
Uncl ass ified

REPORT DOCUMENTATION PAGE BEFORE COMPLETIN~G FORM0

I REORTNuMER 1. GVT CCESIONNO.3 RECIP:Ehr'S CATALOG NMSER

4 TITE fon S~bwe) 5 TYPE OF REPORT & PERIOD CCVERED'

Poker 4.1: A Programmer's Reference Guide TcnclRpr

S. PERFORMING QRG. REPORT NUMBER

7. ATHO~s; S CONTRACT OR GRANT N' MBER(e)

Lawrence Snyder 111O0014-86-K-0264 &

9. PERFORMING ORGANIZATiON NAME AND ADDRESS 10. PROGRAM IELEMENT. PROJECT, TASK
University of Washinaton AE OKUI UUR

Department of Computer Science, FR-35
Seattle, Washington 98195

1I L.INT G OFFICE NAME AND ADDRESS 12. REPORT DATE
c~e of N1ava1 Research April 1988

Information Systems Program 13. NUMBER OF PAGES
Arlington, VA 22217 94

14. MONITORING AGENCY NAME & ADDRESSI'it different from, ConfroNIing Office) Is. SECURITY CLASS. tof this e port) s

Sunclassified

lI.DECLASSIFICATION, DOWNGRADING

1. DSTUPEMNTANTESET(fti eot

17. AISTRIB TOA S EET (Cofnu ono abstra ct ei. i n e e d ain 101 by2boit nuff er)rmRpr)I

Poe ale rogrammingl Environmentdiin thr artreapnics oe

describing the structure of the distributed library, the second describing
systems related to Poker, and the third describing the use of Poker with
the Cosmic Cube.

DID F "11M 1473 E31 -ON OF NO0V 65 IS OSOLETE

SUC~uRIY CLASSIFICATION OF TH~IS PAGE Wh~e' Offf n r*88 6 97 f)31 I

Poker (4.1) Prograirrmer's Reference Guide

L. Snyder
Department of Computcr Science, FR-35

University of Washington
Seattle, Washington 98195

-iAcesson For

NTIS GRA&I .. . ,
TR 88-03-03 DTIC TAB
March 1988 Unannounced 0

Justifioation-

By _ - - -
DistrIbutIon/ ____

Availability Codes
Ava i'I an /or

Dist Special

This manual defines all facilities available within the Poker Parallel Programming En-
vironment. In addition, there are three appendices, one describing the structure of the
distributed library, oie describing systems related to Poker, and the third describing porting
to the Cosmic Cube.
This document has been funded in part by the Office of Naval Research Contract No. N00014-
86-K-0264 and the National Science Foundation Grant No. CCR-8416878.

ft
g5%

Poker (4.1) Programmer's Reference Guide

-/This document gives a succinct description of the facilities available with the Poker Pro-
gramming Environment. The emphasis is onNwhat is available"rather than"how to achieve
particular results7"I Although the sections are self-contained, so that they may be referred
to independently, there are a few things you should know:

Poker uses interactive graphics. The graphics are described in Section 2; the interaction
is described in Section 3.

0 The usual programming language notion of a "source program" as a monolithic piece
of symbolic text has been replaced in Poker by a database. The way to create, view,
and change the database is described in Section 4.

Ip Object programs (the "compiled database") are executed or emulated by Poker and
snapshots of the execution can be continuously displayed. (_)

" Poker supports a variety of CHiP architectures; the current one can be displayed or
changed using the CHiP Parameters facility, Section 7.

The back page of this document gives a summary of the commands. i -

f Other versions of Poker exist; consult Appendix B for your particular system.

A"

I FIRST TIME ACCESS

Table of Contents

I. First time access 3
2. The display 4
3. Keys and cursor motions 6
4. Views 7
5. Global commands 9
6. File Management 11
7. CHiP Parameters View 17
8. Switch Settings 19
9. Code Names View 22
10. Port Names View 25
11. 10 Names View 28
12. Process Definition Languages 31
13. Command Request 57
14. Trace 60
15. Execute Commands 63
16. Object Systems 69
17. Acknowledgements 71
A. Library Al
B. Related Systems B3
C. Using Poker on the Cosmic Cube C17
D. Poker Command Summary

1 First time access

To access Poker the user should include the directory "/usr/poker/bin" in his search path.
This requires a (one-time) change to the PATH line of your .profile or .login file. The
required modification is to append the text ":/usr/poker/bin" to the PATH line. [CAUTION:
Your installation's protocol may differ.] Users of the Teletype 5620 display should add
the following line to their .cshrc file: source /usr/poker/bin/setPokeralias. Then typing
"setPoker" will download a poker environment into the 5620. See Appendix B.3 for device
specific information.

First time users who would like a short computer-assisted overview of the Poker system
should type "playpoker." This demonstration is intended to be a brief (less than ten minutes)
and entertaining introductiou to thc major compcnents of Pcker.

1 ,N.

1 FIRST TIME ACCESS 3

To use Poker, type 'poker' from the bit-mapped display (see Section 2). The system will
begin at the point where execution was previously terminated, or to the CHiP Parameters
display (Section 7) if there was no previous session.

lattice chalkboard

w " as n wa "M., u" -coma' "

I %W rtl ee 01

i-il-i

aFigure 1. A typical Poker display.
.- fmn

Iw W VU I1 a
tw "M lw "e's W

W" NM #W~w low ow M

loom"

Figue 1.A tyicalPoke dislay

• - 1-- -JI

2 THE DISPLAY 4

2 The display

The Poker System uses two displays: a bitmapped display and a secondary terminal. [CAU-
TION: Your system may differ.] It is possible to use just the bitmapped display by using the
pause (^z) command described below. The user should be logged into both terminals and
should have both referring to a common directory. To avoid name conflicts, it is advised that
the directory be empty (initially). As mentioned in Section 1, the command 'poker' from the
bitmapped display terminal causes the system to be entered (assuming the modifications of
Section 1).

The bitmapped display will have a form of the type shown in Figure 1. The regions of
the display are as follows:

field a region showing a schematic picture of the communication structure of
the program; this is the region where most programming activity takes
place,

lattice a schematic diagram of the processing elements (PEs) with a box en-
closing those PEs currently shown in the field; no direct user activity is
available in the region,

chalkboard the upper righthand region of the display giving status information,

command line the area where textual commands are given; last line of the chalkboard,

diagnostic line the area where error indications are given; the next-to-last line of the
chalkboard,

clipboard a ten line region of the chalkboard used for the display of transient in-
formation and available for displaying files,

status area displaying current state information; top two lines of the chalkboard.

The information shown in the status area is updated as follows. The time of day is current
to the last write to the screen. The view and phase number are updated with the key stroke
that changes them. Last PE is updated when the cursor visits a new PE; visiting switches
does not change Last PE. Saved PE is set in Code Names and Port Names when the PE
is buffered, and it is cleared when that PE is modified or the view changes. (See Sections
9 and 10.) Num Ticks (Command Request and Trace) is updated each time the emulator
stops. (See Sections 13 and 14.)

-

3 KEYS AND CURSOR MOTIONS

3 Keys and Cursor Motions

The Poker system is interactive: virtually all key strokes cause an immediate action. Most
actions are given by composite key strokes formed either by depressing the control key while
striking a letter key (e.g., we write "h to denote depressing the control key while striking a
Ictter h (which causes the cursor to backspace)), or by first striking the escape key (written
$) followed by another (possibly composite) key (e.g., $^e is the command to exit and return
to UNIX). Should escape be inadvertently struck, it can be cleared by striking it twice more,
i.e. $$$ is a "no operation".

Movement around the display is controlled by the numeric keys of the key pad (located
on the right side of the keyboard and illustrated in Figure 3). Two kinds of motions are
provided: gross cursor motions and fine cursor motions. The gross cursor motions, which
are two-key operations composed of an escape followed by a directional key, usually move to
the next PE in the indicated direction. Fine motions, which are given just by a directional
key, vary in meaning with the view being displayed. The "home" key is used to move back
and forth between the command line and various positions in the field. [CAUTION: This
paragraph is device-specific and the explanation may only partially apply your terminal; see
Appendix B for an explanation of differences, especially the mouse usage for the Teletype
5620 and the keypad differences for the MicroVax workstation.]

DDDDline Gross
%64 West *964

%7 Northwest 8% 7

968 North *% 8
[~1~i1I1F %9 Northeast 899

%6 East $%6
%3 Southeast $% 3
%2 South 8%92

%1 Southwest $%I
L%5 Home *965

Figure 3. Cursor key bindings.

I% % %

4 VIEWS 6

4 Views

The current state of the Poker system is stored as a database that can be queried, created
and changed by using one of seven views. (A checklist of the information required to produce
and run a Poker program is given in Figure 4.) The system begins with the view active at the
end of the previous session, or if there was none, the CHiP Parameters view. The available
views are:

Sh cHip parameters: Specifies the architectural characteristics (e.g. number of pro-
cessor elements) of the machine being programmed. (See Sec-

tion 7.)

$s Switch settings: Specifies the graph of the communication structure to be used
by the processor elements. (See Section 8.)

$c Code names: Specifies the name of and actual parameters of the process as-
signed to each processor element. (See Section 9.)

Sp Port names: Specifies the symbolic names of a processor's communication
channels. (See Section 10)

$i Input/output: Specifies the input and output data streams. (See Section 11.)

Sr command Request: Converts the source information into object form for execution;
the database is not actually displayed in this view. (See Section
13.)

St Trace: Displays the current state of the traced variables of the execut-
ing program. (See Section 14.)

In addition, the processes themselves are defined using a standard editor on the secondary
display. The processes are written in a sequential programming language such as C or XX.
(See Section 12.)

As noted before the database is the Poker "source program." It is composed of a sequence
of phases; there is a switch settings, code names, port names and 10 names specification for
each phase. A phase corresponds roughly to a single algorithm that uses a single processor
interconnection structure (switch settings). For example, an algorithm to multiply two
matrices would likely be a phase. Phases are numbered, but they can also be given symbolic
names. (See Section 7.)

The above composite keys are always recognized. An attempt to change to the current
view (e.g. the use of Ss from switch settings) results in the display of the legal commands.
i.e. the key for the current view is the help request.

.. . _ - .'.'%. . " - . - % .r , V*- "J' :.-s? % ,J'_
"
, 'p..',h Y1%. ,%..,.. " " * "4 ,"."".., .%J

"

4 VIEWS 7

Programming Checklist

To write and run a Poker program one must:

1. Comprehend the algorithm.

2. Specify the communication structure - use Switch Settings view.

3. Define processes (PE codes) - use Poker C or XX language and standard editor.

4. Assign processes to PEs with parameters - use Code Names view.

5. Name communication ports - use Port Names view.

6. Name data streams - use 10 Names view.

7. Create and format data files - use standard editor and, if needed, packlO.

8. Bind stream names to file names - use Bind, an execute command.

9. Convert source "program" to object form - use Command Request view.

10. Run program and watch results - use Trace view.

Notice that the order of steps 2 -7 is arbitrary.

Figure 4. Programming Checklist

5 GLOBAL COMMANDS 8.,

5 Global Commands

In addition to the view commands previously described (Section 4), the following commands
are always recognized:

$'a Abort Return to UNIX without saving state. (See Interrupt key be-
low.)

$^e Exit Return to UNIX and save the current source specifications (i.e.
CHiPParams, SwitchSet, CodeNames, PortNames, IONames).
(See Interrupt key below.)

z pause Return to UNIX saving state. [CAUTION: This command is
not available with all UNIX implementations.]

$^o Output The bitmapped display's raster memory is dumped to a file in
postscript format named PSXXXXXX in the current directory,
where XXXXXX is a random number. [CAUTION: Your sys-
tern may vary.] As the bitmap is being uploaded, the screen is
complemented; when the upload is finished, the screen is recom-
plimented and a message indicating completion is given. The file
can then be sent to a postscript based laser printer (e.g. Apple
Laserwriter).

Sd reDraw The screen is redisplayed.

p Phase The symbolic phase name or phase number given on the com-
mand line becomes the new phase; if none is given, the next
phase is the current phase plus one, cychcally.

x eXecute The command, given on the command line, is executed; if the
command line is blank, a list of the currently available com- pp

mands is given in the clipboard area. (See Sections 6 and 15.)
The 'return' key has the same effect as ^x.

'p

Commands specialized to the clipboard: 'S

^f File The file whose name is given on the command line is made the
"currently displayed file" and its first ten lines are displayed. If
no file is given, the current contents of the Clipboard file, a file
used for diagnostics and auxiliary functions, is given.

v +page Advance the file display a page. %

pp

S ~- ~ -' ~ p. ~p.

5 GLOBAL COMMANDS 9

$v -page Backup the file display by a page.
Su eof Advance the file display to the end of file.

$u bof Backup the file display to the beginning of the file.

Additionally, the (UNIX) interrupt key is bound to ^]. If Poker terminates with Abort
or Exit and the user wishes to preempt drawing of the final display, the user's "normal-
UNIX interrupt key (usually ^c) can be used. (Alternatively, invoking Poker with the -c flag
bypasses drawing the final display.)

10

Final Display

p|S.,.S. ,~%,%' ~ ~ ~ ~ ~ ~ %

6 FILE MANAGEMENT to Y

6 File Management
rg

As a programming environment, Poker makes extensive use of many types of files: Figure .5
gives a summary of the types. This section gives a description of the contents of the files
and a description of the copy command.

Source Database Files: Poker replaces the usual notion of a source program - a mono-
lithic piece of symbolic text - by a database that is displayed
using views (Section 4). Although views generally show a corn-

posite picture of a portion of the database built from informa-
tion of several database entities, all the information entered in
one view is regarded as one entity and stored externally as one
file:

View Entity Name FileName
CHiP Parameters CP CHiPParams
Switch Settings SS SwitchSet
Code Names CN CodeNames
Port Names PN PortNames
10 Names 10 IONames

Note that although these files are regular UNIX files they are
treated as typed information and are safely manipulated with
the copy command (see below). Each entity file contains a
description of the architecture parameters in force at the time
of its definition.

Copy Command: The copy is an execute command (Section 15) given on the
command line and followed by ^x. The activity, as with any
copy command, is to move the information stored in the from
structure to a new location in the to structure. The from and
to structures can refer to the current internal state of the Poker
system or to external files. As examples we have:

.b

IC

p.
pa

~ -~a' ' r- '' a''a.~. '.' f ~fifm 'Yb~~~./~i'~ ~'I !

-MOM

6 FILE MANAGEMENT

Source Database Files

CHiPParams Information entered in CHiP Parameters view (Poker)
SwitchSet Information entered in Switch Settings view (Poker)
CodeNames Information entered in Code Names view (Poker)
PortNames Information entered in Port Names view (Poker)
IONames Information entered in 10 Names view (Poker)

Process Files

<proc>.x XX source text for process <proc> (User)
<proc>.pc Poker C source text for process <proc> (User)
<proc>.<ext>.o Object code for process <proc> (Poker)
<proc>.<ext>.err Diagnostics file for process<proc> (Poker)
.pe<i>,<j>.o Object Code for processor element <i>, <j> (Poker)
pe<i>,<j>.err Diagnostics for processor element <i>, <j> (Poker)
<proc>.inter Process <proc> interphase variable data (Poker)
Code_<#>.c(_o) "Stacked" source (object) code for cosmic

cube emulator
code-<#> Object doe for cosmic sube processor (Poker)
inter-phase.c(_o) Compilation of interphase data (Poker)

Communications File
connections Symbolic list of source, target pairs of communication graph (Poker)
connections.o Object form of communication graph (Poker)

Object File

SnapShot Emulator state (Poker)

Data Files

<name> Streams laid "side-by-side" (User/Poker)

System File
Clipboard Save area for Clipboard displayed information (Poker)

error Error/trace messages from Poker (Poker)

I1

6 FILE MANAGEMENT 12

Emulator Files
PringleDefs Interface data for the emulator (Poker)
GenericDefs.c Interface program for generic emulator (Poker)
CosmicDefs.c Interface data for the cosmic cube emulator (Poker)
Generic-pc Generic Emulator
Make-x Process file dependences for pringle (Poker)
Make-x-pc Process file dependences for generic-x (Poker)
Make-pc Process file dependences for generic-pc (Poker)
Make-cce Process file dependences for cosmic cube emulator (Poker)
Make-cc Process file dependences for cosmic cube (Poker)
Spawner Spawner program for cosmic cube emulator
fileio File I/O program for cosmic cube emulator

Figure 5. Summary of Files, contents and (creators).

.,

4' 4

AI

-- VVp ~~ -

6 FILE MANAGEMENT 13
I

copy PreviousSS, SS 3 loads phase 3 switch settings
from a file, PreviousSS.

copy =, . saves all source entities (* =
SS, CN, PN, 10) in the cur-
rent directory

copy Proglib, * loads all source entities from
a stored program into Poker;
relevant ".x" or ".pc" files
are also transferred.

Notice in the third example, Proglib is a directory.

The syntax is:

copy <from structure>, <to structure> ^x

where both operands have the form

<structure> [<phase>]

where the optional phase is given either symbolically or numerically
and the <structure> is selected from

SSICNIPNIIOI*I.I <name>

where
SS, CN, PN and 10 refer to the current

internal entities of that name,
• abbreviates the set [SS, CN, PN, IO],

refers to the current directory,
<name> is a file name or directory name,

and the semantics are to copy the specified <from structure> entities to
the specified <to structure> entities subject to the following conditions:

9 A <name> given as a <from structure> must exist as an entity file
(or, if appropriate to the command, a directory).

0 A <name> given as a <to structure> with a nonempty phase spec-
ification must exist as a entity file.

* A <name> can be an absolute path name.

SI.M

P~

6 FILE MANAGEMENT 14

* A transfer involving * or . has the side effect of transferring those
<proc>.x or <proc>.pc files whose name <proc> is mentioned in the
Code Names entity.

* The characteristics of the <from structure> must "conform" to the
current CHiP Parameters specifications whenever an entity is read in.
If they do not conform the user is given the option to have them trans-
formed as described under the "change" paragraphs of CHiP Parame-
ters (Section 7).

Process Files: The sequential code executed by a single PE is called a "process" and
it is specified using either Poker C or a restricted sequential language
called XX, see Section 12. The symbolic text for the process named
<proc> is stored in a (user defined) file in the current directory file
called <proc>.pc or <proc>.x in the current directory depending on
the language used. The compiler, when executed in the Command
Request view, produces an object file called <proc>.<ext>.o in the
current directory where <ext> is pc, x or x.pc depending on the source
language used. (The x.pc extent is produced when the object machine
accepts the C language.) Any errors in the compilation of process
<proc> are stored in the file <proc>.<ext>.err where <ext> is pc, x
or x.pc depending on the language used for the source.

The link editor binds a <proc>.<ext>.o file to a particular PE <i>,<j>
and stores the result in .pe<i>,<j>.o; errors in the process are reported
in pe<i>,<j>.err.

Communications Files: The communication graph given in the SS entity is compiled into
an adjacency list form, i.e. a set of pairs giving the source and target
of every edge. The symbolic (user readable) form of this compilation is
called "connections", the object form is called "connections.o" and the
diagnostics from the compilation are listed in the Clipboard file.

* Object State: The state of the emulator can be saved whenever it is stopped. The file
is called SnapShot when no other name is specified.

Data Files: External input/output in Poker is based on the concept of a stream,
a sequence of values. Stream names are defined using the 10 Names
view (Section 11). Stream names are bound to file names using the
bind execute command (Section 15). Streams are related to normal
sequential files as follows.

' . ,

6 FILE MANAGEMENT 15

A stream of n values is a file of n records, each record having a single
field. Two streams of length n and m, respectively, form a file

the file is named <filename>, then its streams - say there are three of
them - are referred to as

<filename> 1
<filename> 2
<filename> 3

For example, let the file nums be the four records:

136.25569102, 666.6666666, -111.1010101,
3.1415, 0.365590, -219.333,
-22.01, 444.0444, 515.6161,
20.02, -11421, 212.33,

This file can be treated as three streams of four values each.

Since a Poker program will use a specific number of stream names which
we would like to associate with different files when, for example, we
want to run the program on successive data sets, we give the association
with a bind command

bind <streamname> <filename> .x,

which says that references to streams named <streamname> refer to
the streams of the file <filename>. (See Section 15.) For example,
if the program's three streams are named data 1, data 2, and data 3,
then they can be associated with the streams of the nums file by the
command

bind data nums

which associates stream data 1 with stream nurs 1, etc.

Data File Formats Records for data files have a fixed number of fields equal to the number
of streams. Fields are of fixed size: twelve characters followed by a
comma. Real data uses standard floating point format (%f), characters
are preceded by an apostrophe ('), Booleans are given by TRUE or
FALSE, and integers use normal signed representation and are taken
to be sints in XX or ints in Poker C when they are small and positive.

p ,J- ~ - - - - -

6 FILE MANAGEMENT 16

Files not in this format can be converted to this format by using the
utility program, packIO, described in Appendix B.

Streams can either be unterminated or terminated by EOS, mnemonic
for End Of Stream. Reading past the end of an unterminated stream
yields zeros which are coerced to the appropriate data type (See Section
12). Reading passed a terminated stream produces an internal PE error.
To terminate a stream, place the symbols EOS at the end of a stream.

Emulator Files A set of files is used by Poker to support emulation or execution on par-
allel machines. All of the information is internal and need not concern
the user.

Script Files The format of the script files is given in Section 15 with the specification
of the script command.

V '

~ v-~ ~. p '~j,;g~j ~ ~~ ,,.. r~rV.

7 CHIP PARAMETERS VIEW 17

7 CHiP Parameters View

Poker was developed for the CHiP family of architectures. Although Poker has been general-
ized to be applicable to other machines, vestiges of the CHiP machine nomenclature remain.
The parameters set in this section define a logical machine and no understanding of the
CHiP architectures is needed.

Purpose: To specify the characteristics of the logical machine being programmed and
to define symbolic phase names.

Display: The current values of the computer's parameters are given in the command
line; their meaning is described in Table 1. In the field are the symbolic
names for the phases.

Activity: The cursor is moved right and left along the command line using (gross or
fine) east and west cursor motions. Numbers entered replace the symbol
pointed to by the cursor. The new values take effect when the view is
changed provided they are in range and satisfy the constraints; no changes
take place if any parameter is illegal.

Parameter Range Constraints Default
n - size, number of PEs on the side 2 < n _< 64 n = 2' 8

of the lattice.
w - internal corridor width, the 1 < w < 4 1

routing capability (switches)
between two adjacent PEs.

u -external corridor width, the 1 < u <54 U <W 1
routing capability (switches)
between the perimeter and the
edge PEs.

d - degree, number of datapaths 8 fixed 8
incident to PEs (and switches).

c - crossover level, number of 1 < c < 4 4
distinct data paths meeting at
a point (switch).

p- number of phases, (the size of 1 < p:5 16 1
of the switch memory).

Table 1. Description of the CHiP Parameters.

! ~ ~ ** ~

7 CHIP PARAMETERS VIEW 18

Limitations: Certain specifications (e.g. n=64) are not possible on some systems
due to inadequate page table space in the UNIX kernel.

Change n: If the value of n is increased, the old lattice becomes the upper left-
hand corner of the new lattice *f n decreases, the new lattice retains
the values of the upper left-ha~d corner of the old lattice.

Change ur A change in w causes routing space (switch columns) to be added or
removed from the right (bottom) of vertical (horizontal) routing corri-
dors. (Existing switches retain their settings; new switches are unset).

Change u: A change in u causes routing space to be added or removed at the
perimeter. (Existing switches retain their settings; new switches are
unset).

Change c: A change in c permits the number of distinct data paths that can pass
through a point (switch) to be either increased or decreased.

Change p. If p is increased, phases with consecutive higher numbers are added; if
p is decreased, phases with high indexes are removed. Added phases
are clear.

Phase Names: Symbolic names for the phases can be entered in windows displayed in
the field. "Home" from the command line moves to the phase name
windows, and from the windows back to the command line. Motion be-
tween windows uses (gross or fine) north and south cursor keys. Phase
names are (a maximum of) 16 alphanumeric characters beginning with
a letter.

Global Commands

Sh help $^a Abort
Ss Switch $e Exit
Sc Code $5o Output screen
Sp Port Sd reDraw screen
Si Input/output ^p Phase
Sr Request ^h backspace
St Trace "z pause

$$$ noop

4i

'S)i- -S. S'

8 SWITCH SETTINGS 19

8 Switch Settings

Although switches are not (by default) shown, they remain as a medium for defining rout-
ings; users not acquainted with switches can think of them as points where data paths are
channeled between PEs and where they can cross.

Purpose: To specify or modify a processor interconnection structure for the lattice.

Display: The current processor interconnection structure of (a portion of) the lat-
tice for this phase is shown in the field; boxes represent processors, , 'rcles
if shown represent switches, and lines represent bidirectional data paths.
(Display of the switches is controlled by a set command; see Section 15.)

Cursor motion: Gross cursor motions a&ance the cursor to the next PE in the indicated
direction; fine cursor motions advance the cursor to the next entity (PE
or switch) in the indicated direction. "Home", from a switch causes the
cursor to return to Last PE, from a PE causes it to go to the command
line, and from the command line, to go to Last PE.

Activity: The cursor is moved around the lattice. If the draw mode is set, a wire
is "pulled along" from the current position to the cursor's new position.
If the remove mode is set, wires traced by the cursor are removed. At a
switch all wires common to a level can be highlighted. If the chase mode
is set, the cursor follows the wire in the direction indicated until it reaches
a PE, or terminates, or reaches a switch that fans out, or cycles.

Generalization: The Pringle and Pringle emulator only support point-to-point communi-
cation, but in the Switch Settings view it is possible to define paths that
fan out. (See Figure 6.) Communication structures with fanout cannot be
emulated.

YA
(a) (b) (c)

Figure 6. Switch (a) shows two distinct data paths crossing a switch, these paths are
on separate levels; the north-south level of the same structure is highlighted in switch (b);
switch (c) shows a data path fanning out, i.e. all paths are on the same level.

. .c

I

8 SWITCH SETTINGS 20

Recognized Keys:

c Center The cursor is moved to the PE whose index is given on the command
line or if this is not visible, the display is changed so it is as close to
the center of the field as possible, consistent with the requirement that
the field remain fully utilized; if the command line is blank, the Last
PE is used for centering.

^d Draw The mode is set to "draw" so that subsequent cursor motions cause a
line to be drawn.

r Remove The mode is set to "remove", so that subsequent cursor motions that
trace a line cause it to be removed.

g Go for Set chase mode, so that (only) the next cursor motion will follow the
line in the indicated direction until it terminates, reaches a PE, reaches
a switch that fans out or cycles.

n Null End the current mode, i.e. cancel draw, remove or chase.
1 Level The level of the switch pointed to by the cursor is changed to the next

level. Repeated use of this key cycles through all assigned levels and
one unassigned level. The current level is highlighted.

Sk Klear Remove all switch settings for the current phase.
<key> Keys, i.e. alphanumeric text, are placed on the command line.

Commands: The functionality of the above operations is augmented through the use of ,.

execute commands. The following are of particular interest for the Switch 5%

Settings view:
copy <from structure>, <to structure>
test paths
set switches

Refer to Sections 6 (for copy) and 15 for details.

Global Commands

Sh cHip $^a Abort "f File
Ss help Se Exit .v + page
$c Code $5o Output screen $v - page
Sp Port $d reDraw screen ^u eof
Si Input/output ^p Phase Su bof
Sr Request 5x eXecute $$$ noop
St Trace ^h backspace z pause

It

pa

pp

. . .. ~kr # e. .. NW./.. N' .5 - *.5 5 5
.

-- -p
3

.- b- .- : /, *. .I

/ I !

8 SWITCH SETTINGS "21_

Interpretation: The line segments specified in Switch Settings mode are provided to create ,
connections between PEs or between pads and PEs. However, some line
segments may not participate in establishing a well formed connection: for
example, two segments could meet at a switch without crossing it, ora
sequence of segments might not connect to a PE. In the other views only

legal connections are displayed; the computation of these connections causes
the pause when leaving Switch Settings for another view.

SI "

I

.5-,

9 CODE NAMES VIEW 22

9 Code Names View

Purpose: To specify or modify the assignment of sequential processes (Poker C or
XX) to the PEs or to specify actual parameters to the processes.

Display: The current code names and parameter assignments of (a portion of) the
lattice for this phase are given in the field. One display format shows boxes
representing the PEs; the other display format shows boxes representing
the PEs and lines representing the interconnection structure; a key (^t)
toggles between these two. A name of up to 16 characters, clipped to five
characters, is shown for the program name, and four symbol strings of up
to 16 characters, clipped to ten characters, are shown for the parameters:

Ipara.1----
Iparm ---1
Ipara.3----
Ipar-,4----J

Cursor motions: Gross cursor motions advance the cursor to the home position of the next
PE in the indicated direction; fine cursor motions (north and south) move
to the first position of the windows for the code name and the parameters.
"Fine home," from a window moves the cursor to the home position of the
PE; from the home position in a PE, "fine home" moves back to the last
line referenced in a PE. "Gross home" from a PE moves the cursor to the
command line, and from the command line, "gross home" moves to the
home position of Last PE.

Activity: The names used in the sequential process codes (following the word code)
and (actual) parameter values are entered into the appropriate positions.
(See Section 12.) Code names can be any legal identifier of the sequential
programming language not containing blanks, and parameters can be any
legal constant of the sequential programming language.

Buffering: The code name and parameters of a PE can be saved in a buffer (using
'b) that is then displayed in the chalkboard. The PE to be saved is the

I

9 CODE NAMES VIEW 23
I

PE containing the cursor, or if the cursor is on the command line, the
<i><j> given on the command line, or if it is blank, the Last PE. The
saved values are deposited into one or more PEs by specifying recipient
PEs followed by a deposit (^d) command. Recipient PEs are specified
in one of two ways, either explicitly, by giving an index pair (i j), or
implicitly. The implicit specifications uses an expression where each index
position is either an index, a relation (<, <=, >, >=) followed by an
index, meaning all indices standing in that relationship to the index, or a
period (.), meaning all index values. Thus, a command

followed by ^d causes all PEs in the second column to receive the buffered
values.

Recognized keys:

b Buffer The code name and parameters of the PE containing the cursor are •
saved and displayed in the chalkboard. Modification to any of the
entries of the buffered PE cause it to be removed from the buffer. The
buffered PE remains buffered even if the chalkboard is overwritten.

^d Deposit Insert the buffered names into the recipient PE(s). If the command line
is blank, the recipient is the PE containing the cursor; if the command p
line is nonblank the recipient is given by the command line expression
as described in Buffering above.

r Remove Delete the code names and parameters in the indicated PEs. If the
command line is blank clear the PE containing the cursor; if the com-
mand line is nonblank the cleared PEs are given by the command line 3
expression as described in Buffering above.

c Center The cursor is moved to the PE whose index is given on the command A.

line or if this is not visible, the display is changed so that the PE
is as close to the center of the field as possible consistent with the
requirement that the field be fully utilized; if the command line is blank r.

use the Last PE for centering.

.5

* 5 3 ~ ' 5 ' ~ t "Al' S - N 5 S W S 5, .~ Sa W ~ '

'I,

9 CODE NAMES VIEW 24

t Toggle The display is changed to the "other" format as described in Display
above.

y displaY The full (unclipped) entry of the window containing the cursor is shown
in the chalkboard.

$^k Klear Remove all code names and parameters entries for the current phase.
<key> If the cursor is in the window, the symbol replaces the symbol pointe, I

to by the cursor; if the cursor is at the home position of a PE or on t Ile
command line, the symbol appears on the command line.

Commands: The functionality of the above operations is augmented through the use of
execute commands. The following are of particular interest for the Code
Names view:

copy <from structure>, <to structure>
replace <old> <new>

Refer to Sections 6 (for copy) and 15 for details.

Global Commands

Sh cHip $a Abort f File
Ss Switch $'e Exit v + page
Sc help $^o Output screen Sv - page
Sp Port 8d reDraw screen ^u eof
Si Input/output ^p Phase Su bof
Sr Request . x eXecute $$$ noop
St Trace ^h backspace z pause

p

7

°.

10 PORT NAMES VIEW 25

10 Port Names View

Purpose: To specify or modify the names assigned to the eight input/output ports
of a PE.

Display: The current port names of (a portion of) the lattice for this phase are
shown in the field. The display format shows an array of boxes representing
the PEs; the other display format shows boxes representing the PEs and
lines representing the interconnection structure; a key (^ t) toggles between
the two. Names of up to 16 characters, clipped to the first five characters,
are shown in the PE boxes:

(NW-)(-
(--)

Cursor Motion: Gross cursor motions advance the cursor to the home position of the next
PE in the indicated direction; fine cursor motions move the cursor to the
first position in the window for the port name for that direction. A "fine
home", from a port window moves to the home position of this PE; from
the home position in a PE "fine home" moves back to the last window
referenced in a PE. "Gross home" from a PE moves to the command line
from the command line "gross home" moves to the home position of Last
PE.

Activity: Port names are entered into the appropriate windows to name the ports
connecting to the incident data paths. Port names can be any legal iden-
tifier of the sequential programming language not containing blanks.

Buffering: The port names of any PE can be saved in a buffer (using "b) that is then
displayed in the chalkboard. The PE to be saved is the PE containing
the cursor, or if the cursor is on the command line, the <i><j> given the
command line, or if it is blank, the Last PE. The saved port names can
be deposited into one or more PEs by specifying recipient PE(s) on the
command line followed by a deposit (^d) command. Recipient PE(s) are

III III III I- % .

I -

10 PORT NAMES VIEW 26

specified in one of two ways, either explicitly, by an index pair (i j), or
implicitly. The implicit specification uses an expression where each index
position is either an index, a relation (<, <=, >,>=) followed by an index,

meaning all indices standing in that relation to the index, or a period ().
meaning all index values. Thus a command

<= 4

followed by ^d causes the first four columns to receive the saved port
names.

Recognized keys:
b Buffer The port names of the PE containing the cursor are saved and displayed

in the chalkboard. Modification of the port names of a buffered PE
cause it to be removed from the buffer. A buffered PE remains buffered
even if the chalkboard is overwritten.

^d Deposit The buffered names are placed into the recipient PE(s). If the com-
mand line is blank, the recipient is the PE containing the cursor; if the
command line is nonblank the recipient(s) are given by a command line
expression as described in Buffering above.

r Remove Clear all port names in the specified PE(s). If the command line is blank
the cleared PE is the PE containing the cursor, if the command line is
nonblank, the cleared PE(s) are given by the command line expression
as described in Buffering above.

.c Center The cursor is moved to the PE whose index is given on the command
line or if this is not visable, the display is changed so that the PE
is as close to the center of the field as possible, consistent with the
requirement that the field remain fully utilized; if the command line is
blank, the Last PE is used for centering.

^t Toggle The display is changed to be "in the other" format; see Display above.

y displaY The full (unclipped) entry of the window containing the cursor is given
in the chalkboard.

$^k Klear Remove all port name entries for the current phase.

<key> If the cursor is in a window, the symbol replaces the symbol pointed to %
by the cursor; if the cursor is at the home position of a PE or on the
command line, the symbol appears on the command line.

appearso" 'Ui ,U

'U .I..%r%~ ~ * *~'.'U U * Ui I

10 PORT NAMES VIEW 27

Commands: The functionality of the above operations is augmented through the use of ex-
ecute commands. The following are of particular interest for the Port Names
view:

copy <from structure>, <to structure>
replace <old> <new>
test ports

Refer to Sections 6 (for copy) and 15 for details.

Global Commands

Sh cHip $^a Abort f File
Ss Switch $^e Exit v + page
$c Code $^o Output screen $v - page
Sp help Sd reDraw screen ^u eof
Si Input/output ^p Phase Su bof
Sr Request x eXecute $$$ noop
St Trace ^h backspace z pause

iiI

I1 10 NAMES VIEW 28

11 10 Names View

Purpose: To specify or modify the stream names assigned to the lattice's input/output
pads. The "input/output pads" are the points at which wires, given
in the switch settings view, extend "off" the edge of the lattice. Data
streams, sequences of data values, can be read and written through the
input/output pads. A file, named <name>, composed of records with k
fields is interpreted as a collection of k streams [aid -side-by-side". The
individual streams are referred to by their <name> and an index which
is the field number. For example, <name> 3 is a stream whose first ele-
ment is the third field of the first record of file <name>. Note, streams
are unidirectional.

Display: The field is divided in half. The upper half lists the input/output pads,
clockwise beginning from the northwest corner, with the associated stream
name, stream index, direction (input or output), as well as the port di-
rection, port name, code name and index of the connected PE. The lower
half gives a schematic diagram of the lattice with an arrow pointing to
that pad whose window, in the upper half, contains the cursor.

Cursor motions: North/south cursor motions move between pad windows: Fine motions
move a single window; gross motions move six windows. East/west (gross
or fine) cursor motions move between the name and the index panes.
"Home", from a pad window moves to the command line, and from the
command line returns to the last pad window.

Activity: The names, indexes and directions (input or output) are entered into the
appropriate windows.

Buffering: The stream name, index and direction of a pad can be saved in a buffer
(using ^b) and displayed in the chalkboard. The saved values, appropri-
ately modified, are deposited into one or more pad windows by specifying
the recipient pads followed by a deposit (^d) command. Saved values are
modified by incrementing the saved index value by one prior to each de-
posit. The recipient pad is specified explicitly by giving one, two or three
values on the command line. A single value specifies the pad number of
the recipient, two values specify the start and end of a range of recipient
pads; and three values specify the start, end (inclusive) and step size of
a subrange of recipient pads. Thus the command

4 1 -1

%4.4 U - U

11 10 NAMES VIEW 29

followed by ^d assigns the first four pads the buffered stream, index and
direction information such that the indexes are decreasing, i.e. the lowest
index is assigned to pad 4, the next lowest to pad 3, etc.

Recognized keys:

b Buffer The stream name, stream index and direction of the window containing
the cursor are saved and displayed in the chalkboard.

c Center The pad window whose number is specified on the command line is
placed at the center of the upper half of the field, if the command line
is blank, the window containing the cursor is centered.

^d Deposit If the command line is blank, the pad window containing the cursor
receives the buffered information after the stream index has been in-
cremented, a nonblank command line is treated as a range specification
(as described in Buffering above) and the saved information is deposited
into each of the specified pads with an incremented stream index.

"i Input The pad whose window contains the cursor is designated as an input
pad.

o Output The pad whose window contains the cursor is designated as an output
pad.

r Remove If the command line is blank the pad window containing the cursor is
cleared, a nonblank command line is treated as a range specification
and the specified pad windows are cleared.

$^k Klear Remove all stream names, indices and directions for the current phase.
<key> The key replaces the symbol pointed to by the cursor.

Commands: The functionality of the above operations is augmented through the use of
execute commands. The following are of particular interest for the 10 Names
view:

bind <stream> <file>
copy <from structure>, <to structure>
display bind
replace <old> <new>
test pads
unbind <stream>

AIN- A

11 10 NAMES VIEW 30

Refer to Sections 6 (for copy) and 15 for details. In addition, facilities for
formatting files, such as packIO, are described in Appendix B.

Global Commands

Sh cHip $^a Abort f File
Ss Switch $5e Exit .v + page
Sc Code $o Output screen Sv - page
Sp Port Sd reDraw screen ^u eof
Si help .p Phase $u bof
Sr Request ^x eXecute $$$ noop
St Trace ^h backspace z pause

J

S.

V

%V

• . . .], I. • r v wvv . . .r w- €, r - - t- " - "
"

" ' r~r '' "V " ", - (" -"i - -' V -i i Jl\ ' i

12 PROCESS DEFINITION LANGUAGES 31

12 Process Definition Languages

A Poker programmer must define sequential processes to run on the PEs using an appro-
priate sequential language and a standard editor. (This activity is usually performed in the
secondary terminal.) In principle most sequential languages could be enhanced to be "ap-
propriate", but Poker presently supports only Poker C and XX. Sequential processes can be
defined in either language, but only one language can (at present) be used for a single Poker
program. Although both will be supported for the foreseeable future, users not interested in
using the Pringle parallel computer may prefer to use Poker C.

12.1 The Poker c2c Compiler.

12.1.1 Introduction.

The Poker C compiler, c2c, is a source to source compiler that translates a Poker C program
into an, often much expanded, C program. The resultant code is compiled either using the
standard C compiler so that it can link into the Poker Native Code run-time system which
simulates Poker programs, or with other C compilers to create code to execute on parallel
computers such as CalTech's Cosmic Cube1 .

Briefly, Poker C is regular 2 C with the following extras:

* More types and some restrictions on the use of variables,
* Tracing,
* Port I/0 (<-),
* Inter-process and inter-phase structure definitions,
* An inter-phase variable space, and
* More syntax.

Poker C disallows the following features of standard C:

0 Extern declarations.
* Static declarations.
* Variables external to routines.

The rest of this section describes the syntax and semantics of Poker C, features unique
to Poker C, tracing in Poker C, and finally a profiler which is part of the Poker Generic
simulator and provides timings for Poker programs according to a timing model tailorable
to different architectures.

'Charles L. Seitz. The Cosmic Cube. Communications of the ACM, 28(1):22-33, January 1985.
2 Brian W. Kernighan and Dennis M. Richie. The C Progrumming Language. Academic Press, New York.

1978

.''a

. "5

a-,~~W - VY% ~ ,. %
-S... a.-,--j

12 PROCESS DEFINITION LANGUAGES 32

12.1.2 Using The c2c Compiler.

In general you will never have to use c2c directly; Poker will call c2c when needed. You can
use the same sequence of commands to make and execute a Poker C Poker program as a XX
Poker program.

" pkcc. The most common use of c2c will be via the Poker c compiler, pkcc. Pkcc works
in the same way as the normal UNIX cc command, controlling the flow of commands
needed to compile the source code into the desired target code. In addition pkcc:

- compiles .x files into .x. pc files,

- compiles .pc files into .pc. o files,

- and has a number of extra flags, particularly the -T profiler option (see below).

* Flags. The c2c compiler has a number of flags which may occur in any order and
with one or more flags per '-'. Two flags are used with the timing model (see Section
12.1.11):

-T - do not attribute the code with calls to USERTICKS). The default is to attribute
(see Section 12.1.7). p

-Ta - attribute the code with calls to USERTICKSO, according to the #:

- 0 - minimal; one tick at the beginning of each loop, routine, etc.,
- 1 - one tick per statement,

- 2 - full profiling according to the costs in the .poker-time-model file.

All other flags aid in debugging the compiler. As such, the explanation will not be
very useful if you do not know about the internals of the compiler:

-b - Print the trees created by BuildTree during parsing.

-e - If there is a parse error, try to print as much of the output code as possible
before dying.

-1 - Print the value of each token as returned by the lexical analyzer. Note, the lexer
is concerned only with tokenizing the input stream; it does not access any parser
data structures, including the symbol table.

-s - Print the symbol table on stdout at various points during a compilation.

-t - Print the value of the trace list and trace messages during parsing.

-y - Verbose yacc output.

". .

12 PROCESS DEFINITION LANGUAGES 33

" Pre-processing. The c2c compiler supports the macro pre-processor, cpp, in two ways:

1. C2c correctly consumes the # lines created by cpp.

2. A line that starts with UX is special. The compiler replaces the %% with a # and
passes through the rest of the line verbatim. These %% lines may occur only before
the "code code-name", before, after, or between routines, and between statements.
This may be useful for passing a "$define" through the c2c compiler and into
the cpp run by the normal cc compiler.

" Parameters. C2c may take up to 2 file names as command line arguments. The first is

the input file, the second the output file. Input defaults to stdin, output to stdout.

* Poker C files. Poker C file names must terminate with the ". pc" suffix.

12.1.3 Port I/O.

The port I/O statements are

Ivalue <- port
port <- expression

for reading from and writing to ports, where

* expression must be of a type in the inter-process/inter-phase type space (see Section3I
12.1.6). The expression on the lhs of a <- must be an lvalue3.

* port may be either a port name from the ports list, or a variable of type port.

* The port I/O operator, <-, is a binary operator which is a statement; it is not an
expression, and cannot be included in other expressions.

Inter-process communication lines are not typed; they may pass any of the legal types in
any order. However, each datum is typed, so that the sending and receiving process must
be using compatible types.

3 An expression referring to a manipulatable region of storage.

" '%.* V ")M , 0 "

12 PROCESS DEFINITION LANGUAGES 34

12.1.4 Data objects

There are no global data objects in Poker C. The inter-phase data space is private to a
sequence of process codes living in the same process space, one process code per phase.
Within a phase, all of a process' data is internal to some routine. This includes the parameters
to the main routine; if another routine in that process code wants to access the value of a
parameter to main, you have to ship it explicitly to that routine.

The compiler implicitly passes port names declared in the ports declaration to every
routine in the process code.

The c2c compiler does not implicitly pass port names to routines declared as library.

12.1.5 The inter-phase variable space.

Processes communicate across phases through the use of an inter-phase variable space. The
variables in this space live until the end of the entire Poker program; they may exist before
and after the process codes that use them. See Section 12.1.6 for the legal types of inter-phase
variables.

Access to the inter-phase variables occurs via only one of two expressions:

import(local, inter-phase)
export(local, inter-phase)

which copy the value of the inter-phase variable, respectively, into or out of the local variable.
The local variable may be any legal lvalue' that does not contain a pointer, including entire
arrays and structures, as described in Section 12.1.6 and the inter-phase variable may be any
identifier other than a keyword. Both routines return TRUE upon success, and FALSE if an
error occurred. Errors include (1) importing a variable that has not been exported, (2)
importing a variable to a local of a non-compatible type, and (3) exporting to an inter-phase
variable already containing a value of a noncompatible type. In all cases, the copy is aborted
leaving the local value unchanged.

In essence, the inter-phase variables live in a separate address space from the process
codes that access them.5

C2c stores the unique identifiers associated with structures in the. poker-structures file.
While we allow for a huge number of inter-phase structures, if the compiler ever complains
that it is running out of unique structure numbers it will print a message with instructions
on how to relieve the problem.

4An expression referring to a manipulatable region of storage.
5 However, the implementor is not actually required to use separate address spaces as long as access to

the variables is restricted correctly.

vor

12 PROCESS DEFINITION LANGUAGES 35

normal #include "errorcodes.h"
cpp #define MAX.SIZE 100
support

code head; name of code
trace #; trace line #'s

header ports in; port names
trace reado.i, readO.temp; list of variables

to trace
library reduceO; routines defined external

to this file ports not

implicitly passed.
main(size) parameter from Code Names

View
int size;{

routines float startDataMAXSIZE];
no read(startData, size); Code Names parameters
external variables are local to main().

reduce(startData);
export(startData, "Data"); save in inter-phase

data space

read(data, size)
float datao; int size;{
int i;
float temp; use temp to trace the

values as they come in
for (i=O; i < size; i++)

b {
temp, *-- in; ports defined in header
data[i]=temp; implicitly passed to all !}

routines in this file.

Figure 7
Annotated Example Poker C Program

lo

12 PROCESS DEFINITION LANGUAGES 36

Figure 7 shows an annotated example of a Poker C program. The header defines the
local environment of this code - its name, symbolic names for the ports used in Port Names
View, variables and other entities to trace, and which routines are defined external to this
file. In general, all routines for a given process are defined in a single file. However, common
routines, such as Sin(, may be declared in library routines.

Following the header is a list of routines. maino is the starting place for execution of
the code, and can alternatively have the same name as the code (head(, in this case). The
Code Name parameters are listed after the computation as variables local to main (). All
routines in this file implicitly know about the ports defined in the header.

12.1.6 Types In Poker C.

Poker C was designed to retain the flavor of C while providing enough stability to support
a structured view of parallel programs. In this light, we extended the C types to include:

* Type bool. Variables of type bool are boolean variables with value TRUE (-1) or FALSE

(0). Note that these truth values are different from those defined for C; this allows us
to have (!TRUE -- FALSE) and ('FALSE - TRUE).

* Type port. Variables of type port may be used in place of a port name. A port
variable may occur on the lhs of an assignment if and only if the rhs is either a port
name or a port variable. Port variables are not automatically initialized to a particular
value.

* Inter-phase/inter-process data types. (See Section 12.1.5.) In order to pass data safely
between processes and phases, we strictly define types across processes and phases.
Poker C allows the following types of data to be passed between processes and phases:

- Fundamental types: (c.f. Kernighan & Ritchie for the definitions of the flavors of
types.) Values of these types may freely convert among tlemselves as specified
for the C language.

- Arrays: The type of an array is a pair: (type of base element, size). Only entire
arrays of statically declared size may be passed between processes or phases.

- Structures: Structures sent on the I/O system or between phases may not contain
pointers or unions. All other structure automatically becomes part of the inter-
phase/inter-process structure space.

Inter-phase/inter-process structures are typed by the order, number, and types
of their sub-types. Variable names are unimportant to this typing scheme. Thus.
in:

w* -~ .J* * '.

12 PROCESS DEFINITION LANGUAGES :37 %

struct foo struct tee

{ {
int i, j; float fee;
struct 1;

{ struct bar
float f; {
} int lee;

} fooVar; int ree;
struct tee see;
} barVar;

structures foo and bar have the same type, as do the un-named internal structure
in foo and the structure tee. Note that the expression "fooVar - barVar" is
allowed by c2c, but not by cc, and thus is not a legal construction Poker C. In
other words, Poker C types structures by their form, for inter-phase/inter-process S
communication, and by name, for intra-process assignment.

Inter-phase/inter-process structures may contain arrays and vice versa, as long as
neither contains any pointers.
The implementor of the run-time system is free, in fact encouraged, to send struc-
tures and arrays in the most efficient way possible. This could mean packaging
the array or structure into a few large packages.

The external file system does not (currently) support structures or arrays. The concept .1

of an inter-process/inter-phase type space is for use inside the Poker program. a

12.1.7 Special Routines in Poker C. "

Poker C uses routine calls and a few assignments to global variables to interface to the run-
time system. All of these global variables and most of these routine names are preceded by :.1
an underscore (_) and are meant to be private between the c2c compiler and the run-time
system.6 P%

Other interface routines are part of Poker C; we describe them here.

int USERTICS(ezpr) - This routine takes a single argument, an integer valued expression,
indicating the number of ticks by which to bump the process' clock. To assign specific 7.
costs to sections of your program, insert USERTICK() calls. This routine returns an int
of undefined value.

6The industrious and inquisitive may root through the .c files generated by the c2c compiler to see the
routine calls, but be warned that these routines are not intended for human-use. See also the documentation
for the generic simulator.

* o

12 PROCESS DEFINITION LANGUAGES 38

I

A more general method of attributing your program with costs is described under the
Poker Profiler, Section 12.1.10.

bool DataAvail(port) -- This routine returns TRUE if there is data currently waiting to be
read from port port, and FALSE otherwise. If returns FALSE if there is an EOS.

int CheckType(port) - This routine returns an integer which corresponds to the type of
the awaiting value: s

Integer Type
-1 no data available
0 EOS
1 bool
2 char
3 short

4 int
5 long
6 float
7 double
>7 structure or array

bool IsEOS (port) - This routine returns TRUE if there is an EOS on the input port port, and
FALSE otherwise.

ClearEOS (port) - This routine Clears the EQS from the port port. If there is no EQS to clear.
you will get a fatal run-time error. ClearEOS () is the only way to get rid of a waiting t.
EOS since attempting to read from a port containing EQS results in a fatal run-time
error.

ExitPE(error-code, errorMessage) - This routine terminates the execution, for this phase,
of the calling PE. If the error-code is zero, termination is normal. Otherwise, the run-
time system prints an error message with the integer error-code and terminates the
PE.

12.1.8 Tracing variables and state in Poker C.
t

Poker provides help in debugging a program in that you can "trace" the values of variables
and observe the values in Poker's Trace View. This section describes which variables may
be traced, how to request a trace, and how to specify the granularity of the trace.

%.

"V

-..- -, -. -. -. :. -. -. -. -. .- : :", o-.,'...-..-" . -. .- ".-.- "-:- . ".""o .-. '.:,.:.:.:..:.,4..:..: .'... -: :. ,,. :,2 ,.2 €: I

p.

p

12 PROCESS DEFINITION LANGUAGES 39

Form Meaning J-
foo() trace foo's entry and exit
foo ()! exhaustively check for changes to trace variables in routine foo
foo): trace foo's entry/exit & labels
foo # trace foo's entry/exit & line #'s
foo () : trace foo's entry/exit & line #'s, & labels
fo a: trace foo's entry/exit & line #'s, & labels
fooo . name check for any change to variable name in routine foo
foo) .name[]! exhaustively check for change to any traced element of name
name same as "main() .name"

Table 1: Traceables. Omitting "foo"causes the first six rules to apply to all routines.

9 Legal Trace Variables. Trace variables may be:

Type Comments
Variables of fundamental type char, unsigned long, double, ...

Variables of type bool boolean: TRUE or FALSE
Pointers
Line numbers
Routine entry/exit/ recursion-depth
Labels

More complex variables, such as arrays and structures, may be traced, but only by
tracing the individual elements of the array or structure.

* Requesting a trace. The trace statement in the header of a Poker C program lists the
variables and other items to trace. Table 1 shows the form and variety of the traceable
variables in Poker C. Section 12.1.15 shows the precise form of all trace variables.

The variable name, name, in a trace list may either be a single identifier or a dot
sequence denoting a mernber of a structure, e.g. structName. fieldl, field2.

If the trace variable is the location pointed to by a pointer, *ptr, changes to either ptr
or *ptr update the trace value of *ptr. This cascading of updates can be arbitrarily
deep.

I
Exhaustive checking. In deference to execution efficiency, Poker does not attempt to
trace aliases; the compiler recognizes only literal instances of a trace variable. However,
Poker C does have a mechanism to insert run-time code that will exhaustively check all
assignments for changes to trace variables. There are three granularities of exhaustive

checking, each requested by appending an exclamation point to the range of data to
check.

% %

12 PROCESS DEFINITION LANGUAGES 40
I

- in an array, e.g. "foobarE] !". The compiler inserts a run-time check after each
assignment to an element of that array, recognized by a literal instance of the
array name, to check to see if the values of the indicies correspond to a traced
element of that array. This level of tracing will not detect that *(pa+l), where
pa points to a[O], is a reference to pa[l].

- in a routine name, e.g. "foo 0I". The compiler inserts a run-time check after
each assignment in that routine, to check for a change in the value of a trace
variable. This includes array assignments in the routine.

- in all routines, "(". The compiler inserts a run-time check after every assign-
ment in the entire program. This is equivalent to requesting an exhaustive check
for each routine in the entire Poker C program.

12.1.9 Other Notes.

C2c attempts to mimic the cc compiler's error messages and type checking. Thus, error
and warning messages have the file name and line number in the format used by the emacs
"next-error" command, and c2c will catch most of the syntax and type errors found by cc.

In the cases where c2c does not catch an error, the line numbers reported by the cc
compiler, as it compiles the output of the .pc file, may only approximate the location of the
error in the .pc file.

Typedef declarations must have typedef as the first word in the declaration.
To declare a function as returning a pointer to an array, you must first declare a type,

using typedef, corresponding to the array and then declare the function to return a pointer
to this type. This fix is needed to work around the differences between arrays in Poker C
and normal C.

For the same reasons Poker C formal parameters declared to be arrays are treated as
arrays; not as pointers. -

Unnamed structures are implicitly named by their unique structure identification number
as defined in .poker-structureu. For example, the unnamed structure with unique id 12 is
named -12.

C2c makes copious use of identifiers starting with a single underscore (_). Poker C pro-
grams should avoid this naming style.

A function that is not defined in your Poker C program or the libraries it includes may
cause problems.

The cosmic cube does not like variables declared as 'int's' due to compatibility problems.
The C2c compiler convers 'int's' to 'long's automatically and issues a warning.

In a modest departure from C, the parser expects all compound assignment operators to
be a single token; they may not have white space in them. In other words, "+," is legal, but
"+ is not.

12 PROCESS DEFINITION LANGUAGES 41

12.1.10 The Poker Profiler.

The Poker C generic simulator allows the user to time the execution of Poker programs. To
do this timing, the user first has to set up a time model specifying the costs for the basic C
operations as they would run on the user's idealized machine. The Poker compiler uses this
file to attribute the Poker C program with calls to the USERTICKS() routine. When the code
executes, these USERTICKS() calls bump the process' clocks, thereby providing a dynamic
execution time for the process code.

12.1.11 The Machine Model.

The Poker time model specifies the cost at the level of the basic C operations according to the
type(s) of their operand(s). The specification file specifies costs with lines of the following
forms:

Form Use Example
type operator type cost binary operators int *- float 10
operator type cost unary operators * int 1
operator cost indexing operators (., ->, 1) 1
routine cost calls to routines foo 150
port <- constant per-byte wait port write costs port <- 100 1 TRUE
<- port constant per-byte wait port read costs <- port 100 1 FALSE
<- constant per-byte port transmit costs <- 10 1
return cost1 cost2 cost of routine entry I & exit 2

import per-byte import cost
export per-byte export cost
struct per-byte structure assignment cost
keyword cost cost for control flow if 2

where the terms are as follows:

" type. The types are one of the fundamental types of C: char, short, int, long, float,
and double. We assume that operations cost the same for both unsigned and signed
types.

" operator. The operators are the standard operators of C, including the primary-
expression operators: (), [, ., and ->. Here, () indicates the cost of implicit co-
ercion from the Ilhs type to the rhs type and may be read as "coerced to". The other
primary-expression operators indicate indexing into their data objects.

* cost. All costs are positive integer values.

12 PROCESS DEFINITION LANGUAGES 42

* routine. There are two ways to indicate the cost of library routines, such as sin(. The
first is to run the library source through the c2c compiler and attribute its code with
USERTICKS(), in the same manner as for user programs, and then use this attributed
code for the library routine. This will give as accurate a timing as possible under our
timing model.

A second, simpler but less accurate, method is to assign a constant cost to the routine.
This is done using the fourth construct in the table. For instance, including a line of
"foo 1000" in the file describing the Poker time model, will charge 1000 ticks for each
call to the routine foo.

* port <- constant per-byte wait. The cost of receiving a message, assuming instanta-
neous transmission, where

- constant is the constant cost (overhead) of a read.

- per-byte is the extra cost accounting for the increased cost of handling longer
messages. For example, it could be the cost of packaging the data into the correct
message buffer.

- wait defines whether the process has to wait for the data transfer to complete
before incurring the constant read cost (TRUE) or whether it may transfer data
at the same time as it incurs the constant read cost (FALSE). In either case the
reader cannot continue computation until the data transfer is complete; reads are
blocking.

* <- port constant per-byte wait. The cost of sending a message, assuming instantaneous p
transmission, where

- constant is the same as for read.

- per-byte is the same as for read.

- wait defines whether the process has to wait for the data transfer to complete
before resumning computation (TRUE) or whether it may transfer data and compute
at the same time (FALSE). In either case the writer must incur its constant write

cost before starting the data transfer.

* <- constant per-byte. The cost of transferring a message between sender and receiver,
assuming instantaneous setup, where ',

- constant is the same as for read. .,

- per-byte is the same as for read. p

I,

I-mi

|r

12 PROCESS DEFINITION LANGUAGES 43
S

" return. The first cost is that of entering or calling a routine. The second cost is for
exiting a routine.

" import, export. These are the per-byte costs for copying the inter-phase value into
the local variable.

* struct. Poker C supports structure assignment (since the cc compiler supports it; the
target compiler determines whether structure assignment is allowed) and we assume
that all structures incur the same per-byte copy cost.

" keyword. This is the cost of control flow. Keyword may be on of the following con-

structs: break, continue, do, for, goto, if, switch, while, ?.

Although c2c does not have a default time model, Poker has two available as "standard."
default-model, located in /user/poker/lib, is a minimal model assuming 1 tick for all

integer operations, 10 ticks for all floating point operations, port read/write using 1000 ticks .

for the constant part, 1 tick per byte, and no I/O co-processor, and 100 ticks to -et up the
transfer which consumes 10 ticks per byte. Part of default-model is shown in Figure 8.

pringle-model is a time model for the Pringle Parallel Computer'. Within the time
model there are no explicit defaults; it does have rules to implicitly define costs in a brief
manner. When the profiler looks up a cost, it first looks at the operator using the type(s)
of the expression. If the cost is specified, fine. If not, the profiler continues looking in the
table by first incrementally bumping the type of the lowest type toward the higher type in
the order: char - short --+ int --* long --+ float - double. If their types are the same it
next bumps along the diagonal toward double. In this way, the minimal model may define
just one cost per operation, the operation on operand(s) of type double, and have all other _

operands cost as much: specifying only "double + double 100" for addition implies that
every addition will cost 100 ticks.

The port I/O time model assumes asynchronous writes to an infinite length hardware
FIFO buffer at the destination process. (Of course, the buffers are actually finite; see set
command in Section 15.) One or more writers can concurrently write into the buffer of
the reader without consuming any cycles from the reader. Writes may be blocking or non-
blocking, according to the boolean flag in the cost specification. Reads are blocking.

The writer incurs its constant and per-byte write costs before starting the transfer. If
write wait is FALSE, the writer may proceed with computation as soon as it is done with its
write costs; otherwise it waits for the transfer to complete before continuing with computa-
tion.

7 Alejandro Kapauan, Ko-Tang Wang, Dennis Gannon, Janice Cuny, and Lawrence Snyder. The Pringle:
an experimental system for parallel algorithm and software testing. Proceedings of the International Con-
ference on Parallel Processing, IEEE, 1-6, 1984

~ * ~ * -Si-

12 PROCESS DEFINITION LANGUAGES 14

E]0
.0

-> 0

port <- 1000 1 TRUE
<- port 1000 1 TRUE
<- 100 10
return 10 10

import 1
export 1
struct 1

break 0
continue 0
do 0
for 0
goto 0
if 0
switch 0
while 0
?0

char + char 1
short + short 1
int + int 1
long + long 1
float + float 10
double + double 10

* char 1
* short I
* int I
* long 1
* float 10

* double 10

Figure 8.
Beginning of default time model in file default-model of the distribution tape.

T

12 PROCESS DEFINITION LANGUAGES 45

The reader may not proceed with computation until after the transfer is complete. How-
ever, if read wait is FALSE, the reader incurs the constant and per-byte read costs during the
transfer. In this way, the reader may proceed immediately with computation, assuming that
there was enough overlap to hide all of the read cost during the transfer.

Figure 9 shows the effect of varying the boolean parameters for a scenario of two sends
and receives. The leftmost time line has read wait and write wait set to TRUE, the second time
line sets write wait to FALSE, and the third sets both to FALSE. These boolean parameters
can be thought of as specifying the absence of I/O co-processors, though a more realistic
model of I/O co-processors would also change the transfer times. The settings are written
below each time line in the syntax of the time model files. Question marks indicate arbitrary
natural numbers.

12.1.12 Profiler Files.

The compiler uses the time-model in the . poker-time-model file in the current directory.
Poker automatically copies the time model you specified to . poker-time-model.

If you wish to see a tabular representation of the time model, run the program profile
with up to two arguments; this will generate a file you may peruse.

prof1, - uses the time model in .poker-time-model and leaves the table in the file
.poker-time-model-table.

profile infile - uses infile as the time model and leaves the table in the file infile-table.

profile infile outfile - uses infile as the time model and leaves the table in the file
outfile.

12.1.13 Profiler operation.

The c2c compiler inserts profiling costs into Poker C code unless invoked with the -T option.
(See Section 12.1.2.)

12.1.14 Interesting Problems "

While the timing model provides a good deal of generality, allowing the user to test the algo-
rithm's performance on different architectures, there are a number of limits to its accuracy.
First and foremost, the compiler inserts costs according to the frequency of the operations
in the source code, not in the assembly language that would execute on the target architec-
ture. Different assembly languages and optimizing compilers will affect the accuracy of this
representation. Second, the architectural model and the I/O model are fairly simple and
cannot reflect the entire range or specificity of actual architectures. For instance, the I/O
model either has no I/O co-processors or one I/O co-processor per process. This scheme

u.--~ ~ J~~~ * ~ a,.-. I

12 PROCESS DEFINITION LANGUAGES 46

0 0
o 0 "o

0 1 ~ 00 0

0 M 0 0 -0 W

Writer Reader Writer Reader Writer Reader

write write write
idle idleidle

cost Cos cost

t rl l 1 n

trnfrwrit trnse writetas r

ansf- rr transfer transfer =idle :ost
cost cos costr

idle Idle
cost cost cs

. transfer transfer

cost{ Co at cost

transfer

ed roadJ.

Idle T ccost
) ~ ~ t _

port <- ? ? TRUE port <- ? ? FALSE port <- ? ? FALSE
<- port ? ? TRUE <- port ? ? TRUE <- port ? ? FALSE

Figure 9
Poker time model showing effect of varying port I/O parameters.

V -,W W M' .1, s W ! S t U .

V' .. 310 L 67. V -

12 PROCESS DEFINITION LANGUAGES 47

does not deal with several processes on a single processor and the sharing of any available
co-processor.

However, the model is easy to change and the generic simulator produces dynamic timings
making possible some architectural experiments.

12.1.15 Poker C Syntax.

The following table describes the syntax for a Poker C file. Words in italics are non-terminals,
while words in typewriter font are terminals. A is a special symbol indication an empty
string. The non-terminals in b correspond to the non-terminals in normal C.

program =
optional- % -lines
code d ;
poker-header
external-definition-list
I optional- %%-lines
library id;
library-list
external-de fnition-list

poker-header =
poker-header trace-list
I poker-header ports-list
poker-header library-def

trace-list =
trace trace-name-list

trace-name-list =
trace-name-list , trace-name-declaration
I trace-name-declaration

trace-name-declaration =
I7 d) trace-modifier - per routine
id (). trace-variable - per routine
id . trace-variable [! - exhaustive array per routine
) trace-modifier - global

I trace-variable - in main
trace-variable Di! - exhaustive array in main

trace-modifier = - up to one of each of...

'AY iy

12 PROCESS DEFINITION LANrGL 4GES 4

:

IA
trace- variable

*trace-variable

trace-variable
Itrace- variable >jid
trace-variable consant-exresio
(trace-variable)

FzId
ports-list =

ports name-list
name-list=

name-list , F~~

library-list
library type routin e-name -list;
I library routine- name-list;

routine-name-list =
routine-name-list ,routine-name

routine name
routine-name=

*routine-name

external-definition-list=
external-definition-list external-definition

external-definition
typedef type declarator;

I optional- %%-lines,
structure-declarationl
enumeration- declaration I

I functio n- declaration I function-bodyl
statement

the normal C statements
I optional-,%%-lines

expression

12 PROCESS DEFINITION LANGUAGES 49

the normal C expressions
port-expression <- EOS

FIvaluel <- port-expression
port-expression <- expression

import (expression, !
export (expression,

A port-expression is either a port name, declared in the ports declaration of the header,
or a variable of type port.

Execution of a process starts in the routine of the same name as in the opening "code
id;" declaration at the top of the file. Alternatively, this routine may be called "main". This
routine may have arguments corresponding to the value slots in the process boxes of the
Code Names View. You have to declare the types of these arguments in the usual manner
for a routine.

12.1.16 Additional Keywords, Operators, and Poker C Routines

Keywords Constants Operators Routines
bool PEi USERTICKS()
code PEj DataAvail()
library PEn CheckPort()
port PEid IsEOS()
ports FALSE ClearEOS()
trace TRUE ExitPE()

',,

L

12 PROCESS DEFINITION LANGUAGES .50

12.2 The XX Programming Language

Purpose: The XX (dos equis) programming language is a simplified sequential pro-
grarnming language for defining the codes to be executed by the processing
elements of the CHiP computer family emulator, the Pringle Parallel Com-
puter.

Activity: Files are created or modified using a conve" tional UNIX editor. The files
are named <proc>.x where <proc> is the name of the process referred
to in the Code Names entries. For convenience in referring to Poker state
information on the bitmapped display, it is recommended that XX program
files be developed on the secondary Poker display.

Programs: XX programs begin with a preamble that gives the program name, the
formal parameters, trace variables and the port names. The preamble is
followed by the program body block:

<program> ::= code <id> <parmlist>; <tracelist> <port list> <body>
<parrrlist> ::= (<idlist>) IA
<tracelist> ::= trace <idlist>; j A
<portlist> ::= ports <idlist>; I A
<idlist> :=<id>, <idlist> I <id> "

<body> ::= begin <declarations> <statlist> end.

where the parameters identifier list and trace identifiers list are limited to
at most four identifiers each separated by commas and the ports identifier
list is limited to 8 identifiers separated by commas. The identifier following
code names the program and should match the <name> of the file and
the <name> used in the Code Names entries. The parameters are formal
parameters that correspond one-to-one to the actual parameters stored
in the Code Names/Parameters entries of the PEs; each formal parameter
must be declared in the <declarations> section of the <body>. The trace
list identifiers have their values displayed during tracing and they must be
declared in the <declarations> section of the <body>. They are traced
in the order given in the trace declaration. The port list identifiers are
the symbolic port names that are assigned physical positions in the Port
Names entries. Values sent and received through ports are typed and
coerced at the destination as described in Table 2.

Declarations: There are five data types: Booleans (! bit), characters (8 bits), short nat-
ural numbers (8 bits), signed integers (32 bits), and signed floating point
numbers (32 bits). All identifiers, except statement labels and identifiers

-. N N N.

!

12 PROCESS DEFINITION LANGUAGES 51

declared in port or ports declarations, must be declared to have a data
type; notice this includes the formal parameters. Simple identifiers are
scalar values of the indicated type. Identifiers followed by square brackets
specify arrays of one or two dimensions whose indices in a dimension run
from 0 to <unsignint> in values:

<declarations> ::= <decl>; <declarations> IA
<decl> <type> <varlist>
<type> real I int Ibool I char I sint I port
<varlist> ::= <varid>, <varlist> I <varid>
<varid> ::= <id> I <id> [<unsignint>]
I <id> [<unsignint>, <unsignint>]
where no <id> appears more than once.

The port declaration specifies that the variable can be assigned port name
constants (declared in the ports declaration of the preamble) and can be
used in functions such as dataavail (see Built-in functions, below.) Vari-
ables of type port can be used with assignment statements, I/O assign-
ments, and the relational operators = and < >; otherwise, port variables
cannot be used in expressions; port variables cannot be traced.

Statements: The statements are:

<statlist> ::= <lstatement>; <statlist> I <Istatement>
<Istatement> ::- <id>: <statement> I <statement>
<statement> ::= <assignment> j <conditional> I

<while> I <break> I <for> I <compound> I <io>
<gosub> I <return> I <exit> I A

where <id> is used for the target of a gosub.

Assignment: The Assignment statement is:

<assignment> ::= <varid> := <expression>

where the coercion to the left-hand side identifier type is provided as de-
scribed in Table 2.

Conditional: In the Conditional statement

<conditional> ::= if <expression> then <lstatement>
else <Istatement> I if <expression> then <lstatement>

the <expression> must evaluate to a Boolean value and an else is associ-
ated with the immediately preceding then.

- : : *- ' -m .I - -/ I - * I4 % I

12 PROCESS DEFINITION LANGUAGES 52

While: In the While statement

<while> ::= while <expression> do <istatement>

the expression must evaluate to a Boolean value. To assist in synchroniza-
tion the compiler recognizes the construction while true do <Istatement>
as a special case and does not generate the conditional branch code.

Break: The Break statement

<break> ::= break

has meaning only within the <lstatement> of a While statement, and
causes control to skip to the statement following the immediately sur-
rounding While statement.

For: In the For statement

<for> ::= for <id> := <expression> to <expression> do <istatement>

the two expressions, the lower and upper limits of the iteration, respec-
tively, are evaluted once prior to beginning the loop. If the lower and
upper limits are not integers, they are coerced to integers as described in
Table 2.

Compound: Notice that the Compound statement

<compound> ::= begin <statlist> end

is not a block and may not contain declarations.

I/0: The I/0 statements
<io> ::= <varid> <- <expression> I

<varid> <- <expression>, <varid> <- <expression>
require that either the lefthand side or the righthand side of the operator
be an identifier declared in the ports or port declarations. If the port
name is on the left then the operation is write or send to the indicated
port; if the port name is on the right the operation is a read or receive
to the indicated port. If two I/O statements are specified, one must be a

read and one a write. (The semantics are "simultaneous I/O" but since the
current hardware cannot support that, the statement is essentially serially
executed.)

When a PE performs a read and the data has not been received, the PE
waits until the data arrives. If the type of data sent differs from the type
of the variable receiving it, type coercion is performed at the destination
as described in Table 2. (For the purposes of synchronization, a keyword

%1

12 PROCESS DEFINITION LANGUAGES "53

port named null is recognized. It does not actually do I/O, but it uses
the same amount of time.)

Subroutines: The statement
<gosub> ::= gosub <id>

provides a parameterless subroutine branch to the statement with label
<id>. The <id> cannot be located on a statement in the body of a for
or while loop. All variables are global. Recursive calls are permitted.
Execution of a return from the subroutine will cause execution to resume
with the statement following the gosub.

bool -+ char: The Boolean bit becomes the least
significant bit; others are 0.
char --- bool: The least significant bit forms the
Boolean.
char = sint: The bit sequences are the same.
sint - int: The 8 character bits become least
significant bits; others are 0.
int -- sint: The eight least significant bits form
the short integer.
int --* real: Converted to floating point notation.
real --+ int: The floating point value is truncated
and converted to integer form.

Table 2. Semantics of representation conversion; conversions not listed
are performed transitively: typel --, type2 --, type3, etc.

Returns: The Return statement
<return> ::= return

causes execution of a subroutine to terminate and for control to resume at
the instruction following the gosub call. Execution of a return when no
subroutine is pending produces unpredictable results.

Exit: The statement
<exit> ::= exit

causes all execution of the PE code to terminate and for the PE to enter
the quiescent state.

Assembler: Allows the direct inclusion of assembler statements in XX code.

Expressions: The expressions

s. N N .N,

12 PROCESS DEFINITION LANGUAGES 54

<expression> ::= <expression> <binary> <expression> I
<unary> <expression>I
<expression> <relational> <expression> I <builtin> ()
<builtin> (<expression>) I
<builtin> (<expression>, <expression>)
(<expression>) I <varid>
<unsignint> I <unsignreal> I <character> f
<boolean> I PEiI PEj I PEID I PEn I EOS

have precedence and association as in the C programming language. Ex-
pressions of mixed type are coerced to the higher type, where types are
ranked bool < char = sint < int < real, as described in Table 2. The
operators are given in Table 3.

Constants: The constants are unsigned integers for <unsignint>, reals in standard iL
formats, for <unsignreal>, quoted (') characters for <character>, and
TRUE and FALSE for <boolean>. A special constant, EOS, termi- *

nates streams and can be used as the right-hand-side of an I/O assign-
ment only.

Identifiers: All identifiers begin with a letter and are followed by any combina-
tion of letters and numerals. The maximum length of an identifier is
10 symbols. Two keyword identifiers, PEi and PEj of type sint, are
available giving the row and co.unin index, respectively, of the PE on
which the code is executing. PEn is a type sint and gives the number
of PEs in a row or column for the current machine. Additionally, a key-
word identifier, PEED, is recognized by the compiler but not otherwise
supported.

N

'.
-S
'5.

'

'V

S.
.,

12 PROCESS DEFINITION LANGUAGES .

<unary> <binary>
+ <real> no op <real> + <real> addition
- <real> negation <real> - <real> subtraction

<char> not <real> <real> multiplication
<real> / <real> division
<real> mod <real> modulus
<real> >= <real> greater than or equal
<real> > <real> greater than
<real> <> <real> not equal
<real> < <real> less than
<real> <= <real> less than or equal
<real> = <real> equal
<char> & <char> and
<char> <char> or •
<char> <char> exclusive or

Table 3. XX operators. The type indicates the highest type for which
the operation is defined; the operation is defined 0

for all lower types.

Arrays: Arrays can only be subscripted by character, sint or integer types.

Built-in functions: The built-in functions taking real arguments and giving real results
are: pi (), asin(<real>), acos(<real>), atan(<real>), cos(<real>,
exp(<real>), log(<real>), ln(<real>), sin(<real>), sqr(<real>), sqrt
(<real>), tan(<real>), pwr(<real>,<real>), where the arguments to ,.ii
the last function are base and exponent, respectively.

A built-in function, dataavail (<port>), is a predicate that returns 0

TRUE if unread data is waiting on the <port> and returns FALSE
otherwise. The argument <port> can be either a constant (from the
ports declaration) or a variable of type port. (Two other functions,
bitmap and checkports, are recognized by the compiler but not other-
wise supported.)

A built-in function, IsEOS (<port>), tests a port (either constant or
port variable) to be equal to the end-of-stream delimiter, EOS, returns
TRUE if so and FALSE otherwise.

The relationship between dataavail and IsEOS is as follows: If IsEOS(port)
is true then dataavail(port) is false. If IsEOS(port) is false then dataavail

.

-TTN V-;7% T X7 ;'V 1L WE

p

12 PROCESS DEFINITION LANG UAGES 56

(port) may be true - meaning that the stream has not ended and the

next data item is available - or it may be false meaning that neither

data nor an EOS token has arrived. An acceptable program sequence

for reading a terminated stream is:

while -IsEOS(port) do
if dataavail(port) then begin ... end;

This will busy wait on data, process it in the compound statement

when it arrives, and exit the loop when the stream ends.

Multiple terminated streams, may be passed between PEs. To do so,

the EOS of one stream must be purged by executing the statement
clearEOS (<port>) in order to permit the next stream to enter.

Comments: Comments begin with the characters /* and end with the characters
*/.

.
'*

'

I

13 57
5

13 Command Request
Purpose: To convert the source form of the program, as specified by the switch settings,

code names, port names, 10 names and the XX programs, into object form
for execution.

Display: The field is cleared and status information is given.

Activity: Commands are invoked which cause the database to be compiled and loaded I1%
into the Pringle emulator, the generic emulator, the Cosmic Cube emulator,
the Pringle, the Cosmic Cube or other physical hardware. The object ma-
chine is specified using the "set machine" command (See Section 15.) This
specification carries with it an implied source language for the code segments
which in turn is reflected in the <ext> field of the files produced in this view.
We recognize the pairs given in the table. In addition the communication
structure is compiled and loaded into the emulator. Diagnostics are given in
the appropriate ".err" file and in the file Clipboard, which may be displayed
using ^f with a blank command line.

Set Variable Source Object <ext>
Value Language Machine
pringle-em XX pringle x

emulator
generic-c Poker C idealized pc

machine
generic-xx XX idealized x.pc

machine
ccube-em Poker C cosmic cube .pc.cce

emulator
ccube Poker C cosmic cube .pc.cc

Table 4. Definition of <ext> field for Poker produced files.
Set variables are defined in Section 15, Source languages in Section 12

and Object Machines in Section 16.

%I
~4J~/\. .. A *1

13 5S

Recognized keys:

$m Make For each process name <proc> given in code names, a file named
<proc>.<ext> is sought, compiled into <proc>.<ext>.o and link
edited into .pe<i>,<j>.o, where <ext> is determined by the value
of the set variable "machine" (See Section 15) as explained in the ta-
ble. The switch settings are compiled into connections.o, and the whole
object specification is loaded into the object machine.

"c Compile If the command line is blank, then for every <proc> given in code
names, the file <proc>.<ext> is sought and compiled into a file called
<proc>.<ext>.o where <ext> is defined in the table. If the command
line contains the name of a process <proc>, only it is compiled. Diag-
nostics are given in <proc>.<ext>.err.

"k linK The object code for the process for each PE<i>,<j> is link edited and
stored in the file .pe<i>,<j>.o. [Note .pe<i>,<j>.o is not listed by
the UNIX Is command without the -a option.] Diagnostics are given in
pe<i>,<j>.err.

n coNnections The communications graph given in switch settings is "compiled" into
an adjacency list form and stored in connections.o. A symbolic version
is given in "connections" and diagnostics are given in the Clipboard
file.

I Load The object machine is loaded with the link edited object codes, the
connection files and the file-to-stream bindings in preparation for em-
ulation.

"g Go If the command line is blank, the current phase of the (loaded) pro-
gram is emulated for 1000 time units or ticks and the progress of the
emulation is reported each 100 ticks. A nonblank command line is in-
terpreted as the number of ticks to be emulated; progress is reported
every 100 ticks.

^d Dump The current state of the emulator is saved in the file named on the
command line; if the command line is blank the file is called SnapShot.
These files serve as checkpoints with which Poker can be restarted.

"r Reload The saved emulator state stored in the file named on the command line
is reloaded into the emulator; if the command line is blank, the file
name SnapShot is used.

w

. . .. -. . +. -..-.- -, .. -. . -. - - .. - I .

13 59

'b liBraries Compile the libraries.
^i Interface Write the definitions file that establishes an interface to the ob-

ject machine.
w Write Write the file of "make" dependencies.
"\ interrupt The object machine is interrupted.

<key> Key input is directed to the command line.

Commands: The functionality of the above operations is augmented through the use of
execute commands. The following are of particular interest for Command
Request

bind <stream> <file>
continue [<condition>] [trace I notrace)
display
flushbuffers
run [<phase>] [<condition>] [trace I notrace]
script <file>
set <parameter> <value>

Refer to Section 15 for details.-J

Global Commands

Sh cHip $^a Abort f File
Ss Switch $^e Exit . v + page
$c Code $'o Output screen Sv - page
Sp Port $d reDraw screen ^u eof
Si Input/Output ^p Phase Su bof
Sr help .x eXecute $$$ noop
St Trace ^h backspace z pause

14 TRACE (iGO
I

14 Trace
Purpose: To execute a Poker program on an object system and to display the current

values of the traced variables. See Section 16 for a listing of object systems.

Display: The code name and the current values assigned to the trace variables of'
PEs in (a portion of) the lattice for this phase are given in the field. One
display format shows boxes representing PEs; the other display format
shows boxes representing PEs and lines representing the interconnection
structure; a key ('t) toggles between the two. The code name is clipped
to five characters (and cannot be changed) and values are shown clipped
to the first 10 symbols:

a lue----alue?----

lue3----
alue4----

If the value of a traced variable changes between two consecutive displays,
the value is highlighted.

An equal sign (=) appearing in the home position of a PE indicates that
when emulation was suspended, the PE was executing (as opposed to
being quiescent). An asterisk (*) in the home position of a PE indicates
that the PE ias "crashed" dvii to a fatal internal error.

On the command line the elapsed execution time is given in a unit called
a "tick". The amount of time represented by this unit depends in the
object system as described in Section 16.

Cursor motions: Gross cursor motions advance the cursor to the home position of the next
PE in the indicated direction; fine cursor motions (north, south) move to
the first position of the windows for the code name and trace variables.
"Fine home", from a window moves the cursor to the "home" position
of the PE; from the "home" position in a PE, "fine home" moves back
to the last referenced line. "Gross home" moves the cursor between the
command line and the "home" position of Last PE.

Y.

0*

p.

-p

"'p

"" .' € ,€:? ¢o '- 'b , ,: -.. :' %' .:."zz,"" . : '; . '':', :" :'::. :: ; ':" '1S

14 TRACE 61

Activity: The execution of a loaded program is controlled and the values of the
traced variables are displayed. Execution can be effected in single step
units, multiple steps or until any displayed trace variable changes value.

Limitations: This view cannot be entered unless a program is loaded. Incidentally.
"poke" - the feature that gives Poker its name - is not implemented.

Recognized keys:

c Center The cursor is moved to the PE whose index is given on the command
line or if the PE is not visible the display is changed so the PE is as close
to the center of the field as possible consistent with the requirement that
the field be fully utilized; if the command line is blank, the Last PE is
used for centering.

1 Load The object machine is loaded with the link edited object codes, the
connection files and the file-to-stream bindings in preparation for em-
ulation.

g Go The command line is interpreted as the (integer) number of ticks the
object machine is to execute of the current phase; if the command line
is blank 1000 ticks are executed. The new values of the trace variables
are displayed at completion of the execution and a report of progress
is given every 100 ticks.

t Toggle The display is changed to the "other" format; see Display above.
my displaY The full (unclipped) entry of the traced value window containing the

cursor is given in the chalkboard. Notice that the command is needed
because certain number representations require more than the available
ten character field size.

^e Event The command line is interpreted as a pair of positive integers <e> <t>
specifying that the object system is to exe:ute the current phase for
either .e> events or <t> ticks, whichever comes first. An event is
defined to be a change in one or more of the currently displayed trace
variables. The traced value causing the event is highlighted on the dis-
play. A summary of the number of ticks remaining before the emulator
stops is given on the diagnostic line. A command line containing only
one integer <e> is equivalent to a request of <e> 1000, and a blank
command line is equivalent to a request of 1 1000.

14 TRACE 62

d Dump The current state of the object system is saved in the file named on the/
command line; if the command line is blank the file is called SnapShot.
These files serve as checkpoints with which Poker can be restarted.

r Reload The saved emulator state stored in the file named on the command hiie
is reloaded into the object system; if the command line is blank. the
file name SnapShot is used.

interrupt The execution of the object system is interrupted and the current values
of the traced variables are displayed.

<key> The text is directed to the command line.

Commands: The functionality of the above operations is augmented through the use of
execute commands. The following are of particular interest for Trace view:

continue [<condition>] [trace I notrace]
flushbuffers
log [<file>]
run [<phase>] [<condition>] [trace I notrace]
script <file>
test PEerr

Refer to Section 15 for details.

Global Commands

Sh cHip $^a Abort "f File
Ss Switch $^e Exit v + page
$c Code $^o Output screen $v - page
$p Port Sd reDraw screen ^u eof
$i Input/Output ^p Phase Su bof

Sr Request "x eXecute $$$ noop
$t help ^h backspace z pause

0%

15 EXECUTE COMMANDS (33
S

15 Execute Commands

Purpose: To perform transformations on the source or object states of the system.

Activity: Textual commands and their associated parameters are given on the com-
mand line in any view (except CHiP Parameters), and followed by "x. A
blank command line gives a list of the available commands.

Commands: The recognized commands are given below. In general, their syntax is prefix
notation with operands separated by one or more spaces; the exception is
copy, where the separator is a comma. Note that commands require only as
many letters as are necessary to disambiguate them from other commands;
usually a one or two letter prefix suffices.

Recognized Commands

alias <index specification> <name 1> <name2> N
Interphase variable <name2> becomes an alias for <namel>; that is both
names refer to the same value for those PE(s) specified in <index specification>
where <index specification> is the same as for deposit (^d) in Code Names
or Port Names. p

bind <stream> <file>
The streams named <stream> of the current phase are associated with the
file named <file> as described in "External Data Files" of the file manage-
ment section (Section 6).

continue [<condition>] [trace I notrace]
The command resumes emulation in Command Request and Trace views
only. If no parameters are given then the parameters of the last run or
continue command remain in force. The <condition> is a termination con-
dition:

all Run the phase until all PEs halt.
any Run the phase until some PE halts.
<i> <j> Run the phase until PE<i><j> halts. v

The trace modifier causes all traced value changes to be displayed; with no-
trace no changes will be given. %

"W
,.

,.

5-.

1.5 EXECUTE COMMANDS 64

copy <from structure>, <to structure> p

Database entities are transferred as described in Section 6.

display < infotype>
Information about the current settings of system or program variables is
presented to the user in the Clipboard. The options are:

< infotype> meaning

bind Lists the stream names and file names
bound to them for the current phase (see
bind command).

set Lists the current values of the system pa-
rameters that can be set (see set com-
mand).

Notice that the <infotype> specification must be given in full.

flushbuffers The contents of the output stream buffers are written to the appropriate files.

help Displays the recognized commands for the current view in the chalkboard;
it is equivalent to attempting to change to the current view.

if <i> <j> <var> relop <val> skip <1>
This construct is meaningful only for script files where it provides conditional
execution of Poker commands. The value of the bool <var> of PE <i> <j>
is tested and if it is true the next <1> lines of the script file are skipped.
The possible values of <relop> are: <, >, <=, >=, <> (not equal), and =.
The possible values of <val> are: TRUE, FALSE (all upper case letters, a
character, or a real number; integers are not accepted.

peek <index specification> <name>[file]l <index specification>*[<file>]
The value of the interpahse variable <name> of the PE(s) specified by
<index specification> is appended to <file>; the <index specification> is
the same as is used for the deposit (^ d) command of the Code Names or Port
Names View; if * is given instead of the <name>, all interphase variables are
logged into the <file>; if <file> is not given, the default "Clipboard" is used.

CI

15 EXECUTE COMMANDS

poke <index specification> <name> <value>
The interphase -ariable <name> of the PE given by the <index specifica-
tion > is assigned the <value>. The <index specification> is the same as
used for the deposit (^d) command of the Code Names or Port Names View.

log [<file>]
Append to the <file> the current values of all of the traced variables. If the
<file> is not specified, the default "Log" is used.

replace <old string> <new string>
In the Code Names, Port Names and 10 Names editing views the <old
string> is uniformly replaced by the <new string> whenever it occurs in
the current phase of the current view. Notice that this is literal textual sub-
stitution and substrings matching <old string> are unaffected.

reset [<phase>]
This command resets the emulator to the phase given, or current phase if
none is given. This differs from the global command phase (A P) which does
not communicate with the emulator. This command is useful to reset the
phase for use with Event or Go in Trace Mode.

run [<phase> [<condition>[trace I notracef]
In Command Request and Trace views only the <phase>, given by its num-
ber or symbolic name, is emulated until the given terminating <condition>
occurs:
all Run the phase until every PE halts.
any Run the phase until some PE halts.

<i> <j> Run the phase until the PE whose
index is i j halts.

The trace modifier causes all traced value changes to be displayed; notrace
means no changes will be given. The default are: the current phase for
<phase>, all for <condition> and notrace.

script <file>
The keyboard is replaced by the <file> as the primary input source. All

.."- 'i UP

15 EXECUTE COMMANDS 66

commands (except script) are legal. The following conventions are used:

Keyboard Script file

control <letter> "<letter> ,
escape $
<fine cursor> % <digit>
<gross cursor> $% <digit>

where is the caret symbol and <digit> is the numeral corresponding to the 0
direction, e.g. % 2 is a fine south cursor move; see Figure 3. Additionally, ! is
recognized as "wait for keyboard input, ignore it, and proceed", IF POKER
IS WAITING FOR KEYBOARD INPUT, A PERIOD (.) IS DISPLAYED
TO THE LEFT OF THE PHASE INDICATOR IN THE STATUS AREA.
The two character pairs, 1*, */, are recognized as begin comment and end
comment, respectively. All spaces are compressed to a single space.

set <parameter> <value>
The global system parameter is set to the specified value. The parameter
name must be given in full. The options are:

<parameter> meaning
buffersize Define the number of bytes of buffer space allocated to

each port; the number must be in the range [8, 2561 and
will be rounded up to a power of two; the default value
is 32.

cflags The value is a string defining a flag sequence that is to
be passed to the appropriate sequential process defini-
tion compiler, either pkcc or XX. (See Section 12.) The
default is -g.

checkpoint Define the frequency of automatic checkpointing of the
emulator state; checkpoints will occur whenever <value>
0 and (numticks) mod <value> M 0; the checkpoint

is stored in the file SnapShot and replaces any previous
checkpoint. The default value is 0.

includes true/false set to true if any of the code files use the cpp
include feature; the default, false, is used otherwise. Af-

ter setting, write (" w) the make file in Command Request
View.

S.. --

A A

Mrpy]

15 EXECUTE COMMANDS 67

Iflags The value is a string defining a flag sequence that is to be
passed to the appropriate loader. The default is blank.

library The value is a string of library names, separated by
spaces, defining the files to be included with the sequen-
tial process definition text. The default is blank.

logpoint Define the frequency of automatic logging of traced
values; logs will occur whenever <value> 0 0 and
(numticks) mod <value> = 0; the log of the traced values
is appended to the file Log; the default value is 0.

machine Defines which system will execute the Poker program
(See Section 16.) Notice that machine must be set prior
to the compilation activities of Command Request view.
The default is generic-c. The legal values are:

generic-c Specifies the idealized machine
whose timing model is given by the poker-

time-model file. The sequential process

code must be written in C;

see Section 12.1.
ccube-em Specifies the cosmic cube emulator

The sequential process code must be

written in C; see Section 12.1.

ccube Specifies the cosmic cube hardware
The sequential process code must be

written in C; see Section 12.1.
generic-xx Specifies the idealized machine whose

timing model is given by the

poker-time-model file; the sequential

process definitions must be written in XX.
The Pringle hardware is available at
Washington.

pringle-em Specifies Pringle emulator; the

sequential process code must be
written in XX.

switches Defines whether the switches (circles) in the switch set-
tings view are to be displayed or not; the legal values are
visible and invisible. The default is invisible.

model The value is a string defining the path name of the time
model file to use when profiling a generic simulator.

*5aS ll- - -- : inl * 5 ' I I i

i.4

15 EXECUTE COMMANDS

The current values of the set variables are saved when the CHiP Params file
is saved - usually with a copy or an exit - and should thus retain their effect
between ses iions. r

shell <command>
The argument is treated as a text string and is sent to the UNIX shell to be
interpreted as a UNIX command. A response from UNIX, if any, is sent to
the Clipboard and is displayed with ^f.

test <predicate>
The auxiliary function <predicate> is applied to the source database and
the resulting diagnostics are displayed in the Clipboard. Auxiliary functions
perform diagnostic analysis on Poker programs to insure correctness. The
choices for <predicate> are:
paths Test that all edges given in switch settings

are connected paths between two PEs or
between a PE and a pad.

pads Test that the stream specifications are con-
sistent, e.g. that streams with a common
name are all either input or output, etc.

ports Test that for each named port of a PE there
is a data path defined, and for each data
path connected to a PE there is a port
name.

PEerrs Test the PEs for internal errors such as
reading from a terminated stream, divide

* by zero, etc.

If <predicate> is null a ist of the available auxiliary functions is given on
the Diagnostic line.

unalias <index specification> <name>
Remove all names aliased to <name> for the PE(s) given in the <index
specification>.

unbind <stream>
The indicated <stream> and associated file of the current phase, if any, is
purged from the bind table.

mW

N N e%,,. W.-p

16 OBJECT SYSTEMS 69

16 Object Systems

This section describes the systems capable of executing Poker programs; those systems which
are generally available are at present only software emulators. (The Pringle hardware is avail-
able only at the University of Washington and Indiana University, and the "cube" version
of Poker runs only on the CalTech Cosmic Cube. Researchers interested in porting Poker to
other parallel hardware should consult "Poker on the Cosmic Cube: The First Retargetable
Parallel Programming Language and Environment", Proceedings of the International Con-
ference on Parallel Processing, IEEE, pp. 628-635, 1986 and contact the Blue CHiP Project
for assistance.)

16.1 Pringle Emulator
When Poker is run with the machine "set" to pringle-em, the execution provided in Command
Request or Trace views is a software emulation of the Pringle Parallel Computer. (Notice,
only those programs with process definitions written in XX can be run with this emulator.)
When n=8 the emulator essentially duplicates the function and timing (tick=microsecond)
of the hardware, and thus it provides a means of demonstrating achievable performance.
Though it provides accurate results, the use of the Pringle emulator has two liabilities:
pessimistic performance estimates and speed.

The Pringle was built with conservative technology in 1982. As a result it was running by
February 1983, and so it predates most of the presently available parallel machines. More-
over, the Pringle is not a CHiP computer, but rather a hardware emulator, so it understates
the achievable performance. (The Pringle implements the interprocessor communication us-
ing a polled bus rather than the point-to-point communication of CHiP architectures- the
initial position of the bus polling mechanism explains the differences in execution times that
one sometimes observes between two conservative runs of the emulator; it is advisable, there-
fore to execute the program several times to establish the performance range.) For these two
reasons - antiquated technology and only approximate modelling - the Pringle and hence,
its emulator, grossly understate the CHiPs performance on Poker programs. Because pro-
cessing and communication can be sped up by different amounts, it is difficult to predict
how pessimistic the performance is.

Since the emulator duplicates every detail of the Pringle's function at a "1 microsecond
granularity", it is extremely slow. While writing and debugging small programs this fact is
of little consequence. But when the programs become large, the slow performance can be an
impediment. It is advised that the emulator be run off-line on a higher performance cycle
server by invoking,

poker <script>

or that the system be run through the faster x2c. (See Section 16.3.)

.€: :

PWMA- .WVV W% RU-PLII"f Ia. 16 PI

16 OBJECT SYSTEMS 70
S

16.2 Generic-pc

When Poker is run with the machine "set" to generic-pc, the execution is provided by the
host computer. The source language is Poker C (See Section 12).

Poker C is translated into C and compiled to run on the host computer. A runtime
library is provided to implement the Poker abstraction. All processor codes and the runtime
library are placed on a single UNIX process. This process communicates with Poker using
an Interface in the run time Library.

The runtime Library implements "Light-weight processes". At the beginning of a phase.
a "light weight process" is started for each processor. These processes are managed by the
runtime system to advance "usertime" for all processes at approximately the same rate.
Special calls to the runtime system are inserted at critical points by the Poker C-compiler
to insure that one process does not "starve" the others. Using generic-pc allows the user
code to run at host machine speed, yielding much faster simulations when compared with
the Pringle emulator. This is the main advantage of the generic system. Some time is used
in processing the Poker abstraction. Since there is no good concept of time, an artificial
concept has been added. This requires a counter to be incremented at strategic places in the
user code. To assist in making time estimates, the time model and automatic embellishing
of the user code was implemented. (See Section 12.)

16.3 Generic-x (Extasy)

Poker programs with process definitions written in XX can be run through the generic
emulator by preprocessing them through x2x. This is performed automatically provided the
text files have the ".x" extent and the machine is "set" to generic-x. A time model can be
given as described for the generic-pc system.

, ,2
",r

-- - - - * ¥ i f it I I l I II II

17 ACKNOWLEDGMENTS 71

17 Acknowledgments

Poker is the product of the ideas and efforts of many people. Janice E. Cuny and Dennis
B. Gannon, in addition to contributing to the definition of the XX programming language.
were a continual source of ideas, judgement and constructive criticism. Version 1.0 of Poker
was written during the summer of 1982 by a delightful and committed group of gentlemen,
the "Poker players": Steven S. Albert, Carl W. Amport, Brian G. Beuning, Alan J. Chester.
John P. Guaragno, Christopher A. Kent, John Thomas Love, Eugene J. Shekita and Carleton
A. Smith. Primary contributions to Version 1.1 were made by Steven J. Holmes and Ko-
Yang Wang; their work steadily enhanced the system. The 1984 "Poker players", another
congenial group, completed Versions 2.0 and 3.0: Kathleen E. Crowley, S. Morris Rose, James
L. Schaad, and Akhilesh Tyagi. Further contributions to the completion of Version 3.0 were
made by Philip A. Nelson and David G. Socha. Crowley, Nelson, Schaad and Socha, who
completed Version 3.1 during the summer of 1985, made valuable comments that improved
the document. Version 4.0 was produced by Nelson, Schaad and Socha during 1986 with
assistance from Kathleen Crowley, Robert Mitchell and Raymond Greenlaw. Richard Korry
has been largely responsible for extensions and improvements of versions 4.1 and beyond.
Finally, Julie K. Hanover and Eriko De La Mare managed to retain their patience and good
cheer throughout the preparation of this complex document and its many predecessors. It
is a pleasure to work with such fine people and to acknowledge these valuable contributions.

Since the first distribution, the Poker users, especially the University of Washington
Applied Math group, and the groups at the University of Massachusetts and University of
California at San Diego have been helpful in reporting bugs and suggesting improvements.

The design, implementation, testing, documentation and preparation for distribution of
the Poker parallel programming environment have been activities of the Blue CHiP Project
which has received funding from the following sources: The Office of Naval Research con-
tr%cts: N00014-81-K-0360, SRO-100, N00014-84-K-0143, N00014-85-K-0328 and N00014-86-
K-0264, National Sc-ience Foundation Grant DCR-8416878, and a Department of Defense
Instrumentation Award.

k

.,N' .N , .I ~* ~ F ~ J~

A POKER PROGRAM LIBRARY 72

A Poker Program Library

A library of Poker programs and Poker program schemas is located in /usr/poker/lib. [CAU-
TION: Your installation may differ.] A Poker program schema, which encapsulates the
parallel aspects of the program, is a Poker program with one phase, "standard" names and
trivial process code files; use of a schema saves programming time for routine interconnection
structures, since they are easily modified to become a computational phase.

A Poker program is stored as a UNIX directory containing the five Poker database entities
- CHiPParams, SwitchSet, CodeNames, PortNames and IONames - and the associated
process text (".pc") files. A schema is like a program except that the text files are trivial.

A program or schema can be read into Poker using the copy command (see Section 6).
Notice that the stored program is "typed" information, that is it contains a description of ,b
the particular architecture for which it was written, e.g. number of PEs, corridor width, etc.
When reading in the stored program or schema the CHiP Parameters of the current Poker
system should match those of the program. Program names are capitalized and schema 2

names are not. Furthermore, as a heuristic schemas use a naming convention of the form

<short graph name><n>.<w>

where the <short graph name> briefly describes the interconnection structure, <n> is the
number of PEs on the side of the lattice, and <w> is the corridor width (see Section 7.)

The structure and contents of the Poker library are shown in Figure Al, where a trailing
slash (/) indicates a directory. Within each directory are the files:

CHiPParams
SwitchSet
CodeNames
PortNames
IONames %

and one or more text files (e.g. proc.pc), where the names depend on the logical process
types used in the CodeNames entity.

Notice that for most of the above schemas, smaller instances can be created by first
loading the schema into a one phase Poker system, changing the CHiP Parameters to the
smaller size, (possibly) fixing a few dangling edges, and saving the result. Larger instances
can be constructed using the ssc program; see Appendix B.

4

.t.

d-.* .m

A POKER PROGRAM LIBRARY 73

PlayingPoker/ sample program from Playing Poker document

BatcherSort/ sort program based on Batcher's algorithm

hexl6.1/ 16 x 16, corridor width 1, hexagonal mesh schema
hexl6.4/ 16 x 16, corridor width 4, hexagonal mesh schema

meshl6.1/ 16 x 16, corridor width 1, 4 mesh schema

meshl6.4/ 16 x 16, corridor width 4, 4 mesh schema

shuff8.1/ 64 node shuffle exchange graph schema, no pads
torusl6.1/ 16 x 16, corridor width 1 interleaved torus schema

treel6.1/ 255 node tree schema, pad to root on East side

BGboot Program sent to Bitgraph for doing screen dump
BGupload Program sent to Bitgraph for doing screen dump

PokerDemo Directory for use in Playing Poker

bitcap Termcaps for Bitgraph and ATT 5620

emstartup datafile for Generic emulator

Figure Al. Structure of library as distributed.

'I,

,. U U-U" ' ~1VV ~i~ v'JV

B RELATED SYSTEMS 74

B Related Systems
Poker as described in the foregoing sections represents the production form as it exists at
the University of Washington. Other users may prefer other systems because of different
hardware or different scientific objectives. The known options are described below; users
who port or substantially modify Poker are encouraged to contact the Blue CHiP Project in
order that their contribution may be entered into the list.

B.1 Poker Cleanup B.7 Batch Poker
B.2 XWindow Implementation B.8 Printing Screen Images
B.3 AT&T 5620 Support B.9 Switch Set Copy Utility
B.4 Helpful Hints B.10 Pen Plotting - bbplot
B.5 Backend Interface Language B. 11 Poker Coordination
B.6 PacklO B.12 Prep-P

Figure B.1 Appendix table of contents

B.1 Poker Cleanup
The program cleanup may be used to remove the Poker generated files from the current
director. This is useful in reducing the amount of disk space used by Poker programs. It is
possible to completely rebuild the state from the remaining files.

B.2 X Window Implementation
Since many users now have workstations, the Poker system has been ported to the popular X
Windows system. Currently it is offered only for version X10.4. (Poker's original display, the
BBN Bitgraph is a display that uses "portrait" mode while most workstations (e.g. Suns.
IBM RT's, DEC Microvaxes) use "landscape" mode.) As a result, Poker under X has two •
windows. One contains the field while the other displays the lattice, chalkboard, clipboard,
diagnostic and command areas. The cursor can be in either window for input. The mouse
is not used for cursor motion; the numeric keypad is still used for that. Due to X Window
limitations, the program CreatePixMaps should be run once as part of poker installation.

*Jq

'p

'-S. ~ S. S. S
~ ~ % y % ' y *. *. *~~'~ '~p-'----------.. ~ % % % 'w%

B RELATED SYSTEMS 75

B.3 AT&T 5620 Support

The AT&T 5620 Dotmapped Display (or "BLT") is supported as an output device for Poker.
The screen format is the same as that of the BitGraph display. To run Poker using a BLT.
it is necessary to download software to the terminal using an alias, called "setPoker", stored
in /usr/poker/bin/setPokeraias. (CAUTION: Your implementation may vary.] There are
two implementations of the software - one that runs "stand alone" and one that runs under
layers. The software can remain resident throughout the session, i.e. it need not be reloaded
each time Poker is run.
Cursor motions for the BLT: The keypad is not used for cursor motions, because it is not
accessible via the available software. Rather, the mouse is used to indicate direction. A
direction is specified by the relationship of the mouse pointer to the current position of the
cursor when button 1 (leftmost button on the mouse) is pressed. For example, if the mouse
pointer is below the cursor when button I is pressed the direction specified is south, and
therefore, equivalent to pressing 2 on the keypad of the BitGraph. Specifically, to determine
direction, visualize the cursor as if it is leftcenter in a 3 x 4 character box and assign
directions with respect to the box:

I I
NW N I NE

W ... E

SW S SE
I I

I I

When the pointer is within the box the "home" specification is implied. To perform gross
cursor motions, press an escape (S) followed by a mouse click to specify direction. Notice
that rapidly entering cursor motions can sometimes result in anomalous behavior because
the cursor position changes during screen updating, it is advisable to press button 1 only
when the mouse pointer is visible.

Button 2 (center) presents a "pop-up" menu from the terminal support software. The
options are as follows:

or'

wb"%AAM-

B RELATED SYSTEMS 76

continue no operation
^Q/" S enable/disable terminal flow control
nullterm ignore mouse, except this button
poker emit symbols for Poker
spread enable/disable character expansion
clear screen clear screen
exit leave terminal emulator

Notice that the options are "commands to change state", so their sense is opposite of the
current state. It is advisable to disable spread because the Poker display format is based on
standard size characters.

Button 3 (right most) does nothing in stand alone mode but provides the layers menu
when running under layers.

B.4 Helpful Hints

This appendix is a quick lst of hints to help you program and figure out what is going wrong,
in other words, what does this error message really mean.

1. "Fatal error in c2c". C2c is failing and pkcc is not passing on the message. To get a
better idea of the c2c error, you need to invoke c2c expliticly. This is done by running
the C preprocessor /lib/cpp then c2c. For example, % /lib/cpp file.pc I c2c > temp.c
This also works with cc2c.

2. "e cannot open file dataout". There is usually a problem with directory permissions.

3. "e cannot open file datain". There is a problem with bindings.

4. "e emulator stops due to deadlock". Try using a trace variable that is set to a unique
value before and after each port read in your program and run the program in trace
mode in Poker. When it stops you can figure out which PE's are reading from which
ports. This technique is a lot easier than doing the same thing interactively with the
emulator.

5. The emulator dies inside Poker. Your best bet is to run the emulator outside Poker,
i.e. from the Unix shell, and see if any error messages are visible. The next step is

to use dbx on Generic-pc if it produced a core file. That will usually give the line
number 1-" the Poker C program of the statement that's causing the problem (if it's
caused b. iccessing an array out of bounds or something like that). Also make sure
any non-poker-C functions are declared type library at the start of the .pc files.

,.

,,

B RELATED SYSTEMS 77

6. Lots of bugs can be caught by running lint on .pc files. You can include a shell script
that uses grep tn cut down on the amount of meaningless and confusing output. The
sequence of commands to use is: % /lib/cpp file.pc I c2c > temp.c; lint temp.c

7. Poker dies at startup when it tries to read IONames and you've been using the ssc
program. Try removing ION,mes and run Poker again.

Programming Tips:

1. If unusual things are happening during compilation, use the "cleanup" command from
the Unix shell to remove all unnecessary files from your working directory and then
delete "Make-pc" or the equivalent makefile. This forces poker to recreate the makefile
and ensures all programs will be recompiled.

2. When you leave Poker, via $^e, be in Command Request mode. In this mode, there
are fewer graphics, and a slow terminal bandwidth will not slow you the next time you
start up Poker.

3. Make liberal use of job control ('z) in Poker. For example, if in Poker you get a
compiler, the linker, and so on error, type ^z to pause Poker, look for the problem, fix
it, and then type "fg" to get back into Poker. This is faster than exiting and restarting
Poker each time since Poker doesn't have to reload its data files. However, don't forget
about your background Poker jobs, or they will clog the system and possibly lead to
confusion.

4. When loading a number of data pieces such as an array from a file into PEs, use vertical
interconnections to load the data upwards from 10 pads connected to the bottom PEs.
Then have each PE pass data up to the PE above it bucket-brigade fashion. This has
the advantage of preserving the orientation of the data. To dump it, connect the 10
pads to the top PEs and again have each PE pass data upwards.

5. If possible and sensible, it is nice to have port names short enough so that the entire
name can be displayed in the port names view.

6. ALWAYS save your program (type: "copy *,." from Poker's command line) BEFORE
running it.

7. Do not run more than one Poker job in the same directory. Concurrent Poker jobs use
the same data files and may interact to produce bizarre errors.

AIV

IAN

B RELATED SYSTEMS 7 S

B.5 Backend Interface Language

This appendix outlines the interface between Poker and the various backends (e.g. Generic-
pc, Cosmic Cube emulator, etc.). This purpose of this is not to make you an expert on the
interface "language" but to provide some basic documentation that can be very useful when
trying to figure out "what's wrong?"

This interface was developed when the backend (emulator) part of Poker was split away
from the user interface part of Poker and is very simple.

A few definitions:

<index specification>: <startPEi> <startPEj> <endPEi> <endPEj> - this means all PEs
starting from <startPEi><startPEj> to <endPEi><endPEj>. For example, 1 2 3
4 in a 4x4 array would mean (1,2), (1,3), (1,4), (2,1), ... (3,3), (3,4). To specify a
single PE <startPEi><startPEj> should be the same as <endPEi><endPEj>. For
example, 11 1 1 would indicate (1,1).

<ipname>: interphase variable name
<stream>: see Section 15 Execute Commands.
<file> : see Section 15 Execute Commands,
<stopCondition> : 0 means run until all PEs are done. 1 means run until any PE finishes.
<PEi><PEj>: this specifies a PE while 0 0 means no PE.
<timeLimit> : a number of User Ticks.

B.5.1 From Poker to the BackEnd

Many of these are similiar to those described in Section 15 Execute Commands. Some
additional descriptions are given. Commands that are most often needed when running a
back end are marked with *.

-ir

B RELATED SYSTEMS 79

alias - a <index specification> <ipname> <aliasName>
bind - b <stream> <file>
continue - c <stopCondition> <PEi> <PEj> : This means

continue until <stopCondition> or <PEi> <PEj> halts.
dump - d : Dump status information. Generic supports:

0 - DeltaUserTime. 1 - PE times. 2 - Errors and error messages.
event - e <timeLimit> : Run until timeLimit ticks.
flushbuffers - f: Flush 10 buffers.
get interphase - g <index specification> <ipname> : Get interphase values.
interrupt - i : When sent while the emulator is running in Poker mode

it causes the eumlator to stop at the first possible moment.
kill interphase - k <index specification> <ipname> : Remove name from

interphase space. ,
reload interphase - I <file> : Reload interphase variables from file.
dump interphase - m token: Dump interphase into file.
*set phase - p <number>
*quit - q
*run - r <stopCondition> <PEi> <PEj>
set interphase - s <index specification> <ipname> <value>

Set interphase values.
set parameter - t name value: Set internal parameters. Currently Generic

supports DeltaUserTime and StackSize. Cosmic Cube does not
support any currently.

unbind - u stream
execute - x timeLimit

For example, to run phases 1 and 2 (boldface is user input)
% Generic-pc
..output...
> pl
pl>rO00

output...
> p 2

p2
>rO O0 0
..•output....
> q.'

lU U

B RELATED SYSTEMS so

B.5.2 From the BackEnd to Poker

code table info - c <codenumber> numberOfVars codename
Codenumber is a number to reference the code.
NumberOfVars is the number of trace variables.
Codename is the name of the code.

error msg - e msg : Msg is a multi word string.

fatal error - f msg : Msg is a multi word string. The Backend will exit.

initialize msg - i PEn numphases numcodes switches:

PEn is the PE dimensions.
Numphases is the number of phases.

NumCodes is the number of codes.
Switches is not used (set it to 0).

assign codes - m <PEi> <PEj> phase codenumber: Assigns codes to PEs.

status - s userTicks <PEi><PEj> status : UserTicks is the number of
UserTicks for that PE.
Status is 'h' for halted and 'e' for error.

trace - t userTicks <PEi><PEj> index valueString : Trace message.
UserTicks is the number ticks for that PE.
Index specifies the trace variable. It ranges from 0 to 3.
ValueString is the value of the trace variable.

update - u userTicks: An update message indicates all further messages will
have a larger tick value.

B.5.3 BackEnd Command Line Parameters

The BackEnd takes command line parameters.

-P : talking with Poker so that it writes out messages one
at a time. It waits for a newline after each message
except for the prompt.

-D: send output to file called Debug.
-T: send output to file call Traces.

4 .o4 4
4 ~ ~-. V ~ V 4~~~

a -- -

B RELATED SYSTEMS Si

B.6 PackIO

PackIO puts an input (stream) file into the format expected by Poker. Each field is packed
into 12 characters, stripping off any characters passed the 12th character or padding the rest
of the field with spaces, if needed, and then terminated with a comma in the 13th position.
PacklO is a "fixed point operator": repeated invocations on a packed file will not change
the file.

The input file must have each entry TERMINATED by a comma. Entries may not have
spaces within them, but spaces and tabs may separate entries, commas, and newlines from
each other. Make sure to mark "empty" entries with a terminal comma, otherwise packlO
will pack your file in a way you might not expect. To quote a comma, i.e. to use a comma
as character input, precede it with a single quote ('). The rest of the characters in a field
after a quoted character are ignored.

The usage of packIO is:

packlO [<input-file> [<output-file>]

If no file names are given, packlO acts as a filter, using stdin for the input and sending "U
output to stdout. If only one file name is given, that name is used for the input file, and the
output is directed to stdout. If two files are named, the first is the input file, and the second
is the output file. The input and output file names must be distinct; if they are not distinct.
packIO prints the error message:

Error: input and output file names must be distinct

and then aborts with an error code of 1. If more than three arguments appear after packlO.
packlO prints a usage message and aborts with an error code of 1.

If the entry is longer than 12 characters, the extra characters are dropped, and packlO
prints a warning message such as:

Warning, line 5, field 2: entry too long; dropping extra characters.

to the stderr device. A warning also is printed for empty lines:

Warning, line 8: empty line in file.

Notice that the files produced by Poker are in thL proper format as produced and need not
be processed by packIO.

- - -- -- '- -"- -. 4'- -. - - Y '--

B RELATED SYSTEMS 82

B.7 Batch Poker

Poker can be run in a "batch" mode by invoking the system with a file name as a parameter.

poker <script>

where the <script> file uses the conventions described for the script execute command; see
Section 15. The result is to run Poker so that the input that would normally come from
the kevboard comes from the file <script>. When the <script> file has been processed, the
keyboard again becomes the input source. The output is still directed to the screen. It is
possible to run Poker in the foreground without using the screen by redirecting the output
to a file. The command

poker <script> > <outfile>

stores into <outfile> all of the information that would normally be displayed on the screen;
this output can be later "played back" by using the UNIX "cat" command. The output files
so produced become enormous (many megabytes) for any reasonable Poker program, so it
is suggested that the output be redirected to the bitbucket device, /dev/null. In this case.
Poker will only produce results, i.e. output streams stored in files, and there is no graphic
record of the run. It is, therefore, recommended that when the screen output is thrown away
that log commands (see Section 15) be included in the script. If with redirected output an
error occurs while executing the script, Poker will abort ($ A); if the script comes to an end.
Poker will exit ($^E). Finally, to run Poker in the background, one must use ^z, or append
an & to the command.

Notice that because batch Poker enables the keyboard whp-o -- c,'cution of the script
is finished, it is possible to create a script that performs .. -tctivitivc normally
performed at the start of a Poker session, such as listing .pc files in the Clipboard, etc. in
order to save having to perform them manually.

B.8 Printing Screen Images
Screen images (created by $^o) are prepared for printing on the laser printer now by poker.
See Section 5 Global Commands.

B.9 Switch Set Copy Utility - SSC

Overview

- .~2 4 .

M8:3

B RELATED SYSTEMS S3

The Switch Set Copy Utility program is a separate utility for manipulating the switch
setting entity of the Poker database. This was written as a quick tool for saving time for one
Poker user. With a little more work, it was made a little more usable by "any" Poker user.

Switch Set Copy (ssc) manipulates arbitrary rectangles in the switch/pe lattice. The
basic operation is to copy one rectangle of switch settings to another rectangle. This includes
reflections of the rectangles. The standard copy is a complete copy, but the user can select
an "or" mode where previous settings of a switch are not touched. Ssc can handle multiple
"SwitchSet" files and multiple phases in a single file. Other commands include turning a
square block of switches in increments of 90 degrees and plotting an arbitrary rectangle of
the lattice.

Lattice specifications and command formats
In ssc, the user must be able to specify a specific switch, not just the PEs. To avoid

counting the number of lattice rows and columns, ssc uses a PE relative addressing scheme
for lattice rows and columns. The row with PE 1,1 is addressed as 1. The row of switches
above PE 1,1 is addressed as 1-1. The row of switches below PE 1,1 is addresed as 1+1.
Also, the row of switches below PE 1,1 can be addressed relative to PE 2,1. For example,
with a corridor width of 3, the row of switches below PE 1,1 can be addressed as 2-3.

To specify a particular lattice element, both a row and a column must be given. This is
done with the format '<row>;<column>'. For example, the address '1;1' specifies PE 1.1.
The address '3+2;4-1' specifies the lattice element that is two lattice rows below and one
lattice column to the left of PE 3;4.

Commands are given to ssc in response to the prompt 'ssc>'. Because the first letters
of the commands are unique, all that is needed is the first letter. Full command names can
be used but all characters between the first character and the first space are ignored. The
space is required to separate the command from the parameters. Parameters are separated
by commas, and are specified by position; thus, optional parameters must be preceded by
the proper number of commas, and commas following the last parameter may be elided.

.1,

B RELATED SYSTEMS K;

The commands
1. read [file, name], [logical name]

write [logical- name],[file- name]
These commands read and write complete SwitchSet files. The files are always referred

to using their logical name. This allows for two copies of the same physical file under two
different logical names. The logical names must be unique. File names may be complete
paths. (Warning: Since this program is written in PASCAL, no attempt is made to verify
that the file exists.)

Defaults:
read - file-name = 'SwitchSet'
logical-name = 'ss'
write - logical-name = 'ss'
file. name = original name for file

Examples:
read reads 'SwitchSet' with logical name 'ss'.
read ,ssl reads 'SwitchSet' with logical name 'ssl'.
read /ul/phil/prog/SwitchSet,philss reads the indicated file and calls it 'philss'
write writes 'ss' to a file called 'SwitchSet'.
write ssl writes 'ssl' back into the original file.
write ,newss writes 'ss' into a file called 'newss'.

2. files
This command lists all the files ciiat are in memory. The listing includes the logical name.

the file name, the size of the processor array, the internal and external corridor widths and
the number of phases. The "current" file and phase are identified in this list. (See visit
command.)
3. visit logical- name, [phase- number] A

This command specifies the "current" file and phase. Unless specifically noted otherwise. A

commands operate on the current file and phase. The read command sets the current file
and phase to phase 1 of the last file read in. The logical name is required.

Default: phase-number = 1
Examples:

visit ss sets 'ss' to current file, phase 1
visit ss,3 sets 'ss' to current file, phase 3

4. copy ul,lr,dest, [from- phase],[to- phase], [from. file],[to- file] ,[OR]
This command is the reason for this utility. It copies a rectangle of the switch/pe latt;-e

to another identical sized rectangle. The parameters "ul", "lr", and "dest" are what specify
the from rectangle and the place to copy it to. "ul" is the lattice element that is the upper left
of the rectangle to be copied. "Ir" is the lower right lattice element to be copied. "dest" is the

Ir 4A . A. . A

-'sj

B RELATED SYSTEMS 85
'V

lattice element that the "ul" element will be copied to. The order of copying is determined
by the row-major-order sequence of the destination rectangle, and proceeds one switch at a
time. Thus, for example, the top row of an array can be duplicated throughout the array by
copying rows 1 to n-1 into rows 2 through n. If "Ir" is above "ul", the copy goes back row by
row from "ul", but the destination is always forward row by row. The switches are correctly
reflected about the east-west axis. A similar thing happens for "Ir" above and left of ul".
and for "Ir" below and left of "ul". The switches are correctly reflected for all copies. The
last parameter turns on the "or" mode. Normally, a switch is copied into the new position,
over writing the previous setting. A PE copied to a switch leaves an empty switch. A switch
copied to a PE does nothing. In "or" mode, current settings of the switch are not disturbed.
The copy from a switch sets only unset positions of the destination switch.

Defaults:
from-phase - current phase
to.phase - current phase
from-file - current file
to- file - current file

Examples:
copy 1;1,4;4,1;5 copies PE 1,1 thru 4,4 to 1,5 thru 4,8.
copy 1-2;1-2,2+1;4+2,3-1;1-2 reflects top half of a 4 x 4 to bottom half.
copy 1;1,4;4,1;1,1,2,ss,ssl copies PE 1,1 thru 4,4 of file ss, phase 1

to PE 1,1 thru 4,4 of file ssl, phase 2.
copy 1;1,2;2,3;3,,,,,OR copies PE 1,1 thru 2,2 to 3,3 thru 4,4

with the "or" mode.
5. turn upper- leftlower- right,number- oL 90s

This command takes a square piece of the lattice and turns it by the specified number
of clockwise 90s. The PEs must be placed so that by turning, the PEs end up in the same
location relative to the square as before the turn. For example

turn 1;1,2;2,1

is legal, but

turn 1;1,2-1;2-1,1

is not legal. The number of 90s should be an integer in the range 1 - 3. A turn of 4 is a "no
operation".
6. plot upper. left,lower- right, [file- name]

This command takes the specified rectangle of the lattice and produces a file for the troff
preprocessor "pic". This file when run through pic produces a picture of the rectangle. The
user may need to add scaling information to the pic file. The units are in inches. Each lattice
element is placed at an integral unit. Seven elements then require seven inches. Scaling and

**grWj *i~.*

.575

B RELATED SYSTEMS 86
S

number size are independent. To size down the numbers use the ".ps" troff command for
setting the point size. (See the pic users manual for details.) If no numbers are wanted in
the PEs, the macro can be changed by putting an 'X' at the end of the first macro line and
deleting the second two lines.

Default: file-name = "picfile"
7. quit

This command does the obvious. No write is performed. Also, no warning is given if a
file is modified but not written out.
8. help

This command prints a list of the available commands with their syntax.
Cautions

This program changes part of the Poker database without regard to the other parts of the
database. Most notably, information in the IONames view may be lost. It is recommended
that this utility not be used to write files after information in IONames view has been
entered.

B.10 Pen Plotting - bbplot

A program, called "bbplot," is available for plotting lattices on the HP7585 (Big Bertha)
and compatible plotters. This program takes as input a "pic" file as generated by ssc. The
program assumes the plotter is inline with a terminal. The plotter commands are written to
standard output. The command line is as follows:

bbplot [-pen_ number] ssc_ pic_ file

The pen number is optional and must be a number in the range 1-8. The plot is done relative
to pl and p2, (see HP7585 user manual). Make sure that p] and p2 are set for the correct
size rectangle before issuing the command.

B.11 Poker Coordination

A system is under development by Janice E. Cuny and her students at the University of Mas-
sachusetts which "coordinates" Poker programs. A coordinated Poker program is one which S
has been automatically converted to be run synchronously without the expensive handshak-
ing protocols used for asynchronous 1/0 [1, 21. Substantial performance improvements can
be achieved with coordination. Inquiries should be directed to:

.p

'4

p

B RELATED SYSTEMS 87

Professor Janice E. Cuny
Computer and Information Sciences Department

University of Massachusetts
Amherst, Massachusetts 01002

[1] Janice E. Cuny and Lawrence Snyder
Compilation of Data-driven Programs for Synchronous Execu-
tion
Proceedings 10th ACM Symposium on Principles of Program-
ming Languages pp. 197-202, 1983.

[2] Duane A. Bailey, Janice E. Cuny and Bruce B. MacLeod
Coordination in the Poker Parallel Programming Environment:
Parallel Code Optimization
Technical Report, 85-21, COINS Department, University of
Massachusetts, 1985.

B.12 Prep-P
A system, called Prep-P, is under development by Francine D. Berman and her students at
the University of California at San Diego which maps large Poker programs down to run
on a smaller number of processors [1]. This experimental system accepts a Poker program
which has as interconnection structure any undirected graph, and "contracts" the graph to
an intermediate graph with a fewer number of nodes. The intermediate graph is then laid
out on a CHiP lattice whose size may be specified by the user (at most 8 x 8). The result
is that several processes will be mapped to one PE, so the Prep-P system multiplexes the
execution of these several processes and provides for the proper communication. Inquiries
should be directed to:

Professor Francine D. Berman
EECS C-014
Applied Physics and Math Building
University of California at San Diego

La Jolla, CA 92093
[1] Francine Berman, Michael Goodrich, Charles Koelbel, W. J.

Robison III, Karen Showell
IPrep-P: A Mapping Preprocessor for CHiP Computers

Proceedings of the International Conference on Parallel Process-
ing (Douglas DeGroot, editor) IEEE, 1985, 731-733.

C USING POKER ON THE COSMIC CUBE SS

C Using Poker on the Cosmic Cube

Introduction

Poker programs written using Poker C can be executed on the Cosmic Cube and Intel iPSC
Hyper Cube. To achieve this, all that the programmer needs to do is to specify the use of a
different back end from Poker's front end. After this, the steps for running a Poker program
on the Cosmic/Hyper Cube are nearly identical to the steps used to run Poker programs
on the Generic simulator. Since the procedure for running on the Hyper Cube is almost
identical to that for running on the Cosmic Cube, further references to the Hyper Cube will
only be made when there is a difference in procedures.

As described in previous sections, the Poker programming environment has two parts:
a front end consisting of a programming environment; and a number of different back ends
which emulate, simulate, or directly execute the Poker programs. Section B.5 describes the
use of the Generic back end. The following describes the use of the Cosmic Cube back end
and the Cosmic Cube emulator.

Writing the Poker program

Poker programs do not have to be modified to run on the Cosmic Cube. However. there
are a couple of restrictions. First, process codes must be written in Poker C since XX
is not supported on the Cosmic Cube. Second, make sure that you specify each integer
as being either a short integer (short int) or a long integer (long int). This distinction is
needed because the Sun workstations which host the Cosmic Cube assume that unlabeled
integers are long integers, while the Cosmic Cube nodes assume they are short integers. This
difference can lead to subtle programming errors if integers of unspecified length (int) ato
sent in messages between the host and cube. The Poker C compiler will warn you when it
detects such potential problems.

Debugging program
The next step after writing your program is to debug it. There are three back ends which ,S

may be used for debugging Poker programs intended for the Cosmic Cube. The first back
end to use is the Generic simulator provided with Poker. This is probably the best place to
start since it uses light-weight processes to simulate the Poker PE's and since it provides the
best control over the execution of the Poker program. For instance, this simulator allows you
to pause the program after each change to a traced variable. It also allows you to interrupt
the execution at any point and later resume it. Finally, using Generic does not unduly tie
up the resources of the Cosmic Cube as would testing the program directly on the Cosmic
Cube.

" "_.'" "::": "'" ;" " " " ;" " '-" "- "Y " " " " -.- -.. ,-;-?-, - ,-. ,-v ' .- -, ",',., S

q i

C USING POKER ON THE COSMIC CUBE S9

Section B.5 describes how to use the Generic back end. Briefly, this involves first setting
Poker's machine parameter to generic-pc, then making the Poker program from the Corn-
mand Request View, and finally tracing its execution in the Trace View. The second back
end is Caltech's Cosmic Cube emulator. After the program is working under Generic, the
program may be executed on Caltech's Cosmic Cube emulator. However. this emulator is
not included in the Poker distribution. If you are interested in running it, you first must
obtain it from Charles Seitz at Caltech (seitz@ vlsi.caltech.edu).

This emulator also cannot handle any Poker program with more than 16 PEs, since the
emulator uses heavy weight processes to simulate the Cosmic Cube nodes. UNIX limits the
number of heavy weight processes each user may have. The Generic simulator does not suffer
from this restriction since it uses its own light-weight processes system for simulating the
Poker PEs.

Using the Cosmic Cube Emulator. First, make sure that your UNIX shell environment,
"cube," is set to a string of pairs which define the name of your group and of the machine
hosting the cube daemon. This can be done by adding a line such as

setenv cube "group test cubedhost machine"

to your .cshrc file. See the Cosmic Cube manual for more information. Then, set Poker's
machine parameter to ccube-em. Then proceed to make the Poker program from the Com-
mand Request View and trace its execution in the Trace View, in the same way as done with
the Generic back end.

The Cosmic Cube emulator is not as versatile as Poker's Generic back end. Specifically,
it does not support:

" Interrupting during the execution of a phase.

" Using the "go" and "execute" commands.

" Dumping or reloading interphase variables.

The timing values reported for the execution are elapsed times measured using the UNIX
gc.:time() call. Thus, the values are highly variable and subject to system load and the
whims of the scheduler.

The last back end is the Cosmic Cube itself. Using the Cosmic Cube as a back end can
be as simple as using Generic, if the Poker front end is on a computer with access to the
Cosmic Cube, or slightly more complicated, if you have to remotely access the Cosmic Cube.
If you are using Poker on one of Caltech's Sun's or Vaxes which are connected to the Cosmic
Cube you can run the Cosmic Cube from within the Poker front end in the same way as you
ran the other back ends. Just set the machine parameter to ccube, then make the program
from the Command Request View, and then finally trace it in the Trace View. Running the

C'

~%'~p~ ~ 'y' '..-, 1 - . V pa,~ (r r '

C USING POKER ON THE COSMIC CUBE 90

program from within Poker may be useful for small test programs, but is too cumbersome
and slow for most Cosmic Cube Poker programs.

A faster way to execute the Cosmic Cube program is to run the back end directly without
the use of the Poker front end. The steps are as follows:

1. Create the Poker program using the Poker front end as usual. Make sure your ints are
labeled as either short or long.

2. Create the Poker intermediate files. If you executed your program on the Cosmic Cube
emulator, these files already have been created. Otherwise, enter Poker and type

* CTRL-W, to make the Makefile, mapping, and code files,

9 CTRL-I, to make the inter-phase.c file,

0 CTRL-N, to make the connections.o file, and

3. Create a command file for executing the Poker program. This command file uses the
same syntax as Poker when Poker talks to the back ends. Appendix B.5.1 describes
this syntax. Three of the most commonly used commands are "p" to set the phase, "r
0 0 0" to run the current phase until all PEs are done, and "q" to quit. An example
file to run the first three phases of a program and then quit is:

p 1
ftt.

r0 0 0,N

p 2

rO 00
p 3

rO0 0 "0.
q

Note that the phases are one origin, as the Poker user would expect.

4. Transfer the intermediary files to a computer with access to the Cosmic Cube. This
can be done using rcp or ftp. The following files should be transferred: *.pc, Make-
cc (Make-ipsc for the Hyper Cube), mapping, inter-phase.c, connections.o, ccode*.c,
.CosmicDefs.c.

5. Log onto a computer with access to a Cube computer.

6. Compile the Cosmic Cube executables from the intermediary files. This is done by
typing

VVI

INt

C USING POKER ON THE COSMIC CUBE 91

% make -f Make-cc (Make-ipsc for Hyper Cube)

This make command creates three separate executables: the spawner that interfaces
to Poker and controls the execution of the program: the file server (fileio) that is the
interface between the Cosmic Cube program and the UNIX file system; and a set of
codes to be mapped onto the Cosmic Cube nodes.8

7. If necessary, modify the mapping file produced by Poker. The purpose of this mapping
file (named mapping) is to specify the type and size of cube to allocate and then map
the PEs onto the nodes of the Cosmic Cube. For instance, the first line of the file

cosmnic-,cube 2

1210
2120
2230 :

allocates a two-dimensional sub-cube of the Cosmic Cube. The next four lines each
map one PE of a 2 by 2 array to its own node. Each of these lines is of the form

PEi PEj node processID
, -

where the PEi and PEj are one-based and the node and processID are zero-based. If
there are less than 64 PEs, Poker allocates a large enough cube to map each PE to its
own node. The PEs are assigned to nodes according to their row-major order. If there
are more than 64 PEs, Poker wraps back to node 0 and uses the next higher process
number to map another PE to each of the nodes.

You may want to change this mapping for two reasons. One reason is if you want to
run on a smaller cube. This requires that you change the cube size in the mapping
file and change the node and process numbers of PEs mapped outside of this smaller
cube.

The other reason is that you may want to preserve the locality of your interconnection.
Namely, PEs that communicate with each other should be placed on adjacent nodes. In
general finding such mappings is a difficult problem. See the "C Programmer's Guide
to the Cosmic Cube" for information on the physical connectivity of the Cosmic Cube
nodes.

'For more details see Lawrence Snyder and David Socha, Poker on the Cosmic Cube: The First Retar-
getable Parallel Programming Language and Environment, Proceedings of the International Conference on
Parallel Processing, pp. 628-635, 1986.

:-;

,-.

C USING POKER ON THE COSIIC CUBE 92

8. Execute the Cosmic Cube back end. The spawner acts as the interface to the Cosmic
Cube back end. To directly execute this back end, you can either invoke the spawner
alone and type in the commands to control it, or redirect the standard input from a
prepared file of commands, as in

% cspawner < commandScript (ispawner for Hyper Cube)

The Cosmic Cube shares some of the same restrictions as the Cosmic Cube emulator.
Namely, it prohibits use of interrupts while executing a phase, and does not allow use
of the "go" or "execute" commands. While it does allow tracing, be warned that the
increased message traffic associated with tracing may severely degrade performance.
The timing results are reported in milliseconds and indicate the time taken by the last
PE to finish.

Problems

Hints

The Cosmic Cube kernels are easily corrupted. If your program doesn't work on the
Cosmic Cube but worked on the Cosmic Cube emulator, rebooting the Cosmic Cube
kernels often will fix the problem. To do this type (the '%' is the UNIX prompt)

% getcube cosmic N (ipsc for Hyper Cube)
% killcube

and wait for the kernel to be re-installed. This takes about a minute. Choose the
"N" to be the dimensionality of the cube required by your program. In extreme cases
you may have to restart the cubed deamon which controls the Cosmic Cube and its
emulator. See Su, et. al.'s "C Programmer's Guide to the Cosmic Cube" for details.

If your Cosmic Cube program has problems and you have to kill it, afterwards type
"peek" to make sure that you have freed the Cosmic Cube space for others to use.

How to report problems

If you have problems, please send a message describing the problem and containing
the smallest example of it to pokeralarry.cs.washington.edu.! -

-- r

C USING POKER ON THE COSMIC CUBE :3

How Poker interacts with the Cosmic Cube back
end

Snyder and Socha, previously cited, discusses the general plan for composing the Cos-
mic Cube executables from the Poker sources. Briefly, cpkcc first calls cc2c to translate
each of the .pc Poker C codes into a .pc.cc file. This .pc.cc file is written regular C. V
During compilation, the cc2c compiler also produces a .inter file from each of the .pc
files. This .inter file contains a list of each of the interphase variables and its type.
Interphase arrays are listed as pointers since their size is determined by the previous
export. Once all of the .inter files have been created, they are compared to make sure
that there are no inconsistences in the use of the interphase variables. If there are no
inconsistencies, the merged set of interphase variables defines the interphase variable
space of the PEs. Next, cpkcc calls cc to compile the .pc.cc files into .pc.cc.o files.
These .pc.cc.o files are then linked in with a pre-defined main routine, as described in
Snyder and Socha.

Ali

.4,

4-

Poker Command Summary

The symbol $ abbreviates "escape key" and '<char> indicates striking the <char> key

while holding down the "control key."

Global Commands

$h cHip parameters $'a Abort, no state save 'f display File

$s Switch settings $'e End, save state 'V +page

$c Code names $'o Output screen $v -page

Sp Port names $d reDraw screen u eof

$i Input/output names ^p phase change $u bof

Sr command Request ,x eXecute command line $$$ noop

St Trace values 'h backspace z pause
"j UNIX Interrupt (abort,

Specific Commands

Switch Code Port I/O Cmd Trace

Set -Names Names Names Request Values

A Null ^b Buffer ^b Buffer 'b Buffer Sm Make e Event

c Center ^c Center c Center 'c Center c Compile c Center

'd Draw ^d Deposit "d Deposit 'd Deposit ^d Dump ^d Dump

r Remove 'r Remove 'r Remove "r Remove 'r Reload r Reload

'g Go for "t Toggle t Toggle i Input 'k linK t Toggle

$^k Klear $k Klear $^k Klear ^o Output "1 Load 'y displaY

"y displaY ^y displaY "g Go 'I Load
'n conNections 'g Go
^\ interrupt \ interrupt
-b liBraries
'i Interface
w Write

Execute Commands

alias <is> <namel> <name2> poke <is> <name> <value>

bind <stream> <file> replace <old string> <new string>

continue [<condition>] (tracelnotrace] reset [<phase>]

copy <from structure>, <to structure> run[<phase>] [<condition>] [tracejnotrace]

display<type> script <file>

flushbuffers set <param><value>

help shell <UNIX cmd>

if <i> <j> <var> relop <val> skip <1> test <predicate>

log <file> unbind

peek <is> <name>(<file>] unalias <is> <name>

_ _ .., .. %~ ~ -N -. -. -.- ..- I ,,.,,, ' ,-'.-..,- ' '"..-.-

c,,~~~~~~~~~~ %"" i : l :l- l

12 PROCESS DEFINITION LANGAJAGES 46

0 0

.4 '&A '
-. O'V

a - M t

Writer Reader Writer Reader Writer Reader

write CEDrite

cost cost {cost
nae rnsfer transfer write tase transfer write transfer ~

cost cost cost

cot cost Ot ct

Cwrite
Rtransfer transfercost ..t ostI
transfer

rs
cotread read

Idle . cstos
cost ..

port <- ? ? TRUE port <- ? ? FALSE port <- ? ? FALSE
<- port ? ? TRUE <- port ? ? TRUE <- port ? ? FALSE

Figure 9
Poker time model showing effect of varying port 1/0 parameters.

115 11

