

Destroy this report when no longer needed. Do not return it to the originator.

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products. Unclassified SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE					Form Approved OMB No. 0704-0188	
1a. REPORT SECURITY CLASSIFICATION Unclassified		1b. RESTRICTIVE MARKINGS				
2a. SECURITY CLASSIFICATION AUTHORITY		3. DISTRIBUTION	AVAILABILITY O	F REPORT		
2b. DECLASSIFICATION / DOWNGRADING SCHEDULE		Approved for public release; distribution unlimited.				
4. PERFORMING ORGANIZATION REPORT NUMBER(S)		5. MONITORING ORGANIZATION REPORT NUMBER(S) Lower Mississippi River Environmental Program, Report 7				
6a. NAME OF PERFORMING ORGANIZATION USAEWES	6b. OFFICE SYMBOL (If applicable)	7a. NAME OF M	ONITORING ORGA	NIZATION		
Environmental Laboratory	tory		President, Mississippi River Commission			
bc. ADDRESS (City, State, and ZIP Code)		7b. ADDRESS (City, State, and ZIP Code)				
PO Box 631 Vicksburg, MS 39180-0631		PO Box 80 Vicksburg, MS 39180-0080				
8a. NAME OF FUNDING / SPONSORING ORGANIZATION	NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL ORGANIZATION (If applicat 'e)		9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER			
Mississippi River Commission						
8c. ADDRESS (City, State, and ZIP Code)		10. SOURCE OF	UNDING NUMBER	RS		
PO Box 80		PROGRAM	PROJECT	TASK	WORK UNIT	
Vicksburg, MS 39180-0080		ELEMENT NO.	NO.			
11. TITLE (Include Security Classification)			L	- L		
An Ecological Evaluation of Fiv	e Secondary Cha	nnel Habitat	s in the Lov	wer Mis	sissippi River	
12. PERSONAL AUTHOR(S)						
Baker, J. A.; Pennington, C. H.	; Bingham, C. R	.; Winfield,	L. E.			
13a. TYPE OF REPORT 13b. TIME CO Final report FROM	DVERED TO	14. DATE OF REPO December 1	987 (Year, Month, 987	Day) 15.	PAGE COUNT 147	
16. SUPPLEMENTARY NOTATION Available from National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22161						
17. COSATI CODES	18. SUBJECT TERMS (Continue on revers	e if necessary and	d identify I	by block number)	
FIELD GROUP SUB-GROUP			-	-		
19 ABSTRACT (Continue on reverse if perettary	and identify by black o	umber)				
Chemical, physical, and biological attributes of the aquatic habitat of five Lower Mis- sissippi River secondary channels were surveyed during summer (July) 1984; two of the chan- nels were resurveyed during fall (October). Dikes at least partially restricted flow through two of the channels (Lakeport Towhead and Cottonwood Bar, river miles 470 and 528, respectively); flow through the remaining three (Wolf Island, river mile 935; Island 8, river mile 915; Profit Island, river mile 250) was not restricted.						
The channel at which flow was most restricted, Lakeport Towhead, showed both physical and chemical differences from the others. Current speeds were relatively high at four of the channels in summer, but were only about one-half as high at Lakeport Towhead. Water quality variables measured (turbidity, conductivity, pH, temperature, and dissolved oxygen concentra- tion) showed little difference among channels in summer. Of the two secondary channels						
(Continued)						
20. DISTRIBUTION / AVAILABILITY OF ABSTRACT		21 ABSTRACT SE	CURITY CLASSIFIC	ATION		
22a, NAME OF RESPONSIBLE INDIVIDUAL		Unclassifi 225 TELEPHONE	ea (Include Area Code	e) 22c. OF	FICE SYMBOL	

Unclassified

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE

19. ABSTRACT (Continued).

resurveyed in fall, Cottonwood Bar showed little change in any measured physical or chemical variable; changes at Lakeport Towhead were considerable, however. Almost no current was present at this time, and the sediments consisted almost entirely of fines. Water quality was also changed, with turbidity being considerably lower than in summer and dissolved oxygen depletion occurring in the deepest areas.

Electroshocking catches of fish were highest at Profit Island due to unusually large collections of catfishes. Available evidence suggested that baiting by commercial fishermen may have been occurring there, however. Excluding Profit Island, only small differences in catch rate among the remaining four channels were found. Seining indicated differences among the channels, but the differences could not be related to any measured physical variable, including the presence or absence of a dike. Hydroacoustic data, though not statistically significant, suggested higher fish densities at the two diked secondary channels. Within individual channels, both electroshocking and hydroacoustics indicated the highest average fish densities to be along the natural bank side. Fish catches increased in both channels sampled in fall, but they increased much more in Lakeport Towhead than in Cottonwood Bar. In contrast to summer, densities of fish appeared to be greatest along the secondary channel sandbar at Lakeport and along the dike at Cottonwood Bar.

The macroinvertebrate assemblages found within the channels were similar overall, and they appeared to reflect the current speed and substrate conditions. The dike macrofauna was similar to that noted in earlier studies on the Lower Mississippi River.

Dikes that block or greatly restrict flow through secondary channels produce habitats in which the macroinvertebrate and fish assemblages are quite different from undiked channels, at least when river stages are near or lower than the controlling elevation of the dikes.

> Unclassified SECURITY CLASSIFICATION OF THIS PAGE

PREFACE

The Lower Mississippi River Environmental Program (LMREP) is being conducted by the Mississippi River Commission (MRC), US Army Corps of Engineers. It is a comprehensive program of environmental studies of the leveed floodplain of the Lower Mississippi River. Results will provide the basis for recommending environmental design considerations for the navigation and flood control features of the Mississippi River and Tributaries Project.

One component of the LMREP is the Dike System Investigation. This report presents results of a study documenting the physical and biological characteristics of five secondary channels in the Lower Mississippi River, three of which have had dikes constructed at the upstream end to restrict the conveyance of flow. Data were collected from the river between miles 935 and 250 during the period July through October 1984.

Data were collected by individuals from the Aquatic Habitat Group (AHG), Environmental Laboratory, US Army Engineer Waterways Experiment Station. The report was prepared by Mr. John A. Baker, Dr. C. H. Pennington, Mr. C. Rex Bingham, and Mrs. Linda E. Winfield of the AHG.

The investigation was managed by the Planning Division of the MRC and was sponsored by the Engineering Division, US Army Engineer Division, Lower Mississippi Valley. Mr. Stephen P. Cobb, MRC, was the program manager for the LMREP. The investigation was conducted under the direction of the President of the Mississippi River Commission, BG Thomas A. Sands, CE.

Accesi	on For	1
NTIS	CRA&I	N
DTIC	TAB	Ū
Unann	ophoed	C
Justfic	abar	
 A	valatiny	Codes
Dist	Need a. Specie	11 11
Λ_1		

CONTENTS

		Page
PREFACE		. 1
CONVERSION F UNITS OF M	FACTORS, NON-SI TO SI (METRIC) MEASUREMENT	. 3
PART I: I	INTRODUCTION	. 4
Backgro Objecti Study A	ound	. 4 . 5 . 6
PART II: M	METHODS	. 9
Physica Biologi Analyti	al/Chemical	. 9 . 10 . 12
PART III: R	RESULTS	. 15
Physica Fishes Macroin	al/Chemical	. 15 . 17 . 27
PART IV: D	DISCUSSION	. 35
Physica Fishes Macroin Effects	al/Chemical	. 35 . 36 . 38 . 40
PART V: S	SUMMARY	. 42
REFERENCES .		. 44
TABLES 1-11		
FIGURES 1-22	2	
APPENDIX A:	PHYSICAL/CHEMICAL MEASUREMENTS FROM FIVE LOWER MISSISSIPPI RIVER SECONDARY CHANNELS, JULY AND OCTOBER 1984	. A1
APPENDIX B:	FISH POPULATION DATA COLLECTED FROM FIVE LOWER MISSISSIPPI RIVER SECONDARY CHANNELS, JULY AND OCTOBER 1984	. B1
APPENDIX C:	MACROINVERTEBRATE DATA COLLECTED FROM FIVE LOWER MISSISSIPPI RIVER SECONDARY CHANNELS, JULY AND OCTOBER 1984	. 01
APPENDIX D:	GRAIN-SIZE DATA FOR SEDIMENT SAMPLES FROM FIVE LOWER MISSISSIPPI RIVER SECONDARY CHANNELS, JULY AND OCTOBER 1984	. 01

CONVERSION FACTORS, NON-SI TO SI (METRIC) UNITS OF MEASUREMENT

Non-SI units of measurement used in this report can be converted to SI (metic) units as follows:

Multiply	By	To Obtain square metres	
acres	4,046.873		
cubic feet	0.02831685	cubic metres	
feet	0.3048	metres	
inches	25.4	millimetres	
miles (U.S. statute)	1.609347	kilometres	
pounds	0.4535924	kilograms	
square miles	2.589998	square kilometres	

LOWER MISSISSIPPI RIVER ENVIRONMENTAL PROGRAM

An Ecological Evaluation of Five Secondary Channels in the Lower Mississippi River

PART I: INTRODUCTION

Background

MR&T Project

Along the course of the Lower Mississippi River and on the associated floodplain, flooding has historically been a major deterrent to development. For example, destructive floods occurred in 1849, 1858, 1882, 1897, 1912, 1913, 1916, 1922, 1927, 1937, and 1973. The Mississippi River Commission (MRC) was established by Congress in 1879 to develop and carry out flood control and navigation measures for the Lower Mississippi River that would be financed by the Federal Government.

The devastating flood of 1927, the flood of record, destroyed many existing levees, flooded large areas of farmland and numerous municipalities, and caused loss of livestock and human life in the Lower Mississippi Valley. This flood motivated the Congress to pass the Flood Control Act of 1928, which authorized the Mississippi River and Tributaries (MR&T) Project. The MR&T Project is a comprehensive plan for flood control and navigation works on the main stem Lower Mississippi River and tributary streams and consists primarily of levee systems, channel improvement works, and floodways. The MRC is responsible for carrying out the project.

Lower Mississippi River Environmental Program (LMREP)

The LMREP is being conducted by the MRC. This 7-year program has as objectives the development of baseline environmental resources data on the river and associated leveed floodplain and the formulation of environmental design considerations for channel training works (dikes and revetments) and the main stem levee system. The LMREP was initiated in fiscal year 1981 and is scheduled for completion in fiscal year 1987. Fishery and wildlife populations and habitat are the main focus of the LMREP. The LMREP is made up of five work units: levee borrow pit investigations, dike system investigations, revetment investigations, habitat inventories, and development of the Computerized Environmental Resources Data System (CERDS), a geographic information system containing environmental data. This investigation is part of the habitat inventories work unit dealing with secondary channels.

There are numerous secondary channels on the Lower Mississippi River that are separated from the main navigation channel by large islands. The aquatic habitat within these channels comprises approximately 6 percent of the total water surface acreage at any given river stage (Cobb and Clark 1981). Flow through permanent secondary channels is maintained year round, while flow is restricted at the upstream opening of temporary secondary channels so that flow through the channels does not occur during low river stages.

Objectives

The work reported herein was undertaken in 1984 to document the chemical, physical, and biological characteristics of five secondary channels on the Lower Mississippi River between river miles 935 and 250. Dike structures were in place at the upstream opening of two channels, while the other three channels did not contain dike structures. This work had the following objectives:

- a. Obtain baseline data on the physical and chemical characteristics of five secondary channels.
- b. Describe the distribution and abundance of fishes and benthic macroinvertebrates in five secondary channels.
- c. Evaluate, to the extent possible, effects of dikes on fishes and benthic invertebrates in secondary channels.

More detailed evaluations of the effects of dike structures on ecological characteristics of secondary channels would be necessary to fully achieve objective <u>c</u>. Such analyses are beyond the scope of this report but are planned as part of the overall LMREP.

Study Area

The Mississippi River is the fourth largest drainage basin in the world (1,245,000 square miles*), exceeded in size only by the watersheds of the Amazon, Congo, and Nile Rivers. The river drains 41 percent of the contiguous 48 States and a portion of Canada.

The Lower Mississippi River flows from the confluence of the Ohio and Middle Mississippi Rivers at Cairo, Ill., to the Gulf of Mexico, a distance of approximately 975 river miles (RM). At Vicksburg, Miss. (RM 437), approximately midway along the Lower Mississippi River, the mean annual discharge of the river is 552,000 cubic feet per second (cfs); the mean monthly maximum and minimum flows are 948,000 cfs in April and 261,000 cfs in September, respectively. The maximum flow recorded at the Vicksburg gage was 1,806,000 cfs during the flood of 1927; the discharge during this flood has been estimated to have been 2,278,000 cfs if the mainline levees upstream of Vicksburg had not crevassed (Tuttle and Pinner 1982). The difference in river stage between the average minimum discharge and average maximum discharge is about 27 ft on the Vicksburg, Miss., gage although river stage may fluctuate more than 45 ft in stage in a particular year. Suspended sediment transported by the river averages 161 million tons per year (Keown, Dardeau, and Causey 1981).

Flooding along the river may occur during the fall, winter, and spring and varies considerably in time, stage, and duration from year to year. Highest stages are typically reached from March through May; peak flows occur in April on the average.

The approximately 2.5 million acres of leveed floodplain are composed of 81 percent land and 19 percent water, including abandoned channels, oxbow 1akes, levee borrow pits, and the main river channel (Ryckman et al. 1975). The floodplain of the Lower Mississippi River is leveed along both banks. The main stem levees are continuous on the west bank except at the confluences of the St. Francis River and the Arkansas-White Rivers. Levee segments and bluffs alternate on the east bank. A system of dikes and revetments is being constructed throughout the river for navigation and flood control purposes.

* A table of factors for converting non-SI units of measurement to SI (metric) units is presented on page 3.

The five secondary channels (Wolf Island, Island 8, Lakeport Towhead, Cottonwood Bar, and Profit Island) investigated in this study are located along the main stem Lower Mississippi River between river miles 935 and 250 (Figure 1). The percentage of total flow carried by the secondary channels has varied with time and with river stage. The secondary channels themselves are morphologically active to varying degrees, exhibiting scour, deposition, and bank caving. To stabilize the river for flood control and navigation purposes, dikes either have been or will be constructed in the secondary channels to partially restrict flow through them.

Wolf Island secondary channel has its upstream end at RM 935, less than 20 miles from the confluence of the Ohio River (Figure 1). This secondary channel is shorter than the adjacent main channel, being only about 2.75 miles in length. It is also relatively wide, being nearly 1 mile near the down-stream end at the time of sampling (Figure 2). No dikes have been constructed at this channel, although they are planned.

Island 8 secondary channel is located at RM 910.7 to 915, approximately 20 miles downstream of Wolf Island (Figure 1). The length of the secondary channel, over 7.5 miles, is considerably greater than that of the adjacent main channel due to its position on a large bend. The Bend of Island 8 revetment, built in 1928-30, protects about a 2-mile reach of bankline near the upstream end of the channel (Figure 3). The Island 8 dikes are buried near the upstream end of the island. These two structures are remnants of channel training activities when the present secondary channel was the main navigation route. A dike is planned for the upstream end of this channel, although construction is not scheduled for the near future.

Lakeport Towhead secondary channel (also known as Refuge secondary channel, and earlier as American Cutoff) diverges from the main navigation channel at about RM 528.5, less than 10 miles downstream from the mouth of the Greenville, Miss. harbor (Figure 1). The secondary channel is about 4.25 miles in length, slightly longer than the navigation channel at this site (Figure 4). In 1979, Refuge Dike was constructed across the upper end of this channel at RM 528.3. This 5,040-ft-long L-head dike has a bankhead crown elevation of 29.0 ft (LWRP), a crown elevation of 18 ft for 75 percent of its length, and a 19 ft elevation at the end of the dike. The dike extends completely across the end of this secondary channel so that, at river stages below the lowest

crown elevations, little flow enters the channel. The remnants of the American Cutoff Revetment are present in the downstream end of the channel.

The secondary channel at Cottonwood Bar (Figure 1) is located along the left bank of the river in the vicinity of RM 470. This channel was about 3 miles long at the time of sampling. In 1983 two dikes were constructed as the initial phase of a long-range plan to develop a third channel through the island between the bendway channel and the secondary channel. This third channel is on a more stable alignment and will eventually become the main channel. The L-head dike at the immediate upstream end of the secondary channel, Arcadia Dike, is 4,000 ft long, has a bankhead crown elevation of 33 ft, and a crown elevation thereafter of 22 ft. This dike did not completely block flow during the year of the study (Figure 5). In 1985, however, this dike was extended, and another dike was constructed in the downstream portion of the secondary channel. Additional work to raise the dikes was accomplished in 1986.

The upstream end of the 3-mile-long Profit Island secondary channel (Figure 6) is located near RM 252 (Figure 1). This channel, located along the left bank of the river, is relatively narrow. A dike was constructed at the upstream end of this channel in 1986, but no training works were in place at this site during the study.

The general secondary channel habitat is comprised of several recognizable components, or microhabitats. For the purposes of this study, microhabitats present within all five channels were the natural bank, the midchannel, and the sandbar. The sandbar was additionally divided into the portion bordering the secondary channel, termed the secondary channel sandbar, and the portion bordering the main channel, termed the main channel sandbar. In secondary channels with dikes, the area immediately adjacent to the dike was considered a separate microhabitat.

PART II: METHODS

Physical/Chemical

Five to seven transects (designated by letters A through G) were established at each secondary channel (Figures 2-6). Transects A and B were located along the upstream and downstream faces of the dike, if a dike was present in the channel. Transects C through G were positioned perpendicular to the axis of flow in each channel, with transect C being nearest the upstream end and transect G nearest the downstream end. Five sampling stations were established along transects A, B, C, E, and G. Station 1 was located at the natural bank, stations 2 and 3 in midchannel, station 4 at the secondary channel sandbar, and station 5 along the main channel sandbar. Only natural and secondary channel sandbar stations were located on transects D and F.

All five secondary channels were sampled during July 1984. River stage at the time of collecting was 16 to 18 ft at the Vicksburg gage and 23 to 25 ft at the Greenville gage. Lakeport Towhead and Cottonwood Bar were resampled during October 1984, at which time the river stages were 6 to 6.5 ft and 13 to 16 ft at the Vicksburg and Greenville gages, respectively.

Dissolved oxygen concentration, temperature, specific conductance, and pH measurements were taken at stations 1 through 4 on transects C, E, and G in each channel. At stations having a maximum depth less than 1 m, single, middepth measurements were taken for each variable. For stations with maximum depths of 1 to 2 m, surface and bottom measurements were obtained; if depth exceeded 2 m, measurements were taken from the surface, middepth, and bottom. All measurements were made in situ using a Hydrolab 8000 unit. Water samples for optical turbidity determination were taken from each depth with a Van Dorn bottle and were immediately placed on ice. Turbidity determinations were made for all samples at the end of the day using a Hach 2100 Turbidimeter. Current velocities were obtained at each water quality station and sampling depth using an Endeco Type 110 ducted impeller meter. One sediment sample was collected for grain-size analysis from each station. Sediment grain sizes were grouped into five general categories: particles larger than 4.76 mm constituted gravel; particles 2.00 to 4.76 mm were coarse sand; those 0.42 to 2.00 mm comprised medium sand; particles 0.074 to 0.42 mm were fine sand; and fines were particles less than 0.074 mm.

Biological

Macroinvertebrates

Two grab samples were taken at each station on transects C-F (24 samples per channel). Most samples were obtained with a Shipek dredge; however, at a few stations a petite ponar sampler was used. Samples were sieved ($500-\mu$ mesh) in the field and the macroinvertebrates immediately preserved in 5-percent formalin. Substrates (mostly coarse sands) that did not pass through the sieve were placed in 5-percent formalin and the macroinvertebrates separated from these substrates by elutriation. All macroinvertebrates were transferred to 80-percent ethanol and stained for at least 48 hr with Rose Bengal. Initial sorting was done under 3X circline lamps. Macroinvertebrates were identified to the lowest possible taxon.

In addition to the bottom samples, macroinvertebrates were also collected from the dikes at Lakeport Towhead and Cottonwood Bar during July. Three rocks were obtained from approximately 0.5-m depth at each station on each side of the dike. Invertebrates were brushed and picked from the rocks and sieved with a $500-\mu$ sieve. After sorting and identification were completed, macroinvertebrates obtained from the rocks were dried to constant weight at 65° C. Total weight for each major taxon except the Chironomidae was determined to the nearest 0.001 g using a Mettler Model H54AR analytical balance. Chironomid biomasses were not estimated because these invertebrates must b permanently mounted on slides for identification. The rocks from which the invertebrates were removed were returned to the lab and their surface areas estimated by covering the rocks with tin foil, then weighing the foil and converting to area using an empirically determined ratio.

Fishes

Data on fish populations were collected by electroshocking, seining, and hydroacoustic techniques. A Coffelt boat-mounted electroshocker was operated in pulsed-DC mode and adjusted to output 4 to 6 amps at 250 to 400 V. Electroshocking samples consisted of 10-min runs made moving with the current, parallel to and near the shoreline or dike. Samples were taken in the vicinity of stations 1, 4, and 5 on transects C, E, and G in each channel. If a dike was present, two samples each were collected from above and below the structure. Where conditions permitted, seine samples were collected at all bank stations within the secondary channel and at a minimum of three stations

along the main channel sandbar. If a dike was present, and if conditions permitted, at least two hauls were made along both upstream and downstream faces. The seine measured 15 by 4 ft and had 3/16-in. Delta mesh. Hauls were 50 ft in length and were always made in a downstream direction if a current existed.

Most fish collected with the electroshocker were identified, measured (total length to the nearest millimetre), and weighed (to the nearest gram) in the field. Smaller fish taken with the shocker, and all fish collected with the seine, were immediately preserved in 10-percent formalin and returned to the lab for processing. Total lengths and blotted wet weights were obtained to the nearest 0.1 mm and 0.1 g, respectively. Fish returned to the lab for processing were stored in 50-percent isopropanol.

Hydroacoustic data were collected using a BioSonics Model 101 Dual-Beam Echo Sounder operating at 420 kHz, a BioSonics Model 121 Digital Echo Integrator, a BioSonics Model 171 Tape Recorder Interface, a Sony Model PCM-Fl Digital Audio Processor, a Sony Model SL-2005 Portable Video Cassette Recorder, an Otrona Attache microcomputer, an EPC Model 1600 Chart Recorder, an oscilloscope, and a 420-kHz 6-deg/15-deg dual-beam transducer mounted in a BioSonics Towed Body.

The dual-beam transducer was towed at a depth of approximately 1 m and aimed straight down. All pulses were transmitted on the 6-deg transducer element. For echo integration, the echo signals received on the 6-deg element were then amplified by the echo sounder at 20 log (R) time-varied-gain (TVG) and relayed to the echo integrator. For dual-beam processing, echoes were received on both the 6- and 15-deg elements. The signals were amplified at 40 log (R) TVG and directed to the tape recorder interface, then to the signal digitizer and a video cassette recorder. Signals on both channels were recorded for later dual-beam analysis in the laboratory. The echo sounder was configured so that echo integration and dual-beam recording could take place simultaneously.

The acoustic system was calibrated prior to sampling to ensure that target echoes of known acoustic size produced a specific output voltage from the echo sounder. The minimum voltage threshold was set so that only targets with acoustic sizes greater than -60 db (equivalent to approximately 1.7-cm fish) would be accepted for further processing. Postproject calibration verified that the sensitivities remained constant throughout the study. At each secondary channel, five cross-channel samples were collected: COl to CO4, DOl to

DO4, EO1 to EO4, FO1 to FO4, and GO1 to GO4. Samples were also taken parallel to and near the natural bank (CO1, DO1, EO1, FO1, and GO1) and the secondary channel sandbar (CO4, DO4, EO4, FO4, and GO4). Sample transects along the banks were run in a zigzag fashion to and from the shore. The hydroacoustic data were recorded on digital video cassettes and returned to the laboratory for analysis.

Analytical

Fish, macroinvertebrate, and water quality data were evaluated by analysis of variance (ANOVA) to determine if there were differences among channels, differences between months of sampling, or trends within each secondary channel from upstream to downstream or across the channel from natural bank to sandbar. For some analyses, stations were grouped by microhabitat within each secondary channel: natural bank, dike (if present), secondary channel sandbar, main channel sandbar, and midchannel. Water quality variables were additionally examined for differences due to depth. Means for significant effects (P < 0.05) were separated using Duncan's Multiple Range Test. Differences between diked and nondiked channels were evaluated using specific linear contrasts.

For electroshocker and seine samples, evaluations were made of the persample numbers and weights of all fish species combined and for the major species separately. Seine and electroshock data were analyzed separately. For the macroinvertebrate grab samples the total number of organisms and total number of species identified were evaluated. Fish and benthic data were logtransformed prior to analysis. Diversity of fishes and macroinvertebrates at each secondary channel and for each month was measured by the total number of taxa and by the Shannon-Weiner diversity index.

Macroinvertebrates taken from the dikes at Lakeport Towhead and Cottonwood Bar in July were analyzed separately from the grab samples. Total numbers of organisms, total number of taxa, and numbers of organisms for dominant species were evaluated by ANOVA for differences between the upstream and downstream side of the dike and for differences between the two channels.

The relationship between sediment grain size and benthic macroinvertebrate distribution was examined by cluster analysis using Ward's minimum hierarchical algorithm on the Statistical Analysis System. Sediment samples were clustered on the basis of the percentage of material retained in 18 standard sieve sizes ranging from 1.00 in. to >No. 200. July macroinvertebrate samples were clustered based on the percentage of organisms in each of 17 selected categories. Only July samples were used because in October only two of the five channels were sampled. Sixteen of the categories represented the taxa which cumulatively accounted for more than 90 percent of all organisms identified during the study; the final category represented all remaining taxa combined. Macroinvertebrate samples were included in the analysis only if they contained at least 15 organisms; this significantly reduced the chance that anomalous samples containing very few organisms would unduly affect the results. Finally, sediment and macroinvertebrate clusters were compared to determine the degree of correspondence, and the individual macroinvertebrate samples were examined to elucidate the relationship of sediment grain size to the distribution of specific taxa.

Hydroacoustic data were analyzed as fish densities by depth strata along each transect and as fish target strengths (acoustic sizes) along each transect. Because of the relatively low fish densities, the shallow water (0 to 10 m), and frequently changing bottom depth, fish densities were estimated using echo counting techniques. Individual fish counts were determined from the chart-recorded echograms. The dual-beam processor was used to assist in developing the criteria for identifying fish from the acoustic returns.

Hydroacoustic detection of fish is generally precluded within 1 m of the transducer, within approximately 15 cm of the bottom, and in turbulent water. The composite vertical distribution of fish along the different banks and in the open channel reflects the relative position of the fish from shore, the relative position of the fish between the surface and bottom, and the contour of the bottom. The composite vertical distribution data combined with information from echograms suggest that the fish distribution patterns reflect the relative position from surface to bottom in most cases. Briefly, dual-beam target strength measurements are made as follows. A pulse is transmitted on a narrow-beam element, and echo signals are received on both the narrow- and wide-beam elements. The outputs from both elements are made equal for an on-axis target. The system is constructed so that the peak voltages from the two elements can be used to calculate target strengths.

Although many variables can affect a fish's reflecting properties, an empirical relationship between average fish length and average target strength has been derived (Love 1971). This relationship is given by:

 $\log (L) = (0.052) TS + (0.047) \log (f) + 3.246$

where L = fish length (cm) and f = hydroacoustic frequency (kHz). This relationship is based on measurements of eight species of fish and data from at least 16 other species (Love 1971). Using the dual-beam system, Burczynski and Johnson (1983) have found that this relationship applies well to in situ measurements of target strengths for salmon. However, target strength/fish length comparisons for the species from the Mississippi River have not been made, and this relationship may not hold.

The data were organized in files corresponding to individual transects for the five secondary channels. Target strength frequency distributions were calculated for each transect, for groups of similar transects (i.e., natural bank transects), and for all the data combined for each channel.

Average fish density (number/100 m³ of water) was evaluated by ANOVA for differences among microhabitats (secondary channel sandbar, natural bank, and open channel) and among the five secondary channels. Differences between diked and nondiked channels were evaluated by specific linear contrasts. Density values represented a vertically integrated sample across all depth strata. Sample density values at each secondary channel site were obtained for five different segments of a long zigzag transect oriented upstream to downstream along the natural bank shore, five similarly oriented transect segments along the secondary channel sandbar, and three transverse transects oriented across the channel. The transverse transects were used to provide sample values of fish density for the open channel.

PART III: RESULTS

Data referenced in the following sections have been compiled into four appendixes. Appendix A summarizes the basic water quality and current velocity data for the five secondary channels; Appendixes B and C present summary fish and macroinvertebrate information, respectively; and Appendix D gives sediment grain size data.

Physical/Chemical

Current speed and water quality

Mean current speeds in July were relatively high at Wolf Island, Island 8, Cottonwood Bar, and Profit Island but they were significantly lower at Lakeport Towhead (Table 1). Considerable variation in current speeds was observed both at individual sampling stations within each channel and also among channels (see Appendix A tables). Wolf Island currents, for example, were highest along the downstream transect. and they tended to be lowest along the natural bank. Lakeport Towhead, Cottonwood Bar, and Profit Island all showed general upstream to downstream decreases in current speed, but they differed in cross-channel current patterns. At Island 8 and Cottonwood Bar, the slowest currents were generally found along the secondary channel sandbar, while at Lakeport the slowest currents were along the natural bank. Island 8 currents were consistent upstream to downstream, but showed some cross-channel variability, being lowest along the secondary channel sandbar.

Virtually no current existed in Lakeport Towhead secondary channel during the October sampling (Table 1). At Cottonwood Bar, however, neither current speeds nor their within-channel pattern changed appreciably from July (Table Al3). Although dikes were in place in both these channels and were built to nearly the same elevation, the dike at Cottonwood Bar allowed flow around its channelward end, and through the channel, at most river stages.

Temperature, pH, and dissolved oxygen concentration were similar at all five channels during July (Table 1), and these variables showed few withinchannel differences (Appendix A). Temperatures averaged from 27.5 to 28.0° C; pH ranged only from 7.3 to 7.5; and mean dissolved oxygen varied among channels only from 5.5 to 6.0 mg/l. Conductivity values were similar at three of the channels in July, but they were significantly higher at Island 8 and significantly lower at Lakeport Towhead (Table 1). Conductivity generally showed low variability at each channel, with the exception of Wolf Island, where values increased consistently from upstream to downstream and from natural bank to secondary channel sandbar (Table A1).

Turbidity levels were different among channels in July (Table 1), and turbidity also showed relatively great within-channel variability at two sites, Wolf Island and Lakeport Towhead (Tables Al and A3). Turbidity was consistently high throughout Island 8 secondary channel, and consistent, though significantly lower, at Cottonwood Bar and Profit Island. At Wclf Island, turbidity measurements closely tracked conductivity, increasing from upstream to downstream and from natural bank to sandbar. At Lakeport turbidity declined significantly between transects E and G (Table A3).

In October, temperature was lower, as expected, in both Lakeport Towhead and Cottonwood Bar (Tables A4 and A6), and presumably as a consequence, dissolved oxygen readings were consistently higher. Conductivity and turbidity values were similar to those found in July at Cottonwood Bar, but mean values for both these variables changed significantly at Lakeport. Conductivity increased, and turbidity decreased, presumably due to the reduction in current speeds. Mean pH did not change appreciably in either channel. Sediments

Fine sand (particles 0.074 to 0.42 mm) was the dominant sediment grain size fraction at all five secondary channels in both sampling periods (Figures 7 and 8). However, differences among channels were apparent both in terms of overall substrate composition and in the variability among individual stations (Table D1). At Wolf Island, all five sediment grain size fractions were present in appreciable amounts, and variability among individual stations was great. Island 8 sediments consisted mostly of fine and medium sands, and station-to-station variability was small compared to that at Wolf Island. Lakeport Towhead sediments were well sorted, consisting mostly of fine sands and/or fines at all stations in both sampling periods. Both Cottonwood Bar and Profit Island exhibited an intermediate level of variation in July, sediments consisting primarily of medium sands, fine sands, and fines. In October, Cottonwood Bar sediments were more varied among the individual stations, although overall composition was only slightly changed from July.

Fishes

Both numerical and weight catches per unit effort were tested for differences among channels, and among microhabitats within channels. The numbers of samples collected were generally not sufficient to demonstrate statistical significance, even though in several instances the observed differences were several orders of magnitude. Failure to find significant differences does not mean that fish catch rates are equal in all channels or microhabitats. In fact, they probably are not, but the low number of samples precluded statistically demonstrating this.

Wolf Island

Fifteen species and 112 fish, with a total weight of over 47 kg, were captured by electroshocking at Wolf Island (Table Bl). Channel and flathead catfish (see Table 2 for common and scientific names of species collected) were the dominant species both numerically and by weight. Although blue catfish, common carp, and longnose gar were each represented by five or fewer fish, they contributed substantially to the weight. Differences in the numerical and weight catches among microhabitats (natural bank, secondary channel sandbar, and main channel sandbar) were relatively large, but they were not statistically significant.

Seventeen species of fish were represented in the seine collections from Wolf Island (Table B2). Emerald shiner dominated the collections, accounting for 457 of 590 fish, although freshwater drum, channel catfish, and silver chub were also common. Shortnose gar was the dominant species by weight, even though it was represented by only a single specimen. The most numerous species, emerald shiner, comprised 18 percent of the weight. Numbers and weight per unit effort did not differ significantly among the three microhabitats.

Numbers of fish detected acoustically ranged from $0.1/100 \text{ m}^3$ along transect CO1 to $20.4/100 \text{ m}^3$ along the transect crossing the channel at FO1 to FO4 (Table B3). Although there were no statistically significant differences among either transects or habitats, considerable differences were observed. The greatest concentration of fish at Wolf Island was detected at upstream transects, followed by transects located near the channel midpoint; downstream transects had the fewest fish. Mean number of fish/100 m³ indicated a

hi http://http:/

The vertical distribution of fishes in the water column tended to be surface-oriented at Wolf Island (Figure 9), although there were some differences among microhabitats. Along the natural bank, the number of fish was greater in the surface strata and decreased with depth. Fish densities along the secondary channel sandbar remained relatively constant as depth increased, and distributions were consistent among samples. The composite distribution for midchannel transects showed slightly greater numbers of fish as depth increased.

The target strength distribution at Wolf Island tended to be slightly skewed and centered around -54 db (3.5 cm) to -50 db (5.7 cm) (Figure 9). Target strengths along the natural bank were uniformly distributed and slightly higher at samples taken near the center than at transects upstream and downstream. Most fish detected along the natural bank were smaller than -50 db. Target strengths were more widely distributed along the secondary channel sandbar and were similar for all samples except CO4, where the majority of fish were smaller than -50 db. In midchannel, small fish (target strengths of less than -50 db) were encountered most frequently, and their distributions were similar among samples.

Island 8

Thirteen species of fish were captured by electroshocker from Island 8 secondary channel during July, with the 101 total fish weighing over 23 kg (Table B4). Channel catfish, flathead catfish, gizzard shad, goldeye, and shortnose gar were most abundant, accounting for 85 percent of the numbers. The remaining eight species were each represented by three or fewer fish. Common carp dominated by weight, with shortnose gar, channel catfish, gizzard shad, and flathead catfish also contributing substantially. Electroshocking catches did not differ significantly among microhabitats.

Seine collections from the secondary and main channel sandbars at Island 8 yielded 12 species and 297 fish weighing a total of only about 150 g (Table B5). Seining was not possible along the natural bank due to the steep slope, deep water, high current velocities, and submerged brush. Emerald shiner dominated the catch by both numbers and weight. Though not very abundant, gizzard shad, shipjack herring, and river shiner contributed

appreciably to the weight. No significant differences in catch per unit effort were found among microhabitats.

Hydroacoustic fish densities at Island 8 ranged from 0.2 to 4.5 fish/ 100 m³ of water (Table B6). There were no statistically significant differences in numbers of fish among transects or microhabitats. However, the greatest concentrations of fish were found at upstream samples along the secondary channel sandbar and at the center transect along the natural bank, while lower numbers of fish were found at open channel transects, particularly those upstream. Among microhabitats, the natural bank had the greatest mean density of fish, and the lowest mean density was detected in the open channel.

The composite distribution of fish at Island 8 was similar at all stations in each microhabitat. Fish at natural bank stations tended to be surface-oriented (Figure 9) compared to those in other microhabitats. Target strength distributions (Table B6) for natural bank samples were relatively uniform and averaged -45.4 db (10.1 cm). Target strengths were highly variable for most transects along the secondary channel sandbar, although in general fish were larger here (Table B6) than in other areas of the channel. Fish were smallest along the open-water transects, with the majority of target strengths being -50 db (5.7 cm) or less.

Lakeport Towhead

A total of 116 fish, weighing over 33.5 kg, were captured with the electroshocker at Lakeport Towhead during July. Thirteen species were represented in the collections (Table B7), but blue and flathead catfishes accounted for most of the numbers. Flathead catfish comprised most of the weight collected, the remainder being evenly distributed among a number of species. The numerical catches for the dike and natural bank microhabitats were significantly higher than for the secondary channel and main channel sandbars (Table B7). Catch in terms of weight showed no significant differences.

Blue catfish were significantly more abundant along the natural bank than along the secondary channel or main channel sandbars, or along the dike (Table B7). Weight per transect did not differ significantly for this species.

Nearly 10 times as many fish (and nearly twice the weight) were collected by electroshocking from Lakeport Towhead during October than were collected in July (Table B8). Species composition was also considerably different. Gizzard shad, threadfin shad, and skipjack herring, species virtually absent in

July, accounted for 94 percent of the catch; white bass, also rare in July, was the fourth most abundant species. Catch per effort for catfishes, which had dominated July collections, was lower by a factor of nearly ten. Shads were the dominant group by weight, although nine other species contributed at least 2 percent. No significant differences in either numerical or weight catch were detected among the microhabitats.

The four most commonly collected species suggested microhabitat-specific preferences at Lakeport Towhead (Table B8), although the differences were not demonstrable statistically. Gizzard shad were most abundant in terms of both number and weight along the secondary channel sandbar. Threadfin shad also exhibited a numerical preference for this microhabitat, and for the secondary channel sandbar and dike in terms of weight. This number-weight difference was due to a distinction in the microhabitats inhabited by adults and juveniles, with large threadfin shad being collected along the dike and small ones along the sandbar. Skipjack herring and white bass were clearly most abundant along the dike.

Seining at Lakeport Towhead in July produced 704 fish representing 26 species (Table B9). Four species (emerald shiner, mimic shiner, inland silverside, silver chub) accounted for over 66 percent of the catch. Numerical catches at the natural bank were over four times that of the other areas, and weight catch was over 1.5 times greater, though these differences were not statistically significant.

Fewer species and fish were captured by seining at Lakeport Towhead during October than during July (Table B10). Total weight of fish increased considerably, however. Emerald shiner and inland silverside were again among the four most abundant species. Threadfin shad and silverband shiner, rare in July, were abundant in October collections, replacing the previously common mimic shiner and silver chub. These four species accounted for 81 percent of the numbers and 79 percent of the weight. Seine catches did not differ significantly among microhabitats within this channel.

Fish densities estimated by hydroacoustics ranged from 0.5 to 15.2 fish/100 m³ (Table B11) and averaged 3.5/100 m³ at Lakeport. Densities along the natural bank were significantly greater than those along the secondary channel sandbar and in the open channel. There were no differences in fish densities among cross-channel transects.

Vertical distribution patterns indicated that fish tended to be deep at Lakeport (Figure 9). Densities were relatively high for all depth strata along the natural bank and tended to increase with depth until about 9.5 m. The vertical distribution was relatively uniform for samples collected along the secondary channel sandbar, and there was no obvious trend in the distribution among open-channel samples.

Target strengths for natural bank transects showed relatively even distributions with a peak of -54 db (3.5 cm). Peak target strength at transect CO1 (14.8 cm) was greater than for other natural bank samples. Target strengths for samples along the secondary channel sandbar showed a monodispersed distribution centered around -50 db (5.7 cm) for samples DO4, EO4, and GO4. The sample at CO4 had a peak target strength of -30 db (63.0 cm). Target strength distributions for the open-water samples were extremely variable.

Cottonwood Bar

Eighty-five fish, weighing over 18 kg, were collected by electroshocker from Cottonwood Bar during July. Thirteen species were represented (Table B12). Over 75 percent were catfishes, with blue and flathead catfish dominating both numbers and weight. No other species was represented by more than three fish. Catch rates did not differ significantly among the three shoreline microhabitats and the dike.

The total electroshocking catch at Cottonwood Bar during October was much greater than during July despite nearly equal effort being expended in both months. This collection yielded 17 species and 178 fish weighing a total of nearly 44 kg (Table B13). Gizzard shad and threadfin shad, nearly absent during July, dominated the numbers, and of the species dominant in July only flathead catfish remained abundant. These three species, along with skipjack herring and blue catfish, accounted for nearly 86 percent of the fish. Although only five blue suckers were captured, they comprised the largest portion of the catch by weight. Also important by weight were gizzard shad, flathead catfish, smallmouth buffalo, blue catfish, longnose gar, common carp, and bigmouth buffalo. All microhabitats yielded greater mean numbers and weights of fish during October (Table B13), although again, differences in catch rates were not significant. Although several species showed large differences in abundance among habitats, none were statistically significant. A total of 246 fish, representing 15 species, were collected by seining at Cottonwood Bar during July (Table Bl4). Emerald shiner, gizzard shad, and inland silverside accounted for over 85 percent of the numbers, and these species were also important by weight. White bass, although represented by only two fish, dominated the catch by weight. Although considerable differences in numerical and weight catch rates occurred among microhabitats, none were statistically significant.

The number of fish taken by seine at Cottonwood Bar was lower in October than in July, although total weight catch remained nearly the same (Table B15). A number of species were relatively abundant, including gizzard shad, inland silverside, and river, emerald, silverband, and blacktail shiners. Gizzard shad, inland silverside, and emerald shiner again accounted for most of the weight. No significant differences in catch rates were observed among microhabitats.

Numbers of fish detected acoustically ranged from $0.5/100 \text{ m}^3$ to $14.7/100 \text{ m}^3$ within this channel (Table B16), and density averaged $3.4/100 \text{ m}^3$. Densities of fish were significantly greater along the natural bank than along the secondary channel sandbar or in the open channel. There was no significant difference in fish densities among cross-channel transects.

Fish densities were relatively low and uniformly distributed throughout the water column along the sandbar and in the open channel (Figure 10). There was more variation in the vertical distribution of fish among individual samples along the natural bank, although the composite distribution was very even among depths. Fish tended to be surface-oriented at upstream transects (CO1 and DO1), bottom oriented at transects EO1 and FO1, and middepth-oriented at the downstream transect (GO1). Target strengths of natural bank samples showed relatively even distributions, with no major peaks, and averaged -47 db (ca. 9 cm). Fish target strengths were highly variable among samples taken along the secondary channel sandbar and averaged -51.3 db (ca. 5 cm). Fish were relatively small ($\bar{x} = -52.6$ db [ca. 4.2 cm]) in the open channel. <u>Profit Island</u>

Ten species of fish were taken by electroshocker from Profit Island secondary channel during July, with the 314 fish weighing a total of over 37 kg (Table B17). Blue and flathead catfishes comprised the majority of the catch in terms of both numbers and weight. Numerical and wieght catches were not significantly different among microhabitats. Commercial fishermen use the

Profit Island area extensively during much of the year and may have baited the area within the channel. The effect of this practice (if it actually occurred) on our catch rates is unknown, but could have been considerable.

A total of 115 fish weighing approximately 160 g were taken by seining at Profit Island (Table B18). Inland silverside was the most commonly collected of the 17 species, but four other species were also abundant. Six species each made up at least 10 percent of the catch by weight, with blacktail shiner, river shiner, and longear sunfish dominating. Although relatively large differences in catch rates occurred among microhabitats, they were not statistically significant. No species demonstrated a significant preference for any habitat.

Acoustically determined fish densities ranged from 0.2 to 8.5 fish/ 100 m³ (Table B19). Mean number of fish/100 m³ indicated a general high-tolow ranking of natural bank, sandbar, and open channel, although no statistically significant differences were found.

The composite distribution of fish was uniform with depth along both banks and in the open channel (Figure 10). Target strengths of fish along the natural bank were normally distributed and averaged -47.1 db (ca. 10 cm). Along the secondary channel sandbar, most fish were small, with a target strength peak at -54 db (3.5 cm). Most of the fish detected in the open channel were smaller than -50 db (5.7 cm).

Comparisons among channels

Significant differences (P < 0.02) in electroshocking catch rates were found among the five secondary channels sampled (ring July (Tables 3 and 5). Mean numbers were highest by far at Profit Island; Wolf Island and Island 8 catch rates were similar and intermediate; and Lakeport Towhead and Cottonwood Bar values were lowest. In terms of weight, Profit Island and Wolf Island were highest, Island 8 and Lakeport Towhead were intermediate and similar, and Cottonwood Bar was lowest. As a group, secondary channels without dikes had significantly higher mean numbers (P < 0.03) and weights (P < 0.005) per unit effort than secondary channels with dikes. These findings must be interpreted with caution because of the possibility that baiting had influenced the catches at Profit Island. When data from Profit Island were omitted, electroshocking catches at the remaining two undiked channels were not significantly greater than at the diked channels.

The ANOVA also indicated significant overall differences among microhabitats within the secondary channels in July (P < 0.03), with the natural bank having the highest numerical catch rate. Differences in weight were not sigr.ificant, however, and no differences were detected in either numbers or weights among transects (positions upstream to downstream within channels).

Seining indicated significant differences among the five secondary channels in terms of numbers (P < 0.01). Catches at Wolf Island, Island 8, and Lakeport Towhead were highest, catches at Cottonwood Bar were lower, and at Profit Island they were extremely low (Table 4). No significant difference among channels was indicated for weight (Table 6). No differences were found among microhabitats within channels, although in general, seine catches were greater at the two banks inside the secondary channel than along the main channel sandbar. Due to the pattern of missing data (no seine hauls were possible along the natural bank at Island 8), no statistical test of differences between secondary channels with and without dikes could be made. The mean values for the two types of channels were similar, however.

Lakeport Towhead and Cottonwood Bar were resampled during October 1984, at which time river stage was approximately 10 ft lower than in July, and when conditions in Lakeport Towhead had changed considerably (see previous section, Physical/Chemical). Both secondary channels showed several-fold increases in electroshocking catch rates (Tables 3 and 5), with those at Lakeport Towhead increasing more. Significant differences existed both between channels (Lakeport Towhead highest) and between months (P < 0.001) for numbers; weight showed a significant difference only between months. The difference between these two channels was significantly greater in October than in July in terms of numbers, as indicated by a significant interaction F-value (P < 0.001).

Seining at Lakeport Towhead and Cottonwood Bar (Tables 4 and 6) indicated no statistically significant effect due to month, channel, or microhabitat. However, catches along the natural bank and secondary channel sandbar were considerably higher than those along either the dike or the main channel sandbar.

The fish assemblages sampled by electroshocker at the five secondary channels differed considerably during July (Table 3). Catfishes dominated, and variations in the relative percentages of the three catfish species largely accounted for the overall differences among channels. Gizzard shad and goldeye, both common only at Island 8, accounted for most of the remaining

difference among channels. Percent composition by weight showed a general pattern similar to that for numbers (Table 5), with flathead, channel, and blue catfishes comprising most of the weight. However, several numerically uncommon species, including common carp, gars, river carpsucker, and freshwater drum, also comprised substantial percentages of the weight due to their large adult sizes.

Species diversity for electroshocking samples was highest at Wolf Island, Island 8, and Cottonwood Bar in July (Table 7). Diversity at Lakeport Towhead was somewhat lower, and at Profit Island it was very low. These diversities primarily reflected the combined relative percentages of blue and flathead catfishes (from 8.1 to 93.6 percent).

Seining also indicated large differences in species composition among channels in July (Table 4), with variations in the percentages of emerald shiner and inland silverside accounting for much of the distinction. Emerald shiner comprised over 75 percent of the fish collected at Wolf Island and Island 8, but less than 10 percent at Profit Island; Lakeport Towhead and Cottonwood Bar had intermediate percentages of this species. Inland silverside ranged upriver only as far as Lakeport Towhead, and its relative abundance increased steadily from this secondary channel to Profit Island. The pattern of percent weight composition generally resembled that of numbers (Table 5).

Seine samples (Table 7) from Lakeport Towhead and Profit Island produced the highest diversity values, while values at the remaining three secondary channels were lower to very low. The lowest diversities reflected the relative dominance of emerald shiner. The two highest diversities reflected not only a more even percent composition among species but also a greater number of species (25 and 17 at Lakeport Towhead and Profit Island, respectively).

Fish assemblages found at Lakeport Towhead and Cottonwood Bar during October, as indicated by electroshocking, were very different from those of July (Table 3). Gizzard shad, threadfin shad, and skipjack herring replaced the catfishes as the dominant group, accounting for 63 percent (Lakeport) and 94 percent (Cottonwood Bar) of the fish. Diversity was only slightly changed at each channel, but the net effect of the changes was to increase the difference between them (Table 7). As noted earlier, overall catches increased significantly at both channels. Weight composition also changed considerably

between July and October (Table 5). Although the percent weight of shad increased, it did not nearly match the change in numbers. Several less common species, including blue sucker, smallmouth and bigmouth buffalo, and white bass, contributed substantially to the weight during October. Weight of catfishes declined greatly, while weight of common carp increased at Lakeport Towhead and decreased at Cottonwood Bar.

The species compositions of seine collections at Lakeport Towhead and Cottonwood Bar did not change as much between months as those derived from electroshocking. Threadfin shad and silverband shiner increased in relative abundance at Lakeport Towhead, while mimic shiner and silver chub decreased (Table 4). At Cottonwood Bar, the primary decrease in relative abundance occurred for emerald shiner and inland silverside; river shiner, silverband shiner, blacktail shiner, and bullhead minnow all increased in number. The change in relative numbers exhibited by these species was generally reflected in their changes in weight at Lakeport Towhead, but not at Cottonwood Bar (Table 6), where the large weight catch of gizzard shad decreased the relative contributions of the other species.

Species diversity for seining decreased appreciably at Lakeport and increased by a like amount at Cottonwood Bar. The resulting diversities of these two channels were, thus, more nearly equal during October (Table 7).

Average fish densities derived from hydroacoustics ranged from $1.9/100 \text{ m}^3$ at Island 8 to $3.5/100 \text{ m}^3$ at Lakeport Towhead. Although there were no statistically significant differences among the five channels, the two with the greatest densities of fish, Lakeport Towhead and Cottonwood Bar, were the only channels that had been partially closed by dikes. There were overall differences among habitats within channels, with fish densities being significantly greater along the natural banks than along secondary channel sandbars or in the open channel.

Fish were uniformly distributed throughout the water column at Island 8 and Profit Island. Fish were more surface-oriented at Wolf Island and Cottonwood Bar, while at Lakeport Towhead fish were generally bottom-oriented.

Target strength distributions were consistent among the secondary channels and showed a slightly skewed distribution centered around -54 to -50 db. Mean target strength varied only slightly among the channels and ranged from -47.1 db (ca. 8 cm) at Lakeport Towhead to -50.6 (ca. 6 cm) at Wolf Island.

Macroinvertebrates

Both density of organisms and number of taxa varied considerably across sampling stations within each secondary channel. However, due to the great natural variability and the low number of samples available for each station, the significance of any apparent trends could not be statistically tested. Wolf Island

A total of 34 taxa of benthic macroinvertebrates were collected at Wolf Island secondary channel during July 1984 (Table Cl), with the number of taxa taken at individual stations varying from 1 to 15. Mean density of organisms was $1,200/m^2$ (Table 8) and ranged from 24 to $7,942/m^2$ at individual stations (Figure 11).

Tubificid worms, hydropsychid caddisflies, and chironomids made up over 93 percent of all organisms collected (Figure 22). Tubificid worms were abundant only at one station (Figure 11), although 10 taxa of Tubificidae were collected overall (Table C1). Most of these were immature worms with no capilliform chaetae, and they probably represented those species for which adults were most numerous (Limnodrilus maumeensis, L. hoffmeisteri, L. cervix, L. claparedianus, and L. udekemianus). Hydropsychid caddisflies, represented by Potamyia flava and Hydropsyche orris, were numerous at three stations but were rare elsewhere. Potamyia was the more abundant of the two species. Chironomids were found in moderate to high numbers at most stations (Figure 11). Although 11 taxa of Chironomidae were identified, only three (Robackia claviger, Chernovskiia orbicus, and Polypedilum convictum) were common. The only other taxa reaching moderate to high densities at any of the sampling stations were microturbellarians and enchytraeid worms, both of which were low in overall abundance.

Island 8

Twenty-four macroinvertebrate taxa were collected from the Island 8 secondary channel during July (Tables 8 and C2), with the number of taxa taken at individual stations ranging from 0 to 10 (Figure 12). Densities ranged from 0 to $2,313/m^2$ (Figure 12) and averaged $576/m^2$ (Figure 22).

Hydopsychid caddisflies, chironomids, and microturbellarians were the dominant taxa collected at Island 8 (Figure 22 and Table C2). The hydropsychid species, <u>P. flava</u> and <u>H. orris</u>, were numerically dominant at only a single station (GO1; Figure 12). Chironomids, on the other hand, were dominant or codominant at 8 of the 12 sampling stations and were particularly abundant on the upstream transect. Although eight taxa of Chironomidae were taken, <u>R. claviger</u> and <u>C. orbicus</u> comprised most of their numbers. Microturbellarians were abundant only at midchannel stations. The polymitarcyid mayfly <u>Tortopus</u> incertus, nematode worms, and enchytraeid worms comprised most of the remainder of the benthos (Figure 7), although each was common at only a few stations (Figure 12). <u>Tortopus</u> incertus was collected only at the station where consolidated clay was found. Similarly, enchytraeid worms (<u>Barbidrilus</u> <u>paucisetus</u>) were common only at one station, and nematodes were abundant at only three stations.

Lakeport Towhead

Lakeport Towhead yielded 22 taxa of macroinvertebrates in July (Tables 8 and C3), with numbers of taxa at the individual stations ranging from 0 to 8 (Figure 13). Number of taxa was highest at station 3 on each transect within this channel. Densities at individual stations ranged from 0 to 751 organisms/m² (Figure 13) and averaged 158 organisms (Figure 22).

Chironomids dominated the overall benthic community during July at this secondary channel (Figure 22) and were particularly abundant along the upstream transect (Figure 13). <u>Chernovskiia orbicus</u> and <u>R. claviger</u> were the most abundant of the six chironomid species collected (Table C3), comprising over 88 percent of the total. The phantom midge <u>Chaoborus punctipennis</u>, hydropsychid caddisflies, ephemerid mayflies, and the polymitarcyid mayfly <u>T</u>. <u>incertus</u> accounted for most of the remaining numbers of benthic organisms. <u>Chaoborus punctipennis</u> was common only at the two midchannel stations on the downstream transect. In contrast, <u>H. orris</u> and <u>P. flava</u> were abundant only at midchannel stations on the upper and middle transects. Ephemerid mayflies, represented in this channel by <u>Pentagenia vittigera</u> and <u>Hexagenia</u> sp., were found primarily along the middle transect. <u>Tortopus incertus</u> was collected only where consolidated clay substrate occurred.

Twenty taxa of macroinvertebrates were identified from the dike samples collected at Lakeport Towhead secondary channel in July. <u>Hydropsyche orris</u> and <u>P. flava</u> were the dominant species numerically (Table C6). The first and second instar hydropsychids collected probably also represented primarily these two species. The Ephemeroptera (mayflies) and Chironomidae were represented by the largest numbers of species, but as groups they were low in total abundance. Little difference was noted in the species composition of the

upstream and downstream dike faces (Figure 14). Considerable distinctiveness was evident among stations along the dike, however. Hydropsychid caddisflies were dominant at stations 1, 2, and 5, near the two ends of the dike, while ephemeropterans were the most abundant organisms at middike stations 3 and 4.

Densities of macroinvertebrates/m² of rock surface ranged from 190 to 97,236 organisms (Figure 14) and averaged higher on the upstream side of the dike than on the downstream side (Table 9). Overall densities were highest at the weir and outermost dike stations at which caddisflies were dominant, and much lower at the other two stations. Macroinvertebrate biomass averaged 3,482 mg/m² of rock surface at Lakeport Towhead (Figure 15). Individual station biomasses ranged from 25 mg to 25,619 mg/m². The correlation between biomass and density was highly significant (r = 0.999, n = 10, P < 0.01).

October benthic samples at Lakeport yielded 31 macroinvertebrate taxa (Tables 8 and C3), with from 1 to 12 taxa found at individual stations (Figure 16). Station densities ranged from 12 to 1,562 organisms/m² (Figure 16), and overall mean density was 632 organisms/m² (Figure 22).

Chironomidae was again the dominant taxon overall at Lakeport Towhead (Figure 22), and chironomids were collected in at least moderate abundance at most of the stations (Figure 16). Of the nine species encountered, <u>Chironomus plumosus gr, Coelotanypus scapularis</u>, and <u>Ablabesmyia annulata were the most abundant</u>, a finding quite different from that of July (Table C3). Six other taxa were collected in substantial numbers overall: the Asian clam <u>Corbicula fluminea</u>, the ephemerid mayfly <u>Hexagenia</u> sp., tubificid and naidid worms, microturbellarians, and hydropsychid caddisflies. Each of these taxa was abundant at only a few stations, however.

Cottonwood Bar

The number of macroinvertebrate taxa collected at stations in this channel in July ranged from 1 to 6 (Figure 17), and 20 taxa were collected overall (Tables 8 and C4). Mean density was 142 organisms/m² (Figure 22), and individual station values ranged from 12 to 472 organisms/m² (Figure 17).

Tubificid worms, chironomids, microturbellarians, and the polymitarcyid mayfly <u>T</u>. <u>incertus</u> were the most abundant taxa collected (Figure 22 and Table C4). Chironomids were common at 8 of the 12 stations (Figure 17). Of the five chironomid taxa identified, <u>C</u>. <u>orbicus</u> and <u>R</u>. <u>claviger</u> comprised the majority of the individuals. Tubificids dominated the invertebrate numbers, although they were abundant only at one station. Limnodrilus maumeensis and

<u>L. cervix</u> were the most numerous of the identifiable, mature tubificids. Most immature worms that lacked capilliform chaetae probably represented primarily these two species. Additionally, <u>Branchiura sowerbyi</u> and immature tubificids with capilliform chaetae were taken in lower numbers. Since the immatures with capilliform chaetae were recognized as distinct from <u>B. sowerbyi</u> (the only other worm with such chaetae), a total of at least four taxa of these worms were represented. Microturbellarians were common at two stations on each of the two downstream transects, and <u>T. incertus</u> was the dominant invertebrate at one natural bank station.

Rock samples taken from the dike at Cottonwood Bar during July yielded at least 16 taxa of macroinvertebrates (Table C7), with 12 taxa taken from the upstream side and 10 taxa from the downstream side (Figure 18). Hydropsyche orris, P. flava, and first and second hydropsychid instars were the most abundant taxa. The flatworm Dugesia tigrina and the chironomid P. convictum accounted for most of the remaining numbers. Due to this dominance by caddisflies, only minor percent composition differences were noted among stations along the dike or from upstream to downstream at individual stations. Sample densities ranged from 98 to 9,984 organisms/m² of rock surface (Figure 18). Mean density was much greater upstream than downstream (Table 9), but the pattern among the individual stations was not consistent. Similarly, no trend in numbers was found longitudinally along the dike. Mean macroinvertebrate biomass on Arcadia Dike at Cottonwood Bar was 651 mg/m^2 and ranged from 44 to 3,721 mg (Figure 19). Biomass and density were highly correlated among stations (r = 0.990, n = 10, P < 0.01). Hydropsyche orris and P. flava comprised the bulk of the biomass at most stations. However, ephemeropterans were dominant at AOl and were found in moderate abundance at several other stations. Odonates and D. tigrina were abundant at one station.

Twenty-one taxa of macroinvertebrates were taken from Cottonwood Bar bottom samples during October (Tables 8 and C4). Numbers of taxa taken at the 12 stations ranged from 0 to 10 (Figure 20). Density averaged 1,157 organisms/m² (Figure 22) and ranged from 0 to 4,565 at individual stations (Figure 26).

Taxa present in relative abundance (Table C4) included microturbellarians, hydropsychid caddisflies, and chironomids (Figures 20 and 22). Microturbellarians were dominant or codominant at six stations, and they were especially numerous at the upstream and downstream ends of the channel.

Hydropsychids were represented by relatively high numbers of <u>P</u>. <u>flava</u> and relatively low numbers of <u>H</u>. <u>orris</u>; these species, though second in abundance overall, were numerous at only two natural bank stations. Chironomids were found in low, but consistent, numbers at many stations. Dominant chironomid species included <u>R</u>. <u>claviger</u>, <u>P</u>. <u>convictum</u>, <u>C</u>. <u>orbicus</u>, and <u>Axarus</u> sp. Pelecypoda (clams) and ephemerid mayflies (primarily <u>Hexagenia</u> sp.) were present in low numbers overall but dominated the macroinvertebrate fauna at stations at which they occurred.

Profit Island

Nineteen macroinvertebrate taxa (range one to five taxa per station) were identified from the bottom samples taken at Profit Island (Table 8 and C5). Mean density for the channel was only 158 organisms/m² (Figure 22), with station densities ranging from 12 to $363/m^2$ (Figure 21).

The most abundant taxa included chironomids, tubificid worms, and the mayfly <u>T</u>. <u>incertus</u> (Figure 21). Chironomids were collected at most stations and were the most abundant invertebrates at six stations. The most common species identified were, in decreasing order of abundance, <u>C</u>. <u>orbicus</u>, <u>R</u>. <u>claviger</u>, <u>Paratendipes</u> nr <u>connectens</u>, and <u>Polypedilum halterale</u> (Table C5). The Tubificidae, represented primarily by <u>L</u>. <u>cervix</u> and <u>L</u>. <u>maumeensis</u>, were relatively common only at the two bank stations on the downstream transect. <u>Tortopus incertus</u> was again relatively abundant only at bank stations where consolidated clay substrates occurred. Minor taxa found in substantial numbers at only one station each included nematode worms, the ephemerid mayfly <u>P</u>. <u>vittigera</u>, and the Asian clam <u>C</u>. <u>fluminea</u>.

Comparisons among channels

Wolf Island yielded a relatively high number of benchic taxa in July; the remaining channels yielded progressively fewer taxa (Figure 22). The average density of macroinvertebrates in bottom samples showed a similar trend. The Shannon-Wiener diversity index (Table 8), in contrast to numbers of taxa, showed relatively high values at four of the channels in July and a low value at one (Lakeport Towhead).

Chironomids were an important part of the benthos at all five secondary channels in July (Figure 22). Several other taxa, though taken at most channels, were more variable in importance. Tubificids, for example, were relatively abundant only at Wolf Island, Cottonwood Bar, and Profit Island. Hydropsychid caddisflies were very common at the two upstream channels, less so at the two centrally located channels, and of only minor importance at Profit Island. The pattern of relative abundance of <u>T</u>. <u>incertus</u> was opposite that for the hydropsychids. Most other taxa were numerically abundant at only one or two of the secondary channels. The dominant species in each of these major taxa did not differ appreciably among the sites, however.

The benthic communities at both Lakeport Towhead and Cottonwood Bar changed appreciably from July to October (Figure 22). Mean density of organisms in the bottom samples increased fourfold at Lakeport Towhead and eightfold at Cottonwood Bar. Considerable changes were also observed in the taxonomic compositions, with the result that the taxonomic diversity increased considerably at Lakeport Towhead and decreased slightly at Cottonwood Bar. At Lakeport Towhead the Chironomidae was the dominant taxon in both months; however, the species comprising this taxon were quite different. In July the rheophilic C. orbicus and R. claviger comprised most of the numbers; in October the slack-water forms C. plumosus, C. scapularis, A. annulata, and Procladius sp. were most abundant. Other major taxa, principally the tubificids, ephemerids, and C. fluminea increased in relative abundance from July to October, while the hydropsychid caddisflies, C. punctipennis, and T. incertus decreased. The Cottonwood Bar macrofauna also showed a very distinct overall seasonal change. Chironomids declined considerably in percent abundance, although the overall numbers collected remained comparatively high. In contrast to Lakeport, the most abundant chironomid species at Cottonwood Bar remained C. orbicus and R. claviger. Tubificids and T. incertus, very common in the July benthic samples, were nearly absent in October. Hydropsychid caddisflies and microturbellarians, in contrast, greatly increased in abundance. The changes in hydropsychid and tubificid relative abundances were exactly opposite between months in these two secondary channels.

More taxa, and higher densities of macroinvertebrates, were collected from the dike at Lakeport Towhead (Table C6) than from the dike at Cottonwood Bar (Table C7). Taxonomic diversity was higher at Cottonwood Bar, however (Table 8), due to the greater evenness in numbers among taxa. Eight taxa were unique to Lakeport and four to Cottonwood Bar. At both dikes the highest densities and greatest numbers of taxa were found on the upstream dike faces (Table 9), but the pattern was not consistent across all stations. Nine taxa occurred exclusively on the upstream face, while only two were unique to the downstream face. Biomass was highly correlated with density on both dikes.
Hydropsychidae was the dominant taxon at both dikes (Tables C6 and C7), with <u>H. orris being the single dominant species at both sites</u>, and another hydropsychid caddisfly, <u>P. flava</u>, ranking second. <u>Potamyia flava</u> comprised a somewhat greater relative percentage at Cottonwood Bar than at Lakeport Towhead, although greater numbers were taken at the latter site. Trichoptera dominated the epifauna at Lakeport Towhead dike stations at which water was flowing over the dike in July. However, at stations at which water was flowing parallel to and not over the dike, Ephemeroptera were dominant. Dipteran larvae were best represented on the downstream dike face and, in general, at the two outermost dike stations. Trichoptera were also dominant at all Cottonwood Bar stations except A01. <u>Dugesia tigrina</u> was the only relatively common organism found only at this channel.

Macroinvertebrate sediment relationships

Sediment samples clustered into three groups representing primarily medium sand and gravel, fine sand, and fines (Table 10). Similarly, the 26 macroinvertebrate samples which met the inclusion criterion of having at least 15 organisms clustered into three groups (Table 10). Nearly 81 percent of the samples in the two clusters (21 of 26) showed perfect correspondence (Table 11), and the taxonomic composition of the macroinvertebrate samples collected in the three general sediment types confirmed the known or suspected substrate preferences of the organisms. Macroinvertebrate cluster 1, for example, contained immature tubificids, several species of Limnodrilus, C. fluminea, and T. incertus, and corresponded to sediment cluster 1, which consisted primarily of fines. In the sediment grain-size analyses, fines included both silts and consolidated clays, which are composed of very tiny individual particles when dried and sieved. However, sediment composition of all macroinvertebrate samples was noted during the sampling, and these two sediments are quite distinct. The macroinvertebrates inhabiting these two sediment types are different. The tubificids and C. fluminea typically were collected in silts, while T. incertus, a large, burrowing mayfly, was taken exclusively in consolidated clays. Macroinvertebrate cluster 2 consisted principally of P. flava, R. claviger and C. orbicus, microturbellarians, nematodes, and B. paucisetus. This group corresponded to sediment cluster 3, fine sand. The medium sand and gravel sediments, cluster 2, corresponded to macroinvertebrate cluster 3, which consisted mainly of P. flava, H. orris,

<u>C. orbicus, R. claviger</u>, microturbellarians, and nematodes. The major differences in macroinvertebrate clusters 2 and 3 were in the relative percentages of the constituent taxa.

The five sampling stations (Table 11) for which the macroinvertebrates collected did not correspond to one of the three distinctive sediment clusters were examined to determine, if possible, the reasons for the lack of correspondence. In all five cases the reasons for the lack of correspondence were easily identifiable. Station PCC-GO1 and PCP-EO2 sediments consisted of both medium and fine sands, but no gravel, and this mixture did not fit perfectly into any of the three sediment grain size clusters. The macroinvertebrate taxa found at these stations (primarily microturbellarians, R. claviger and C. orbicus) were typical of such sediments, however. Stations PCI-GO1 and PCW-C04 were dominated by hydropsychids, a taxon that did not contribute very strongly to any of the three macroinvertebrate clusters (Table 10). This is because hydropsychids inhabit stable, hard substrates such as dikes or submerged logs, and thus did not often occur in large numbers in the sediment grab samples used in the cluster analysis. Occasionally, however, these organisms colonize gravel or consolidated clay banks. This was the case at these two stations: PCI-GO1 sediments consisted of medium sand and gravel; sediments at PCW-C04 consisted of consolidated clay. The last instance of poor macroinvertebrate-sediment correspondence, PCL-G03, fit poorly because the macroinvertebrates collected comprised an unusually heterogeneous group of relatively rare taxa, including C. punctipennis, Polypedilum nr scalaenum, a dragonfly, tubificids, chironomid pupae, and a naidid worm.

Physical/Chemical

Cobb and Clark (1981) recognized two types of secondary channels within the Lower Mississippi River. Permanent secondary channels are those in which flow is maintained throughout the year, while flow through temporary secondary channels is blocked, either by a naturally occurring sandbar or by a dike, during at least part of the year. At the time of our sampling in 1984, Wolf Island, Island 8, Cottonwood Bar, and Profit Island were permanent secondary channels, although dikes had been installed at Cottonwood Bar the previous year. The dikes did not completely block flow through this secondary channel at low river stages. Lakeport Towhead was the only true temporary secondary channel of the five. The distinction between permanent and secondary channels is an important one both from physical/chemical and biological standpoints.

In a synthesis report on Lower Mississippi River aquatic resources, Beckett and Pennington (1986) concluded that the presence or absence of current was a major factor affecting water quality and substrate characteristics in Lower Mississippi River habitats. They noted that the secondary channel at Lakeport Towhead (then a permanent secondary channel) was similar in physicochemical makeup to the main channel at all seasons. However, a nearby temporary secondary channel was similar in physicochemical makeup to the main channel at high flows but was more similar to dike field pools at low flows.

Current speed dictates, to a large degree, the grain size of sediments found in most channel environment habitats, the exception being natural banks. Various particle sizes of bedload sediments are deposited at different current speeds, and local variations in currents produce a mosaic sediment pattern that may vary considerably with river stage, a phenomenon that has been documented for several Lower Mississippi River dike systems (Beckett et al. 1983). Current speeds remain relatively high year round within permanent channels, while it is neglig. The or even eliminated within temporary channels at low river stages. Under flowing water conditions, substrates in both permanent and temporary channels consist largely of sands and/or gravels in midchannel areas, and fine sands and silts along the sandbar. In temporary channels, when flow is blocked, fine sediments accumulate. Natural bank substrates are more heterogeneous, ranging from consolidated clays to sand-gravel in exposed point bar deposits. However, the natural bank microhabitat comprises only a small percentage of the total substrate available for colonization by benthic invertebrates (Cobb and Clark 1981). In permanent channels sandy sediments probably predominate throughout the year (Beckett et al. 1983). These generalizations are supported by our physical data for Cottonwood Bar and Lakeport Towhead. Cottonwood Bar, at the time of sampling a permanent channel, was similar in substrate and current speed characteristics during both July and October. Lakeport Towhead, a temporary channel, changed appreciably (and predictably) in both substrate and current when flow was blocked by the dikes.

Changes in several water quality variables are also related to the change from flowing to slack-water conditions. As with the main channel, dissolved oxygen concentration remains high in permanent secondary channels. As Beckett et al. (1983) and Beckett and Pennington (1986) have noted, and as observed in this study, bottom waters in the deeper areas of slack-water habitats (temporary secondary channels, dike pools, abandoned channels) may become anoxic, or nearly so, when flow through them is eliminated; changes in pH, turbidity, and conductivity may also occur. Changes in free carbon dioxide, plankton, major and minor nutrients, and many other physicochemical variables not measured in this study also occur (Beckett and Pennington 1986).

The rapidity with which these changes can take place is illustrated in this study. Mathis et al. (1981) described Lakeport Towhead secondary channel (American Cutoff in their study, done prior to dike placement) as essentially riverine in nature, with high current velocities and shifting coarse sand and gravel sediments encountered at all sampling stations. In the 5 years following dike construction, this channel has changed considerably, showing almost no current at low river stages and having a substrate composed mainly of fine sand and silt-clays.

Fishes

Even though this study examined only a single river habitat, the fish species list compiled in this study was similar to lists reported earlier for the Mississippi River by both the Corps of Engineers (Cobb et al. 1984; Dahl 1981; Emge et al. 1974; Nailon and Pennington 1984; Pennington et al. 1981; Pennington, Baker, and Bond 1983; Ragland 1974; Schramm and Lewis 1974) and other researchers (CDM/Limnetics 1976; Ellis, Farabee, and Reynolds 1979; Federal Water Pollution Control Administration 1969; NUS Corporation 1974; Robinson 1972). Most of the species collected are relatively ubiquitous throughout the Lower Mississippi River.

The species composition of secondary channels appears to change appreciably and predictably both with season and changes in habitat conditions. At Lakeport Towhead and Cottonwood Bar, catches changed from those reflecting a flowing-water fauna to those indicating a slow- or slack-water fauna as river stage declined in the fall. Three dike fields in the Lower Mississippi River (Pennington, Baker, and Bond 1983) showed a similar change in species composition as habitat conditions changed. Also, three secondary channels in the Middle Mississippi River supported species assemblages consistent with their physical characteristics (Ellis, Farabee, and Reynolds 1979). Seasonal changes are best illustrated by the great increase in catches of gizzard and threadfin shad in October. Shad spawn in the late spring through midsummer, and by late summer or fall large numbers of juveniles are found in most river habitats. However, these species are typically much more abundant in slackwater habitats such as Lakeport Towhead than in more riverine areas like Cottonwood Bar (Beckett and Pennington 1986, Rasmussen 1979). Because the three undiked secondary channels were not sampled in October, it is not known if they also showed reasonal changes in species composition. However, since the dike at Cottonwood Bar did not completely block flow through the secondary channel (current speeds and substrates were nearly the same in both July and October), this provides some indication that the fish assemblages of permanent channels also undergo at least some seasonal changes.

Although significant differences among channels were found for both electroshocking and seining, these differences cannot be correlated with the simple presence or absence of a dike at the upstream end of a channel. For example, the dike at Cottonwood Bar appeared to have little effect during either July or October, at least as evidenced by the high current speeds and coarse substrates. Omitting Profit Island, where baiting may have occurred, electroshocking catches at open channels (Wolf Island and Island 8), though generally higher than those at diked channels (Lakeport Towhead and Cottonwood Bar), were not statistically greater. Seine catches, though different among channels, were not related to dike presence or absence. Finally, the hydroacoustic surveys detected no significant quantitative differences among channel types.

Differences in catch rates among habitats within secondary channels were suggested by this study. Overall, the natural bank produced the highest electroshocking catches in July, with four of five channels showing this pattern. Cottonwood Bar was the only exception, catches there being highest along the dike. The natural bank area of most channels, whether diked or open, usually contains more submerged trees and brush than do other areas. The species collected by electroshocker in July were primarily catfishes, which show an affinity for such cover (Cross 1967, Pflieger 1975). The high catch rate at the Cottonwood Bar dike is not surprising, since dike structures are known to provide habitat for many species of fishes. In October the high catches along the secondary channel sandbar and dike were attributable to the change in species composition which occurred in the channels. At this time, density of catfishes was apparently low, while the density of clupeids was very high. Threadfin and gizzard shad are found in greatest abundance in shallow, quiet areas such as occur along the sandbar. Skipjack herring are apparently attracted to dikes where water flows only slightly over the rocks (Pflieger 1975), and flathead catfish have been shown to prefer cover such as rocks and logs. No other studies were identified which have directly compared catches among different areas within secondary channels.

Macroinvertebrates

Macroinvertebrate assemblages of the five secondary channels were similar overall. Differences among channels primarily reflected quantitative variations in the relative percentages of major taxa rather than qualitative distinctions in the presence or absence of taxa. In most instances the same species comprised the major taxa in all five channels. Thus, at least within the 685-mile reach of the lower Mississippi River sampled, river mile position does not appear to be an overriding factor influencing the composition of the benthos.

Variations in the taxa of macroinvertebrates found in our bottom samples were noticeably and predictably related to differences in current speed and substrate type. These two physical factors have previously been suggested to be the most important ones regulating the composition of macroinvertebrate assemblages in large rivers (Beckett et al. 1983, Mathis et al. 1981, Wells and Demas 1979).

The larvae of the caddisflies H. orris and P. flava and chironomids such as Rheotanytarsus require at least a moderate current and a firm and relatively clean surface for attachment of their cases (Hynes 1972). Gravel, woody debris, fish nets, concrete, and rocks are all suitable for these species, so long as they remain free from sediment deposits. Dikes, particularly, provide considerable amounts of suitable habitat for these taxa (Beckett and Pennington 1986; Mathis, Bingham, and Sanders 1982) when at least moderate currents are present. Larvae of the mayflies P. vittigera and T. incertus are confined to consolidated silt-clay substrates across which a current exists. In the macroinvertebrate-sediment analysis performed in this study, these organisms clustered with those inhabiting unconsolidated siltclays. This occurred because the grain size analysis did not distinguish between the consolidated and unconsolidated fine sediments. The visual classification of sediment samples allowed these instances to be resolved. Their close relative Hexagenia, however, requires softer sediments such as the mud and fine sands which accumulate in slow-current areas. Many tubificid worms, such as L. maumeensis, L. claparedianus, L. hoffmeisteri, L. cervix, and Ilyodrilus templetoni, thrive in the high-organic content silt-clays characteristically found in slack water. Most of the slack-water, soft-bottom habitat in the Lower Mississippi River is associated with floodplain lakes and borrow pits. As both the sediment and macroinvertebrate samples taken in this study show, similar conditions also occur in some secondary channels at low flows. Other tubificid and naidid worms, particularly Aulodrilus piqueti and several species of Nais and Dero, prefer a layer of silt-clay sediments over a base of sand. Many chironomid species reach great abundance in soft substrates and slack water, especially Chironomus, Ablabesmyia, Tanypus, Procladius, Glyptotendipes, Cryptochironomus, and Coelotanypus. Other Chironomidae occur primarily within sandy substrates in areas of high current; R. claviger and C. orbicus are the two most abundant such chironomids in the Lower Mississippi River.

The kinds and densities of invertebrates found on the dikes were comparable to those found by Mathis, Bingham, and Sanders (1982), who calculated an average density of 101,968 organisms/m² of dike surface. Although this is considerably higher than our highest average density (13,483 organisms/m² at Lakeport Towhead), their method of estimating surface area was much different from ours. Approximate calculations indicate that their estimates of area

were too low by a factor of at least 10, and thus their densities, for comparison to our study, were on the order of $10,200/m^2$. Their study, like this one, found hydropsychid caddisfly larvae to be the dominant taxon on dikes, though they found considerably higher numbers of taxa overall.

Although sampling error alone could be responsible, some combination of habitat, annual, or seasonal variability may also have accounted for the differences observed between the findings of Mathis, Bingham, and Sanders (1982) and this study. Habitat characteristics were almost certainly important, as the dike sampled in the 1982 study had considerable flow over it at all stations. The presence or absence of current has already been noted as one of the primary factors affecting the distribution of aquatic invertebrates. This point is also illustrated by the difference in the macroinvertebrate densities estimated for Cottonwood Bar and Lakeport Towhead. Seasonal effects probably account for the relatively lower numbers of dipteran larvae taken in our samples. The 1982 study used a greater number of samples, and the individual samples consisted of a greater number of rocks than did ours. The effect of sample number and size on estimates of species richness and diversity is well documented. Additionally, the rock baskets used in the 1982 study tended to accumulate silt and debris, which are colonized by a very different macrofauna than the rocks themselves. Evidence for this is found in the species list (Mathis, Bingham, and Sanders 1982), which includes such organisms as T. incertus, Hexagenia sp., P. vittigera, Lumbricidae, and Limnodrilus, noted earlier as typical inhabitants of sediments, not rocks.

Effects of Dikes on Secondary Channel Biota

It is apparent that either natural or anthropogenic alterations in secondary channels that result in changes in current velocity and substrate will profoundly affect the fish and benthic macroinvertebrate assemblages. Placement of dikes to restrict flow is one alteration for which the biotic changes may be predictable. Knowledge of the elevation, length, and orientation of the dike, combined with knowledge of the seasonal hydrograph for the reach, might allow general statements about the river stage/current/substrate functional curves. Given this information, it might then be possible to predict the approximate composition of the macroinvertebrate fauna. Predicting

fish assemblage structure is more difficult, since fish are relatively mobile and may move among habitats frequently. Also, the full range of variables to which fish may respond in large river systems has not yet been carefully studied. Gizzard shad, for example, may respond to as yet unknown short-term fluctuations in plankton abundance, and predators such as white and striped bass may respond more closely to shad (their primary food item) abundance than to any habitat variable. Despite this, it is probably still possible to at least approximate fish assemblage composition given currently available habitat information.

PART V: SUMMARY

Fine sand was the dominant substrate size fraction observed in all channels. However, variability existed both among channels and among stations within individual channels. Of the two diked channels, Lakeport Towhead substrates are now different than prior to dike construction because the secondary channel is isolated from the main river for longer periods of time. Cottonwood Bar substrates do not appear to have changed as much.

Conductivity and turbidity showed some differences among the five channels in July, while temperature, pH, and dissolved oxygen were essentially the same at all sites. Mean current speed was 90 to 100 cm/sec at four of the channels, but only about one half as high at Lakeport. Most water quality variables showed changes between July and October at Lakeport Towhead and Cottonwood Bar. Temperature decreased, and dissolved oxygen and conductivity increased at both channels; the bottom strata at two Lakeport stations showed oxygen depletion. Turbidity decreased significantly at Lakeport in October but not at Cottonwood Bar. Current speeds were unchanged at Cottonwood Bar compared to July, while at Lakeport Towhead there was essentially no current in October.

In July, undiked secondary channels had significantly higher electroshocking catch rates than did diked channels. This difference was eliminated when data from Profit Island, where baiting by commercial fishermen may have occurred, were excluded. Although differences were not statistically significant, hydroacoustics indicated higher fish densities at diked channels. Seine collections indicated differences among channels, but they were not related to the presence or absence of dikes.

During July, both electroshocking and hydroacoustics indicated highest fish densities along the natural bank microhabitat. Seining indicated no differences among banks within channels.

Electroshocking catches increased significantly in the two diked channels between July and October. At this time, catches were also significantly higher at Lakeport Towhead, where lentic conditions were observed, than at Cottonwood Bar, where more riverine physical conditions were found. Seining catches indicated no significant differences between the two channels in October, nor between months. In contrast to July, October electroshocking catches were highest along the secondary channel sandbar at Lakeport and along

the dike at Cottonwood Bar.. This observation can be related to the change in species composition which occurs in river habitats due to changes in season and habitat characteristics.

Composition of the fish assemblages at Lakeport and Cottonwood Bar changed considerably from July to October. Electroshocker catches in July consisted mainly of catfishes, while shads dominated in October. Seining catches showed similar, though less dramatic, changes.

The macroinvertebrate assemblages of the five secondary channels were similar. Differences among channels reflected variations in the relative percentages of the common taxa rather than qualitative distinctions in the presence or absence of species.

The macroinvertebrate taxa that are found at a particular station are a function primarily of substrate and current conditions. Stone dikes also provide habitat for rheophilic net-spinning filter feeders, and dikes in which sediment has accumulated among the rocks may harbor species of macroinverte-brates which normally inhabit the bottom sediments.

Dike structures that block or severely restrict flow through secondary channels produce habitats in which the biotic communities are different from areas which remain flowing. Secondary channels in which the dikes restrict current only slightly show correspondingly little change in their biotic communities across seasons.

Given sufficient information on hydrodynamics, secondary channel physical attributes, and (if present) dike specifications, reasonable predictions of the composition of the biota of Lower Mississippi River secondary channels should be possible.

LITERATURE CITED

Beckett, D. C., C. R. Bingham, L. G. Sanders, D. B. Mathis, and E. M. McLemore. 1983. Benthic macroinvertebrates of selected aquatic habitats of the Lower Mississippi River. Technical Report E-83-10, US Army Engineer Waterways Experiment Station, Vicksburg, Miss.

Beckett, D. C., and C. H. Pennington. 1986. Water quality, macroinvertebrates, larval fishes, and fishes of the Lower Mississippi River - A synthesis. Technical Report E-86-12, US Army Engineer Waterways Experiment Station, Vicksburg, Miss.

- Burczynski, J. J., and R. Johnson. 1983. Dual-beam echo survey of sockeye salmon on Cultus Lake, B.C. BioSonics, Inc., Seattle, Wash.
- CDM/Limnetics. 1976. An ecological study of the Lower Mississippi River. Report to Middle South Services, Inc., New Orleans, La.
- Cobb, S. P., and J. R. Clark. 1981. Aquatic habitat studies on the Lower Mississippi River, river mile 480 to 530; Report 2, Aquatic habitat mapping. Miscellaneous Paper E-80-1, US Army Engineer Waterways Experiment Station, Vicksburg, Miss.
- Cobb, S. P., C. H. Pennington, J. A. Baker, and J. E. Scott. 1984. Fishery and ecological investigations of main stem levee borrow pits along the Lower Mississippi River. Report 1, Lower Mississippi River Environmental Program, Mississippi River Commission, Vicksburg, Miss.
- Cross, F. B. 1967. Handbook of fishes of Kansas. Miscellaneous Publication 45, University of Kansas Museum of Natural History.
- Dahl, G. J. 1981. A survey of the inshore fish fauna of two sandbars in the Lower Mississippi River. M.S. thesis, Mississippi State University, Mississippi State, Miss.
- Ellis, J. M., G. B. Farabee, and J. B. Reynolds. 1979. Fish communities in three successional stages of side channels in the upper Mississippi River. Transactions of the Missouri Academy of Science 13:5-20.

- Emge, W. P., R. C. Solomon, J. H. Johnson, C. R. Bingham, B. K. Colbert, and R. W. Hall. 1974. Physical, biological, and chemical inventory of twentythree side channels and four river border areas, Middle Mississippi River. Miscellaneous Paper Y-74-5, US Army Engineer Waterways Experiment Station, Vicksburg, Miss.
- Federal Water Pollution Control Administration. 1969. Endrin pollution in the Lower Mississippi River basin. Washington, DC.

Hynes, H. B. N. 1972. The ecology of running waters. University of Toronto Press, Toronto, Ontario, Canada.

- Keown, M. P., E. A. Dardeau, Jr., and E. M. Cousey. 1981. Characterization of suspended sediment regime and bed-material gradation of the Mississippi Basin. Report 1, Volumes 1 and 2, Potamology Program, US Army Engineer Division, Lower Mississippi Valley, Vicksburg, Miss.
- Love, R. H. 1971. Dorsal-aspect target strength of an individual fish. J. Acoust. Soc. Amer. 49:816-823.
- Mathis, D. B., C. R. Bingham, and L. G. Sanders. 1982. Assessment of implanted substrate samplers for macroinvertebrates inhabiting stone dikes of the Lower Mississippi River. Miscellaneous Paper E-82-1, US Army Engineer Waterways Experiment Station, Vicksburg, Miss.
- Mathis, D. B., S. P. Cobb, L. G. Sanders, A. D. Magoun, and C. R. Bingham. 1981. Aquatic habitat studies on the Lower Mississippi River, river mile 480 to 530; Report 3, Benthic macroinvertebrate studies--Pilot report. Miscellaneous Paper E-80-1, US Army Engineer Waterways Experiment Station, Vicksburg, Miss.
- Nailon, R. W., and C. H. Pennington. 1984. Fish of two dike pools in the Lower Mississippi River. Technical Report E-84-3, US Army Engineer Waterways Experiment Station, Vicksburg, Miss.
- NUS Corporation. 1974. A mini-study of the Lower Mississippi River. Report to Middle South Services, Inc., New Orleans, La.
- Pennington, C. H., J. A. Baker, and C. L. Bond. 1983. Fishes of selected aquatic habitats on the Lower Mississippi River. Technical Report E-83-2, US Army Engineer Waterways Experiment Station, Vicksburg, Miss.
- Pennington, C. H., H. L. Schramm, Jr., M. E. Potter, and M. P. Farrell. 1981. Aquatic habitat studies on the Lower Mississippi River, river mile 480 to 530; Report 5, Fish studies--Pilot report. Miscellaneous Paper E-80-1, US Army Engineer Waterways Experiment Station, Vicksburg, Miss.
- Pflieger, W. L. 1975. The fishes of Missouri. Missouri Department of Conservation, Columbia, Mo.

- Ragland, D. V. 1974. Evaluation of three side channels and the main channel border of the Middle Mississippi River as fish habitat. Contract Report Y-74-1, US Army Engineer District, St. Louis, St. Louis, Mo.
- Rasmussen, J. L., ed. 1979. A compendium of fishery information on the upper Mississippi River. Special Publication, Upper Mississippi River Conservation Commission, Rock Island, Ill.
- Robinson, J. W. 1972. Population sampling of commercial fish in waters open to commercial fishing. Final Report, Project 4-3-R-7, Work Plan 21, Vol 2, Fisheries Research Section, Missouri Department of Conservation, Columbia, Mo.

- Ryckman, Edgerley, Tomlinson and Associates. 1975. Environmental assessment of the Mississippi River and Tributaries Project, Cairo, Illinois, to Venice, Louisiana. US Army Engineer Division, Lower Mississippi Valley, Vicksburg, Miss.
- Schramm, H. L., Jr., and W. H. Lewis. 1974. Study of importance of backwater chutes to a riverine fishery. Contract Report Y-74-4, US Army Engineer District, St. Louis, St. Louis. Mo.
- Tuttle, J. R., and W. Pinner. 1982. Analysis of major parameters affecting the behavior of the Mississippi River. Report 4, Potamology Program, US Army Engineer Division, Lower Mississippi Valley, Vicksburg, Miss.
- Wells, F. C., and C. R. Domas. 1979. Benthic invertebrates of the Lower Mississippi River. Water Resources Bulletin 15:1565-1577.

Table l

	Maximum Depth	Curr	ent Speed m/sec	Tempe	rature, °C	Dis Oxyge	solved n, mg/2
Channel	<u> </u>	Mean	Range	Mean	Range	Mean	Range
Wolf Island	9.0	0.98	0.20-2.32	28.0	27.7-28.3	5.5	4.9-5.8
Island 8	11.0	0.93	0.36-1.39	27.9	27.0-28.0	5.6	5.1-6.0
Lakeport Towhead	12.0	0.46	0.20-0.72	27.9	27.6-28.5	5.7	5.1-6.0
Cottonwood Bar	9.0	0.98	0.10-1.75	27.9	27.7-28.2	5.9	5.3-6.2
Profit Island	15.0	0.93	0.15-1.90	27.5	27.5 27.3-27.6		4.9-6.3
July mean	11.2	0.88	0.10-2.32	27.8	27.0-28.5	5 5.7	4.9-6.3
Lakeport Towhead	10.5	0.0	0.0-0.10	21.4	18.7-22.7	6.9	0.5-9.8
Cottonwood Bar	10.0	0.93	0.10-1.60	20.6	20.4-21.3	7.3	6.5-7.9
October mean	10.3	0.46	0.0-1.60	21.0	18.7-22.7	7.1	0.5-9.8

Ranges of Physical and Water Quality Characteristics of Five Lower Mississippi River Secondary Channels, July and October 1984

	Cone µ1	ductivity nhos/cm	Τι	urbidity NTU		рH
Channel	Mean	Range	Mean	Range	Mean	Range
Wolf Island	442.8	403.0-484.0	52.9	20.0-117.0	7.3	6.2-7.5
Island 8	484.4	471.0-493.0	82.0	67.0-87.0	7.5	7.5-7.6
Lakeport Towhead	415.9	413.0-418.0	87.0	23.0-147.0	7.4	7.3-7.6
Cottonwood Bar	445.1	432.0-452.0	50.5	24.0-59.0	7.5	7.3-7.6
Profit Island	443.3	422.0-445.0	50.5	43.0-54.0	7.6	7.5-8.1
July mean	446.7	403.0-493.0	64.5	20.0-147.0	7.5	6.2-8.1
Lakeport Towhead	485.2	391.0-643.0	19.5	8.0-103.0	7.5	6.6-8.2
Cottonwood Bar	468.5	459.0-480.0	42.1	31.0-59.0	7.3	7.3-8.8
October mean	476.8	391.0-643.0	30.8	8.0-103.0	7.4	6.6-8.8

Table 2Common and Scientific Names of Fishes Captured in Five LowerMississippi River Secondary Channels

Polyodontidae - paddlefishes Paddlefish (Polyodon spathula)

Lepisosteidae - gars Longnose gar (<u>Lepisosteus</u> osseus) Shortnose gar (Lepisosteus platostomus)

Clupeidae - herrings Skipjack herring (<u>Alosa chrysochloris</u>) Gizzard shad (<u>Dorosoma cepedianum</u>) Threadfin shad (<u>Dorosoma petenense</u>)

Hiodontidae - mooneyes Goldeye (<u>Hiodon</u> <u>alosoides</u>) Mooneye (Hiodon tergisus)

Cyprinidae - minnows and carps Common carp (Cyprinus carpio) Mississippi silvery minnow (Hybognathus nuchalis) Speckled chub (Hybopsis aestivalis) Silver chub (Hybopsis storeriana) Emerald shiner (Notropis atherinoides) River shiner (Notropis blennius) Silverband shiner (Notropis shumardi) Weed shiner (Notropis texanus) Blacktail shiner (Notropis venustus) Mimic shiner (Notropis volucellus) Bullhead minnow (Pimephales vigilax) (Continued)

(Sheet 1 of 2)

Table 2 (Continued)

Catostomidae - suckers River carpsucker (<u>Carpiodes carpio</u>) Blue sucker (<u>Cycleptus elongatus</u>) Smallmouth buffalo (<u>Ictiobus bubalus</u>) Bigmouth buffalo (Ictiobus cyprinellus)

Ictaluridae - freshwater catfishes Blue catfish (<u>Ictalurus furcatus</u>) Channel catfish (<u>Ictalurus punctatus</u>) Flathead catfish (<u>Pylodictis olivaris</u>)

Cyprinodontidae - killifishes Blackstripe topminnow (Fundulus notatus)

Poeciliidae - livebearers Mosquitofish (<u>Gambusia affinis</u>)

Atherinidae - silversides Brook silverside (<u>Labidesthes</u> <u>sicculus</u>) Inland silverside (Menidia beryllina)

Percichthyidae - temperate basses White bass (Morone chrysops) Striped bass (Morone saxatilis)

Centrarchidae - sunfishes Bluegill (<u>Lepomis macrochirus</u>) Longear sunfish (<u>Lepomis megalotis</u>) Largemouth bass (<u>Micropterus salmoides</u>) White crappie (<u>Pomoxis annularis</u>) Black crappie (<u>Pomoxis nigromaculatus</u>)

(Continued)

(Sheet 2 of 3)

Table 2 (Concluded)

Percidae - perches Bluntnose darter (<u>Etheostoma chlorosomum</u>) River darter (<u>Percina shumardi</u>) Sauger (<u>Stizostedion canadense</u>)

Sciaenidae - drums Freshwater drum (<u>Aplodinotus</u> grunniens)

Mugilidae - mullets Striped mullet (<u>Mugil</u> <u>cephalus</u>)

(Sheet 3 of 3)

			July		· · · · · · · · ·	Octo	ber
Species	Wolf Island	Island 8	Lakeport Towhead	Cotton- wood Bar	Profit Island	Lakeport Towhead	Cotton- wood Bar
Paddlefish			0.9				
Longnose gar	4.5	1.0	3.4				0.6
Shortnose gar	0.9	7.9	0.9	1.2		0.1	
Skipjack herring	1.8	1.0		2.4	1.3	8.9	9.6
Gizzard shad	3.6	25.7			1.0	62.2	36.5
Threadfin shad					0.6	22.9	16.9
Goldeye	1.8	10.9		1.2		0.3	0.6
Mooneye							0.6
Common carp	3.6	4.0		3.5		0.2	1.1
Mississippi sil- very minnow							
Speckled chub							
Silver chub	0.9				0.3		1.1
Hybopsis sp.							
Emerald shiner			0.9			0.2	
River shiner							
Silverband shiner							0.6
Weed shiner							
Blacktail shiner							
Mimic shiner							
Notropis sp.							
Bullhead minnow							
River carpsucker	0.9	2.0	2.6	3.5		0.4	
Blue sucker						0.2	2.8
Smallmouth buffalo				2.4	0.3	0.3	1.7
Bigmouth buffalo	0.9					0.2	0.6

Table 3Numerical Percent Composition of Fish Taken by Electroshockerfrom Five Mississippi River Secondary Channels

(Continued)

			July			Octo	ber
				Cotton-			Cotton-
Species	Wolf <u>Island</u>	Island 8	Lakeport Towhead	wood Bar	Profit <u>Island</u>	Lakeport Towhead	wood <u>Bar</u>
Ictiobus sp.							
Catostomidae							
Blue catfish	4.5	1.0	41.4	41.2	72.3	0.3	6.2
Channel catfish	38.4	19.8	2.6	9.4	1.0	0.1	0.6
Flathead catfish	29.5	19.8	39.7	24.1	21.3	0.5	15.7
Blackstripe topminnow							
Mosquitofish							
Brook silverside							
Inland silver- side							
White bass	1.8	2.0	0.9	2.4	1.3	2.2	3.9
Striped bass						0.1	
Bluegill			0.9			0.1	
Longear sunfish							
Lepomis sp.							
Largemouth bass						0.2	
White crappie			0.9				
Black crappie						0.1	
Centrarchidae							
Bluntnose darter							
River darter							
Sauger	0.9	2.0	1.7	2.4		0.4	1.1
Freshwater drum	6.3	3.0	3.4	4.7			
Striped mullet				1.2	0.6	0.4	
Number of Species	15	13	13	13	10	21	17
Number of Fish	112	101	116	85	314	1097	178
Catch Per Effort	12.4	11.2	9.0	7.1	34.9	91.4	16.2

PARTICIA - RECEVEN

ちんとう

Table 3 (Concluded)

			July		···· ·····	Octo	ber
				Cotton-		<u></u>	Cotton-
Constant and	Wolf	Island	Lakeport	wood	Profit	Lakeport	wood
Species	Island		Townead	bar	Island	Townead	Bar
Paddlefish							
Longnose gar							
Shortnose gar	0.2						
Skipjack herring	2.0	3.7	0.6				
Gizzard shad	1.0	4.0	3.7	12.2	3.5	3.3	13.5
Threadfin shad	0.8	4.0	2.0	3.3	2.6	24.0	
Goldeye		0.6		1.7			
Mooneye							
Common carp			0.2				
Mississippi sil- very minnow	1.9	1.7	4.3				2.3
Speckled chub			0.6				
Silver chub	3.9	1.3	10.6	1.2	3.5		0.8
Hybopsis sp.	0.2						
Emerald shiner	77.5	80.1	23.4	54.1	8.7	21.7	24.8
River shiner	2.4	2.7	4.6	1.2	13.0	3.3	10.5
Silverband							
shiner	0.8	0.3	1.5	1.2	3.5	22.9	21.1
Weed shiner			4.3	1.6			0.8
Blacktail shiner			0.5	0.8	7.8	8.7	5.3
Mimic shiner			23.1	0.8	8.7	1.7	0.8
<u>Notropis</u> sp.	0.3						
Bullhead minnow			0.8		2.6	0.4	53
River carpsucker		0.3	0.3				
Blue sucker							
Smallmouth buffalo	0.2						

Numerical Percent Composition of Fish Taken by Seine from Five Mississippi River Secondary Channels

Table 4

Bigmouth buffalo

(Continued)

	******		July		······································	Octo	ber
	Wolf	Island	Lakeport	Cotton- wood	Profit	Lakeport	Cotton~
Species	Island	8	Towhead	Bar	Island	Towhead	Bar
Ictiobus sp.	0.2						
Catostomidae			0.2				
Blue catfish			1.4		1.7		
Channel catfish	3.1		2.8	0.4			
Flathead catfish							
Blackstripe topminnow				1.7	0.4		
Mosquitofish				0.4	3.5		
Brook silverside	0.3	0.2	1.2	1.7	1.5	1.5	
Inland silver- side			10.9	20.3	33.9	12.1	13.5
White bass	1.0	1.0	0.5	0.8			
Striped bass							
Bluegill	0.2		0.3				
Longear sunfish					0.9		
Lepomis sp.			1.7	0.4			
Largemouth bass							
White crappie					0.9		
Black crappie							
Centrarchidae	0.2						
Bluntnose darter			0.2				
River darter	0.2		0.3				
Sauger							
Freshwater drum	3.4	0.3	0.8				
Striped mullet							
Number of Species	15	12	25	14	17	11	12
Number of Fish	590	297	653	246	115	520	133
Catch Per Effort	45.4	37.1	34.4	20.5	8.9	28.9	12.3

Table 4 (Concluded)

			July			Octo	ber
				Cotton-			Cotton-
Species	Wolf <u>Island</u>	Island	Lakeport Towhead	wood Bar	Profit <u>Island</u>	Lakeport Towhead	wood Bar
Paddlefish			6.0				
Longnose gar	18.2	2.6	8.3				5.5
Shortnose gar	1.0	14.0	4.4	4.2		0.6	
Skipjack herring	0.0	0.0		1.1	0.7	4.1	1.2
Gizzard shad					0.2	39.5	11.9
Threadfin shad					0.1	2.8	1.2
Goldeye	0.2	1.2		0.0		0.4	0.1
Mooneye							0.1
Common carp	21.3	37.0		34.3		9.3	6.9
Mississippi sil- very minnow							
Speckled chub							
Silver chub	0.0				0.0		0.1
Hybopsis sp.							
Emerald shiner			0.0			0.0	
River shiner							
Silverband shiner							0.0
Weed shiner							
Blacktail shiner							
Mimic shiner							
Notropis sp.							
Bullhead minnow							
River carpsucker	0.8	7.0	5.0	4.8		0.7	
Blue sucker						7.3	30.3
Smallmouth buffalo				2.4	1.1	7.1	9.9
Bigmouth buffalo						5.0	2.4

Weight Percent Composition of Fish Taken by Electroshocker from Five Mississippi River Secondary Channels

Table 5

(Continued)

			July			Octo	ber
				Cotton-			Cotton-
Species	Wolf Island	Island 8	Lakeport Towhead	wood Bar	Profit Island	Lakeport Towhead	wood Bar
Ictiobus sp.	<u> </u>	· <u> </u>					
Catostomidae							
Blue catfish	7.3	0.2	4.2	5.1	25.4	1.1	4.4
Channel catfish	17.1	11.1	0.0	0.5	0.2	0.3	0.1
Flathead catfish	29.8	14.9	60.9	35.6	69.4	3.0	14.6
Blackstripe topminnow							
Mosquitofish							
Brook silverside							
Island silver- side							
White bass	1.5	1.9	3.7	1.9	2.3	10.3	10.1
Striped bass						1.4	
Bluegill			0.1			0.3	
Longear sunfish							
Lepomis sp.							
Largemouth bass						1.7	
White crappie			1.5				
Black crappie						0.7	
Centrarchidae							
Bluntnose darter							
River darter							
Sauger	1.2	0.4	2.3	1.3		1.1	1.3
Freshwater drum	0.9	1.3	3.6	7.7			
Striped mullet				1.2	0.7	3.2	
Number of Species	15	13	13	13	10	21	17
Weight of Fish	47.219	23.399	33.567	18.404	37.341	60.745	43.643
Catch Per Effort	5.246	2.600	2.582	1.534	4.149	5.062	3.968

Table 5 (Concluded)

Ю.

			July			Octo	ber
				Cotton-			Cotton-
Species	Wolf Teland	Island 8	Lakeport Towhead	wood Bar	Profit Telend	Lakeport Towhead	wood Bar
	1314114		TOWNERD		<u>1914nd</u>	Towneau	Dat
Paddlerisn							
Longnose gar							
Shortnose gar	56.7						
Skipjack herring	1.2	9.4	0.3				
Gizzard shad	0.9	18.7	10.5	17.5	7.5	14.5	52.7
Threadfin shad	0.5	6.3	1.5	0.5	0.4	36.2	
Gol deye	2.5		2.5		6.4		
Mooneye							
Common carp			2.4				
Mississippi sil- very minnow	1.7	3.0	5.0				5.8
Speckled chub			0.1				
Silver chub	2.1	1.7	4.6	0.4	0.9		1.1
Hybopsis sp.	0.0						
Emerald shiner	21.6	46.7	7.9	12.3	2.4	24.5	18.0
River shiner	1.7	7.5	16.6	1.6	19.2	1.5	3.0
Silverband shiner	2.2	0.9	3.3	1.8	5.1	3.0	2.4
Weed shiner			2.0	0.5			0.3
Blacktail shiner			0.6	1.6	21.4	1.7	1.0
Mimic shiner			13.0	0.3	3.1	0.1	0.1
Notropis sp.	0.0						
Bullhead minnow			0.8		0.4	0.0	0.3
River carpsucker		0.7	10.6				
Blue sucker							
Smallmouth buffalo	0.2						
Bigmouth buffalo							

Weight Percent Composition of Fish Taken by Seine from Five Mississippi River Secondary Channels

Table 6

(Continued)

·	· ···-		July		<u> </u>	Octo	ber
Species	Wolf Island	Island 8	Lakeport Towhead	Cotton- wood Bar	Profit Island	Lakeport Towhead	Cotton- wood Bar
Ictiobus sp.	0.2						
Catostomidae			0.0				
Blue catfish			3.4		3.1		
Channel catfish	3.2		4.2	0.3			
Flathead catfish							
Blackstripe topminnow					0.9	0.3	
Mosquitofish				0.0	0.9		
Brook silverside		0.2	0.1	0.5	0.9	2.6	1.5
⊺sland silver- side			6.6	9.0	11.5	15.6	13.7
White bass	2.7	4.4	2.0	54.1			
Striped bass							
Bluegill	0.1		0.1				
Longear sunfish					15.6		
Lepomis sp.	0.3	0.0					
Largemouth bass							
White crappie					0.4		
Black crappie							
Centrarchidae	0.0						
Bluntnose darter		0.0					
River darter	0.1		0.1				
Sauger							
Freshwater drum	2.4	0.6	1.4				
Striped mullet							
Number of Species	16	12	25	14	17	11	12
Weight of Fish	494.1	148.6	425.3	327.9	160.5	783.3	271.3
Catch Per Effort	38.01	18.58	22.38	27.33	12.34	43.52	20.87

Table 6 (Concluded)

Sampling	Secondary	Shannon-Wiener D	iversity
Period	Channel	Electroshocker	Seine
July 1984	Wolf Island	0.80	0.47
	Island 8	0.88	0.39
	Lakeport Towhead	0.63	1.03
	Cottonwood Bar	0.79	0.65
	Profit Island	0.38	0.99
October 1984	Lakeport Towhead	0.50	0.81
	Cottonwood Bar	0.86	0.88

Fish Species Diversity of Five Secondary Channels in the Lower Mississippi River

Table 7

Table 8

Density, Number of Taxa, and Diversity of Macroinvertebrates Collected from Five Secondary

Channels in the Lower Mississippi River, July and October 1984

	Mean	Dens	ity (Nu	mbers per m	(21		Tota	ul Taxa		Shan.on-
		Midc	hannel	Secondary			Midchanne.	L Secondary		Wiener
Secondary Channel	Natural Bank	Sta 02	tions 03	Channel Sandbar	Channel Mean	Natural Bank	Stations 02 01	Channel Sandbar	Channel Total	Diversity Index
Wolf Island	2,987	597	295	923	1,200	22		=	34	1.03
Island 8	1,029	767	416	93	576	16	8	5	24	0.99
Lakeport Towhead	113	101	379	40	158	10	6 1(5	22	0.54
Cottonwood Bar	323	93	97	57	142	11	9	7	20	0.87
Profit Island	206	109	186	133	158	6	6	4	19	1.04
July mean	932	333	275	249	447	34	17 2:	3 23	50	
Lakeport Towhead	468	569	682	807	632	15	11 11	14	31	0.96
Cottonwood Bar	2,127	775	1,086	637	1,157	14	9	80	21	0.80
October mean	1,298	672	884	723	894	26	17 19	18	39	

Table 9

Density, Number of Taxa, and Diversity of Macroinvertebrates Collected

from Dikes at Two Lower Mississippi River Secondary Channels

		Mean Density					
	(Number	per m ² Surface	Area)		Total Taxa		
Channe1	Upstream Face	Downstream Face	Channe I Mean	Upstream Face	Downstream Face	Channel Total	Shannon-Wiener Diversity
Lakeport Towhead	23,642	3,325	13,483	18	14	20	0.50
Cottonwood Bar	3,136	849	1,993	12	10	16	0.64
Total	13,389	2,087	7,738	22	15	24	

Table 10

Composition of Clusters Derived from a Ward's Minimum Hierarchical Cluster Analysis of Benthic Macroinvertebrate and Sediment Grain Size Samples from Five Lower Mississippi River

Secondary Channels, July 1984

	Mean Macroi	nvertebrate (Composition		Mean Parti	cle Size Co	mposition*
Taxon	Cluster 1	Cluster 2	Cluster 3	Sieve Size	Cluster 1	Cluster 2	Cluster 3
Tubificidae (nc)**	27.5	0.9	0.0	1.00-in.	0.0	7.4	0.0
Potamyia flava	4.0	6.7	2.3	0.75-fn.	0.0	3.4	0.0
Robackia claviger	0.6	46.5	9.4	0.50-in.	0.4	4.1	0.3
Chernovskiia orbicus	0.9	7.9	68.0	0.38-in.	0.6	2.3	0.0
Microturbellarians	0.0	21.1	3.6	no. 3	0.4	2.9	0.3
Hydropsyche orris	1.4	0.2	2.1	no. 4	0.2	1.9	0.3
Tortopus incertus	38.6	0.0	0.0	no. 6	0.1	2.7	0.1
Hydropsychidae early	0.0	1.8	0.5	no. 10	0.2	4.8	0.3
instars							
Limnodrilus maumeensis	4.3	0.0	0.0	no. 16	0.1	9.8	0.6
Nematoda	0.0	2.8	9.0	no. 20	0.1	11.5	1.0
Barbidrilus paucisetus	0.0	5.9	0.0	no. 30	0.1	17.5	3.1
Corbicula fluminea	3.9	1.2	0.7	no. 40	0.2	16.7	14.2
Limnodrilus	1.0	0.9	0.0	no. 50	1.0	8.2	31.1
hoffmeisteri				no. 70			
Chaoborus punctipennis	0.6	0.3	0.0		2.3	3.7	33.9
Limnodrilus cervix	1.6	0.0	0.0	no. 100	8.4	1.4	10.9
Polypedilum convictum	0.0	0.8	0.9	no. l	10.9	0.7	2.4
All others	15.5	3.0	3.5	no. 2JU	11.5	0.2	0.6
				>no. 200	63.7	0.8	1.0

after drying and sieving; Cluster 2 represents medium sands and gravels; cluster 3 represents fine sands. Cluster I represents fines, but in this analysis, silts cannot be separated from consolidated clays nc indicates that these are tubificid immatures of species lacking capilliform chaetae. ** *

Table 1	1
---------	---

Distribution of Selected Sampling Stations Relative to Combinations of

Macroinvertebrate 1**	Macroinvertebrate 1	Macroinvertebrate 1
Sediment 1	Sediment 2	Sediment 3
PCI - E01 $PCC - C01$ $PCC - C02$ $PCP - E04$ $PCP - G01$ $PCL - E01$ $PCW - C01$		
Macroinvertebrate 2	Macroinvertebrate 2	Macroinvertebrate 2
Sediment 1	Sediment 2	Sediment 3
PCL - G03 PCP - E02	PCC - G01	PCI - C02 PCI - C03 PCI - C04 PCI - E03 PCL - C03 PCP - C03 PCW - C02
Macroinvertebrate 3	Macroinvertebrate 3	Macroinvertebrate 3
Sediment 1	Sediment 2	Sediment 3
PCI - GO1	$\begin{array}{rcrr} PCI & - & E02 \\ PCI & - & G02 \\ PCI & - & G03 \\ PCW & - & E02 \\ PCW & - & E03 \\ PCW & - & G01 \\ PCW & - & G03 \end{array}$	PCW - CO4

Macroinvertebrate and Sediment Grain Size Clusters*

* Acronyms represent: PCW (Wolf Island), PCI (Island 8), PCL (Lakeport Towhead), PCC (Cottonwood Bar), PCP (Profit Island).

** Refers to macroinvertebrate and sediment grain size clusters shown in Table 10.

Figure 2. Location of sampling transects and stations within Wolf Island secondary channel, Lower Mississippi River

Figure 3. Location of sampling transects and stations within Island 8 secondary channel, Lower Mississippi River

Figure 4. Location of sampling transects and stations within Lakeport Towhead secondary channel, Lower Mississippi River

Figure 6. Location of sampling transects and stations within Profit Island secondary channel, Lower Mississippi River

A B 100 100 75 50 25 Z n CDA 201 C02 <u>cas</u> 100 10 75 75 50 50 PERCENTAGE OF SEDMMENT PERCENTARE OF REDNIELT 25 21 0 0 E04 EØ1 EGS 602 FOO 100 EØĮ 75 75 50 5 25 2 6 803 100 100 75 75 50 50 25 25 TO3 STATION 102 163 201 GRAN I 201 CRANI T STATION D C 10 75 75 B 50 50 25 25 必 0 100 0 C0 20 **CO**1 COZ CØ3 C04 TC 100 75 π Ê 5 PENCENTAGE OF SEDMIENT PEACENTAGE OF SEDIMENT 25 25 651 _____ E04 0 0 100 - EGS anninnin a EQ2 TE 100 £01 E02 Æ hummun 75 75 50 50 25 25 6 a 601 TG 801 864 76 100 100 75 75 56 54 Singe 23 25 z£ 0 EO3 Station ERAND T BRAND 181 702 204 101 702 103 104 STATION LEGEND GRAVEL

22.22

ULLI GUARSE SAND ZZI MEDIUM SAND SSI FINE SAND SSI FINES

Figure 7. Distribution of sediment grain sizes within Wolf Island (A) and Island 8 (B) secondary channels in July 1984, and within Lakeport Towhead secondary channel in July (C) and October (D) 1984

Figure 8. Distribution of sediment grain sizes within Cottonwood Bar secondary channel in July (A) and October (B) 1984, and within Profit Island secondary channel in July 1984 (C)

Figure 9. Estimated densities of fish within depth strata and the frequency distributions of target strengths and corresponding fish sizes for Wolf Island (top), Island 8 (center), and Lakeport Towhead (bottom) secondary channels, July 1984

Figure 10. Estimated densities of fish within depth strata and the frequency distributions of target strengths and corresponding fish sizes for Cottonwood Bar (top) and Profit Island (bottom) secondary channels, July 1984

Figure 11. Macroinvertebrates collected from sediments within Wolf Island secondary channel, July 1984. Upper numbers represent the mean density of macroinvertebrates per square metre calculated from two samples per station; lower numbers represent total numbers of taxa collected. Location of sampling stations is shown in Figure 2

Figure 12. Macroinvertebrates collected from sediments within Island 8 secondary channel, July 1984. Upper numbers represent the mean density of macroinvertebrates per square metre calculated from two samples per station; lower numbers represent total numbers of taxa collected. Location of sampling stations is shown in Figure 3

Figure 13. Macroinvertebrates collected from sediments within Lakeport Towhead secondary channel, July 1984. Upper numbers represent the mean density of macroinvertebrates per square metre calculated from two samples per station; lower numbers represent total numbers of taxa collected. Location of sampling stations is shown in Figure 4

Figure 14. Macroinvertebrates collected from dikes at Lakeport Towhead Upper numbers represent the mean density of macroinvertebrates per square metre calculated from two samples per station; lower numbers represent total numbers of taxa collected. Location of sampling stations is shown in Figure 4 secondary channel, July 1984.

collected from dikes at Lakeport Towhead secondary channel, July 1984. Numbers above histograms indicate total dry weight (grams) of sample Dry weight biomasses of macroinvertebrates, excluding Chironomidae, Figure 15.

Figure 16. Macroinvertebrates collected from sediments within Lakeport Towhead secondary channel, October 1984. Upper numbers represent the mean density of macroinvertebrates per square metre calculated from two samples per station; lower numbers represent total numbers of taxa collected. Location of sampling stations is shown in Figure 4

12

8

10

lower numbers represent total numbers of taxa collected. Location of sampling macroinvertebrates per square metre calculated from two samples per station; stations is shown in Figure 5

Ø, Q <u>ж</u>А 254.7 EPHEMEROPTERA TRICHOPTERA EPHEMEROPTER/ TRICLIDIDA SSOCNATA CHAOBORIDAE 1047.3 ä LEGEND 00000 Q 1311.6 713.8 A05 **X05** 115.9 0.00 805 0.00 Ωø 60 Q 69.0 41.3 A04 55.2 B04 ¥ S 10:0:0 exe O. 00 64000 0.5000 Q STATION A03 839.1 438.0 B03 ¥03 44.0 0000 0.0000 0.0000 0° 0° 8 50 Qø 88 1951.2 3720.8 A02 181.6 <u>×</u>02 B02 0 00 09.00000 **7**0 96.8 A01 102.5 <u>×</u>01 B01 91.1 1 PERCENT OF TOTAL BIOMSS 0 <u>1</u>0 60 40 20 ¢ 8 0 ę 20 <u>6</u> 8 8 8

Figure 19. Dry weight biomasses of macroinvertebrates, excluding Chironomidae, collected from dikes at Cottonwood Bar secondary channel, July 1984. Numbers above histograms indicate total dry weight (grams) of sample

Figure 20. Macroinvertebrates collected from sediments within Cottonwood Bar secondary channel, October 1984. Upper numbers represent the mean density of macroinvertebrates per square metre calculated from two samples per station; lower numbers represent total numbers of taxa collected. Location of sampling stations is shown in Figure 5

Figure 21. Macroinvertebrates collected from sediments within Profit Island secondary channel, July 1984. Upper numbers represent the mean density of macroinvertebrates per square metre calculated from two samples per station; lower numbers represent total numbers of taxa collected. Location of sampling stations is shown in Figure 6

APPENDIX A: PHYSICAL/CHEMICAL MEASUREMENTS FROM FIVE LOWER MISSISSIPPI RIVER SECONDARY CHANNELS JULY AND OCTOBER 1984

Property - Recentered - Process

		St	ation		
Variable	C01	CO2	CO3	CO4	<u>x</u> C
Temperature	27.7	27.7	27.8	27.9	27.8
Dissolved oxygen	5.2	5.5	5.4	5.6	5.5
Conductivity	403	412	425	471	428
рН	6.7	7.3	7.3	7.4	7.2
Turbidity	31	36	40	42	37
	E01	E02	EO3	EO4	×E
Temperature	28.7	27.9	27.9	27.9	28.0
Dissolved oxygen	5.4	5.7	5.6	5.3	5.5
Conductivity	419	436	459	476	448
рН	7.5	7.4	7.4	7.1	7.3
Turbidity	47	23	52	74	49
	G01	G02	G03	_G04_	xG
Temperature	28.2	28.1	28.1	28.0	28.1
Dissolved oxygen	5.6	5.6	5.5	5.6	5.6
Conductivity	428	450	462	482	455
рH	7.5	7.4	7.5	7.4	7.4
Turbidi*y	64	65	72	100	77
	<u>x01</u>	x02	<u>x03</u>	x04	Grand x
Temperature	28.1	27.9	27.9	27.9	28.0
Dissolved oxyger	5.4	5.6	5.5	5.5	5.5
Conductivity	417	430	447	476	443
рН	7.2	7.4	7.4	7.3	7.3
Turbidity	47	38	52	72	53

Table AlSummary of Five Water Quality Variables Measured at Wolf IslandSecondary Channel (River Mile 935) in July 1984*

		St	ation		
Variable	C01	<u>CO2</u>	C03	C04	<u>x</u> C
Temperature	27.8	28.0	28.0	27.6	27.9
Dissolved oxygen	5.5	5.6	5.5	5.8	5.6
Conductivity	491	486	473	471	482
рН	7.5	7.5	7.5	7.5	7.5
Turbidity	84	84	87	87	85
	EO1	E02	E03	EO4	<u> </u>
Temperature	27.9	28.0	27.9	27.0	27.8
Dissolved oxygen	5.3	5.6	5.6	6.0	5.6
Conductivity	491	486	473	480	483
рН	7.6	7.5	7.6	7.6	7.6
Turbidity	80	84	70	77	78
	G01	G02	G03	GO4	xG
Temperature	27.9	27.9	28.0	28.0	27.9
Dissolved oxygen	5.6	5.6	5.6	5.7	5.6
Conductivity	493	492	479	487	488
pH	7.6	7.6	7.6	7.5	7.6
Turbidity	84	84	84	80	83
	x 01	<u>x02</u>	<u>x03</u>	x04	Grand x
Temperature	27.9	27.9	28.0	27.7	27.9
Dissolved oxygen	5.4	5.6	5.6	5.8	5.6
Conductivity	492	488	475	482	484
рН	7.6	7.5	7.5	7.5	7.5
Turbidity	83	84	80	81	82

Table A2 Summary of Five Water Quality Variables Measured at Island 8 Secondary Channel (River Mile 915) in July 1984*

		St	ation		
Variable	<u>C01</u>	C02	CO3	CO4	xC
Temperature	27.6	27.7	27.8	27.9	27.7
Dissolved oxygen	6.0	5.9	5.9	6.0	6.0
Conductivity	415	415	416	416	416
pH	7.5	7.5	7.5	7.6	7.5
Turbidity	117	114	117	117	116
	E01	EO2	E03	EO4	<u></u> E
Temperature	27.9	28.0	28.1	28.5	28.1
Dissolved oxygen	5.5	5.7	5.6	5.2	5.6
Conductivity	416	417	416	418	416
рН	7.4	7.4	7.3	7.4	7.4
Turbidity	124	104	107	77	108
	G01	G02	G03	GO4	
Temperature	28.0	28.1	28.0	28.2	28.1
Dissolved oxygen	5.2	5.6	5.7	5.5	5.5
Conductivity	414	416	416	418	416
pH	7.5	7.5	7.4	7.4	7.4
Turbidity	40	39	39	28	37
	<u>x01</u>	x02	x03	x04	Grand x
Temperature	27.8	27.9	28.0	28.2	27 .9
Dissolved oxygen	5.6	5.7	5.7	5.5	5.7
Conductivity	415	416	416	418	416
pH	7.5	7.5	7.4	7.5	7.4
Turbidity	100	85	88	63	87

Table A3Summary of Five Water Quality Variables Measured at Lakeport Towhead

Secondary Channel (River Mile 528) in July 1984*

		St	ation		· · · · · · · · · · · · · · · · · · ·
Variable	<u>C01</u>	CO2	CO3	CO4	<u> </u>
Temperature	21.7	21.3	2.4	21.0	21.3
Dissolved oxygen	6.6	7.5	7.8	7.3	7.4
Conductivity	481	480	486	490	486
рН	7.4	7.5	7.4	7.5	7.4
Turbidity	19	21	22	26	23
	E01	EO2	<u>E03</u>	EO4	<u>x</u> E
Temperature	21.4	20.3	21.8	19.6	21.0
Dissolved oxygen	6.4	5.5	8.2	6.0	6.6
Conductivity	496	540	475	391	492
pH	7.6	7.6	7.5	7.5	7.5
Turbidity	43	18	17	11	25
	G01	G02	G03	GO4	xG
Temperature	22.5	21.7	21.5	22.0	21.9
Dissolved oxygen	7.0	6.8	6.8	6.5	6.8
Conductivity	467	480	484	477	478
pH	7.6	7.6	7.6	7.6	7.6
Turbidity	10	16	12	11	12
	<u>x01</u>	<u>x</u> 02	x03	x04	Grand x
Temperature	21.8	21.1	21.6	21.3	21.4
Dissolved oxygen	6.6	6.3	7.6	6.8	6.9
Conductivity	484	506	482	470	485
рН	7.6	7.6	7.5	7.5	7.5
Turbidity	28	17	17	17	20

Table A4Summary of Five Water Quality Variables Measured at Lakeport TowheadSecondary Channel (River Mile 528) in October 1984*

		St	ation		
Variable	C01	CO2	CO3	C04	<u>x</u> C
Temperature	27.7	27.9	27.8	28.1	27.8
Dissolved oxygen	6.1	5.8	5.8	5.4	5.8
Conductivity	433	435	434	434	434
pH	7.5	7.5	7.5	7.6	7.5
Turbidity	57	55	56	24	53
	E01	EO2	<u>E03</u>	_EO4_	<u></u> E
Temperature	27.8	28.0	28.0	28.2	27.9
Dissolved oxygen	6.1	6.1	6.2	5.9	6.1
Conductivity	449	451	451	449	450
pH	8.1	7.6	7.5	7.6	7.6
Turbidity	49	48	48	46	48
	G01	G02	G03	GO4	G
Temperature	27.9	28.0	27.8	28.2	28.0
Dissolved oxygen	5.8	5.9	5.8	5.6	5.8
Conductivity	450	451	450	452	451
pH	7.7	7.7	7.7	7.8	7.7
Turbidity	51	52	51	48	50
	<u>x01</u>	<u>x02</u>	<u>x03</u>	x04	Grand x
Temperature	27.8	27.9	27.9	28.2	27.9
Dissolved oxygen	6.0	5.9	5.9	5.6	5.9
Conductivity	444	446	444	448	445
рН	7.7	7.6	7.6	7.7	7.6
Turbidity	52	52	52	43	51

Table A5Summary of Five Water Quality Variables Measured at Cottonwood Bar

Secondary Channel (River Mile 470) in July 1984*

<u></u>	- <u>-</u>	St	ation		
Variable	<u>C01</u>	CO2	CO3	CO4	xC
Temperature	20.4	20.5	20.5	20.6	20.5
Dissolved oxygen	7.7	7.6	7.6	7.5	7.6
Conductivity	478	476	476	476	476
рН	7.2	7.2	7.3	7.1	7.2
Turbidity	31	33	32	33	33
	E01	<u>E02</u>	<u>E03</u>	EO4	<u> </u>
Temperature	21.2	20.4	20.4	20.7	20.6
Dissolved oxygen	6.6	7.5	7.4	7.2	7.2
Conductivity	477	462	463	463	465
рН	7.2	7.1	7.1	8.4	7.4
Turbidity	40	47	49	45	46
	G01	G02	<u>G03</u>	GO4	xG
Temperature	20.9	20.7	20.6	20.9	20.7
Dissolved oxygen	7.0	7.0	7.1	7.2	7.1
Conductivity	461	462	462	460	461
рН	7.3	7.3	7.4	7.1	7.2
Turbidity	54	57	48	43	51
	x 01	x02	<u>x03</u>	x 04	Grand x
Temperature	20.7	20.5	20.5	20.7	20.6
Dissolved oxygen	7.2	7.4	7.4	7.4	7.3
Conductivity	473	466	468	468	469
рН	7.2	7.2	7.2	7.4	7.3
Turbidity	40	46	43	40	42

Summary of Five Water Quality Variables Measured at Cottonwood Bar Secondary Channel (River Mile 470) in October 1984*

Table A6

		St	ation		
Variable	C01	<u>C02</u>	<u>C03</u>	CO4	<u>x</u> C
Temperature	27.3	27.3	27.3	27.4	27.4
Dissolved oxygen	6.3	6.3	6.1	6.2	6.2
Conductivity	444	444	444	443	444
рН	7.5	7.5	7.4	7.4	7.4
Turbidity	46	53	53	51	51
	E01	_E02_	_E03_	EO4	<u> </u>
Temperature	27.5	27.5	27.5	27.6	27.5
Dissolved oxygen	6.1	6.0	5,1	5.2	6.0
Conductivity	444	443	443	443	443
рH	6.6	7.8	7.5	7.8	7.5
Turbidity	52	51	50	54	51
	G01	_G02_	<u> </u>	GO4	xG
Temperature	27.6	27.6	27.5	27.5	27.6
Dissolved oxygen	5.9	5.9	6.0	4.9	5.8
Conductivity	443	443	443	444	443
pH	7.6	7.6	7.4	7.6	7.5
Turbidity	51	48	48	51	49
	<u>x01</u>	<u>x02</u>	x03	x 04	Grand x
Temperature	27.5	27.5	27.4	27.5	27.5
Dissolved oxygen	6.1	6.0	5.1	5.6	6.0
Conductivity	444	443	443	443	443
рH	7.4	7.6	7.4	7.5	7.5
Turbidity	51	50	50	51	51

Table A7Summary of Five Water Quality Variables Measured at Profit IslandSecondary Channel (River Mile 250) in July 1984*

		Station		
C01	C02	C03	C04	<u>x</u> C
(0.5).57	(0.5).87	(0.5)1.18	(0.5).98	.90
(1.0).46	(2.5).87	(3,5)1.29	(1.5).62	.81
(2.0).46	(5.0).87	(7.0) .98	(3.0).72	.76
E01	E02	E03	E04	<u>x</u> e
(0.5).57	(0.5) .98	(0.5)1.03	(0.5).46	.76
(3.0).57	(4.5)1.03	(3.5)1.03	(2.0).21	.71
(6.0).51	(9.0) .87	(7.0) .82	(4.0).46	.67
<u>G01</u>	G02	G03	G04	Grand x
(0.5)1.23	(0.5)1.13	(0.5)1.39	(0.5)2.32	1.52
(3.5)1.23	(1.5)1.13	(1.0)1.39	(3.0)2.06	1.45
(7.0)1.13			(6.0)1.80	1.47
<u>x01</u>	x02	<u>x03</u>	x04	Grand x
.75	.97	1.14	1.07	1.01

Table A8

Current Speeds Measured at Sampling Stations at Wolf Island Secondary Channel in July 1984*

A10

Station					
<u>C01</u>	C02	<u>C03</u>	<u>C04</u>	xC	
0.5)1.03	(0.5)1.13	(0.5)1.29	(0.5).51	.89	
4.0) .82	(5.5)1.39	(4.5)1.13		1.11	
8.0).57	(11.0)1.03	(9.0)1.13		.91	
E01	E02	E03	E04	<u>x</u> e	
0.5).87	(0.5)1.08	(0.5)1.08	(1.0).36	.85	
3.0).77	(3.9)1.13	(2.5)1.03		.98	
5.5).62	(7.8)1.13	(5.0)1.03		.93	
G01	G02	G03	G04	xG	
0.5).98	(0.5)1.03	(0.5)1.08	(0.5).67	.94	
2.0).93	(2.3)1.13	(3.0)1.13	(1.8).67	.97	
4.0).87	(4.5)1.03	(6.0) .98	(3.5).62	.88	
<u>x01</u>	<u>x02</u>	<u>x03</u>	<u>x04</u>	Grand	
.83	1.12	1.10	.57	.94	

AY	pre
----	-----

Current Speeds Measured at Sampling Stations at

A11

		Station		<u></u>
<u>x</u> C	C04	C03	C02	C01
.56	(0.5).57	(0.5).62	(0.5).57	(0.5).46
.55		(2.2).72	(1.2).51	(1.5).41
.55		(4.5).67	(3.0).51	(2.5).46
<u>x</u> e	E04	E03	E02	E01
.45	(0.5).36	(0.5).46	(0.5).62	(0.5).36
.46		(2.0).46	(6.0).57	(2.0).36
.41		(4.0).46	(12.0).46	(4.0).31
xG	G04	G03	G02	G01
.36	(0.5).36	(0.5).51	(0.5).36	(0.5).21
.32	(2.0).36	(3.0).41	(1.5).31	(2.0).21
. 34		(6.0).36	(3.0).31	
Grand x	x04	<u>x03</u>	<u>x02</u>	<u>x01</u>
.44	.41	.52	.47	.35

Table AlO

Current Speeds Measured at Sampling Stations at

Lakeport Towhead Secondary Channel in July 1984*

		Station	<u> </u>	
C01	C02	C03	<u> </u>	xC
(0.5).00	(0.5).02	(0.5).02	(0.5).02	.02
		(1.5).05	(1.0).05	.05
		(2.5).02	(2.0).02	.02
E01	E02	E03	E04	<u>x</u> e
(0.5).10	(0.5).05	(0.5).00	(0.5).00	.04
(4.5).10	(5.0).08	(2.0).00		.06
(9.0).00	(10.5).05	(4.0).05		.03
G01	G02	G03	G04	xG
(0.5).00	(0.5).00	(0.5).00	(0.5).00	.00
(2.0).00	(3.0).00	(3.0).02	(2.0).00	.01
	(6.0).00	(6.0).00	(3.0).00	.00
<u>x01</u>	x02	<u>x03</u>	<u>x04</u>	Grand
.04	.03	.02	.01	.03

Table All

Current Speeds Measured at Sampling Stations at Lakeport Towhead Secondary Channel in October 1984*

	<u></u>	Station		
C01	C02	C03	C04	xC
(0.5).93	(0.5).62	(0,5).98	(0.5).10	.66
(4.0).88	(4.0).57	(1,5)1.03		.83
(8.5).67	(8.0).67	(3.0) .88		.74
E01	<u> </u>	E03	E04	<u>x</u> E
(0.5)1.03	(0.5)1.75	(0.5)1.08	(1.0).62	1.12
2.0)1.18	(4.5)1.65	(2.0) .93		1.25
(4.5) .93	(9.0)1.44			1.19
G01	G02	G03	G04	xG
0.5).98	(0.5)1.49	(0.5)1.29	(0.5).87	1.16
1.5).87	(1.5)1.29	(2.5)1.29	(2.5).87	1.08
(3.0).77	(3.0)1.39	(5.0)1.03	(5.0).93	1.03
<u>x01</u>	<u>x02</u>	<u>x</u> 03	<u>x04</u>	Grand x
.92	1.21	1.06	.68	1.01

Table Al2

Current Speeds Measured at Sampling Stations at

Cottonwood Bar Secondary Channel in July 1984*

		Station		
C01	C02	C03	<u>C04</u>	xC
(0.5) .98	(0.5)1.13	(0.5)1.54	(0.5)1.44	1.27
(5.0) 1.08	(2.0) .93	(2.0)1.49	(2.0)1.44	1.24
(10.0)1.03		(3.0)1.08	(3.0) .98	1.03
E01	E02	E03	E04	<u> </u>
(0.5).26	(0.5)1.59	(0.5)1.03	(0.5).10	.75
(2,0).21	(3.0)1.44	(3.5) .82	(2.0).10	.64
	(6.0)1.13	(7.5).87	(3.0).10	.70
G01	G02	G03	G04	xG
(1.0).72	(0.5)1.03	(1.0)1.18	(0.5).77	.93
(2.0).87	(2.0)1.08	(2.0) .93		.96
<u>x01</u>	<u>x02</u>	x03	<u>x04</u>	Grand x
.74	1.04	1.31	.70	.90

		Table	e Al	13		
nt	Speeds	Measured	at	Sampling	Stations	at

Curren

Cottonwood Bar Secondary Channel in October 1984*

		Station		
C01	C02	C03	<u>C04</u>	<u>x</u> C
(0.5).93	(0.5)1.08	(0.5).51	(0.5)1.90	1.00
		(5.5).93	(3.5)1.85	1.22
		(11.0)1.03	(7.5)1.13	1.08
E01	E02	E03	E04	xE
(0.5)1.08	(0.5)1.18	(0.5)1.34	(0.5).26	.97
(4.5)1.18	(7.5)1.08	(4.0)1.29		1.18
(9.0) .51	(15.0) .87	(8.5).98		.79
<u>G01</u>	G02	<u>G03</u>	G04	xG
(0.5).51	(0.5).98	(0.5)1.18	(0.5).15	.71
(2.5).67	(3.0)1.08	(3.5)1.03	(1.5).15	.73
(4.5).51	(6.5) .82	(7.0) .93		.75
<u>x01</u>	<u>x02</u>	<u>x03</u>	x04	Grand x
.77	1.01	1.02	.91	.93

Table Al4

Current Speeds Measured at Sampling Stations at

Profit Island Secondary Channel in July 1984*

APPENDIX B: FISH POPULATION DATA COLLECTED FROM FIVE LOWER MISSISSIPPI RIVER SECONDARY CHANNELS, JULY AND OCTOBER 1984

Table Bl

Numbers and Weights of Fish Collected by Electroshocker at Wolf Island Secondary Channel

July 1984

			Secor	idary						
			Chan	nel	Main Ch	annel			Perc	ent
	Natural	Bank	Sand	lbar	Sand	lbar	<u>1</u>	tal	of T	otal
Species	Number	Weight kg	Number	Weight kg	Number	Weight kg	Number	Weight kg	Number	Weight
Longnose gar	1	1.800	2	3.161	2	3.610	5	8.571	4.5	18.2
Shortnose gar			1	0.457			1	0.457	0.9	1.0
Skipjack herring	2	0.005					2	0.005	1.8	0.0
Gizzard shad	ŝ	0.135	1	0.154			4	0.289	3.6	0.6
Goldeye				0.004	1	0.110	2	0.114	1.8	0.2
Common carp	1	1.204	2	7.760	1	1.089	4	10.053	3.6	21.3
Silver chub						0.021	1	0.021	0.9	0.0
River carpsucker	1	0.362					1	0.362	0.9	0.8
Bigmouth buffalo	1	0.036					1	0.036	0.9	0.1
Blue catfish	I	0.025	2	3.160	2	0.274	Ś	3.459	4.5	7.3
Channel catfish	24	4.942	12	3.062	7	0.065	43	8,069	38.4	17.1
Flathead catfish	13	3.675	12	1.805	8	8.571	33	14.051	29.5	29.8
White bass	2	0.725					2	0.725	1.8	1.5
Sauger			1	0.560			1	0.560	0.9	1.2
Freshwater drum	5	0.394	1	0.051	1	0.002	٢	0.447	6.3	0.9
Total	54	13.303	35	20.174	23	13.742	112	47.219		
Units of Effort	ę	٣	e	e	e	e	6	6		
Catch per Unit Effort	18.0	4.434	11.7	6.724	7.7	4.581	12.4	5.246		

Table B2

Postasa.

1000

Numbers and Weights of Fish Collected by Seine at Wolf Island Secondary Channel

July 1984

			Secol	ndary						
			Chai	nel	Main Ch	ianne l			Perc	ent
	Natura]	Bank	San	lbar	Sanc	lbar	To	tal	of T	otal
and the S	Number	Weight	Number	Weight	Number	Weight	Number	Weight	Number	Welcht
sarsado	Tanunu	x	TEOUDA	×	Tanina		Toolin	d	10000	9-0
Shortnose gar			1	280.0			I	280.0	0.2	56.7
Skipjack herring	7	3.2	1	0.3	4	2.3	12	5.8	2.0	1.2
Gizzard shad	4	1.1	2	3.1			9	4.2	1.0	0.9
Threadfin shad			-	0.8	e	1.9	4	2.7	0.7	0.5
Goldeye			4	9.5	1	2.9	Ŋ	12.4	0.8	2.5
Mississippi silvery	I	0.3			10	8.1	11	8.4	1.9	1.7
minnow Stlvar chub	14	0 7	c	1 . 4	٢	4.3	23	10.6	3.9	2.1
Unhoode on	-		ı	•				0.1	0.2	0.0
·da stadodu	- [1 20	76	0			3 22	71 6
Emerald shiner	101	9.00	477	1.00	0/	17.0	104	C.0U1		C112
River shiner	2	3.4	10	1.7	2	3.3	14	8.4	2.4	1.7
Silverband shiner	2	4.0	£	6.7			5	10.7	0.8	2.2
Notropis sp.	2	0.2					2	0.2	0.3	0.0
Smallmouth buffalo	I	1.1					1	1.1	0.2	0.2
Ictiobus sp.					I	0.9	1	0.9	0.2	0.2
Channel catfish	80	6.2	9	7.1	4	2.3	18	15.6	3.1	3.2
White bass	9	13.2					9	13.2	1.0	2.7
Bluegill	1	0.4					1	0.4	0.2	0.1

(Continued)

Table B2 (Concluded)

			Secol	ndary						
			Chai	nnel	Main Ch	annel			Perc	ent
	Natural	Bank	San	dbar	Sand	lbar	Tot	tal	of T	otal
		Weight		Weight		Weight		Weight		
Species	Number	80	Number	80	Number	- 50	Number	50	Number	We1ght
Centrarchidae	I	0.1					1	0.1	0.2	0.0
River darter	1	0.7					1	0.7	0.2	0.1
Freshwater drum	15	10.0	e	1.2	2	0.9	20	12.1	3.4	2.4
Total	223	99.5	257	347.9	110	46.7	590	494.1		
Units of Effort	S	2	\$	S	e	e	13	13		
Catch per Unit Effort	44.6	19.90	51.4	69.58	36.7	15.57	45.4	38.01		
	Number of Fish	Mean								
------------------------------	----------------	-----------------------								
Transects	per 100 m	Target Strength db								
C01	20.4	-50.8								
co1-co4	0.6	-53.3								
CO4	0.6	-55.9								
x of C	7.2	-53.3								
DO1	0.4	-50.1								
D01-D04	0.7	-54.0								
DO4	1.6	-48.4								
x of D	0.9	-50.8								
E01	3.1	-43.3								
EO1-EO4	0.5	-52.4								
EO4	4.8	-45.2								
x of E	2.8	-47.0								
FOl	1.3	-47.7								
F01–F04	0.1	-52.0								
<u>F</u> O4	1.1	-43.9								
x of F	0.8	-47.9								
G01	0.8	-51.3								
G01-G04	1.0	-51.7								
<u>G</u> O4	0.8	-46.7								
x of G	0.9	-49.9								
Microhabitat										
Natural bank	5.2	-48.6								
Secondary channel sandbar	1.8	-52.7								
Channel	0.6	-48.0								
Mean	2.5	-50.6								

Numbers and Target Strengths of Fish Detected with Hydroacoustics from Transects and Microhabitats at Wolf Island

Table B3

B6

R. C. C.

)

Numbers and Weights of Fish Collected by Electroshocker at Island 8 Secondary Channel

July 1984

			Secon	idary						
	Natura]	l Bank	Chan Sand	nel Ibar	Main Ch Sand	ianne l Ibar	Ťo	- a	Perc of T	ent otal
Contractor	-	Weight		Weight		Weight		Weight		TEAD
Saturd	NUMDer	Кg	Number	<u>8</u>	Number	¥ 8	Number	20	Number	Weight
Longnose gar					1	0.597	I	0.597	1.0	2.6
Shortnose gar	9	2.794	2	0.485			8	3.279	7.9	14.0
Skipjack herring					1	0.003	1	0.003	1.0	0.0
Gizzard shad	17	1.576	1	0.313	2	0,095	26	1.984	25.7	8.5
Goldeye	4	0.257	5	0.019	2	0,006	11	0.282	10.9	1.2
Common carn	~	000 9			-	- -				
	ר	002.0			1	UC/ • I	4	8.650	4.0	37.0
River carpsucker					2	I.629	2	1.629	2.0	7.0
Blue catfish	1	0.056					I	0.056	1.0	0.2
Channel catfish	2	0.013	13	2.478	5	0.109	20	2.600	19.8	11.1
Flathead catfish	7	1.087	2	0.501	11	1.904	20	3.492	19.8	14.9
White bass					2	0.433	2	0.433	2.0	1.9
Sauger			1	0,093	1	0.007	2	0.100	2.0	0.4
Freshwater drum	2	0.267			1	0.027	£	0.294	3.0	1.3
Total	42	12.950	30	3.889	29	6.560	101	23.399		
Units of Effort	٣	٣	٣	e	e.	ŝ	6	6		
Catch per Unit Effort	14.0	4.317	10.0	1.296	9.7	2.187	11.2	2.600		

Numbers and Weights of Fish Collected by Seine at Island 8 Secondary Channel

July 1984

			Caror							
			Char	ual) mºl	Main Ch	annel			Perc	ent
	Natural	Bank	Sand	lbar	Sand	lbar	Tot	tal	of T	otal
Species	Number	Weight	Number	Weight	Number	Weight	Number	Weight	Number	Wetchr
Stiniack hereine				13 6	7		=	0 01	۲ C	0 1
SULTING NORTHER THE				12.0	t	c •1	1 1	6.01	1.0	y.4
Gizzard shad			12	27.8			12	27.8	4.0	18.7
Threadfin shad			4	3.4	æ	5.9	12	9.3	4.0	6.3
Mississippi silvery minnow			2	1.7	e	2.7	Ś	4.4	1.7	3.0
Silver chub			4	2.6			4	2.6	1.3	1.7
Emerald shiner			118	23.9	120	45.5	238	69.4	80.1	46.7
River shiner			5	7.8	3	3.4	8	11.2	2.7	7.5
Silverband shiner					1	1.3	1	1.3	0,3	0.9
River carpsucker			1	1.0			1	1.0	0.3	0.7
Brook silverside			1	0.3			1	0.3	0.3	0.2
White bass			2	4.7	1	1.8	'n	6.5	1.0	4.4
Freshwater drum					I	6*0	l	0.9	0.3	0.6
Total			156	85.8	141	62.8	297	148.6		
Units of Effort			5	2	e	e	80	8		
Catch per Unit Effort			31.2	17.16	47.0	20.93	37.1	18.58		

Table	B6
-------	----

Transects	Number of Fish per 100 m ³	Mean Target Strength db
C01	1.0	-43.3
C01-C04	0.2	-51.4
CO4	4.2	*
x of C	1.8	47.4
DO1	3.0	-45.7
D01-D04	0.4	-54.6
DO4	4.5	*
x of D	2.6	-50.3
E01	4.3	-47.5
EO1-EO4	1.2	-54.8
EO4	0.7	-43.5
x of E	2.1	
F01	1.6	-42.4
F01-F04	0.3	-56.6
FO4	1.5	-48.1
x of F	1.1	-48.6
G01	2.5	-46.9
G01-G04	1,8	-54.4
G04	1.3	-41.1
x of G	1.9	-47.5
Microhabitat		
Natural bank	2.5	-45.4
Secondary channel sandbar	1.7	-42.6
Channel	0.7	-54.5
Mean	1.9	48.5

Numbers and Target Strengths of Fish Detected with Hydroacoustics from Transects and Microhabitats at Island 8

* Insufficient data.

Numbers and Weights of Fish Collected by Electroshocker at Lakeport Towhead Secondary Channel

July 1984

SpeciesNumberMatural BankPaddlefishNumberMeigPaddlefish10.3Longnose gar10.3Shortnose gar300.4Shortnose gar300.4Emerald shiner300.4River carpsucker300.4Blue catfish93.5White bass310.4Bluegill10.4Sauger10.5Freshwater drum10.5		Secone	lary nel	Main Cl	annel					Perc	ent
SpeciesNumberWeigPaddlefishI0.3Longnose gar10.3Shortnose gar300.4Shortnose gar300.4Emerald shiner300.4River carpsucker300.4Blue catfish93.5White bass893.5White bass810.4Sauger10.4Freshwater drum10.5	3ank	Sandl	ar	Sand	lbar	Q	1ke	To	tal	of T	otal
Paddlefish Longnose gar Longnose gar Shortnose gar Emerald shiner River carpsucker River carpsucker River carpsucker River carpsucker River carpsucker Blue catfish Mhite bass Bluegill White bass Bluegill Mrite crappie 1 0.4 Freshwater drum	Velght	N	Weight L-		Weight		Weight	N	Weight	N	1-1-1-1
Paddlefish Longnose gar Shortnose gar Emerald shiner River carpsucker Blue catfish 30 0.4 Channel catfish 30 0.4 Flathead catfish 9 3.5 White bass Bluegili Bluegili Sauger 1 0.5 Freshwater drum	ž	Inumber	2	numper	ž	NUMDEL	КB	Number	ž	numper	Melght
Longnose gar Shortnose gar Emerald shiner River carpsucker Blue catfish 30 0.4 Channel catfish 9 3.0 White bass Bluegili Bluegili Bluegili Freshwater drum				1	2.020			1	2.020	0.9	6.0
Shortnose gar Emerald shiner River carpsucker Blue catfish 30 0.4 Channel catfish 1 0.6 Flathead catfish 9 3.5 White bass Bluegill White crappie 1 0.5 Sauger Freshwater drum	0.360	Ś	2.413					4	2.773	3.4	8.3
Emerald shiner River carpsucker Blue catfish 30 0.4 Channel catfish 9 3.5 White bass Bluegili White crappie 1 0.5 Sauger Freshwater drum		1	1.485					1	1.485	0.9	4.4
River carpsucker Blue catfish 30 0.4 Channel catfish 9 3.5 White bass Bluegill White crappie 1 0.5 Freshwater drum		1	0.002					1	0.002	0.9	0.0
Blue catfish 30 0.6 Channel catfish 1 0.6 Flathead catfish 9 3.3 White bass Bluegill 9 3.5 White crappie 1 0.5 Sauger 1 0.5		e	1.669					e	1.669	2.6	5.0
Channel catfish 1 0.0 Flathead catfish 9 3.3 White bass Bluegili White crappie 1 0.3 Sauger Freshwater drum	0.807	Ś	0.065	e	0.245	10	0.308	48	1.425	41.4	4.2
Flathead catfish 9 3.3 White bass Bluegill White crappie 1 0.5 Sauger Freshwater drum	0.006					2	0.010	ę	0.016	2.6	0.0
White bass Bluegill White crappie 1 0. Sauger Freshwater drum	3.316	4	2.256	4	1.083	29	13.785	46	20 . 440	39.7	60.9
Bluegill White crappie 1 0. Sauger Freshwater drum						1	1.230	1	1.230	0.9	3.7
White crappie 1 0.: Sauger Freshwater drum				1	0.025			1	0.025	0.9	0.1
Sauger Freshwater drum	0.505							I	0.505	6*0	1.5
Freshwater drum		1	0.070	1	0.690			2	0.760	1.7	2.3
						4	1.217	4	1.217	3.4	3.6
Total 42 4.	4.994	18	7.960	10	4.063	46	16.550	116	33.567		
Units of Effort 3 3	e	ŝ	°	e	e	4	4	13	13		
Catch per Unit Effort 14.0 1.4	1.665	6.0	2.654	3.3	1.354	11.5	4.138	0.0	2.582		

1000000

BOD Times

and the second s

3

€ EEE

6582233 •

Numbers and Weights of Fish Collected by Electroshocker at Lakeport Towhead Secondary Channel

October 1984

			Secon	dary nel	Main C	hannel					Perc	ent
	Natura	l Bank	Sandl	bar	San	dbar		Ike	To	tal	of T	otal
		Weight		Weight		Weight		Weight		Weight		
Species	Number	kg	Number	к 8	Number	к 8	Number	88	Number	8 명	Number	Weight
Shortnose gar							1	0.390	1	0.390	0.1	0.6
Skipjack herring	4	0.140	I	0.098	1	0.011	92	2.251	98	2.500	8.9	4.1
Gizzard shad	164	4.722	318	9.052	70	3.901	130	6.323	682	23.998	62.2	39.5
Threadfin shad	17	0,098	146	0.601	œ	0.148	80	0.836	251	1.683	22.9	2.8
Goldeye	1	0.021			2	0.243			ę	0.264	0.3	0.4
Common carp	1	2.370					1	3.250	2	5.620	0.2	9.3
Emerald shiner							2	0.007	2	0.007	0.2	0.0
River carpsucker	1	0.031					'n	0.376	4	0.407	0.4	0.7
Blue sucker					1	3.382	I	1.075	2	4.457	0.2	7.3
Smallmouth buffalo					1	1.122	2	3.207	e	4.327	0.3	7.1
Bigmouth buffalo	2	3, 038							2	3.038	0.2	5.0
Blue catfish					1	0.549	2	0.118	e	0.667	0.3	1.1
Channel catfish					1	0.177			1	0.177	0.1	0.3
Flathead catfish	1	0.600					S	1.198	9	1.798	0.5	3.0
White bass	4	0.327	7	1.500	2	0.203	11	4.255	24	6.285	2.2	10.3

(Continued)

Table B8 (Concluded)

			Secon	dary								
			Chan	nel	Main C	nannel					Perc	ent
	Natura1	Bank	Sand	bar	San	lbar	D	<u>í</u> ke	Tot	tal	of T	otal
		Weight		Weight		Weight		Weight		Weight		
Species	Number	k8	Number	88	Number	k 8	Number	Å 8	Number	98 24	Number	Weight
Striped bass			1	0.872					T	0.872	0.1	1.4
Bluegill							1	0.170	1	0.170	0.1	0.3
Largemouth bass							2	1.014	2	1.014	0.2	1.7
Black crappie							1	0.436	1	0、436	0.1	0.7
Sauger	2	0.525	2	0.168					4	0.693	0.4	1.1
Striped mullet			1	0*440			e	1.500	4	1.940	0.4	3.2
Total	196	11.842	477	12.761	87	9.736	337	26.406	1097	60.745		
Units of Effort	£	n	e	e	e	3	e	£	12	12		
Catch per Unit Effort	65.3	3.947	159.0	4.254	29.0	3.245	112.3	8.802	91.4	5.062		

Numbers and Weights of Fish Collected by Seine at Lakeport Towhead Secondary Channel

July 1984

			Nora?	darv								
	N		Chan	nel rei	Main C	hannel.	"	:	ł	1	Perc	ent
	NACUTA	L Bank Welcht	Sand	Dar Weicht	San	We toht		11ke Viataht	PI	und the	of T	otal
Species	Number	8	Number	6	Number	8	Number	8	Number		Number	Weight
Skipjack herring	2	0.3					2	1.1	4	1.4	0.6	0.3
Gizzard shad	4	5.5	19	37.0			1	2.1	24	44.6	3.7	10.5
Threadfin shad	11	5.7	2	0.6					13	6.3	2.0	1.5
Goldeye	4	10.8							4	10.8	0.6	2.5
Common carp	l	10.2							1	10.2	0.2	2.4
Mississippi silvery minnow	9	4.2	æ	5.2	I	0.9	13	10.8	28	21.1	4.3	5.0
Speckled chub	e	0.3					1	0.1	4	0.4	0.6	0.1
Silver chub	56	12.9	7	3.3			9	3.5	69	19.7	10.6	4.6
Emerald shiner	113	21.5	26	6.7	S	1.1	6	4.5	153	38.8	23.4	7.9
River shiner	2	5.2	14	34.4	4	9.2	10	21.6	30	70.4	4.6	16.6
Silverband shiner	80	9.4					7	4.8	10	14.2	1.5	3.3
Weed shiner	28	8.5							28	8.5	4.3	2.0
Blacktail shiner	e	2.5							£	2.5	0.5	0.6
Mimic shiner	109	27.1	1	0.1	2	0.4	39	27.6	151	55.2	23.1	13.0
Bullhead minnow	S	3.5							5	3.5	0.8	0.8

(Continued)

Table B9 (Concluded)

			Secon	dary							F	
	Natura	l Bank	Cnan Sand	bar	Sand	lbar	Ä	1ke	To	tal	verc of T	ent otal
Species	Number	Weight	Number	Weight	Number	Weight	Number	Weight	Number	Weight	Number	Wetcht
River carpsucker					1	34.2	1	10.7	2	44.9	0.3	10.6
Catostomidae	I	0.2							1	0.2	0.2	0.0
Blue catfish	6	14.4							6	14.4	1.4	3.4
Channel catfish	7	4.5	e	3.4			æ	10.0	18	17.9	2.8	4.2
Brook silverside					1	0.4			1	0.4	0.2	0.1
Inland silverside	19	5.2	15	6.0	33	15.7	4	1.2	71	28.1	10.9	6.6
White bass	3	8.4							e	8.4	0.5	2.0
Bluegill	2	0.4							2	0.4	0.3	0.1
Lepomis sp.	11	1.3							11	1.3	1.7	0.3
bluntnose darter	1	0.2							I	0.2	0.2	0.0
River darter	1	0.3	1	0.2					2	0.5	0.3	0.1
Freshwater drum	2	1.2	2	4.5			1	0.3	Ś	6.0	0.8	1.4
Total	411	163.7	98	101.4	47	61.9	97	98.3	653	425.3		
Units of Effort	5	2	5	5	ŝ	e	9	ę	19	19		
Catch per Unit Effort	82.2	32.74	19.6	20.28	15.7	20.63	16.2	16.38	34.4	22.38		

Table BlO

Xer.

Numbers and Weights of Fish Collected by Seine at Lakeport Towhead Secondary Channel

October 1984

				Secon	dary								
				Chan	nel	Main C	hanne l					Perc	ent
SpectasNumber weightBeight weightNumber weightWeight weightWumber weightWeight weightGtzzard shad748.2540.928.3316.517113.93.314.5Threadfin shad84186.93992.623.8312.51251251253.33.4Threadfin shad84186.93992.623.85.5113191.62.12.43.5Emerald shiner2842.1517.3334.8732.31712.03.31.5Silverband shiner40.463.645.732.31712.03.31.5Silverband shiner3811.020.510.3234.83.732.31.70.1Blacktafl shiner3811.020.510.341.6451.70.1Blacktafl shiner30.320.240.40.41.6451.70.1Blacktafl shiner3811.020.510.120.30.40.0Blacktafl shiner30.320.510.1222222Blacktafl shiner310.3210.1222222 </th <th></th> <th>Nacura</th> <th>L Bank</th> <th>Sand</th> <th>bar</th> <th>San</th> <th>dbar</th> <th></th> <th>1ke</th> <th>To</th> <th>tal</th> <th>of T</th> <th>otal</th>		Nacura	L Bank	Sand	bar	San	dbar		1ke	To	tal	of T	otal
Decretation Number of the condition of the conditi	ar frond a		weight	•	Weight	:	Weight		Weight	!	Weight		
Gizzard shad 7 48.2 5 40.9 2 8.3 3 16.5 17 113.9 3.3 14.5 Threadfin shad 84 186.9 39 92.6 2 3.8 12.5 13 191.6 21.7 24.0 36.2 Emerald shiner 28 42.1 51 75.7 6 11.3 28 62.5 113 191.6 21.7 24.0 36.2 River shiner 4 0.4 6 3.6 4 5.7 3 2.3 17 12.0 3.3 1.5 Silverband shiner 4 0.4 6 3.6 4 5.7 3 2.3 2.4 3.3 1.5 Silverband shiner 45 7.3 33 4.8 7 3 2.4 8.7 1.7 2.1 2.4 3.3 1.5 3.3 1.5 3.3 1.5 3.3 1.5 3.3 1.5 3.3 1.5 3.3 <th>series</th> <th>Number</th> <th>00</th> <th>Number</th> <th>~</th> <th>Number</th> <th>20</th> <th>Number</th> <th>60</th> <th>Number</th> <th>8</th> <th>Number</th> <th><u>Weight</u></th>	series	Number	00	Number	~	Number	20	Number	60	Number	8	Number	<u>Weight</u>
Threadfin shad84186.93992.623.812.5135283.324.036.3Emerald shiner2842.15175.7611.32862.5113191.621.724.5River shiner2842.15175.7611.32862.5113191.621.724.5Silverband shiner40.463.645.732.31.712.03.31.5Silverband shiner457.3334.8732.11.111923.222.93.0Silverband shiner3811.020.510.341.64513.48.71.7Silverband shiner30.320.540.4461.11102223.31.7Silverband shiner311.020.540.41111111Blacktail shiner30.320.240.410.122220.40.1Bluthead minow11.510.341.6421.70.122220.40.3Bluthead minow11.510.310.310.12222222222<	Gizzard shad	7	48.2	5	40.9	2	8.3	e	16.5	17	113.9	3.3	14.5
Emerald shiner2842.15175.7611.32862.5113191.621.724.5River shiner40.463.645.732.31712.03.31.5River shiner40.463.645.732.31712.03.31.5Silverband shiner457.3334.8734.811.111923.222.93.0Silverband shiner3811.020.510.34.81.11111923.223.91.7Blacktail shiner3811.020.510.341.64513.48.71.7Minic shiner3811.020.510.341.64513.48.71.7Blacktrife topminow11.510.120.30.40.0Brook silverside717.810.722.20.40.3Brook silverside11.71.623.71.430.66312.115.62.6Inland silverside117.812.43550.40.3Brook silverside12.11.71430.66312.713.115.6Inland silverside12338.1173287.021.733.524 <th< td=""><th>Threadfin shad</th><td>84</td><td>186.9</td><td>39</td><td>92.6</td><td>2</td><td>3.8</td><td></td><td>12.5</td><td>125</td><td>283.3</td><td>24.0</td><td>36.2</td></th<>	Threadfin shad	84	186.9	39	92.6	2	3.8		12.5	125	283.3	24.0	36.2
River shiner 4 0.4 6 3.6 4 5.7 3 2.3 17 12.0 3.3 1.5 Silverband shiner 45 7.3 33 4.8 5.7 3 2.3 17 12.0 3.3 1.5 Silverband shiner 45 7.3 33 4.8 7 11.1 119 23.2 22.9 3.0 Blacktail shiner 38 11.0 2 0.5 1 0.3 4 1.6 45 13.4 8.7 1.7 0.1 Blacktail shiner 39 10.3 2 0.2 4 0.4 0.4 0.6 0.1 7 0.1 Bullhead minow 1 0.2 1 0.7 2 0.3 0.4 0.0 Brook silverside 7 17.8 1 0.7 2 2.1 0.1 2 2.2 0.4 0.0 Brook silverside 1 1.5 3.6 2 3.7 14 30.6 63 12.1 15 2.6 1.5 2	Emerald shiner	28	42.1	51	75.7	9	11.3	28	62.5	113	191.6	21.7	24.5
Silverband ahiner 45 7.3 33 4.8 41 11.1 119 23.2 22.9 3.0 Blacktail shiner 38 11.0 2 0.5 1 0.3 4 1.6 45 13.4 8.7 1.7 0.1 Blacktail shiner 38 11.0 2 0.5 4 0.4 9 0.9 1.7 0.1 Winic shiner 3 0.3 2 0.2 4 0.4 9 0.9 1.7 0.1 Builhead minow 1 1.5 1 0.7 1 1.6 4 3.0 2 2.2 0.4 0.0 Blackstripe topminov 1 1.5 1 0.7 2 2.2 0.4 0.0 Brook silverside 7 17.8 1 2.4 3 65.6 2 3.7 14 30.6 63 12.1 15.1 15.6 Inland silverside 14 214 30.6 63 124.7 520 783.3 12.1 15.6 Inland s	River shiner	4	0.4	9	3.6	4	5.7	e	2.3	17	12.0	3.3	1.5
Blacktail shiner 38 11.0 2 0.5 1 0.3 4 1.6 45 13.4 8.7 1.7 Mimic shiner 3 0.3 2 0.2 4 0.4 9 0.9 1.7 0.1 Mimic shiner 3 0.3 2 0.2 4 0.4 9 0.9 1.7 0.1 Builhead minnow 1 0.2 1 0.7 1 1 0.1 2 0.3 0.4 0.0 Bluckstripe topminnow 1 1.5 1 0.7 2 2.2.2 0.4 0.0 Brook silverside 7 17.8 1 2.4 3 65.6 2 3.7 14 30.6 63 122.3 15.1 15.6 Inland silverside 14 22.4 33 65.6 2 3.7 14 30.6 63 122.3 12.1 15.6 2.6 Inland silverside 14 20.5 63 23 34.6 57 33.5 94 124.7 520	Silverband shiner	45	7.3	33	4.8			41	11.1	119	23.2	22.9	3.0
Mimic shiner 3 0.3 2 0.2 4 0.4 9 0.9 1.7 0.1 Bullhead minnow 1 0.2 1 0.7 1 2 0.3 0.4 0.0 Blackstripe topminnow 1 1.5 1 0.7 2 2.2 0.4 0.0 Blackstripe topminnow 1 1.5 1 0.7 2 2.22 0.4 0.0 Brook silverside 7 17.8 1 2.4 2 3.7 14 30.6 63 122.3 1.5 2.6 Inland silverside 14 22.4 33 65.6 2 3.7 14 30.6 63 122.3 12.1 15.6 Total 232 38.1 173 287.0 21 33.5 94 124.7 520 783.3 Total 5 5 3 3 5 5 18 18 18.6 15.6 Total 5 5 3 5 5 18 18.7 15.6	Blacktail shiner	38	11.0	7	0.5	1	0.3	4	1.6	45	13.4	8.7	1.7
Builhead minnow1 0.2 0.2 0.2 0.1 2 0.3 0.4 0.0 Blackstripe topminnow1 1.5 1 0.7 1 0.7 2 2.22 0.4 0.3 Brook silverside7 17.8 1 2.4 3 65.6 2 3.7 14 30.6 63 122.3 1.5 2.6 Inland silverside14 22.4 33 65.6 2 3.7 14 30.6 63 122.3 12.1 15.6 Total 232 338.1 173 287.0 21 33.5 94 124.7 520 783.3 Total 232 338.1 173 287.0 21 33.5 94 124.7 520 783.3 Total 5 5 3 3 3 5 5 18 8 20.5 78.3 Total 5 5 3 3 5 5 5 11.17 18.8 24.94 28.9 43.52	Mimic shiner	e	0.3	2	0.2	4	0.4			6	0.9	1.7	0.1
Blackstripe topminnow 1 1.5 1 0.7 2 2.2 0.4 0.3 Brook silverside 7 17.8 1 2.4 8 20.2 1.5 2.6 Brook silverside 7 17.8 1 2.4 8 20.2 1.5 2.6 Inland silverside 14 22.4 33 65.6 2 3.7 14 30.6 63 12.1 15.6 Total 232 338.1 173 287.0 21 33.5 94 124.7 520 783.3 Total 232 338.1 173 287.0 21 33.5 94 124.7 520 783.3 Units of Effort 5 5 3 3 5 5 18 18 Catch per Unit Effort 46.4 67.62 34.6 57.4 7.0 11.17 18.8 24.94 28.9 43.52	Bullhead minnow	I	0.2						0.1	7	0.3	0.4	0.0
Brook silverside 7 17.8 1 2.4 8 20.2 1.5 2.6 Inland silverside 14 22.4 33 65.6 2 3.7 14 30.6 63 12.1 15.6 Total 232 338.1 173 287.0 21 33.5 94 124.7 520 783.3 Total 232 338.1 173 287.0 21 33.5 94 124.7 520 783.3 Units of Effort 5 5 3 3 5 5 18 18 Catch per Unit Effort 46.4 67.62 34.6 57.4 7.0 11.17 18.8 24.94 28.9 43.52	Blackstripe topminnow	1	1.5	1	0.7					2	2.2	0.4	0.3
Inland sllverside 14 22.4 33 65.6 2 3.7 14 30.6 63 122.3 12.1 15.6 Total Total 232 338.1 173 287.0 21 33.5 94 124.7 520 783.3 Units of Effort 5 5 5 3 3 5 5 18 18 Catch per Unit Effort 46.4 67.62 34.6 57.4 7.0 11.17 18.8 24.94 28.9 43.52	Brook silverside	7	17.8	1	2.4					80	20.2	1.5	2.6
Total 232 338.1 173 287.0 21 33.5 94 124.7 520 783.3 Units of Effort 5 5 5 5 3 3 5 5 783.3 Catch per Unit Effort 46.4 67.62 34.6 57.4 7.0 11.17 18.8 24.94 28.9 43.52	Inland silverside	14	22.4	33	65.6	2	3.7	14	30.6	63	122.3	12.1	15.6
Units of Effort 5 5 5 5 3 3 3 5 5 5 18 18 18 Catch per Unit Effort 46.4 67.62 34.6 57.4 7.0 11.17 18.8 24.94 28.9 43.52	Total	232	338.1	173	287.0	21	33.5	94	124.7	520	783.3		
Catch per Unit Effort 46.4 67.62 34.6 57.4 7.0 11.17 18.8 24.94 28.9 43.52	Units of Effort	5	5	ŝ	5	e	e	S	2	18	18		
	Catch per Unit Effort	46.4	67.62	34.6	57.4	7.0	11.17	18.8	24.94	28.9	43.52		

	Number of Fish	Mean Target Strength
Transects	<u>per 100 m³</u>	db
C01	2.1	-44.9
C01-C04	0.8	-44.4
<u>C</u> 04	0.6	-38.3
x of C	1.2	-42.5
D01	4.9	-48.6
D01-D04	*	*
<u>D</u> O4	2.2	-50.8
x of D	3.6	-49.7
EO1	6.3	-48.8
E01-E04	1.1	-49.2
E04	0.5	-52.0
x of E	2.6	-50.0
FO1	9.7	-48.5
F01-F04	1.1	-40.2
F04	0.9	-47.4
x of F	3.9	-45.7
G01	15.2	-48.8
G01-G04	1.1	-46.2
<u>G</u> O4	2.1	-51.4
x of G	6.1	-48.8
Microhabitat		
Natural bank	6.3	-48.2
Secondary channel	1.4	-48.4
sandbar Channel	1.0	-43.3
Mean	3.5	-47.1

Table Bll

Numbers and Target Strengths of Fish Detected with Hydroacoustics from Transects and Microhabitats at Lakeport Towhead

Insufficient data.

*

3354

· (223-323

Numbers and Weights of Fish Collected by Electroshocker at Cottonwood Bar Secondary Channel July 1984

			Secon Chan	dary nel	Main C	hannel					Perce	Ť
	Natura	l Bank	Sand	bar	San	dbar	Q	<u>t</u> ke	Tot	tal	of Tc	tal
Canadian	- cy-in	Weight	Nhor	We1ght	Number	Weight	Nhor	Weight	Number	Weight Lo	N	Lo de be
Shortnose gar	1	0.780		4		92	Taginhu	94	I	0.780	1.2	4.2
Skipjack herring			1	0.073	I	0.129			2	0.202	2.4	1.1
Goldeye	1	0.004							1	0.004	1.2	0.0
Common carp	1	1.455					2	4.858	ę	6.313	3.5	34.3
River carpsucker			I	0.397			2	0.485	e.	0.882	3.5	4.8
Smallmouth buffalo			I	0.137			1	0.308	2	0.445	2.4	2.4
Blue catfish	11	0.187	8	0.193	6	0.300	7	0.250	35	0.930	41.2	5.1
Channel catfish	2	0.013	2	0.028	e	0.023	1	0.021	80	0.085	9.4	0.5
Flathead catfish	7	3.639			4	1.644	10	1.272	21	6.555	24.7	35.6
White bass			T	0.222	1	0.122			2	0.344	2.4	1.9
Sauger			2	0.232					2	0.232	2.4	1.3
Freshwater drum			1	0.142			n	1.273	4	1.415	4.7	7.7
Striped mullet							1	0.217	1	0.217	1.2	1.2
Total	23	6.078	17	1.424	18	2.218	27	8.684	85	18.404		
Units of Effort	£	°	e	e	e	3	ñ	e	12	12		
Catch ner Unit Effort	L L	2.026	5 7	0 475	6 0	0 7 3 0	0	7 895	1 1	1 534		

Numbers and Weights of Fish Collected by Electroshocker at Cottonwood Bar Secondary Channel

October 1984

				Secon Chan	idary nel	Main C	hanne l					Perce	int
Species weight Rumber weight R weight Rumber weight R weight Rumber weight R weight Rumber weight R weight Rumber weight R weight R <		Natura	l Bank	Sand	bar	San	dbar	D	1ke	To	tal	of Tc	tal
Longnose gar 1 2.387 1 2.387 0.6 5.5 Skipjack herring 1 0.018 1 0.108 1 0.018 1 0.0508 9.6 1.2 Citzzard shad 17 1.172 26 2.255 12 1.283 10 0.497 65 5.207 36.5 11.9 Threadfin shad 1 0.018 1 0.108 1 0.108 30 0.508 9.6 1.2 Citzzard shad 1 0.025 2 2.255 12 1.283 10 0.497 65 5.207 36.5 11.9 Coldeye 1 0.025 2 2.299 1.2 0.01 10 6.9 0.0 Moneye 1 1.424 1 1.424 1 1.566 2.299 1.1 0.1 6.9 0.0 Stitve chub 5 5.915 2 2.299 1.1 0.1 0.0 0.0	Species	Number	Weight kg	Number	Weight kg	Number	We1ght kg	Number	Weight kg	Number	Weight kg	Number	Weight
Skipjack herring 1 0.018 1 0.108 1 0.108 1 0.108 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.1 Threadfin shad 1 0.044 1 1.112 26 2.255 12 1.283 10 0.497 65 5.207 36.5 11.9 Threadfin shad 1 0.044 1 0.044 1 0.044 0.6 0.1 Coldeye 1 0.044 1 1.125 1 1.264 1 0.044 0.6 0.1 Moneye 1 0.025 2 0.038 1 1.96 0.1	Longnose gar					1	2.387			1	2.387	0.6	5.5
Citzard bid 17 1.172 26 2.255 12 1.283 10 0.497 65 5.207 36.5 11 Threadfin shad 1 0.044 0 0.508 30 0.508 16.9 1.2 Goldeye 1 0.044 7 7 7 7 7 7 7 7 1 1 Goldeye 1 0.044 7 7 7 7 7 9 12 9 12 Goldeye 1 0.045 1 1.424 1 1.424 1 0.044 0.6 0 0 1 1 9 9 3 </td <td>Skipjack herring</td> <td>l</td> <td>0.018</td> <td>1</td> <td>0.108</td> <td></td> <td></td> <td>15</td> <td>0.382</td> <td>17</td> <td>0.508</td> <td>9.6</td> <td>1.2</td>	Skipjack herring	l	0.018	1	0.108			15	0.382	17	0.508	9.6	1.2
Threadfin shad 30 0.508 30 0.508 16.9 1.2 Goldeye 1 0.044 0.6 0.5 0.508 10 0.5 10 0.5 10 <t< td=""><td>Gizzard shad</td><td>17</td><td>1.172</td><td>26</td><td>2,255</td><td>12</td><td>1.283</td><td>10</td><td>0.497</td><td>65</td><td>5.207</td><td>36.5</td><td>11.9</td></t<>	Gizzard shad	17	1.172	26	2,255	12	1.283	10	0.497	65	5.207	36.5	11.9
Goldeye 1 0.044 0.04 0.04 0.04 0.6 0.1 Moneye 1 0.025 1 0.025 1 0.025 0.6 0.1 Moneye 1 1.424 1 1.424 1 0.025 0.6 0.1 Moneye 2 0.038 1 0.044 0.6 0.1 Silverbub 2 0.038 1 1.424 1 1.566 2 2.990 1.1 6.9 Silverbub 2 0.038 1 0.014 1.667 2 2.990 1.1 6.9 Silverbub 1 1.667 2 2.901 0.61 0.6 Bue sucker 3 5.935 2 2.299 1.1 0.014 0.6 0.1 Bue sucker 3 5.935 1.786 1.1 0.014 0.6 0.1 Bue sucker 1 1.1647	Threadfin shad							30	0.508	30	0.508	16.9	1.2
Moneye 1 0.025 0.02 0.025 0.6 0.1 Common carp 1 1.424 1 1.456 2 2.990 1.1 6.9 Silver chub 2 0.038 2 0.038 2 0.038 1.1 0.014 0.6 0.1 Silver chub 3 5.935 2 7.299 1 0.014 0.6 0.1 Silverband shiner 3 5.935 2 7.299 1 0.014 0.6 0.1 Silverband shiner 3 5.935 2 7.299 1 0.014 0.6 0.1 Silverband shiner 3 5.935 2 7.299 1 0.014 0.6 0.1 Silverband shiner 3 5.935 1 1.067 6 0.24 1.1 0.14 0.6 0.1 Silverband shiner 3 0.127 1 1.484 1	Goldeye	l	0.044							1	0.044	0.6	0.1
Common carp 1 1.424 1 1.566 2 2.990 1.1 6.9 S11ver chub 2 0.038 1 0.014 2 0.038 1.1 0.1 S11ver band shtner 3 5.935 2 7.299 1 0.014 0.6 0.0 S11verband shtner 3 5.935 2 7.299 1 0.014 0.6 0.0 B1ue sucker 3 5.935 2 7.299 1 0.067 5 13.234 2.8 30.3 Smallmouth buffalo 1 1.786 1 0.667 5 4.309 1.7 9.9 Smallmouth buffalo 1 1.047 1 0.667 5 4.309 1.7 9.9 Smallmouth buffalo 1 1.047 1 1.047 1 1.4 4.4 Smallmouth buffalo 1 1.048 1 0.067 6 0.4 4.4 Small catfish 1	Mooneye	Γ	0.025							1	0.025	0.6	0.1
Silver chub20.03820.0381.10.1Silverband shiner10.0140.60.60.0Blue sucker35.93527.29910.0140.60.6Blue sucker35.93527.2997513.2.42.830.3Smallmouth buffalo11.85611.78610.667513.2.42.830.3Smallmouth buffalo11.85611.78610.667511.0470.62.4Blue catfish30.12711.48410.06760.247111.9256.24.4Channel catfish10.02811.48410.06760.685286.24.4Flathead catfish10.02810.28442.536100.685286.24.4White base10.20810.20810.20815.714.6Sugert10.30210.30210.577111.3	Common carp					1	1.424	1	1.566	2	2.990	1.1	6.9
Silverband shlner1 0.014 0.6 0.0 0.014 0.6 0.0 Blue sucker35.93527.299513.2342.830.3Smallmouth buffalo11.85611.7861 0.667 513.2342.830.3Smallmouth buffalo11.85611.7861 0.667 54.3091.79.9Shewouth buffalo11.85611.7481 0.667 54.3091.79.9Blue catfish30.12711.4841 0.067 6 0.247 11 1.925 6.24.4Shanel catfish10.02810.28442.53610 0.683 280.60.1Flathead catfish132.8741 0.284 42.53610 0.683 28 0.6 0.1White bass1 0.208 1 0.302 1 0.302 1 0.275 1.1 1.014 Suger1 0.208 1 0.203 1 0.275 1.0114 1.014 1.014	Silver chub					2	0.038			2	0.038	1.1	0.1
Blue sucker 3 5.935 2 7.299 5 13.2.34 2.8 30.3 Smallmouth buffalo 1 1.856 1 1.786 1 0.667 3 4.309 1.7 9.9 Bigmouth buffalo 1 1.047 0.667 5 0.247 11 1.047 0.6 2.4 Blue catfish 3 0.127 1 1.484 1 0.067 6 0.247 11 1.925 6.2 4.4 Channel catfish 1 0.028 1 0.284 4 2.536 10 0.6 2.4 Flathead catfish 13 2.874 1 1.925 6.2 4.4 Flathead catfish 13 2.874 1 0.0685 28 6.3 4.45 White bass 1 0.208 10 0.685 2.4 4.4 Subscr 1 0.208 1 0.616 7 4.453 14.6 Whit	Silverband shiner					l	0.014			1	0.014	0.6	0.0
Smallmouth buffalo11.85611.78610.66734.3091.79.9Bigmouth buffalo111.047011.0470.62.4Biue catfish30.12711.48410.06760.247111.9256.24.4Channel catfish10.02811.48410.05842.54.4Flathead catfish10.02810.28442.536100.685280.60.1White bass10.20810.30210.30210.30210.3771.11.3Sauger10.20810.30210.30210.3751.11.11.3	Blue sucker	£	5.935	2	7.299					Ś	13.234	2.8	30.3
Bigmouth buffalo11.047 0.6 2.4 Blue catfish3 0.127 1 1.484 1 0.067 6 0.247 11 1.925 6.2 4.4 Blue catfish1 0.028 1 1.484 1 0.067 6 0.247 11 1.925 6.2 4.4 Channel catfish1 0.028 1 0.284 4 2.536 10 0.685 28 6.379 15.7 14.6 Flathead catfish13 2.874 1 0.284 4 2.536 10 0.685 28 6.379 15.7 14.6 White bass1 0.208 1 0.208 1 0.205 7 4.423 3.9 10.1 Sauger1 0.302 1 0.302 1 0.275 2 0.577 1.1 1.3	Smallmouth buffalo	I	1.856	Ţ	1.786	1	0.667			ę	4.309	1.7	6.9
Blue catfish 3 0.127 1 1.484 1 0.067 6 0.247 11 1.925 6.2 4.4 Channel catfish 1 0.028 1 0.028 1 0.028 0.6 0.1 Flathead catfish 13 2.874 1 0.284 4 2.536 10 0.685 28 6.379 15.7 14.6 White bass 1 0.208 1 0.2685 28 6.379 15.7 14.6 Sauger 1 0.208 1 0.2685 7 4.423 3.9 10.1	Bigmouth buffalo			1	1.047					1	1.047	0.6	2.4
Channel catfish 1 0.028 0.6 0.1 Flathead catfish 13 2.874 1 0.284 4 2.536 10 0.685 28 6.379 15.7 14.6 White bass 1 0.208 1 0.208 1 4.423 3.9 10.1 Sauger 1 0.302 1 0.275 2 0.577 1.1 1.3	Blue catfish	٣	0.127	1	1.484	1	0.067	9	0.247	11	1.925	6.2	4.4
Flathead catfish 13 2.874 1 0.284 4 2.536 10 0.685 28 6.379 15.7 14.6 White bass 1 0.208 6 4.215 7 4.423 3.9 10.1 Sauger 1 0.302 1 0.275 2 0.577 1.1 1.3	Channel catfish	1	0.028							1	0. 028	0.6	0.1
White bass 1 0.208 6 4.215 7 4.423 3.9 10.1 Sauger 1 0.302 1 0.275 2 0.577 1.1 1.3	Flathead catfish	13	2.874	1	0.284	4	2.536	10	0.685	28	6.379	15.7	14.6
Sauger 1 0.302 1 0.275 2 0.577 1.1 1.3	White bass	1	0.208					Q	4.215	7	4.423	3.9	10.1
	Sauger			1	0.302	l	0.275			2	0.577	1.1	1.3

			Secon	dary								
			Chan	nel	Main Cl	anne l					Perce	nt
	Natural	Bank	Sand	bar	Sanc	lbar	Ä	íke	Tot	cal .	of To	tal
		Weight		Weight		Weight		Weight		Weight		
Species	Number	kg B	Number	к <mark>8</mark>	Number	kg	Number	kg	Number	kg B	Number	Weight
Total	42	12.287	34	14.565	24	8.691	78	8.100	178	43.643		
Units of Effort	e	3	3	e	e	e	2	2	11	11		
Catch per Unit Effort	14.0	4.096	11.3	4.855	8.0	2.897	39.0	4.050	16.2	3.968		

Table B13 (Concluded)

č

Ø

B19

Numbers and Weights of Fish Collected by Seine at Cottonwood Bar Secondary Channel

July 1984

Species			Chan	uaiy nel	Main Cl	hanne 1					Perc	ent
Species	Natura]	l Bank	Sand	bar	San	dbar	D	1ke	To	tal	of T	otal
	Number	Weight B	Number	Weight 8	Number	We1ght B	Number	Weight g	Number	Weight g	Number	Weight
Gizzard shad	I	2.2	28	54.4			I	0.8	30	57.4	12.2	17.5
Threadfin shad	2	1.0	9	0.7					8	1.7	3.3	0.5
Silver chub	1	0.2	2	1.0					£	1.2	1.2	0.4
Emerald shiner	4	1.3	67	27.5	12	4.7	20	6.8	133	40.3	54.1	12.3
River shiner			1	0.1	2	5.0			e	5.1	1.2	1.6
Silverband shiner	'n	4.8							ę	4.8	1.2	1.8
Weed shiner			4	1.5					4	1.5	1.6	0.5
Blacktail shiner	I	2.1					I	3.1	2	5.2	0.8	1.6
Mimic shiner	1	0.8					1	0.1	2	0.9	0.8	0.3
Channel catfish			I	6*0					1	6.0	0.4	0.3
Mosquito fish			1	0.1					-	0.1	0.4	0.0
Brook silverside			1	0.6			2	1.2	£	1.8	1.2	0.5
Inland silverside	£	1.2	40	23.8	e	2.7	4	1.9	50	29.6	20.3	0.0
White bass					2	177.3			2	177.3	0.8	54.1
Lepomis sp.					1	0.1			T	0.1	0.4	0.0
Total	16	13.6	181	110.6	20	189.8	29	13.9	246	327.9		
Units of Effort	ſ	2	2	2	e	e	2	2	12	12		
Catch per Unit Effort	8 . 0	6.80	36.2	22.12	6.7	63.27	14.5	6.95	20.5	27.33		

Numbers and Weights of Fish Collected by Seine at Cottonwood Bar Secondary Channel

October 1984

			Chan	nel	Main Cl	hanne l					Perc	ent
	Natura	l Bank	Sand	bar	San	dbar	ρ	ike	To	tal	of T	otal
VDec1e8	Nimher	Weight	Number	Weight °	Number	Weight	Nimbor	Weight	N1	Weight		
		4	TOOMINA	٩		20	MUNUT	20	Inumber	•••	NUMDer	weight
Gizzard shad	2	47.4	7	61.0			9	34.5	18	142.9	13.5	52.7
Mississippi silvery minnow			ب	15.8					۳	15.8	2.3	5.8
Silver chub	-	3.0							1	3.0	0.8	1.1
Emerald shiner	23	30.4	5	9.5	e	6.0	2	3.0	33	48.9	24.8	18.0
River shiner			Ŷ	6.7			80	1.4	14	8.1	10.5	3.0
Silverband shiner	11	2.8	٢	1.9	9	1.4	4	0.4	28	6.5	21.1	2.4
Weed shiner							1	0.9	1	0.9	0.8	0.3
Blacktail shiner	2	0.3	Ś	2.5					7	2.8	5.3	1.0
Mimic shiner			1	0.2					1	0.2	0.8	0.1
Bullhead minnow	1	0.2	1	0.1			ŝ	0.5	7	0.8	5.3	0.3
Brook silverside							2	4.1	2	4.1	1.5	1.5
Inland silverside	Q	12.2	10	20.5	2	4.6			18	37.3	13.5	13.7
Total	49	96.3	45	118.2	11	12.0	28	44.8	133	271.3		
Units of Effort	e	e	2	2	£	ę	2	2	13	13		
Catch per Unit Effort	16.3	32.10	0.0	23.64	3.7	4.00	14.0	22.40	12.3	20.87		

	Number of Fish	Mean Target Strength
Transects	per 100 m ³	db
C01	5.0	-47.2
C01-C04	1.3	-50.8
<u>C</u> O4	2.3	-56.4
x of C	2.9	-51.5
DO1	3.4	-47.3
D01-D04	1.0	-50.8
D04	2.8	-40.9
x of D	2.4	-46.3
E01	4.3	-48.7
EO1-EO4	1.5	-51.7
EO4	3.3	-54.0
x of E	3.0	-51.5
F01	6.9	-46.9
F01-F04	0.5	-52.6
F04	3.0	-50.4
x of F	3.5	-50.0
G01	14.7	-45.7
G01-G04	0.9	-54.6
G04	0.6	-52.0
x of G	5.4	-50.8
Microhabitat		
Natural bank	5.3	-47.0
Secondary channel sandbar	1.7	-51.3
Channel	1.0	-52.6
Mean	3.4	-50.0

Numbers and 1	Carget Str	engths of	Fish Det	ected with	h Hydroacoustics
from	Transects	and Micr	ohabitats	at Cotto	wood Bar

· States

л

k X UK

Ű,

1 - A - A

i,

10000000

Ě

Numbers and Weights of Fish Collected by Electroshocker at Profit Island Secondary Channel

July 1984

			Secor	idary						
			Char	nel	Main Ch	annel			Perc	ent
	Natural	Bank	Sanc	lbar	Sand	bar	Tot	al	of T	otal
		Weight		Weight		Weight		Weight		
Species	Number	х <mark>8</mark>	Number	к В	Number	K8	Number	к 8	Number	Weight
Skipjack herring	2	0.116	1	0.061	1	0.068	4	0.245	1.3	0.7
Gizzard shad			2	0.671	1	0.011	'n	0.082	1.0	0.2
Threadfin shad	2	0.030					2	0.030	0.6	0.1
Silver chub	1	0.013					1	0.013	0.3	0.0
Smallmouth buffalo	1	0.418					1	0.418	0.3	1.1
Blue catfish	92	4.972	44	1.482	91	3.013	227	9.467	72.3	25.4
Channel catfish	1	0.006	2	0.056			e.	0.062	1.0	0.2
Flathead catfish	28	15.170	27	7.495	12	3.265	67	25.930	21.3	69.4
White bass	ę	0.568			1	0.274	4	0.842	1.3	2.3
Striped mullet	I	0.144	1	0.108			2	0.252	0.6	0.7
Total	131	21.437	11	9.273	106	6.631	314	37.341		
Units of Effort	£	ŝ	e	e	e	e	6	6		
Catch per Unit Effort	43.7	7.145	25.7	3.091	35.3	2.210	34.9	4.149		

Ū,

86

Numbers and Weights of Fish Collected by Seine at Profit Island Secondary Channel

July 1984

			Secon	dary	Mater Ct	lound			Doug	
	Natural	Bank	Sand	lbar	Sand	lanne. Ibar	Tot	.al	of T	enc otal
Species	Number	Weight 8	Number	Weight g	Number	Weight 8	Number	Veight 8	Number	Weight
Gizzard shad	4	12.1					4	12.1	3.5	7.5
Threadfin shad	2	0.6	I	0.1			з	0.7	2.6	0.4
Goldeye	1	5.1	I	5.1			2	10.2	1.7	6.4
Silver chub			4	1.5			4	1.5	3.5	0.9
Emerald shiner			10	3.9			10	3.9	8.7	2.4
River shiner	2	4.0	10	18.8	٣	8.0	15	30.8	13.0	19.2
Silverband shiner			2	4.5	2	3.7	4	8.2	3.5	5.1
Blacktail shiner	1	20.6	Ø	13.7			6	34.3	7.8	21.4
Mimic shiner			10	4.9			10	4.9	8.7	3.1
Bullhead minnow	1	0.2	7	0.4			£	0.6	2.6	0.4
			,				,			
Blue catfish			2	4.9			2	4.9	1.7	3.1
Blackstripe topminnow	1	0.8	I	0.7			2	1.5	1.7	0.9
Mosquitofish	4	1.4					4	1.4	3.5	0.9
Brook silverside			2	1.4			2	1.4	1.7	0.9
Inland silverside	20	7.2	14	9.1	S	2.1	39	18.4	33.9	11.5
				¢ L					0	
Longear sunfish			-	25.0			4	25.0	6°0	0°C1
White crappie	1	0.7					1	0.7	0.9	0.4

(Continued)

(p
abr
1c Ju
Co Co
8
81
le
ab

ж

			Secon	dary						
			Chan	nel	Main Ch	nannel			Perc	ent
	Natura]	Bank	Sand	bar	Sand	lbar	Tot	al	of T	otal
		Weight		Weight		Weight		Weight		
Species	Number	8	Number	8	Number	~	Number	50	Number	Weight
Total	37	52.7	68	94.0	10	13.8	115	160.5		
Units of Effort	5	2	ŝ	S	e	e	13	13		
Catch per Unit Effort	7.4	10.54	13.6	18.8	3.3	4.60	8.9	12.34		

	Number of Fish	Mean Target Strength
Transects	per 100 m ³	db
C01	1.6	-45.8
C01-C04	2.0	-51.9
<u>C</u> 04	0.8	-47.7
x of C	1.5	-48.5
DO1	0.8	-50.8
D01-D04	*	-51.0
D04	0.9	-52.1
x of D	0.9	-51.3
EO1	8.5	-46.9
EO1-EO4	1.7	-51.4
E04	2.2	-51.6
x of E	4.1	-50.0
F01	3.4	-45.8
F01-F04	0.2	-53.9
F04	1.7	-49.5
x of F	1.8	-49.7
G01	3.4	-47.3
G01-G04	1.3	-49.7
<u>G</u> 04	1.7	-48.8
x of G	2.1	-48.6
Microhabitat		
Natural bank	3.8	-47.1
Secondary channel	1.6	-50.2
Channel	0.6	-51.4
Mean	2.2	-49.6

Numbers and Target Strengths of Fish Detected with Hydroacoustics from Transects and Microhabitats at Profit Island

* Insufficient data.

APPENDIX C: MACROINVERTEBRATE DATA COLLECTED FROM FIVE LOWER MISSISSIPPI RIVER SECONDARY CHANNELS, JULY AND OCTOBER 1984

Table Cl	
----------	--

Macroinvertebrates Collected i	in Bottom	Samples	from Wolf	Island
--------------------------------	-----------	---------	-----------	--------

Secondary	Channel,	Lower	Mississippi	River,	July	1984*

Taxon	July	-
Diptera		
Culicidae		
Chaoborus punctipennis	1	
Chironomidae		
Chironomidae pupae	4	
Chernovskija orbicus	52	
Chironomus sp.	1	
Cryptochironomus sp.	6	
Dicrotendipes sp.	1	
Harnisha curtilamellata	1	
Paratendipes nr connectens	1	
Polypedilum convictum	16	
Polypedilum halterale	2	
Polypedilum illinoense	2	
Robackia claviger	146	
Pelecypoda		
Corbicula fluminea	13	
Ephemeroptera		
Baetidae		
Baetis sp.	2	
Caenidae		
Caenis sp.	3	
Heptageniidae		
Heptagenia sp.	1	
Stenonema sp.	2	
Stenonema integrum	1	
Trichoptera		
Trichoptera pupae	5	
Hydropsychidae		
Hydropsychidae early instars	30	
<u>Hydropsyche</u> orris	46	
Potamyia flava	148	
Hydroptilidae		
<u>Neotrichia</u> sp.	1	
Microturbellaria	21	
Turbellaria		
Tricladida		
Dugesia tigrina	1	
Nematoda	2	
Annelida		
Enchytraeldae		
Barbidrilus paucisetus	11	

2

(Continued)

Table Cl (Concluded)

Taxon	
Tubificidae	
Aulodrilus limnobius	1
Aulodrilus pigueti	5
Branchiura sowerbyi	1
Ilyodrilus templetoni	1
Limnodrilus cervix	20
Limnodrilus claparedeianus	6
Limnodrilus hoffmeisteri	27
Limnodrilus maumeensis	35
Limnodrilus psammophilus	1
Limnodrilus udekemianus	4
Tubificidae (nc)**	262

1999-1991 • 1997-1992 • 1996 • 1996 • 1996 • 1996 • 1996 • 1996 • 1996 • 1996 • 1996 • 1996 • 1996 • 1996 • 19

numbers are total counts of each taxon taken in all grab samples combined.
 ** nc refers to immature tubificids of species lacking capilliform chaetae.

Tab	le	C2
-----	----	----

Secondary Channel, Lowe	≥r Mississippi River, July 1984*	
Taxon	July	
	<u></u> /	
Corotanogonidao		
	1	
Cultadaa	1	
Chapborne pupetinonnie	1	
Chironomidae	1	
Chernovskija orbicus	0/	
Cryptochiropomus sp	2	
<u>Clyptotendines</u> sp.	1	
Polypedilum pr connectens	2	
Polypedilum ni convictum	5	
Polypedilum balterale	2	
Polypedilum illinoense	J 1	
Robackia claviger	1	
Palacypoda	1	
Corbicula fluminea	1	
Fohemerontera	I	
Caenidae	3	
Enhemeridae	5	
Pentagenia sp.	2	
Hentageniidae	1	
Polymitarcyidae	*	
Tortopus incertus	30	
Trichoptera	50	
Ivdropsychidae		
Hydropsychidae early instars	40	
Hydropsyche orris	50	
Potamvia flava	121	
Microturbellaria	94	
Turbellaria		
Tricladida		
Dugesia tigrina	1	
Nematoda	26	
Annelida		
Enchytraeidae		
Barbidrilus paucisetus	22	
Tubificidae		
Aulodrilus pigueti	1	
Tubificidae (nc)**	3	

Macroinvertebrates Collected in Bottom Samples from Island 8

* numbers are total counts of each taxon taken in all grab samples combined.
 ** nc refers to immature tubificids of species lacking capilliform chaetae.

) I

Table	С3
-------	----

Macroinvertebrates Collected in Bottom Samples from Lakeport Towhead Secondary Channel, Lower Mississippi River, July and October 1984*

Taxon	July	October
Diptera		
Ceratapogonidae		
Bezzia sp.		5
Culicidae		
Chaoborus punctipennis	19	3
Chironomidae		
Chironomidae pupae	1	7
Alabesmyia annulata		15
Coelotanypus scapularis		29
Tanypus stellatus		3
Chernovskiia orbicus	52	
Chironomus plumosus gr		211
Glyptotendipes sp.	1	1
Paratendipes nr connectens	4	
Polypedilum convictum	1	
Polypedilum nr scalaenum	3	2
Procladius sp.		6
Robackia claviger	20	
Amphipoda		
Gammaridae		
Gammarus sp.	1	
Pelecypoda		
<u>Corbicula fluminea</u>	4	145
Ephemeroptera		
Ephemeridae		
<u>Hexagenia</u> sp.	8	112
<u>Pentagenia</u> sp.	4	
Polymitarcyidae		
Tortopus incertus	9	
Odonata	1	
Anisoptera		
Gomphidae	2	
<u>Neurocordulia</u> molesta	1	
<u>Stylurus</u> sp.		1
Trichoptera		
Hydropsychidae		
Hydropsyche orris	9	
Potamyia flava	5	
Microturbellaria	2	
Nematoda		1
Annelida		
Naidiae		
<u>Dero</u> <u>digitata</u>		30
Nais pardalis	1	

(Continued)

Taxon	July	October
Tubificidae		
Aulodrilus limnobius		1
Aulodrilus pigueti		3
Aulodrilus pluriseta	1	
Branchiura sowerbyi		7
Limnodrilus cervix	1	1
Limnodrilus hoffmeisteri	1	
Limnodrilus maumeensis		3
Limnodrilus udekemianus		1
Tubificidae (c)**		1
Tubificidae (nc)**	5	33
Hydracarina		1
Coleoptera		
Stenelmis sp.	1	
Lepidoptera		1

Table C3 (Concluded)

 * numbers are total counts of each taxon taken in all grab samples combined.
 ** c refers to immature tubificids of species possessing capilliform chaetae; nc refers to immature tubificids of species lacking capilliform chaetae.

Table (C4
---------	----

Macroinvertebrates Collected in Bottom Samples from Cottonwood Bar Secondary Channel Lower Missiscippi River July and October 1984*

S	lecondar	ry C	hannel	, Lower	Mississ	ippi	River,	Jul	y and	October	1984

Taxon	July	October
Diptera		
Culicidae		
Chaoborus punctipennis	1	
Chironomidae		
Chironomidae pupae	1	3
Axarus sp.		36
Ablabesmyia annulata		1
Chernovskiia orbicus	24	11
Chironomus sp. 2		4
(with blood gills)		
Cryptochironomus sp.		9
Harnisha sp.	2	
Polypedilum convictum	1	12
Polypedilum halterale		1
Polypedilum illinoense	1	1
Rheotanytarsus sp.		3
Robackia claviger	14	19
Amphipoda		
Gammaridae		
Gammarus sp.	1	
Pelecypoda	1	16
<u>Corbicula</u> <u>fluminea</u>	4	5
Ephemeroptera		
Ephemeridae		
Hexagenia sp.	1	16
Pentagenia sp.	1	5
Heptageniidae	1	2
Polymitarcyidae		
Tortopus incertus	19	
Trichoptera	1	
Hydropsychidae		100
Hydropsychidae early instars	-	138
Hydropsyche orris	5	3
Potamyia flava	1	299
Microturbellaria	23	442
		10
Annelida Tulification		
lubilicidae	,	
branchiura sowerby1	1	
Limnodrilus cervix	.' O	
Limodrilus maumeensis	8	
Limnodriius udekemianus	Z	

(Continued)

Taxon	July	October
Tubificidae (c)**	1	
Tubificidae (nc)**	28	2
Coleoptera	1	

 * numbers are total counts of each taxon taken in all grab samples combined.
 ** c refers to immature tubificids of species possessing capilliform chaetae; nc refers to immature tubificids of species lacking capilliform chaetae.

Taxon	July	
Culicidae		
Chaoborus punctipennis	3	
Chironomidae	5	
Chernovskija orbicus	35	
Cryptochiropomus sp	1	
Paratendines pr connectens	11	
Polypedilum convictum	1	
Polypedilum balterale	Ĺ	
Robackia claviger	14	
Pelecypoda	T T	
Corbicula fluminea	7	
Ephemeroptera	,	
Enhemeridae		
Pentagenia sp.	11	
Polymitarcvidae	**	
Tortopus incertus	29	
Trichoptera		
Hydropsychidae		
Hydropsychidae early instars	1	
Hydropsyche orris	1	
Potamvia flava	1	
Microturbellaria	2	
Nematoda	9	
Annelida	-	
Enchytraeidae		
Barbidrilus paucisetus	2	
Tubificidae		
Limnodrilus cervix	1	
Limnodrilus maumeensis	1	
Tubificidae (nc)**	20	

Macroinvertebrates Collected in Bottom Samples from Profit Island Secondary Channel, Lower Mississippi River, July 1984*

Table C5

numbers are total counts of each taxon taken in all grab samples combined.
 nc refers to immature tubificids of species lacking capilliform chaetae.

Table C6

Percent Composition of Macroinvertebrates Collected from Refuge

Dike at Lakeport Towhead Secondary Channel in the

Lower	Mississi	ppi	River,	July	1984

Тахор	Upstream	Downstream	Total
		<u>race</u>	IULAI
Trichoptera	TA (<i>(</i> 0 0	
Hydropsyche orris	/3.6	63.9	/2.3
Potamyla flava	6.2	13.4	7.1
Hydropsychidae, Instars I & II	11.0	11.0	11.0
Hydropsychidae pupae	2.7	3.7	2.8
Neotrichia sp.	<0.1	0.2	<0.1
Neureclipsis crepuscularis	<0.1		<0.1
Ephemeroptera			
Stenonema integrum	0.5	2.2	0.7
Stenonema, Instars I & II	0.3	0.8	0.4
Isonychia sp.	0.2	0.7	0.3
Caenis sp.	0.2	0.5	0.2
Heptagenia marginalis	0.1	0.2	0.1
Heptagenia sp.	0.1	0.5	0.1
Stenacron interpunctatum	<0.1		<0.1
Baetis sp.	2.5	1.0	2.3
Diptera			
Polypedilum convictum	2.0	1.0	1.9
Rheotanytarsus sp.	0.1	0.2	0.1
Tanytarsini pupae	0.1		0.1
Chaoborus punctipennis		0.2	<0.1
Stenochironomus sp.	<0.1		<0.1
Glyptotendipes sp.			
Dicrotendipes neomodestus			
Ablabesmyia annulata			
Tricladidae			
Dugesia tigrina	0.2		0.1
<u>2080010</u> <u>118110</u>	012		•••
Others			
Lirceus sp.	0.1		<0.1
Neurocordulla molesta	.0.1	0.3	<0.1
Macrobrachium ohione	<0.1		<0.1
Gammarus <u>tasciatus</u>	0.2	0.3	0.2
Gomphus sp.			

Table C7

Percent Composition of Macroinvertebrates Collected from Arcadia

Dike at Cottonwood Bar Secondary Channel in the

Lower	Mississ	ippi	River,	July	1984

	Upstream	Downstream	
Taxon	Face	Face	<u>Total</u>
Trichoptera			
Hydropsyche orris	56.4	44.5	54.4
Potamyia flava	22.0	20.3	21.7
Hydropsychidae, Instars I & II	5.8	9.4	6.4
Hydropsychidae pupae	0.8	3.1	1.2
Neotrichia sp.			
Neureclipsis crepuscularis			
Ephemeroptera			
Stenonema integrum	0.8	1.6	0.9
Stenonema, Instars I & II	1.1	1.6	1.2
Isonychia sp.		0.8	0.1
Caenis sp.		0.8	0.1
Heptagenia marginalis	0.6	0.8	0.7
Heptagenia sp.			
Stenacron interpunctatum			
Baetis sp.	1.7		1.5
Diptera			
Polypedilum convictum	4.6	3.9	4.5
Rheotanytarsus sp.	0.2		0.1
Tanytarsini pupae			
Chaoborus punctipennis		0.8	0.1
Stenochironomus sp.			
Glyptotendipes sp.	0.2		0.1
Dicrotendipes neomodestus	0.2		0.1
Ablabesmyia annulata	0.2		0.1
Tricladidae			
<u>Dugesia</u> tigrina	5.2	11.7	6.3
Others			
Lirceus sp.			
Neurocordulia molesta		0.8	0.1
Macrobrachium ohione			
Gammarus fasciatus			
Gomphus sp.	0.2		0.1

ESS STATE

APPENDIX D: GRAIN-SIZE DATA FOR SEDIMENT SAMPLES FROM FIVE LOWER MISSISSIPPI RIVER SECONDARY CHANNELS, JULY AND OCTOBER 1984

Table Di

Ű,

Percent of Sediment Retained by Standard Sieve Sizes for Bottom

Channels
Secondary
p1 River
Mississip]
a Five
troi
Samp 14

	Ste	IVE Size 0	bening (1							Standa	rd Sieve	Size Nu	inter					
Station	25.4	1.91	12.7	9.5	5	8	9	0	16	20	90	40	50	20	8	140	200	<u>^200</u>
								Wolf	Island									
CI								0.1	0.1		0.2		0.1	1.3	7.9	11.6	9.7	69.0
62												0.5	33.0	56.9	8.5	0.6	0.1	0.4
3			1.5	1.7	1.3	1.7	2.2	5.8	12.1	17.7	25.8	18.3	4.7	5.3	0.7	0.2	0.1	0.9
3	57.9	22.9	16.2	0.6	1.2	0.6			0.1		0.1	0.1		0.2				0.1
El										0.2	0.1		0.4	24.0	48.1	16.3	5.2	5.1
E 2	8.5	4.1	9.7	2.4	1.7	2.1	1.3	1.8	2.6	5.1	14.0	19.7	13.6	8.2	2.7	1.3	4.0	0.8
E3			1.5	0.8	0.8	0.9	2.1	5.6	9.5	12.8	19.1	19.4	13.6	8.8	2.8	1.1	0.2	1.0
EÅ											0.1	0.1	1.3	21.2	47.1	17.5	5.8	6.9
19			3.0	0.5	1.0	1.2	1.4	4.6	11.6	15.3	19.3	19.3	14.5	7.0	0.7	0.1	0.1	0.4
3	22.7	9.6	19.5	6.1	6.0	3.5	1.8	3.2	3.7	3.4	5.7	6.7	4.7	2.4	0.7	0.2	0.0	0.1
63		2.1	0.5	1.8	1.0	1.2	2.2	3.7	7.3	8.7	22.3	32.8	13.8	1.9	0.1	0.1		0.5
3											0.2	0.1	0.3	2.0	6.6	5.1	2.8	82.9
								1814	8 pu									
CI	29.4	4.5	3.0	1.0	1.6	0.4	0.1	0.2	0.2	0.1	0.2	0.5	3.7	25.6	23.5	4.1	1.3	9.6
C 3							0.1	0.4	0.8	0.9	3.0	16.0	45.7	27.9	4.8	0.1	0.1	0.2
								(Cont.	tnued)									
																Ű	Sheet 1	of 6)

D3

Table D1 (Continued)

	Steve Size	e Openi	(1) Bu							Stand	ard Siev	e Size N	umber					
Station	25.4 19.1	2		9.5	-	4	٩	2	16	20	30	40	20	20	001	140	200	< 200
							1	Island 8	(cont.)									
C 3								0.1	0.3	0.7	4.7	29.4	40.5	20.9	3.0	0.3		0.1
ď								0.2	0.3	0.2	3.1	20.7	23.2	34.8	10.7	3.1	1.7	2.0
El									0.1	0.1	0.3	0.4	1.6	6.5	29.8	24.1	8.3	28.8
E2		0	5	0.1	1.2	1.3	2.7	1.8	22.9	25.8	23.2	11.5	1.5	0.3	0.2	0.2	0.1	0.7
E3											0.2	1.0	9.8	60.3	25.9	2.0	0.2	0.6
E4												0.2	6.0	51.8	37.3	3.1	0.5	1.1
СI		e	1.4 1	1.3	14.2	6.0	7.6	7.3	8.6	5.9	8.3	7.9	4.8	3.8	4.8	2.5	1.0	2.6
62				1.0	2.3	2.4	6.1	11.1	19.5	18.7	23.1	12.0	2.5	0.3	0.2	0.1	0.1	9.6
3	1.3	2	.0	2.4	2.3	1.4	6.0	1.2	5.9	11.3	28.5	27.4	9.8	3.2	1.1	0.5	0.2	0.6
చే													0.2	7.6	74.0	16.7	0.8	0.7
							Lake	port Tou	rhead, Ji	۲Ţ								
CI										0.2	0.1	1.7	15.2	44.3	25.7	4.1	1.0	1.1
C 3									0.1	0.2	1.9	14.0	37.1	30.7	13.0	2.0	0.4	0.6
8					0.4	0.2		0.2	0.3	0.9	4.5	26.9	38.7	18.0	8.3	1.2	0.3	0.1
చ											0.8	7.8	26.1	40.1	22.1	2.4	0.3	9.0
El													0.2	0.2	0.3	1.5	16.3	81.5
E2									0.1	0.2	0.7	4.9	13.4	36.4	38.2	4.3	0.8	1.0
								, , , , , , , , , , , , , , , , , , , ,	()									
								/ contra	(nanu)							-	(Sheet 2	of 6)

D4

2000 - REELEC

Table Dl (Continued)

Molecule, July (cont.) 0.2 0.4 0.5 1.0 4.9 12.1 47.1 29.3 2.7 0.5 0.4 0.1 0.2 0.4 0.5 1.0 4.9 12.1 47.1 29.3 2.7 0.5 0.4 0.1 0.2 0.4 0.5 11.7 8.7 18.0 19.2 93.4 0.1 1.0 6.5 18.4 28.2 9.1 23.1 0.1 1.0 6.5 18.4 28.2 9.1 23.1 0.1 1.0 6.5 18.4 28.2 9.1 23.1 0.1 0.2 11.4 24.5 28.2 5.7 2.7 0.1 0.2 11.4 52.6 27.8 3.5 1.7 0.1 0.2 11.4 52.6 27.8 3.5 1.7 1.7 0.1 0.2 28.5 7.2 0.7 0.7 3.5 0.1	
Anhead. July (cont.) 1.2 0.4 0.5 1.0 4.9 12.1 47.1 29.3 2.7 0.5 0.4 1.1 0.2 0.4 1.9 7.6 11.7 8.7 18.0 19.2 9.1 231.1 1.1 0.2 0.4 1.9 7.6 11.7 8.7 18.0 19.2 9.1 231.1 0.1 1.0 6.5 18.4 21.4 24.2 13.5 2.7 2.7 0.1 1.0 6.5 18.4 21.4 24.2 13.5 2.7 2.7 1.1 0.1 1.0 6.5 1.4 24.2 13.5 2.7 2.7 1.1 1.1 1.1 1.1 24.2 13.2 2.7 2.7 1.1 0.1 0.2 31.2 26.5 7.2 0.7 0.7 3.7 1.1 0.1 0.2 31.2 26.5 7.2 0.7 1.7	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Lakeport To
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.1 0
0.1 0.2 0.2 0.1 1.1 4.9 93.4 0.1 1.0 6.5 18.4 21.4 19.2 9.1 23.1 0.1 1.0 6.5 18.4 21.4 19.2 9.1 23.1 0.1 1.0 6.5 18.4 21.4 24.2 13.5 2.7 5.7 0.1 1.0 6.5 18.4 21.4 24.2 13.5 2.7 2.7 7 0.1 1.0 6.5 18.4 21.6 5.7 2.7 2.7 2.7 0.1 0.2 1.7 11.4 52.6 7.2 0.7 0.7 21.6 17.0 0.1 0.2 1.8 31.2 26.5 7.2 0.7	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
0.1 1.0 6.5 18.4 24.4 24.2 13.5 2.9 5.0 Tewhead. October Jewhead. October 0.1 0.1 1.7 11.4 52.6 27.8 3.5 1.2 1.7 0.1 0.2 1.8 15.8 31.2 26.5 7.2 0.7 0.6 17.0 0.1 0.2 1.8 15.8 31.2 26.5 7.2 0.7 0.6 17.0 0.1 0.2 1.8 15.8 31.2 26.5 7.2 0.7 0.7 3.5 0.1 0.2 1.8 15.8 31.2 26.5 56.1 1.3 0.7 3.5 0.1 0.2 2.2 25.0 39.3 21.5 6.1 1.3 0.7 3.5 0.1 0.2 2.2 2.0.8 43.6 16.3 2.1 0.7 3.5 0.1 0.1 0.7 8.5 7.2 0.7 1.2 1.7 1.1 0.1 0.1 1.2 12.6 7.1 1.1 71.7 1.2 0.5 0.9 4.9 5.3 58.6 21.2 1.1 71.7 <td>0</td>	0
Towhead. October 0.4 i.9 54.1 28.2 5.7 2.7 Towhead. October 0.1 1.7 11.4 52.6 27.8 3.5 1.2 1.7 0.1 0.2 1.8 15.8 31.2 26.5 7.2 0.7 0.6 17.0 0.1 0.2 1.8 15.8 31.2 26.5 7.2 0.7 0.6 17.0 0.1 0.2 2.12 25.0 39.3 21.5 6.1 1.3 0.7 3.5 0.1 0.2 2.2 25.0 39.3 21.5 6.1 1.3 0.7 3.5 0.1 0.2 2.1 0.7 3.6 1.0 0.7 3.5 0.1 0.7 8.5 20.8 40.9 32.4 2.8 0.8 4.6 1.0 0.1 0.7 4.0.9 3.2 1.1 1.7 1.7 2 0.2 0.3 1.2 12.6 7.1 1.2 1.1 7.1 2 0.2 0.9 4.9	
Towhead, October 0.1 1.7 11.4 52.6 27.8 3.5 1.2 1.7 0.1 0.2 1.8 15.8 31.2 26.5 7.2 0.7 0.6 17.0 0.1 0.2 1.8 15.8 31.2 26.5 7.2 0.7 3.5 0.1 0.2 2.2 39.3 21.5 6.1 1.3 0.7 3.5 0.1 0.7 8.5 20.8 43.6 16.3 2.1 0.7 3.5 0.1 0.7 8.5 20.8 43.6 16.3 2.1 0.7 3.6 0.2 0.1 0.7 40.9 32.4 2.8 0.8 9.8 .2 0.5 0.9 4.0 9.1 1.2 1.7 .2 0.5 0.9 4.0 9.2 1.1 1.7 .2 0.5 0.9 4.0 9.3 2.1 1.1 1.7	
0.1 1.7 11.4 52.6 27.8 3.5 1.2 1.7 0.1 0.2 1.8 15.8 31.2 26.5 7.2 0.7 0.6 17.0 0.1 0.2 1.8 15.8 31.2 26.5 7.2 0.7 0.6 17.0 0.1 0.2 2.2 25.0 39.3 21.5 6.1 1.3 0.7 3.5 0.1 0.7 8.5 20.8 43.6 16.3 2.1 0.9 6.9 0.1 0.7 8.5 20.8 43.6 16.3 2.1 0.9 6.9 1.4 0.1 0.7 8.5 20.8 43.6 16.3 2.1 0.2 98.4 1.2 0.1 0.7 4.0 7.3 40.9 32.4 2.8 0.8 9.8 1.2 0.5 0.9 4.9 5.3 58.6 21.2 1.1 71.7 1.2 0.1 0.1 0.1 0.1 0.1 0.1 0.9 9.5 1.2	Lakeport
0.1 0.2 1.8 15.8 31.2 26.5 7.2 0.7 0.6 17.6 0.1 0.2 2.2 25.0 39.3 21.5 6.1 1.3 0.7 3.5 0.1 0.2 2.2 25.0 39.3 21.5 6.1 1.3 0.7 3.5 0.1 0.2 8.5 20.8 43.6 16.3 2.1 0.9 6.5 0.1 0.7 8.5 20.8 43.6 16.3 2.1 0.9 6.9 0.2 0.1 0.7 8.5 20.8 43.6 16.3 2.1 0.9 6.9 0.2 0.1 0.7 4.8 7.3 40.9 32.4 2.8 0.8 9.8 1.2 0.5 0.9 4.9 5.3 58.6 21.2 1.1 71.7 1.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 2.4 5.3 1.4 0.5 89.5	
0.1 0.2 2.2 25.0 39.3 21.5 6.1 1.3 0.7 3.5 0.1 0.7 8.5 20.8 43.6 16.3 2.1 0.9 6.9 0.1 0.7 8.5 20.8 43.6 16.3 2.1 0.9 6.9 1.0 0.2 8.5 20.8 43.6 16.3 2.1 0.9 6.9 1.4 0.1 0.7 4.8 7.3 40.9 32.4 2.8 0.8 9.8 1.2 0.2 0.7 3.0 1.2 12.6 7.1 1.7 71.7 1.2 0.5 0.9 4.9 5.3 58.6 21.2 1.1 71.7 1.2 0.5 0.9 4.9 5.3 58.6 21.2 1.4 0.5 99.5 1.1 0.1 0.1 0.1 0.1 2.1 0.1 99.5	
0.1 0.7 8.5 20.8 43.6 16.3 2.1 0.9 6.9 1.4 0.1 0.1 0.7 4.8 7.3 40.9 32.4 2.8 0.8 98.4 1.4 0.1 0.1 0.7 4.8 7.3 40.9 32.4 2.8 0.8 9.8 1.2 0.2 3.0 1.2 12.6 7.1 1.7 71.7 1.2 0.5 0.9 4.9 5.3 58.6 21.2 1.1 71.7 1.2 0.5 0.9 4.9 5.3 58.6 21.2 1.1 71.7 1.2 0.1 0.1 0.1 0.1 0.1 99.5 0.1 0.1 0.1 2.4 5.3 1.4 0.5 89.9	
0.2 1.0 0.2 98.4 .4 0.1 0.7 4.8 7.3 40.9 32.4 2.8 0.8 9.8 .2 0.2 0.5 0.7 4.8 7.3 40.9 32.4 2.8 0.8 9.8 .2 0.2 0.5 0.7 3.0 1.2 12.6 7.1 1.2 1.1 71.7 .2 0.5 0.9 4.9 5.3 58.6 21.2 1.2 0.4 6.3 .2 0.5 0.9 4.9 5.3 58.6 21.2 1.2 0.4 6.3 .2 0.1 0.1 0.1 0.1 0.1 0.1 99.5 0.1 0.1 2.4 5.3 1.4 5.3 1.4 0.5	
.4 0.1 0.1 0.7 4.8 7.3 40.9 32.4 2.8 0.8 9.8 .2 0.2 0.5 0.7 3.0 1.2 12.6 7.1 1.2 1.1 71.7 .2 0.5 0.9 4.9 5.3 58.6 21.2 1.2 0.4 6.3 .2 0.5 0.9 4.9 5.3 58.6 21.2 1.2 0.4 6.3 .2 0.5 0.9 4.9 5.3 58.6 21.2 1.2 0.4 6.3 .2 0.1 0.1 0.1 0.1 0.1 0.1 0.9 99.5 0.1 0.1 0.1 2.4 5.3 1.4 0.5 89.9	
.2 0.2 0.5 0.7 3.0 1.2 12.6 7.1 1.2 1.1 71.7 .2 0.5 0.5 0.9 4.9 5.3 58.6 21.2 1.2 0.4 6.3 .2 0.5 0.9 4.9 5.3 58.6 21.2 1.2 0.4 6.3 .2 0.5 0.9 4.9 5.3 58.6 21.2 1.2 0.4 6.3 .2 0.1 0.1 0.1 0.1 0.1 0.1 99.5 0.1 0.1 0.1 2.4 5.3 1.4 0.5 89.9	0.1 0
.2 0.5 0.5 0.9 4.9 5.3 58.6 21.2 1.2 0.4 6.3 0.1 0.1 0.1 0.1 99.5 0.1 0.1 2.4 5.3 1.4 0.5 89.9	0.4 0
0.1 0.1 0.1 0.1 99.5 0.1 0.1 2.4 5.3 1.4 0.5 89.9	-
0.1 0.1 0.1 2.4 5.3 1.4 0.5 89.9	

D5
Table Dl (Continued)

1.19.010

47

	<u>S1</u> (eve Size	Opening	Î						Stands	ard Sleve	: Size Nu	umber					
Station	25.4	19.1	12.7	9.5	-	4	0	9	16	20	8	07	8	20	8	140	200	~1 ~1
							Lakeport	Towhead	, Octobel	r (cont.)	~							
3										1.5	0.8	3.1	1.5	32.7	21.5	5.6	2.5	32.0
3								0.1	0.1	0.3	0.3	0.3	0.3	9.6	41.7	26.9	11.0	6.9
							8	ttonvood	Bar, Ju	ы								
CI													0.2	0.9	8.0	14.3	17.2	\$9.4
C3											0.4	5.9	53.4	31.8	7.4	9.4	0.1	0.6
3											0.6	7.0	53.0	30.2	1.1	1.1	0.1	0.3
70	6.5	6.6	6.1	1.8	1.7	0.9	0.5	0.6	0.1	0.3	0.8	7.0	24.6	11.0	5.2	4.8	3.7	17.8
E1												0.2	1.0	1.7	1.2	0.7	1.0	94.2
E2											0.6	18.9	63.7	13.1	2.7	0.4	0.1	0.5
E3				0.7	0.6	0.6	1.3	0.6	1.7	2.2	6.9	20.8	51.4	12.1	0.6		0.2	0.3
E4									0.3	0.7	3.8	16.7	61.1	15.7	1.1	0.2		0.4
61			2.5		0.9	1.0	0.5	0.7	2.4	4.6	9.1	14.3	29.4	24.0	8.3	1.6	0.3	0.4
62		3.5	0.7	0.3	0.3	0.1	2.0	5.9	13.4	13.9	20.0	26.0	11.6	1.8	0.1	0.2		0.2
63		1.6	0.9	0.2	0.8	0.4	0.6	1.2	1.8	2.2	7.1	29.3	43.7	8.5	1.3	0.1		0.3
3											0.5	3.3	19.7	50°C	18.8	4.9	0.5	2.3
									;									
								(Cont	inved)									
																Ŭ	(Sheet 4	of 6)

D6

.

1.

Table Di (Continued)

• Section 1997

•

	S1	ave Size C	pening (Î						Standa	Ird Steve	e Size Nu	Iber					1
tation .	25.4	1.61	12.7	9.5	-	4	•	9	16	20	õ	97	2	2	001	140	200	<u>^</u> 200
							Catto	nvood Be	hr. Octob	er								
										1								
C1		11.7	12.3	6.2	10.3	5.9	2.8	2.3	1.3	0.7	1.5	4.2	10.2	10.4	4.5	0.7	0.2	14.2
3									0.1	0.7	4.2	25.0	55.8	12.7	1.2			0.2
5									0.2	0.9	0.2	46.2	37.0	6.2				
5				0.2	0.2	0.1	0.2	0.6	0.5	1.2	4.6	25.0	51.3	14.4	0.7	0.7		0.6
EI												0.2	0.8	29.5	37.7	21.0	6.8	3.7
E2											0.1	1.5	49.3	41.4	6.9	0.6		
E3					1.1	0.2	0.3	1.3	2.3	3.2	6.7	25.0	34.6	20.0	4.2	0.5	0.1	0.4
3								0.1	0.2	0.5	2.5	11.3	36.8	18.6	3.9	1.8	1.3	22.8
CI			12.4	7.3	9.0	5.1	5.6	6.8	5.8	3.6	3.5	2.9	9.1	15.9	8.6	2.9	0.6	0.5
62	5.5	20.8	12.4	4.8	5.6	2.7	2.1	2.2	1.7	2.3	6.6	13.7	12.5	3.4	2.0	0.8	0.1	0.1
63			0.5		0.2	0.1	0.2	0.2	0.4	1.5	12.1	42.9	31.4	6.0	3.0	0.5		0.6
J										0.1	0.5	10.2	71.8	15.4	1.5	0.2		0.2
								Prof1t	Island									
CI					0.3	0.3	0.2	1.0	1.6	2.3	5.1	12.6	32.4	29.8	12.3	1.3	0.1	0.7
3					0.6	0.3	0.3	0.1	0.3	0.9	6.5	25.8	44.2	17.3	3.0	0.3		0.4
ទ										0.1	0.2	2.1	23.1	59.6	13.3	1.2	0.1	0.3
								(Cont1	.nued)									

(Sheet 5 of 6)

D7

1.12

Table Dl (Concluded)

	S10	eve Size	Opening (Î						Stand	ard Sieve	e Size N	umber					
Station	25.4	19.1	12.7	9.5	m	4	و	07	16	20	8	40	20	20	100	140	200	<u><200</u>
							Pre	ofit lsla	and (cont	t.)								
							}											
చ					4.4	2.3	2.0	1.8	1.1	1.4	3.2	5.6	6.4	3.6	1.4	0.3	0.3	66.2
El												0.4	0.2	0.2	0.7	6.0	16.5	76.0
E2				0.4	1.5	1.5	0.8	1.3	1.5	2.1	5.0	24.7	49.2	8.1	2.2	0.8	9.0	0.5
E3				0.7	0.3	0.1		0.1	0.2	0.4	1.8	9.9	42.8	30.9	10.0	1.8	0.3	0.7
E4												0.2	0.2	1.7	5.3	10.4	15.7	66.5
61			2.7	3.9	2.6	1.2	0.9	1.1	0.2	0.4	0.5	0.9	3.7	3.5	5.1	13.8	12.3	46.2
62			8.6	5.9	9.6	6.0	5.0	4.5	3.5	2.8	5.1	11.5	16.6	11.)	6.9	2.0	0.3	0.6
63					0.2	0.2	0.5	0.7	2.6	5.7	22.4	41.6	16.5	6.5	2.1	0.6	0.1	0.3
3												0.2	0.4	0.9	8.7	24.6	25.7	39.5

(Sheet 6 of 6)

D8