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) Abstract?

In this paper we pose a sequence of linear prediction problems that are a little different
from those previously posed. By solving the sequence of problems we are able to QR factor
data matrices of the type usually associated with correlation, pre and post-windowed, and
covariance methods of linear prediction. Qur solutions cover the forward, backward and
forward-backward problems. The QR factor orthogonalizes the data matrix and solves the

problem of Cholesky factoring the experimental correlation matrix and its inverse. This

means we may use generalized Levinson algorithms to derive generalized QR algorithms. / °"'°
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which are then used to derive generalized Schur algorithms. All three algorithms are true \srecree
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lattice algorithms that may be implemented either on a vector machine or on a multi-tier

lattice, and all three algorithms generate generalized reflection coefficients that may be ’ __f iy

used for filtering or classification.
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1. Introduction

In this paper we pose a sequence of least squares problems from the theory of linear
prediction. The problems are a little different from those originally posed in the paper by
Morf, et al. 6. The solution to this sequence of problems produces QR factorizations of the
kinds of data matrices that are usually associated with the covariance, pre-windowed, post-
windowed and correlation methods of linear prediction. By QR factorization we mean the
computation of an orthogonal matrix @ and an upper triangular matrix R such that ¥ =
QR. That factorization is very often used to solve an overdermined system of equations
Ya = b in the least squares sense by Ra = Q7). The results apply to forward, backward
or forward-backward linear prediction problems. We interpret the QR factorization in
analysis, synthesis and orthogonalizing terms, and use it to generate Cholesky factors of
the experimental covariance matrix ( the Grammian of the data matrix) and its inverse.
Then we use the generalized Levinson recursions derived by Friedlander et al. [1] to
derive generalized recursions for computing the orthogonal matrix in the QR factorization
of any of the Toeplitz (or concatenation of Toeplitz) matrices that can arise in linear
prediction. These recursions generalize those first discovered by Cybenko [13] for the
correlation method of linear prediction. We then use these recursions to derive generalized
Schur recursions for Cholesky factoring any of the close-to-Toeplitz covariance matrices

that can arise in linear prediction.

All of our generalized recursions are true lattice recursions that generate gencralized
reflection coefficients. All three algorithms may be implemented on a vector machine
or on a multi-tier lattice. In a procedure similar to that of Robinson and Treitel 7] in
the scalar Toeplitz case, and Friedlander |8 in the multi-variable Toeplitz case, we use
the autoregressive lattice filter associated with the generalized reflection coeflicients to

complete the QR factorization with the computation of the upper triangular matrix.

Finally, we show how our generalized Levinson, QR, and Schur algorithms may be
extended to multivariable (or vector) linear prediction problems. The multivariable results
may be applied to a variety of multidimensional problems, as well.

II. Least Squares Problems in Linear Prediction

Let y = [yo,y1,--- ,yn-1]7 denote an N sample snapshot of the stationary time series

2
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{y:}. From this snapshot, we would like to identify an autoregressive or whitening model -
i - o 2
X for the time series {y;}. This model takes the form e
+
n »
L3 - -
¢ Za:‘yhi =uy ; a; =1 (I1.1) ;_;
t =0 o
\ 2
. where {ul'} is a white sequence with zero mean and variance o2. The interpretation is 2
that the digital filter A,(z) = Y./ az"* whitens the time series {y1}. The whitening =
¢ . . . ‘
‘ model may be written as the predictor model N
L) = n = n oA
' Yt =Y+ Y Ye = "Za: Y1 (11.2) ;’
¢ 1=1 %]
[) . . .
) The variance of the white sequence {u,}, or equivalently the mean squared error between 3
[}
) . ~ . 2 y
{ y: and the one-step ahead predictor y,, is 0;,. ":.

£V 1,

Prediction : Our procedure for identifying a model A,(z) will be to form a sequence

_ ]
of predictions of the form ’
- "
; P My
A ~
gr=-Y afyy : af=1 (I1.3) '
;] v =1 !;-'
¥ o)
; and to let the predictor order range from p = 0 to p = n. The error between y, and the ~7
:
f pth order predictor 7} is, of course, ;
' W
’ P R
! P _ - _ P "
). Uy = Y — Yy —Zaiyt_.' (11.4) 0
A 1=0 '~ P,
A
We shall be interested in a window of these errors for which the time index t satisfies the l':
‘ condition 2.,
) -
: k<t+(n-p) <L (I1.5) -
~ _-:
" As the predictor order increases from p = 0 to p = n, the window of length (I - k + 1) :'.:
K moves from left to right across the data set, as illustrated in Figure 1. The indexes k and %
8 .
. . . .. v,
' | may be chosen to select among the various techniques of linear prediction. The data ':;
‘ 3
values outside the range /0,...,N — 1] are set to zero. In the covariance method of linear S
. » . - \.
prediction, k = n and [ = N — 1, in the correlation method, ¥ = 0 and ! = N — 1 + n, as
. I '.r
: illustrated in Figure 2. N
3
) oy
[
k 2
K 3 :,)‘ .
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Let us write out the error equations, over the window just defined, for the p'? order

predictor as follows :

-

Y+
LYk n - Yk-t Ye U

Y V2224 "I P LA,

The ceompact notation is

. g
x

0

.| aP . .
} =YAP =UP (I1.7)

"'fr
(4

This scheme may be reproduced for p = 0 to p = n to obtain the set of equations

e 4

S5

s 7y

k)

YA4=U (I1.8)

' =

where Y is the Toeplitz data matrix just defined. and the matrices A and U are given by
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Least Squares : The Grammian of the error matrix U is

" AL LA

Z

UTU - aTyTya
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The pp element of the Grammian is ]

?1 o2 = (UP)TUP = (a?)T07 ¥TY

(:’} - (AP)TY Ty 47, (11.12) N

. which is just the accumulated squared prediction error over the window defined for the ()

% predictor of order p. This squared error may be minimized with respect to the coefficients

DS R

. a? under the constraint that (a?)7é = af = 1. The appropriate regression equation is

0 T, (t@’o?ﬂr

‘ﬂ _ A(gP)Té> ~ 0 (I1.13)

B ek A

The solution for a? is then

P .
‘710 YTY [‘ﬂ =026 ; b= 1" (I1.14)

the matrix |I 0] is just there to reduce the length of the vector to p~+ 1. When this solution

N is written out for p = 0,1,...,n, the result is
0

ey

Y7y A =LD? (I1.15)

! b
X id
. where L is a lower triangular matrix with ones on its main diagonal and D? is the diagonal _
. {
:. matrix containing the prediction errors : <
-
3 2
“.' D? = Diag [62.02,...,02] (11.16) ’
A ° 1_‘

QR Factors : The equation YTY A = LD? characterizes the least squares predictors

": for p = 0 to p = n. The right hand side is lower triangular. If both sides of the equation
\
! . are pre-multiplied by A7, then the left hand side, namely A7 7Y 4 is symmetric and the

right hand side is lower triangular. So the right hand side must be diagonal. This means

the least squares solution for the columns of 4 produce the following equations :

u YA=U  ATYTva-UTU = D? (I1.17) N

It follows that Y4 = U is a QR factorization of the data matrix ¥ when A solves the

sequence of least squares problems we have posed. This QR factorization (really a Gram-

e Nt e e W v

Schmidt orthogonalization of Y') may be rewritten as

Y =UHT HT =4} (11.18)
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! where H7T is upper triangular. Then the QR factorization may be given the following ':\
. . T . >
d analysis, synthesis and orthogonalization interpretations : N
H
.
1) YA = U : Y is analyzed or whitened by the analysis matrix 4 to produce the white »
. .
B . . e “
k matrix U (UTU = D?). "
: 5
' i1) Y = UH7 : Y is synthesized from the white matrix U by the upper triangular synthesis .
X
] . s
: matrix HT = 471 Ly
k. iii) YTU = HD? : the data matrix Y and the white matrix U are causally orthogonal, :: )
5 with H describing the cross-correlation between the input } and the output U. g
b .-.:
Second-Order Equations : Let us define the experimental correlation matrix R to be
) R )
) the Grammian of the data matrix Y : m
!
! N
N [l
b T
' R=Y"} (I1.19) &
. At
&
’
; Then, from the analysis and synthesis equations we can interpret the analyvsis matrix 4 as
N
‘ r
p a Cholesky factor of R~! and the synthesis matrix H as a Cholesky factor of R : '_::
’ - =3
\ i) ATRA = D? : Ais a Cholesky factor of R '. ;.':
k- ii) R= HD?*HT : H is a Cholesky factor of R. A
L A
! 11) R4 = HD? : A analyzes R to produce H. .r’:
‘ Backward equations : The prediction operation may also be written backwardsin time l:
A
. (with respect to future values of the time-series). The one-step backward model becomes !_
t e
X n -
s Sy, =ep o b =1 (11.20) %
3y 1=0 "::
¢ where {v]} is a white sequence with zero mean and variance 72. As before, lower order W
.f g
b . . . . . .
! predictors are introduced to form a family of order increasing predictors \\}:
; N
h P te
» Y Fyi=vP 0 W=l (11.21) _
A . P
N =0 >
3 't
3 for p = 0 to p = n. The prediction errors are written for the time index satisfving the "
! N
. . .. ol
L following condition : ;
. o
. )
y k<t+p<l (11.22) X
! i,
¥ N
: 6
x o

A N
W, v - \ ¢
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The error equations for the order p predictor may be written as

[ Ye Yk Ye-n ) [ p
r
.. . ; _ kg
Y+ : . . bﬂ A l‘:_ p]
Ye
b7
y_’f 1] = (11.23)
Yi-n . 0
. {lol
Yi-1a T : vlp p-1
L Yyt Y1 Yi—n d .1'1”,,, i
The data matrix X in this equation is related to Y by the exchange matrix J : X = JY J.
The compact notation is then
X [b:} -XBP = V\P (11.24)
This scheme may be reproduced for p = 0 to p = n to obtain the set of equations
XB-V (11.25)
B =iB,...,B",...,B™ V= v vr Y (I1.26)

The least squares solution under the constraint ) = 1, when written out for p = 0 to

p = n, leads to the matrix equation :

B'XTxB=Vv"v (11.27)

It then follows that X = VB! = T'GT is a QR factorization of Y. and the second order

Cholesky equations for the Grammian X7 X = JRJ are

BTXTXB - E? XTX = GE*GT (I1.28)

The connections with the forward case come from the relationship between X and Y.

The QR factorization of X is a “QL” factorization on Y. The upper-lower Cholesky

factorization of (XTX)"! is a lower-upper Cholesky factorization of (Y 7Y ) ! and the

lower-upper Cholesky factorization of X7 X is an upper-lower Cholesky factorization of

vTY.
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Forward-Backward equations : When the time series is known to be stationary. its

AR N

statistical properties are not modified when time is reversed. This property mav be very I
»
important for some applications, and the family of models may be forced to satisfv this ’
l'- '
property. In other words. the forward and backward prediction errors are written with ol
0
respect to the same predictor coefficients : oy
P P
Z aly, , - uf 2‘ a’ye.. ) 4l 1 (11.29) -
1=U 1= :\.
The compact notation is ;:: '
Y | [aP re . 2
I e o X - JYJ 11.30
{‘\ 0 e X (11.30) 3
r‘:
When these equations are written out for prediction orders from p - 0 to p  n. we have ‘
the coupled prediction equations "-:
Y U b
N 11.31 o
W,
The Grammian of the error matrix is :"
O\
. S TvT T | ¥ TyvTy . vTv )
s v vl ATY XY 1447 Y Y- XY 4 (11.32) T
R A
The ppth element of this Grammian is >
>
= (AT Ty + XTX 47 (I1.33) -
5
-
which 1s just the accumulated squared prediction errors in the forwaid and backward R
)
predictions.
)
As before. the solution of the family of least squares problems produces a matrix 4 that ’
orthogonalizes the data matrix } . and Cholesky factors the Grammian Y7} - XTX, -
Linear Statistical models : There is one more useful comment to be made about the ‘;

th

equations of linear prediction. Suppose y' is the i' " snapshot of a data set. It might be

obtained from a multi-sensor array or from overlapped windows of a time series. This

snapshot may be analyzed into a white vector u' by fitting a linear prediction or analysis
model :

ATy = (11.34)

f ’J a A {' “n L4 r‘r.
A AN , ,,.'v
'..I's ottty 00,10y sty 8 ’ I AIAI NS, -‘o

e r'.f:-.,_f' f"'f.":f"e

Nt A ol

'{‘-‘“f‘\r’ 'Syﬁ' NN
. Y
NoAS

RO A
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9 y
9 N
:' where A7 is a lower triangular matrix with unit diagonal elements. Call R the experimental "3
' .
:: correlation matrix and D? the experimental analyvsis matrix : .
A ’l
S ! { L
p T nwT S 1T 2 - ¢
. . Y
. vy R Y W(u) D (11.35) 1
) 1 LI -1
z N
' Then the connection between R and D? is o
M T 2 b

. A'"RA=D (11.36) A
:I -

&
=

‘ e . 5 d
v If the columns of 4 are chosen to minimize the diagonal elements of D*, term: by term. v

]

" then D? is diagonal. and the factorization obtained is a Cholesky factorization. Similarly P
3 i
4§ 7,
" . .
|‘. the svnthesis model may be written o

b /
' 7

EN R - 0
3 y' = Hu' HT = 4! (I1.37) ;
.~ ) :
b .:-

; 9 . . - - - . . . r y
‘ The connection with the prediction equations comes with the choice of y* as the it column ;:'
e of YT, the Toeplitz data matrix. With such a choice for y'. the linear statistical model is =3

' 4

- . really another way to write down the whole set of increasing order prediction problems. L
8
h .

When the matrix R is replaced by the expectation of y*(y')7. then this formalism reduces “ad

3 . i ’s
o to that of 3. “.
L% B

Summary : By solving the right sequence of least squares problems. we QR factor )
[

\ .
‘ . i . . ;
oy a data matrix and produce Choleskv factors of the experimental covariance matrix and -
¢ o - . : . : o)

its inverse. This i1s fundamental. We can either think of a QR factoring of the data w

\, h¥)

) . . . "
matrix as a square root method of factoring the experimental correlation matrix and its <

¥
- . . . . . ~

b inverse. or we can think of a Cholesky factoring of the experimental covariance matnx -

e .

. and its inverse as a square method of obtaining the “R™ part of a QR factorization. We 4
L . A . ) o

" can also think of the QR factor YA - U. the Cholesky factor ATRA - D? and the .
[S4 )
% Cholesky factor R HD?HT7 as three different ways of characterizing the matrix A (or .,
\ -.

- .. . . . .. . . -9

W its inverse) that contains order-increasing prediction filters. In these characterizations, the .

z. .-

Y . - . ~ ¥ . D

G Toeplitz structure of Y. and the close-to-Toeplitz structure of R. may be used to derive -
R -\

fast algorithms for computing A4 (or its inverse). In these algorithms. generalized reflection '

v coefficients are used to update recursions. -
. !
i‘ 9 L™y
[) L]
|. .*
. ]
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In section IIT of this paper. we review how the generalized Levinson recursions derived

AL,

3

N e T i

( by Friedlander et al. '1 produce a fast algorithm for computing 4 from the factorization
th
X ATR A D?. These recursions are used in section IV to produce a fast algorithm for |
[ computing the orthogonal matrix U from the factorization Y4 U Then the recursions
‘ for 7 are used in section V to produce a fast algorithm for H from the factorization =
)
R HD?HT. All these algorithms are true lattice algorithms that produce gencralized ‘-
:' reflection coeflicients. In this way we will have derived fast QR algorithms for any of the .:
, data matrices that arise in linear prediction problems and generalized Schur algorithms -
; .
n for anv of associated experimental covariance matrices. : !
[ IT1. Factoring R ' into its Cholesky factors ‘.
; The problem of factoring R ! is the problem of finding A in the diagonalization : E
Y B
" l:
' ATRA . D?  Diag 'ol.0l.... .02 (I11.1) N

*a
'l
-'I

n . . . J
W This equation may be written as X
[ w0
~
N
A\ , T
R4A_-HD" ; H- A (111.2) .
Ly ;
D A\ .:
N and read out as follows : -
P, .
I R,a' o026 - c¥i0.....0.17 (I11.3) £
o Where R, is the (7 - 1) by (¢ + 1) top left submatrix of R. When 7 is incremented to 7 - 1 7
" then, of course. a new column and a new row are added to R,. If the resulting matrix ;
4 : . . : '
& R, ., has a simple recursive dependence on R,, then there is reason to hope for a recursive "4
: dependence of @’ ! on a'. This was the insight of Friedlander et al. A
[ p g ; 1
" The matrix Ris Y 7Y (or Y7 X.or Y 7Y - X7TX) with ¥ and X Toceplitz. This means .4
. ]
¥ R is close-to-Toeplitz. Let us denote the (n + 1) by (1 - 1) symmetric. non-negative definite T
o N
: correlation matrix R as follows : .
. s
s -
~
Y To.0 Tor .-+ Ton 1 Ty.n ;,\
l A
T1.0 T1.1 Tin ;
R : (I111.4) bt
'8 : Tn-1u Tn 1.n
. | 2
Y Tn.n Tn DS R | Tn.mn e
"' ‘fl
L) "rl

X
—
-~
&~

ar,”

o o

|
O
S e - - oo
ARG, iy f"“' x*c.j?. :j\).\&\(\ . A \-"s'x'\:_: AR s.'“' \S{"'V f. "\- N -ﬁ \

l
RO 4 !‘n. ACAOASA \ .-..
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The shifted difference matrix [1!is the n by n matrix 6 R :

T3l Tin Ty

R = | N : : (I111.5) '

n

Tn.1 Tn.n Tn-1.

In 1 M)

The rank of & R is the displacement rank a. We stress the cases where 0 < a < 4. as these

correspond to the least squares problems of linear prediction. The decomposition of § R

may be written 1

]
&R =cxcT (I11.6) ~
o
‘ol . . . . . . « . '
where C is an n by a matrix and ¥ is an a by o diagonal signature matrix, containing - 1 :
:. or —1 on its diagonal. -
N :
N . . . . .
:: The fundamental equation used in the derivation of fast algorithms is the update for "‘
! 4
A the matrix R,, using C,, which consists of the first (i ~ 1) rows of C : *
’
o o
b, l- To,:4 ) o
- . &
s\ - Ri-"») = R, 9. »
/,“ ﬁrl.t-* 1 {
_rl+],0 ter Tigl: Ti-la-1 )

(111.7)

rU,U L’rovl .. 7-0'1-4] 0 IO . 0 :. ,
T1,0 ! 0 o)
- 2
. . T i
% . { Rz . C,ECI ! X
: [ T:+1,0 1 0 -
" ¥
p The idea here is to correct a Toeplitz approximation for R;.; with a low rank matrix "~
W, ~3
. C,=CT. Note that R = R, and Ry = 1y . ~
When R is Toeplitz then r, ; = r, ;. which means that é R is zero. In the more o~
)
o general case, Y7} has a displacement rank equal to zero in the correlation method of -':
y linear prediction, one in the pre- and post-windowed methods of linear prediction. two "2
» . J
) in the covariance case of linear prediction and four in the forward-backward covariance Sy
s »
. method of linear prediction. Intermediate forward-backward methods with a displacement L
Ky
s rank of two may be introduced. by using forward-backward methods in either the pre- A
1, F’
windowed or the post-windowed methods of linear prediction. ,\;
. , b
Let @' = |a!,....a!, 1T, denote the first (i + 1) elements of A’. the ith column of 4. )
From the Cholesky decomposition R™' - 4D 2A7. it follows that R4 HD?. where N
N
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: H - A T.Read the i*P column of this equation
T
" 0
R.a' - 6 o’ (111.8)
]
: 1
'.
' 0
' If @ ! is approximated by [ } , then the (7 + 1) version of this equation is :
gI
;. 0 0 Iry, Ty,i+1
2 -
N 0 : 0 0
! R,,,[ i]: Lo+ | [ ,} (I11.9)
a 0 . l C,EC;T a
|
\ 1 0]
;. which may be written as
)
0 1 o”
} : 0
" R [0,] = 0’3 - 1. F}af (111.10)
K) ht 0 . C,’
y 1 0
)
with
A e 4 0
: UfFi _ {r((;).u T1u soT Tux,u} [a'} (I11.1°)
9. - ™y u
‘ Define the (i = 1) by (@ = 1) matrix @' as
K 1 o
~1 0 2
» Ra' - |. Ao, (I11.12)
e: Gy
18 0
k
D where A, is an (@ + 1) by (a - 1) error matrix. so that
3
. [ 1 QT 9
kK 0
[ =1 :
4 R,., {%] = (‘) € A,o? (111.13)
:_ L EzA.‘] J
" OPE, = [Tia10ee. . Tis10 8" (111.14)
)
:: 12
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Then we have the recursions

(I11.15)

with D; - 0,¢; \; - E,, and ¢, is the last row of C,. The proof that D,T - F - K.y s
contained in 1: K, is the generalized reflection coetlicient.

a' contains the forward prediction coefficients, the first column of @' contains the
backward prediction coefficients (on the same time window). and the other columns of @’
are used to correct the shift difference. In fact, these columns perform the transformation
from the sample covariance matrix to the final and/or initial conditions. to cancel out
“end-effects™ due to the non-Toeplitz nature of R.

These equations may be written in a format where all vectors are of fixed dimension,
(n +1) by 1. Append a' with zeros to get the (n - 1) by (a - 1) matrix A'. Then the

generalized Levinson recursions of Friedlander et al. 1 may be written as follows

11z aKT,
v o (I11.16)
AT =Z 4"+ A )KL for1 =0ton- 1.
The matrix Z in these equations is the delay matrix -
0 --- 010
10
Z - | (I11..7)
1 !
0
These recursions are initialized by
T
. . ~u )
PEETRRI N P
T (I11.18)
o2 =r Ag = 1 0
0= Tow “=lo _o;s

The vector K,,; is an (a + 1) vector which generalizes the usual scalar reflection coeflicient

k,.1.and is computed by

Ty.0 OT
Ti1.0
o KT, = -(za)T | . (111.19)
: (85)
rn.()
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The prediction error o2, and the error matrix A, are updated as follows :

o, =o2(1- KL, AV K,))

141

(I111.20)
2 2 - -T
0., Alw’] = U,(Ax - }\Hl I\g,l)
Note that these two equations are the same if \; 1 and K,.; is a scalar. and that A,
never needs to be inverted, as only A 'K,., is used in the recursions.

IV. Factoring } into its QR factors

Using the recursions for the columns of A, we propose to find the corresponding re-
cursions for the columns of the orthogonal matrix U. using the QR equation Y4 = U. For
the correlation method of linear prediction we use the technique of Rialan and Scharf 4 .
For all the other cases of linear prediction we generalize their technique.

Correlation method of LP : In the correlation method of linear prediction. ¥ = 0 and

I = N 1- n.which means that the data matrix Y looks like this :

T
YN - cev YN-n YN -n-1 Yo 0 0
A I R (IV.1)
: YN w O
0 0 YN -1 oo Yn Y1 Yo

Then the correlation matrix YTY = R is Toeplitz, symmetric. and positive semi-definite.

The Cybenko recursions 10 on the columns of U’ may be derived by using the Levinson
recursions on the columns of A to induce recursions on the columns of U, using Y4 = U.
Define }; to be the first (i ~ 1) columns of ¥ and U* to be the ith column of U'. Then
introduce an auxiliary vector U’ so that

YA =Y -U' Yi-va-r» (IV2)

-th

We saw in section II that the :'? column of U contains the forward prediction errors of

. . . ".‘ . « L.
order 7. Similarly U contains the backward prediction errors of the same order. Reproduce

these equations for (1 + 1) and use the Levinson recursions to get
Y4l oy (2.4" - k.,,j') (IV.3)
As we have YZ4' = ZY A' (as long as the last element in 4’ is equal to zero). then
U™ = ZU' + ko U (IV.4)
14
e N
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Doing for the same for U leads to the following recursions :

~t+ ]

' =0 -k, 2U"

| . (IV.5) '
Ul ZU ks U fori - 0.....n 1. ’

These recursions are imtialized using

. CY -0 yn r e oy oy O 0T o (UYHTrY (IV.6) .

k,.1 is the reflection coefficient, and is computed from the internal variables by the follow-

W ing inner product ‘
)
o ki, ol =—-(UHT Z U (IV.7) )
4 8
§ by

-

-

This comes from the familiar computation of the reflection coefficient : o

-

L .
X k,--,a’f:—[ro Ty ... . Z A b
> . W
g = — {yl\ﬁ] - y(; 0 . e 0 }— Z .4t (I"'S) :}
» e
i =Yy zr .
\ )
Dy [y,
Alternates formulas for the reflection coefficient are given by the fact that I''*7 is orthog- :.r
S -~ j )
0 onal to the previous ['? (; = 0,...,1) as well as the previous i )
) .
;S . (Lv,)TZI/" ((7 )TZ('! J
- L Tt S
o (L")TU ([ )Tl, )
i.. u\
J ~1 ~1 oy
Note that ¢? = (UY)TU" = (U )TU . This algorithm for computing the orthogonal matrix :‘.
in the QR factorization. is composed of parallel updates for the vectors ['' and ', and a )
'
; side computation containing an inner product for k,. 02, and the update for ¢?_, : 7
A A

o2, = o2(1- k%) (17°9)

1+ 1

P T e e

\ The Cybenko algorithm may be extended to more general matrices Y. corresponding -
2 '
5 to the other cases of linear prediction, using the generalized Levinson recursions. The =
e ¥ v
1 ) . . - . . g . ~1 - . i
2 only difference lies in the dimension (a + 1) of the auxiliar matrix 4 . which induces a ]
o

different dimension in the matrix [ . We saw that the very special shape of Y in the )

correlation method of linear prediction allowed us to permute factors in Y’ ZA*. The loss

T I N
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¥ of the upper triangle of zeros in Y in the covariance method forbids us from making the

ey
SEPESE™

§ same manipulation. We therefore develop a “generic” algorithm based on the extension

of Y with the upper triangle of zeros (when 1t is missing). The matrix U in the QR

e’
-

’,' factorization of Y for the covariance method of linear prediction will then be contained

%

N within the orthogonal matrix of the “generic” case. The pre- and post-windowed methods ;

b . o

follow as special cases.

a . . . . . %

3 In the correlation method of Linear Prediction, the matrix H may be computed. if ¢
“~

» v

e needed. by using the "impulse” response and internal variables of the AR (or recursive) e

o : . . Y . . o \

o, lattice as described in {3]. In section VI. we will show how this procedure generalizes in

the other cases.

!
;: Generic case : We suppose now that we have the following Toeplitz matrix 1" : o
) c w0 ... 07 -3
Y- W »
‘ . . R
y : .0 S
R wo- - [z:} (IV"10) 3
: Y on ] b,
. \_ : : 3
, Yk -n Y =
_‘:' The data matrix Y has QR factor Y 4 == U. Therefore !
R .
) 1
“. - _ Z/ . Wi
‘ 1§ S {U} (I117°.11) \
: o8
S which means the orthogonal matrix U is embedded in a larger matrix. Define the ith bt
o ‘
¥ column of 11" 4 as follows : N Y
WA [lfi (IV12) ;
3 U ] -~
| )
f Similarly "0
& " -1 o
b wa - [4!. (IV13) 3
p U ] Ly
L &
As in the correlation case, we reproduce these equations for (i + 1) and use the generalized ]

‘A .
‘ Levinson recursions for A and 4 to get e
) 1+ ~1 :
:: WAt = l:zi{HlJ =2 [ J : [Ii!,'] A, )I‘Hl X ]
' i N g (IV.14) ;
p wat - (@] - 2] [”..-]KI. 3
e U U U d
A
16 o
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The computation of K,., depends then on the method used.

K Covariance method of LP : For the covariance method of linear prediction, k = n and

[ = N - 1. Then the shifted difference matrix § R has rank 2 :

T {

n

YN-n-1 Yo

YN-2 Yn Yn 1 '
YN-1 Yn-2 ... Yn+1 Yn

I

; y Yy ! 1 0
l’ (1] P n-1 v _ — . l.
. ¢ {!/N-.n yl\"l] and I [ IJ (IV.16) d

Write

YA = Yig' = U Yi-va-0o (IV.17) t;':
R i . ~i ol
L with U an (N - n) by 3 matrix. The “generic” recursions may be used for U* and U : o,
: | 2
1+1 ? o1 )
I u' | =2 u' - I:!,- A7V K, 3
W Ui+ Ut U 1 !
" . : , (IV.18) ’
| ~31+1 ~1 ul ]
* o) =[] -] e ;
:l U U L,l 4 ::
; The initialization is )
l"
;' [ YN-1 ] [ YN-1 0 09 3‘;
‘f

(IV.19)

P éL

n !
L Yo g L Yo 6 O J ]

1

A 02 = 1o = (U*)TUY A= [0 o) 0 (IV20) Y
X 0 0 -o;t o
: v
The three components of the reflection coeflicient K, are computed using L
~. , By
) . , - U (n o
A P2Kt) - - 1) 0 |4 :
% Uf}{'i+1(2) = /ri(N — n) (11.2]) :"

02K, ;1(3) = ~U'(n)
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which comes from the use of

0
YN -n

K, Tu.0 0
- Yo

Ti.0

-(zAH)T (IV°.22)

Tn U

Yo 1 YN i

Only one inner product is necessary per update. Note that UY(N - u) is the last value

(3 . R
:l contained in the vector "', and that U'(n) is the last value of the vector U'. Reflection »
N -,

f: coefficients are computed without first computing correlations. &
4 ‘
i . . . .

X An alternate formula may also be obtained as in the correlation method. using the e

orthogonality property of the columns of U (but is much more expensive) :

” 0 | s
" . u 2 0 M
: |- lo @r)z[5]-lo e ][E] s 5o X
0 }
K -3
be At this point, if one needs the whitening matrix 4 (or its last column. the coefficients of \1'
‘l. L
f: ) An(z)). then the generalized Levinson recursions may be used together with the reflection N
l‘ . J
coefficients computed by the QR recursions. In this approach, what is really done is to :
y -
N compute the impulse response of the lattice filter associated with these reflection coefficients !
L * .
b (see section V). :
‘ .
" Post-windowed method of LP : In the post-windowed method of linear prediction. &
)
b nandl! - N + n - 1. Then Y and the shifted difference matrix & R are defined by R
A ~3
A T ‘
N YN-1 YnN-2 .- YN-m-1 --- Yo )
0 YN 1 Y ‘:.
}’ — . . . , (I"23) )
: : . . : ',
. 0 o 0 YN e Yn -:
P =
, C= % ... Yyo-1!’ and T - -1 (IV°.24) o
)
'y The displacement rank o is unity which means that the generalized Levinson algorithm ]
‘ -
‘ will use an n by 2 vector. The “generic” recursions may be simplified in this rase to : !
' Ut = Z U -0 AT Ky ' \
i . (I17.25)
=U +ZU KT for: - 0..... n- 1

1+ 1
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The initialization is v
N - O
:". - . T .. . T oo .'.
L(n: LYN 1 R T Yo 05 — (l U)I Lo L
‘:‘ | T 1 by
o ~U , - e 0 . o)
¥ - YN Y1 Yo ) '
Y u ;
4 )
%

Now the reflection coefficient K, ., is given by

()8,
". - . - b4 v ) v - .
b oK, @ z U, UY(N) (IV.27) .
" ' :R
LN .
) ; . . . . . y
) where ["*(.V) is the last element of U'*. Note that the side computations involve an inner ¢
P )
f product, and the updates for A, and 7. as in the corresponding generalized Levinson .,
U ¢
D . ;
| algorithm. W
Y
¥
. Pre-windowed method of LP : For the pre-windowed methad of linear prediction. k = !
7 0Oand! - N —- 1. Then é R isrank 1, and Y and é!R are defined by :_
. -
. T S
YN-n-1 Yo 0 0 :
A . . Y
. . . " . . ]
o Y - : S (IV.28) )
YN -2 yo 0 1
: YN -1 cie Yno oo Y1 Yo ;“
: : T o I,
" C= yn-n ... yn-1)° and E=1 (I1°.29) -
X' :-
" Note that the pre-window matrix Y is related to the post-window matrix } by the exchange
‘d‘ N - . - . ., "
D matrix J. JY J has the same triangle of zeros on the top as in the post-windowed method. v
b ")
. .. . . . . Al
: The only difference lies in the fact that time is reversed. or in other words y, is replaced by K
i o
Yn 1 .. The fast algorithm for U in the post-windowed case mayv then be used on JY J. "‘
; Backward Linear Prediction : In the backward method of linear prediction. the only -
b difference with the forward recursions is that the entries in the data matrix 1™ are altered. -
¥ -
> The shape of }” remains unchanged. In other words, time is reversed. This means that 4
. . .. . . . C e . . )
; the fast algorithms for ' may be used for 1" with just a modification of the initialization h
fie )
-_v of the vectors. “
¢ g
. Forward-Backward Linear Prediction : In the forward-backward method of linear pre- ~3
diction, the data matrix is the concatenation of two Toeplitz matrices. For the correlation '
l‘ \’
A method, Y7Y = JYTY J meaning that the forward-backward extention leads to the same N
) '
\
:. ‘\
I‘ 19 ‘q.
!, '
'
N s
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g 4
3 ..',
b A
] S\
o‘. .'::
" Cholesky factors 4 and H, and D? is just multiplied by a factor of two. In the covariance "
i - &
: . . . e
" method. the forward-backward extension leads to the so-called modified covariance method "N

of linear prediction, and one way to compute the highest order predictor A,(z) s to use '
) ‘
. . . . . : ”
" the algorithm of Marple 13", But the lower order predictors introduced in 13 do not ¥
L) -
: solve the same set of least squares problems that we have defined. We introduce in the oy
* Appendix an alternate to this algorithm to find a characterization of the highest order i
‘. . . . . - - \
:: predictor, based on the generalized reflection coefficients computed with the recursions for N
" X
:‘. the columns of the orthogonal matrix. The impulse response of the associated lattice filter ({ '
¢
b is then equal to the highest order predictor. ™
)
3‘ V. Factoring R into its Cholesky Factors ::

) . v
K The LU factorization of R may be written R = HD?>H7. In the Toeplitz case. the '
& ”
L LeRoux-Gueguen algorithm 2/ may be used to compute H directly. In all the linear o

3 . . - - 3 ’
= prediction cases. or in other words when R = Y 7Y, the recursions for the columns of H y,
N o . . g : rd
h are easily induced from the QR factor recursions by simply premultiplying the recursions "
!

» - » - - F
y by Y7, This was first done in [4] for the Toeplitz case. c
l. Al

. - ; : ~1 . . )
. Denote by H' the vector given by YTU* == H' and by H the matrix given by ;
) RPN i . Ve ~i . . Y,
] YTU - H . Use the recursions for U'* and U to obtain *he recusrions : X
’
)
3 g

0 ~1+1 v i

H —H+)TZI'A,+, ) '
; 4 (V.1) N
v . . i !
; H*'"=YTZU'+ H A7 K.y .:
ol o

! o
K ¥
. ] . '

" Set the first rtow of H to zero to be able to replace Y7 ZU* by ZH*. The algorithm consists ': 1
¥ ~
: then of the recursions N
¢ X
' :

~p=+1 7,
4 -H ~ZHKT, . o
. | o (V.2) ,
} H*'=ZH +H AZIKH] N,
e ~3
: 3
1\«
! A more general approach to this derivation consists of using the generalized Levinson iy
o
recursions directly to induce recursions for the columns of H. Then there is no need for R to '
fy - :

. equal Y7Y. This algorithm is a generalization of the vector version of the Leroux-Gueguen
[
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algorithm derived in [3]. Define h' and g* by

* gat gae jar
i Uwe

"0 7
R4 - |1 ol RA
bi

Note that h' is a vector of length (n -~ 7

1) and ¢' is an (n - 17 -

* 44" Bav hat gat fat 83’

1) by (a <+ 1) matrix.

Our goal is to derive recursions for h* and g¢'. without carrying the update equations for

A" and 4. Some simplifications arise with the definitions of H! and 2

RA* - H!

The coupled recursions are :

~1

+1 ~ 1 .
H =H +ZHKT,
H*'=Z H' - B A;' K.,

with the initialization

Ty,0
1.0 ~
HU _ 1, v
rn,U
2 _
60 =To.0 AU

ro

|

0" 1 g0
fol
gl
1 Lo

for: = 0.....n

o of
1,0
cY
Tn.o
OT
- Ul; ZS }

QT.

c

1.

(1.5)

(V.6)

Note that H' is the i'h column of HD?, or similarly H* o, ? is the ith column of H.

Note also that the first 7 elements of H' and the first (7 — 1) rows of H' are equal to zero.

The coeflicient K,,; may be read out of the recursions as

~i+1

(1) = 10,...,0 =

ﬁi(i) + KI 1”3
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g
so that — KT  0? equals the first non-zero row in H'. These coupled recursions include ..:
the update for 2 = H'(i). the first non-zero element in H'. The only necessary side 3
computation is the update of .\, .
\
ol Ay = oD Kioy K (V.8) ,
- 4
This algorithm generalizes the LeRoux-Gueguen algorithm to close-to-Toeplitz matn- T
ces and places the recursions in a vector format. The algorithm is fixed point and no inner ,:.‘
product is necessary to compute the reflection coefficients. The recursions are equivalent ::
to the lattice algorithm of Friedlander 5. The only differences lic in the normalization of »
the lattice and in the organization of the cells. E‘:_
If the reflection coefficients are known. it is a challenging problem to see if and how the :;
correlation coefficients and the matrix H may be computed from them. In the correlation ; !
case, Robinson and Treitel ;7! solved this problem by observing that the all-pole lattice ‘_h
filter has an output equal to the causal part of the correlation sequence when the input ::
BN
is zero and the state is initialized at ry.0..... 0. The multi-channel case was studied by :“.
Friedlander 8 . The fact that internal variables of the lattice are entries in the Cholesky ;’r.
factor H is explained in ‘3. We present the generalizations of these results to the close- ;?.
to-Toeplitz cases in the next section. E ,
V1. Lattice Presentation -.:
The lattice representation of the coupled recursions in the correlation method of linear (
prediction vields additional insight. The transformation from reflection coefficients to "“
correlation values is particularly easy using the all-pole (AR) lattice filter 7.. With a zero R
input sequence and au initial state set to 7y, 0..... 0 . the output of the filter is the causal ;:.
part of the correlation sequence. It was also shown in [3, that internal variables are scaled :
Y

entries of the lower-triangular matrix H, the Cholesky factor of the Toeplitz matrix R.

In |5}, a lattice structure of more then two lines was used to implement the normalized

ST

version of the generalized Leroux-Gueguen algorithm. for all the cases of linear prediction. RN,
f-
Figure 3 showns an all-zero (MA) lattice filter that may be used to implement the o
S
recursions of the previous sections for the covariance case of linear prediction. The other »
cases correspond to simplified versions of the filter. except for the forward-backward co- ::':
"
22 ‘B~
by
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variance case which requires two extra lines. The conventions used in Figure 3 are the :.r
- ¥
fe )ll(m'lng : :',
=1
K*(1) (1) o
S . ot 117 -1 . by
. K':-= | K'(2) K A 'K (2) (VI.1) ‘.5
: K*(3) "'(3) l",l
¢ .~
. The lattice of Figure 3 is the same as that of |5 except for the internal organization of the %
U]
L&
cells and the normalization of the variables. The impulse response of the lattice is obtained
'
by placing an impulse on the first two lines and zero on the last lines. This produces the ._‘:_
: . . . : : : . RN
X Generalized Levinson algorithm of section III (without the computation of the reflection Sy,
) 2
' coeflicients. of course). In Figure 4. the corresponding all-pole (AR) lattice filter is shown. o
|
, This lattice structure has one verv interesting application. It may be used to duplicate the 3
$
N
procedures of ;3 , 7,8 for computing correlations in the close-to-Toeplitz cases. When the \
. . . C e 3
mputs is zero and the internal state is initialized at r,,.0..... 0 . the first row (or column) e
of the covariance matrix is generated on the first output line, the last n data values on !,
1 o Vam
.
‘ . o . o~
: the second line. and the first n data values are generated on the third line. The internal -
-~
A variables at the inputs (or outputs) on the first line of the cells reproduce the entries of "~
r
the Cholesky factor HD?. The entries of cell ; reproduce. in time sequence, the entries of »
the it} column of H. exactly as in the Toeplitz case. ::_‘
Using the following notation for the entries of HD? : ) (
A g
H'(0) Wl
HY(1) H'(1) o ’
5
. 4
; HD? . : . H'H'...H" (V1.2) A
, : . . .
. H" Y{(n 1) Iy
: H'n) H'(n) ... H"™ '(n) H"(n) )
then the input of cell (1 + 1) (output of cell 7) at time j - 7 {(on the top line) 1s H'(7). Ad
A
Because of the delayv. one can see that this variable will be zero for j < 7. Equivalently. :;::
7. . . . o\
entries on the k! line are equal to the corresponding entrv of the (k 1)th column of A
i W
=t . . . . . - ¥ - .
H . This is illustrated in Figure 5. The algonthm {or actually computing all of these ?T
-,
variables from the reflection coefficients is a generalization of that given in 7. We may ::-
) . . . ey
| take advantage of the ract that almost half of the computed variables in the algorithm of N
: U
o . ~1 . . )=
: '8 are equal to zero, as H*(j) and H (j - 1) are zero for j < 1. to reduce the number of »
computations. The algorithm is then -~
“
i )
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0 hY;
Initialization : H'(0) = 7y, )
%
|} )
~ Al
¢ FUTJ _14 e NS
_, ’
' H(;)- 0..... 0 ol
y N}
. Forv . 53 1..... 0 >
' L St i -T \.
- H()-H ()-HG DK,
0
H'(j)= 6TH ()) ot
o
For: = 0...., j- 1 :
| 1 s H(G) A 4
H=Yy) - HY(5-1)+ H(j)d, K, »
‘.
4 . TR . . . 9
D If the algorithm is initialized with HY(0) = 1 instead of ry,. then all the vaniables o
g .:.
I are scaled down by ry . When onlyv the reflection coefficients are known then both the A
. < < .'::
' . . - . .
5 prediction errors ¢? and .\, may be recovered using the update formula given in section .
» hd . . 3 ~ 1 . . - =1 . . B
' 1I1. Note that in this algorithm H () is the ]th row of H . which is a row vector made up
2 ~
. - . . . . o
| of (o - 1) elements. Note also that the algorithm is not restricted to the methods of linear -~
0 .\
:' prediction but is applicable for all the possible values of the displacement rank o. When 2
. . . . . . . . . ! .
: this algorithm is run in conjonction with the recursions for U*. U and K|, then we have a ’\
(
: ~
complete QR algorithm for computing U and H in the QR factorization Y - UHT. ;:
D . r
4 VII. Multi-variable case 55:
In several applications. multi-variable linear prediction 1s necessary. by which we mean ?,
i o
N that the datum y, is a vector of length d. The data mayv come from several sensors in a o
1} s
: multi-channel system. or simply be a collection of scalar variables in one row (or column) .'_:
L \i
of a two dimensional image. The prediction coefficients a, become d by d matrices. The ’
¥ . _ . . o~
A forward lincar prediction problem is to predict the value of y, as -3
. .\
; -
D . *
D n -
- : . 3
7, - Zajy, , fori=k.....l (VII.1) )
RN B
\ A
N ,F;
L 11
y The prediction error is ';':
] '\
A ] . ’
"y Uy = Yi — Yy = Yi ~ Lajy,,, (V11.2) Q:
! 7-1 ~
o~
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which can still be organized in a matrix fashion as Y8 - ¢~
T T T 1 . -
e Yior YU T ul
T a, T
Yi-y Ui,
- : (VI1.3)
T .
T a, uTl
Yi-1 1 ‘;,‘1
T T T
L Yk-n Ye-1 Yk LY

Yisa (I - k- 1) by (n + 1)d block Toeplitz matrix. Then, depending on the values of k
and . one ends up with different methods of linear prediction. The solution of the problem
is the same as in the scalar case except for element dimensions and occasional transpose.
Our purpose in this section is just to give the generalization of our vector algorithms
to the multi-variable case. The Grammian matrix R is now block close-to-Toeplitz with
TN = rJ-TJ. The generalized Levinson algorithm performs the block Cholesky factorization
of R 1, the generalized QR algorithm the block QR factorization of Y. and the generalized
LeRoux-Gueguen algorithm the block Cholesky factorization of R.

The generalized Levinson recursions are

BH' =B - Z A'NVKT,
N ' (VII.-l)
A1 =Z A" B M7V K, fori=0..... n-1
with the initializations
T
A . I 0 0
v _ T 0 _
A"=10 0 B® = [0 0 0}
. 0 ey e
]VU = 7'0.0 AIU ot [r((')." ] Sj| (‘ IID)

The dimensions of the variables involved are the following : A' is (n - 1)d by d. B! is
(n+1)d by (a +1)d, N;isd by d, M, is (a ~ 1)d by (a ~ 1)d. T is ad by od. C is nd by
ad, and finally Z is (n - 1)d by (n + 1)d.

The matrix Z in these equations is the delav matrix :
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s K,.;is an (o + 1)d by d matrix and is computed by o0
: Ly
K (

i "
K To.v 0 T

T T T10 . >

. K' ,- -(Z4") . (V11.7) A
: : cE XN
9‘ ‘lt

rn,() [ .'f
4

' The prediction error matrix N,, and the error matrix Af; are updated as follows : -
: , T -1 - 2
3 Nis; = N; - I\,-_H M,- K., . '\._";
h M., =M K., N 'KT, N
N 4

. . . .. . d

. The lattice recursions for the matrix columns of U in the covariance case are 4
b o
: ~i~1 ~1 i 1¢T I".‘
" S =8 +ZS N 'K, K
B i U
B | L (VII1.9) o
. §1'=28 .8 M' K, fori =0,...,n - 1. 3=
l . T By
A with the initializations e
) : T T :‘.:

N Yn-1 ] [ Yn 0 0 o,
! '

: . Do b

R YN - n T . | v, 000 ‘.

K sY - - o Wt
. :

T { T W)
L YN-n- [ YN-n-1 0 0 \

! ; : »
* T pa d
\ Loy L Y 0 0. Ry

i

b) \
} . "'
2 N 00 3
D) . . '
i No = rop = (UTUY My=10 1 0 (V11.10) £

o 0 -1 »
2
: . . . . 2
The three matrix components of the reflection coefficient A, ., are computed using o
: §'(n) 3
-T _ frr-o0nNT ] n N
I‘Hl(l) =7 “(L ) .0 ! [ : } '.-
-T _ : B\ V1112 >
: KT,(2) = UY(N -~ n) = SY(N) ) 3

\ KL,(3)= -5'(n)=T'(n) o)
) :.‘

L .\_

The other forward or backward cases of linear prediction are simplified version of this Y

¥ &

y algorithm, and the forward-backward case consists of two of these recursions. X
; )
: 26 y.-:
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Finally. the Schur recursions are

~ 1+

- H' -z H N'KT, A
(V'11.13) ’

H'=ZzZH +HB M'K., fori-0...n 1

-

with the initializations

-

Tn,o Tn,o l:

B X
Ny 0 . >

“': NO = To,0 AIU = [ 00 —Z} (‘ II.14) ".'
. ¢
‘ . .
p Note that H' is the ith block column of HD?, or similarly H* N ' is the ith block column .::
} 4

of H. D is the block diagonal matrix which ith block diagonal element is N;. Note also

that the first 7 blocks of H' and the first (1 + 1) block rows of A are equal to zero. The |:

coefficient K,,; may be read out of the recursions as

At+]

(i) = 0.....0 = B'(:) - KT, (VI1.15)

'y . . ! . . o™
g so that ~ KT | equals the first non-zero block row in H . These coupled recursions include N
§ ' "

! oy . . )
3 the update for N; = H'(7), the first non-zer., element in H'. The only necessary side o
. computation is the update of Af, :

- 3
4

y M.,- M, K, ,N'KT, (V1I.16) e
\ ]

w
- Note that the use of a lattice to compute the Cholesky factor H from reflection coefficients l

Y
3 1s still valid in the multi-variable case.
g e
\ VIII. Conclusion -

We have derived vector algorithms for Cholesky and QR factoring Toeplitz and close- |

to-Toeplitz matrices for all of the cases of linear prediction. The same coupled recursions

are used in all the algorithms, namely

N"1 = N's z MKT,

MUY = Z M' 4 N'A] K,
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The vector Af* contains the it column of the matrix A. HD?, or U, depending upon which
factorization is being computed. The inner products required to compute the reflection
coeflicients and to initialize the variables are

e MI' — A' : inner product required for computing r, , and K.

e M' = U" : inner product required for computing K; only.

o A

i

H'o? : inner product required for computing r, 4 only.

The Cholesky algorithms have complexity n?a. The fast algorithms for the orthogonal
matrix U have complexity Nna, where N is the number of data values available.

The QR factorization of the data matrix } in the covariance case of linear prediction
may be used for a general Toeplitz matrix T. This gives a fast algorithm to obtain T = UR
in a QR method to obtain eigenvalues. If Y is symmetric (meaning that the time series is
symmetric Yn.; = Yn-i) then the forward and backward predictors are reversals of each
other, or in other words U' is the reversal of the first column of U i, which simplifies the
computation.
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. Appendix A
3 Fast QR algorithm for the forward-backward covariance method of linear ﬁ:
;: prediction.
D . : : C b
s The data matrix in the forward-backward covariance method of linear prediction, is 4
. )
2 the following : Ny
K} . o
:l - } ,_‘x
X Yro = | v (A.1) -
\ ) B\
X _‘-'.’
. where Y and X are the forward and backward data matrices, respectively. in the covariance ‘."-
'.: method of linear prediction. The Grammian is o
“
\
1 N\
. R=Y Y =YTY + XTX = ¥Ty + J¥ Ty (4.2) -4
’
'. . . . . - - 'l
i: which mesans that R is a centro-symmetric matrix. Its displacement rank is four, and the :
s ,
\ o
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»
3 eo'
: displacement matrix é R} is given by v
, e
Y Yo YN-n Yn-1 YN -1 Y
2 ot
hn YN-n+1 Yn.2 YN-2 701 (1) :: :: )
»”
. . . . S - ¥
! C-1 ; ; - ““lo o1 o (4.3) ';
: Yn-2 YN-2 W YUN-n+1 0o 0 0 1 ';
! Yn-1 YN-1 Yo YN-n -.;‘:
» Note that 86 R = —Jé/R'J. As the generalized Levinson algorithm does not use the centro- 7y
f- svmmetry property of R (only Ry and R, are centro-symmetric), the matrix Aisn by 5. .::
, : ~ Lo )
i As before, the recursions for A* and A’ induce recursions for the orthogonal matrix in the :::
) QR factorization :
27
: Yyod = ¥ A= L (4.4) {2
¥ X 1 :‘:,
A
3' and its i'? column ¢
; Y U
4 - t _ . t 4.5 a
. )f"A [‘X]A [‘l} ( O) :i
» v
o , !
g Once more the “generic” recursions have to be used to get recursions for the columns of W
" the orthogonal matrix. i
)
. Define the matrices " and W to be the Toeplitz extension of }” and X, respectively : -
! N
; Ww- [T] W = [T] (4.6) 3
/ } X M
L] o
& [yn-1 O ... 07 [ Yo 0 ... 07 '.(
Y o
L) . . . . "
: ‘n - YN-1 O no1 e 0 s
2 W | S w= | It S (A.7) A
» Y X :
; i [ ] {2
) ¥ ]
) .
D The recursions are then derived exactly as before with : '
. ]
y ) u: i Z}l N
wa =1, wWa = |4 (A.8) up
) U U N
) o
D \c
: and )
, i ~ D1 ]
: WA = [‘v} wi' = [“3] (4.9)
)
;
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The recursions are #:".‘

r ]

] U | e 2
wl (a') .
u

(4.10)

35

o Keno)
o= )
[ Rowe)
T

| enva 0000 V] - | ¥
UN-n-3 0 0 0 0 Ul e

o=

x
]

2

~y
<

o
| W

L e 0 0 0 0] lyn-s 0 0 0
0 0 0

0 1 0 0
02 = ry = (UTU Ag=0;210 0 -1 0
0 0 0 -1
0 0 0 0

~a

}5 Lo

Y,

(4.11)

- o O O O

The five components of the reflection coeflicient K,.; are computed using

T

x
ry
r

U v

]
Ly

~0lK,.1(1) - (U7 0 [Ui(")} LA o [V'(n)}

XA

-
Pl
“ v

0?K,,1(2) = U(N - n) 0’K,.1(3) - -U'(n)

% A

b ]
%
i

2K, 1(4) = -Vi(n) 02K, 1(5) - VYN - n) (A.12)

!. '

PR
s

which comes from the use of

Ty,0 0 0 0 0
. T1.0 ~ Yo YN-n ¥Yn-1  ~YN 1
alKL, = —(Z2a)T | | . . . . (A.13)
. » . (
Tno " Yn-1 YN - Yo “YN -n g$
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There are just two inner products per update.

1.

n.
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Figure 3 : MA Lattice Filter Cell

( Covariance Case )

|,_‘|“;"‘ ‘.‘.k""." """" LI L -v v‘r AT ‘.} ] " '\:’ )',. ')'Y

ANATIINY J'?l'{ XY '.o‘ ,ﬂ.,l‘.,t' ‘,-‘..A::?\ ATLA ‘f ..‘o .‘u"‘a‘ ‘A'.'t"‘l'. n'.'n‘. .:".' s ' e, "'l' .o'. TN TN \S ) ‘. iy Wy '- v, 'u‘.a.:‘



R R P A A O AR O T O A TR R M ™ A UV LN VN LN W LU

& v

o
LA LI

Py
ll’

s Yy -

-
e

i ™ e e
-

:.t
:5

e

I

Figure 4 : AR Lattice Filter Cell

( Covariance Case )
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Figure 5 : AR Lattice Filter (Covariance Case).
Recover Covariance and Cholesky Factor from Reflection Coefficients
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