
I

Lattice Algorithms for
Computing QR and Cholesky Factors in
Least Squares Theory of Linear Predict

'C~drje 3. DEMEURE and Louis L. SCHAR:

AUGOI0B1

ftA A

88 8 01- 1i
....... ~ .....



Lattice Algorithms for

Computing QR and Cholesky Factors in the

Least Squares Theory of Linear Prediction

Cedric J. DEMEURE and Louis L. SCHARF

TECHNICAL REPORT a

SEPTEMBER 1987

L)

A.- -



Lattice Algorithms for
Computing QR and Cholesky Factors in the

Least Squares Theory of Linear Prediction

Cidric J. DEMEURE, Student Member IEEE w:m

Louis L. SCHARF, Fellow IEEE

Electrical and Computer Engineering Department

University of Colorado 0

Campus Box 425

Boulder CO 80309.

Tel. (303) 492 8283

Abstractt

In this paper we pose a sequence of linear prediction problems that are a little different

from those previously posed. By solving the sequence of problems we are able to QR factor

data matrices of the type usually associated with correlation, pre and post-windowed, and

covariance methods of linear prediction. Our solutions cover the forward, backward and

forward-backward problems. The QR factor orthogonalizes the data matrix and solves the

problem of Cholesky factoring the experimental correlation matrix and its inverse. This

means we may use generalized Levinson algorithms to derive generalized QR algorithms. 0111c

which are then used to derive generalized Schur algorithms. All three algorithms are true NsPECTED

lattice algorithms that may be implemented either on a vector machine or on a multi-tier

lattice, and all three algorithms generate generalized reflection coefficients that may be 4fec i

used for filtering or classification.
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I. Introduction

In this paper we pose a sequence of least squares problems from the theory of linear

prediction. The problems are a little different from those originally posed in the paper by

Morf, et al. 6'. The solution to this sequence of problems produces QR factorizations of the

kinds of data matrices that are usually associated with the covariance, pre-windowed, post-

windowed and correlation methods of linear prediction. By QR factorization we mean the

computation of an orthogonal matrix Q and an upper triangular matrix R such that Y

QR. That factorization is very often used to solve an overdermined system of equations

Ya = b in the least squares sense by Ra - QTb. The results apply to forward, backward

or forward-backward linear prediction problems. We interpret the QR factorization in

analysis, synthesis and orthogonalizing terms, and use it to generate Cholesky factors of

the experimental covariance matrix ( the Grammian of the data matrix) and its inverse.

Then we use the generalized Levinson recursions derived by Friedlander et al. I 1 to

derive generalized recursions for computing the orthogonal matrix in the QR factorization

of any of the Toeplitz (or concatenation of Toeplitz) matrices that can arise in linear

prediction. These recursions generalize those first discovered by Cybenko 113] for the

correlation method of linear prediction. We then use these recursions to derive generalized

Schur recursions for Cholesky factoring any of the close-to-Toeplitz covariance matrices

that can arise in linear prediction.

All of our generalized recursions are true lattice recursions that generate gcncralized

reflection coefficients. All three algorithms may be implemented on a vector machine %

or on a multi-tier lattice. In a procedure similar to that of Robinson and Treitel '7] in

the scalar Toeplitz case. and Friedlander 18' in the multi-variable Toeplitz case. we use

the autoregressive lattice filter associated with the generalized reflection coefficients to

complete the QR factorization with the computation of the upper triangular matrix.

Finally, we show how our generalized Levinson, QR, and Schur algorithms may be

extended to multivariable (or vector) linear prediction problems. The multivariable results

may be applied to a variety of multidimensional problems, as well.

II. Least Squares Problems in Linear Prediction

Let y [yoYi,. YN-1 ]T denote an N sample snapshot of the stationary time series

2

-w -",t



{ yj}. From this snapshot, we would like to identify an autoregressive or whitening model WIN

for the time series {yt}. This model takes the form

I 1 0"-r 1. (11.1) i

where {un} is a white sequence with zero mean and variance a2 The interpretation is

that the digital filter An(Z) = IZ,=a z' whitens the time series {jy}. The whitening

model may be written as the predictor model

,, - a y,_, (11.2)

The variance of the white sequence {ut}, or equivalently the mean squared error between

Yt and the one-step ahead predictor j,, is o.

Prediction : Our procedure for identifying a model An(z) will be to form a sequence ,

of predictions of the form

ap (11.3)

and to let the predictor order range from p 0 to p = n. The error between yt and the

pth order predictor t is, of course,

P

up E' a~, (11.4)

We shall be interested in a window of these errors for which the time index I satisfies the 6

condition

k < f + (n - p) < .(15 .

As the predictor order increases from p 0 to p n, the window of length (I - k + 1)

moves from left to right across the data set, as illustrated in Figure 1. The indexes k and

1 may be chosen to select among the various techniques of linear prediction. The data

values outside the range 10,. N - 1] are set to zero. In the covariance method of linear

prediction, k = n and I N - 1, in the correlation method, k = 0 and I N - 1 n, as

illustrated in Figure 2.
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Let us write out the error equations, over the window just defined, for the pth order

predictor as follows .

Yl n ... yl- I Yt U nP t

*l I aP

P
a 1yl 1 (11.6)

Yk 0* 0.

Yk-tI Uk-n-p-

LYk n . Y-I Yk -

The compact notation is

q 0 = yAP = UP (HI.7)

This scheme may be reproduced for p - 0 to p = n to obtain the set of equations

YA = U (11.8)

where Y is the Toeplitz data matrix just defined, and the matrices A and U are given by

1a' a~ ... a~1 a2

A , ....... ,A P ,' (11.9)

1 an

1

l n .. " " -n-p " "
L I ..U

U = U " . . . . .' U " ( 1.10) ",,

-nn] kn- J.

Least Squares The Grammian of the error matrix ' is

UTu ATyTYA(11.11)

4
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The pp element of the Grammian is 4

2 ( Tu = (aP) 0T yTy aP (AP)TT) AP, (11.12)

0 Tr P -= ( UP 0 1 4  ,

which is just the accumulated squared prediction error over the window defined for the

predictor of order p. This squared error may be minimized with respect to the coefficients

aP under the constraint that (aP)Tb a= - 1. The appropriate regression equation is

V"p (a(cP)TOTTY [aP- (aP)Tb) 0 (11.13)

The solution for aP is then

1 0 ffyI OP = ,26 (11.14) o

the matrix 1I O1 is just there to reduce the length of the vector to p- 1. When this solution

is written out for p = 0,1,... ,n, the result is

YTYA = LD2 (21.15)

where L is a lower triangular matrix with ones on its main diagonal and D' is the diagonal

matrix containing the prediction errors

D =Diag 1U2'0_2,....',21 (11.16)

QR Factors : The equation Y-TyA = LD 2 characterizes the least squares predictors

for p = 0 to p = n. The right hand side is lower triangular. If both sides of the equation

are pre-multiplied by AT. then the left hand side, namely ATyTYA is symmetric and the

right hand side is lower triangular. So the right hand side must be diagonal. This means

the least squares solution for the columns of A produce the following equations

YA = U AT)'TYA UU (11.17)

It follows that YA = U is a QR factorization of the data matrix Y when A solves the

sequence of least squares problems we have posed. This QR factorization (really a Gram-

Schmidt orthogonalization of Y) may be rewritten as

Y", T HT .- T H T A.

5%
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where HT is upper triangular. Then the QR factorization may be given the following

analysis, synthesis and orthogonalization interpretations:

i) A = U : Y is analyzed or whitened by the analysis matrix A to produce the white

matrix U (uTU = D2 ).

ii) Y = UH' : Y is synthesized from the white matrix U by the upper triangular synthesis

matrix HT = A-'

iii) IVTu =- HD 2 : the data matrix Y and the white matrix U are causally orthogonal,

with H describing the cross-correlation between the input Y and the output U.

Second-Order Equations: Let us define the experimental correlation matrix R to be I

the Grammian of the data matrix Y

R = I.Ty(I.9

Then, from the analysis and synthesis equations we can interpret the analysis matrix A as

a Cholesky factor of R and the synthesis matrix H as a Cholesky factor of R

i) ATRA = D2 : A is a Cholesky factor of R- '

ii) R = HD2HT : H is a Cholesky factor of R.

iii) RA = HD 2 : A analyzes R to produce H.

Backward equations : The prediction operation may also be written backwards in time

(with respect to future values of the time-series). The one-step backward model becomes I

b~y,, V ; (11 20)TI.

where {v'} is a white sequence with zero mean and variance rn. As before, lower order

predictors are introduced to form a family of order increasing predictors

i= 0

for p = 0 to p = n. The prediction errors are written for the time index satisfying the
,.

following condition :

k < t -- p < 1. (11.22)

6
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The error equations for the order p predictor may be written as

y!, Yk- I ... Yk- n 7p

k- p

Yk-t 1 k-p- I

YkI

Yk (11.23)

Yl-n 0

• • 0L 0 ". t' -P

YiII I 'P -1LY1 Y1 -I . Yl n rP V- P

The data matrix X in this equation is related to Y by the exchange matrix J N JYJ.

The compact notation is then

-X - XBP =" (1 1.24) N

This scheme may be reproduced for p = 0 to p = n to obtain the set of equations

XB 1 (11.25)

I
B- IB,...,BP....,B" 1= 1", ".,.P ., V 1  (11.26)

The least squares solution under the constraint V,-- 1, when written out for p 0 to

p = n, leads to the matrix equation:

BIXTXB = "T1"E 2  Diag _ 2, (11.27)

It then follows that X = VB- = VG' is a QR factorization of X. and the second order

Cholesky equations for the Grammian XTN JRJ are

BTxTXB Eyr GE 2 GT (11.28)

The connections with the forward case come from the relationship between X and Y.

The QR factorization of X is a "QL" factorization on Y. The upper-lower Cholesky-

factorization of (X TX) is a lower-upper Cholesky factorization of (YT)-) I and the

lower-upper Cholesky factorization of XTX is an upper-lower Cholesky factorization of

7
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Forward-Backwardequations : When the time series is kntwn to be statioinary. its

statistical properties are not modified when time is reversed. This pr)pertv mavt)we verv

important for some applications, and the family of models may be forced to satisfy this

property. In other words, the forward and backward prediction errqors are written with

respect to the same predictor co)efficients

P p

"'U= tn-U

the coupled prediction equations

I

b-x" A tul; X-J (11.31)XX

The Grammian of the error matrix is

UET I-T1 ATY )- T A ATYTYy XTX A (11.32)

The ppth element of this Grammian is

2 (AP)TryTy XTX'Ap (I1.33)
p "

which is just the accumulated squared prediction errors in the ft,rvaid and backward
'

predictions.

As before, the solution of the family of least squares problems produces a matrix A that

orthogonalizes the data matrix and Cholesky factors the Grammian Y TY - xTX .

Linear Statistical models : There is one more useful comment to be made about the

equations of linear prediction. Suppose y' is the ith snapshot of a data set. It might be

obtained from a multi-sensor array or from overlapped windows of a time series. This

snapshot may be analyzed into a white vector u by fitting a linear prediction or analysis

model:

AT yi  u? (11.34)

8I



where AT is a lower triangular matrix with unit diagonal elements. Call R the experimental

correlation matrix and D' the experimental analysis matrix

ft
" \ "y' (y') .  R U, U' , D "-

k k

Then the connectio n between R and D 2 is

A.4RA D (11.36)

If the columns (f A are chosen to minimize the diagonal elements of D. term by term.

then D" is diagonal. and the factorization obtained is a Cholesky factorization. Similarly

the synthesis model may be written

Y R,' HT A' (11.37)

The connection with the prediction equations comes with the choice of y' as the ith column

of YT. the Toeplitz data matrix. With such a choice for y'. the linear statistical model is

really another way to write down the whole set of increasing order prediction problems..

When the matrix R is replaced by the expectation of y(y,)T, then this formalism reduces

to that of 3

Summary By solving the right sequence of least squares problems. we QR factor

a data matrix anti produce Cholesky factors of the experimental covariance matrix andI ,
'ft

its inverse. This is fundamental. We can either think of a QR factoring, (f the data

matrix as a square root method of factoring the experimental correlation matrix and its

inverse, or we can think of a Cholesky factoring of the experimental covariance matrix

arid its inverse as a square method of obtaining the "R" part of a QR factorization. Wc

can also think of the QR factor YA - '. the Choleskv factor ARA - D2 . and the

Cholesky factor R HD 2 HT as three different ways of characterizing the matrix A (or

its inverse) that contains order-increasing prediction filters. In these characterizations, the

Toeplitz structure of Y. and the close-to-Toeplitz structure (if R. may be used to derive
fast algorithms for computing A (or its inverse). In these algorithms, generalized reflection

coefficients are used to update recursions.

' N"
1%, -. t -fft--.f X



In section III of this paper. we review how the generalized Levinson recursi(ons derived

bn Friedlander et al. ) produce a fast algorithrn for computing A from the factorizatiOn-

.4'RA D2 . These recursions are used in section IV to produce a fast algorithm f,)r

computing the orthogonal matrix U frin the factorizati,,n I'A U. Thien the recurs],i,,ns

for U are used in section V to prodtluce a fast algorithm for H from the fact,,rization

R HD 2 H7T. All these algorithms are true lattice algorithrms that pr(luce generalized

reflection coefficients. In this way we will have derived fast QR algorithms for any" of th

data matrices that arise in linear prediction problems and generalized Schur algorithms

for any of associated experimental covariance matrices.

II. Factoring -R- into its Cholesk_ factors

The problem of factoring R ' is the problem of finding A in the diagonalization
,Ji

ATRA - D 2  Diag 'T2(7'ja (7' (111.1

This equation may be written as

RA HD 2  H A T (111.2)

and read uiut as follows

2~' a b tr2!O..... 0.1 (111.3)

Where R, is the (z 1) by (i 1) top left subrnatrix (f R. When i is incremented to I

then, of course, a new column and a new row are added to R,. If the resulting matrix .

R, has a simple recursive dependence on R,, then there is reason to hope for a recursivc

dependence of a' I on a'. This was the insight of Friedlander et al. 1

The matrix R is YTY (or x'Vx. or x" x'N) with Y and X Toeplitz. This means

R is close-to-Toeplitz. Let us denote the (n - 1) by (n - 1) symmetric. n in-negative definite

correlation matrix R as follows

"t. ",I I T'O.r n 1 r(,n

r, l rr J.n
R . (111.4)

10, r< :



The shifted difference matrix 111 is the n bv n matrix tR

[r , ... r• ,n ] [r ,i .. • o,n I

• • . j (111.5)
T"n. I .. • /n~n ryn 1,11 .. • 'r • T n I 

The rank of 6.R is the displacement rank a. We stress the cases where ( < o < 4. as these

correspond to the least squares problems of linear prediction. The decomposition of b;R

may be written 1

h:n1 - CEC T  (111.6)

where C is an n by a matrix and E is an a by a diagonal signature matrix, containing -1

or -1 on its diagonal.

The fundamental equation used in the derivation of fast algorithms is the update for

the matrix Ri, using Ci, which consists of the first (i 1) rows of C
1>

R,, I "

r, , . (111.7)

to,,, !ro,] I --- ro..i4 0 0 ... 0
r1,0 0

ri-+ 1,0 0 Jl,,

The idea here is to correct a Toeplitz approximation for Ri- with a low rank matrix

C,EC, . Note that R : R, and R, roo.

When R is Toeplitz then r,j- r , -. which means that R is zero. In the more

general case. YY has a displacement rank equal to zero in the correlation method of

linear prediction, one in the pre- and post-windowed methods of linear prediction. two

in the covariance case of linear prediction and four in the forward-backward covariance

method of linear prediction. Intermediate forward- backward methods with a displacement

rank of two may be introduced, by using forward-backward methods in either the pre-

windowed or the post-windowed methods of linear prediction.

Let a' a , 1 'T, denote the first (i - 1) elements of A'. the ith column of A.

From the Cholesky decomposition R - AD-AT. it follows that RA HD2 . where

11
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H - A- T. Read the ith column of this equation

R,a' 0 (111.8)

If a' is approximated by 0  then the (i 1) version of this equation is

0 0* .~ *11.

0

which may be written as
01

0n. f - F2o0 (111.10)

10 T

R- a' Ci F

1

with

Define the (1 1) by (a - 1) matrix 5' as.k

I

Ri' - A(111.12)

-0
where A, is an (o, 1) by (n, 1) error matrix, s,, that !'

'j C,- I A, T2 (111.13) .:%

E,Aj !w'

2|
-' (III.14)

O' ,E . - !r, ,,o, .... r,4 ,

12
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Then we have the recursions

a' 0 A F ,
a A-(i 7 ] [~j;' 1 (111.15)

with D, - 0. c, A -- E,, and ci is the last row of C,. The proof that DI F K,. is

contained in 1 K, I is the generalized reflection coefficient.

a' contains the forward prediction coefficients, the first column of a' contains the

backward prediction coefficients (on the same time window), and the other columns of a'

are used to correct the shift difference. In fact, these columns perform the transformation

from the sample covariance matrix to the final and/or initial conditions, to cancel out

"end-effects" due to the non-Toeplitz nature of R.

These equations may be written in a format where all vectors are of fixed dimension.,

(n - 1) by 1. Append a' with zeros to get the (n - 1) by (a - 1) matrix A'. Then the

generalized Levinson recursions of Friedlander et al. 1 may be written as follows
-i41 ] i T4

A =- A -- ZAXK,
A-+' = Z A' X , 'K,. for i 0 ton- 1.

The matrix Z in these equations is the delay matrix

0 ... 0 I 0'

0 0

These recursions are initialized by

A" [1 0 ... 0.*T

21 T --
- 2-

The vector K,, is an (a - 1) vector which generalizes the usual scalar reflection coefficient

k,_, . and is computed by

r 0
T ~ .. '

U2 T (Z')T r."C (111.19) •

Lr n ,t

13



The prediction error a,,, and the error matrix A, are updated as follows

2t! 0,2 K',- I
(111.20)

Note that these two equations are the same if At - 1 and K, 1 is a scalar. and that A,

never needs to be inverted, as only A, 'Ki, I is used in the recursions.

IV. Factoring Y into its QR factors

Using the recursions for the columns of A, we propose to find the corresponding re-

cursions for the columns of the orthogonal matrix U, using the QR equation YA - U. For

the correlation method of linear prediction we use the technique of Rialan and Scharf i4 .

For all the other cases of linear prediction we generalize their technique.

Correlation method of LP : In the correlation method of linear prediction. k 0 and

I - N 1 - n. which means that the data matrix Y looks like this

N - I ... YN-n YN-n-i ... Y 0 ... 0

y. -_ o - (IV.1)

". YA'- I Y, 0

0 ... 0 Y. - I ... Yn ... Y YO

Then the correlation matrix yTy = R is Toeplitz, symmetric, and positive semi-definite.

The Cybenko recursions 10' on the columns of U may be derived by using the Levinson

recursions on the columns of A to induce recursions on the columns of U, using YA - U.

Define Y, to be the first (i - 1) columns of Y and P to be the ith column of U. Then 'w-

introduce an auxiliary vector . so that

YA' a [' YA U (1".2)

We saw in section II that the ith column of U contains the forward prediction errors of
_Z

order i. Similarly U contains the backward prediction errors of the same order. Reproduce

these equations for (i - 1) and use the Levinson recursions to get

)-A'-' =111 =Y- (ZA - k1-.3 ,

As we have YZA' ZYA' (as long as the last element in .4' is equal to ?ero). then

U - 
4 ZU' -+ k 4 1  (1.4)

14
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Doing for the same for U leads to the following recursions

U U k-. ZU' (IV.5)

U-i Z U' - k,-I U' fori . n 1

These recursions are initialized using

S y ... YJ YO 0 ... o , (uo)Tu (IV.6)

k,- iis the reflection coefficient, and is computed from the internal variableb by the follow-

ing inner product

k,., = - (U°)T z U" (1v7)

This comes from the familiar computation of the reflection coefficient
2

k,_- I - r r .r. Z A'

- - IY I ... y( 0 ... 0 Y Z.4' (IA'.8)

= -U ZT ',

Alternates formulas for the reflection coefficient are given by the fact that U'4 is orthog-

onal to the previous U) (j 0, ... , i) as well as the previous U

(U )TZU '  (0')TZ UI

Note that (
. 2 

- (u)Tu = (C"U)T. This algorithm for computing the orthogonal matrix

in the QR factorization. is composed (if parallel updates for the vectors P" and C, and a

side computation containing an inner product for k,. (T2. and the update for a.2

2,\ = (1 - - ) k 2

The Cybenko algorithm may be extended to more general matrices Y. corresponding

to the other cases of linear prediction, using the generalized Levinson recursions. The

only difference lies in the dimension (o - 1) of the auxiliar matrix A . which induces a

different dimension in the matrix U . We saw that the very special shape of Y in the

correlation method of linear prediction allowed us to permute factors in YZA'. The loss

15'r
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of the upper triangle of zeros in Y in the covariance method forbids us from making the

same manipulation. We therefore develop a "generic" algorithm based on the extension .

,of Y with the upper triangle of zeros (when it is missing). The matrix U in the QR

factorization of Y for the covariance method of linear prediction will then be contained

within the orthogonal matrix of the "generic" case. The pre- and post-windowed methods

filow as special cases.

In the correlation method of Linear Prediction, the matrix H may be computed. if

needed. by using the "impulse" response and internal variables of the AR (or recursive)

lattice as described in 131. In section VI. we will show how this procedure generalizes in

the other cases.

Generic case We suppose now that we have the following Toeplitz matrix :''

y1 0 ... 0

YI-3 YI *

0 
T

IV = =______ (IV.1o)

Yi n Y1

Yk -n Yk

The data matrix Y has QR factor YA U. Therefore

which means the orthogonal matrix U is embedded in a larger matrix. Define the ith

column of TVA as follows

I A 2  [ ( I '. 1 2 ) ,

Similarly

IVA'(.3)S'5A [1']

As in the correlation case, we reproduce these equations for (i 1) and use the generalized

Levinson recursions for A' and A to get

14A = [t~i3 U] [U'KT(1I".14)
Us

16



JVTJUY r l -J i-J

The computation of Ki, ] depends then on the method used.

Covariance method of LP :For the covariance method of linear prediction., k n and

1 N -1. Then the shifted difference matrix tSR has rank 2

YN-n--i.. Y) YO1

[YN- 2 Yn Yn IJ
YN- I Y'- 2 .. Yn- I Y

T

Cr and .. n -1 0I'.

W~rite

YA =Ia' P I' -X =U (I11U 7)

with U'an (N -n) by 3 matrix. The "generic" recursions may be used for UP and U

Ui+ I

U U I

YN-1 YN-1 0 0-

YN-n U0 N-n 0 0

[2] Y\NI [] nr YN- 0 0 (E9

21Y 0 0

2 [0 1
012 r (iiO)TtUO 41 0 or2 (Il.20)

0 0 2i0 0 -(7
L 0

The three components of the reflection coeffcient Ki4 j are computed using

olZK- 1 = r(11(I)T , 0 W=n

r2K,1()=r U(N - n)(I.)

a 2 Ki,<1 (3) =r -U'(n) -

17
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which comes from the use of

0 0

T r 1" -y YN - Ti

o K 1 -(ZA') . . (I1.22)

rn,o Y. I Y. I -

Only one inner product is necessary per update. Note that U"(N ni) is the last value

contained in the vector U , and that U'(n) is the last value of the vector U'. Reflection

coefficients are computed without first computing correlations.

An alternate formula may also be obtained as in the correlation method, using the

orthogonality property of the columns of U (but is much more expensive)

0~ o('T Z . [%(f [~ 10° Ur, k K _

At this point, if one needs the whitening matrix A (or its last column, the coefficients of

An(z)). then the generalized Levinson recursions may be used together with the reflection

coefficients computed by the QR recursions. In this approach, what is really done is to

compute the impulse response of the lattice filter associated with these reflection coefficients

(see section VI).

Post-windowed method of LP In the post-windowed method of linear prediction. k

n and 1 N - n -1. Then Y and the shifted difference matrix b R are defined by

7'9T

YA'- I YN-2 ... Y - - I - . Y9,

0 JN1Y (11-.23)
0 ... 0 y , N I ... y n -1

ITC YO... n and E (1 -(I.24)

The displacement rank a is unity which means that the generalized Levinson algorithm

will use an n by 2 vector. The "generic" recursions may be simT~lified in this 'ase to

[Til = Z L U Ai Ki- I
ui  U 7' KZ , for 0 (IV.25)
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The initialization is

€7 ' 2 U

U" I ... yl YO (')' U-

T P

Y -I Y I "'41 AOO 11.6
0 1 01(

Now the reflection coefficient Ki 4 is given by

2 LT
, -,T ([u )r z  Z(-. U N )J .2 7 )

where Uo(N) is the last element of t'.Note that the side computations involve an inner

product, and the updates for A and a2. as in the corresponding generalized Levinson

algorithm.

Pre-windowed method_ of LP _: For the pre-windowed method of linear prediction. k

0 and I N - 1. Then 6 R is rank 1. and Y and bR are defined by

YN-n-- YO 0 ... 0T

3' J1.28)
YN-2 Y() 0]
y/v .. Yn ... y1 YO 2

C y/-n ... YN- I and E 1 (I1.29)

Note that the pre-window matrix Y is related to the post-window matrix Y by the exchange

matrix J. JYJ has the same triangle of zeros on the top as in the post-windowed method.

The only difference lies in the fact that time is reversed, or in other words y, is replaced by

Y'N' ,. The fast algorithm for U in the post-windowed case may then be used on JYJ.

Backward Linear Prediction : In the backward method of linear prediction. the only

difference with the forward recursions is that the entries in the data matrix Y are altered.

The shape of Y remains unchanged. In other words, time is reversed. This means that

the fast algorithms for U may be used for V with just a modification of the initialization

of the vectors.

Forward-Backward Linear Prediction-: In the forward-backward method of linear pre-

diction, the data matrix is the concatenation of two Toeplitz matrices. For the correlation

method, yTy JYTIJ meaning that the forward-backward extention leads to the same %
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Cholesky factors A and H, and D2 is just multiplied by a factor of two. In the covariance

method, the forward-backward extension leads to the so-called modified covariance method

of linear prediction. and one way to compute the highest order predictor A,(z) is to use

the algorithm of Marple 13!. But the lower order predictors introduced in '13 do not

solve the same set of least squares problems that we have defined. We introduce in the

Appendix an alternate to this algorithm to find a characterization of the highest order

predictor., based on the generalized reflection coefficients computed with the recursions for

the columns of the orthogonal matrix. The impulse response of the associated lattice filter

is then equal to the highest order predictor.

V. Factorinig B into its Cholesky Factors

The LU factorization of R may be written R = HD 2H'. In the Toeplitz case. the

LeRoux-Gueguen algorithm :21 may be used to compute H directly. In all the linear

prediction cases, or in other words when R - yTy, the recursions for the columns of H

are easily induced from the QR factor recursions by simply premultiplying the recursions

by yT This was first done in !41 for the Toeplitz case.

Denote by H' the vector given by yTui - H'. and by H the matrix given by

-TO' . Use the recursions for U' and U' to obtain he recusrions

f, i ' -t iYT Z i -T1+

H i4 I -T Z K (,4 1
.%

Set the first row of H' to zero to be able to replace YTZU" by ZH'. The algorithm consists

then of the recursions

fH l H Z H'K, -

H'- Z H' -4 ft ! K,, a-

A more general approach to this derivation consists of using the generalized Levinson

recursions directly to induce recursions for the columns of H. Then there is no need for R to

equal yTy. This algorithm is a generalization of the vector version of the Leroux-Gueguen

20
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algorithm derived in i3'. Define h' and g' by

_0 l 1 T  Wd

• 0 !

o C,

RA' 1 1 RA-= 0 A, (v.3

hi  g9 '

Note that h' is a vector of length (n i 1) and g' is an (n- i- 1) by (o 1) matrix.

Our goal is to derive recursions for ht and g', without carrying the update equations for

A' and A . Some simplifications arise with the definitions of H' and H

0 0T 
- 0 0 T

C,,

RA' = H' H, A 0, 2 0 - (V.4)

9
L ~ 0

The coupled recursions are:

S( Z HKT .5)

H i ] = Z H' - /t At K,- for 1 0.. n 1.

with the initialization

ro ~ -0 0 0'l .

H t
)  H' 0 0 l,

CE

rn,O rn ,(1%

2 Al1 -

470 roo (1V.6)

Note that H' is the ith column of HD', or similarly H' a, 2 is the ith column of H.

Note also that the first i elements of H' and the first (i - 1) rows of H are equal to zero.

The coefficient K, I may be read out of the recursions as

%i "NV1 % R

Ht (i) = 0o..0 H (i) K ,, (v.7)

.'F -. -' IS* *T ?. *i..,i 
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[II

so that -K
T ,T o 2 equals the first non-zero row in k. These coupled recursions include

the update for o,' = H'(i). the first non-zero element in H'. The only necessary side

computation is the update of A, :

~~r .~. - i.~ K2..1 A.,,) (I.8

This algorithm generalizes the LeRoux-Gueguen algorithm to cl(ose-to-Toeplitz matri-

ces and places the recursions in a vector format. The algorithm is fixed point and no inner

product is necessary to compute the reflection coefficients. The recursions are equivalent

to the lattice algorithm of Friedlander 51. The only differences lie in the normalization of

the lattice and in the organization of the cells. %

If the reflection coefficients are known, it is a challenging problem to see if and how the *

correlation coefficients and the matrix H may be computed from them. In the correlation

case. Robinson and Treitel 171 solved this problem by observing that the all-pole lattice

filter has an output equal to the causal part of the correlation sequence when the input

is zero and the state is initialized at 'r1 ,0.. 0. The multi-channel case was studied by

Friedlander 8 . The fact that internal variables of the lattice are entries in the Cholesky

factor H is explained in 3 . We present the generalizations of these results to the close-

to-Toeplitz cases in the next section.

VI. Lattice Presentation

The lattice representation of the coupled recursions in the correlation method (if linear

prediction yields additional insight. The transformation from reflection coefficients to

correlation values is particularly easy using the all-pole (AR) lattice filter 7,. With a zero,

input sequence and an initial state set to 'r1o, 0. . 0 the output of the filt(r is the causal

part of the correlation sequence. It was also shown in 13 that internal variables are scaled

entries of the lower-triangular matrix H, the Cholesky factor of the Toeplitz matrix R.

In 5, a lattice structure of more then two lines was used to implement the normalized

version of the generalized Leroux-Gueguen algorithm, for all the cases ,,f linear prediction.

Figure 3 showns an all-zero (MA) lattice filter that may be used to, implement the ".

recursions of the previous sections for the covariance case of linear prediction. The other 0

cases correspond to simplified versions of the filter, except for the forward-backward co-

22



variance case which requires two extra lines. The conventions used in Figure 3 are the

WP.following

[K'(1)] 'K'

(3)

The lattice of Figure 3 is the same as that of 15 except for the internal organization of the

cells and the normalization of the variables. The impulse response of the lattice is obtained

by placing an impulse on the first two lines and zero on the last lines. This produces the

Generalized Levinson algorithm of section III (without the computation of the reflection

coefficients, of course). In Figure 4. the corresponding all-pole (AR) lattice filter is shown.

This lattice structure has one very interesting application. It may be used to duplicate the

procedures of '3 ,7','8 for computing correlations in the close-to-Toeplitz cases. When the

inputs is zero and the internal state is initialized at r,,,,. 0. 0 . the first row (or column)

of the covariance matrix is generated on the first output line, the last ni data values on

the second line. and the first n data values are generated on the third line. The internal

variables at the inputs (or outputs) on the first line of the cells reproduce the entries of

the Choleskv factor HD 2 . The entries of cell i reproduce. in time sequence, the entries of

the ith column of H. exactly as in the Toeplitz case.

'sing the following notation for the entries of HD 2

- H"(0)

2 H(1) Hl(1) o ]

HD 2  • H'H' . .H" (1".2)

HT'pH"~ '(n 1)'.

H"(n) H'(n) ... H" '(n) H"(n) J.

then the input of cell (i-, 1) (output of cell 1) at time j I (on the top line) is H'(j ).

Because of the delay, one can see that this variable will be zero for j < i. Equivalently."1-

entries on the k t h line are equal to the corresponding entry (,f the (k 1) t h column of

l'. This is illustrated in Figure 5. The algorithmi for actually computing all of these

variables from the reflection coefficients is a generalization (If that given in 7 . We may

take advantage of the fact that almost half of the computed variables ill the algorithm of

,8 are equal to zero, as H'(j) and H(j - 1) are zero for j < i. to reduce the number (If

computations. The algorithm is then %
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Initialization H ( ) r..,

Forj 1.f

HI

0.0 °

Fr, - j I ..... 0

H (j) H (j 1)- H(j)h, 
-

If the algorithm is initialized with H)(0) 1 instead of ruu. then all the variables

are scaled down by ro0 0 . When only the reflection coefficients are known then both the

prediction errors co and _\j may be recovered using the update formula give in sect*o

111. Note that in this algorithm W(j is the th row of AH' which is a row vector made up

of (a -1) elements. Note also that the algorithm is not restricted to the methods of linear

Ipredicti(rn lint is applicable for all the possible values of the displacement rank o. When

this algorithri is run in conjonction with the recursions for U'. C and Ki. then we have a %

complete QR algorithm for computing U and H in the QR factorization Y UHT.

V11. Multi-variable case

In several applications, multi-variable linear prediction is necessary, by which we meani

that the datum y, is a vector of length d. The data may come from several snosInI a

multi-channel system, o)r simply be a collection of scalar variables in one row (or c(iliim

of a twle dimensional image. The prediction coefficients a) become d by d matrices. The

forward linear prediction pro blem is to predict the value (f t, as e

ajy fo Dk .. 1 VI

.0%
Te preditierror plctos ut-aibelna rdcinis neesrywih0ema

."

nn

yz, i , foriz - 1 VI1

3 C

The prediction error is

u,:y- =I ,- )3ajY1- (1"11.2}-
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which can still be organized in a matrix fashion as YO -

T T T -t

a T

I T

Y-Y-I yk -k-

Y is a (I k 1) by (n - 1)d block Toeplitz matrix. Then, depen~ding on the values of k.

and I. one ends up with different methods of linear prediction. The solution of the problem

is the same as in the scalar case except for element dimensions and occasional transpose. p%

Our purpose in this section is just to give the generalization of our vector algorithms

to the multi-variable case. The Grammian matrix R is now block close-to-Toeplitz with

ri = rfT. The generalized Levinson algorithm performs the block Choleskv factorization

of R '. the generalized QR algorithm the block QR factorization of Y. and the generalized

LeRoux-Gueguen algorithm the block Cholesky factorization of R.

The generalized Levinson recursions are

B +  B' Z A' NJi /i1

A' Z A' B' MI- K, -I for i 0.n- N.
..,

with the initializations

• " j o 0o ... 0,

No 0 E (1"11.5) %

The dimensions of the variables involved are the following A' is (n- I)d by d. B i is

(n - l)d by (a - 1)d, N, is d by d, M, is (a - 1)d by (a - 1)d. v is ad by ad. C is nd by

ad. and finally Z is (77 - 1)d by (n. - 1)d.

The matrix Z in these equations is the delay matrix :%

0 ... 0 0
0NV = . . V.6

I o
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K,-1 is an (a 1)d by d matrix and is computed by

K , , (Z 
(.7)

CE

- rn,O

The prediction error matrix N,. and the error matrix M, are updated as follows
T|

, N AT, IAI-' K,-,
T1 11 8 % .,, ,- ',+1 N' KT (P11,8

Al- liK , K--I

The lattice recursions for the matrix columns of U in the covariance case are1

= S -, Z S N,-('KI.I

Si-I = z Si - 1 Ki -I_ for 1 0 ,...n - 1.

with the initializations

T- 0 0

I
T T

TY[To 0 0

YOu O 0 0

T 0 0

No, ru (U°)TU
0 

OI0 0 1 0 ("11.10)
(0 0 -

The three matrix components of the reflection coefficient K,.. are computed using

K T (,) - ([(.0)T K [51'(n)]

K ],(2) = '(N - n) S'(N) (P11.2)

j_1(3) = -S'(n) = T'(n)

The other forward or backward cases of linear prediction are simplified version of this

algorithm, and the forward-backward case consists of two of these recursions.
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Finally. the Schur recursions are

H ZH Ni' K T(111.13)

H '- Z H' - Hz 11 Kj_ I for ? 0 n 1.

with the initializations

JrV ,, 0 0

No ro,o MO (11.14)S0 -El

Note that H' is the ith block column of HD2 , or similarly H' NI- is the ith block column

of H. D is the block diagonal matrix which ith block diagonal element is No. Note also

that the first i blocks of H' and the first (i - 1) block rows of W' are equal to zero. The

coefficient Ki_1 may be read out of the recursions as

0+. - K'(i)- A', .5)

so that - K Tf, equals the first non-zero block row in H . These coupled recursions include

the update for N, = H'(i), the first noii-zer., element in H'. The only necessary side

computation is the update of 1,

Mi- I - 1, K,_ I N. - ' K T (VII.16)

Note that the use of a lattice to compute the Cholesky factor H from reflection coefficients

is still valid in the multi-variable case.

VIII. Conclusion

We have derived vector algorithms for Cholesky and QR factoring Toeplitz and close-

to-Toeplitz matrices for all of the cases of linear prediction. The same coupled recursions

are used in all the algorithms, namely

N' 4 ' = N't  Z Mi'K T +

M'A ]4 = Z A' N' A K_ I

27

%5 %~ J U'



The vector Ali contains the ith column of the matrix A. HD2 ., or U, depending upon which

factorization is being computed. The inner products required to compute the reflection

coefficients and to initialize the variables are

" M A: inner product required for computing r,.0 and K,.

* M i  U: inner product required for computing K, only.

* M i =Hi( 2 : inner product required for computing r,.0 only.

The Cholesky algorithms have complexity n2 c. The fast algorithms for the orthogonal

matrix [T have complexity Nna, where N is the number of data values available.

The QR factorization of the data matrix Y in the covariance case of linear prediction

may be used for a general Toeplitz matrix T. This gives a fast algorithm to obtain T = UR

in a QR method to obtain eigenvalues. If Y is symmetric (meaning that the time series is %

symmetric Y,-i = y,-i) then the forward and backward predictors are reversals of each %

other, or in other words U' is the reversal of the first column of U which simplifies the 5

computation.
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Appendix

Fast QR algorithm for the forward-backward covariance method of linear

prediction.

The data matrix in the forward-backward covariance method of linear prediction, is

the following [i-i
fbz j (A.1)

where Y and X are the forward and backward data matrices, respectively, in the covariance

method of linear prediction. The Grammian is

R I -T Y b = yT y + XTX I-T- + j 1 -T 1 -j (A.2)

which means that R is a centro-symmetric matrix. Its displacement rank is four. and the

2I
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displacement matrix I'Rj is given by

Yo YN-n Yn- I YN-I

C- 10- 1 0 0] (A.3)

Yn-2 YN- 2 YJ YN-n- 1 0 0 0 1
YI/n- I YN- i Yu YN n

Note that b,'R = -JhT!R'J. As the generalized Levinson algorithm does not use the centro-

symmetry property of R (only R 0 and R, are centro-symmetric), the matrix A is n by 5.

As before, the recursions for A' and V induce recursions for the orthogonal matrix in the

QR factorization :

I fA= A= (A.4)

and its ith column

f~A' X = i (45

Once more the "generic" recursions have to be used to get recursions for the columns of

the orthogonal matrix.

Define the matrices TV and V to be the Toeplitz extension of Y and X, respectively

i W=WY (A.6)

YN-1 0 ... 0 Yo 0 ... 0"

IYN-n YN-I 0 Yn-I ... Yo 0 (A. 7)

I X

The recursions are then derived exactly as before with

H I A' Ui I4= (A.8)

and :K.

WA'W ] (.4.9)
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The recursions are

tcl -Z ilK

with the initializations

0o <YN- I.. YN-n YN-n-1 .. Yi Yo,

f1.0 Oj. Yn-I1 1 Y .. Y -

YN-1 0 0 0 0- YO 0 0 0 0-

N-v 0 000 0vO ;i0 0

y 0 0 ()0YN- 1 0 0 0 0,
01, 0 0 0 0-

0 1 0 0 0
01r 0 j, (UO)TUD ( 2 00 1 0 0 (A.11) 1

[0 0 0 10

The five components of the reflection coefficient K, are computed using

ior2K, -+1(2) = U'(N -~ n) 01 2K, .(3) -- U'(ti)

O~i ,,(4 = - n) a -1(5) -V'(N n ) (A. 12)

which comes from the use of

rA, YO Y - n I A I
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There are just two inner products per update.

List of Fijgures
A

1. Illustration of the error windows for prediction orders increasing from p (0 t o

p n.

2. Error windows for the correlation and covariance methods of linear prediction.

3. Moving- average lattice filter cell (covariance case).

4. Autoregressive lattice filter cell (covariance case).

5. Autoregressive lattice filter (covariance case) recover covariance and Cholesk~y

factor from generalized reflection coefficients.
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Figure 1: Illustration of the error windows for prediction.
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Errors windows for the correlation method of linear prediction

P=O (k=O9 I=N-l +n).

1.4

p=n

-- +p N-1i+p

-n -n+p 0 P 'N -I n N-1 N-1 +n

14

p=0

p=p

p=n
Errors windows for the covariance method of linear prediction

(k=n ,l=N-1). .

Figure 2 :Error Window for the Correlation and Covariance Methods 5

of Linear Prediction.
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Figure 3 :MA Lattice Filter Cell

(Covariance Case)
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