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1. Introduction

vy T

There are several algorithms for dense matrix-matrix product on highly-paraliel architectures(1-5].

'
-

These algorithms are designed for systolic architectures. When using a general purpose highly-parallel
machine like the CHiP([6), the systolic algorithm is directly implemented by configuring the CHiP to match

o

the systolic machine. In computations that use matrix product as one operation in a long series of opera-

XXX

tions, the matrices to be multiplied are likely to be contained within the processors. To use the systolic

;‘ algorithms, the matrices must be circulated as if they were being fed in from an external source. This pro-
}. vides an easy solution, but perhaps not the most efficient one. In addition, some of these algorithms[2,3,5)
;c require the matrices to be reshaped before the circulation can begin.
, This paper presents an algorithm for dense matrix-matrix product that assumes that the data is
already contained within the processors. The data does not follow the circulation pattern of the systolic
L algorithms and no data reshaping is required. Also, this algorithm illustrates the use of the divide-and-
conquer paradigm in parallel algorithm design. This algorithm has the advantage that it can be imple-
mented using n’ or n® processors giving running times of O(n) and O(log n), respectively.
In Section 2 the algorithm is presented. An analysis of it’s running time is done for n® processors.
_, Section 3 describes an implementation of the algorithm using the Poker system[5]. Section 4 describes a
,.;. matrix product algorithm for the the Wavefront Amray Processor(WAP)[4], and its implementation using
4 the Poker system(S]. Section 5 describes a modified form of the WAP algorithm and its implementation. A
T comparison of the run times of these algorithms for several sizes of matrices is given.
X
2. The Algorithm
4
. Consider the product of two dense nxn matrices, AB = C, using n’ processors. Assume that n=2*
:: for some constant k. Picture the processors as an nxn array where the processors are labeled PE; for
#

1<i,jsn. The matrices A and B are initially distributed in the n* processors such that a; and b;; are con-

tained in PE“. After the product we want i to be contained in PEU.

To begin with, consider the 2x2 case. PE;; contains a,; and b;;. To compute ¢, the values a;; and

- -
= -

b,; are needed. Similarly, all other processors need only 2 elements not already stored at that processor. To

-~
Plaggnied

provide for direct communication, a grid interconnection structure is used. The processors then send their

)
3
'
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a; value to the other processor in the same row, and their by value to the other processor in the same

- -
S

column (see Figure 1). After this communication, each processor, PE;;, has all the data required to compute

-t

.-
-

Cije
i Now consider the nxn case. We use Strassen’s{7] matrix decomposition where two nxn matrices can .
i .
K be viewed as two 2>Q2 matrices of %x-g- matrices. The 2x2 matrices are then multiplied using matrix pro- X
‘ﬁ
duct and matrix addition on -;-x-'zl matrices. N
\:
t )
: Let A,; be the upper left %x-;- submatrix of A. Also, let the other 3 submatrices be A;,, Ay, and :
3 !
R \‘
Az;. In the same way, let B;; be the submatrices of B, C;; the submatrices of C, and P;; the subarray of the
Y processors. Then A; and B;; are contained in Pj;. As in the 2x2 case, A, and B, are required to compute
K
‘ Ci1. If the corresponding processors in Py and P;, are directly connected (see Figure 2), A;; can be sent to :
1 I
* Py in parallel with one communication step. B,; can be sent to P, using a similar connection scheme in
: one communication step. The full connection structure connects PE;; with both PExtlj and PEm_,_. With .
F 2 !
X :
)
:: Ay, By, Ays, and By, in Pyy, Gy, can be computed by doing two —;-x—;- matrix products and one matrix
(
X addition. These products can be done using this same algorithm on the %x% matrices. The recursion will N
19
D)
. stop after k-1 levels when a 2x2 matrix product is done. The matrix addition is performed element by ele-
f ment. b,
. -
: ay Az by bia| _ len Ciaf _ [anbutady aybiatanby b
. ay an!| |bx bz €1 a21by1+azby;  ay;b1r+ayby; N
B “
: ;
Y
) .
: o
L) .
by .
f R
)
' .
N <
)
! Figure 1: 22 product and communication !
L)
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FIGURE 2: 4x4 connections
Each recursion level requires it's own interconnection structure. The complete interconnection struc-
ture, supplying an edge for every communication in the algorithm on every level of recursion, is the hyper-

cube.

The time required for this algorithm is O(n). To prove this claim, the recurrence relation for the time

t(n) = 2ttt t+2t( %)

where t(2) = 2t.+t,+2t,, t. is the time for a communication step, t, is the ime for a scalar addition, t, is the

overhead time for each recursion level and t, is the time for a scalar multiplication. The closed form is

«n) = (20-2)eHn— )t H=2)t+Hty,

L]

3 matrix products at the same

To achieve the O(log n) running time, we need to evaluate both %x
time. The algorithm starts with n? processors active. These processors contain the original matrices, A and
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B. The processors communicate as in the O(n) algortim. At this point, each -'z'—x—'z'- block of processors has

two matrix products to compute. One of the products is sent to a set of previously inactive processors.

This doubles the number of active processors. The same algorithm is used to compute the "new” products.

After the -'i'-x-;- products have been computed, the processors that were sent the second product, send back

their result. The results of the two products are added element by element to form the result of the nxn

matrix product. The recursion for this algorithm stops when a 2x2 product is to be computed. Each pro-
cessor does both multiplications and the one addition.

To prove the claim of O(log n) time, the recurrence relation is

(n) = St ()
where (2)=3t.+t,+t,, and the constants measure the same quantities as before, but for this algorithm. This

recurrence measures the time for the original n® active processors. The St comes from two t.'s for the ori-

ginal communication, two t.’s from sending one subproblem to a "new" processor and a t; for getting the

result back from the "new" processor. The closed form is

t(n) = (Slog n ~1)+3)t.+log n t+(log n ~D)t,+2t,.

3
n . . I ,
— processors. It starts with n? active processors. After the initial communica-

This algorithm uses 2

tion, the n? processors are divided up into 4, -“z-x-g- sections, each having two matrix products to compute.

Every processor sends two values, its part of one matrix product, to an inactive processor, thus activating it

This doubles the number of processors. We now have 8, -'z‘-x-'-z‘- problems using 2n® processors. Each

matrix product is then computed by a "recursive call”. This is one recursion level. At each successive
recursive level the number of active processors is doubled. There are log n -1 levels of recursion. This

3

givesn?  or -"2— active processors at the evaluation of the 2x2 products.

3. The Poker Implementation
The Poker system{5] was used to implement this algorithm although Poker and its sequential pro-

gramming language XX (dos equis) does not directly support recursion. The goals of the implementation

.l’n‘l'.i",‘ AT T N L P .
2 8.8 ¥, U Iy Wy ! Ty 0y ". J‘,{,:r ,_,- o P A A n -
iy bbbt A ot s X e LR A "'f'\ "',"f’-"p‘”l".f"f'fv— T Mt e m B -

B M N N AT, WA LR o Iﬂ“ru'\-' W WA

b S M y N
- B Al

SR




w3 VRt $at fa? 349
5, 97 13" gt dat By g W W RTINS S S ) * Fpt §ie UNVOW W R ]
? st B g Gt g
. & ot g0,

: were to0 follow the recursive algorithm as closely as possible with the nonrecursive system and to reduce
the complexity of the communication as much as possible. Recursion was acheived by explicit manipula-
tion of a stack to save data and record the position within the recursive algorithm. The communication was

»; simplified by dividing it into a phase for each level of recursion,

, An instance of the algorithm for n = 2* has log n =k phases. Each phase has a unique interconnec-

tion structure. For reference, we number the phases 1,2,...k. Phase 1 connects processors together that are

% processors away. (See Figure 3.) Phase 2 connects processors together that are % processors away, but

only in blocks of %x% processors. There are no connections between the blocks of —:'-x-‘zl processors.

Finally, phase k connects blocks of 2x2 processors with the grid pattern. (See Appendix B for the 16x16
connections.) In each phase, a processor has exactly two other processors connected to it. The port that is

connected to the processor in the same row is named "horiz”. The port that is connected to the processor in

the same column is named “vert".

P S

A phase is roughly equivalent to a recursive call. Phase 1 is run for a "call" for an nxn product,

phase 2 is run for a "call” for an -%x-'z‘- product, and phase k is run for a "call" for a 2x2 product. The

3
phases must be run in the proper order for a correct resuit. We will discuss the correct order later.

;
I’
RS RSCOOLLT SR
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% To keep track of "local variables” and the progress through the algorithm, a stack is implemented. A y

"stack frame” is composed of three elements. The top element of the frame contains a tag. This tag, an
» integer value of 1 or 2, represents which recursive call this frame is recording. The other two elements ‘

either contain two values waiting for a later multiply or contain the resuit of a previous multiply.

i Communication from phase to phase is done using the feature of XX that identical declaration sec-
4
1) tions use the same memory allocation. All XX codes have the same prefix in their declarations. (See Fig-
X ures 4 and 5 and Appendix A.) This yeilds an "unnamed common." The stack is part of this common area. o
N
“'. The other variables in the common area are "aele", "bele", "othera", "otherd”, and "top”. At the start ;
o '
ﬁ of the a phase, "aele”, and "bele” contain the corresponding values of A and B for the current product. The M
ol
o variables "othera" and "otherb" are used as local variables, and "top” points to the top of the stack. A
[, -
: larger value for "top™ implies a larger stack. The value 0 implies an empty stack. This variable is assumed
v to be 0 at the start of phase 1.
g
) code mmii; /* upper left and lower right */
ports vert, horiz; ‘
.’. )
: begin
i int vert, horiz; ]
. int aele, bele, othera, otherb; )
/* aele and bele are the entries from A*B, the result is left in aele */ :
" intstack [24 ]; ]
N sint top; )
/* send values */

! horiz <- aele; )
o othera <- horiz; .
X vert <- bele; '
; otherb <- vert; :

4 /* multiply */

0 /* start "recursion” */

3 stack{top+1] := othera; h

L stack[top+2) := otherb; .

K stack{top+3] := 1;  /* this is first multiplv */ .

" top = 0p + 3; R

) end.

o )

p Figure 4: XX code for processors in the upper left and lower right. j

.;.

X .
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Each phase is divided into two distinct operations. The first is the communication part. The second
is the computation and bookkeeping part. (Phase 1 to k-1 use the codes "mmii" and "mmij". Phase k uses

W the codes "mm2ii" and "mm2ij". See Figures 4 and S and Appendix A.) For the communication part, each :
» processor sends its a;; (aele) value out on the port "horiz”. Similarly, the b;; (bele) value is sent out on the , :
4 port named "vert". The values that are received are placed in the variables "othera” and "otherb.” '
l' l'

by After the communication steps, A;;B+ABy; must be evaluated. Remember that Ay, is the upper

left quarter of the 2x2 matrix of matrices or scalars. If it is a 2x2 matrix of matrices, the case for phases 1

«
i to k-1, this is computed by doing two matrix products and a matrix add. Since these products can not be .‘E
:: done in parallel, the data for one of these matrix products must be stacked. In both the upper left and the >
i lower right, "aele” and "bele” contain the elements that need to be multipled. To reduce data movement, )
:‘ we then stack "othera” and "otherb”. (See Figure 4.) In the lower left and the upper right, we must stack
E one of "aele” and "bele” and one of "othera" and "otherb”. We arbitrarily choose to stack "othera” and b

' i

"bele”. (See Appendix A.) Since this is the first of the matrix products, the tag 1 is stacked.

After the the new stack frame has been added to the stack, it is time for the first "recursive call”. 3
Notice that the current phase is completed. We do not return to this phase because the setup for the \
"second” recursive call is done in phase k (2x2 connections). The work can be done there because no com-
munication is required to set up for the "second” recursive call. Also, the matrix addition is performed in
- phase k for the same reason. The recursive calls are implemented by running the next phase. For example, £

the recursive calls associated with phase 1 are performed by running phase 2.

X Consider the operation of phase k. Remember that the communication is for 2x2 matrix product of 9
scalars. The communication takes place in the same manner as all other k-1 phases. After the communica-
tion, each processor contains all the data necessary to compute the c;; for the 2x2 product. The processors

in the upper left and lower right compute "aele*bele+othera*otherb”. (See Figure 5.) The processors in the )

-

lower left and the upper right compute "aele*otherb+othera*bele”. (See Appendix A.) The result is placed

! in "aele”. .
) g
: At this point, the recursion is terminated. We now simulate the returns. This is where matrix addi- b
n 0.
! tion is done along with stack clean up. If the tag on the top stack frame is 2, the stack frame contains the '
: (
X result of a matrix multiply that needs to be added to the value in "aele™. After the addition, the stack frame ;]
x 9
o
W
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; 4
t J
| 5
[}
!
4 ]
2y f
N Y
4
. code mm?2ii; /* upper left and lower right */ N
; R
. ports hariz, vert; Y,
begin '
) int horiz, vert; .
A int aele, bele, othera, otherd; .
o 1* aele and bele are the entries from A*B, the result is left in aele */ j-
! intstack [ 24 ]; .
k) sint top;
) bool second;
i /* send values */ g
B horiz <- aele; :.
: othera <- horiz; '
) vert <- bele; W
otherb <- vert; Y
- /* multiply */ N
; aele := aele * bele + othera * otherb; \
: /* clean up stack and get ready for next communication phase */ N
second := true;
while second & (top > 0) do begin
§ if stack[top] = 1 then begin g
/* only first multiply has been done */ o
‘ bele := stack[top-1]; Y,
; stack(top-1] := aele; /* save result of first multiply */ .
] aele := stack(top-2]; K
stack(top] := 2; /* this is second multiply */
W second := false; /* need to start a new phase */ 2
Yy end else begin w
! /* finished, just add */ ’
' aele := aele + stack{top-1]; 3
X top := top -3; ’y
end; A
end; r
end. ,‘,
4 ”
i Figure S: XX code for 2x2 case. )
B is deleted from the stack. This is repeated until the stack is empty or the tag in the stack frame is a 1.
)
3 When the stack is empty, the nxn product is stored in "aele”. :
™
LY
When the tag in the top stack frame is a 1, we need to set up for the second recursive call for some !
\'.
recursive jevel. The level is unknown. The actions are always the same. The value in "aele” is the result of
{ ;
Y the first product. This needs to be put on the stack during the second recursive call. The values in the top ;
D .
! stack frame must be put into "aele” and "bele”. Also, the tag in stack frame must be changed from 1 to 2. :
With this done, it is time to change to the comrect phase. This may be any of phases 2 w k.
: *
v
R AOUR NN S P e NS L L e T R A e A e L CA :
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The phases must be run in the correct order. Since there is no automatic control for running phases

in Poker, the prograrnmer must know the order. For the nxn product, the order is phase 1 followed by 2

n

sequences of phases for —;-x—;- product. For the > x—%— product, the order is phase j+1 followed by two

seqmofdnmdefm:?;rx-;?;?pmdut For example, the 8x8 order is phases 1,2,3,3,2, 3, and 3.

After the execution of all the phases, the result of the nxn matrix-matrix product is found in "aele”.

4. The WAP Algorithm

To evaluate this recursive algorithm, we chose t0 implement and compare the algorithm for the
Wavefront Array Processor(WAP){4). Although the WAP may not be a systolic aray, the matrix product

algorithm has data flow patterns typical in systolic algorithms.

The matrix product algorithm for the WAP uses n® processors connected in a nxn grid. The data is
fed in along the top n processors and from the left n processors. The matrix A is arranged to enter column
by column, starting with the first column. The matrix B is arranged to enter row by row, starting with the
first row. (See Figure 6.) All processors execute identical procedures. The result, ¢, is initialized to zero. A
loop is executed n times that reads an A value from the left and a B value from above, muitiplies them

together, and adds the result to c;. The A and B values are sent to the right and down respectively. This

bes
baz by b4
ba bsz 23 bia
by, ) bts
by b1y
by

414 Q1323 Ay

gy Ay

234 333 A2 Ay

Qg A3 A2 Ay

Figure 6: WAP organization
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B causes the upper left processor to be the first processor to start execution. As the data moves into the array, >
L :
p there is 2 wavefront of executing processors in a diagonal across the array. PE,, cannot start processing Byt
R until the data wavefront reaches it. With this delay and the compute time necessary to compute c,,, PE,; o
y uses .
R :
; Hm) = @n—d)tnlteoynt, 3
y time, where the constants measure the same quantities as before, but for this algorithm. The recursive -]
i :
algorithm has a factor of two fewer communication steps. This can have an impact when ¢ is the largest of i
‘ the constants. .
) <
! This algorithm was also implemented on the Poker system. It was modified to start with the data in f:‘
the processors. The processors then circulate the data using end around connections to connect the [ast )
processor in a row or column to the first processor in the same row or column. (See Figure 7.) Notice that )
:. |‘
% the matrix multiply is correctly computed if the a’s and b’s in Figure 6 were to enter the array in the reverse v
order. The reverse order is the result of a direct right shift and down shift of all the data using the end "
K around connections. :‘
‘A
K The activity at each processor is divided up into two parts. The first is to circulate the data. ,See Fig- A
ure 8.) Each processor sends its a to the "right” and its b "down”. Then, it repeats the a’s coming in from
3 .
<
o
" 4
)
o
X
P :
s 4
i “
. o
L _J
:
X S
¥ .
Figure 7: 4x4 connections for adapted WAP algorithm &
: :
' LY

Za

e
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the "left” and the b’s from "up”. After all the data has been passed on, all that remains is to compute its ¢;;.

This is just the accumulation of the a’s times the b’s in the order that they arrive at the processor. These a’s X

and b’s are sent on to the next processor in the same row and column respectively. The only exception to

PR

this is the last row and column. There is no need w0 send the A values "right" from the last column, or 1o

send the B values "down"” from the last row. This gives rise to three special codes, (See Appendix A.) one

for the last row, the righmost colummn, and the lower right pe, PE, ;.

5. The Modified WAP Algorithm o

The direct implementation of the WAP algorithm followed the wavefront behavior of the original N

Tl O >t s

machine. With the flexability provided by then CHiP architecture, we can do some preprocessing on the

code matmul ( size ); /* WAP, all except last row and column */
ports left, right, up, down; K
in -
int aele, bele, cele; ~J
int left, right, up, down; 3
int size;
sint indx, PEn, max;

PEn := size;

/* compute max of PEi, PEj */
if PEi > PEj then
max ;= PEi _
else o
max ;= PEj;
' /* start wave around */ N
p right <- aele;
down <- bele;
for indx := 2 to max do begin s
if PEj >= indx then begin aele <- left; right <- aele end; X
' if PEi >= indx then begin bele <- up; down <- bele end; :
. end;
W] /* do the multiply */ X
for indx := 1 to PEn do begin
aele <- left;
: right <- aele;
: bele <- up; \
K down <- bele; 2
cele := cele + aele * bele; N
- end; o
end.

Figure 8: XX code for WAP matrix product
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rows of A and the columns of B so that all processors can start working immediately. Since they all start at
the same time, they all stop at the same time, eliminating the (2n—2)t. time required for the wavefront to
reach processor PE,,.

The first phase of the algorithm does the preprocessing. Row i shifts the elements of A right by i-1

processors. Column j shifts the elements of B down by j-1 processors. The shifts assume wrap around, that

-

is, processor PE;, is left of PE;;. For this implementation, it was possible to put a direct connection
between the source and destination processors. Figure 9 shows the 8x8 connections. (See Appendix A for

the processor codes.)

After the preprocessing, each processor contains data required to start the sum of products immedi-

TR I

atly. The sum variable is initialized with the product of the current a; and by;. The loop executed by each

processor sends the cutrent a to the right, the current by; down and then adds to the sum variable the pro-

duct of the a; and by; it just received from the left and above respectively. After n-1 iterations, the loop

terminates.

The time used to compute the matrix product using the modifed W AP algorithm is

N ¥,

t(n) = (H(2n-2)tc+H{n- 1)ty Nty
where t(n) is the time for the preprocessing, and the constants measure the same quantities as before, but

for this algorithm. Since t(n) is a constant for our implementations, we can ignore it. For larger size prob-

lems, this cost may not be constant. For the 16x16 implementation, the preprocessing had to be done using

two phases due to the number of connections required. (See Appendx C for the interconnection structure.)

Y nxn __ recursive WAP  Mod WAP  n° i
\ (ticks) (ticks) (ticks) (ticks) "
s 2Q 2219 6458 4095 15054 3
) ax4 75711 14065 7938 135814
,, 8x8 18359 30696 15646 1150950

16x16 40385 70481 31354 9469030

Table 1: Running times on Poker 3.0
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6. Experimental Resuits

3

3
i; All of these algorithms were implemented for several values of n. All algorithms were run with two
: extra phases. The first extra phase loaded the test data into the processors from a file. The other extra
‘ phase dumped the results into a file. Since we were interested in the performance of these algorithms start-
N

‘5 ing with the data in the processors, we ignored the time used in these extra phases. Table 1 gives a sum-
E mary of the run times for these algorithms. One tick represents one microsecond on the 64 processor Prin-

gle, the machine simulated by the Poker system. For any size with 64 or fewer processors, these times can

K

f: be acheived by the Pringle. For the sizes with more than 64 processors, the times are arrived at by using
k\i

:. the same ground rules used by the Pringle.

D)

3

’ Because of the Pringle’s rather antiquated technology, the speed-up comparisons are more relevant
R
;‘ than the absoulte times. A 1 processor system was used to run the standard 3 loop, n® algorithm for all
sizes of matrices. (See Appendix A for the code.) The speed-ups listed in Table 2 are using the sequential
[

¥ value divided by the parallel value. We can see the lack of overhead for the 2x2 recursive algorithm.
.
;'. Also, we can see the effect of the constant step in the modified WAP algorithm.

Iy
Yy

p [PEcount _recursive  WAP __ Mod WAP

K 4 6.78 233 3.68

' 16 17.94 9.66 17.11

. 64 62.70  37.50 73.56
! 256 23447 13435 302.00

L)
g Table 2: Speed ups

0
o 7. Summary

)

)
:: In designing algorithms for general purpose MIMD architectures, it is possible to adapt known algo-
)

[}

: rithms. We have shown that this adaption may not produce the most efficient algorithm on the new archi-
:: tecture. We have shown two algorithms that had better performance than the adapted algorithm. One of
L

:, these was a modifcation of the orignal algorithm taking advantage of the new architecture and original data
)

o placement. The other algorithm showed that designing a totally new algorithm may yield good results.

':: Also, we have shown that the divide-and-conquer paradigm is useful for developing new algorithm.
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Appendix A: XX codes
! Recursive algorithm codes:

code mmij; /* lower right and upper left */
ports horiz, vert;
begin _
int horiz, vert;
int aele, bele, othera, otherd;
/* aele and bele are the entries from A*B, the result is left in aele */
intstack {24 ];
t sint top;

: /* send values */
i horiz <- aele;
othera <- horiz;
vert <- bele;
otherb <- vert;

e e

/* muliiply */
/* start "recursion” */
) stack(top+1] := othera;
stack[top+2] := bele;
. bele := otherd;
stack{top+3] := 1; /* this is first multiply */
top := top + 3;

end.

-y e e

code mm2ij; /* lower left and upper right */
ports horiz, vert;

begin
int horiz, vert;
int aele, bele, othera, otherb;
/* aele and bele are the entries from A*B, the result is left in aele */
intstack [24 ];
sint top;
bool second;

" g

S AR s

) /* send values */
¥ horiz <- aele;

K othera <- horiz;
L vert <- bele;

! otherb <- vert;

: /* multiply */
) aele := aele * otherd + othera * bele;

) /* clean up stack and get ready for next communication phase */
! second := true;
while second & (top > 0) do begin

o N T S O A S S G S i

ML




MUNENY N AR AN AR R R, R RO W LR O TR UR T AT LR T ‘0a’ Ma e aVe ' 470 870 8% 0'a 8'a &

if stack(top] = 1 then begin

: /* only first maltiply has been done */ }
A bele := stack(top-1]; \
C stack([top-1] := aele; /* save result of first muitiply */ W
: aele := stack(top-2]; .

stackftop] := 2; /* this is second multiply */ ::

second := false; /* need to start a new phase ¥/

) end else begin -
: /* finished, just add */ N
K aele := aele + stack{top-1); X
' top = top -3; "
A 4 :‘

0

end;

end.

WAP codes:

code mmlow ( size ); /* WAP, last row */

ports left, right, up, down;

in :
int aele, bele, cele; N
int left, right, up, down;
X int size; 4
sint indx, PEn;

PEn := size;

/* start wave around */

X right <- aele; ]
down <- bele; Y
o for indx := 2 to PEn do begin 3
X if PEj >= indx then begin aele <- left; right <- aele end; i
A if PEi >= indx then begin bele <- up; down <- bele end; X
end; '
3 /* do the multiply */ }
A for indx := 1 to PEn do begin \
) aele <- left; iy
, right <- aele; ’
. bele <- up; N
cele := cele + acle * bele; N

= end;
3 em §

code mmrig ( size ); /* WAP, rightmost column */

ports left, right, up, down;

begin
int aele, bele, cele; o
int left, right, up, down; W
! int size; q

4 -y W . o, e, -
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§
N sint indx, PEn;
; PEn := size;
/* start wave aroun '
‘ right <- aele;
N down <- bele;
3 for indx := 2 to PEn do begin
if PEj >= indx then begin aele <- left; right <- aele end;
if PEi >= indx then begin bele <- up; down <- bele end;
| /* do the multiply */
, for indx := 1 to PEn do begin
4 aele <- left;
X bele <- up;
{ down <- bele;
cele := cele + aele * bele;
end;
end.
) code mmir ( size ); /* WAP, lower right pe, PEn,n */
) ports left, right, up, down;
begin
int aele, bele, cele;
int left, right, up, down;
int size;
sint indx, PEn;
PEn := size;
/* start wave around */
! right <- aefe;
down <- bele;
for indx := 2 to PEn do begin
if PEj >= indx then begin aele <- left; right <- aele end;
if PEi >= indx then begin bele <- up; down <- bele end;
p end;
: /* do the multiply */
! for indx := 1 to PEn do begin
aele <- left;
bele <- up;
cele ;= cele + aele * bele;
end;
g end.
b
. Modified WAP codes:
code aroute; /* first column except processor 1,1 */
ports ain, aout;
begin
R ,'\’ "\\'.A !".c'\,"l!“‘ ’,‘ ..‘ iy & S o
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¥ int acle, bele;

, /* communicate */
! aout <- aele;

3 aele <- ain; ;

: end.

y code broute; /* first row except processor 1,1 */ :
) ports bin, bout;

e
——

begin
int aele, bele;

: 4
4
» /* communicate */ ]
X bout <- bele; 3
4 bele <- bin; ;
K ;
end.
'. =
3
:‘ code route; /* all processors except first row and first column */
‘ .
:'. ports ain, aout, bin, bout; !
$ begin
}: int aele, bele;
.4
R /* communicate */ '
.'!t aout <- aele;
" aele <- ain;
. bout <- bele;
N bele <- bin;
" .
: end.
A :
code matmul ( PEn );
|}
LS ‘
b ports left, right, up, down; f
- begin \
: int aele, bele, cele;
. int PEn;
% sint indx; (
|/
;: /* do the multiply */ ‘
n: cele := acle*bele; ]
" for indx := 2 to PEn do begin '
; right <- aele; ‘
. aele <- left;
N down <- bele; 3
5y bele <- up;
N cele ;= cele + aele * bele; :
X end; ‘
N )
; s
: f
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’
Sequential code: )
o
code matmul; /* sequential version for comparison */ .:3
begin
int aele{16,16), bele[16,16], cele[16,16]);
sint size; .Q«-
sinti, j, k; ;
/* multiply */ E.
fori:= 1 tosizedo ’
for j := 1 to size do begin o
cele(i,j] := aele[i,1] * bele[1,j]; r
for k := 2 to size do &
cele(i,j] := cele[i,j] + aele(i,k] * belelk,j];
i b
end. .
)
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Appendix B: 16x16 connections

' The connection structure for the 16x16 is not immediately obvious. For completeness, we are includ-

ing all the interconnection structures for the 16x16 product. We wili show enough of each structure so that

e e tn L RN

; the full 16x16 can be reconstructed by use of replication and reflection.
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! Appendix C: Modified WAP 16x16 route connections

J The following is enough of the connection structure to reconstruct the complete structure using
reflections and rotations. This phase routed only the rows of A. A second phase, a rotation of the first

? phase, was used to route the columns of B.
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