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Abstract

/Most parallel matrix-matrix product algorithms for MIMI architectures are systolic. These algorithms can be
adapted to be used on a general purpose architecture, such as the CHiP or cube machines. When the processors already
contain the matrices, the algorithm can still be used by modifying it to circulate the data as if it was being fed in from an
external source. We present a non-systolic matrix product algorithm in which the data movement is not the circulation
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1. Introduction

There are several algorithms for dense matrix-matix product on highly-parallel architecwres(l-5].

These algorithms are designed for systolic architecturs. When using a general purpose highly-parallel

machine like the CHiP[6], the systolic algorithm is directly implemented by configuring the CHiP to match

the systolic machine. In computations that use matrix product as one operation in a long series of opera-

tions, the matrices to be multiplied are likely to be contained within the processors. To use the systolic

algorithins, the matrices must be circulated as if they were being fed in from an external source. This pro-

vides an easy solution, but perhaps not the most efficient one. In addition, some of these algorithms(2,3,]

require the matrices to be reshaped before the circulation can begin.

This paper presents an algorithm for dense matrix-matrix product that assumes that the data is

already contained within the processors. The data does not follow the circulation pattern of the systolic

algorithms and no data reshaping is required. Also, this algorithm illustrates the use of the divide-and-

conquer paradigm in parallel algorithm design. This algorithm has the advantage that it can be imple-

mented using n2 or n3 processors giving running times of O(n) and 0(log n), respectively.

In Section 2 the algorithm is presented. An analysis of it's running time is done for n2 processors.

Section 3 describes an implementation of the algorithm using the Poker system[5]. Section 4 describes a

matrix product algorithm for the the Wavefront Array Processor(WAP)(41, and its implementation using

the Poker system(5]. Section 5 describes a modified form of the WAP algorithm and its implementation. A

comparison of the run times of these algorithms for several sizes of matrices is given.

2. The Algorithm

Consider the product of two dense nxn matices, AB = C, using ni processors. Assume that n = 2k

for some constant k. Picture the processors as an nxn array where the processors are labeled PE,, for

l~i,jn. The matrices A and B are initially distributed in the n2 processors such that a,, and bi1 are con-

tained in PEj. After the product we want c,, to be contained in PEj.

To begin with, consider the 2x2 case. PEIt contains aI and b,1. To compute cII the values a,2 and

b2I are needed. Similarly, all other processors need only 2 elements not already stored at that processor. To

provide for direct communication, a grid interconnection stucture is used. The processors then send their
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aq value to the other processor in the sume row, and their bi, value to the other processor in the same

column (see Figure 1). After this communication, each processor, PE,-, has all the data required to compute

cij.

Now consider the nxn case. We use Strassen's[T] matrix decomposition where two nxn matrices can

n n '
be viewed as two 2x2 matrices of ix - matrices. The 24 matrices are then multiplied using matrix pro-

n n

duct and mamtx addition on i-t matrices.
22

Let A1 1 be the upper left S-x- submatrix of A. Also, let the other 3 submatrices be A12, A21, and
22

A22. In the same way, let Bi be the submatrices of B, Cij the submatrices of C, and P,, the subarray of the

processors. Then Aj and Bij ae contained in Pij. As in the 24 case, A12 and B21 are required to compute

C11. If the corresponding processors in P11 and P12 are directly connected (see Figure 2), A12 can be sent to

P11 in parallel with one communication step. B2 1 can be sent to Pi1 using a similar connection scheme in

one communication step. The full connection structure connects PEj with both PE, . and PEi# A. With

All, B11, A12, and B12 in P11, C11 can be computed by doing two --x- matrix products and one matrix

n n

addition. These products can be done using this same algorithm on the -- x7- matrices. The recursion will

stop after k-I levels when a 2x2 matrix product is done. The matrix addition is performed element by ele-

ment.

-al2l a12 bl, b12  - C12 1 [bjj+a 12b21 ajjb12+aI2b22

ii . L .. L.

aa

a12

all

bl1  b2l b12  b22

a22

Figure 1: 2x2 product and communication
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FIGURE 2: 4x4 connections

Each recursion level requires it's own interconnection structure. The complete interconnection struc-

ture, supplying an edge for every communication in the algorithm on every level of recursion, is the hyper-

cube.

The time required for this algorithm is O(n). To prove this claim the recurrence relation for the time

is

t(n) = 2tc+t,+y.+2t( .)

where q(2) = 2t,+t1+2t,, t, is the time for a communication step, t. is the time for a scalar addition, t. is the

overhead timne for each recursion level and t, is the time for a scalar multiplication. T"he closed form is

t(n) = (2n-2)t,n-)t+(n-2)tIntm.

To achieve the O(log n) running time, we need to evaluate both -Ix- marxpout ttesm

time. The algorim start with n2 proessors active. Thes processors contain the original matrices, A and

% % % , % %



B. The processors communicate as in the 0(n) algorim. At this point, each .- -- block of processors has

2 2

two matrizx producs to compute. One of the products is sent to a set of previously inactive processors.

This doubles the number of active processors. The same algorithm is used to compute the "new" products.

After the xj- products have been computed, the processors that were sent the second product, send back

their resulL The results of the two products are added element by element to form the result of the nxn

matrix product. The recursion for this algorithm stops when a 2x2 product is to be computed. Each pro-

cessor does both multiplications and the one addition. M

To prove the claim of O(log n) time, the recurrence relation is

t(n) = 5tc+ta+t04-t(-y)

where t(2)=3,+t,+t,, and the constants measure the same quantities as before, but for this algorithm. This

recurrence measures the time for the original n2 active processors. The 5t, comes from two t,'s for the oi-

ginal communication, two t 's from sending one subproblem to a "new" processor and a t, for getting the

result back from the "new" processor. The closed form is

t(n) = ((log n - )+3)t,+log n t,+(Iog n -l)to+2t.
n
3

This algorithm uses M processors. It starts with n 2 active processors. After the initial communica-
2 n n

tion, the n2 processors are divided up into 4, -x- sections, each having two matrix products to compute.
2 2

Every processor sends two values, its part of one matrix product, to an inactive processor, thus activating it.

This doubles the number of processors. We now have 8, -Ix- problems using 2n 2 processors. Each

matrix product is then computed by a "recursive call". This is one recursion level. At each successive 4,

recursive level the number of active processors is doubled. There are log n -1 levels of recursion. This

gives nr'' or M active processors at the evaluation of the 2x2 products.
2 S

3. The Poker Implemeutatio

The Poker system(S] was used to implement this algorithm although Poker and its sequential pro-

graming lamguage XX (dos equis) does not directly support recursion. The goals of the implementation

;Lp . :-. -
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were to follow the recursive algorithm as closely as possible with the nonrecursive system and to reduce

the complexity of the communicaion as much as possible. Recursion was acheived by explicit manipula-

ton of a stack to save data and record the position within the recursive algorithm. The communication was

simplified by dividing it into a phase for each level of recursion.

An instance of the algorithm for n= 2k has log n = k phases. Each phase has a unique ikterconnec-

tion structure. For reference, we number the phases 1,2,...,k. Phase 1 connects processors together that are
n n

processors away. (See Figure 3.) Phase 2 connects processors together that are -1 processors away, but

n n
only in blocks of Ix- prcessors. There are no connections between the blocks of -x- processors.

Finally, phase k connects blocks of 24 processors with the grid pattern. (See Appendix B for the 16x16

connections.) In each phase, a processor has exactly two other processors connected to it. The port that is

connected to the processor in the same row is named "horiz". The port that is connected to the processor in

the same column is named "vert".

A phase is roughly equivalent to a recursive call. Phase 1 is run for a "call" for an nxn product,

phase 2 is run for a "call" for an -- x2- product, and phase k is run for a "call" for a 2x2 product. The

phases must be run in the proper order for a correct result. We will discuss the correct order later.

F : o,

Figure 3: rnxn connections
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To keep n&c of "local variables" and the progress through the algorithm, a stack is implemented. A

.stack frame" is composed of three elements. The top element of the frame contains a tag. ibis tag, an

integer value of 1or 2,repreentswhich recursive call this fraeisrecording. The other two elemnents

either contain two values waiting for a later multiply or contain the result of a previous multiply.

Communication from phase to phase is done using dhe feature of XX that identical declaration sec-

tions use the same memory allocation. All XX codes have the same prefix in their declarations. (See Fig-

ures 4 and 5 and Appendix A.) This yeilds an "unnamed common." The stack is part of this common area.

The other variables in the common area ame "aele", "bele", 'othera", "otherb, and "top". At the start

of the a phase, "aele, and "beIt" contain the corresponding values of A and B for the current product. The

variables "othera" and "otherb" are used as local variables, and "top" points to the top of the stack. A

larger value for "top" implies a larger stack. The value 0 implies an empty stack. This variable is assumed

to be 0atthe start of phase 1.

code mmnii; /* upper left and lower right *1

ports vert, horiz;

begin
int vert, horiz;
int aele, bele, othera, otherb;

/* aele and bele are the entries from A*B. the result is left in aele
int stack [ 24 1;
sint top;

1* send values *i
* horiz <- aele;

othera <- horiz;
vert <- bele;
otherb <- vert;

/* multiply *1
/* start "recursion" ~
stack~top+1J : othera;

* stacktop+21 : otherb;
stackf top+31 :- 1; /* this is first multipl" *
top:- top +3;

end.

Figure 4: XX code for processors in the upper left and lower right.



Each phase is divided into two distinct operations. The first is the communication part. The second

is the computation and bookkeeping part. (Phase I to k-I use the codes "mmii" and "mmij". Phase k uses

the codes "mm2ii" and "mm2ij". See Figures 4 and 5 and Appendix A.) For the communication part, each

processor sends its aij (aele) value out on the port "horiz". Similarly, the bj (bele) value is sent out on the

port named "vert". The values that are received are placed in the variables "othera" and "otherb."

After the communication steps, A,,Bt+A 2 B2j must be evaluated. Remember that A,1 is the upper

left quarter of the 2x2 matrix of matrices or scalars. If it is a 24 matrix of matrices, the case for phases I

to k-I, this is computed by doing two matrix products and a matrix add. Since these products can not be

done in parallel, the data for one of these matrix products must be stacked. In both the upper left and the

lower right, "aele" and "bele" contain the elements that need to be multipled. To reduce data movement,

we then stack "othera" and "otherb". (See Figure 4.) In the lower left and the upper right. we must stack

one of "aele" and "bele" and one of "othera" and "otherb". We arbitrarily choose to stack "othera" and

"bele". (See Appendix A.) Since this is the first of the matrix products, the tag 1 is stacked.

After the the new stack frame has been added to the stack, it is time for the first "recursive call".

Notice that the current phase is completed. We do not return to this phase because the setup for the

"second" recursive call is done in phase k (24 connections). The work can be done there because no com-

munication is required to set up for the "second" recursive call. Also, the matrix addition is performed in

phase k for the same reason. The recursive calls are implemented by running the next phase. For example,

the recursive calls associated with phase I are performed by running phase 2.

Consider the operation of phase k. Remember that the communication is for 2x2 matrix product of

scalars. The communication takes place in the same manner as all other k-I phases. After the communica-

tion, each processor contains all the data necessary to compute the c,, for the 2x2 product. The processors

in the upper left and lower right compute "aele*bele+othera*otherb". (See Figure 5.) The processors in the

lower left and the upper right compute "aele*otherb+othera*bele". (See Appendix A.) The result is placed

in "aele".

At this point, the recursion is terminated. We now simulate the returns. This is where matrix addi-

tion is done along with stack clean up. If the tag on the top stack frame is 2, the stack frame contains the

result of a matrix multiply that needs to be added to the value in "aele". After the addition, the stack frame

V-
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code mm2ii; /* upper l and lower right *-

pore bcriz, vert;

begin
int horiz, vat;
int aele, bele, othem, otherb;
I* aele and bele are the entries from A'B, the result is left in aele *1

int stack [ 24 1;
sint top;
bool second;

I* send values 1
horiz <- aele;
othera <- horiz;
vert <- bele;
otherb <- vert;

/* multiply */ K

aele :- aele * bele + othera * otherb;

/* clean up stack and get ready for next communication phase 0/
second :- true;
while second & (top > 0) do bein

if stack[top] - I then begin
/* only first multiply has been done *
bele :- stack[top-1];
stack[top-l] :- aele; /* save result of first multiply */
aele :- stack(top-21;
stack(top] := 2; /* this is second multiply /
second :- false; /* need to start a new phase */

end else begin
/* finished, just add */
aele:- aele + stack(top-1];
top:= top -3;

end;
end;

end.

Figure 5: XX code for 2x2 case.

is deleted from the stack. This is repeated until the stack is empty or the tag in the stack frame is a 1.

When the stack is empty, the nxn product is stored in "aele".

When the tag in the top stack frame is a 1, we need to set up for the second recursive call for some

recursive level. The level is unknown. The actions are always the same. The value in "aele" is the result of

the first product. This needs to be put on the stack during the second recursive call. The values in the top

stack frame must be put into "aele" and "bele". Also, the tag in stack frame must be changed from I to 2.

With this done, it is time to change to the correct phase. This may be any of phases 2 to k.



The phas must be tn in the correct order. Since them is no automatic control for running phases

in Poker, the programr must know the order. For the nxn product, the order is phs 1 followed by 2

sequmces of phases for -x- product. For the - x--- product., te order is phase j+l followed by two
2 2 2J 2J

seque oftheorder for-!x-- produt For example, the 8 order is phases 1, 2, 3, 3, 2, 3, and 3.

Aftr the execution of all the phases, the result of the nxn matrix-matix product is found in "aele".

4. T,. WAP Algorthm

To evaluate this recunive algorithm, we chose to implement and compare the algorithm for the

Wavefront Array Processor(WAP)[4]. Although the WAP may not be a systolic array, the matrix product

algorithm has data flow patterns typical in systolic algorithms.

The matrix product algorithm for the WAP uses n2 processors connected in a nxn grid. The data is

fed in along the top n processors and from the left n processors. The matrix A is arranged to enter column

by column, starting with the first column. The matrix B is arranged to enter row by row, starting with the

first row. (See Figure 6.) All processors execute identical procedures. The result, c,j, is initialized to zero. A

loop is executed n times that reads an A value from the left and a B value from above, multiplies them

together, and adds the result to cq. The A and B values are sent to the right and down respectively. This

b43 b34b42  b13  b24
b41  b32  b23 b14b,1  b22  b13
b2l b12

a14 a13 a12 at I

V a24 a23 a22 a2l

'pi

a34 933 a32 a11

a"4 a43 a42 1141I Figure 6: WAP organization
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causes the upper left processor to be the first processor to start execution. As the data moves into the array,

there is a wavefront of executing processors in a diagonal across the array. PE, cannot start processing

until the data wavefront reaches it. With this delay and the compute time necessary to compute c,,, PE,,

uses

t(n) = (4n-4)t.+n(t+t,)+ntm",

time, where the constants measure the same quantities as before, but for this algorithm. The recursive

algorithm has a factor of two fewer communication steps. This can have an impact when t, is the largest of

the constants.
'U

This algorithm was also implemented on the Poker system. It was modified to start with the data in

the processors. The processors then circulate the data uing end around connections to connect the last

processor in a row or column to the first processor in the same row or column. (See Figure 7.) Notice that

the matrix multiply is correctly computed if the a's and b's in Figure 6 were to enter the array in the reverse

order. The reverse order is the result of a direct right shift and down shift of all the data using the end

around connections.

The activity at each processor is divided up into two parts. The first is to circulate the data. See Fig-

ure 8.) Each processor sends its a to the "right" and its b "down". Then, it repeats the a's coming in from

0 0, 1. 0. 0:"

2 44
olU

Figure 7: 4x4 connections for adapted WAP algorithm ,-.

.4'
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ththe lf n he b's rm "up". After all the datahas been passed on, allhhat remains is tocomputeis c.

This is just the accumulation of the a's times the b's in the order that they arrive at the processor. These a's

and b's ame sent on to the next processor in the same row and column respectively. The only exception to

this is the last row and column. There is no need to send the A values "right" from the last column, or to

send the B values "down" firm the last row. This gives rise to three special codes, (See Appendix A.) one

for the last row, the righmost column, and the lower right pe, PLF.

S. The Modified WA? Algorithm

The direct implementation of the WAP algorithm followed the wavefront behavior of the original

machine. With the fiexability provided by then CHiP architecture, we can do some preprocessing on the

code matmul ( size ); /* WA?, all except last row and column *

ports left, right, up, down;
begin

int aele, bele, cele;
int left, right up, down;
int size;
sint indx, PEn, max;

PEn :- size;

/* compute max of PEi, PEj I
if POi > PEj then
max: -PEi

else
max: -=PEj; A

I* start wave around ~
right <- aele;
down <- bele;
for indx :- 2 to max do begin

if PEj >- indx then begin aele <- left; right <- aele end;
if PEi >- indx then begin bele <- up; down <- bele end;

end;
/* do the multiply
for ind :- I to PEn do begin

aele <- left;
right <- e;
bele <- up;
down <- bele;
cele :- cele + aele *bele;

end;
end.

Figure 8: XX code for WA? matrix product



rows of A and the coluns ot B so that all processors can start working imm~ediately. Since they all start at

the same tinim they all stop at the same time, eliminating the (2n-2)t aim required for the wavefront to

reach processor PE..

The first phase of the algorithm does the preprocessing. Row i shifts the elements of A right by i- I

piocessors. Colunj shifts the elements of B down by j-lI processors. The shifts assume wrap around, thai

is, JNroc55O PEA. is left of PEF1. For this implementation, it was possible to put a direct connection

between the source and destination processors. Figure 9 shows the Wx connections. (See Appendix A for

the processor codes.)

After the preprocessing, each processor contains data required to start the sum of products immedi-

ally. The sum variable is initialized with the product of the current ad, and bN. The loop executed by each

processor sends the current a*. to the right, the current bkj down and then adds to the sum variable the pro-

duct of the aik and bkj it just received from the left and above respectively. After n- I iterations, the loop

terminates.

The time used to compute the matrix product using the modifed WAP algorithm is

t(n) = t4(n)+(2n-2)tc+(n-l )(ta.+to)+n6t

where t1(n) is the time for the preprocessing, and the constants measure the same quantities as before, but

for this algorithm. Since 4~(n) is a constant for our implementations, we can ignore it. For larger size prob-

lems, this cost may not be constant For the 16x16 implementation, the preprocessing had to be done using

two phases due to the number of connections required. (See Appendx C for the interconnection structure.)

nxn recursive WAP Mod WAP W
(ticks) (ticks) (ticks) (ticks)

2)a 2219 6458 4095 15054
4x4 7571 14065 7938 135814
848 18359 30696 15646 1150950
116416 40385 70481 31354 9469030

Table 1: Running tines on Poker 3.0

d., *= . .. -.Y ,. .-' , ','! 'I . ". "J' w",t P~~w .) d' rM r " w' w~ wS
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00000000000000000000000000000000000
00000000000000000000000000000000000
0 0 0 0 0 00 0 00 000 0000000 000 000O 000
000000 00 00 000O 00 00- 00 00

000000 000 0000000000 00
00000010 00 0 0 00 0 00 -0 0 -- 00 00

000 8e00
00 00

00000000

0000 0 00
0 00 00

00 00
00000000
0 00

000 00
000 000

00 00
00000000
00000 I\~l 000

0000 -00
000 00

0000 00
000000 000
000000 000

100 00

0000 -00
0000j 00

00 00

000000000000000000000

00000000000000000000000000000000000

Figure 9: Modified WAP preprocessing connection for 8x4



6. xerloaRnub

All of these algorithm were implemented for several values of n. All algorthms were run with two

extra phases. The first extra phase loaded the test data into the processors from a file. The other extra

phase dumped the results into a file. Since we were inmteested in the performance of these algorithms start-

ing with the data in the processors, we ignored the ame used in these extra phases. Table I gives a sum-

mary of the run anus for these algoithms. One tick represents one microsecond on the 64 processor Prin-

gle, the machine simulated by the Poker system. For any size with 64 or fewer processors, these times can

be acheived by the Pringle. For the sizes with more than 64 processors, the times are arrived at by using

the same ground rules used by the Pringle.

Because of the Pringle's rather antiquated technology, the speed-up comparisons are more relevant

than the absoulte times. A I processor system was used to run the standard 3 loop, n3 algorithm for all

sizes of matrices. (See Appendix A for the code.) The speed-ups listed in Table 2 are using the sequential

value divided by the parallel value. We can see the lack of overhead for the 2X2 recursive algorithm.

Also, we can see the effect of the constant step in the modified WAP algorithm.

PE count recursive WAP Mod WAP
4 6.78 2.33 3.68

16 17.94 9.66 17.11
64 62.70 37.50 73.56

256 234.47 134.35 302.00

Table 2: Speed ups

7. Summary

In designing algorithms for general purpose MIMD architectures, it is possible to adapt known algo-

rithms. We have shown that this adaption may not produce the most efficient algorithm on the new archi-

tecture. We have shown two algorithms that had better performance than the adapted algorithm. One of

these was a modifcation of the orignal algorithm taking advantage of the new architecture and original data

placement. The other algorithm showed that designing a totally new algorithm may yield good results.

Also, we have shown that the divide-and-conquer paradigm is useful for developing new algorithm.

11
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Appeadix A: XX coda

Recursive migorkha codes:

code mmij; /0 lower right and upper left *1

int horiz, vert;
int aele, bele, odiera, odherb;

1 aele and bele are the enries from A*B, the result is left in aele *
int stack [ 24 ];
sint top;

/* send values 1
horz <- aeie;
othera <- horiz;
vert <- bele;
otherb <- vert;

I* multiply *1
/* start "recursion" *1
stack(top+1] := odera;
stack[top+2) := bele;
bele := otherb;
stack(top+3] :- I; /* this is first multiply */
top:- top + 3;

end.

code mm2ij; /* lower left and upper right *1

ports horiz, ven;

begin
int horiz, vert;
int aole, bele, othera, otherb;
/* aele and bele are the entries from A'B, the result is left in aele *I

int stack [ 24 1;
sint top;
boot second;

I* send values I

horiz <- aele;
othera <- horiz;
vert <- bele;
otherb <- veot;

I* multiply *I
atle :- ale otherb + othera bele;

10 clean up stack and get ready for next communication phase *f
second :- roe;
whle second & (top > 0) do begin

or" W



if stack~lop] -1 dIhe begin
/0only firt ultiply has been done1
bee:- saokfop-1];
stack(top-1] :- ael.; /* save result of first multiply Ot
al. stack[top-2];
stacKtop] :.2; P this is second multiply/
second :. false; 1* need to star a now Phase *

end else begin
/* finished, just add
Moe :- isle + staok~top-l]1;
top:. top -3;

aid;
end;

end.

WAP codes:

code mmlow ( size ); /1 WAP, last row1

ports left, right, up, down;

begin
int aele, bele, cole;
int loft, right, up, down;
int size;
sint indx, PEn;

PEn :. size;

P~ start wave around *

right <- aele;
down <- bele,
for indx :- 2to PEn do begin

if PEj >- indx then begin isle <- loft; right <- aelo end;
if PEi >- indx then begin bole <- up; down <- bole end;

end;
/* do die multiply *

for indx :- 1 to PEn do begin
isle <- left;
right <- isle;
bole <- up;
cole :- cole + aele *bole;

end;
end.

code mig ( size); /* WAP, rightmost column*/

port loft, right, up, down;

begin
int asle, bele, cole;
int left. ight, up, down;
let sn;



Sint hndx, P~n;

PEn :- size;

I* start wave Woun
fight <- aie;
down <- bele;
for indx : 2 to PEn do begin

if PEj > dix then begin aele <- left; right <- aek end;
if PEi >- indx then begin bele <- up; down <- bele end;

end;
do the multiply *1

for indx :- I to PEn do begin
le <- left-

bele <. up;
down <- bele;
cele :. cele + aele * bele;

end;
end.

code mmlr ( size); /* WAP, lower right pe, PEn,n *1

ports left, right, up, down;

begin
int aele, bele, cele;
int left, right, up, down;
int size;
sint indx, PEn;

PEn:. size;

/* start wave around /
right <- aele;,
down <- bele;
for indx :- 2 to PEn do begin

if PEj >= indx then begin aele <- left; right <- aele end;
if PEi >- indx then begin bele <- up; down <- bele end;

end;
J* do the multiplyl
for indx :- 1 to PEn do begin

aele <. left;
bele <- up;
cele :- cele + aele * bele;

end.

Modtified WAP codes:

code awoue; / first column except processor 1,1 1

po sin, stt;

begin



int aske bole;

1' conununicate
Sout <c- aele;
aele <- ain;

WA&

code broute; 1* first tow except processor 1,1

ports bin, bout;

int aelo, bete;

I* communicate1
bout <- bele;
bole <- bin;

end.

code route; I* all processors except first row and first column '

ports ain, aout, bin, bout;

begin
int aele, bole;

/* communicate ~
aout <- aeic;
aole <- sin;
bout <- bole;
bole <- bin;

end.

code matnul ( PEn;

ports left, right, up, down;

begin
int sele, bole, cole;
int PEn;
sin: indx;

/* do dhe multiply
cole :- aele*bole;
for indx :- 2toPEn do begin
right <c. ise;
aele <- left;,
down <- bole;
bole <- up;
cole :- cole + aele bole;

end;

NJ I, Ww-, I-w III



endL

SequentW code:

code matmul; /* sequential version for comprison */

int aele[16,16, bele[16,16], cele[16,161;

sint size;
sint i, j, k;

/0 multiply *1
fori :- I to size do

for j :. 1 to size do begin
celefij] :. aeleti,II * belefIlj];
fork:- 2 tsize do
cele(ij] :- cele(ij] + aele(i,k] belekj];

end;

end.

...
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Appendh B: 16416 confectons

The comtom sunaam for die 16416 is not inunediately obvious. Fom oompleeus, we we anclud-

ing all die interconnecton stuures for the 16416 product We will show enough of each structure so that

the ful 16416 can be reconsrucied, by use of relicaion and reflection.

000000000000000000000000000--------
000000000000000000000 ----- 7' :: :7, - -
000000000000000-----

000000000 0000 000 0000: 00--:

000000 0000 0000 0?01--- --

0000 0000 0000 00

0000 00 00 000 0 00 00 -

000 000 000 000 0 -

000 000

000 000

00 0 0 00 G

161 pe0lf0onr

00 0000~~ 00 0 0 0



00000000000000000000)a-Q o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
000000000002?SR-----,,,,_----_,,,.,,e-- 000000000
0000 -
000000000000 0000 00 000 0000 ocll- Oooo
0000 00 00 00 00 00 00 00

3"* 
, o 000

0000 0000 0000 0000 0000 0000 00000000 000 00 2-2-20 ee - --*-,-::eoooo 0000
000 00 -- - ;:1,40::76p - : :/- - 00 0
00 0000 0000 0 00 000 oooiK-o;o 000 00
00 0 0 0 0 0 0 00 00

0
00 0 00 0 00 0 00 0 00j; 00 o 00 o

I W00 0 00 000 ---- 9 00 0 00 0
00 000 : :: I/ /- - -- o 0
00 000 000 000 00 000 000 000 00
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 22 lieo 00 0
0 00 - - 0
0 000 000 000 000 000 000 000 00
0 0 0 0 0 0 0 0

0 0 0 0 0 0 0
0 0 mc - - 0 0
0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 000 000 000 00 00 0 000 00
0 00 00 0 00 0
0 0 0 0 0 0
0 0 0 0 0 IK 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
00 0000 0000 0 222 0 000 0000 0000 00
00 000 000 -- 00 000 0
00 0 00 - 0 0
00 0 00 0 00 00 0 0 0 0 0 0 0 0 0
00 0 0 0 0 0 00 00 00
00 0 00 0000 0000 00 000 0000 0000 00
000 0000 0000 -08- -ee 000 0000 0
0000 000 - - - D 0 0
0000 00 0 0 00 ONO0 0 0 0 D0000 o 00 (00i 00 00 o o 10, o

8X8

. .. ..............



o 0000 0000 0000 0
00000 0000 0000 00

0000 0000 0000 0

000 000 000 0

000 00 00

00 0 0

000000000000000 00

0 0000000 0000

0 00 -0000 0

0 0 0000 0

00000000

0 
0

0 0000

a *



Appendix C: Modifihd WAP l6x16 route connections

The following ai enough of the connection structure to reconstruct the complete smuctuzre using

redaections and rotatlons. This Owae routed only the rows of A. A second phase, a rotation of the first

phase, was used to route the columnns of B.

000000000000000000000000000000000000000000
000000000000000000000000000000000000000000
000000000000000000000000000000000000000000
000000000000000000000000000000000000000000
00000000000000000000000000000OC00000000000
000000000000000000000000000000000000000000
000000000000000000000000000000000000000000
000000000000000000000000000000000000000000

000 e 9 eUUUoJUUUe-UUULJUJU&.JUUJL.JJJ-h.Jue-
000000000000000000000000000000000000000000

0000000000000000 ee~GGe~e8&e
00000000000-- A~eeeee9ee--

000 0 000
0000 000 0

000000000000 0:-- ! 2 2 2 2 2 2 2 2
00000 0000 00- -- - -- - - - - -

0000 00000000-- -

0000 0000000n 0000
0000000000 000

0000 000000

00000000000

000000000 00 00 000 000 0'00 000000

00000 0000 0003(S.ga


