in the right part the amplitude is constant and the frequency is varied.

7.2 Pressure distribution

1.140.540. 140.040.040.0500.040.040.040.040

Positioning of the transducers was very appropriate for understanding the complex flow phenomena that were encountered in this investigation. Thus, based on consideration of the steady and unsteady pressure distribution, it was possible to make the flow field observations that were described in section 7.1.

During the experiment, the zeroth and first harmonic components of the pressure distribution were presented. After postprocessing, which included correction for blockage effects and determination of the correct incidence, the same presentation was used again. Figure 12 shows an example of the pressure coefficients of a steady test run and figure 13 shows the same for an unsteady test run. In figure 27 an overview is given of the development of the steady pressure distribution with incidence. The chosen incidences are the ones which are selected for the flow visualization program. In section 1 the presence of the strake vortex is indicated by position of the strake vortex at about 45 % and the wing vortex at about 80 % of the local semi-span. Up to about 19 deg the pressures grow with incidence. At incidences greater than about 19 degrees the effect of the wing vortex on the pressure distribution decreases. Beyond an incidence of 36 deg the wing vortices have disappeared due to flow separation, while beyond 42 deg the strake vortices have also disappeared.

-30-

At the trailing edge section 3 shows the effect of vortex burst. Section 4 shows the pressure distribution of the chordwise section with its characteristic suction peak on the nose. At incidences greater than about 36 deg trailing edge separation occurs, while at incidences greater than about 42 deg flow separation on the nose occurs.

By combining plots of unsteady runs, one can easily get good insight into the influence of the different parameters: figure 28 shows the influence of incidence and figure 29 shows the influence of amplitude on the pressure distribution at section 2. AND NUMBER OF A DESCRIPTION OF A DESCRIP

CONTRACT PRODUCT PRODUCT (DOCORDA I TOBACO)

201222

An impression of the contribution of the higher harmonics can be obtained from the tape recordings by time history plots (see figure 14) or spectra. As another example, figure 30 shows the time history of the pressure distribution at section 2 for the flow condition as presented at 6.98 deg amplitude in figure 29. The pressure signal at the suction peak, which can be associated with the wing vortex (80 % local semi-span), shows a nonlinear behaviour, which is expressed in a significant second harmonic component in the spectra.

7.3 Vortex core positions

In this section examples of the time history of the unsteady flow are presented in figures 31 through 43. Flow patterns have been photographed for eight phase angles at three spanwise sections and in these photographs the positions of the vortex cores have been determined as shown in the figures.

At the strake section (x/cr = 40.42 %) one test condition was chosen: $\alpha = 18.94 \text{ deg}$, $d\alpha = 3.58 \text{ deg}$, f = 1.88 Hz. The photographs of this case are shown in figure 31 and the measured positions of the cores are presented in table 17 and figure 32. The spanwise position of the vortex core, depending on the phase angle, is situated at about 70%, which corresponds to the steady pressure distribution at section 1 in figure 27(3). At these test conditions a stable vortex flow exists at this section.

At the section just behind the kink $(x/cr = 65.88 \ z)$ five test conditions were chosen. Not only the strake vortex, but also the wing vortex is present in this section. The situation in figures 33 and 34 is rather straight forward. At an incidence $\alpha = 18.93$ deg and an amplitude of da = 6.93 deg we still have stable vortex flow during the cycle. Because it was attempted to optimize the smoke conditions for the wing vortex, the core positions of the strake vortices were overexposed and could not

-31-

always be measured (see table 18). The spanwise coordinate of the wing vortex cores (~ 80 %) corresponds with the position of the pressure peak in section 2 in the figures 27 and 28. In the figures 35, 36 and 37, 38 the incidence and frequency are the same, but a different amplitude is used. Plotting the nondimensionalized z-position of the vortex cores versus phase angle (see figure 44) shows that the distance of the vortex cores from the model increases with the amplitude. The vortex flow at the left side breaks up at the higher amplitude at a phase angle of φ = 90 deg (see figure 37). In these situations such smoke conditions were created that the vortex core positions could be determined for both the strake vortex and the wing vortex (see tables 19 and 20). In the test conditions corresponding to the figures 37 through 42 the same incidence and about the same amplitude were maintained, but 3 different frequencies were used. In figure 45 the nondimensionalized z-position is plotted versus phase angle. There seems to be a phase shift between the measurements at 1.13 Hz and 6 Hz, but the measurements at 3 Hz mystify the picture. Also an increasing frequency seems to postpone the vortex burst (see the photographs at the phase angles $\varphi = 90$ and $\varphi = 135$ degrees). The determined positions are presented in the tables 20 to 22.

At the trailing edge section $(x/cr = 96.82 \ z)$ as shown in figure 43 the flow changes from burst vortices at $\varphi = 0$ degrees to fully separated flow at a phase angle of 90 degrees, and to stable vortex flow at 270 degrees phase angle.

8 FINAL COMMENTS

8.1 Deformation and accuracy of the balance

For computer code evaluation, accurate overall loads are indispensable. A balance is used for this purpose, although it will be a weak element in the support of the model. The balance signals will also be affected by inertia loads. In this test the resonance frequencies of the support system (including the balance) were far beyond the highest excitation frequency. Subsequently, the influence of these vibration modes on the model motion were negligible. Due to the small inertia properties of the model and the low test frequencies, inertia loads were small, hence by measuring the model motion, corrections for inertia loads were made by using wing model mass properties. In this way, overall loads will be

-32-

obtained which are expected to be more accurate than airloads obtained by integration of a large number of pressures, measured at the model surface, especially when large pressure gradients occur.

The maximum forces and moments which can be measured with the NLR 635 balance are mentioned in section 2.3. Assuming that the balance can measure accurately at less than 1% of its total range, the nondimension-alized force and moment coefficients can be calculated corresponding to a 1% load. Comparing these values to the measured values, it can be concluded that the ranges of all symmetrical components conform to the acting loads upon the balance. However the loads of the asymmetrical components are acting in the lower 10% of the total range. Nevertheless it can be said that the accuracy of the measurements will be better than 1% of their total range.

8.2 Instrumentation

and the second second

0000000

NO 2010 MILLION AND INCLUDED

Just before the test period, transducer 3 of the 42 pressure transducers was found unusable in both steady and unsteady measurements. The transducers 6, 27 and 42 were unusable in the steady measurements and the transducers 29 and 37 in the unsteady measurements. The measured values of these transducers were not presented in the print out and plots. This presentation was also used with the transducers which were unreliable or failed during the tests. The transducers in pressure section 1 on the strake were highly susceptible to failure as a consequence of the high acceleration levels encountered in this section.

Accelerometers 5 and 6 gave very poor signals before the test period and were not presented in any run. Furthermore only the results with accelerometers 1, 7 and 8 seemed reliable. The other accelerometers were not reliable in all cases, which can be seen in the last column of the LVDT/-Accelerometer table in the print out, in which the calculated amplitude divided by the measured amplitude is presented.

Two of the supporting struts were used as conduits for the instrumentation wiring. To minimize loads on the balance due to the instrumentation wiring sufficient slack was provided between the supporting struts and model.

-33-

8.3 Backlash in wing support bearings

During the windtunnel test all signals could be monitored on an oscilloscope. By monitoring the LVDT signal, an increase in backlash in the bearings of the wing support could be detected, in which case the bearings could be adjusted and the backlash removed.

8.4 Visualization

During the visualization at the three spanwise sections a large number of photographs was taken with the aim to measure the positions of the vortex cores. This was not possible in all cases; especially for section 2 (just behind the kink) it was not always possible to inject the right amount of smoke in both vortex systems. When more smoke was injected, the wing vortices could be photographed correctly, but the strake vortices were overexposed; when less smoke was injected the wing vortices could not be detected on the photographs. At the third section, the vortices were burst in many of the tests and only qualitative information could be obtained from the photographs.

The video recordings also provided much qualitative information of the flow, especially at vortex burst, because no time averaging over several light pulses was needed for proper exposure.

8.5 The effect of the wire suspension blocks

In one of the preparatory tests as discussed in chapter 3, measurements were carried out on the model suspended by wires (see Ref. 7). This was done in order to make an estimate of the interference of the model support system used in the test described in this report. To be able to attach the wires in the preparatory test, special wire suspension blocks had to be installed in the model. In figure 46 the effect of the wire suspension blocks on the lift and drag curves for the model on the strut support is presented. The graphs with and without wire suspension blocks are presented next to each other because placing the two curves in one figure shows no difference. Therefore the effect of the wire suspension blocks can be neglected in the zero lift correction as described in section 4.2.1.

-34-
CONCLUDING REMARKS

9

Beccassy Resident Modercom

The aims, mentioned in section 1 have been achieved.

- A large data base of both overall forces and moments as well as pressure distributions has been created. It is expected that this data base will be useful for the evaluation of advanced computer codes for the determination of unsteady aerodynamic quantities for conditions at high angles of attack.

- From photographs quantitative information about the vortex core positions is made available to better understand the unsteady vortex flow.
- Video and photograph registrations made during this experiment will contribute significantly to enlarge the physical insight into both steady and unsteady vortex flow phenomena.

10 REFERENCES

1	Boersen, S.J.	The international vortex flow experiment,
	Elsenaar, A.	a test case for compressible Euler code
		evaluation.
		NLR MP 86076 U (1986)
2	Kannemans, H.	Laser-light sheet visualization and in field
		total pressure measurements in steady vortex
		flow over delta and double delta wings.
		NLR TR 83057 L (1983)
3	Horsten, J.J.	Design of the GD/NLR straked wing model and
		support system.
		Memorandum AE-85-005 U (1985)
4	Persoon, A.J.	Some experiments with flow visualization of
	Retel, A.P.	vortices over a vibrating straked wing.
		Memorandum AE-86-001 L (1986)
5	Poestkoke, R.	Hydraulic test rig for oscillating wind
		tunnel models.
		NLR MP 76020 II (1976)

-35-

-36-6 Fuykschot, P.H. PHAROS, Processor for Harmonic Analysis of the Response of Oscillating Surfaces". NLR MP 77012 U (1977) 7 de Vries, O. Force measurements in a low speed windtunnel on a model of a straked wing, suspended in wires. NLR TR 86047 C (1986) 8 den Boer. R.G. Vibration test of the GD/NLR straked wing Persoon, A.J. model and support mechanism. Memorandum AE-85-014 U (1985) 9 Maskell, E.C. A theory of blockage effects on bluff bodies and stalled wings in a closed windtunnel. RAE Report No.Aero 2685 (Nov.1963) 10 Garner, H.C. Subsonic wind tunnel wall correction. Rogers, E.W.E. AGARDograph 109 (1966) Acum, W.E.A. Maskell, E.C. 11 Vayssaire, J.C. Correction de blockage dans les essais en soufflerie effects des decollements. AGARD-CP-102 12 den Boer, R.G. A windtunnel investigation of low speed of Cunningham, A.M. the flow about a straked delta wing, oscillating in pitch. AIAA paper 87-2493. Atmospheric Flight Mechanics Conference, Monterrey, August 17-19, 1987 13 Cunningham, A.M. Harmonic analysis of force and pressure data den Boer, R.G. results for an oscillating straked wing at high angles. AIAA paper 87-2494. Atmospheric Flight Mechanics Conference, Monterrey,

August 17-19, 1987

light

TABLE 1

Positions of pressure transducers and accelerometers (x 100 %), see figure 5

1. A . A .

s so soon in the second of a second the

K

:

PRES	SURE	TRANSDUC	ERS					
sec	no	x/c	2y/b		sec	no	x/c	2y/b
I	1	40.42	6.81	1	III	29	96.82	20.00
	2	40.42	20.43	ł	1	30	96.82	30.00
	3	40.42	34.06	- ()	l	31	96.82	40.00
	4	40.42	47.68		j	32	96.82	50.00
	5	40.42	54.48		ł	33	96.82	60.00
	6	40.42	61.29		}	34	96.82	70.00
	7	40.42	68.10			35	96.82	80.00
Ì	8	40.42	74.92	11	{	36	96.82	90.00
	9	40.42	81.73					
	10	40.42	88.54		IV	37	5.72	40.00
						22	16.61	40.00
II	11	65.88	13.11			38	29.21	40.00
	12	65.88	26.00			39	41.82	40.00
]	13	65.88	32.44			40	54.42	40.00
	14	65.88	38.89	- II	{	41	67.02	40.00
	15	65.88	42.93]	42	79.62	40.00
	16	65.88	46.93			31	92.22	40.00
	17	65.88	50 .98	- {}	}			
	18	65.88	55.02	-1				
	19	65.88	59.02	- [[SECT	ION	с	Ъ/2
	20	65.88	63.07		Į			
	21	65.88	67.07		I		785.5	79.16
	22	65.88	71.11		ł			
	23	65.88	75.56		II		785.5	225.0
1	24	65.88	80.00		1			
	25	65.88	84.44]	111		785.5	400.0
1	26	65.88	88.89					
{	27	65.88	93.33		IV		321.38	400.0
	28	65.88	97.78			_		

ACCI	ELEROMET	ERS		b/2 = 400.0 mm					
no	x/cr	2y/b	no	x/cr	2y/b				
1	82.75	86.25	6	93.70	0.00				
2	92.94	86.25	7	46.72	0.00				
3	82.75	-86.25	8	21.26	0.00				
4	92.94	-86.25	9	62.38	-37.50				
5	92.94	-37.50							

S tay tay hat at.

:

TABLE 2

Vibration modes with corresponding frequencies of the installed model

mode number	freq.	type
1	38.66	roll
2	45.36	roll + pitch
3	53.03	pitch
4	111.87	model bending
5	31.97	yaw
6	80.03	Y-displacement on support

NUMPERON

TABLE 3

Dynamic pressure distribution (model at zero lift)

	y' (mm)	z' (mm)	Qpitot/Qref
	200.0	50.0	1.0627
	100.2	50.0	1.0830
	0.1	50.0	1.1006
	-99.9	50.0	1.0796
	-199.5	50.0	1.0572
	-300.0	50.0	1.0344
	-400.0	50.0	1.0155
	-500.0	50.0	1.0102
	199.7	150.6	1.0281
	99.9	150.6	1.0354
	0.0	150.6	1.0384
	-100.1	150.6	1.0338
	-200.2	150.6	1.0265
	-300.0	150.6	1.0175
	-400.6	150.6	1.0117
	-500.6	150.6	1.0080
-	199.9	249.2	1.0158
	100.1	249.2	1.0187
	0.1	249.2	1.0193
	-100.0	249.2	1.0176
	-200.0	249.2	1.0153
	-300.0	249.2	1.0116
	-400.2	249.2	1.0090
	-500.4	249.2	1.0068
	0.0	450.0	1.0078
	0.0	450.0	1.0077
	-149.6	-50.0	1.2146
	-200.0	-50.0	1.1416
	-300.0	-50.0	1.0736
	-400.0	-50.0	1.0290
	-499.7	-50.0	1.0168
	~600.1	-50.0	1.0115

-40-

TABLE 4

Steady test program ($\beta = 0 \text{ deg}$, V ~ 80 m/s)

v	=	80	m/s
ß	-	0 0	ieg

XX X

aa	RUN NR.
-10	3
-8	4
-6	5
-4	6-23
-2	7
0	8–9
2	10
4	11-62
6	12
8	13-63
10	14-24
12	15-64
14	16
16	17-65
18	18
20	19-25-27-34
20	55-66-72-73
22	20-28-35
24	21-29-36-67
26	22-30-37
28	38-68
30	39
32	40-69-74
34	41
36	42-70
38	43-54-56
40	44-53-57-71
42	45-58
44	46
46	47
48	48
50	49
52	50
54	51
55	52-59

:

00000000000

α _a	RUN NR.
4	1060
8	1061
12	1063
14	1064
16	1065
18	1066
20	1067
22	1068
26	1069
30	1070
34	1071
36	1072
38	1073
40	1074

with wire suspension blocks

without wire suspension blocks

TABLE 5 Unsteady test program ($\beta = 0 \text{ deg}$, $V \approx 80 \text{ m/s}$)

> V = 80 m/s β = 0 deg

a	f	daa								
		2	4	6	8	10	12	14	16	18
-4	3	430	431							
	5	432	433							
	8	434	435							
	12	436								
-4	16	437								
0	3	438	439		440					
	5	441	442		443					
	8	444	445		446					
ł	12	447								
0	16	448								
4	3	449	450		451		452			
	5	453	454		455		456			
	8	457	458		459					
	12	460								
4	16	461								
8	3	462	463 1033		464 1034		465		466 1035	
	5	467	468 1036		469 1037		470		471 1040	
	8	472	473 1041		474 1042					
	12	475								
8	16	476 1043								

1

ANT SAME TANK TANK TANK

TABLE 5 (cont'd)

V	80	m/s
ß	0 0	ieg

Ì

CONTRACTOR

a a	f	da a								
 		2	4	6	8	10	12	14	16	18
12	2		76		77					
	3	477	478 479		479 498		480			
	5	481	482 499		483 500		484			
	8	485	486 501		487 502					
	12	488 503								
12	16	489 504								
16	2	78	79	80	81	82	83			
	3	84 490	85 491	86	87 492	88	89			
	4	90	91	92	93	94	95			
	5	97 493	98 494	99	100 495	101	102			
	8	496 505	506	507	508					
	12	509								
16	16	510								
18	2	103	104 951	105	106 952	107	108	109 953		
	3	110	111 984	112	113 985	114	115	116 986		
	4	117	118 954	119	120 955	121	122	123 956		
	5	124	125 987	126	127 988	128	129	1 30 989		

1

:

TABLE 5 (cont'd)

V = 80 m/s $\beta = 0 \text{ deg}$

a	f	da a								
		2	4	6	8	10	12	14	16	18
	8	511	512 957	513	514 958					
	12	515								
18	16	516 959								
20	2	131	132 960	133	134 961	135	136	137	138 962	
	3	139	140	141	142	143	144	145	146	
	4	147	148 963	149	150 964	151	152	153	154 965	
	5	155	156	157	158	159	160	161	162	
	8	517	518 966	519	520 967					
	12	521								
20	16	522 968								
22	2	173	172 969	174	175 970	176	177	178	179 971	180
	3	181	182 978	183	184 979	185	186	. 187	188 980	189
	4	190	191 972	192	193 973	194	195	196	197 974	1 98
	5	199	200 981	201	202 982	203	204	205	206 983	207
1	6	523	524	525	526	527	528			
	8	529	530 975	531	532 976					
	10	533	534							
	12	535								
22	16	536 977								

X

-44-

فالمراهلة والمراجع بالمعالية فالمعاركة المراجع

:

TABLE 5 (cont'd)

V	-	80	m/s	
ß		0	deg	

	E E							<u> </u>		
a		a								
		2	4	6	8	10	12	14	16	18
24	2	208	20 9	210	211	212	213	214	215	
	5	216	217	218	219	220	221	222	223	
	8	537	538	539	540					
	12	541								
24	16	542								
26	3	224	225 425	226	227	228	229	230		
	5	231	233	234	235	236	237	238		
	8	543	544	545	546			÷		
	12	547								
26	16	548								
28	3	239	240 426	241	242	243	244			
	5	245	246	247	248	249	250			
	8	549	550	551	552					
	12	553								
28	16	554								
30	3	251	252 265 427	253	254 266	255				
	5	256	257 267	258	259 268	260				
	8	555 567	556	557 569	558					
	12	559 570								
30	16	560 571								

TABLE 5 (cont'd)

60000000

a	f	daa							<u></u>	
		2	4	6	8	10	12	14	16	18
32	3	269	261 270 428	271	262 272	273	274			
	5	275	263 276	277	264 278	279	280			
	8	561 572	562 573	563	564 574					
	12	565 575 576								
32	16	566								
34	3	281	282	283	284	285	286	287		
	5	288	289	290	291	292	294	295		
	8	577	578	579	580					
	12	581								
34	16	582								
36	3	296	297	298	299	300	301	302	303	
	5	304	305	306	307	308	309	310	311	
	8	583	584	585	586					
	12	587								
36	16	588								
38	2	314	315	316	317	318	319	320	321	
	3	322	323 1044	324	325 1045	326	327	328	329 1046	
	4	330	331	332	333	334	335	336	337	
	5	338 719	339 720 1047	340 721 1048	341 722	342 723	343 724	344 725	346 726 1049	

ALC ALC BUY BUT BUT BUT BUT BUT BUT BUT

Ś

-

......

TABLE 5 (cont'd)

V	-	80	m/s
ß	-	0	deg
_		_	

Γ	a	f	dαa								
Ĺ			2	4	6	8	10	12	14	16	18
		6	590	591	592	593	594				
		Ű	656	657	658	659	660				
		8	589	595	596	597					
			661	662	663	664					
			ĺ	1050		1051					
		10	665	599							
		ł		666							
ł		12	598								
			600								
	38	16	601								
		1	1052								
	40	3	367	368	369	370	371	372	373		
		5	374	375	376	377	378	379	380		
}							••••	••••			
		8	602	603	604	605					
		12	606								
	40	16	608								
	42	3	381	382	383	384	385	386			
ļ						200	201	202			
		5	387	388	389	390	391	392			
		8	609	610	611	612					
		12	613								
			1								
	42	10	015								
}			202	20/	205	206	207				
	44	5	393	394	393	790	221				
		5	398	399	400	401	402				
[8	616	617	618	619					
		1.2	620								
		12	020								
	44	16	621								

TABLE	5	(cont	'd)

RUM DOTON PARTY LUCK

					-47-					
				TABLE	5 (co	nt'd)				
									ν = β =	80 m/s 0 deg
α a	f	daaa							<u></u>	
	ļ	2	4	6	8	10	12	14	16	18
46*	3	403	404	405	406					
		653	655 1053		1054					
	5	407	408	409	410					
			1055	407	1056					
	8	623	624	625	626					
		669	670 1057	671	672 1058					
	12	627								
		673								
46	16	628								
		674 1059								
48	3	411	412	413						
	5	414	415	416						
	8	629	630	631						
	12	632								
48	16	633								
50	3	417	418							
	5	419	420							
	8	634	635							
	12	636								
50	16	617								
50										
52	3	422								
	5	421				*		α a	f	dα a
	8	638				RUN	651:	46	3	0.1
	12	639				RUN	652:	46	3	1
52	16	64.0				RUN	654:	46	3	3

-47-

:

TABLE 5 (concluded)

Γ	V	-	80	m/s
L	ß	-	0 0	leg

a	f	daa	daa										
	ļ	2	4	6	8	10	12	14	16	18			
54	3	423	(1°)										
	5	424	(1*)										
	8	641	(1°)										
	12	642	(1*)										
54	16	643	(1°)										

:

Ś.

TABLE 6 Unsteady test program ($\beta = 0 \text{ deg}$, V ~ 55 m/s)

V = 55 m/s $\beta = 0 \text{ deg}$

αa	f	da a								
		2	4	6	8	10	12	14	16	18
8	2.06		790		791				792	
	3.44		793		794				795	
	5.50		7 96		797					
8	11.0		798							
16	2.06		832		833		834			
	3.44		835		836		837			
	5.50	ſ	838		839					
16	11.0	840								
18	2.06		841		842			843		
	3.44		844		845			84o		
	5.50		847		848					
18	11.0	849 859								
20	2.06		850		851				852	
	3.44		853		854				855	
	5.50	858	856		857					
20	11.0	860								
22	2.06		861		862				863	
	3.44		864		865				866	
	5.50		867		868					
22	11.0	883						·····		

CONVERT 6. 7 6. 8 8. 7 6

:

4.7 8.

CA' BAT 8. " 44". 44 . 8.

7

TABLE 6 (cont'd)

1	V	-	55	m/:	5
	ß	=	0	deg	

α a	f	daa								
		2	4	6	8	10	12	14	16	18
24	2.06		874		875				876	
	3.44		877		878				879	
}	5.50		880		881					
24	11.0	882								
36	2.06		675		676				677	
	3.44		678		679				680	
	5.50		681		682					
36	11.0	683								
		005								
38	2.06		684		685				686	
	3.44		687		688				689	
	5.0	718								
	5.50		69 0		691					
38	11.0	692								
42	2.06		693		694				695	
	3.44]	696		697		698			
	5.50		699		700					
42	11.0	701								
44	2.06		702		703	704				
	3.44		705		706	707				
	5.50		708		70 9					
44	11.0	710								

TABLE 6 (concluded)

V = 55 m/s $\beta = 0 \text{ deg}$

11

۵a	f	da a								
		2	4	6	8	10	12	14	16	18
46	2.06		711		712					
	3.44	(713		714					
	5.50		715		716					
46	11.0		717							

:

:

TABLE 7 Unsteady test program ($\beta = 0 \text{ deg}$, V ~ 30 m/s)

V	30	m/s
B	0 0	leg

α _a	f	daa						<u> </u>		
		2	4	6	8	10	12	14	16	18
8	1.13		819		820				821	
	1.88		822		823				824	
	3.0		825		826				827	
	6.0	828	829		830					
8	12.0	831								
18	1.13		897		898			899		
	1.88		900		901			902		
	1.00				004			0.05		
	3.0		903		904			905		
	6.0	906	9 07		908					
18	12.0	909								
					0.05				0.07	
22	1.13		884		885				880	
	1.88		887		888				889	
	3.0	8	890		891				892	
	6.0	893	894		895					
22	12.0	896								
38	1.13		727		728				729	
	1.88		730		731				732	
	2.00	}	722		73/				735	
}	3.0				7.54				())	
	6.0	736	737		738					
38	12.0	739								

TABLE 7 (concluded)

V = 30 m/s $\beta = 0 \text{ deg}$ 2007242

NAMES AND A DESCRIPTION

AND AND ACCORDED AND AND A AND A

α _a	f	daa								
		2	4	6	8	10	12	14	16	18
46	1.13		741		742					
	1.88		743		744					
}	3.0		745		746					
	6.0	747	748		749					
46	12.0	750						_	_	

:

V	-	80	m/s
ß	-	5	deg

	Ur	nsteady	test p	TA rogram	BLE (g =	8 +5 de	g, V ~	80 m/	s)		
									V = β =	80 m/s 5 deg	
a	f	daa					· =				
		2	4	6	8	10	12	14	16	18	
8	3		799		800				801		
	5		802		803				804		
	8	806	805		807						
8	16	808									
18	3		941		942			043			
	5		944		945			946			
	8	947	948		949			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
18	16	950									
22	3		911	,	912				913		
	5		914		915				916		
	8	917	918	1	919						
22	16	920									
38	2		751		752				753		
	3		754		755				756		
	5		757		758				759		
	8	760	761		762						
38	16	763									
46			797		703			-		ł	
40	2		702 79 <i>1</i> ,		/03 795						
	و ا	786	797		799						
46	16	789	/0/		/ 00						
									<u> </u>		

TABLE 9 Unsteady test program ($\beta = -5$ deg, V ~ 80 m/s)

> V = 80 m/s $\beta = -5 \text{ deg}$

> > PROVIDED INTEREST INTEREST DEPENDED INCOMES PROPERTY DEPENDENT

2222222

~

α _a	f	daa								
		2	4	6	8	10	12	14	16	18
8	3		809		810				811	
	5		812		813				814	
	8	815	816		817					
8	16	818								
18	3		931		932			933		
	5		02/		035			036		
			734		955			930		
	8	937	938		939					
18	16	940								
22	3		921		922				923	
	5		924		925				926	
	8	927	928		929					
22	16	930								
38	3		764		765				766	
	5		767		768				769	
	8	770	771		772					
38	16	773								
46	3		774		775					
	5		776		777					
	8	778	779		780					
46	16	781								

1000007

:

076-31670-0666-565

A. 540. 148. 140. 141

TABLE 10Runnumbers for which plots are presented of time histories
of the pressure distributions

V	-	80	m/s
ß	-	0 0	leg

a	f	da a								
ļ	ļ	2	4	6	8	10	12	14	16	18
8	3		1033		1034				1035	
	5		1036		1037				1040	
	8		1041		1042					
8	16	1043								
18	2				952			953		
	3				985			986		
	4		954		955					
	5		987		988			989		
	8		957		958					
18	16	959								
20	2		96 0		961			962		
	4		963		964			965		
	8		966		96 7					
20	16	968								
22	2		969		970			971		
	3		978		979			98 0		
	4		972		973			974		
	5		981		982			9 83		
	8	ł	975		976					
22	16	977								

:

222220

1145352

1× 1 1.

00000000

B

DOGASSOOT

Nº C

:

64" . Va

10' 10' 10

TABLE 10 (concluded)

22222222

2222222

Preserved Preserved

11.455555

CEREWAN

a	f	da a				<u> </u>			<u> </u>	
		2	4	6	8	10	12	14	16	18
38	3	;	1044		1045			1046		
	5	1	1047		1048			1049		
	8		1050		1051					
38	16	1052								
46	3		1053		1054					
	5		1055		1056					
			1033		1030					
	8		1057		1058					
46	16	1059								

TABLE 11aRunnumbers and corresponding plotnumbers of time historiesand power spectral densities of overall loads atharmonic oscillation (V ~ 80 m/s, β = 0 deg)

V	-	80	m/s
ß	-	0 (deg

49.

AL. 98. AL. AL. 8. 88. 141. 141. 141. 141.

WAR WAR

α _a	f	daa		·····
		8	12	16 18
0	3	440 -		
	5	443 -		
	8	446 -		
4	3	451 -	452 -	
	5	455 -	456 -	
	8	459 -		
8	3	464 -	465 -	466 -
	5	469 -	470 -	471 -
	8	474 -		
12	3	479 <u>m</u> 3202	480 N 3204 m 3203	
	5	483 m 3207	484 m 3208	
	8	487 m 3211		
16	3	87 -	89 -	
	5	100 -	102 -	
18	3	113 N 1108	¹¹⁵ m 1109	
	5	127 -	129 -	
	8	514 N 3244 m 3243		
20	3	142 -	144 -	146 -
	5	158 -	160 -	162 m 1112
	8	520 N 3256 m 3255		

:

-59-

TABLE lla (cont'd)

V = 80 m/s $\beta = 0 \text{ deg}$

αa	f	da			·
		8	12	16	18
22	3	184 m 1125	186 m 1127	188 m 1129	189 m 1130
	5	202 m 1143	204 m 1145	206 m 1147	207 <u>m</u> 1148
	8	532 <u>m</u> 3270			
24	3	211 m 1152	213 m 1154	215 m 1156	
	5	219 m 1160	221 m 1162	223 m 1164	
	8	540 m 4104			· <u> </u>
26	3	227 m 1168	229 m 1170		
	5	235 -	237 m 1202		
	8	546 N 4111 m 4110			*
28	3	²⁴² m 1207	244 m 1209		
	5	248 m 1213	250 <u>m</u> 1215		
	8	⁵⁵² m 4117			<u></u>
30	3	254 m 1218			
	5	259 m 1223			
	8	558 m 4123			
32	3	262 m 1226	274 N 1243 m 1242		
	5	264 m 1228	280 N 1255 m 1254		
	8	564 m 4129			

:

1

TABLE 11a (concluded)

V	=	80	m/s
ß	=	0 0	leg

ŵ

		<u> </u>										
				-60	-							
			TABLE	11a	(co1	ncluded	1)					
										V = 80 m	7-1	
										$\beta = 0 de$	3	
<u>a</u>	F	da			<u> </u>						-	
ัล	-	a										
		8			12		16			18		
34	3			286	N	1267						
	5	N 192	2103	204	-	1200						•
			2102	£34								
	8	580 m	4150									•
		N			`	<u></u>						
36	3	299 m	2117	301	N	2121 2120						
	5	307 ^N	2133	309	N	2137						
		m N	2132	•	m	2136						
	8	586 m	4161									
	<u> </u>	N N	2165			2169		N 21	73	·		
38	3	325 🖬	2164	327		2168	329	m 21	.72			
	5	341 N	2222	343	N	2226	346	N 22	232			
			5116		ш	222J		11 22	.31			
_	o	אצכ ש	5115									
40		270	<u> </u>									
40	5	370 -		512	-							
	5	377 -		379	-							
	8	605 ^N	5132									
42	3	384 N	2268	386	N	2272						
•		m N	2267		m N	2271						
	5	390 m	3105	392	10	3109						
	8	612 -										
	<u> </u>	ļ							<u> </u>			•
44	3	396 ^N	3118									
	_		3128									•
	5	401 m	3127									
		N	5156									
	8	619 1 m	5157 5155									
			2128	·		·						
46	3	406 m	3137									
	5	410 N	3146									
		N N	5169									
	8	020 m	5168									

TABLE 11b Runnumbers and corresponding plotnumbers of time histories and power spectral densities of overall loads at harmonic oscillation (V ~ 80 m/s, β = 5 deg)

V	-	80	m/s
ß	-	5_0	ieg

3 12 16 18 8 3 800 1705 801 17109 m 7104 m 7107 n 7114 n 5 803 1715 804 17117 n 7116 5 803 17125 804 17117 n 7116 n 7125 8 807 17126 n 7124 n 7124 n 8103 n n n 18 3 942 8104 m n n m 8103 n n n n n n 8102 n n n n n n 8123 n n n n n n 7163 913 17167 m n n n <td< th=""><th></th></td<>	
N N	
8 3 800 1 7103 801 1 7109 m 7104 m 7107 N 7114 N 7116 5 803 1 7115 804 1 7117 m 7125 8 807 1 7126 8 807 1 7126 1 7109 9 N 7125 8 804 1 7117 18 3 942 1 8104 1 8102 18 3 942 1 8104 1 8102 5 945 1 8113 1 7167 m 8124 8 949 1 8125 18 949 1 8125 1 7167 17162 1 7164 913 1 7167 17162 m 7165 1 7173 916 1 7201 1 7162 m 7174 1 7174 1 7174 1 7170 m 7174 1 7201 1 7174 1 7170 1 7201 1 7201 1 7201	
3 300 1 7103 301 1 7103 m 7104 m 7107 N 7114 N N 7116 5 803 1 7115 804 1 7117 m 7125 8 804 1 7117 m 7126 1 1 1 8 807 1 7126 1 1 18 3 942 1 8104 1 1 5 945 1 8113 1 1 1 5 945 1 8125 1 1 1 8 949 1 8125 1 1 1 1 10 N 8124 9 913 1 7167 1 1 1 10 N 7163 N 7166 1 7201 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
Image: Second	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
m m 7124 18 3 942 1 8103 18 3 942 1 8104 m 8102 N 8112 5 945 1 8113 m 8111 N 8124 8 949 1 8125 m 8123 N 7166 22 3 912 1 7164 913 1 7167 m m 7162 m 7165 N 7172 916 1 7201 5 915 1 7173 916 1 7201 m 7171 m 7174 N 7209 8 919 1 7210 N 5241 N 5244 38 3 755 1 5242 756 1 5243 N 5250 N	
18 3 942 1 8103 m 8102 5 945 1 8113 m 8111	
18 3 942 1 8104 N 8112 5 945 1 8113 m 8111 N 8124 8 949 1 8125 m 8123 N 7163 N 22 3 912 1 7164 913 1 7167 m 7165 N 7172 m 7165 N 5 915 1 7173 916 1 7201 m 7171 m 7174 N 7244 38 919 1 7210 m 7174 8 919 1 7210 m 7174 8 919 1 7210 m 7208 38 3 755 1 5242 756 1 5243 38 3 755 1 5243 m 5253 5 758 1 5251 759 1 5254	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
5 915 1 7172 916 1 7201 m 7171 m 7174 m 7174 N 7209 8 919 1 7210 m 7208 N 5244 38 3 755 1 5242 756 1 5245 m 5240 m 5243 N 5253 5 758 1 5251 759 1 5254	
5 915 1 7173 916 1 7201 m 7171 m 7174 N 7209 8 919 1 7210 m 7208 38 3 755 1 5 756 1 5243 N 5250 N 5253 5 758 1 5251	
m /1/1 m /1/4 N 7209 8 919 1 7210 m 7208 0 0 0 38 3 755 1 5242 38 3 755 1 5242 38 3 755 1 5242 38 3 755 1 5242 38 3 755 1 5243 38 3 755 1 5243 38 3 755 1 5253 38 5 758 1 5251	
N 7209 8 919 1 7210 m 7208 N 5244 38 3 755 1 5242 38 3 755 1 5242 M 5240 m 5243 N 5250 N 5253 5 758 1 5254	
o 919 1 7210 m 7208 N 5241 N 5244 38 3 755 1 5242 756 1 5245 m 5240 m 5250 N 5253 5 758 1 5251 759 1 5254	
N 5241 N 5244 38 3 755 1 5242 756 1 5245 m 5240 m 5250 N 5253 5 758 1 5251 759 1 5254	
38 3 755 1 5242 756 1 5245 m 5240 m 5243 N 5250 5 758 1 5251	
m 5240 m 5243 N 5250 N 5253 5 758 1 5251	
N 5250 N 5253 5 758 1 5251 759 1 5254	
5 758 1 5251 759 1 5254	
m 5249 m 5252	
N 5262	
8 762 1 5263	
m 5261	
N 6252	
46 3 783 1 6253	
m 6251	
N 6258	
5 785 1 6259	
<u>m 6257</u>	
N 6267	
8 788 1 6268	
<u>m 6266</u>	

GUNDON.

1000

TABLE 11c Runnumbers and corresponding plotnumbers of time histories and power spectral densities of overall loads at harmonic oscillation (V ~ 80 m/s, β = -5 deg)

V	=	80	m/s
ß	-	-5	deg

α _a	f	dαa					
			8	12	16		18
			N 7134		N	7137	
8	3	810	1 7135		811 1	7138	
{		<u> </u>	<u>m 7133</u>		<u> </u>	7136	
	-		N 7143		N	7146	
1	5	813	1 7144		814 1	7147	
		+	<u>m /142</u>		<u>n</u>	7145	
	0	017	N /154				
Ì	•	01/	1 / 155				
<u> </u>	<u>}</u>	+	<u>m /155</u>				
1.8	2	032	1 7240				
10		352	$\frac{1}{243}$				
		+	N 7257				
	5	935	1 7258				
		100	m 7256				
1		+	N 7269				
	8	939	1 7270				
			m 7268				
			N 7218		N	7221	
22	3	922	1 7219		923 1	7222	
1	{		m 7217		ti	7220	
1		1	N 7227		N	7230	
1	5	925	1 7228		926 1	7231	
			m 7226		0	7229	
		T	N 7239				
	8	929	1 7240				
L		<u></u>	<u>m 7238</u>				
			N 5271		N	5274	
38	3	765	1 5272		766 1	6201	
			<u>m 5270</u>		<u> </u>	5273	
1		-	N 6206		N	6209	
{	2	/08	1 6207		769 I	6210	
1	<u> </u>	+	<u>m 6205</u>		<u> </u>	0208	
1	0	772	N 0210				
	°	112	- 6217				
	<u> </u>		<u>N 6226</u>		······		- <u></u>
1.6	2	775	1 6220				
40	, J	115	n 6225				
	 	+	N 6234				·
	5	777	1 6235				
1		'''	m 6233				
1	h	+	N 6243				<u></u>
	8	780	1 6244				
1			m 6242				
L	de la companya de la	_					

:

-63-

1 149 14 14 849 9

Ś

TABLE 12 Unsteady test program ((1-cos) inputs) $(\beta = 0 \text{ deg}, V \approx 80 \text{ m/s})$

V	•	80	m/s
ß	-	0 0	ieg

LECEN

α a	Т	d ^α a								
		4	8	12	16	20	24	28	32	36
8	0.500		3047		3053		3058		3062	
	0.330		3048		3054		3059		3063	
1	0.250		3049		3055		3060		3064	
	0.200		3050		3056		3061		3065	
	0.125		3051		3057					
8	0.083		3052							
ĺ	ĺ									
16	0.500						3066			
	0.333						3067			
1	0.250						3068			
16	0.200	l					3069			
		Į								
22	0.500		3013		3019		3024		3028	
	0.330		3014		3020		3025		3029	
	0.250		3015		3021		3026		3030	
	0.200	[3016		3022		3027		3031	
	0.125		3017		3023					
22	0.083		3018							
24	0.500				3070					
	0.330				3071					
	0.250				3072					
	0.200				3073					
24	0.125				3074					
		l								

-64-

TABLE 12 (concluded)

V = 80 m/s $\beta = 0 \text{ deg}$

αa	Т	da a								
		4	8	12	16	20	24	28	32	36
30	0.500						3032			
	0.333						3033			
	0.250						3034			
30	0.200						3035			
32	0.500		3075							
{ .	0.333		3076							
	0.250		3077							
{	0.200		3078							
	0.125		3079							
32	0.083		3080							
38	0.500				3036					
	0.333				3037					
	0.250				3038					
1	0.200				3039					
38	0.125				3040					
46	0.500		3041							
	0.333		3042							
}	0.250		3043							
	0.200		3044							
	0.125		3045							
46	0.083	ł	3046							
1										

:

TABLE 13a

Visualization test program (photographs) at x/cr = 40.42

x/c	-	40.42 %
v	-	30 m/s
B	-	0 deg

SSC.221

α.	da	f	table
			part VI
9.98	4.04	1.13	1
9.87	8.11	1.13	2
9.28	16.59	1.13	3
10.01	3.78	1.88	4
9.91	7.60	1.88	- 1
9.38	15.51	1.88	5
10.00	3.74	3.0	6
9.88	7.47	3.0	7
9.42	15.23	3.0	8
10.00	3.68	6.0	9
9.88	7.36	6.0	-
19 06	2 02	1 12	
10.70	3.02	1.13	10
10.72	12 50	1 12	10
10./0	13.50	1.13	11
10.94	3.30	1.00	12
18.93	/.15	1.88	13
10./9	12.03	1.88	14
10.9/	3.34	3.0	-
10.92	/.0/	3.0	-
10.03	12.42	3.0	-
18.98	3.40	0.0	-
18.93	6.93	6.0	-
22.45	3.79	1.13	-
22.41	7.57	1.13	-
22.29	15,19	1.13	_
22.46	3.54	1.88	-
22.42	7.09	1.88	-
22.29	14,24	1.88	-
22.44	3.51	3.0	15
22.42	6.98	3.0	16
22.28	14.00	3.0	17
22.50	3.44	6.0	18
22.42	6.88	6.0	19

5. 8

1.2.4. P. 1.V. ...

α	dα	f	table
			part VI
35.84	3.73	1.13	20
35.89	7.48	1.13	21
36.03	15.23	1.13	22
35.84	3.51	1.88	-
35.87	7.02	1.88	23
36.01	14.26	1.88	24
35.86	3.44	3.0	25
35.87	6.93	3.0	26
36.02	14.03	3.0	-
35.86	3.37	6.0	27
35.85	6.79	6.0	-
42.32	3.90	1.13	-
42.39	7.80	1.13	-
42.29	3.66	1.88	-
42.39	7.33	1.88	-
42.30	3.61	3.0	-
42.38	7.42	3.0	-
42.31	3.51	6.0	-
42.40	7.09	6.0	

<u>;;ϒϧϗ;ͺϷϧϗ;ͺϷϧϗ;ͺϒϧϗ;ͺϙϗ;ͺϒͻϨϧϒͷϨϧϒ</u>ϼϔϧϒϼϔϧϒϼϔϧϔϼϔͷϔϔϷʹϲϔϨϷϧ;ϨϷϧ;Ϩϔ϶;Ϩ;ϫ;ϗ;ϫ;ϧϨϓϗ;Ϩ;ϥ;ͺϔϒϗ;Ϩ;ϥ;;

TABLE 13bVisualization test program (photographs) at x/cr = 65.88

Γ	x/c	-	65	.88	7
	V	-	30	m/s	3
	ß	=	0	deg	

2223 - E223

~	da	£	table
u	đa	1	
			part VI
9.98	4.04	1.13	28
9.87	8.11	1.13	29
9.28	16.59	1.13	30
10.01	3.78	1.88	31
9.91	7.60	1.88	32
9.38	15.51	1.88	33
10,00	3.74	3.0	34
9.88	7.47	3.0	35
9.42	15.23	3.0	36
10.00	3.68	6.0	37
9.88	7.36	6.0	38
18,96	3.82	1.13	39
18.92	7.65	1.13	40
18.78	13.50	1.13	41
18.94	3.58	1.88	42
18.93	7.15	1.88	43
18.79	12.63	1.88	44
18.97	3.54	3.0	45
18.92	7.07	3.0	46
18.83	12.42	3.0	47
18.98	3.46	6.0	48
18.93	6.93	6.0	49
22.45	3.79	1.13	50
22.41	7.57	1.13	51
22.29	15.19	1.13	52
22.46	3.54	1.88	53
22.42	7.09	1.88	54
22.29	14.24	1.88	55
22.44	3.51	3.0	56
22.42	5.98	3.0	57
22.28	14.00	3.0	58
22.50	3.44	6.0	59
22.42	6.88	6.0	60

:

α	da	f	table
			part VI
35.84	3.73	1.13	_
35.89	7.48	1.13	-
36.03	15.23	1.13	61
35.84	3.51	1.88	-
35.87	7.02	1.88	-
36.01	14.26	1.88	-
35.86	3.44	3.0	-
35.87	6.93	3.0	-
36.02	14.03	3.0	62
35.86	3.37	6.0	-
35.85	6.79	6.0	-
42 32	3.90	1 13	_
42.32	7 80	1 13	_
42.33	2.66	1 99	_
42.27	3.00	1.00	-
42.39	7.33	1.00	-
42.30	3.61	3.0	-
42.38	7.42	3.0	-
42.31	3.51	6.0	-
42.40	7.09	6.0	

:

TABLE 13c Visualization test program (photographs) at x/cr = 96.82

x/c	*	96.82 %
V	#	30 m/s
ß	*	0 deg

table

part VI

-

-

-

-

-

-

 d_{α}

3.73

7.48

3.51

7.02

3.44

6.93

14.03

3.37

6.79

14.26

15.23

α

35.84

35.89

36.03

35.84 35.87

36.01 35.86

35.87

36.02

35.86

35.85

f

1.13

1.13

1.13

1.88

1.88

1.88

3.0

3.0

3.0

6.0

6.0

	da	f	table
•	~		part VI
9.98	4.04	1.13	-
9.87	8.11	1.13	-
9.28	16.59	1.13	-
10.01	3.78	1.88	63
9.91	7.60	1.88	64
9.38	15.51	1.88	-
10.00	3.74	3.0	-
9.88	7.47	3.0	-
9.42	15.23	3.0	-
10.00	3.68	6.0	-
9.88	7.36	6.0	65
18.96	3.82	1.13	-
18.92	7.65	1.13	-
18.78	13.50	1.13	-
18.94	3.58	1.88	-
18.93	7.15	1.88	-
18.79	12.63	1.88	-
18.97	3.54	3.0	_
18.92	7.07	3.0	-
18.83	12.42	3.0	-
18.98	3.46	6.0	-
18.93	6.93	6.0	-
22.45	3.79	1.13	-
22.41	7.57	1.13	-
22.29	15.19	1.13	-
22.46	3.54	1.88	-
22.42	7.09	1.88	-
22.29	14.24	1.88	-
22.44	3.51	3.0	~
22.42	6.98	3.0	-
22.28	14.00	3.0	-
22.50	3.44	6.0	-
22.42	6.88	6.0	~

. .

TABLE 14

File organization on DELTA model tape

DESCRIPTION	FORMAT
RUN,HARM, ALPHA, Re(DALPHA), IM(DALPHA), FREQ, MACH	215,5F10.5
VELOCITY, REDFR, Q, ps, T, BETA, S	2F10.5,F10.2,4F10.5
NO,xref,x/xref,yref,y/yref,(Cp)m, Re(Cp), Im(Cp)	44*(12,7F10.5,/)
(CN)m,Re(CN),Im(CN),(Cn)m,Re(Cn),Im(Cn)	6F(10.5)
(CY)m,Re(CY),Im(CY),(Cm)m,Re(Cm),Im(Cm)	6F(10.5)
(CT)m,Re(CT),Im(CT),(C1)m,Re(C1),Im(C1)	6F(10.5)
NO, xref, x/xref, yref, y/yref, Re(d), Im(d)	9*(12,6F10.5,/)

N SEESS

<u> 1998 - 1998 1998 - 1998 1999</u>

N.B. Improper values represented as: 9999.99

2

11	DONKE TRAN	51515 F.K.D				н 19. Г	U∠ deg	3	",	3874.58 F	Р. Т
Ę		н (ср.) н	ке(Ср)	lm(Cp)	HACH HELDUI HERA HEREQ		1 4 8/5 1 4 8/5 00 deg 00 Hz	r⊢ Aī	ALPHA=	34.95 34.95 0.00	leg C
• د ـــ		1 0 4 0	42 6/2 =	79.16 m							ΤC
	- 0.81 - - 20.43 - 44.05 -	- 439		. -)m ¹ R	e) I	E * (· ·) F		.) mike() (
رڻ ۽ ز	- 54.48	-1.244		·`= =		1.1001	- · <u>-</u> .	* *		.000. .068!	
9.5.	1 61.29 1	1. 782					-	*		100	-
≂ ⊃	1 24.72 1 1 81.73 1	-1.393									
2	1 19:0.19 1	261.1-			I DISPL.I	SIAT.	AMPL. 4	<pre>* PHASE * RELATIV</pre>	AMPL. JE TU	* CALC. * AMPL.	* CALC./
-		r = 1 55d	H.I. H.Z.D. = .	10. . 		E E	£	deg.	LUDIZ	Ē	* AMPL.
-					i LIDUL I	.365	0.000	0.0 \$	0.00	* 0.00	* 0.000
	- 11.61 -	504			- LVD12 -	2.647	0.000.0	0.0	1.00	× 0.00	* 0.000
~ -	1 1, 44 1	1990 ·				_				* *	• *
1	38.85	-1.321		-	ACC.3		-			*	×
<u>.</u>	4 . 93 -	-1.765						* •		* *	* *
	- 20.98 -	1.601		-	I ACC.6 I					*	*
-	1 24.02	1.45.5		-	1 ALC.7 1		-	•		*	×
د	- 57.02 -	1.212			- ACC.8 -		- ·	.		* 1	* '
7, 7	1 20 20 1	1.130			- AUC.Y				****	*****	×
		1.445		-							
î	1 33.17	454				L TDANC	NICLOC	11111	 		
	1 44.46	100									
÷.,	1 93.89 1	0.0.		-	1 10 1	DCAL ¹	(Cp) n	Re Cp	In C	 	
	1 93,35 1	1.676			 	0RU -					
	-)11 3 ×. 1	0.9.0	12 PV2		SECTION 4	4/h	- 0 , 40(# c) 0 (321.38	Ę	
Ĩ	1 00.05 1	N.W.	•		1 3 7 1 2		-4.278	1	* 4 1 1		
ž	1 10 01 1	.136		-	1 22 1 16	1 19.4	-1,446			-	
ï	1 40.00 1	1.1			1 38 - 29		-1.004				
		367. 1. 100			1 40 1 54		-1.376				
, î	(B.B. 3)	110.1		-		. 02 -	160.1			-	
ŝ	1 00.08 1	16.			- 4 74	. 62 -					
	1 21,00			-		-				-	

TABLE 15Example of a print of a steady testrun

Contraction of the second s

للالتدامينيانيان

200000000

02255500

がたいいいい、「いいいないない」

XXXX3 5555454

1

Verseesoa

00003-550

Ĩ

Pressure Formula							ŝ			•
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	PUESSIK: 1000	י ייוזרן א		-	- AI PAA = 2	26.46 Deg	J	2	11.67 ra	
Model Constraint Constraint </th <th>-</th> <th>•</th> <th></th> <th>-</th> <th>1 hAUH =</th> <th></th> <th>Į d</th> <th>= 101</th> <th>940. Pa</th> <th>- ·</th>	-	•		-	1 hAUH =		Į d	= 101	940. Pa	- ·
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	יינו י בנוריין ב	(c han	(せいらお)	- dover	" "Leunalr"	//.15 M/S			41.75 04.9	۔ ۔ ب
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	·					5.01 deg	DAL	=nn=.	b.Bú drg	-
1 1 0.4004 0.2 7.15 0.4014 0.2 7.15 0.4014 0.2 0.4014 0.2 0.4014 0.4014 0.2 0.4014 <t< td=""><td></td><td></td><td>:</td><td></td><td>FLDLA C</td><td>л с•</td><td>H. K</td><td>- ,, t</td><td></td><td>-</td></t<>			:		FLDLA C	л с•	H. K	- ,, t		-
2 0.011 0.0	1. [11.] K.	0.40	2/9 P	72.16 mm	1		ι , ,	, , , , , , , , , , , , , , , , , , ,		
2 5	-	1 - +	•		I FORCE CUEL	ILLENIS		IENT COLF	FICIENTS	-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5			-		HIFEL) III	a() #	: :) M'Re()	·] n (· · ·)
5 5 5 5 5 5 5 5 5 5 5 5 5 1	54.46					31 2 4301 1			03 010	.001
6 0.000 0.70 0.000 0.70 0.000 0.70 0.000<		0.00	14 E. Y.	- 44		1200.15	.015* CM	- 0	192 . 192	0251
9 0 111 111 1 111 1 111 1 111 1 111 1 111 1 111 1 111 1 111 1 111 1 111 1 111 1 111 1 111 1 111 1 111 1 111 1	6 61 1.2 6		3.240	. 600	100	1620. 10		0. - 1	151 104	. 140
9 11.13 1.11.1	7 • • 1.1 - 1	1.415	4-6-5	• • ••8. •	8 8 7 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			1		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			4.7 -	- 2 55						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		201.1-	-2.164	1148	· DISPLATION	I. ANFL.	PLASE 4	AMPL. *	CALC. *	CALC . /
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			1 1 1 1 1 1		E	Ę	RLLATIVE deg L	۲00 × ×	AMPL. * *	AMPL.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 1 1 1 1 2 X 2 X 1	320.0 - 1	3.1 b,2 ≡	225.00 mm	医普里亚 白糖醋糖苷 医直膜镜					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	•	: + + *					1/9.8	1.19 *	**	154.4
11 10 <td< td=""><td>11.11.11</td><td>- 312</td><td>- 1. J.S.</td><td>- 0,62 -</td><td>1 LVDT2 3.1</td><td></td><td></td><td>1.00 *</td><td>- CO - 1</td><td>1001</td></td<>	11.11.11	- 312	- 1. J.S.	- 0,62 -	1 LVDT2 3.1			1.00 *	- CO - 1	1001
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		5 0 5 1	40.4	- 276 -			1.070 A			1.134
$ \begin{bmatrix} 5 & 4.5 & 5 & -1.5 & -5.5 & -1.0 & -5.5 & -1.0 & -5.5 & -1.0 & -5.5 & -1.0 & -5.5 & -1.0 & -5.5 & -1.0 & -5.5 & -1.0 & -5.5 & -1.0 & -5.5 & -1.0 & -5.5 & -5.5 & -1.0 & -5.5 & -5.5 & -1.0 & -5.5 & -5.5 & -1.0 & -5.5$		1. 1. 1. 1.	1. 0/0 1. 0/0		HULLS I	9.309	9.955		8.92 *	926.
$ \begin{bmatrix} 1 & 1 & 5 & 5 & 1 & 5 & 5 & 5 & 5 & 5 &$			3.219	- 915 -	I ACC.4 !	17.20 +	29.4 1	* 06.9	18.50 *	1.075
17 10.71 1.0.72 1.0.22 1.0.22 1.0.22 1.0.22 1.0.22 1.0.22 1.0.23 1.0.23 1.0.24 2.0 3.0 1.0 2.0 3.0 1.0 2.0 3.0 1.0 2.0 3.0 1.0 2.0 3.0 1.0 2.0 3.0 1.0 2.0 3.0 1.0 3.0 1.0 3.0 1.0 3.0 1.0 3.0 1.0 3.0 1.0	1. 10.13	1.470	5.050	1 190.1-	1 ALC.5 -	-	-	¥	¥	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.4. AL 1 21	er.'.	4.296	-1,022 -	1 ACC.6 1	•		*	* ¹	1
1: 59.0. 1.546 590 513 1.640 513 1.640 513 1.640 513 1.640 513 1.640 513 1.640 513 1.640 513 1.640 513 1.640 513 1.640 513 1.640 5164 1.640	10 1 22.00	1. 400	5.075	1 6.79	1 AUC.7 1	27.21	183.2	* * *	24.96 *	11.
$ \begin{bmatrix} 2 & 1 & 2 & 1 & 1 & 2 & 1 & 2 & 1 & 3 & 1 & 3 & 1 & 1 & 1 & 1 & 1 & 1$	1 . 1 59, 86, 1	1.546	-5.900	513	1 AUL 8 1	55.55	187.9	55.57 *	* 16 94	29A.
Z = 57.07 = 1.446 7.654 = 4443 Z = 71.1 = 171. 7.365 1.354 = 5443 2 = 60.11 = 171. 7.365 1.354 = 7443 2 = 60.11 = 1.71. 7.365 1.354 = 7445 2 = 60.11 = 5.095 1.354 = 7445 2 = 60.13 = 1.715 1.241 = 1.100 = 171.100 = 171.36 m 2 = 70.00 = 0.11 = 1.715 1.021 = 0.4000 = 371.38 m 2 = 70.00 = 0.11 = 1.715 1.021 = 0.4000 = 371.38 m 2 = 70.00 = 0.11 = 1.715 1.021 = 0.4000 = 371.38 m 2 = 70.00 = 0.11 = 1.715 1.021 = 0.4000 = 371.38 m 2 = 70.00 = 0.11 = 1.715 1.021 = 0.4000 = 371.38 m 2 = 70.00 = 0.11 = 0.110 = 1.715 1.000 = 371.38 m 2 = 70.00 = 0.11 = 0.110 = 0.110 = 0.1000 = 371.38 m 2 = 70.00 = 0.11 = 0.11 = 0.1000 = 371.38 m 2 = 70.00 = 0.11 = 0.110 = 0.1100 = 0.1100 = 0.1000 = 0.114 = 0.10000 = 0.114 = 0.10000 = 0.114 = 0.1000 = 0.114 = 0.1000 = 0.114 = 0.10000 = 0.114 =	2 1 5.1.1.7	U11	e. [1] :	704	I ALL Y I		197.9	K	× + 2 · n f	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2 1 5, 07	· · · ·	7.00 0	- 644	- = = = = = = = = = = = = = = = = = =					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				1 374 1					!	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10.12 1.1 10.12 1.1		2.5	1	I PRESSURE TR	ANAUUCERS			-	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 4 . 44 . 44 .	ί ιυ.ἰ	2.415	- 252.	1 1 1 10 1 1 1 5 A			1 m j		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1.0.1	0 - C.						-	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$.7 . 73. 35	1711							-	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$									2	
2 1 20 0.0 0.1	111 UN 5 471	r ⊳ 0.50	6.4 - 10 'A	աս մն.ստե	SLUTINA A 2	y.th = 0.40	00 c = 3;	71.38 mm		
0.0 0.0 <td></td> <td>15.0.</td> <td>• • • • •</td> <td></td> <td>1 37 1 5.72</td> <td>1 - 3.8u7</td> <td></td> <td></td> <td></td> <td></td>		15.0.	• • • • •		1 37 1 5.72	1 - 3.8u7				
x1 40.00 0.52 1.051 14.0 1.381 5.255 5.995 1.141 x5 50.00 47.0 7.00 7.01 1.55 1.512 1.051 1.451 x5 50.00 47.1 1.55 54.42 1.1382 6.724 1.061 x5 50.00 4.01 54.42 1.272 5.269 1.169 x5 50.00 401 54.42 1.272 5.269 1.169 x5 50.00 401 54.42 1.158 2.740 1070 x5 50.00 1.15 1.155 1.158 2.740 1070 x6 57.65 1.1158 2.740 1071 1071	, , , , , , , , , , , , , , , , , , ,	1.6.1	U 56	1 692.	1 22 16 51	512.1- 1	7.869	479.	-	
(1) (1) (1) (2) (1) (2) (1) <td>1 40 00</td> <td>.0.5</td> <td>1.0.1</td> <td>14.</td> <td>1 30 - 24.21</td> <td>1 -1.275</td> <td>- 6, 995</td> <td>411.</td> <td>- ·</td> <td></td>	1 40 00	.0.5	1.0.1	14.	1 30 - 24.21	1 -1.275	- 6, 995	411.	- ·	
State State State State State State State State 1 State 115 115 115 115 115 115 1 State 115 115 115 115 115 1 State 115 115 115 115	1 BU 10 - 21		n;•••	1 2.84	JR 14 59 -	1.382	6.724	Ron .		
	ן 10,00 נכ	9.56	012.0	1 204	1 40 - 54 42		-0.069			
	111.0.1	8.0					1		• -	
	- H. UB					5 F F F	1.051	142		

TABLE 16Example of a print of unsteady testruns
TABLE 17Vortex core positions at section 1, $\alpha = 18.94$ deg, $d\alpha = 3.58$ deg, $f = 1.88$ Hz										
TABLE	x/c =	40.42 79.16	ž f mm Df	ALPHA = ALPHA =	18.94	deg deg	FR	EQ = 1.88	Hz	
12	}	STRAKE	VORTEX		1		WING	VORTEX		
	LEF	·i	RI	3HT	- 	LEFT		RIG	HT	
PHI	1 2y/b	2z/b	2y/b	22/6	' 2y	/b	2z/b	+ 2y/b	2:/Ь	
0 45 90 135 180 225 270 315	-0.711 -0.710 -0.719 -0.707 -0.707 -0.709 -0.715 -0.738 -0.710	0.411 0.450 0.454 0.443 0.428 0.428 0.402 0.381 0.405	0.721 0.711 0.691 0.705 0.721 0.723 0.721 0.721	0.416 0.452 0.454 0.446 0.437 0.404 0.386 0.405	1 f f 1 1 1					

TABLE 18

Vortex core positions at section 2, $\alpha = 18.93 \text{ deg}, \ \alpha = 6.93 \text{ deg}, \ f = 6 \text{ Hz}$

TABLE	×/c =	65.88	× A mm DA	LPHA =	18.93 6.93	dei dei	o FR	EQ = 6.00) Hz
49		STRAKE	VORTEX		1		WING	VORTEX	
	LEF	T !	RIG	HT	1	LEF	т Т	RIG	нт
PHI	2y/b	2z/b	2y/b	22/6	1 2	y/b	2z/b	1 2y/b	22/6
		۱ ــــــــــــــــــــــــــــــــــــ			1			1	
0	1	•			1 -0.	782	0.082	0.794	0.092
45	!	1			-0.	782	0.115	0.793	0.127
90	-0.438	0.250 /	0.437	0.259	1 -0.	775	0.153	0.805	0.154
135	-0.442	0.251	0.442	0.258	-0.	792	0.144	0.814	0.152
180	-0.442	0.229	0.442	0.238	ţ.			۱.	
225	-0.444	0.206 !	0.443	0.212	-0.	813	0.077	0.820	0.085
270	-0.453	0.180			-0.	812	0.061	0.824	0.071
315		1			1 -0.	790	0.062	0.831	0.067
1	I	1			I.			ł	

-71-

AND AND A DECORATE AN

RECENTED PROPERTY RECENTED

2.623.633

XXXXXXX

	TABLE 19									
	Vortex	COTE	posit	lons at	sec	tion	2,			
α	= 22.4	5 deg,	da =	3.79 d	leg,	f =	1.13	Hz		

TABLE	k/c = b/2 =	65.88 225. 00	X A mm DA	 LPHA = LPHA =	22.45 de 3.79 de	ig FRI	EQ = 1.13	Hz
50	 	STRAKE	VORTEX	******	 	WING	VORTEX	***
	LEF	! T !	RIG	нт нт	LEF	Τ	RIG	 НТ
PHI	1 2y/b	22/6	2y/b	2:/b	1 Zy/b	2:/b	· 2y/b	2:/b
Q	ι 1 - Ο ΑΑΑ	ן אדר מ	D 453	0 744	i i -0 799	0 177	 0 0 1 4	0 145
45	-0.443	0.246	0.450	0.251	1 -0.789	0.148	0.798	0.145
135	0.439	0.248	0.458	0.254	1 -0.792	0.157	0.790	0.167
180	-0.441	0.229	0.462	0.239	-0.799 -0.790	0.123	0.814	0.131 0.125
27 0 315	· -0.444 · -0.444	0.215 !	0.467 0.471	0.222 0.229	! -0.790 ! -0.791	0.112 0.116	0.818 0.821	0.120 0.126
	!	1			1		I	

TABLE 20

ABLE	,								
	b/2 =	65.88 225.00	% A mm DA	LPHA = LPHA =	22.45 de 3.79 de	eg FR	EQ = 1.13	Hz	- 1
50	 	STRAKE	VORTEX		1	WING	VORTEX	*	• •
	LEF	! T	RIG	HT	LEF	T	RIG		•
PHI) ! 2у/b	2z/b !	Zy/b	Z:/b	1 2y/b	22/6	1 1 2y/b	2:/6	•
	1				1		1		• •
0	-0.444	0.234)	0.463	0.244	-0.789	0.132	0.814	0.145	1
45	-0.443	0.246 !	0.450	0.251	-0.789	0.148	0.798	0.168	1
90	-0.439	0.248	0.458	0.254	-0.787	0.157	0.790	0.167	ł
; 35	0.439	0.237	0.456	0.242	1 -0.792	0.141	0.790	0.149	ŧ
180	-0.441	0.229 /	0.462	0.239	-0.799	0.123	0.814	0.131	1
225	-0.446	0.222	0.464	0.230	-0.790	0.115	0.822	0.125	i i
270	-0.444	0.216	0.467	0.222	-0.790	0.112	0.818	0.120	1
315	-0.444	0.223 1	0.471	0.229	+ -0.791	0.116	0.821	0.126	I.
	ļ	i							
		Vortex	T core pos	ABLE 20 itions	I I	n 2,	 		(- (
	a x/c = b/2 =	Vortex = 22.41 65.88 225.00	T core pos deg, da X A mm DA	ABLE 20 itions = 7.57 LPHA =	1 1 deg, f = 22.41 de 7.57 de	n 2, 1.13 H	z EQ = 1.13	Hz	+ -
TABLE S1	α b/2 =	Vortex - 22.41 65.88 225.00 STRAKE	T core pos deg, da % A mm DA VORTEX	ABLE 20 itions = 7.57 LPHA =	1 1 at sectio deg, f = 22.41 de 7.57 de 1 	n 2, 1.13 H 90 FR 90 WING	z EQ = 1.13 VORTEX	Hz	{ - { - { - } - { - }
TABLE 51	α ×/c = b/2 =	Vortex = 22.41 65.88 225.00 STRAKE T	T core pos deg, da % A mm DA VORTEX RIG	ABLE 20 itions = 7.57 LPHA = LPHA =	at sectio deg, f = 22.41 de 7.57 de 1	n 2, 1.13 H 99 FR 99 WING	z EQ = 1.13 VORTEX	i Hz HT	
TABLE SI PHI	a x/c = b/2 = LEF	Vortex = 22.41 65.88 225.00 STRAKE T 22/b	T core pos deg, da % A mm DA VORTEX RIG 2y/b	ABLE 20 1t1ons = 7.57 LPHA = LPHA = HT 2z/b	at sectio deg, f = 22.41 de 7.57 de 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	n 2, 1.13 H 90 FR 90 WING T 22/b	z EQ = 1.13 VORTEX RIG	Hz HT 2z/b	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1
TABLE SI PHI	a x/c = b/2 = LEF	Vortex = 22.41 65.88 225.00 STRAKE T 22/b 0.224	T core pos deg, da % A mm DA VORTEX RIG 2y/b	ABLE 20 itions = 7.57 LPHA = LPHA = HT 2z/b	at sectio deg, f = 22.41 de 7.57 de 1	n 2, 1.13 H 99 FR 99 WING 77 22/b	z EQ = 1.13 VORTEX I RIG	Hz HT 2z/b	<pre> { - i -</pre>
ABLE 51 PHI 0	x/c = b/2 = LEF 2y/b	Vortex = 22.41 65.88 225.00 STRAKE T 22/b 0.224 0.24	T core pos deg, da % Mm DA VORTEX RIG 2y/b 0.468 0.468	ABLE 20 itions = 7.57 LPHA = LPHA = HT 22/b 0.230 0 254	at sectio deg, f = 22.41 de 7.57 de 1	n 2, 1.13 H 99 FR 99 WING 77 22/b 0.117 0.117	z EQ = 1.13 VORTEX I RIG I 2y/b	Hz HT 2z/b 0.129 0.175	<pre> 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4</pre>
ABLE 51 PHI 0 45	a x/c = b/2 = LEF 2y/b 	Vortex = 22.41 65.88 225.00 STRAKE T 22/b 0.224 0.247	T core pos deg, da % Mm DA VORTEX RIG 2y/b 0.468 0.454 0.454	ABLE 20 itions = 7.57 LPHA = LPHA = LPHA = 	at sectio deg, f = 22.41 de 7.57 de 1	n 2, 1.13 H 99 FR 99 WING 77 22/b 0.117 0.172	z EQ = 1.13 VORTEX RIG 2y/b 0.822 0.788	Hz Hz 2 z / b 0. 1 2 9 0. 1 7 5	<pre> 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4</pre>
ABLE 51 PHI 0 45 90	a x/c = b/2 = LEF 	Vortex = 22.41 65.88 225.00 STRAKE T 22/b 0.224 0.247	T core pos deg, da % Mm DA VORTEX RIG 2y/b 0.468 0.464 0.443	ABLE 20 itions = 7.57 LPHA = LPHA = LPHA = 	at sectio deg, f = 22.41 de 7.57 de 1	n 2, 1.13 H 99 FR 99 WING 77 22/b 0.117 0.172 0.157	z EQ = 1.13 VORTEX I RIG I 2y/b I 0.922 0.788	Hz Hz 0.129 0.175	<pre> 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4</pre>
ABLE 51 PHI 0 45 90 135	a x/c = b/2 = LEF -0.445 -0.441	Vortex = 22.41 65.88 225.00 STRAKE T 22/b 0.224 0.247	T core pos deg, da x A mm DA VORTEX RIG 2y/b 0.468 0.468 0.454 0.452	ABLE 20 itions = 7.57 LPHA = LPHA = LPHA = 	at sectio deg, f = 22.41 de 7.57 de 1	n 2, 1.13 H 9 FR 9 FR 9 FR 9 FR 9 FR 9 FR 9 FR 9 FR	z EQ = 1.13 VORTEX I	Hz Hz 0.129 0.175 0.136	<pre> { </pre>
ABLE 51 PHI 0 45 90 135 180	a x/c = b/2 = LEF -0.445 -0.441	Vortex = 22.41 65.88 225.00 STRAKE T 22/b 0.224 0.247 0.225	T core pos deg, da % % % % % % % % % % % % % % % % % % %	ABLE 20 itions - 7.57 	at sectio deg, f = 22.41 de 7.57 de 1	n 2, 1.13 H 9 FR 9 FR 9 FR 9 FR 9 FR 9 FR 9 FR 9 FR	z EQ = 1.13 VORTEX I RIG I 2y/b I 0.922 0.788 I 0.821 I 0.815	Hz Hz 0.129 0.175 0.136 0.130	<pre> { </pre>
ABLE 51 PHI 0 45 90 135 180 225	a x/c = b/2 = LEF -0.445 -0.445 -0.441 -0.438 -0.446	Vortex = 22.41 65.88 225.00 STRAKE T 22/b 0.224 0.247 0.225 0.203	T core pos deg, da % % % % % % % % % % % % % % % % % % %	ABLE 20 itions - 7.57 	at sectio deg, f = 22.41 de 7.57 de 1	n 2, 1.13 H 90 FR 90 WING 77 22/b 0.117 0.172 0.172 0.157 0.136 0.125 0.102	z EQ = 1.13 VORTEX I I I I I I I I I I I I I I I I I I I	Hz Hz 0.129 0.175 0.136 0.130 0.114	<pre> 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4</pre>
ABLE 51 PHI 0 45 90 135 180 225 270	a x/c = b/2 = LEF -0.445 -0.445 -0.441 -0.438 -0.446 -0.446	Vortex = 22.41 55.88 225.00 STRAKE T 22/b 0.224 0.247 0.225 0.203 0.191	T core pos deg, da % % % % % % % % % % % % % % % % % % %	ABLE 20 itions - 7.57 	at sectio deg, f = 22.41 de 7.57 de 1	n 2, 1.13 H 90 FR 90 FR 90 100 117 0.172 0.172 0.157 0.135 0.125 0.102 0.090	z EQ = 1.13 VORTEX I I VORTEX I I VORTEX I I VORTEX I I VORTEX I I VORTEX I I I 0.822 I 0.821 I 0.820 I 0.821 I 0.821 I 0.821 I 0.821 I 0.821 I 0.821 I 0.821 I 0.822 I 0.82 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Hz Hz 0.129 0.175 0.136 0.136 0.130 0.114 0.108	<pre> 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4</pre>
ABLE 51 PHI 0 45 90 135 180 225 270 315	a x/c = b/2 = LEF -0.445 -0.445 -0.441 -0.446 -0.446 -0.452	Vortex = 22.41 55.88 225.00 STRAKE T 22/b 0.224 0.247 0.225 0.203 0.191 0.198	T core pos deg, da % % % % % % % % % % % % % % % % % % %	ABLE 20 itions - 7.57 	at sectio deg, f = 22.41 de 7.57 de 1 1 22.41 de 7.57 de 1 1 2y/b 1	n 2, 1.13 H 9 FR 9 FR 9 FR 9 FR 9 FR 9 FR 9 FR 9 FR	z EQ = 1.13 VORTEX RIG 2y/b 0.822 0.788 0.821 0.815 0.820 0.821 0.821 0.821 0.821 0.821 0.821 0.821 0.821	Hz Hz 0.129 0.175 0.136 0.136 0.130 0.114 0.108 0.114	<pre> 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4</pre>

	Vortex α α = 22.42	core positions at 2 deg , $d\alpha = 6.98$	t section 2, deg, f = 3 Hz	
TABLE	x/c = 65.88 b/2 = 225.00	X ALPHA = mm DALPHA =	22.42 deg FRE 6.98 deg	EQ = 3.00 Hz
57	STRAKE	VORTEX	WING	VORTEX
	LEFT	RIGHT	LEFT	RIGHT
РНІ	2y/b 2z/b	2y/b 2z/b	2y/b 2z/b	1 2y/b 2z/b
0 45 90 135 180 225 270 315	-0.458 0.197 -0.447 0.225 -0.446 0.247 -0.446 0.219 -0.451 0.188 -0.458 0.165 -0.463 0.170	0.458 0.207 0.447 0.232 0.446 0.252 0.445 0.244 0.442 0.244 0.451 0.194 0.458 0.169 0.463 0.178	-0.800 0.105 -0.794 0.142 -0.800 0.157 -0.808 0.157 -0.808 0.085 -0.810 0.070 -0.805 0.088	0.804 0.115 0.816 0.093 0.809 0.079 0.804 0.094

 TABLE 21

 Vortex core positions at section 2,

 22 (2) does does (2) does (2) does (2)

TABLE 22Vortex core positions at section 2 at 22.42 deg α = 22.42 deg, d α = 6.88 deg, f = 6 Hz

TABLE	x/c =	65.88 225.00	% A mm DA	LPHA =	22.42	deg FRI deg	EQ = 6.00	Hz
60	,	STRAKE	VORTEX		1	WING	VORTEX	
	LEF	T !	RIG	HT	۱ ۱ <u>ا</u>	EFT	RIG	HT
РНІ	' 2у/ъ	2:/6 1	2у/Б	2z/b	1 2y/	b 2:/b	2y/b	2:/b
0 45 90	-0.469 -0.457	0.195 0.227 0.251	0.469	0.205	 -0.79 -0.79	8 0.128 7 0.150		0.133
135 180 225	-0.449 -0.448 -0.446	0.269 0.239 0.210	0.449 0.448 0.448	0.259 0.259 0.250 0.221	, , , ,		' † †	
270 315	-0.456 -0.466	0.189 1 0.179 1	0.456 0.466	0.197 0.188	-0.82 -0.81 	4 0.085 2 0.104	1 1 0.811 1	0.113

6401

Fig. 1 Body fixed coordinate system

Fig. 2 The flow about a straked delta wing under incidence

Fig. 3 Principle of laser light screen technique

Fig. 4 Principle of the support mechanism

Fig. 5 Wing planform and model instrumentation (dimensions in mm; pitching axis x/cr = 73.27 %)

ŝ

R

Fig. 6a Frontview of the model and the support mechanism (pressure measurement configuration).

è

R

КЛ

Fig. 6b Frontview of the model and the support mechanism (visualization study configuration).

MARYA ZUCARI

のとうから

23.4.0.653

Fig. 6c Smoke tube attachment.

COST RECERC

Fig. 7 Block-diagram of the test setup for measurements of forces, moments and pressures

State Contractor

(1-8 DEG) ADJUSTABLE PHASE φ with respect to model motion (0-360 DEG) ADJUSTABLE.

and the second second

Fig. 10 Principle of unsteady flow visualization

in the second second

Fig. 11 Steady normal force and pitching moment coefficient vs. incidence

ALC: A DOMESTIC STOLEN

EXECUTE DEPENDENCE POSTER NO.

EXERCIAL PRODUCT PROPERTY

11

DE	LTA	RUN :	19	ALPHA - 19.88 109 NACH23		REDFR + 3.30
	SECTION	3		SECTION 2	SECTION 3	SECTION 4
	1 ! !]					
Ca			+	••		
•						
	.0 .2	. 4 . 6	.8 2y/1	. 		2y/= x/2

Fig. 12 Example of a plot of the pressure coefficients of a steady testrun (see also table 15)

Fig. 13 Example of a plot of the pressure coefficients of an unsteady testrun (see also table 16)

-84-

LODGE

* 8.7 8.°. . 8. . 8.4°. 84°.

MALANA PROSPAN RUUNIN PAR

Fig. 14 Example of the time history of the pressure distributions

1711.71

Fig. 15 Example of overall aerodynamic loads vs. incidence, derived from the recordings at harmonic oscillating model

1. J. J. M. M.

٠,

-86-

Fig. 16 Example of the time history of the balance signals at the (1-cos) model motion

3

-87-

222220

Fig. 17 Zeroth and first order harmonic components of unsteady normal force coefficient (da \approx 3.5 deg, f = 3 Hz, β = 0 deg, V \approx 80 m/s)

PA 450 450 500 10-0.5 0.5 0.

1000000

1.00

Fig. 19 First order harmonic components of unsteady pitching moment coefficients at 3 and 8 Hz (da ~ 3.5 deg, $\beta = 0$ deg, V ~ 80 m/s)

NO CON

MARINE PRIME PRIMER, BURNING MITTIN RECORD, ROOMIN, ROOMIN, MARINE, MITTIN, ROOM

moment coefficient vs. frequency ($\alpha \approx 18.9$ deg, $\beta \approx 0$ deg, V = 80 m/s) Real part of first order harmonic component of unsteady pitching F18. 20

144.614.016.010.01

ინინ

CANAN.

55-2555

<u>с</u>С.,

UNI KEENEN TEEEBI DUDUU TUEEDA DEEDA DEEDA DEEDA DEEDA DEEDA DEEDA DEEDA DEEDA UN

14. 5. 4. 4. 4. 5' 4. 6' Fab 14

5

Zeroth order harmonic component of unsteady side force coefficient vs. amplitude ($\alpha \approx 35.9$ deg, $\beta \approx 5$ deg, V ≈ 80 m/s) Fig. 23

the said flow state that the termination of the said state of the

a. 444. 146. 146. 146. 9.4. 0.4.4.

a b a sin bin die bie bie

of the unsteady yawing moment coefficient at various frequency amplitude combinations ($\alpha \approx 18.9 \text{ deg}$, $V \approx 80 \text{ m/s}$)

The effect of sideslip on the first order harmonic component of the unsteady rolling moment coeificient (α ~ 18.9 deg, V ~ 80 m/s) Left side of figure : amplitude effect Right side of figure: frequency effect Fig. 26

ADAGAGAGAGKOK

CAN'S S

0.20 H V V V

Personand A

このためくろうた

Provincial and a second

-98-

* 1.3 Jat 6.1 4.1

REAL TO SERVER SERVER REPORT BORNER

ξp

SECTION 2

Influence of amplitude on zeroth and first order du (deg) harmonic components of the unsteady pressure distribution Fig. 29

THE REAL

a = 18.92 deg

SECTION 2

.

Fig. 32 Time history of the vortex core positions at section 1 $(\alpha = 18.94 \text{ deg}, \alpha = 3.58 \text{ deg}, f = 1.88 \text{ Hz})$

-103-

- P222255

NOCOLOGY VIEWS

12000 S

 $\overline{\mathbf{N}}$

Fig. 34 Time history of the vortex core positions at section 2 ($\alpha = 18.93$ deg, $d\alpha = 6.93$ deg, f = 6 Hz)

00000

-105-

HERE AND DESCRIPTION OF THE OWNER OF THE OWNER

RECEIPTION NOTION MANAGEMENT

22227.22.02

- 4 - 4 - 4 - 4 - 4 - 4 -

Fig. 35 Photographs showing the time history of the flow at section 2 $(\alpha = 22.45 \text{ deg}, d\alpha = 3.79 \text{ deg}, f = 1.13 \text{ Hz})$

٢, Sec. N. M. M

Fig. 36 Time history of the vortex core positions at section 2 $(\alpha = 22.45 \text{ deg}, d\alpha = 3.79 \text{ deg}, f = 1.13 \text{ Hz})$

<u>
</u>

-107-

VOPTEXPOSITIONPLOT 51 180=0 225=D 270=× 315=4 0= s 45=▲ 90=+ 135=▼ xrc = 65.88 % b/2 = 225.0 mm ALPHA = 22.41 deg DALPHA= 7.57 deg FRED = 1.13 Hz STRAKE 22 / b RIGHT LEFT .28 + .26 .24 ¢ _ ۵ .22 .28 х × 18 .50 .48 .42 .44 .46 .42 .40 .48 .46 .44 .48 .50 Zy/b -2y/b WING 2z/0 RIGHT LEFT .18 .16 + .14 . Ó .12 4 Þ .10 × .88 .81 .83 .85 .77 .79 .83 .75 .81 .79 .77 .75 .85 2y/b -24/6

Fig. 38 Time history of the vortex core positions at section 2 $(\alpha = 22.41 \text{ deg}, \alpha = 7.57 \text{ deg}, f = 1.13 \text{ Hz})$

UANY X

ለት የረሐፈ ተረራ ይረ ደብ የ ደብ ወደ እን

Fig. 40 Time history of the vortex core positions at section 2 $(\alpha = 22.42 \text{ deg}, d\alpha = 6.98 \text{ deg}, f = 3 \text{ Hz})$

-111-

Fig. 42 Time history of the vortex core positions at section 2 ($\alpha = 22.42$ deg, $d_\alpha = 6.88$ deg, f = 6 Hz)

-113-

· + + - + + + -

Fig. 45 Influence of frequency on the time history of the vortex core positions

Fig. 46 The effect of the wire suspension blocks

MARKET NAMES

APPENDIX A

MODEL GEOMETRY AND DIMENSIONS

span	800.0 mm
root chord	785.495 mm
tip chord	120.0 mm
sweep angle strake leading edge	76 deg
sweep angle wing leading edge	40 deg
area (wing + strake)	.264 m ²
airfoil of wing	NACA 64A005
aspect ratio	2.422 m
mean aerodynamic chord	.320 m

pitching axis

at 73.29 %cr

chordwise section no.	2y/b	c(mm)
1	+.30000	354.715
1	30000	354.755
2	+.63750	241.350
2	63750	241.410
3	+.97500	128.315
3	97500	128.340
4	.00000	785.495

spanwise section no.	2y/b	c(mm)
5	.12731	25.000
6	.31827	62.500
7	.50923	100.000
8	.87269	400.000
9	.93635	400.000

Note 1: All x-coordinates are measured relative to the leading edge of the local chord (see also figure A-1)

1. 36 . 15 . 15 .

TABLE A1Thickness distribution of section 1

ð

SECTION 1	SECTION 1	SECTION 1	GECTION 1
UPPER SIDE	LOWER SIDE	UPPER SIDE	LOWER SIDE
2y/b = +.3000	2y/a = +.3000	2y/b =3000	29/b =30úu
c = 354.715 mm	c = 354.715 mm	c = 354.755 mm	с - 354.755 мм
x/c z/c	x/c 2/c	x/c z/c	x/c 2/c
0.0000000024	.0000300062	0.0000000047	
.00084 0.00000	.0000400092	. 0 6 0 0 1 0 . 0 0 0 0 0	.00011000/5
. 44017 . 44037	.0001700134	.00011 .00025	.0001400092
.00025 .00062	.0002700168	.00020 .00062	.0001600082
.00041 .00072	.0007000227	.00028 .00056	.0002800135
.00072 .00124	.0007800244	.00034 .00092	.0004200163
.00100 .00168	.0015100300	.00082 .00145	.0008200213
.00152 .00197	00316 - 00379	.00093 .00168	.0010900244
.00190 .00244	.00488004.50	.00163 .00216	.0016300279
.00316 .00307	.00/4000438	.00187 .00244	.0032700355
.00489 .00375	.0124000591	.00326 .00313	.0050000407
.00740 .00450	.0249100818	.00500 .00383	.0075100474
.01240 .00574	.0499301154	.00751 .00458	.0125200588
.02491 .00809	.0749501400	.01252 .00581	.0250200827
.04993 .01136	.0999501593	.02502 .00806	.0278400874
.07493 .01380	.1499901900	.05003 .01132	.0500301155
.09995 .01573	.2000202131	.07504 .01377	.0750401409
.14999 .01879	.25006 02302	.10005 .01573	.1000501604
.20002 .02109	.3000902417	.15009 .01880	.1500901910
.25006 .02279	.3501302485	.20011 .02111	.2001102142
. 30009 . 02391	.4001502498	.25014 .02279	.2501402311
.35013 .02458	.45019 02440	.30016 .02390	3001502421
.40015 .02471	.5002202344	.35020 .02459	.3502102488
.45019 .02420	.35026 02196	.40022 .02475	.4002202505
.30022 .02315	.60028 - 02013	.45025 .02426	45025 02450
.55026 .02167	. 64236 01838	.50027 .02320	.5002702344
.60028 .01983	.6561601775	.55030 .02171	.5503102194
.65031 .01773	.7003501566	.60033 .01987	.5003302014
.70035 .01538	.75038 - 01308	.65035 .01776	.5503501804
75038 .01286	.8004201052	.70038 .01543	.7003801567
.80042 .01030	.8504400791	.75041 .01291	. /5041 01315
.85044 .00772	.9004800531	.80044 .01035	. 30044 01050
.90048 .00513	.9505100281	.85046 .00775	.8005701058
.95051 .00262	. 49999 00044	. 90049 . 00510	,9504600799
1.00000 0.00000	1	.95052 .00269	. 70049 00533
		1.00000 .00032	.9505208276
1			1.0000000010

ere 25.

R.S.S.S.S.S.

FARTER BORRESS RECEIPT

TABLE A2Thickness distribution of section 2

SECTION 2	SECTION 2	SECTION 2	JECTION 2
	.		
UPPER SIDE	LOWER SIDE	UPPER SIDE	LUWER SIDE
		10/b = - 6375	2u/b = -5375
2y/b = +.6375	29/D = +,83/0	eyro83/3	29/0 · -:03/J
C = 341 758 mm	c = 241 350 mm	c = 241.410 mm	c - 241.410 mm
C - 241.330 MM			
x/c z/c	x/c z/c	x/c z/c	x/c z/c
-			
0.0000 0.00000	0.00000 0.00000	0.00000 .00062	.00027 0.00000
.00012 .00062	.0000400093	.00008 0.00000	.0003700062
.00025 .00087	.0002500128	.00031 .00158	
.00027 .00091	.0004100168	.00054 .00184	
.00070 .00168	.0010600230	.00124 .00244	
.00108 .00199	.0011400244	.00137 .00244	
.00155 .00244	.0026900327	.00298 .00325	
.00269 .00288	.0027800340	.00313 .00340	
.00363 .00340	.0035400379	.00474 .00389	
.00445 .00360	.0044500398	.00721 .00458	
.00694 .00435	.0069400476	.01224 .00590	.0072300458
.01195 .00559	.0119500605		
.02447 .00787	.0244700833		
.04951 .01108	.0495101162	.07481 .01379	
.07454 .01353	0745401403		. 0/401 01374
.09957 .01548	.1004501601	14787 .01883	
14764 .01852	1476401878	.17773 .02106	
19971 02080	19971 02132	20005 00700	10005 _ 101703
1 .24776 .U2246	.247/602300	35011 02388	2499 = 02133
27783 .02360	74001 00400	, 53011 , 02430 A0017 03454	$\frac{1}{3}$ $\frac{1}$
70000 004428	1 .34771U248U	A5001 00400	350111 - 02414
AF007 03701	AE007 00470	SU027 02403	A0017 - 02495
	50010 - 013777	550 (% 02140	45021 - 02448
	55010 - 02100	60037 01975	.50027 02342
20003 01044 20003 01040	40037 - 03007	A504% 01749	.5503302193
	LS023 -,02003	20049 01541	.5003702013
78037 0152%		75053 01292	.6504301804
	75042 - 01XAN	80059 01034	./004901531
80050 01012		85065 00777	.7505301317
85057 00750	.85055 - 00283	.90069 .00524	.8005901052
90062 00494	.90062 - 00526	95075 00282	.8412400833
. 95469 .00240	.9506900276	1.0000 .00048	. 85065 00783
1.0000000017	. 79985 00041	1	.8678400590
		}	. 39443 00347
	1	1	.9005900514
		1	.9210300406
		1	.9476200265
		1	.9507500249
•]		.9742100130
			1.00000 .00004

		20	
-	1	20-	

TABLE A3 Thickness distribution of section 3

SELTION 3	SECTION 3	SHATTONN T	SECTION 3
1			
	1		
UPPER SIDE	LOWER SIDE	UPPER SIDE	LOWER STOP
2y/b = +.9750	2y/b = +.9750	2v/n =9750	20/0 =9/50
1	, ·	-,,-	
c = 128.315 mm	c = 128.315 mm	c = 128.340 mm	C = 128.540 mm
x/c z/c	x/c z/z		x/c z/c
0.00000 0.00000	.0002300062	0.0000 .00062	.00023 0.00000
.00012 0.00000	.0002700094	.00008 .00158	. ຍັບປ່ຽງ ນິນປີຮອ
.00019 .00070	.0004700168	.00016 0.00000	.0005500074
.00023 .00052	.0009700195	.00051 .00187	.0007400168
.00022 .00094	.0010900245	00101 00245	.00129 - 00230
00066 00158	00210 - 00239		10174 - 00200
000000 00100	0.0241 = 0.0721		
000077 .00133 00177 .00133	0028100331	.00272 .00308	
.00132 .00245	.0032300401	.00308 .00339	
.00261 .00296	.0043600401	.00467 .00362	.003/000401
. 00284 . 00339	,0058600483	.00717 .00436	0046000409
00436 .00347	.0116800604	.01219 .00549	.0071700503
.00686 .00417	.0243900822	.J2470 .JU783	.01219UU823
.01198 .00526	,04941 -,01153	.04971 .01103	.0247000842
.02439 .00764	.0744301383	.02472 .01344	.0497101155
.04941 .01091	.0994001570	.09970 .01543	.0747201406
.07443 .01329	.14944 41878	14972 .01847	.0977001609
.09940 .01531	19947 - 02112	19974 02077	.1497201917
.14944 .01839	24950 - 02272	94977 09344	.19974 - 02151
19942 02023	29954 - 02740	10070 AVIL1	24977 - 02325
34950 022741	XA957 - 02451	74001 0.347	29979 = 02443
		(.37784 .U2434	
34737 .02437		.37984 .0244/	AQUE _ 02017
37780 .02455	4778/ - 02275	.44986 .02392	
37750 .02437	.349/002143	.49988 .02287	- 47788 - UZ381
44756 .02412	. 377/3 - 01952	.54991 .02131	
47767 02307	.6497301738	.59993 .01948	1 .J7773U2U41
.54970 .02159	.6982001500	.64991 .01738	.5477101851
.59973 .01980	.6997601492	.67774 .01480	.577 4 11570
64973 .01777	.7497601243	.74996 .01223	.74995013.11
.59976 .01531	.7998300986	.79998 .00978	.7999801044
.74990 .01270	.84986 - 00721	.85001 .00729	.8500100725
.79983 .01009	,89989 -,00460	.90003 .00483	.8999900514
.84986 .00740	.9499300218	.95005 .00242	,9500500284
.89989 .00483	. 49852 00019	1.00000 .00312	.9985600090
.94993 .00245			
.99844 .00051	1	}	
1.00000 .00312	2	1	}
)	ļ

TABLE A4 Thickness distribution of section 4

SECTION	4		
upper side		lower side	
2y/b = (0.0	2y/b = 0.0	
cr = 78	5.495 mm	cr = 78	5.495 mm
x/cr	z/cr	x/cr	z/cr
.57547	.02798	.57685	02806
.72125	.02915		
.73357	.02798		
.82962	.02799	.81258	02805

TABLE A5

Thickness distributions of sections 5 through 9

UPPER SIDE	LOWER SIDE	UPPER SIDE	LOWER SIDE	
SECTION 5				
x/cr = .12731				
b/2 = 25 mm				
2/h 2/h	2 / b 2 / b	2m/h 2=/h	2 w /h 2 m /h	
2y/0 22/0 93/20 011/0	2y/0 = 22/0	-93620 01100	- 93/20 - 00980	
5/220 .01140	5420 - 08800	- 54220 08980	-54220 - 08840	
22840 15360	22840 - 15140	22840 .15280	2284015140	
.22040 .13300	.2204015140	122040 119200	122040 115140	
SECTION 6				
x/cr = .31827				
b/2 = 62.5 mm				
	}			
2y/b 2z/b	2y/b 2z/b	2y/b 2z/b	2y/b 2z/b	
.97752 .00320	.9776000416	97752 .00360	9775200416	
.57048 .08504	.5704808608	57048 .08552	5704808608	
.25032 .14944	.2503215016	25032 .14992	2503215016	
ATAMIAN 1				
SECTION /				
X/CT = .50923				
D/2 = 100 mm				
$2\pi/h$ $2\pi/h$	$2\pi/h$ $2\pi/h$	$2\mathbf{y}/\mathbf{h}$ $2\mathbf{z}/\mathbf{h}$	2v/b $2z/b$	
98155 .00610	98155 - 00720	98155 .00605	9815500690	
53045 .09340	.5304509470	53045 .09360	5304509435	
.09770 .18055	.0977018180	09770 .18115	0977018135	
SECTION 8				
x/cr = .87269				
b/2 = 400 mm				
_				
2y/b 2z/b	2y/b 2z/b	2y/b 2z/b	Zy/b 2z/b	
.15000 .00241	1.1500000244	15000 .00241	1500000242	
.07500 .00340	.0750000343	07500 .00340	0/50000342	
SECTION Y				
x/cr = .73033				
2v/h $2z/h$	2v/b $2z/b$	2v/b $2z/b$	2y/b $2z/b$	
.15000 .00120	.1500000122	1500000120	1500000122	
.07500 .00169	.0750000172	0750000170	0750000171	

222X 222 KANANA MARANA TAXA AND A

Fig. Al Coordinate reference system and section positions

Y = 0

-123-

APPENDIX B

NON-AERODYNAMIC LOADS ON THE MODEL BALANCE

CONTENTS

- 1 LOADS ON THE MODEL BALANCE
- 2 MASS AND INERTIA PROPERTIES
- **3 VARIOUS REMARKS**

l Figure

LIST OF SYMBOLS

alf	wing incidence	(deg,rad)
alf	wing angular velocity	(rad/s**2)
alf	wing angular acceleration	(kgm)
Cmo1	<pre>model Constant (M*dx) (see section 2)</pre>	(kgm)
C _{mo2}	model Constant (J -M*dx *dx) (see section 2) yr.a.	(kgm** ²)
dx	distance in wing reference plane (see figure B.1)	(m)
f	frequency	(Hz)
g	gravitational acceleration	(m/s**2)
J	moment of inertia about axis parallel to y-axis	(kgm**2)
1 Í	wing rolling moment (see figure B.1)	(Nm)
12	wind pitching moment (see figure B.l) ref. axis through balance center	(Nm)
M	mass (see section 2)	(kg)
N	wing normal force (see figure B.1)	(Nm)
n	wing yawing moment (see figure B.1)	(Nm)
Т	wing tangential force (see figure B.l)	(N)
t	time	(s)
x	chordwise coordinate in wing reference plane; apex; x=0 (see figure B.l)	(m)
Y	wing force in y-direction (see figure B.1)	(N)
у	spanwise coordinate in wing reference plane (see figure B.l)	(m)
z	coordinate in plane of symmetry normal to wing	(m)

-125-

#14 #14 #14 #14 B

SUBSCRIPTS

0	zeroth order harmonic components
1	first order harmonic components
Ь	balance
b.c.	balance center
c.g.	center of gravity
g	gravity
i	inertia
mo	model
r.a.	rotation axis

1 LOADS ON THE MODEL BALANCE

The balance in the model measures:

- aerodynamic loads
- inertial loads
- gravitational loads
- wireloads caused by the electrical wires of the miniature pressure transducers and accelerometers leading from the model to the support system.

From wind-off tests it was concluded that the wireloads were extremely small. Therefore no correction for these loads was applied.

Gravitational loads on the balance are:

$$N_{g} = -M * g * \cos(alf)$$
(1)

$$T_{g} = +M * g * \sin(alf)$$
⁽²⁾

$$m_g = +M * g * (dx_{b.c.} -dx_{c.g.}) * cos(alf)$$
 (3)

Inertial loads on the balance are:

$$N_{i} = -M * dx * alf = -C_{mo_{i}} * alf$$
(4)

$$T_{1} = -M * dx_{c.g.} * (alf)^{2} = -C_{mo_{1}} * (alf)^{2}$$
(5)

$$m_{1} = m_{1} + N_{1} * (dx_{c.g.} - dx_{b.c.})$$

$$= -J_{y_{c.g.}} * alf - M * dx_{c.g.} * alf * (dx_{c.g.} - dx_{b.c.})$$

$$= \{-J_{y_{c.g.}} - M * dx_{c.g.}^{2}\} * alf + M * dx_{c.g.} * dx_{b.c.} * alf$$

$$= -J_{y_{r.a.}} * alf + M * dx_{c.g.} * dx_{b.c.} * alf$$

$$= -C_{mo_{2}} * alf$$
(6)

When the wing performs a harmonic pitching oscillation, described by alf = $alf_0 + alf_1 + sin (2.pi.f.t)$, the zeroth and first order harmonic components of the inertial loads become:

$$N_{i_{1}} = C_{mo_{1}} * alf_{1} * [(2.pi.f) * 2]$$
(7)

$$T_{i_0} = -\frac{1}{2} * C_{mo_1} * [alf_1 \cdot 2.pi.f] * 2$$
(8)

$$m_{1} = C_{mo_{2}} * alf_{1} * [(2.pi.f)**2]$$
 (9)

MASS AND INERTIA PROPERTIES

2

This section describes how the constants M, C , C , dx , mo₁ mo₂, c.g. dx , which show up in the formulae in section 1, are determined for this test setup.

Before the start of the windtunnel test, a very small mass was added to one of the wing tips, to position the center of gravity in the plane of symmetry of the model.

When the model is mounted on the balance, a part of the balance may be considered to move as an integral part of the model. That part yields additional gravitational and inertial loads on the balance itself. Therefore, in the determination of the gravitational and inertial loads, the mass (M) and moment of inertia $\binom{C}{mo_2}$ and the location of the center of gravity $(dx_{c.g.})$, of the wing and the part of the balance clamped to the model, must be used. These values are determined as follows:

- the mass is determined by positioning the model on the balance at different angles of attack and applying the formulae (1) and (2) ----
- by knowing the mass of the model only, also the mass of the part of the balance is known. Form the construction of that part its location of the c.g. can be determined. In combination with the c.g. and the mass of the wing only, the c.g. corresponding to the mass M, is determined ----> dx c.g.

----> C mo 1

--> C_{mo2}

--> dx_{b.c.}

- $dx_{c.g.} * M =$
- by oscillating the model (at wind-off), the constant C is determined mo₂
- the location of the balance center is determined by the construction of the balance and the positioning of the balance with respect to the model

3 VARIOUS REMARKS

- 1. In the design of the model, it was decided to place the balance center a little forward of the rotation axis, providing a more smooth contouring of the thicker part of the model, containing the balance, on to the thin trailing edge. Consequently, also the center of gravity moved forward and so, both the b.c. and c.g. were not located in the rotation axis and the corrections (3), (4) and (5) (see section 1) became necessary.
- 2. The right way to determine the moment of inertia C_{mo_2} would have been vibrating the model in vacuum, measuring the output m_4 of the balance

- 3. Because the b.c. was not located in the rotation axis, deformation of the balance would cause a change in the location of effective rotation axis. This effect was assumed to be small.
- 4. The maximum absolute value of the inertial and gravitational loads are:

N g	- 70	(alf = 0 deg)
т g	- 50	(alf = 50 deg)
₽g	- 0.35	(alf = 0 deg)
N 1	- 75	(alf = 300)

 $N_{i_1} = 75$ (alf₁ = 1.75 deg, f = 16 Hz) T, = 16 (alf = 8)

 $T_{i_0} = 8$ (alf₁ = 15 deg, f = 5 Hz) $m_i = 36$ (alf = 300)

 $alf_1 = 36$ (alf_1 = 1.75 deg, f = 16 Hz)

- 5. The ratio between aerodynamic loads and non-aerodynamic loads depends on the incidence, angular velocity and angular acceleration. For the major part of the test runs, the non-aerodynamic loads are small (less than 10 %) as compared to the aerodynamic loads.
- 6. Only the symmetrical components are corrected for inertia effects.

* wing reference plane is indicated in figure 5, Part I

APPENDIX C UPDATED VALUES OF THE PITCHING MOMENT COEFFICIENT OF THE MODEL SUSPENDED IN WIRES

In report NLR TR 86047 C (reference 7) concerning "Force measurements in a low speed windtunnel on a model of the straked wing; suspended in wires", the values of the pitching moment coefficient were affected by the drag of the wires, which yield an additional pitching moment. Tables Cl through C7 and figure Cl present the correct pitching moment coefficients derived from only the force in the wire attached to the front part of the model.

POC Ĩ ß N F æ. SERIES **1F51 6502** N FROT . 1:46 PM THU., 22 UCL., 1967 I NER DI CE IVE TRATRI-SYSTEM

COR.ZERO INIET

NGTJONAL GENTEPEA E LEAKIGHTRY (M.R.) 1.51 342.25 Intere gelta fonte mersarements — measuring imter 26- 2-1908

HFIR = () degrees At mipha > 20 degrees, m correction has been applied to ()

LR	0005	- 0006	0018	.0026	0014	0018	6000.	0010	0023	6200	0013	0014	.0018	0013	0005	0000	0014	- ,0002	0032	0043	004A	0047	0010	
N	0005	3000.	.0017	- , 0028	.0013	.0018	0010	.0010	.0022	.0026	.0013	.0014	0018	.0014	.0005	6200.	.0015	00 03	.0027	.0037	0044	6400.	.0000	
Ľ	0004	.0009	000.	.0002	9000.	C000.	000	E000	E000.	.000	0000	0001	0004	0006	.0002	.0005	0010	6200.	.0028	.0027	.0023	.0023	.000A	
Ľ	0157	0067	- 0041	0013	.0018	.0048	.0074	.0148	.0220	.0205	A160.	.0431	.0801	.0699	.0704	.0756	1980.	E060.	VESO .	. 1014	7E01.	.0997	.0704	
CD	.0945 7430	0331	.0210	.0172	E020.	0330	.0539	0360	. 1401	2022	000E.	.3002	4360	.5020	5637	.5562	8264	6368	7594	1600 .	0000	.0271	. 8041	
2~73	7307	0547	.0114	.0001	.0140	.0646	.1548	. 2551	3009	5696	EVOS.	1.1403	1.1802	1.2280	1.2083	1.1967	1.2194	1.2155	1.1966	1.1119	1.0910	9761	.7665	
СГ.	- 40 03	23.69	1067	E/00.	. 1218	2542	3862	5051	6239.	11	6996.	1.0716	1.0771	1.1078	1.0987	1.0940	1.1043	1.1025	1.0534	1.0545	1.0445	54/96	8755.	
A.FA	-10.0		- 2 -	.	2.5	5,0	7.5	10.0	12.5	15.0	17.5	0.02	22.5	0. K	27.5	27.5	30.06	3. Æ	5.8	37.6	37.5	4 0.0	42.5	
Ð	2362.5	2400.8	2383.5	2380.6	2300. B	2367.2	2306.9	2300.8	2309.9	2309.6	8-8852 2338.8	2205.2	0.0022	2310.9	2327.8	2219.7	2232.9	2756.2	2275.7	2200.A	2186.5	2196.7	2214.1	
>	61.12 61.12	S. 19	61.16	61.12	61.12	61.10	61.09	61.04	B1.16	61.17	1 5.08	20 .05	60.05	60.21	FIO.43	5.5	22.63	59.53	59.00	59.99	1. 2.	5 A . A1	59.02	
下半代	905.6 707 e	a.511	3.505	3.502	3.499		0.430	0.4 C	3.495	154 .C	3.455	3.411	3.421	3.42B	9.438	3.355	3.365	3.362	3.365	9.404 8	3.324	3.330	9. G44	
H HH	182 182	5	.162	381.	. 182	. 182	182	18.	.180	. 102	.180	. 178	.178	521	110	51	176	. 177	. 178	. 178	. 174	.175	57.	
Ndi	27	źź	57	£	ł	2	17	2	e.	1	R	"	28	£	8	6	2	5	S	£	90	20	£	STOP

Model with faired cavities at the wing lower side at M \approx 0.178 TABLE CI

INK) (IJVE IKIR-SYSTEM	1:48 FM 1H	2	UCT., 1567	HMUC 2	1631	6602	SHRIES	¥ Ω	S	Ē	ъ	Ĕ
** ((##K.ZEMC)]]##												

Nui ionu gerrishace i annaatany (n k) 1.51 342.25 Iyanale lei 14 forke mershafments - Mershking liate: 26- 2-1906

HF14 = 0 degrees At alpha > 20 degrees, a correction has been applied to U

ž	(0019	- , 0000	0016	(010	0016	0012	0012	0017	0000	0013	(0019	0019	0019	0015	.000	(1011	0018	0014	.0002	- , 0010	0018	()055	6000	0031	- 0020	
CN	.0019	- 0001	.0016	9000	.0016	.0012	0012	.0017	0002	.0013	.00200	.0018	0200.	.0016	0007	.0012	.0018	.0012	0001	6000.	.0014	.0040	0004	.0020	.0019	
5	4000.	.0007	E000.	.0011	. 0001	.0004	· 000:1	.0003	.0011	0001	0002	000	0002	- , 0002	0004	0005	.0012	.0008	0006	0000 [.]	. 0022	HE:00.	.0024	0053	.0006	
W	0141	NGOO. -	0062	0031	0005	.0024	.005.	.006A	.0156	.0224	0620.	.0310	LLEO.	.0418	40 55.	.0630	95/0	.0756	.0056	.0528	. 1097	. 1021	. 1050	. 0561	0.700	
Ð	6990.	. 06:07	BEEO.	.0255	.0160	.0208	0340	. 0602	.0957	. 1421	EM0%.	. 3015	.3017	BYGE.	.4401	6505.	- Seba	6/95.	6267	6963.	7500	. 8207	.8155	. 63556	1808.	
(1.^2	.22Rb	. 1322	5.5	.0111	.0001	0153	.0649	. 1520	1952	5995.	5720	9763	1953.	1.1684	1.1834	1.7324	1.2161	1.2164	1.2306	1.2478	1.2211	1.1304	1.1%%	. 55521	7548	
CI.	4783	- 14 H	2312	1055	.00400	.1238	. 2547	BEE.	. 5061	.6220	. 7563	.9680	1696.	1.0809	1.0679	1.1101	1.1028	1.1029	1.1053	1.1171	1.1050	1.0632	1.0600	.9961	. 86.88	
54 55	-10.0	-7.5	-5.0	-2 -2 -	• <u>.</u>	2.5	5.0	7.5	10.0	12.5	15.0	17.5	17.5	20.02	22.5	25.0	27.5	27.5	0.08	ы Ж	0.92	37.5	37.5	40.0	42.5	
3	2/89.7	6.1115	2742.2	2781.7	2784.1	2780.2	7765.9	2760.6	2782.7	2766.7	2782.4	2/15.9	26,006.7	2692.7	26269.5	2710.8	2729.1	2628.5	7640.5	7658.6	1.6837	2699.5	25:05.0	2619.9	2641.4	
2	66.23	66.10	665, 17	66.16	6 6.20	H5. 16	665.24	66.18	66.23	66.31	£. 2	56,30	85.17	65. 06	65.30	85. 1	65.67	.	64.61	5.8	65.15	65.37	67. V 9	64.42	64.69	
たまで	3.755	3.745	3.746	3.746	Э. 7 46	3.742	9.7 4	3.740	3.734	3.741	3.736	3.7.6	3.666	9. EF	3.673	3.679	3.691	3.620	3.628	3.639	3.656	3.663	3.556	3.607	3.621	
HICH	197	. 156	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	. 1995	1991.	551	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	155	1965	141	. 196	E.	. 143	651.	. 193	Ŧ.	194	141	191.	157.	.153	1931	1991	191	191.	
Ī	Ł	5	5	3	3	3	£	£	16	8	ł	101	10,	103	101	105	105	101	100	101	110	113	114	115	116	1015

Model with faired cavities at the wing lower side at M = 0.193TABLE C2

Ľ.

123200

222.025

TRACE SUBJECT STREET

EEL S Ę ç N Y æ TEST 6602 SERIES 2 FRCC . 1:45 PM THU, 22 (0.1., 1567 I N.K.) CE IVE LIFIG-SYSTEM

** LURN. ZEND URLET **

HF1A = 0 degrees At alpha > 20 degrees, a correction has been applied to U

CK	. 0051 0061	0112	0037	0038	- , 0062	0018	0018	.0042	.0044	0020	.0068	.0072	.0120	0045	0024	.0063	.0017	0028	0029	.0017	0007
N	- 0034 . 0059	.0106	PEOO.	0042	3500,	.0016	.0011	- 0046	004A	C100 .	E/00	0070	0120	.0045	.0019	- 0065	0018	0030.	.0027	0022	.0005
ננ	0004	.0051	0034	.0024	00500	.0019	. (1045	.0024	.0025	.0040	. 0027	- , 0009	- ,0001	- 0004	.0026	6000.	.0005	0006	.0013	.0023	.0013
CM	0117 0168	0119	0077	0057	0004	.0048	9600.	.0156	0304	.0409	.0477	.0580	.0701	.0792	.0771	.0811	. 1065	1237.	. 1279	. 1201	1960 .
a D	5260 5250	1E20.	1/10.	6210.	.0061	.0184	.0451	.0810	. 1262	. 1650	.2776	MOHE.	.4103	5994.	EVES.	.6075	.6564	70/4	. 7481	. 7854	ME87.
CI ~2	2241	.0470	.0103	E000.	.0185	EL70.	1559	. 2407		916 3.	.85.05	1.1097	1.0759	1.0549	1.1307	1.1787	1.1482	1.0680	9/5/6	. 8951	17E7.
IJ	4734	2168	1016	.0165	1360	26993 ·	8968.	.4506	9036.	7292	9269	1.0534	1.0373	1.0464	1.0634	1.0857	1.0715	1.0334	9696	.9461	. 8585
AL FA	- 10.0 2.7-	-5.0	2 2 3	0.0	2.5 2	5.0	7.5	10.0	12.5	15.0	17.5	20.02 20.02	27.5	25.0	27.5	0.0E	с.95 С.95	0.98 98	37.5	40.0	42.5
3	334. 4 400.0	401.0	401.6	401.4	401.8	401.6	401.3	400.7	い日光	SCHOLON IN	356.8	1.999	2.899	401.0	401.4	401.6	405.1	411.9	414.2	419.5	422.7
2	K.C 2 5	£.18	5.13	2 .9	£. £	8. 9 2	3.2	S. 5	S. 2	98 92 92	27. E	2 4 . 12	35.07	57. 1 2	1 .2	£.2	£ £	₽. £	3.53	69. X	č5. 78
N= ++ 6	1.409	1.414	1.415	1.416	1.417	1.417	1.417	1.416	1,415	1.413	1.405	1.410	1.415	1.420	1.421	1.422	1.474	1.441	1.445	1.456	1.461
MAC H	0/0 10	د ۲۵.	5.0.	50	379.	ŝ	3/0	.074	4/0.	•/0	.074	₩/D.	.074	S/0.	5.0	<u>۲۵.</u>	2 0.	.076	.076	.076	.0.7
£	118	119	120	121	172	2	121	ž	1 3	127	128	ž	99	131	3	133	A L	3	1363	1.51	138

Model with faired cavities at the wing lower side at M = 0.075TABLE C3

515 2151

H)

Ξ.

Ĩ

~

N 2

4

SERIES

TEST 6602

~

. PREF

1:44 PM THU, 22 (0.1., 1947 L N K] G OF HIR-SYSIFM ** (CHOK, ZFHCI IKIF] **

A CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR

NGUIGNAL ABREAMATE (AN NGUIGNY (N. R.) 15) 342.25 Irainale delta fente neamannan (n. r.) neamanna 1841e. 27- 2-1566

14-14 = 0 degrees 14 alpha > 20 degrees, a correction has been applied to 0

ĸ	09900 0000	0001	0000	0035	.0027	. 0017	. 0061	9000.	0041	- · 0003	0045	.0006	0031	0010	-, 0005	. 0024	.0014	0024	0025	.0013	0011	
N	. 0060	0000	.000	2000.	- 002h	0015	/400	000	9038	0001	.0042	0004	. 0032	0000	00100.	0023	0012	.00%	.0018	6014	.0013	
3	- 0002	0000	0013	.0002	0011	0018	- 0024	0001	. 0018	0019	.0016	0013	- , 0004	.0011	- , 0006	-,000	- , 0008	.0010	8000.	. 0003	0014	
£	0040	0127	- ,0085	006:0	0018	. 0063	.0048	.0214	.0251	99960	.0480	. 05,85	.0711	0/94	06/0	.0860	1122	. 1216	1322	. 1261	.0910	
(IJ	0/83	0275	.0115	- 0052	. 0103	.0211	.0515	.0807	. 1281	. 1666	.2773	3614	. 4063	.46:70	5 374	.6081	.66526	040/.	26392	6,78/.	. 7834	
(1.~2	22.65	6550	0130	E000.	.0155	.0644	1507	.2456	BANE	.5501	. 85657	1.1043	1.1206	1.1210	1.1561	1.2033	1.1532	1.0707	1.0219	60/8.	2159	
บ	- 4760	0.99.X	- 1136	.0167	. 1246	25:50	3062	4965	6139.	7417		1.0508	1.0508	1.0508	1.0752	1.0969	1.0739	1.0347	1.0109	2006	6461	
ALFA	-10.0	-5.0	ר.2-	0.0	۲.5 ک	ۍ.c	7.5	10.0	12.5	15.0	17.5	20.0	2.5	52°0	27.5	0.05	36.5	0. ¥	37.5	40.0	42.5	
з		5.5	40(1.0	6. 199 5	399.5	3.689.2	356.6	N-1-1	5.993 5.993 5.00	567.3	1.195	6. W B	400.4	400.7	400.4	405.19	1.614	415.1	417.4	419.6	422.1	
>	24.48 24.48	24.52	24.53	24.53	24.53	24.52	24 51	24.45	24.44	24.4H	24.48	24.42	24.59	24.60	24.60	24.7A	8.%	8. 8	5 2	S.2	S. 3	
14 ¥ 6	1.507		1.506	1.505	1.504	1.502	1.500	1.496	1.454	- 45	1.454	1.409	1.45	1.454		1.507	1.520	1.523	1.526	1.525	1.533	
HIM	► / 0	4/0	10.	.074	0/4	0/4	•0.4	.074	•/0	0/4	6/4	.074	0.4	5 <u>7</u> 0	.074	ر ۲0	9/0	9.0	970.	.076	0/0	
N H	141		Į	ŧ	Ę	147	ş	141	150	151	3	12	ž	3	155	15:7	158	155	99	161	Ę	100

= 0.075 Model with open cavities at the wing lower side at M TABLE C4

FRGE ~ Ę ~ RUN 4 SERIES 1651 6602 N HKKK . 1:51 PM THU, 22 (01., 1987 I N K] (I I VE LIHIH-SYSTEM

** ((MK. ZERG) JKJF] **

NAUTIONAL GENERATATE LANGNAUTORY (NLR) 151 (N2.75 Iname Lalith Funct Matchinements — Marchining Bath: 27-2-1906

BF14 = 0 degrees At alpha > 20 degrees, a correction has been applied to G

	មិត	12	l6	2	i je	E	4	2	5	2	2	2	ቋ	g	4	æ	8	SC SC	e	2	2	-8	8	ē	
CR.	99	8	8 '	9	8	ð.	00	ğ	200.	00.	00	Š.	ğ	000.	- 00	00		<u>, oo</u>	- 00	002	00	- ⁰⁰		ġ.	
N	0015	0018	.0017	.0002	0026	0002	.0004	0007	0027	- , 0002	.0011	E000	0010	0001	.0014	.0026	.0018	.0001	1100.	6200.	EEOO.	.0047	.0018	.0042	
22	2000.	.0010	0003	.000.	E000 .	0001	E000.	E000.	0000.	.0002	0001	5000.	E000.	0007	E000.	.000	.000	.0021	E100.	.0021	.0046	9000.	0064	.0007	
£	- 0132	0045	0020	.0002	1E00 .	.0067	2600.	.0168	.0240	0307	MEED.	.0336	.0451	.0607	.0736	0670.	.0002	.0002	0960.	0/60.	. 1076	.1046	. 1075	.0673	
3	.0964 0602	0351	.0227	.0190	.0227	.0348	.0618	5960.	. 1453	E202.	3039	3043	9 9 90	5044.	5058	.5667	5646	6369.	.6963	. 7590	6133	.8107	3058.	.8102	
2~ II	-225 0	1450	.0110	.0001	.0156	0654	. 1555	.2522	9996 .	.578G	.9440	ESP6.	1.1551	1.1758	1.2324	1.2164	1.2121	1.2113	1.2210	1.1876	1.1229	1.1144	9049	7506	
٦	- 4752	5352 -	1048	.0117	. 1248	.2558	AND A	.5072	6244	2603	.9716	CZ76.	1.0747	1.0043	1.1101	1.1029	1.1010	1.1006	1.1050	1.0659	1.0597	1.0556	.9824	6664	
FILFE	-10.0	-1	-2.5	0.0	2.5	5.0	7.5	10.0	12.5	15.0	17.5	17.5	20.0	22.5	25.0	27.5	27.5	30.06	36.5 2	0.58	37.5	37.5	40.0	4 10 10	
3	2.306.2	0.6062	2300.0	2300.1	2305.5	2306.8	2301.1	2363.5	2301.6	1962	2306.h	2250.1	2206.3	2204.0	2308.4	1.1222	2222.6	2235.6	2.252	2271.3	2203.8	2100.5	2154.3	2211.4	
>	60.16 60.21	. 99 99	60.28	£. 93	60.28	60.33	£. 2	60. 3 4	60.33	89 . 9 <u>9</u>	1.3	58.24	59.22	59.21	54.55	59.77	58.48	58.65	58.90	59.17	59.35	50.02	5-0.22	58.47	
REALES	3.640 2.640	3.6.6	629 E	3.6%	3.620	3.616	3, 607	3.605	3.601	3.605	3.598	3.519	3.512	3.508	3, 523	3.530	3.450	N. 458	9. 468	874.8	19. 40 6	3.402	3.411	3.422	
MICH	181. 191		No.	180	162	. 102	182	. 165	15.	.18%	. 182	178	.178	178	9/1	. 180	. 176	.176	111.	1/1	.178	1/4	174	51.	
N	31	₹₹	166	167	168	166	170	171	172	173	174	175	13	177	178	671	180	181	301	183	101	165	186	187	<u>105</u>

Model with open cavities at the wing lower side at M = 0.178TABLE C5

I NER J (II JUE THIR-SYSTEM 1	1:5% H	1 THU.,	2	к. Г.,	1947	FHCC.	N	1E51 6602	SERIFS	7 7	N	7 Hu	ы Т	붗
** CONS.ZENCINIET **														
National of Rossent Foothaal Cry (Na Daar Footha Footha Foothard Disease Nis	1 (X)	51 342.2 HFR	SUR N	S INHIE	.: 27- 2	- 1986								

	t o D
	applied
	been
	ļ
	correction
degrees) 20 degrees, a
HFIR = 0	Ht alpha

CR	0010	0014	.001	- ,0004	0015	 	0027	0007	0015	.0005	.000	000.	0006	0002	- , 0035	-,0008	0007	0017	0004	0029	0014	- 0035	0043	0026	0017	
CN	6000.	.0013	0012	E000.	0015	000.	5200	.0006	.0014	- 0005	0006	- 0004	.0006	.0002	3600.	6000.	.0007	.0016	3000 .	.0027	0000.	.0027	9000.	E100.	.0017	
33	.0014	6000.	8000.	.0006	5000.	6000.	.0010	9000	1000	1000.	.0002	0000	.000	E000.	2000.	0003	0005	.0006	0000	.0007	NE00 .	E400.	BEOO.	.0068	0001	
Ð	0117	0079	0040	0011	6000.	2E00 .	.0070	6600.	.0165	.0235	0300	0320	6260.	MENO.	99:30	NG290 .	NBYO .	0759	2520.	.00355	.1005	.0365	E701.	.0562	.06:87	
C 10	.0965	.0612	0360.	7620 .	.0192	.0224	.0341	.06%3	.0981	TASA.	.2086	3056	3050	MOR.	2442	.5082	.5714	.5727	6365	1902.	/69/.	.8187	.8285	.8505	.8076	
(1.~2	-2255	.1336	USS-	.0115	.000	.0154	. 0657	. 1533	25.96	.3907	.5786	VENS.	.9421	1.1669	1.1662	1.2264	1.2207	1.2269	1.2153	1.2176	1.2049	1.1360	1.1525	. 9985	1304	
1	A794	36657	2326	1071	1600.	. 1241	.2563	.3918	5035	6250	. 7583	P176 .	.9706	1.0012	1.0905	1.1074	1.1048	1.1077	1.1024	1.1034	1.0977	1.0654	1.0735	.99642	. 8699	
AL FA	-10.0	-7.5	-5.0	-2.5	0.0	2.5	5.0	7.5	10.0	12.5	15.0	17.5	17.5	20.0	22.5	25.0	27.5	27.5	0.06	32.5	35.0	37.5	37.5	40.0	42.5	
C	2784.7	2760.6	2782.7	2762.7	2763.1	2789.4	2782.4	2786.3	2706.3	2783.0	2706.1	2779.5	2601.5	2652.5	2646.3	2708.6	2730.2	2630.7	2644.9	2003.0	2601.5	2704.6	25596.3	2622.7	2631.9	
>	85. FA	65.62	65.66	69°.69	RS. 70	65.01	6 8.73	65.01	65.83	65. 8 2	65.00	65. 8 2	64.67	2.2	64.91	85.08	88: 3 8	64.18	ET. 38	3 .8	64.87	65.19	63.80	E . 23	64.36	
所来に	3.633	3.627	3.626	3.623	3.820	3.620	3.814	3.812	3. 80 9	3.803	3.802	3.793	3.772	3.725	3.724	3.730	3.742	3.669	3.678	3.606	3.696	3.706	3.628	3.644	3, 649	
NGC H	.155	156	.196	196	1351	181.	. 1565	791.	197	196	191.	.156	133	153	ESI.	MAL.	.155	181.	351.	130	. 153	1957. 1	190	191.	191.	
N.	181	186	150	191	192	153	1 1	3	156	191	150		200	5	ğ	EO2	202	202	206	207	802	209	210	211	212	ST(IP ST(IP)

TABLE C6 Model with open cavities at the wing lower side at M = 0.193 222.22.22

L FER

Ī 8

Z Z

ŝ

1EST 6602 SERIFS

N

HRCC .

1:53 FH THU, 22 DCT., 1967

2

** (OKK. ZEND IKIE) **

ENK J GIVE BURG-SYSTEM

NUTIONA (# KUSHKAE LAKKAUTAY (M.K.) 1.51 342.25 UQUAE LIELTA FORCE MEKSURURUIS - - 1946

UF14 = 0 degrees At alpha > 20 degrees, a correction has been applied to 0

נצ	0024	0054	0021	- 0047	0016	0000	.0024	E200'-	0010	0014	E200	0021	:0000:	0024	.0000	0023	0021	0014	.0012	0005	0005	.0006	0021	.000.	.0013
z	.002	.0045	2100.	.0041	.0012	0002	0021	9200	.0010	.0016	:5700.	.0022	, 0005 -	-200.	.0001	.0022	.0020	.0015	0011	.0006	.0005	0007	.0021	0007	0012
Ľ	.000	.0048	0000.	.0032	500.	.0011	0016	0007	.0001	0011	0010	0002	:000; -	0008	0006	.000	.0004	0006	E000	0001	.0004	£000°.	.000	0007	0010
Đ	0664	9880.	1044	.1036	1054	05654	.0535	.0871	06/90	.0744	. 0628	.0452	0320.	.0324	SOE0.	.0238	.0165	.0105	.007	.0043	.0015	0005	0024	- 0052	0102
8	.8013	69463	.8106	6608.	. 7628	1107.	.6302	96.95	5659	5050	4366	.3631	. 3023	000E.	2054	. 1426	.0959	1090.	. 0338	.0218	.0166	.0207	.0316	.0533	1950.
C1 ~2	.7493	1099	1.1204	1.1211	1.1974	1.2185	1.2121	1.2107	1.2044	1.2262	1.1750	1.1588	19491	3518	.5001	BEBE.	.2620	1549	.0675	.0162	.0002	.0108	.0523	SIEL .	. 2287
U	. 8656	0995.	1.0565	1.0588	1.0942	1,1039	1.1010	1.1003	1.0974	1.1073	1.0840	1.0765	.9742	9756.	. 7616	.6275	.5119	. 3866	.2598	. 1274	.0131	1037	7287	3626	4782
RI FA	42.5	40.0	9.7E	37.5	38.0	32.5	30.0	27.5	27.5	NS. 0	22.5	20.0	17.5	17.5	15.0	12.5	10.0	7.5	5.0	2.5	0.0	-2.5	-5.0	-7.5	-10.0
3	2210.7	2199.5	2183.0	22/50.5	2273.0	2251.0	2236.7	2222 3	2320.4	2309.B	P. 3927	2267.7	2267.8	2366.2	8. 6/ES	2303.6	2360.1	23857.B	2300.5	2362.9	2302.4	2363.0	2300.9	2362.5	2305.9
>	96° 97	58. F	50.64	60.11	59.89	59.61	59.45	59.25	60.55	60.42	50 S	60.15	60.16	61.45	61.36	61.43	61.53	61.51	61.52	61.45	61.45	61.46	61.55	61.48	61.52
RE #E6	3.347	3.334	3.319	3.340	3.378	3.360	3.350	3.336	3.407	3.367	1900 1900 1900	3.378	3.377	9.44B	3.442	514 . M	3.446	1. 444 1.	144.	3.43B	3.436	G. 438	144.D	3.435	764 .E
HUHH	.175	175	174	. 178	178	111.	176	.176	671	5/1.	178	. 178	178	. 162	. 162	. 182	. 162	. 162	187	. 182	. 182	162	.182	.18%	51.
M	215	216	217	218	219	220	231	E.	E22	1	Ł	9 <u>8</u> 2	227	2 8	229	962	<u>الح</u>	SE S	E.	N.	ř	992	237	23 8	<u>1</u>

Model with open cavities at the wing lower side at M = 0.178, measured in a reversed order (from positive α to negative $\alpha)$ TABLE C7

90 15

-137-

