
UNCLASSIFIED
SECUIIT C ASSIVICATIO4 Or T'IS PAGE illion Dole Enleted)

REPORT DOCUMENTATION PAGE RED COPL TIORM

t. REPORT NUMBER 2. GOVT ACCESSION NO. S. RECIPIENT'S CATALOG NUMUER
AI-TR 1035

4. TITLE (and SwbIII*) S. TYPE OF REPORT A PERIOD COVERED S
Theories of Comparative Analysis technical report

S. PERFORMING OAG. REPORT NUMBER

7. AUTHOR(.) S. CONTRACT OR GRANT NUMBER(@)

Daniel S. Weld N00014-85-K-024

2. PERFORMING ORGANIZATION NAME AND ADDRESS A. PROGRAM ELEMENT. PROJCT TASK %
•AREA It WORK UNIT NUMBERS N

Artificial Intelligence Laboratory N.

545 Technology Square
Cambridge, MA 02139 ___ _ _

II. CONTROLLING OFFICE NAME AND ADDRESS I. REPORT DATE 0

Advanced Research Projects Agency May 1988

1400 Wilson Blvd. IS- NUMBER OF PAGES

Arlington, VA 22209 181 p

14. MONITORING AGENCY NAME 6 ADD PSS(lI diffeet ftm Conlrlling Ollie*) IS. SECURITY CLASS. (of thie reporl)

Office of Naval Research UNCLASSIFIED
Information Systems I
Arlington, VA 22217 ISo. DECL ASSIFICATION/DOWNGRADING

SCNEDULE

IS. DISTRIBUTION STATEMENT (of thle R tpee)

Distribution is unlimited%

17. DISTRIBUTION STATEMENT (ofe bsr ac e terloed In &lock 20, #1 differentfro eeeert),,=,

IS. SUPPLEMENTARY NOTES l.

None

E. KEY WORDS (Coninue o ..n ree .. aide It ,&C.,, mod identify by blots number) K,

qualitative analysis exaggeration .-

causal reasoning
comparative analysis
DQ analysis

20. ABSTRACT (Caoillno on reverse side if n0gecoap 41"d Id~nIlff? Slock number)

Comparative analysis is the problem of predicting how a system will react
to perturbations in its parameters, and why. For example, comparative analy-
sis could be asked to explain why the period of an oscillating spring/block sys-
tem would increase if the mass of the block were larger. This thesis formalizes
the task of comparative analysis and presents two solution techniques: dif-
ferential qualitative (DQ) ana!ywis and exa.ggration. Both techniques solve

DD I J 1473 EoIION OF I NOV S OUSOBOLETE UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Date inleIto

if %

I%



Block 20 cont.

many comparative analysis problems, providing explanations suitable for use
by design systems, automated diagnosis, intelligent tutoring systems, and
explanation based generalization.

This thesis explains the theoretical basis for each technique, describes
how they are implemented, and discusses the difference between the two.
DQ analysis is sound; it never generates an incorrect answer to a compar-
ative analysis question. Although exaggeration does occasionally produce
misleading answers, it solves a larger class of problems than DQ analysis and
frequently results in simpler explanations.
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Chapter 1

Introduction

The problem of symbolic analysis of real-world systems is central to many
problems in artificial intelligence. For example, robots that can interact with
a changing world, programs that can design electronic circuits, and systems
that aid in medical diagnosis all need a comprehensive understanding of their • V
environment. They must be able to analyze their surroundings and evaluate
the effects of their actions. Qualitative representations are often appropriate
for this analysis because they suppress irrelevant detail and concentrate on
the fundamental processes that are present. For example, rather than repre-
senting the pressure of water in a pipe by a real number, it is often sufficient
to know its ordinal relation to important landmark values like the pressure
that will cause the pipe to rupture.

Recently, considerable emphasis has been put on a specific kind of anal-
ysis: qualitative simulation[8,16,49,27,44]. Qualitative simulation seeks to '
produce a description of the behavior of a system over time, often in the
form of a tree of histories of the system's qualitatively interesting changes
over time [45].

This thesis discusses the problem of comparative analysis, a task that is
the complement of qualitative simulation. Whereas qualitative simulation
takes a structural description of a system and predicts its behavior, compar-
ative analysis takes as input this behavior and a perturbation and outputs
a description of how and why the behavior would change as a result of the
perturbation.

For example, given an ideal spring attached to a block on a frictionless
.-;
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table (figure 1.1), a qualitative simulator would say that the block would first
move one direction, then stop, then reverse, etc. A description of oscillation
would result. Comparative analysis, on the other hand, takes this description
of oscillation and evaluates the effects of perturbations. For example, it
would deduce that the period would lengthen if the mass of the block were
increased, and explain why. Just as qualitative simulation works without
explicit equations for the value of each parameter as a function of time,:i"
Comparative analysis does not need a formula for the period of oscillation. -

Spring Constant K
Block M .

Rest Postion X=O\

Figure 1.1: Ideal Spring Attached to Block on Frictionless Table

The importance of the qualitative approach to comparative analysis is
the resulting explanation of why the behavior changes. If it weren't for }7.1
the explanation, one might simply solve a differential equation model us- :
ing symbolic or numeric techniques. This thesis presents two techniques for_
solving comparative analysis problems: differential qualitative (DQ) analysis,-
and exaggeration. Both techniques3 have been implemented and have a solid ' =

theoretical foundations, yet they perform differently and generate different %.P'%
kinds of explanations. For example, DQ analysis would explain that the . :
block would have a longer period if the mass were increased as follows:

Since force is inversely proportional t o position, the force on .
the block will remain the same when the mass is increased. But ,
if the block is heavier, then it won't accelerate as fast. So it
will always be moving slower. Thus the block will take longer to .L
complete a full period (assuming it travels the same distance).

2 N
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Exaggeration answers the same question in a completely different manner:

If the mass were infinite, then the block would hardly budge.

Thus the period would be infinite. So increasing the mass even a
smaller amount should cause the period to increase as well.

This thesis explores the differences and relative advantages of the two ,... p%

approaches.

1.1 Thesis

The basic conclusions of the thesis are the following:

a .~.

Differential qualitative analysis and exaggeration are com-
plementary techniques for comparative analysis. DQ analysis 0
is sound while exaggeration can make false predictions on two
classes of questions. However, exaggeration solves a wider vari-
ety of problems than does DQ analysis. Together, they reinforce
each other and solve many comparative analysis problems.

This thesis is argued by a description of each technique, by empirical tests
using computer implementations, and by a theoretical analysis explaining
why they perform differently.

1.2 Reader's Guide

The rest of this introduction gives an overview of the thesis. Sections 1.3
and 1.4 are motivational; they explain why qualitative physics is interest-
ing in the context of Al, and why comparative analysis is interesting in the
context of qualitative physics. Then section 1.5 introduces the main points
of DQ analysis: perspectives, inference rules using relative change values,
and changes in behavioral topology. The next section discusses the second
solution technique, exaggeration, and explains how it is composed of three
phases: transform, simulate, and scale. Finally, section 1.7 summarizes the
similarities and differences in the two approaches and suggests a hybrid ar-
chitecture that takes best advantage of the strengths of each technique.

3 '
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The rest of the thesis presents the details of the two comparative analysis
theories. Chapter 2 explains DQ analysis starting with a formal definition
of relative change and perspectives. Next these concepts are used to specify
numerous inference rules, all of which are proven sound. These inference
rules are the essence of DQ analysis. The chapter explains how a simple
constraint propagator applies the rules in forward-chaining fashion to solve
numerous comparative analysis problems.

Chapter 3 presents the details of exaggeration starting with the extended,
qualitative hyperreal representation used to describe systems with exagger-
ated perturbations (like the block with infinite mass). The chapter describes
all three phases of the exaggeration algorithm: transform, simulate, and scale,
but the emphasis is on the simulate phase due to the technical difficulty of
simulation using the qualitative hyperreal representation.

Chapter 4 analyzes the DQ and exaggeration techniques by comparing
them along several dimensions. Unlike the previous chapters which may be
read independently after finishing the introduction, chapter 4 is best aprreci-
ated after completing previous chapters; see [41] for a self contained analysis.
Chapter 5 is a discussion of related work, and chapter 6 concludes the thesis
with a summary and suggestions for future research.

Unfortunately, the technical portions of this thesis contain a consider-
.ible amount of mathematical definitions and jargon. To ease this burden on
the reader, appendix A contains a glossary for quick reference. Appendix
E contains the actual input and sample runs of the DQ analysis and exag-
geration programs. Appendix F records the performance of the DQ analysis
and exaggeration implementations on more than fifty comparative analysis
problems.

1.3 Why Qualitative Physics?

The goal of qualitative physics is to make explicit the unspoken intuition of
experts in the physical sciences. I distinguish qualitative physics from the
field of naive physics. Qualitative physics is interested in expert reasoning not
in duplicating the common mistakes of novices. Qualitative physics may also e
be distinguished from other research on corninon sense reasoning. Although 1

qualitative physics deductions indeed seem like common sense to those who Op
perform them, the techniques are not obvious. Most people do not correctly I'F-

4
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solve qualitative physics problems without some training.
Although physics and engineering classes concentrate on teaching tech-

niques for manipulating and solving equations, considerable expertise is nec-
essary to correctly choose appropriate equations to solve in the first place.
Decisions regarding appropriate quantitative models of a system are ire-
quently based on qualitative information and analysis, such as a qualitative
expectation of the system's behavior over time. In fact many physics prob-
lems can be solved by strictly qualitative means. If a problem specification
is lacking complete numerical information, then qualitative physics may be
the only method for obtaining an answer. If the goal is a qualitative un- ,
derstanding of the system's behavior, then partial information is perfectly
appropriate. One doesn't need to know the exact mass of the block in figure
1.1 to deduce that an oscillation will result. A person would be considered
rather slow if he refused to make this prediction until being informed of the
1.5 kilogram value. S

Another type of qualitative physics decision, the choice of model for a
system, can make a huge difference to problem solving performance. Early
systems for analog circuit analysis, such as SYN [10], attempted to solve a
circuit by propagation of constraints using the obvious algebraic equations
(all possible applications of KCL, etc.). Using Macsyma's algebraic manip-
ulation subroutines, SYN generated intermediate subexpressions that were
much more complex than those used by a trained engineer. de Kleer's succes-
sor programs, QUAL [6] and EQUAL [7], improved on SYN by exploiting the
qualitative knowledge and expectations of an engineer, including simplified
models of devices that drastically facilitate reasoning when appropriate.

An understanding of how humans reason effectively about complex phys-
ical systems would have many uses. A theory of the knowledge used in
qualitative physics would make it much easier to train people to perform
at expert levels of competence. In addition, qualitative physics programs

could explain their reasoning with 'causal arguments' [18] formed from the 0
dependencies recorded by constraint propagation algorithms. The resulting
intelligent tutoring systems could teach physics and engineering more prag-
matically. Qualitative physics also forms the foundation for model-based %
theories of design [48] and diagnosis [5,12].

Besides its immediate application, work on qualitative physics has an im-
pact on a more general study of intelligence. Since any thorough investigation

5
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into the structure of knowledge and reasoning in a domain is likely to reveal ".
issues that apply to other domains as well, one might as well select a domain
based on the expected ease of progress. Compared to most any other area,
the domain of simple physical devices is easier to codify.

1.4 Why Comparative Analysis?

Comparative analysis, the qualitative analog of sensitivity analysis, is the
problem of determining how and why the behavior of a system will change
when its structure is changed. Even more important than the prediction
of the direction of change is comparative analysis' explanation of why the
change will occur. Many artificial intelligence problems, including design,
diagnosis, and intelligent tutoring systems, have comparative analysis as an 3
important component; the explanation is used in many different ways. -A

" One method of automated design is the principled modification of pre-
vious designs [48]. For example, suppose a library design for a VLSI
pullup circuit has too long a rise time. If the problem solver considers
increasing the width of some wire to decrease the rise time, it would
like to know the ramifications of this modification relative to the initial
behavior. Will the delay decrease? What happens to power dissipation?
Comparative analysis answers these questions, in qualitative terms, as
is appropriate for initial design evaluation. By analyzing an explana-
tion for why the changes happen, the problem solver could then focus
on further changes to counteract undesired effects. *e

" Many of the programs which perform diagnosis from first principles
use generate and test paradigms [19]. Comparative analysis can sire-
plify diagnosis of continuous systems (such as analog electronics) in
two ways. Comparative analysis provides a direct test for certain hy- 0
pothesized faults; if one suspects a resistor of a low value, comparative
analysis can predict the resulting behavior. If this prediction does not
match the observed behavior, the generator might use the explanation
to suggest or rule out additional candidate faults.

* A key subproblem of intelligent tutoring systems (ITS) is the auto-
matic explanation of the behavior of complex systems. Most Al work

K%
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in this direction has focused on the role of qualitative simulation when
explaining the mechanism through which devices achieve functionality
[43,18]. Qualitative simulation is a critical component of explanation
generation, but understanding how systems respond to changes is also
important. One doesn't really understand the workings of a refrigera-
tor, if one can't explain the effect of a stronger compressor on efficiency
and minimum temperature.

While this thesis may be viewed as a detailed investigation of the com-
parative analysis problem, it can also be seen in a more general light. The
analysis of the relative merits of DQ analysis and exaggeration exposes is-
sues and tradeoffs that apply to all of qualitative physics and model-based
reasoning. Through a careful study of comparative analysis, much is learned
about the soundness / completeness dichotomy, the importance of model-
ing in model-based reasoning, and the fundamental limitations of qualitative
arithmetic.

1.5 Differential Qualitative Analysis

Differential qualitative (DQ) analysis is a powerful technique for solving com-
parative analysis problems. It predicts the eftect of a small structural change
by propagating the change through the equations modeling the system. The
result is commonly called a 'causal explanation' because it is viewed as a
linear chain of consequences based on the original change or cause. For the
technique to work, it is necessary to describe structural and behavioral per-
turbations in a formal language so that they can be manipulated symbolically.
To this end, DQ analysis relies on relative change (RC) values using one or
more perspectives (section 1.5.1). Once the original perturbation is described
using RC values, a set of inference rules propagate the changes through the
equations that model the system and produce a causal chain that embodies
the explanation (figure 1.2).

1.5.1 Perspectives
Perspectives, the most important concept in DQ analysis, are best introduced
with an example. Consider the horizontal, frictionless spring/block system

7
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Inference I
_Rules

Behavior

F = -KX - 1 Constraint

F =MA Propagator

Model Relative Change Output

Perturbation: Mt

Figure 1.2: Overview of the DQ Analysis Algorithm

shown above (figure 1.1). The system can be defined in Kuipers' QSIM [27]
notation in terms of six parameters, each a function of time: spring constant 0

K, mass M, position X, velocity V, acceleration A, and force F related by
Newton's second law (F = MA) and Hooke's law (F = -KX). Mass and

spring constant are independent parameters that have constant values over
time. The initial conditions are specified as follows: M(O) > 0, K(0) <
0, V(O) =0, and X(O) = xo <0. 0

This description may now be simulated, but because of ambiguities inher-
ent in qualitative values [28], QSIM produces several possible behaviors for
this system, including ones corresponding to increasing, decreasing, and sta-
ble oscillation. Although comparative analysis could be done on all of these
behaviors, for this example, I assume the interpretation of stable oscillation 0

(figure 1.3).

Now we are ready to pose a comparative analysis problem. "What hap-
pens to the period of oscillation if the mass of the block is increased?" The
answer is that the length of the period increases:

Since force is inversely proportional to position, the force on

8
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Figure 1.3: QSIM Behavior for Stable Spring Oscillation

the block will remain the same when the mass is increased. But
if the block is heavier, then it won't accelerate as fast. And if it
doesn't accelerate as fast, then it will always be going slower and
so will take longer to complete a full period (assuming it travels
the same distance).

What kind of information is needed to produce this explanation? Take
the first step: "The force on the block will remain the same." This is an ex-
ample of a relative change (RC) statement since it expresses the relationship
between values in the original and perturbed systems. To distinguish the
perturbed force from the original, I denote it P and plot it with duLed lines

9
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(figure 1.4). The question is -what does it mean for force to be the 'same'?

F

Figure 1.4: Actual Plot of Force versus Time

Clearly, F # F as a function of time. The corresponding values of F and
F are different for almost every possible time. The real meaning of "The
force on the block will remain the same" is that F and F are the same for all
values of X. Although this reparametrization was not mentioned explicitly
in the explanation, it is essential to the soundness of the argument.

In order to allow programs to generate and evaluate explanations like the
one for the spring and block, it is necessary to take this implicit change of
parameters and make it explicit. I do this with the use of 'perspectives'. Thus
the first line of the argument could be rewritten "If the mass is increased, 0
force does not change from the perspective of position." Making perspectives v
explicit is the crucial step in performing DQ analysis to solve a comparative
analysis problem. Once the notion of perspective is explicit, one can address
questions like "Which perspective best suits a problem" and "What inferences

are sound?" The answers are not as obvious as they might appear.
For example, consider the 'obvious' inference "Since it is going slower it

will take longer to go the same distance." What does it mean for the block
to be going slower? From what perspective is velocity lower? If velocity
were lower from the perspective of time, then the conclusion would indeed
be obvious. But just as with the parameter force (figure 1.4), there are
times when the perturbed velocity is not lower than it was in the original

10
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system. Once again, position is the correct perspective. In fact, as shown in
section 2.2, the explanation is correct, but it would not necessarily be so if
the perspective was a parameter other than position.

Reasoning about perspectives explicitly, and using sound rules of DQ
analysis (section 2.2), the zetalisp program, CA, has correctly generated the
correct solution and an explanation like that shown above. CA solves this
next question by using perspectives in a different way: "What happens to
the maximum velocity if the initial displacement is increased?"

Since K and M haven't changed, the force on the block is
the same for any position that the block used to pass through.
So the acceleration is the same for any position. But since the
initial displacement has been increased, the block will already be
moving when it reaches the old initial position, where previously
the block was stopped. Since the accelerations are the same from
here on, and the block is already moving faster, it will keep on
moving faster and will have a higher maximum velocity.

The rules which compose this reasoning are explained in section 2.2.

1.5.2 Changes in Behavioral Topology

The previous section showed how the explicit use of perspectives could de-
terinine the relative change of parameter values and time durations given an
initial perturbation. However, sometimes the perturbation results in change
of a more fundamental nature. Consider the heat exchanger shown in 1.5.
Hot oil flows through a pipe immersed in a vessel of cold water. A qualitative
simulator such as QSIM takes this description and predicts the possible be-
haviors of the system as the oil cools while passing through the pipe. Figure
1.6 shows a possible QSIM behavior that corresponds to the case when the
hot oil reaches thermal equilibrium just as it exits from the pipe. (Remem-
ber that since this is a qualitative plot, the apparent slope does not imply
that these functions are linear.) Let's pose a comparative analysis prob- I.
lem. "What happens to the behavior of the heat exchanger if the thermal
conductivity of the pipe wall is increased?" _ q

The answer is that the oil will reach thermal equilibrium more quickly
than before. And since the oil is flowing through the exchanger at the same

-I
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Figure 1.5: Hot Oil Flows Through Heat Exchanger

rate, it must reach thermal equilibrium before leaving the pipe (figure 1.7). .

Thus, unlike the previous examples where the perturbation resulted only
in continuous changes in various parameters, the perturbation of the heat 1
exchanger caused a discontinuous change in the behavioral structure: the b-p

previously cotemporaneous 'events' of thermal equilibrium and disgorgement ,,,

from the pipe now happen at different times.
I call the switch from figure 1.6 to 1.7 a change in behavioral topology. .

This example is a simple case of topological change: the initial behavior ]
was inconsistent and a single new behavior was indicated. However. the
situation isn't always so easy. Section 2.5 describes how perturbations can ..,'
lead to multiple consistent behaviors and presents heuristics for determining ,.

the most likely resulting behavior. -

1.6 Exaggeration

Exaggeration solves comparative analysis problems in a completely differ-
ent way from DQ analysis; it converts the comparative analysis question to ao]
simulation problem concerning an exaggerated system where the original per-
turbation has been taken to a limit, and then analyzes the resulting behavior. .
This process decomposes naturally into three phases.

12

!% N



NO X"Minf -QX

qO

-..-

0 T

Minf F

Figure 1.6: Initial Behavior of Heat Exchanger

1.6.1 Transform, Simulate, and Scale Phases ,

Consider the heat exchanger from the last section (figure 1.5) in which hot 2
oil cools as it passes through a cold water reservoir. Given the comparative._
analysis question "What happens to the oil output temperature, if it moves . ,'
through the pipe more quickly? '" exaggeration uses the following reasoning: -

If the velocity were infinite, then the oil would spend negligible..,

time in the exchanger, so it would loose practically no heat. Thus
increasing the speed even a small amount should cause the output % '
temperature to rise.

This explanation clearly demonstrates the three phases of exaggeration
(summarized in figure 1.8). The transform phase converts the comparative
analysis problem to a simulation problem. Since the comparative analysis.'7
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Figure 1.7: Perturbed Behavior of Heat Exchanger

question concerned a perturbation in velocity, the transform phase generates
a description of a heat exchanger in which the oil moved with infinite speed.

The simulate phase takes this exaggerated description and performs qual-
itative simulation to generate its behavior. In this example, the simulate
phase predicts that the oil will exit after negligible time and after loosing
negligible heat. Although this phase is conceptually simple, many techni-
cal difficulties complicate the process of simulating systems with infinite and
infinitesimal parameters. As a result, the bulk of chapter 3 concerns exag- •
geration's simulate phase.

The scale phase takes the exaggerated behavior from the simulate phase
and compares it to the -riginal bchavior in ,,i attcmpt to answer the com-
parative analysis question. In this case it finds that the slow moving oil
lost more heat than oil moving at infinite speed. Since a large increase
in velocity caused a drop in heat loss, the scale phase concludes that any
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Figure 1.8: Overview of the Exaggeration Algorithm

increase in speed should result in an increase in exit temperature. Unfortu-
nately, while the conclusion is correct for this example, the inference is not
in general sound. It assumes (among other things) that the system responds
monotonically to the perturbation. Unlike DQ analysis, exaggeration is not
guaranteed to make correct predictions. On the other hand, exaggeration
solves a wider class of problems than DQ analysis and often produces a more
elegant explanation.

1.6.2 Qualitative Hyperreal Representation

Since exaggeration works by transforming a perturbation to a limit and an-
alyzing the resulting asymptotic behavior, it is critical to have a represen- r
tation capable of describing infinitesimal and infinite values. I meet this
requirement by extending Kuipers' QSIM quantity space notation using the
hyperreal numbers of nonstandard analysis [33,25]. Figure 1.9 shows some S

of the values in the hyperreal quantity space for the heat parameter.

There are actually many ipfinite hyperreal numbers, but the qualitative .,

hyperreal representation collapses them all onto the symbols inf and minf
depending on sign. Every landmark value (e.g., qo) has a halo of numbers that -P
are infinitesimally close; the two halves of this halo are denoted (HALO q0 +)
and (HALO q0 -) respectively. The positive infinitesimals, for example, are
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Figure 1.9: Some Values in the Heat Hyperreal Quantity Space .,'

represented (HALO 0 +).
The qualitative hyperreal representation (section 3.1) of a parameter's

state has two parts: value and dervative; square brackets are used to denote
the qualitative state. Thus, to say that velocity is infinite at time to and
steady, one could write:

[V(to)] = (infstd)

Since V = X, this implies that X is increasing infinitely fast at to; if its
value is zero, one could write:

[X(to)] = (0,(inc inf))

To say that there is an interval of time, A when heat jc ;nfinitesimally
less than its original value, qo, and decreasing with infinitesimal (negligible)
speed, one would write:

[Q(A)] = ((HALO qo -),(dec negl))

To describe the interval, 5, when heat is between the landmark values of zero
and q0, not in the halo of either, and still slowly decreasing, one would write:

[Q(B)] = (-<0, qo>-, (dec neg))

The presence of infinite and infinitesimal derivatives necessitates an en-
hanced temporal representation. Elegance dictates that time should be
treated no differently than other parameters, and a hyperreal abstraction
indeed fits well. A qualitative state may last for a closed instant of time -
(written 0), or an open interval of infinitesimal (negl), finite (fin), or infinite

16
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(inj) duration. This raisesa difficult problem for qualitative simulation -

how can one tell how long it takes a parameter to change from one qualitative
state to another? To solve this problem, the simulate phase of exaggeration
uses two novel techniques: predecessor-persistence filtering and successor-
arrival filtering.

1.6.3 Persistence and Arrival Filtering

The insight behind the dual techniques of predecessor-persistence filtering
and successor-arrival filtering is the following observation about transitions
in the qualitative hyperreal representation:

It may take longer for a parameter to transition to a new
qualitative state than it spends in its old state.

Lest this sound confusing, consider the following concrete example. Let
I be a parameter defined as the identity function I(t) = t. Consider the
length of the time interval, A, in which [I(A)] = ((halo 0 +),(inc fin)),
defined as PERSISTENCE of the qualitative state in section 3.3.4. I claim that
I persists in (halo 0 +) for negltime. For example, if I persisted in the halo
for a standard real time, to, then that would imply that to E (HALO 0+), in

other words that to is infinitesimal, not a standard real. Likewise 0 and inf S

persistences also lead to contradictions, thus I persists in (HALO 0 +) for
negl time.

Now consider the time it takes for I to reach the next qualitative state,
-<0, inf- (formalized as SUCCESSOR-ARRIVAL TIME in section 3.3.5). I argue
that I's successor-arrival time is fin. By definition of -<0, inf-, when I 0

reaches this qualitative value it must have taken a standard real value, ro.

Thus r0 time must have elapsed since I left 0. Since only negi time passed
reaching (HALO 0 +) from 0, I takes fin - negi = fin time to arrive at its
new qualitative state. In other words, even though there is no intervening
hyperreal value sandwiched between (HALO 0 +) and -<0, infr-, I takes
longer to reach its new qualitative state than it spends in its original state.
The cause of this apparently mysterious behavior is the unintuitive nature of
the order topology of the hyperreal numbers (explained in detail in chapter

3). Fortunately, the prescription is simple: a hyperreal qualitative simulator
must distinguish between the time that a predecessor state persists and the
time required to reach a successor state.

17
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To see how these two metrics are used, consider the first few decisions the
simulate phase must make concerning the infinite flow-rate heat exchanger.
The transform phase constructs an initial state that has oil position equal to
the left end of the pipe and increasing infinitely fast, [X(O)) = (xo, (inc inf))
Heat is equal to some initial value and is decreasing at a finite rate, [Q(0)]
(qo, (dec fin)). How long does this state last and what are its successors?

The notion of persistence, the maximum length of time a parameter can
remain at a qualitative state, answers this question. To determine time one
needs a measure of distance and speed. The speed measurement is easy;
it comes from the parameter's the qualitative derivative. The appropriate
distance measurement turns out to be the 'width' of the qualitative state,
which is 0 for a point value. Since 0 divided by any nonzero rate is 0, and since
both parameters have point values, they can persist in their current values
for at most a point of time. This implies that in the successor state both
position and heat have moved a negligible distance from their initial values:
[X(A)] = ((HALO xo +),(inc inf) and [Q(A 1)] = ((HALO qo -),(dec fin)).

How long does this A1 last and what state succeeds it?
To answer this question, a simulator needs to reason about both persis-

tence and arrival times. The width of each parameter's current values is neg-

ligible, negi. Since Q is moving with finite rate, its persistence is n = negl.

Although velocity is infinite, X has the same persistence: n -e = negi. Thus

persistence values show that the state will last for negl time but do not pre-
dict whether X will change values before Q or whether they will transition
at the same time. To determine this, arrival values are necessary.

The time required to reach one qualitative state from another is dependent
on the distance between the two. Since both Q and X are moving from
the infinitesimal halo surrounding a point value into an open interval of
standard, finite real numbers, they must each traverse fin distance before
arriving at their successor qualitative states. Like persistences, arrival times

are computed by dividing distance by rate: Q arrives in = fin time while

X only requires =negl time. This means that X must change qualitative
inTf p

states before Q, so the successor state has [X(A 2 )] (-.<xo, infr-,(inc inf))
and while Q remains in (HALO q0 -).

%
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Without the predecessor-persistence and successor-arrival filters qualita-
tive simulation using the qualitative hyperreal representation would produce
a huge number of inconsistent behaviors. Such weakness in the simulate

phase would render exaggeration impotent to solve most comparative analysis
problems. Efficient computation of persistence and arrival values, therefore,
is central to exaggeration's success.

1.7 Conclusions

This thesis makes several contributions to the field of qualitative physics.

" It develops a precise formulation of relative change that extends earlier
attempts [16] by explicitly accounting for multiple perspectives (sec-
tions 2.1.2 and 2.1.3).

" It presents inference rules for performing differential qualitative analysis
and proves their soundness (section 2.2).

" It discusses an implementation of DQ analysis and uses it to test the
theory (section 2.3). 10

• It extends the quantity space representation to account for infinitesimal
and infinite hyperreal numbers (section 3.1).

" It discusses the implementation of a qualitative hyperreal simulator
that uses many new ideas (four transition tables, predecessor-persistence -

filtering, successor-arrival filtering) to reduce ambiguity (section 3.3).

" It introduces exaggeration, a novel method for solving comparative
analysis problems, and shows how qualitative hyperreal simulation is
central to its operation (chapter 3).

" It compares the two comparative analytic techniques on a wide variety
of dimensions so that future researchers can easily understand their
strengths and weaknesses and use them effectively as black boxes.

Neither DQ analysis nor exaggeration is perfect, but their strengths sup-
port each other. DQ analysis is sound; it produces no incorrect answers, but S',
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there are many cases where it doesn't answer at all. While exaggeration can
produce a false predictions from systems that are not monotonic, it answers
a wider class of problems than does DQ analysis. These complementary abil-
ities suggest a powerful high level architecture. Given a problem, first try to
solve it with DQ analysis. If that works, then a sound answer is guaranteed.
If DQ analysis fails, then apply exaggeration. Now check exaggeration's pre-
dictions with all of the relative change values that DQ analysis is able to
deduce. If they all agree, the chances are good that nonmonotonic behav-
ior is absent. Finally, exaggerate the perturbation in the opposite direction
and check that the resulting predictions are the opposite of the first trans-
formation. Although there will still be pathological cases, these precautions
maximize the heuristic power of the exaggeration method.
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Chapter 2

Differential Qualitative
Analysis

Differential qualitative (DQ) analysis solves comparative analysis problems
by propagating the effects of a perturbation through the structural model of
the system. DQ analysis requires three inputs: a description of the system's
behavior (from a qualitative simulator), the structural equations defining the
system model, and a perturbation. A forward chaining constraint propagator
uses a set of inference rules to deduce the system's resulting change in behav-
ior. As these rules contain the knowledge necessary to perform DQ analysis,
a discussion of them forms the bulk of this chapter. However, before the in-
ference rules can be explained, it is necessary to define more precisely how an
input perturbation and the behavioral output can be represented as relative
change (RC) values. -

2.1 Preliminaries

As my formalism is based on that used by Kuipers for QSIM [27], I start out S
by summarizing his definitions.

Definition 1 A PARAMETER is a reasonable function of time.

See [27] for the actual definition of reasonable function; the intuition is
that of continuity, continuous differentiability, and a finite number of critical e-.r
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points (places where its derivative is zero). Parameters are denoted by capital
letters. Thus the velocity of a projectile might be described by the parameter,
V, which is a function that maps time to velocity.

Definition 2 Each parameter has an associated set of LANDMARK VALUES
which is a subset of the range of the parameter. The landmark values always
include (but aren't restricted to) zero, the values of the parameter at the
beginning and ending times, and the values of the parameter at each of its
critical points. A time, t, is a DISTINGUISHED TIME POINT of a parameter
P if it is a boundary element of the set of times that P(t) = pi for some
landmark value P.

Landmark values are those values considered to be interesting to the
human observer, and the times when these values are reached are of interest
too. When a parameter becomes constant for an interval of time, then it will
take on a landmark value for infinite number of time points. This is why the
definition only considers the boundary times distinguished.

Definition 3 A SYSTEM is a set of parameters that are related with a STRUC-

TURAL DESCRIPTION that consists of a finite set of qualitative differential

equations defined using the following: time differentiation, addition, multi-
plication, and relation by monotonic functions. JW

Kuipers' program, QSIM, takes a system and a set of initial values for each
of the parameters and produces a set of possible behaviors for the system;
the definitions below describe this behavioral output:

2.1.1 Qualitative Behavior

Definition 4 Let Po < ... < Pk be the landmark values of a parameter P.

For any time t define the value of P at t as:

QVAL(P,t) p j  if P(t) = landmark pjj (pj,pj+ ) if P(t) E (pipj,+,)

Define the direction of P at t as:
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inc if P(t) > 0
QDIR(P, t)= std if - P(t) = 0

dec if P(t) < o

Define, Qs(P,t), the state of P at t, as the pair: (QVAL(P,t),QDIR(P,t)) N"

The qualitative state over the interval between two adjacent distinguished
time points is defined similarly.

Definition 5 For any parameter P, the BEHAVIOR of P is a sequence of
states of P:

QS( P, t o ) , QS( P, to, t I ), QS( P, t I ),..., QS( P, tn_1, t ), Qs( P, tn )

alternating between states at distinguished time-points, and states on intervals
between distinguished time-points.

Recall that a system contains a set of parameters each with its own land-
marks and distinguished time points.

Definition 6 The DISTINGUISHED TIME-POINTS of a system are the union
of the distinguished time-points of the parameters. Thus the state of a system
changes whenever the state of any parameter changes. The BEHAVIOR of a
system is thus a sequence of system-states alternating between distinguished
time-points and intervals.

To perform comparative analysis it is necessary to abstract away from
specific times, since two different systems may have analogous behaviors,
but change states at different times. This is where my formal treatment
diverges from that of Kuipers.

Definition 7 A parameter is said to reach a TRANSITION when its qualita- N'

tive value changes from one QVAL to another. A system is said to reach a

TRANSITION when any parameter transitions. Transitions only occur at dis-
tinguished time-points, and every distinguished time point marks a transition.
It will prove useful to be able to refer to these transitions independent of the
time at which they occur, thus the sequence of transitions for a behavior will
b- denoted by the set {/yi}. Every behavior also has a TIME FUNCTION, T,

which takes transitions to the distinguished time-points when they occur.
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The intuition is that each -y marks an event which changes the state of
the system. When comparing two behaviors, I match them up event by event
and use the time functions to tell whether one system is changing faster or
slower than the other.

2.1.2 Comparing Two Behaviors

To compare two behaviors, they must be distinguishable; I use the hat accent
to denote the second behavior. Thus T denotes the time function of the sec-
ond system, and F(T(-y1)) denotes the second system's value of F at the time
of the first transition. To simplify the problem of of comparative analysis, I
start by only comparing systems with identical structural descriptions whose
behaviors are topologically equal, as defined below.

Definition 8 The behaviors of two systems, S and S, are TOPOLOGICALLY

EQUAL if they have the same sequence of transitions, 70,...., Yk, and forall i ]

such that 0 < i < k,

QS(S, T('-i)) = QS(S,/(yi))

and forall i such that 0 < i < k,

QS(S, T(-y=), T(y,)) Qs(§, Ty-), (-j+1 ))

The assumption of topological equality rules out possibilities like the block
failing to make a complete oscillation if its mass was increased too much, but
it does allow a certain pliability. If two behaviors are topologically equal,
their respective sets of landmarks share the same ordinal relationships, but
the underlying real values for the landmarks can be different.

Section 2.5 explains how this assumption can be relaxed, but even with
it, the problem is nontrivial. Consider two oscillating spring-block systems.
Even if the blocks have different mass and the spring constants differ, the
two systems have topologically equal behavior. Yet the relative values of
parameters such as period of oscillation may be different. These are the first
changes that comparative analysis must determine.

Before I can explain the techniques for performing comparative analysis,
I need to present a notation for describing the desired output. It's easy to
compare the values of parameters at transition points:
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Definition 9 Given a parameter, F, and a transition -i, define the RELA-

TIVE CHANGE (RC) ofF at yi as follows:

Fi if IF(T(yi))I > IF(T(71i))I
Fii if IF(T(-))l = IF(T(7 ,))I
F4 i if IF(T(-yi))l < IF(T(yi))I

For example, if the two spring-block systems were both started with neg-
ative displacement and zero velocity (i.e., X < 0 and V = 0), their first
transition would occur when X reached zero. This notation allows one to ex-
press that the second block is moving slower at the point of transition: V4 1.
It is important to distinguish the relative change notation from statements
about values and derivatives. Even though V41, QVAL(V, T(,y)) is positive, -

and QDIR(VT(7,)) is std. , .

The curious reader may wonder at the use of absolute values in this def-
inition. Relative change could also be defined by comparing signed values.
I call the approach of definitions 9 and 11 MAGNITUDE SEMANTICS and the
alternate approach SIGNED SEMANTICS. The two approaches are theoret-
ically equivalent. However, since magnitude semantics appears somewhat
more natural and simplifies various proofs, it is the default for the rest of the
paper. In the places where signed semantics proves advantageous, it will be S

mentioned explicitly.

2.1.3 Comparing Two Behaviors over Intervals

It turns out to be somewhat more complicated to compare two behaviors
over the intervals between transitions. What does it mean to says that one
curve is lower than another over an interval? To do pointwise comparison,
some notion of corresponding points is necessary.

The intuition for the requisite comparison is displayed in the explanation
of spring behavior that was presented in section 1.5.1.

If the mass of the block increases, the force on the block is the %
same....-,

Yet this doesn't mean force is invariant as a function of time-that isn't S

true. Consider the time when the small block is at its rest position; the
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spring applies no force. But since the large block is moving more slowly, it
won't have reached the rest position and so there will be a force applied.

What the statement means is that force is invariant as a function of

position. For every position that the block occupies, force is equal in the
two systems, even though the two blocks occupy the positions at different
times. Although parameters are defined as functions of time, they often
need to be compared from the perspective of other parameters. Here it
proved advantageous to consider force as a function of position. Although
people understand arguments that leave these changes of variable implicit,
the notion must be made precise and explicit if computers are to perform
comparative analysis. The notion of perspective is foundational.

Definition 10 A parameter, X, is called a COVERING PERSPECTIVE over a

transition interval (7i, l,+ ) when the following three conditions hold:

1. QDIR(X,T(-yi),T(yi+i)) # std 0

2. AXlj,
3. Xili+1

When just the first condition holds, X is called a PARTIAL PERSPECTIVE.

When a parameter, X, is a partial perspective, it is strictly monotonic so
its inverse X exists. This means that it is possible to reparameterize any
other parameter, F, by composing it with the inverse:

Fx(x) - F(X-1 (x))

When X is a covering perspective, then Fx and Fx have the same domain.
Covering perspectives will prove especially important in the inference rules
of section 2.2. %

Definition 11 Given a parameter F, a partial perspective X, and a tran-
sition interval (7y,7f+1), let Fx denote F as a function of X. Let U be the
intersection of the domains of Fx and Fx [

= (X(2(-i)), X(((-yi,))) n (X(7-( ,), x(T( ,+)))

Define the RELATIVE CHANGE (RC) ofF over(yiyi~1 ) from the PERSPEC- 0

TIVE of X as follows:
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Ff, +1) if Vz E U IJ (x)I > IFx(l"
FII(,,+) if Va E U Jx(X)I = IFx(x)
Fx1i~l) ifVx E U Ix(x)l < lFx(x)l

In other words, force is 11 from the perspective of position, if for all po-
sitions that are assumed in both simulations (Vx G U) the corresponding

forces are equal. The definition of partial perspective says when is it possible
to use a parameter as a perspective; section 2.2 addresses the question when
is it useful to do so.

2.1.4 Time as a Perspective

Although comparisons of parameters that have been reparameterized by per-
spectives are more common, sometimes is is useful to compare via corre-
sponding times. To keep notation consistent, I will call this 'using time as a

perspective.' The goal is to come up with a meaningful definition for P (i,i+l)
and the other RC values.

One problem is that the duration of the two time intervals might be
different. If so time acts as a partial perspective-one quantifies only over
time in the shortest interval. Another problem is that the two transition
intervals might start at different times; in fact one interval might end before
the other starts, e.g., t(y-) > T(-y+i). The solution is to aiign the intervals
before quantifying.

%

27

,V% %t,

StS

.P. ,,

:)%



Definition 12 Given -trparameter P and an interval (-fi,"yi+I)" Let U .
(O,d) where d MIN(T(j+) - T(yi),T(Ii+1 ) - T(-yi))). Define the REL-
ATIVE CHANGE (RC) of P over (yjt+j) from the PERSPECTIVE OF TIME
as follows:

Pl, i+1) ifVt C U IP(T(-Yi) + t)l > IP(T(Ti) + t)l -

PHJ( +,) ifVt U lP(T(hi) + )1 = P(T(Yi) + t)

P4(i,i+) ifVt E U IP(T(Yi) + t)l < IP(T(-Yi) + t)j

2.2 DQ Inference Rules

This section presents a number of rules for computing and manipulating RC

values, describes how the rules were incorporated into a computer program,
and evaluates the program's performance.

" The duration rule formalizes "distance equals rate times time."

" The interval derivative rule expresses the relationship between one
derivative and another, e.g., "more acceleration leads to higher veloc-
ity.",r

" The transition derivative rule predicts the final value of a derivative
like velocity.

" The self reference rule says that every parameter appears unchanged

from its own perspective.

The perspective flipping rule allows a reasoner to change perspectives.

The transition and interval constant rules show the relationship be-

tween constants an' C values.

The end of time rule says that other things being equal a parameter
changes more, the longer it is changing.

* The one's own derivative rule predicts what happens when a parameter

is defined in terms of itself.
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e The multiplication rule demonstrates that the familiar rules of quali- -

tative arithmetic apply to RC values as well as derivatives.

Each of the rules are presented as theorems since they are proven sound.
For simplicity, however, only the interesting and difficult proofs have been
included in this paper. The rules have been implemented as part of CA, S
a ZETALISP program which solves comparative analysis problems using DQ
analysis. CA uses a constraint propagator to derive implications of these
rules. The resulting dependency structure can be translated into an English
explanation' or used by an explanation based generalizer. Although CA
is incomplete (there are some problems it for which it terminates without 0
solving), it does answer and intuitively explain a large class of problems.
Because the rules have been proven correct, CA is guaranteed to reach only
sound conclusions.

2.2.1 Duration Rule

This rule is the basis for the very powerful inference: distance equals rate
times duration. If the rate is slower in the second simulation, then it will take
longer to go the same distance. Although this may seem obvious, perspectives
are required to make precise the notion of 'rate is slower'; this makes it subtle. S
Before I can state the theorem, the notion of distance must be made clear.

Definition 13 Let X be a parameter which is increasing and positive (or de-
creasing and negative)' over the transition interval (7i,t7+,). Define DISTANCE-

BY X over ( as the relative change of the distance traveled by X over
the interval as shown in the following table of qualitative subtraction:

Starting RC Value

Ending ft ? f
RC I I f
Value 4 4 J.L

'The CA implementation of DQ analysis has only a primitive natural language gen-

erator. Unless specified otherwise, all English text was produced by hand translation of
computer generated dependency networks.

'A similar definition is made for the cases of increasing/negative and decreas-
ing/positive. This definition would be simpler to express in signed semantics.
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Note that the parameter X has a double purpose in this theorem: it has
V as its time derivative, and it is also the perspective from which V is seen
to 4. In the following, it may be helpful to think of V a velocity, and X as S

position. "a

Proposition 1 Duration Rule
Let V andX be parameters such that X is a partial perspective over(7i, 7j+ ).
Given V = - X, VJ) i,,, and -DISTANCE-BYX4 (jj+1 ) then )- '"..

T(-yi) > T(-yi+ 1 ) - T(-i), i.e. the duration of (-yi, -1 ) will increase.

Proof: Note that the proof is not obvious: Vx # 'aL I prove the case
in which DISTANCE-BYXII (tt+1). This is equivalent to requiring X to be a
covering perspective. Let a = X(T"(7 i)) and b = X(T(1 i+1 )). Since X is a
covering perspective, X has an inverse function taking position to time: *

X-' : (a, b) - 7 ,7(r+)

The function X -  dso exists, has the same domain, and a possibly different
range: (T(-yji), T(-i+,)). By definition V4x,i+l) means:.-

v(x-1 (x))j < IV(X-l(x))l Vx E (a,b)

Consider the case3 where V > 0; this implies that all values of V" are greater
than zero because otherwise the two systems would have different transitions,
violating the topological equality assumption. This means that:

0 < V(X'-(x)) < V(X-(x)) Vx C (a,b) S

So:
1 1 '.U.'.- '

> > 0 Vx E (a, b)
V(X- 1 (x)) V(X-(x))

So:

1 dx > dx > 0

LV(X-(W)) fa V(X-,(x))

'The case where V < 0 is similar; there is no case where V 0 because then X would
not reach a transition.
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But by the chain rule, the time derivative of X -1 at x is I So: 7?

V(X-,(r))

- > X- (b) - X'(a) > 0

Thus: "('yi+1 ) - 7"(i) > T(i+1) - T(Tyi). In other words, the duration of
the interval increases. 1l

It would be nice if one could show that the duration rule was sound
if the premise was weakened to have V4i,i+I) for some arbitrary covering
perspective P. However, the following proposition shows that this is false;
just because Plli,i+l) for a perspective X doesn't mean that there doesn't

exist some other perspective Z such that Pftz,i+l)"

Proposition 2 Non-Uniqueness
Given a system with parameters P, X, Y, and Z such that X, Y and Z are cot,-
ering perspectives over (-i, 7i+ ), then it is possible that Pfxi+l) and PIIY0+0
and Pi)

The example shown in figure 2.1 illustrates the proof by construction.
The thin lines indicate the values of the first system while the dotted lines
indicate the value of the second system. The first row shows that from the
time perspective the behavior of P doesn't change. The second row shows
the relative change of the perspectives. The third row depicts Px, Py and

Pz .
Although this aspect of RC values may seem strange, it is actually in-

evitable. After all, everything is relative to one's perspective. Imagine a
machine which hourly logs the linearly increasing concentration of alcohol in
a fermentation tank. It produces the following sequence of measurements:
0.02, 0.04, 0.06, 0.08, etc. But in the identical tank ne'arby, the logging
machine has a defective motor which runs too slowly and delays the mea-
surements. Although the fermentation is proceeding at the same pace in both
tanks, the second log will read: 0.03, 0.06, 0.09, 0.12, etc. Thus the plant
inspector, who only sees the alcohol-time curve from the perspective of the
logging device, might think that second tank was fermenting more quickly
even though the only real change was a slowdown in the speed of the timing
motor.
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2.2.2 Derivative Rules

These rules connect parameters that are time derivatives. The first works
over intervals and the second predicts RC values at interval endpoints. The 0
intuition behind the first is: if a parameter is I at the start of an interval,
but its derivative is 4 over the interval, then the parameter must be 4 over
the interval. As always, the ubiquity of perspectives complicates the matter.
Note the special role of X both as perspective and second integrand of A.

Proposition 3 Interval Derivative Rule
Let A, V,and X be parameters such that A = V, V = X, and X is a .
partial perspective over (yi, -yi+,1 ). Furthermore let A and V be positive over
the interval (yi, -ti+,). If XHl , -Vfj, Aij, and AU +1),. Then V.x

Proof: The chain rule makes this rule considerably harder to prove than the
duration rule. It suffices to show that there exists some position such that
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< V for all positions up to and including this position. Once it is known
that V goes down, the same argument can be used to show that it continues
to go down. Thus it will stay down until i+l is reached.
Let

dt1
dx V(X-(x))

Let

dXt

A can be expressed as a function of X

Because XIII, X(T(-yi)) X(T("yi)) a. Since A4j and Ax Ljj+1) it is the
case that for all z in the half open interval [a, b)

(X) > (())- (2.1)

M+x)), (i (X))3

Because -Vi and since V is positive,

-'(a) > i(a) > 0 (2.2)

Substituting (2.2) in the denominator of (2.1) gives

r(a) > (a) > (a)

So

(a) > i (a) (2.3)

And by continuity, equation (2.3) holds over a half open interval which may
be written as [a, c) for some c. This implies that the equation holds over the
closed interval [a,d] where d a + . But by the definition of i, for any 0
x0 E [a,d]
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(=x) =(a) + F(x) dx

So for all x E (a, d]

r(x) > i(x)

So for all x E (a, d]

1- 1 ¢
+(x) <(x

Thus by the definition of , for all x E (a,d]

V(X(x< <V(X'I(X))

SoV t(,i+i) 13

Above I pointed out the special role of X both as perspective and second
integrand of A. It is natural to ask if the interval derivative rule is true

for arbitrary perspectives. Unfortunately, it is not. Appendix B provides a -
counter-example which makes this point.

The interval derivative rule has an important corollary which predicts the
value of the middle derivative, V, at the transition ending the interval. The
intuition is twofold:

e If the object is accelerating slower, then its terminal velocity will be %

smaller.

e If the object accelerates for a shorter distance, then it will finish going
slower.

Proposition 4 Transition Derivative Rules
Let A, V, and X be parameters such thatA= V, V X is a partial
perspective over (-fi,yi+ 1), and both A and V are positive over the interval.
If one of the following conditions is true, 0

* Ai and AIXii+ 1 )) and -- Vfti and DISTANCE-BYX(i +l)

e X11i and DISTANCE-BYXli,i+ 1) and -'Vi and All(i,+, )

then VJi+l.

The rule is quite a mouthful, but that is simply because it is very general. ,-.
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2.2.3 Perspective Rules 0

These rules deal with establishing RC values for perspectives and switching
between them. The first is very simple, but turns out to be quite important.
The intuition is that if the plant manager was foolish enough to try and use
the logging devices to log their own speed, he wouldn't get a useful result.
Both the normal and slow machines would record that they turned one full
revolution during each revolution of the timing motor.

Proposition 5 Self Reference Rule
For any parameter P, if P is a partial perspective over (yf, yj+1 ) then Pl(,i+ ).

The perspective flipping rules switches between perspectives. The in-
tuition is that flipping perspectives (i.e., X P to pX) flips f to 1. if both
parameters are positive and increasing over the interval.

Proposition 6 Perspective Flipping Rule
If the parameters X and P are covering perspectives over (/,7j+x), the sign •
of X equals the sign of P over the interval, and XfP1~X+), then:

PXPli++) if QDIR(X, T(-yi), T(yi+,)) = QDIR(P, T(yi), T(7i+1 ))

P4(j,j+1 ) if QDIR(X, T(yi), T(yi, 1 )) = QDIR(P, Tl-yi), T(-2 + ))

If the sign of X is the opposite of the sign of P then the RC values are -

reversed.

Proof: I will prove the case where both X and P are increasing; the other
cases are almost identical. Let a = X(T(-yi)), and b = X(T(-yi+i)). For an
arbitrary x E (a,b) 3p such that X(P-(p)) = x because P is a covering
perspective, and thus onto. Let t= P1 (p), and let

i= X(t) = X(P(p)

By the definition of it follows that " > x. Let to = X-'(x). Since

X is increasing to < tj. Again because P is onto, 3P such that P-(p) to •
so x(( )) = x. Now, / < p because

= to <t, =

and P is increasing. But this means that

P5(X-'(x)) < P(X-(,))

and since x was arbitrary, it follows that P (i,) 0
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2.2.4 Constants

Frequently a system will contain a few constant parameters whose values
never change. The following rules are a simple way to express relationships
between constants in the notation of comparative analysis. The intuition
is that since perspectives just scale time, and constants don't change over
time, all perspectives agree on the behavior of constants. If there was no
fermentation happening in either vat (i.e. the alcohol concentration was
constant in both vats), and the concentration of alcohol was higher in vat
two, then both logging devices would agree on this even though their timing
motors differed.

Proposition 7 Transition Constant Rule
If a parameter K is a constant over (-yi, yi+i), and Kfi then Kfti+l.

Proposition 8 Interval Constant Rule
If a parameter K is a constant over (,y,, -+ ,), and Kt then for all parametcrs
P, if P is a partial perspective over the interval (yi,"ti+,), then P

2.2.5 Rules with Time as a Perspective

It is very common for one parameter to be the derivative of another with
respect to time. When it is possible to reason about these relations from the
perspective of time, greater power is achieved because the chain rule doesn't
interfere as it does in the derivative rule. The only drawback is the fact that
these rules are less frequently applicable.

The first rule says that if the a parameter is lifrom the perspective of
time, and the duration of the interval is increasing, then the parameter will
have changed more by the end of the interval.

Proposition 9 The End of Time Rule
Let X be a parameter such that XH1 and X(ii+,). Let s be the sign of X

over the transition interval ( and d be the sign of X's derivative. If
the duration of (yi, yi+1 ) is It, then

Xll, if d 0, otherwise
Xffi if s= d
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The proof of this lemma is trivial and thus omitted, but it should be
noted that it is easier to express using signed semantics. The second rule is
used for determining a parameter RC value from the perspective of time. It
applies whenever the time derivative of a parameter is a linear function of
the parameter.

Proposition 10 One's Own Derivative Rule
Let X, V, and K be parameters such that V = i X, V =MULT(X, K), andd"

K is a negative constant. If V(T(yi)) J 0 and Ili and Kft(,i+,) then X (,i+,)

2.2.6 Rules from Qualitative Arithmetic

Research in qualitative simulation [8,16,49,27] has developed constraints on
derivative values for parameters in ADD, MULT, and monotonic function con-
straints. For example, if X x Y = Z and the derivatives of X and Y are
positive, then Z must have positive derivative as well. These rules can be
generalized to include RC values at transition points and over intervals. Here,
I present just the rule for a MULT constraint at a transition point.

Proposition 11 Multiplication Rule
If X, Y, and Z are parameters which are related by the constraint, Z
MULT(X, Y), then the following table displays the possible RC values for Z
at a transition point:

xC II, f, I1L V ,

The rule for the ADD constraint is similar, but complex to write using -_

magnitude semantics.

2.3 Implementation

To test the theory of DQ analysis, a program called CA has been written on
a Symbolics lisp machine. When a user selects an example, CA runs QSIM
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[27] on the example to produce a set of qualitative behaviors for the example.
The user selects a behavior and also a set of initial RC perturbations. CA
translates the QSIM behavior and perturbations into ARK4 assertions. At
this point ARK forward chains using the propositions described earlier in
this section. ,

Each of these propositions is implemented as an ARK rule or more than
one if the proposition used disjunction or negation. For example, the duration
rule (proposition 1) is encoded as the three ARK rules of figure 2.2. The
various definitions and propositions require about sixty ARK rules.

(=:' (AND (D/DT ?x ?v) ; ?v is the derivative of ?x
(DISTANCE-BY ?x (?start ?end) deq) ; ?x travels the same distanceI
(RC ?v (?start ?end) ?c (P- ?x)) ; the RC of ?v is ?c from
(OPPOSITE-RC ?c ?oc)) ; the partial persp. of ?x

(DURATION (?start ?end) ?oc) ; if ?c is ft, ?oc is 4
duration- rulel) l .

(:: (AND (D/DT ?x ?V) I
(DISTANCE-BY ?x (?start ?end) ?oc) ; if ?x travels ?oc distance

(RC ?v (?start ?end) ?c (P- ?x)) ; and V's RC agrees
(OPPOSITE-RC ?c ?oc))

(DURATION (?start ?end) ?oc) ; then the duration is ?oc $3duration-rule2)

(:" (AND (D/DT ?x ?v)

(DISTANCE-BY ?x (?start ?end) ?oc) ; if ?x travels 'less' distance
(Rc ?v (?start ?end) deq (P- ?x))) ; and V doesn't change

(DURATION (?start ?end) ?oc) ; then the duration is 'less' S
duration-rule3)

Figure 2.2: Propositions Are Encoded Directiy Into ARK Rules

The simplicity of the transformation from proposition to ARK code pro-
vides confidence in the soundness of the implementation. And the fact that

4 ARK is a descendant of AMORD [9] implemented by Howie Shrobe and others.
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most rules get used in each -explanation, establishes their utility.
Since ARK maintains justifications for all its assertions, it is possible

to generate explanations for CA's conclusions. Consider the spring/block
example. The question here is: "What happens to the period of spring
oscillation if the mass of the block is increased?" The system is defined in
terms of six parameters: spring constant K, mass M, position X, velocity
V, acceleration A, and force F obeying the following equations:

A=gV
dt

d x

F = MULT(M, A)

F = MULT(K,X)
dtTt M =std
d K = std
dt

The initial conditions are specified as follows: M(O) > 0, K(O) < 0, V(O)
0, and X(0) = xO0 < 0. Since energy conservation is not made explicit in
the equations, QSIM produces several possible behaviors for this system.
Although comparative analysis could be done on any of the behaviors, I as-
sume in this example that the user selects the interpretation corresponding
to stable oscillation.

Now the user selects the perturbation. Because some parameters depend
on one another, not all parameters may be perturbed. The situation is analo-
gous to the problem of specifying a unique solution to a differential equation
where values must be given for the independent parameters and a set of
boundary conditions provided. In this example, M and K are independent,
while values for X and V are needed as boundary conditions. Thus to specify
a comparative analysis problem, these four parameters need to be given ini-
tial RC values.' For this example, the perturbation consists of the following
initial RC values: M 0 , K110, V110, and X110.

'The choice of these four parameters is somewhat arbitrary. Mathematically, it would
be equally reasonable to choose A instead of X, but this does not make physical sense; it
seems intuitively impossible to directly affect acceleration. Since there is no way to deduce
this from the differential equation model, it is essential for the person who constructs the
model to annotate the structural description with the list of'causally primitive' parameters
- in this case, the four listed above.
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Given this input, CA correctly deduces that the block will take longer
to reach the rest position (X = 0) from its original negative stretched po-
sition. Figure 2.3 shows the explanation that CA generates; this is created
by throwing away all perspective information once computation is finished.
I have annotated the explanation with the names of rules used in each step.

Assuming M is increased:
X doesn't change and (self-reference rule)
K doesn't change and (interval constant rule)
F equals K times X

-So F doesn't change. (multiplication rule)
and

M increases and (interval constant rule)
F equals M times A
So A decreases. (multiplication rule)

So V decreases. (derivative rule)
So the time duration increases. (duration rule)

Figure 2.3: CA Generated Explanation for Spring with Heavier Block

Since it is an initial prototype, CA makes no use of control rules. All pos-
sible forward chaining inferences are made using every possible perspective.
Despite this, computation rarely exceeds a minute on any of the problems
tested. If larger problems were to be attempted, some form of control would S
be desirable. Backward chaining from a goal pattern might increase effi-
ciency. There appears to be no reason why the schemes of [11,461 could not
be applied. Possible heuristics include preferential investigation of certain
perspectives and avoidance of certain computationally explosive rules like
the perspective-flip rule.

Another technique toaspeed up reasoning is explanation based generaliza-
tion [29,13]. Following the approach of [24], I implemented a postprocessing
learning routine that takes CA explanations and produces new ARK rules
which may be added to the ones presented above. While these new rules
are independent of any particular domain (i.e., springs), they are optimized
to solve a specific class of comparative analysis problems. Less general than
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the rules presented above, the new rules are considerably more general than
the specific explanation from which they are derived. Although I have corn-
pleted the EBG implementation, the empirical evaluation of EBG's ability
to increase DQ processing efficiency remains as an area for future research.

At present CA has been tested for multiple perturbations on over fifty
comparative analysis problems using over twenty models (appendix F). While
it always terminates and never produces an incorrect answer, CA doesn't nec-
essarily deduce RC values for every parameter. Section 4 explains how this
is a limitation of the DQ analysis technique independent of the CA imple-
mentation.

2.4 Extensions for Diagnosis

A natural application for comparative analysis is the automated diagnosis of
continuous devices such as analog electronic circuits. Generate and test is a 0

standard paradigm for hardware diagnosis [19j: candidate faults are proposed
then evaluated to see if they account for the faulty measurements. Like all
forms of comparative analysis, DQ analysis can be used to test any candidate
faults that can be described as perturbations of continuous parameters in
the device. In addition, however, DQ analysis has the potential to generate
classes of candidate faults. The key is to run the DQ inference rules in.r
reverse. For example, the duration rule says:
Proposition 1 Duration Rule hg

Let V and X be parameters such that X is a partial perspective over ('yi,,Tiy1 ). "e
Given V= 4 X, V1(,i+l), and -DISTANCE-BYX J(,S+ ) then the duration of
(7yi, 7i+) will increase.

A natural question is "Can the duration rule be reversed? Is the converse
sound?"

Conjecture 12 Converse Duration Rule •
Let V and X be parameters. Given V = X and -DISTANCE-BYXJJ(i+ ,.

If the duration of(yiyh+i) f, then x

Unfortunately, the converse is false, as are the converses for other impor-
tant rules such as the various derivative rules. The problem results from an
implicit closed world assumption used in reversing the rule-that one of the
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three RC values, f, 4, or ff, always applies. Proposition 21 showed that this
was false.

Of course every transition interval could be broken into pieces such that a 0-

single RC value applies over each piece, but this misses the fundamental issue.
The decomposition of time into transition intervals is forced by behavior of
the system. Thus transition intervals have genuine qualitative importance.
While sometimes useful, decomposing transition intervals into smaller pieces
runs the risk of introducing irrelevant distinctions.

Although the converse of the duration rule is not sound, its converse might '.

still be profitably used as a heuristic candidate generator. By reversing the
DQ inference rules, it may be possible to provide focus to the search for
probably faults in misbehaving analog circuitry.

2.5 Changes in Behavioral Topology

Recall that the inference rules of section 2.2 relied on the assumption that
the perturbed behavior was topologically equal (definition 8) to the initial ,.

behavior. In other words, it was assumed that while the perturbation might
change the relative values of parameters and stretch or shrink the length
of time intervals, the underlying sequence of transitions would not change.
Yet perturbations often will change the order or nature of transitions. This
section explains how to recognize the changes and predict the resulting be-
havior. The overall architecture (figure 2.4) is an extension of the flowchart
shown earlier (figure 1.2). The topology checker verifies the consistency of
the predictions made by the constraint propagator. Since the inference rules
are sound, any inconsistency must be caused by a violation of the topological
equality assumption. A simple graph search technique locates the trouble-
some transition and determines the correct behavior.

To illustrate these computations, I use the simple example of the heat
exchanger (figure 1.5) from section 1.5.2. This system is described in terms O.A. .

of five parameters, each a function of time: heat Q, heat flow F, thermal
conductivity K, velocity of the liquid through the pipe V, and position of a
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Figure 2.4: Overview of the DQ Analysis Algorithm

unit volume of oil' X. The following equations are obeyed:' -

F=.Q

F = MULT(Q, K) (2.4)

In addition V and K are considered independent and assumed constant
over time. The initial conditions specify the value for the independent pa-
rameters: V(O) > 0 and K(0) < 0, and also the boundary conditions:

'For simplicity, the simplistic 'liquid-individual' model of fluids is used here; see [201
for a discussion of the problems with this model.

7For simplicity, this model does not distinguish between temperature and heat. .. ,
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X(O) =O < 0 and Q(O) q0 > 0. From this information the initial
value of the dependent parameter, F, can be determined; denote F(0) = f 0 .
An invariant specifying that X must always be less than or equal to zero
ends the simulation when the liquid individual leaves the pipe.

Given this description, QSIM (and other qualitative simulators [17]) pro-
duces the tree of qualitative states (STATE TREE) shown in figure 2.5. Since
each path through the tree is a topologically distinct behavior, this tree rep- %

resents three possible behaviors for the heat exchanger. The topmost path
(QS1, QS2, QS3) corresponds to the behavior of figure 2.6 in which the sys- 4

tem reaches thermal equilibrium just as the oil leaves the exchanger.

Q: fO.std) IF:: (o.std)

IQS3
X. (x o.Inc X: ((xO.0)..c X: (o.nC)

Q (qOdec) 0: ((O.qO).dec) Q: ((O.qO).dec)

F ( inc - F: ((IOO)Jnc) F: ((fO.O).inc)

QS1 QS2 QS4

X: ((xO.O nc) X: ((xO.O)nc) X (0 in

Q: O.std) Q: .std) Q (0.std)
F: (o.std) F F: (o.std) - F (O.sid) "

QS5 QS6 QS7

Figure 2.5: QSIM State Tree Generates Possible Behaviors

Because of its qualitative representations, QSIM cannot choose between
the different behaviors for the heat exchanger; as far as QSIM is concerned,
they are all plausible. Since DQ analysis works relative to a single behavior,

one path through the tree must be chosen before running the rules of section
2.2. This selection of a behavior is a modeling decision; I assume that it is %
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Figure 2.6: Initial Behavior Corresponding to Path (QSl, QS2, QS3) _

done by a human. The selection consists of a series of choices at each branch
in the tree. By ruling out possible behaviors, each choice implicitly constrains
the model of the system, restricting the possible real values associated with
the qualitative values of each parameter. Thus the selection of behavior
(QS1, QS2, QS3) makes implicit assumptions about the relative values of
fluid velocity, V, and thermal conductivity, K. -

These implicit constraints are equivalent to the unambiguous selection
of the initial behavior. However, the comparative analysis perturbation can
weaken the balance of constraint in two ways: •

" The initial behavior can be rendered inconsistent. Section 2.5.1 explains

how the conflict is recognized and a new, consistent path is found.

" Alternate behaviors may become consistent. Section 2.5.2 explains how
to locate other consistent paths through the state tree.
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2.5.1 Initial Behavior Inconsistent

Suppose someone selected the path (QS1, QS2, QS3) as the heat exchanger's
initial behavior (figure 2.6) and chose the perturbation Kf. The state QS3
dictates the two transitions, Q reaching zero and X reaching zero, in the same
time instant. Since the perturbation causes heat to be lost more rapidly, QS3 i
can't be part of the final behavior. If one assumes that it is, the duration
rule (section 2.2.1) deduces a contradiction, as follows.

When Kf, it follows that FO). s Thus the duration until the first tran-
sition is 4 . However, being a constant V is unchanged by the perturbation,
so VII0.I); the duration rule uses this fact to conclude that the duration 0

Hence the conflict. The perturbation causes heat to reach its transition
quicker, but position is unaffected and will transition at the same time.

Behavioral inconsistencies are located by stepping through the transition
intervals from earliest on, and checking the RC values for the interval's du-
ration. Section 2.5.1 explains how to find all behaviors that avoid this single
contradiction while obeying the initial constraints. Section 2.5.1 provides
heuristics for eliminating inferior paths. Finally, section 2.5.1 shows how to
check if the new behavior is globally consistent, not just a fix to the first
contradiction. Note that all of these techniques depend on the DQ infer-
ence rules which are incomplete. As a result, while most inconsistencies are
detected, it is not guaranteed that all inconsistencies can be found. "

Finding Consistent Alternatives

A simple observation about the inference rules of section 2.2 forms the foun-
dation for the contradiction resolution method: only the duration rule can
generate an RC value for a time duration. Therefore, the contradiction must
be caused by two (or more) firings of the duration rule for the same interval.
What distinguishes these firings are the different perspcctive parameters used
in each application of the rule. S

In the heat exchanger example, the two perspective parameters are Q
and X. In the initial behavior, they reached transitions in the same state, W,

QS3. But to achieve consistency with the perturbation, we must find a
behavior where they reach transitions independently. This means finding a
path which starts with QS1 and QS2, and passes through a sibling of QS3.

8 By the interval constant rule, the self reference rule and the multiplication rule.
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The answer, of course, is the path (QS1, QS2, QS5, QS6, QS7) as shown
in figure 2.7. This path illustrates the general case. A node representing
the qualitative state at a time point (QS3) is replaced by three states: two

at time points (QS5, QS7) and one for the interval connecting them (QS6).
For the purpose of discussion, I shall call QS3 the FRAGMENTING POINT

and the two time-point states which define our objective, the PREPOINT and

POSTPOINT respectively9-

0 T

xOI AA
Minf X

Inf Q

qO

0 IT
0 1 IT

fO

Minf fF

Figure 2.7: The Behavior Corresponding to Path (QS1, QS2, QS5, QS6,
QS7)

9Actually, this discussion assumes a simplified version of the general problem. I assume

that the contradiction is caused by only two firings of the duration rule, and I assume that

at the contradiction can be resolved by the addition of a single new transition. The general . .
case is a straightforward extension. If the QS2 interval had three conflicting duration RC

values, 4J, 11, and 4L, then QS3 could split into five states: three for time points and

two connecting intervals. If multiple rule firings are allowed for each RC value, then 0

correspondingly more paths are possible. A^
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The problem, then, is to search the state tree among the siblings of the
fragmenting point to find the pre- and postpoint states. We know that Q
and X must reach transitions in different states, but which should reach
its transition first? Consider the two duration RC values which cause the
contradiction. Since 4 specifies earlier termination than 1i, Q, the perspective
parameter for the firing which produced the 4 value, will reach its transition
first. This means that the prepoint will have Q = 0 and not X xc 0. Since
QS5 is the only state to meet this requirement, so QS5 is the prepoint. For
the heat exchanger example, this state uniquely defines the new behavior,
because only one path includes QS5; hence QS7 must be the postpoint. Int
a more complex example, however, there could be several candidates for
prepoint and multiple behaviors passing through each one. The following
conditions further restrict the possibilities.

* All parameters that reach transitions in the prepoint, must have reached
transitions in the fragmenting point.

* All parameters that reach transitions in the postpoint, must have reached
transitions in the fragmenting point.

e All parameters that reached transitions in the fragmenting point must S

reach transitions in either the prepoint or the postpoint, but not both.

While these conditions are loyal to the implicit constraints resulting from
the initial selection of behavior, they are unfortunately not sufficient to guar-
antee a unique alternate behavior. The next section explains a heuristic that,
will guarantee a unique behavior but does not necessarily obey all implicit
constraints.

A Heuristic For Eliminating Behaviors

The conditions listed above produce a unique behavior except in cases where
additional parameters besides Q and X reach transitions in the fragmenting
point. When extra parameters reach transitions in the fragmerrting-4point, one
must choose where they should transition-in the prepoint or the postpoint.
The following cases result:

% .
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" The parameter could be- causally connected to either Q or X. In fact,
this is the case with the heat exchanger: F transitions to zero in QS3.
How did we know that F should reach its transition in the prepoint
rather than the postpoint? We didn't even need to consider the ques-
tion. By constructing the state tree, QSIM already handled the problem
for use. It recognized that F must transition whenever Q transitioned;
thus the state tree contains only this possibility. Since the topological
consistency code searches the state tree, it automatically benefits from
QSIM's work.

" There could be additional RC information about the parameter. For S

simplicity, this case was not discussed above, but suppose that the
duration rule had fired three times with Q, X, and S as perspectives. If
S and X both caused the duration rule to deduce an RC value of 11, then
both X and S should reach transitions in the postpoint. Unfortunately,
other RC values complicate the analysis. If three different RC values
result from the three firings, then the fragmenting point will split into
five states. The details are messy, but the concepts for resolution are
similar to those described above.

" The parameter could be independent of the perturbation without the
inference rules deducing this. As with the previous case (where the in-
dependence, duration 11, was deduced) the parameter should transition
in whichever state has duration ].

" The perturbation could change the parameter's transition time with-
out the inference rules deducing this. The correct behavior is not pre-
dictable since the change in duration is not known.

Since there is no way to correctly handle the last case, a reasonable heuris-
tic is to assume that it never happens. This corresponds to Occam's Razor.

Assume that unless the duration rule says otherwise, the perturbation does ,
not change the transition time of any parameters. Thus if the heat exchanger
example had an extra parameter, S, which reached a transition in QS3, then
we should assume that S transitions with X in QS7.
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I
Ensuring Global Consistency

Using the heuristics, the algorithm described above is guaranteed to find
a unique postpoint. But there may be several state tree paths that pass
through this post point. To locate a single new behavior, the program must
step through the original behavior from the fragmenting point onwards. Ev-

ery time a branch in the tree is taken, the corresponding descendant of the
postpoint should be selected as well. When the original behavior reaches a
leaf, a unique new behavior will result. Unfortunately, there are two reasons
why processing must continue.

* Many RC values must be recomputed. Because the RC values refer to
transition points and intervals, all values from the fragmenting interval
onward will be incorrect. This isn't very surprising; after all, we started
with cofli,tipg duration RC v:aues in the first place. Given the new
behavior, the inference rules of section 2.2 must be rerun to generate a

consistent set of RC values.

* What if these rules generate a new contradiction? There is no guarantee
that the new behavior is topologically sound. However, if conflicting
duration RC values are generated for an interval, that interval must

occur after any interval which caused a previous conflict. Thus each
cycle of inference rules and topology resolution guarantees that the time
of first inconsistency increases. Since all behaviors are finite, the cycle

must eventually terminate.

It is possible that a more sophisticated algorithm could eliminate this .

cyclic approach by a detailed analysis of the initial behavior. Since all param-
eters are continuous functions of time, no (small) perturbation can invalidate
the initial behavior unless the behavior has a state in which two parameters
transition. Perhaps all such states could be checked at once. U

2.5.2 Finding Other Consistent Behaviors

Sometimes a perturbation will be consistent with the initial behavior, i.e. not
violate the implicit constraints, but will weaken them instead. In other words,

there may be several behaviors which are consistent with the perturbed initial -
behavior. Since the QSIM state tree records the results of past transition
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analysis, a simple search technique suffices to find -the behaviors that are S
consistent with both the perturbation and the implicit constraints. Four
cases need to be checked: compacting, stalling, kick-starting, and splitting.

e COMPACTING

When the duration of an interval is decreasing, perhaps the states on
either side will merge into a single transition. Suppose the initial be- %

havior is the path (QS1, QS2, Qs5, QS6, QS7) as shown in 2.7, and
suppose the perturbation is K4l. Although the initial behavior is con-
sistent with this perturbation, it is possible that thermal equilibrium
will be delayed until the precise moment that the oil leaves the pipe. 0

This would correspond to the behavior (QS1, QS2, QS3) as shown in
figure 2.6. Whenever the duration of an interval (e.g., QS6) is getting
shorter, CA looks for an uncle state which has the same transitions
(i.e. the same parameters reaching the same landmarks) as the union
of the parent and child of the interval state. Q and F reach transitions 0

in QS5, the parent of QS6, and X transitions in the child of QS6. So
the search produces the uncle, QS3, and constructs the corresponding .

path through it.

* STALLING

If the duration of an interval is ft, then maybe the parameters will not
transition in finite time. CA suggests a behavior consisting of the path
which ends at the interval state.

" KICK-STARTING

Kick starting is the inverse of stalling. If the initial behavior ended
with a terminal interval, and the perturbation is causing the interval's
duration to 4, then maybe some parameter will transition in finite time.

CA returns all paths that pass through the interval state.

" SPLITTING

Splitting happens when the duration rule' ° deduces a single RC value
of If or 4 from two different perspectives. For example, consider the

"Splitting is the only case that analyzes justifications and depends on the fact that the '"

duration rule is the only way to generate a duration RC value. Compacting, stalling, and S
kick-starting only require the RC value and access to the state tree.

.~v
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heat exchange with an initial behavior of (QS1, QS2, QS3) and the
perturbation of K) and Vft. Since thermal conductivity is higher,
equilibrium will occur sooner, but since the oil is moving faster, it will
get out quicker. Both parameters lead the duration rule to conclude
QS3 will occur quicker; thus the initial behavior is consistent. But so is
every behavior. If the thermal conductivity is much higher and velocity
is only a little higher, then the behavior (QS1, QS2, QS5, QS6, QS7)
will result. If V was increased more than K then the path (QS1, QS2,
QS4) would result. Because the perturbation was specified in qualita-
tive terms, there isn't enough information to resolve the ambiguity and
CA must return all possible splits of the two parameters Q and X.

Like the techniques of section 2.5.1, my methods for finding other consis-
tent behaviors are dependent on the DQ inference rules. As a result they are "

neither complete nor sound. For example, suppose the duration of an interval
was 4, but the duration rule had not deduced this fact. Then compaction
would not be considered and a possibly consistent behavior would not be
considered. Similarly, one of the techniques could suggest a behavior which
appears consistent only because the DQ rules were inadequate to expose a
contradiction.
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Chapter 3

Exaggeration

Exaggeration's approach to comparative analysis is very different from that
of DQ analysis. Instead of tracing the effect of a perturbation through the
causal structure of the system, exaggeration considers the behavior of a sys-
tem in which the perturbation is taken to a limiting value. If this new system
has qualitatively different behavior than the original, then exaggeration pos-
tulates a general trend caused by the perturbation. For example, consider the
heat exchanger example of section 2.5 and the comparative analysis question
'What would happen to the output temperature of the oil if it moved faster
through the pipe?' Exaggeration produces the following answer: ./. P

If the oil moved infinitely fast, it would spend almost no time
in the exchanger. Since almost no heat would be lost, the oil
would exit very hot. Thus increasing the fluid flow rate a small
amount should increase the output temperature a bit as well.

Thus exaggeration changes a comparative analysis question into a simula- P
tion problem about a system with infinite or infinitesimal valued parameters.
Figure 3.1 provides an overview of the program, EXAG, that implements the
theory of exaggeration in three phases. The TRANSFORM PHASE takes a
structural description of the system and a perturbation and produces a new
model using the qualitative hyperreal representation (section 3.1.2). The
SIMULATE PHASE (denoted HR-QSIM in the figure) simulates this hyperreal
model to produce an exaggerated behavior that is qualitatively different from
the behavior QSIM produces using the original model: in one case the heat
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has dropped a finite amount while in the other it has dropped only a neg- •

ligible amount. Finally, the SCALE PHASE compares the two behaviors and
predicts the answer to the original comparative analysis question.

V(O)= Q-SIM V T
v - "High]er oul P tP U

V=d/dt XQ

V(O HR-QSIM

Figure 3.1: Overview of the Exaggeration Algorithm

Since exaggeration is critically dependent on the notions of infinite and in-
finitesimal values, the next section defines a qualitative representation based
on the hyperreal numbers. The remainder of this chapter discusses the trans-
form, simulate, and scale phases in turn. Then, in chapter 4, I compare the

strengths and weaknesses of exaggeration and DQ analysis.

3.1 Qualitative Representation Extensions

Various AI researchers have attempted to incorporate into their programs the
seemingly intuitive notion of infinite and infinitesimal numbers. Frequently, .
the result has been inconsistent. To avoid this fate, I base the theory of ex- S

aggeration on the sound mathematical formulations of nonstandard analysis
[33].

54

0

1 l'r-X'~i t , %, , ,. ',,''' S' ' . ,''... "'- .<U .,



4

3.1.1 The Hyperreal Numbers

Although the technical details behind nonstandard analysis are tricky, the
intuition is simple. This section sketches an outline of the subject, simplified
from Davis and Hersh's Scientific American article [4]. For a discussion of
more detailed sources, see appendix C.

Many mathematicians, including Newton and Leibniz, have used the .

cept of an infinitesimal when reasoning about geometry, but only as an in-
formal aid. Everyone recognized that the very idea of an infinitesimal is
self-contradictory since it violates the Archimedian principle: "Every posi-
tive number, no matter how small, grows greater than one when added to •
itself enough times." Thus while infinitesimals might be a useful tool on the
route to a theorem, any final, rigorous proof must avoid them, perhaps using
the concept of limit instead.

This all changed in the early 1960s when Abraham Robinson proved the
cistence of infinitesimals having the same 'properties' as ordinary real num- S

bers. The trick was defining 'properties' correctly so that the Archimedian
p)rinciple did not count as a property. He defined property to mean "express-
;ble in first order predicate calculus." For example, one can use this language

to express the property of having an inverse as follows:

Vz (X = 0) V (]y Xy -1)

Robinson's proof starts with the finite, real numbers; call them the STAN-

DARD REALS. Let K0 be the set of all first order predicate calculus sentences
which are true about the standard reals. Of course, K0 is such a big set that
there is no way to know its contents (short of proving every possible calculus
theorem), but by definition the standard reals are a model of K 0. It turns"N.
out, however, that there are other models of K0 besides the standard reals,
and one of these models contains infinitesimals. The proof is simple given a
result called the compactness theorem [15] which states: "A set of sentences,
K, has a model if every finite subset of K has a model."

From this result, the existence of infinitesimals follows trivially! Add to
K0 the infinite set of sentences:

31 0<I< 2
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And so on... Every finite subset of these sentences will be true of the real
numbers, since a finite subset will contain a smallest fraction, kL and 0

will satisfy those sentences. Thus the compactness theorem says that there is
a model that contains a positive number, I, which is less than - foray

in other words an infinitesimal! This model is often called NONSTANDARD

simply because it is different from the standard reals; however, to distinguish
the model satisfying this set of sentences from other nonstandard models, I
use the name HYPERREALS.

Since the hyperreals are a model for K0, they act much like the standard
real numbers. For example, they are closed under addition and multiplica-
tion. In fact, the hyperreals can be thought of as a superset (technically,
'field extension') of the standard reals. The product of a standard real and
an infinitesimal is an infinitesimal. The product of two infinitesimals is a
new infinitesimal. Thus it turns out that there are (uncountably) many in-
finitesimals. Since Ko includes the fact that nonzero standard real numbers
have multiplicative inverses, nonzero hyperreals must also. The inverse of an
infinitesimal is called an infinite number; there are many of these also. The
sun of a standard real and an infinitesimal is not a standard real, it is a ."'

hyperreal number that is infinitesimally close to the standard real. Since all
infinitesimal numbers could be added to the same standard real, it follows
that every standard real number has a HALO of hyperreal numbers surround- A

ing it, at negligible distance, isolating it from other standard reals. The -
infinitesimals are simply the halo of zero.

One more fact proves very important. Just as there is no smallest or
largest positive, standard real number, there is no largest infinitesimal and
no smallest infinity. This fact occupies considerable attention in the section
on the simulate phase.

3.1.2 The Qualitative Hyperreals

While the QSIM qualitative representation is an elegant abstraction of the
standard real numbers, it does not suffice for the hyperreals. Parameters still
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map from time to their respective domains (positions, heats, etc.), but they
are now functions to and from the hyperreal numbers. Kuipers' restriction
that parameters be REASONABLE FUNCTIONS, is still valid; the intuition

is that they are continuous, continuously differentiable, and have at most
finitely many critical points in any bounded interval [27].

It is still useful to decompose the state of a parameter into two parts:

qualitative value and qualitative derivative, but each of these parts must be
extended. In the QSIM representation, the value part is either an interesting MOW

LANDMARK VALUE such as 0 or qo or the open interval between two landmark
values, e.g., the interval (0, inf). Since landmark values are a major way of

introducing meaningful qualitative distinctions into a domain model, they
are kept in the qualitative hyperreal representation. However, inf and minf

are no longer considered landmark values; they are treated specially.

Definition 14 Let Po < ... < Pk be the landmark values of a parameter P.

For any time t define the qualitative hyperreal value of P at t as:

inf if P(t) > every finite number

minf if P(t) < every finite number

pj if P(t) = landmark pj

(HALO pj +) if P(t) - p3 is infinitesimal > 0
(HALO pj -) if P(t) -pj is infinitesimal < 0

HR-QVAL(P(t)) -<pj,p 3+±>- if P(t) -p and p3+l - P(t) are
both non-infinitesimal and > 0

-.<Pk, infr- if P(t) is finite and P(t) - pk is

non-infinitesimal > 0
-<minf,po>- if P(t) is finite and P(t) -po is

non-infinitesimal < 0

If the same HR-QVAL describes a parameter for all instants in an interval of
time, A, then one may write HR-QVAL(P(A)). S

Thus all positive infinities are collapsed onto the symbol inf and all neg- .,

ative infinite numbers are denoted minf Every finite landmark, p, has an
infinitesimal halo above and below it; these halos are denoted (HALO p +)

and (HALO p -) respectively. The positive infinitesimals, for example, are .

represented (HALO 0+). The QSIM expression for an open interval, (PIP2),

57 %.~*

NA.

N'* JI~ -V ~ .- .~',*'. ~



"..

is not used since it overlaps with (HALO p, +) and (HALO P2 -). The defi- 0

nition of -<P1,P2 >- is equivalent to the difference between the interval (p1, P2)
and the two halos.

It also proves useful to extend the representation for qualitative deriva-
tive. In the QSIM representation the derivative part of a qualitative state "
is a simple description of the sign of the parameter's derivative: inc, dec, or
std. The qualitative hyperreal representation distinguishes between increas-
ing parameters depending on how fast they are growing.

Definition 15 Let P be a parameter and t be a time. Define the qualitative,
hyperreal direction of P at t as the pair of its qualitative direction and its •

derivative's order of magnitude:

HR-QDIR(P(t)) = (QoIR(P(t)) OM( -P; ))

The-qualitative direction, QDIR, is either inc, dec, or std as formalized in
chapter 2's definition 4. Define order of magnitude as:

inf ifIx > every finite number
fin if xI= a positive standard real number .

OM(X){ %f~
negi if IxF = negligible, i.e. a positive infinitesimal
0 if X = 0

If the same HR-QDIR describes a parameter for all instants in an interval of

time, A, then one may write HR-QDIR(P(A)).

Thus (dec inf) denotes the HR-QDIR of a parameter that is decreasing

infinitely fast. If a parameter's HR-QDIR is (std 0), then it may be abbreviated
std since 0 is the only possible order of magnitude of std.

Definition 16 Define the hyperreal qualitative representation, HR-QR, of a
parameter P at the time t (or the interval of time, A) as the pair of its
qualitative hyperreal value and direction:

[P(t))] (HR-QVAL(P(t)), HR-QDIR( P(t)))

The HR-QR of a parameter is denoted by square brackets. The qualitative.
hyperreal STATE of a system at a time point or interval is the set of HR-QRs

for all the parameters in the system.
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3.1.3 Behaviors over Hyperreal Time k'

As defined in chapter 2, definition 7, a parameter is said to TRANSITION

whenever it changes to a new qualitative value. However, as will be ex-
plained later, these hyperreal transitions are less intuitive than transitions
between standard QSIM qualitative values. For example, QSIM transitions S

always happen at a well defined point of time (called a 'distinguished time
point' in chapter 2, definition 6). This is no longer true in the qualitative hy-
perreal representation. When a parameter changes from the value (halo 0 +)
to -<0, inf-, for example, there is no single time point when the transition - -:

happens. This is discussed more in section 3.3.2. 0

Like the standard QSIM equivalent, a HYPERREAL BEHAVIOR is defined
as a sequence of qualitative states. However, the temporal nature of these
sequences is not as simple as it is in the QSIM case where a state representing
a time point is always succeeded by a state over an open time interval. As
explained more fully in the sections on predecessor-persistence (3.3.4) and 0

successor-arrival filtering (3.3.5), qualitative hyperreal states can persist for NA"

a closed point of time (written 0) or open intervals of infinite (in), finite %
(fin), or negligible (negi) duration.

0
3.2 Transform Phase

The transform phase converts a comparative analysis problem into a simu-

lation problem by creating a model of the system which has an exaggerated
initial value for some parameter. The trick is to produce a description which 0
has a qualitatively different behavior than the original. This is easy for the
heat exchanger given the comparative analysis problem "What happens to _,

output temperature if the oil moves faster?" The transform phase produces
a description with infinite oil velocity. In general, however, three questions -

must be answered during the transform process:

* Which parameter should be exaggerated?

* In which direction should the parameter be transformed?

* What should be the final value of the parameter? 0

The following sections discuss these questions. '5
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3.2.1 Choice of Parameter 0

For many comparative analysis questions, the question of choice of parameter
is easy to answer. Simply transform the parameter that is perturbed in the
comparative analysis problem. This approach appears to work whenever the
perturbation is a small, differential change.

However, there are slightly different comparative analysis problems in
which it is unclear which parameter should be transformed. For example,
consider the two heat exchangers shown in figure 3.2. Hot oil is cooled by
passing it through a narrow pipe which is in contact with a larger pipe holding
cold (but warming) water. The top design has the cold water flowing in the S
same direction as the hot oil while the bottom design has the two streams
running counterflow. An interesting comparative analysis question is "which
design can cool the hot oil to a lower temperature?"

T out

Regular Flow

T out

Counter Flow •

Figure 3.2: Regular and Counter Flow Heat Exchangers

Notice that this question is not of the differential type. The difference
between the two designs can not be characterized as an arbitrarily small ,,
perturbation. In one case the oil velocity is positive, in the other it is negative:
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the landmark value, zero, separates the two. As a result, transforming the oil
velocity does not result in an answer. If one considers the case in which the oil
is moving very slowly, the difference between the two designs vanishes. And
if one considers infinite oil velocity, the two designs again act the same-only
a negligible amount of heat is lost.

However, if one transforms the pipe length to infinity, then a difference '

between the designs becomes apparent. In both cases, the oil reaches thermal
equilibrium before exiting the pipe. In the case where the oil and coolant flow
in the same direction, the equilibrium temperature is intermediate between
the oil and water input temperatures. In the counterflow heat exchanger.
however, the oil leaves in equilibrium with the fresh cold water entering the
exchanger. Thus one can conclude that the counterflow exchanger can cool
to a lower temperature.

But how does one know to exaggerate the pipe length? Transforming to
an infinite thermal conductivity would have worked just as well, but no other
choice results in an answer. Currently, the EXAG program only solves c,'m-
,,arative analysis problems with differential perturbations; this counterflow
heat exchanger problem would stump it. An interesting direction for future
research would be to write a program that transformed every parameter and
analyzed the results.1 While this approach would likely result in many un-
interesting transformations, insights like the answer to the counterflow heat
exchanger comparison problem would occasionally result as well.

3.2.2 Choice of Direction

When transforming oil velocity to answer the question "What happens to oil
output temperature when the flow rate is increased?" EXAG chooses to send
the velocity to its limit, infinity, in the direction of the perturbation. This is
not the only possibility, however; the following, equally correct, explanation
would result if one transformed in the other direction.

If the oil moved at a negligible rate, then it would take an
infinite time to exit the pipe. Thus the oil would have reached
thermal equilibrium at the coolant's temperature when it left.

'Olivier Raimon has indicated (personal communication) that he is investigating this
possibility. He terms the various results 'caricatures' of the original system. . .

'...-.,
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Since this is colder than in the finite velocity case, decreasing
velocity decreases output temperature and increasing velocity in-
creases output temperature.

There are two criteria for selecting the best direction in which to transform
a parameter: ability to get an answer and the intuitive plausibility of the
resulting explanation.

Asymmetric Answers

While it is usually the case that exaggeration's ability to reach an answer
is insensitive to transform direction, this is not always the case. The ion-

differential comparative analysis problem of the counterflow heat exchanger
(figure 3.2) provides an immediate example. Transforming pipe length to in-
finity demonstrates the superiority of the counterflow design, but if the pipe
length is negligible then there is no difference between the two designs.

Section 3.3.4 explains an asymmetry in the simulation algorithm which
partially accounts for this phenomena. In any case, a simple solution is to,

try transforming in the opposite direction if the first yields no answer.

Psychological Appeal

The choice of transformation direction also impacts the intuitive appeal of
exaggerated explanations. For example, consider a horizontal, frictionless
block oscillating due to the action of a perfect spring. A natural comparative

analysis question is "What happens to the period of oscillation if the mass
of the block is changed?" Most people find it more convincing to imagine a le
very heavy block with an infinite period than an incredibly light block with
infinitesimal period. Since this effect is psychological, it is very difficult to
quantize.' As a result, EXAG does not attempt to consider this factor during
the transform phase.

'This psychological effect has an interesting physical basis. If the block has negligible
mass, then it is dominated by the mass of the spring. The modeling decision that the
spring has zero mass become questionable when reasoning about small blocks. After all,

a spring with no block attached does not oscillate infinitely fast.

e

62 S

IR

V. %1



[X(O)] = (xo,(inc inj))
[V(0)] = (inf, std)
[Q(O)] = (qo,(dec fin))
[F(O)] = (fo,(inc fin))
[K(O)] = (ko, std)

Figure 3.3: Transform Phase Output

3.2.3 Choice of Distance

Once one has chosen a parameter and the direction it should be exaggerated,
all that remains to choose is the final value. For most problems, the correct
choice is either an infinite or an infinitesimal value, depending on the trans-
form direction. If the trend is towards smaller values, EXAG transforms to
infinitesimal values, not to zero. This is the best way to avoid troublesome
discontinuities. Sections 4.5 and 6.2.3 talk more about this.

When the trend is toward larger absolute values, EXAG transforms to
inf or minf. For the heat exchanger question "What happens to oil output
temperature when flow rate is increased?", positive infinity is a good choice. 9
The resulting initial state is easily expressed in the qualitative hyperreal
representation (figure 3.3).

Unfortunately, it is not always appropriate to transform a positive pertur-
bation to infinity. The goal, when choosing a final value, should be to create

a new model with asymptotic values that has qualitatively different behavior O
when simulated. Infinitesimal and infinite values are common asymptotes,
but not the only ones. Consider the boiler shown in figure 3.4; cold water
flows in from the left and steam exits the top. -

Given the comparative analysis question, "What happens to the steam .2

output temperature if the water input temperature is increased?" Admit-
tedly, exaggeration is a poor technique for this question; ' however, as such
it is instructive to see how exaggeration must tackle the problem. Indeed,
EXAG does the wrong thing - it transforms the input water temperature

3See section 4 for a discussion of the relative merits of exaggeration and differential
qualitative analysis.
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Boiler

T in Water
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Figure 3.4: A Boiler

upwards to infinity. The upward trend is correct, but infinity is a bad choice
of final value. The resulting behavior depends on the details of the boiler
model (how are temperature, pressure, and boiling point related?). The pos-
sibility exists for one to conclude that the output temperature of the steam
would be infinite. Thus one might think that an increase in water temper- %

ature leads to an increase in steam temperature when, in fact, the steam
temperature does not change.

The reason that this is a poor choice is simple. While an infinite water in-
put temperature does cause asymptotic behavior, it is not the first asymptote
reached by increasing water temperature. When the temperature approaches
water's boiling point, the boiling rate hits infinity.-

4This all depends on one's model of boiling. For now, I am assuming the simple model
in which boiling rate is proportional to the flame's heat flow and inversely proportional to

the difference between water temperature and boiling point. A model which incorporated .
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In conclusion, the parameter should be transformed the shortest distance 0

that causes some parameter to reach an infinite or infinitesimal value. Fre-
quently, this requires explicitly setting the transformed parameter to a hy-
perreal value, but not always. For the boiler example, input temperature
should be transformed to 212 degrees Fahrenheit

3.3 Simulate Phase

Since the beauty of exaggeration is that it reduces a comparative analysis
problem to a problem of qualitative simulation, it should be no surprise that
the simulate phase is the most difficult of the three. The trick is to demon-
strate a qualitative simulation technique that can handle parameters with
infinite and infinitesimal values. Because Kuipers' QSIM [27,28] is simple,
precisely defined and widely available, I chose it as basis for the simulate
phase. Sections 5.2 and 4.5 discuss problems with this choice and alternate S

choices. -.

Unfortunately, the addition of infinite and infinitesimal values requires a
surprising number of modifications. The fundamental problem is due to the
strong reliance that all qualitative simulation algorithms place on the order
topology of the standard real numbers [50]; QSIM, for example, assumes that
the value spaces of time and the various parameters alternate between open
intervals and closed points. Unfortunately, the presence of infinitesimals in
the hyperreals results in a more complex topology where this is no longer the
case.

The next section briefly reviews QSIM. Then I present the extensions 0

which together form the HR-QSIM algorithm: new transition tables, en-
hanced constraint filters, the predecessor-persistence filter, the successor-
arrival filter, and the irrelevant-transition filter.

3.3.1 How QSIM Works 0

The following description is simplified from [27]. QSIM takes as input a set of
parameters (e.g., X, V, F, Q, K), a set of constraints relating the parameters %,, N
(e.g., figure 2.4), and a set of initial qualitative states for the parameters. As

the latent heat of vaporization would be more complicated.
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output, QSIM produces a tree of states; each path through the tree represents W
a possible behavior (e.g., figure 2.6 represents one path) of the systen. The 
first step of QSIM is to push onto a queue an initial state constructed from
the initial conditions. Then the following steps are executed repeatedly until
the queue is empty or (or until some arbitrary number of states have been
generated).

%

%
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1. Select a state from the queue.

2. For each parameter in the system, use the parameter's qualitative state
(value / derivative pair) as an index into a TRANSITION TABLE. By
exploiting the assumption that all parameters are continuously differ-
entiable, transition tables contain only a few next value / derivative
pairs for each index. For example, if the representation of a parameter
at a time point is 'at the point 1i and inc', then in the time interval af-
ter the point, the only possible qualitative value is the interval (14, 1+,)
and the derivative must still be inc.

3. For each constraint relating the parameters, generate the set of value
/ derivative tuples (pairs or triples) by computing the cross product
of the possibilities from step 2. Filter out the tuples whose values or
derivatives don't satisfy the constraint.

4. For each pair of constraints that share a parameter, P, check for con-
sistency. If one constraint has a tuple which assigns P a qualitative
value / derivative that is consistent with none of the other constraint's
tuples, then prune that tuple.

5. Generate all possible global interpretations from the remaining tuples.
If interpretations exist, then create new states and make them succes-
sors of the existing state.

6. Apply global filtering rules. For example, prune new states that are
qualitatively indistinguishable from the previous state. Add the re-
maining states to the queue.

The next sections explain the substantial modifications necessary to em-
brace the qualitative representation of the hyperreals. Section 3.3.2 explains
how step 2 requires four instead of two transition tables; in addition the
choice of table is more complex. Section 3.3.3 discusses the new constraint
filters that are necessary for step 3, and shows how one existing filter needs
to be modified. The most important change is the addition of temporal

filtering, unnecessary in the original QSIM representation. Two kinds of
temporal filters are required: section 3.3.4 predecessor-persistence filtering
and section 3.3.5 presents successor-arrival filtering. Section 3.3.6 introduces
several improvements to these techniques.
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3.3.2 Transition Tables 0

The extended qualitative representation requires extensive changes in the
use of transition tables. QSIM uses two tables while HR-QSIM needs four.
With QSIM it is always obvious which table to use, but this is no longer the
case with HR-QSIM. The difference results from the fact that the hyperreals _
have a different topology than the standard real numbers. However, before
considering this difference in detail, it is necessary to understand why QSIM
has two tables in the first place.

QSIM Uses Two Different Tables

QSIM uses two transition tables to avoid generating inconsistent combina-
tions of transitions that would need to be filtered later. Because parameters
are continuous, certain transitions (i.e. changes in qualitative representa-
tion) can't happen at the same time. QSIM uses two tables to group all the
compatible state changes together so that these inconsistent transitions are
never considered.

For example, consider a system with two parameters, A and B. Let So
denote the qualitative state in which A = (ao, std) and B = ((b0, bl), inc). Let
S1 denote the qualitative state in which A = ((a0, a1 )inc) and B = (b1 , std). 9
Although the change in A's value from So to S is possible and the same is
true for B, it is not possible for So to directly precede S1 . In other words the
two transitions cannot happen at the same time.

Seeing why this is true requires a rudimentary understanding of the OR- %

DER TOPOLOGY, the study of open and closed sets as defined by the 'less
than' inequality [30].

Definition 17 A set 0 of real numbers is OPEN if forall z in 0 there ezists
numbers, a and b such that a < x < b and all other numbers y which satisfy
a < y < b are members of 0. A set C is CLOSED if its complement is open.'

While it is possible for a set to be neither open nor closed, only two
sets of standard reals are both open and closed: the empty set and the set

'Technically, I should be saying "a subset is open with regard to the whole space".
However, since I will always be considering openness with regard to a whole space and
that space is obvious from context, I leave that phrase understood.

,- -d
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of all standard reals. QSIM is concerned with two simple kinds of sets:
sets containing a single point, which are always closed, and noninclusive
intervals between two points, (a,b), which are always open. In fact, every
QSIM behavior (such as that of figure 2.6) is a sequence of states alternating
between the state of the system at a closed time point and the state at an
open time interval. All this wouldn't matter except that parameters are
continuous functions of time. This becomes clear when one considers the
general definition of continuity [30] (more general than the familiar epsilon-
delta version because it does not depend on standard real values).

Definition 18 A function F : X -* Y is CONTINUOUS if and only if for
every open subset, U, of Y, the preimage of U, F-(U), is open.

This explains why A and B in the example above can't transition at the
same time. The qualitative value, a0, represents a closed set of real numbers,
but (b0, b1) denotes an open set. Since the parameter B is a continuous 0

function of time, the set of times, 1b, when B has qualitative value, (b0 , bl),
must be open. Similarly, A has value ao for a closed set of times, 1a. If state
So directly precedes S1, then Ta must equal Tb. But this implies that la is
both open and closed. Yet we know that _T is neither the empty set (since
state So exists) nor all of time (since state S, exists). Thus Ta does not equal 0
T b, i.e. the parameters must transition at different times. This cxanple can
be generalized as follows (also see figure 3.5).

Definition 19 When a parameter transitions from a qualitative representa-
tion representing an open set to one denoting a closed set of standard real
numbers, the change is called an OC-TRANSITION. When the transition is

from a closed set to an open set, the event is called a CO-TRANSITION. 6  %

Proposition 13 Given two adjacent states Si and Si+1 in a standard QSIM
behavior, if parameters A and B each take on different qualitative represen-
tations in the two states, then they both CO-transition or both OC-transition. .

9Kuipers uses the term "I-transitions" instead of OC-transitions since they are transi-
tions from an open interval to a closed point. Similarly, he uses the terni "P-transitions" -
instead of CO-transitions. Unfortunately, his terminology does not extend well to the

hyperreals.
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Figure 3.5: Transitions among Standard (QSIM) Qualitative Values

By separating CO-transitions and OC-transitions into two tables, QSIM
reduces the number of candidates that get filtered in algorithm stages three
and four. It is easy to choose the right table to use. If the current state
is at a closed time point, then the table of CO-transitions is correct. If the
current state is over an open time interval, QSIM selects the table of OC-
transitions. As figure 3.6 shows' for the single index, (l,,std), the possible
transition given by the two tables are different, but not disjoint. For example, .-.

both tables ;nclude entries that specify no change. As explained in [49,27] the
Mean Value Theorem and Intermediate Value Theorem of calculus provide 4 .

the constraint that limits the number of entries in each table.

CO-transitions OC-transitions % ')

(i,std) ( l,std)
((Ii, li+,),inc)
(i 1( t, l, ),dec) :_-%

Figure 3.6: QSIM Transition for (1i,std)

HR-QSIM Needs Four Tables "

Because the topology of the hyperreals is more complex than that of the
standard reals, there are four incompatible types of transitions and thus

7This data is based on Table 1 of (27, page 3001.
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four transition tables. Two of the tables have the same topology as QSIM's
tables. When a parameter changes from a landmark value to the point's
halo, it undergoes a CO-transition. The reverse change is an OC-transition.
But when a parameter moves between a halo and a standard real interval or
between a standard real interval and infinity, the situation gets more complex.

Consider a state change from (HALO 0 +) to -0, inf-. Since there is
no largest infinitesimal [33], (HALO 0 +) is an open set. Because there is no
smallest positive standard real number, -<, inf- is also an open set.' Thus
this transition has a peculiar open-open topology that would be impossible
in the standard reals and thus is not considered by QSIM.

The same reasoning that lead to proposition 13 dictates that one of these
open-open transitions cannot happen at the same time as a CO-transition
or an OC-transition. However, it turns out that there are two incompatible
groups of transitions that share the open-open topology.

Definition 20 When a parameter transitions from one qualitative represen-
tation to another HR-QR such that i's qualitative value changes from a non-
standard open value to a standard open value or its qualitative derivative
changes from a negl rate to a fin rate, the event is called an NS-TRANSITION.

A change in HR-QR is called a SN-TRANSITION if the opposite change is a
NS-transition.

For example, when a parameter changes from a qualitative value of (HALO 1,
+) to 4i, li+,>- the change is an NS-transition. If the parameter moved from
<0, infr- to inf then the change would be termed a SN-transition.

Proposition 14 A NS-transition cannot happen at the same time as a SN-
transition.

Proof: There are several cases to consider. The proof of the first case is
taken from Ernie Davis justification for his temporal topology rule [31.

1. An NS-transition from (HALO 0 +) to --<0, infr- cannot happen at
the same time as an SN-transition from -<0, inf - to inf. Consider
a system with three parameters, A, B and C obeying the constraint

'In fact, both these sets are both open and closed-a very different state of affairs from
the topology of the standard reals.
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C =MULT(A, B). Let So denote a qualitative state in which A has
qualitative value (HALO 0 +), and B has value -<0, inf,. Let S, de- 5

note a qualitative state in which A has qualitative value --<0, inf- and % ''

B has value inf. Although the change in A's value from So to S, is 2
possible and the same is true for B, it is not possible for So directly '-

precede SI. Since C = MULT(A,B), C has qualitative value (HALO 0
+) in state So and nf in SI. Because the continuous parameter C' -

cannot jump between these two values without hitting the intervening .
values, the two states cannot be adjacent. :...

"2. A NS-transition from (HALO 0 +) to -<0, inf>- cannot happen at the
same time as a SN-transition from -<0O, inf- to (HALO 0 +). The pre-

vious proof carries if one uses the constraint A = MULT(B, C').

3. A NS-transition from (HALO Ii +) to -4li, inf>- cannot happen at the
same time as a SN-transition from - 0, inf- to inf. This is shown by
constructing a system which violates case I through the use of an ADD .
constraint. As one parameter transitions from (HALO 1, t-) to -'.li, "v tf, '"

the new parameter transitions from (HALO 0 -f ) to --<0, inf-.-,v.

From these base cases, all other situations can be derived El'

co NS SN

Figure 31.7: Transitions among Qualitative Hyperreal Values

Thus ItR-QSI.N needs to use four different tables (figure 3.7) to predict'"
possible transitions, one table for each of: CO-transitions, ()(-transitio:, ., i-{.
N S- t tons andl SN-transifions. Like the original tables of Willia' ,r"•'.

Kuipers, the lIR-QSINI tables exploit topology, the Mean Vralue Tleorem am~l .

!) the Intermediate Value T'heore~m. Fig~ure :3.8 shows the table entries Which
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are analogous to .,e QSIM entries of figure 3.6. The NS and SN entries are
not very interesting because the initial value is a closed point which renders
impossible any open-open transition topology. Figure 3.9 shows the possible
next HR-QRs for the index ((HALO 0 +), (inc negi)) assuming a quantity space
of (minf 0 in). Entries for other index HR-QRs are similar; space constraints
preclude showing them all. In fact, for space reasons, they are implemented
procedurally (see appendix D for the code listing).

CO-transitions OC-transitions
(lj, std) (1j, std) 0
((HALO 1i ±),(ine neg))
((HALO t -),(decneg))

NS-transitions SN-transitions
(i, std)f (14, std)

Figure 3.8: Hyperreal Transitions from (14, std) a'

CO-transitions OC-transitions %

((HALO 0 +),(inc negi)) ((HALO 0 +),(inc negi))

NS-transitions SN-transitions V
((HALO 0 +),(Inc negl)) ((HALO 0 (In),(inc negi))
((HALO 0 +),(inc fin))

(-<0, inf -,(inc fin)) W,
-<0, inf-, ( inc net))

Figure 3.9: Hyperreal Transitions from ((HALO 0 +),(Inc negl))

Since QSIM behaviors consist of sequences of states alternating between
closed time points and open intervals, the temporal topology uniquely deter- 0

-% *?;.-'

mines which transition table should be used. If the current state is at a closed
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point, only CO-transitions need be considered. The situation is miore colll
plex, however, when performing qualitative simulation using the hyperreals.
States can persist for a closed time point, or an open interval of negligible,
finite or infinite duration. When a state's temporal topology is open, then
three tables must be tried: OC, NS and SN-transitions. As a result, a single
state can have two (or more) alternate successor states resulting froin differ-
ent types of transitions. If more than one table predicts the sanie transition
(e.g., no change) then the duplicates are pruned.

Possible Transitions for the Heat Exchanger

This section applies the transition tables to the problem of tile heat exchanger
example. As explained in section 3.2.3 (and figure 3.3), the transformn phase
generates an initial state that corresponds to a heat exchanger with an infinite
rate of fluid flow.

[X(O)] = (xo, (Inc litj)) "

[V(O)] = (inf, std)
[Q(0)] = (qo,(dec fin))
rF(O)] (fo,(Inc fin))
[K(O)l (ko, sd)

The principle of continuity as embodied in the HR-QSIM transition tables
greatly limits the set of possible transitions for this state. The independent
parameters, V and K, can never change by definition (arid thus aren't shown),
and the other parameters each have only one possible next HR-QR (froim the

CO-transition table): e e,

iX(A 1 )] = ((HALO xo +),(int inf))
Q(Aj)j = ((HALO qo -),(dec fin))

1F(A,)j -- ((HALO fo +),(inc fin))

Since these iHR-QRs are determined to be consistent (as described in the
next two sections) they define the sole successor to the initial state. This
successor state lasts for some (as yet undetermined) interval of 1im1e A1 .
Next, the transition tables are consulted again; this time the NS- and SN-
transition tables produce several possibilities. The NS-transiltion table allows
the following possible HR-QRs:
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[X(A 2)] = ((HALO XC0 +),(inc in!)) or

(--<xo, 0>-, (inc inj)) or
(-.<x0o, O>-,( inc fin)) or

((HALO x0 ±),(inc fin))
[Q(A 2)] = ((HALO qo -),(dec fin)) or

(-<0, qo>-, (dec fin))
[F(A 2 )] = ((HALO fo +),(incfin)) or

(--<fo, 0>-, (inc fin))

Since X has four possible HR-QRs, Q has two, and F has two, there are

4 * 2 * 2 = 16 possible (not necessarily consistent) HR-QR tuples that might

form successor states over the time interval A 2. In addition, the SN-transition

table admits the following possible HR-QRs:

[X(A 2 )] = ((HALO xo 4-),(inc in!))

[Q(A 2 )] = ((HALO q0 -),(dec negi)) or
((HALO qo -),(dec fin)) or

((HALO qo ),(dec in!))

[F(A2 ) ((HALO fo +),(inc negl)) or((HALO fo (incfin)) or.

((HALO Jo +),(inc fin)) or

((HALO fo +)(inc ini)

This results in 1 * 3 * 3 = 9 more HR-QR tuples some of which might

form consistent successor states. Since both tables predicted the possibility

that all parameters might remain unchanged, the total number of potential,

different successor states is 15 + 8 = 23. These states are not represented
explicitly, however, until Waltz filtering has been performed using knowledge 0

of the heat exchanger's structural constraints. .

3.3.3 Constraint Filters

Most of the QSIM filters work for the qualitative hyperreal representation

without significant changes. The derivative constraint, V = (X), for ex-

ample is violated by the NS-transition predictions that X might take on the

HR-QDIR of (inc fin) since V (inf, std). Checking this constraint reduces

the total space of possible states from 23 to 9. "

The type of filtering that requires augmentation is that pertaining to

corresponding values. Given a constraint, say F MULT(K, Q), and a set of
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values that are known to fit the constraint, say the initial values fo, ko, and
q0, then tuples of values can sometimes be filtered when otherwise they would
appear to match the constraint. For example, suppose that QSIM generated
the following values: fo for F, ko for K, and (0, qo) for Q. Without checking
corresponding values, this tuple would seem to satisfy the constraint since the
signs, - - +, are acceptable. By checking previously noted values, however,
QSIM realizes that this tuple is impossible. It does this by computing the
sign of the difference between the proposed values and the known values.
This case is inconsistent [27], but if F had the interval value, (fo, 0), then
the differences would have been acceptable.

In adapting this algorithm to the hyperreal representation, some changes
are necessary. In addition to checking the sign of the difference between
proposed and known corresponding values, HR-QSIM also checks the order
of magnitude of the distance as well. Thus the F-K-Q-tuple, (HALO fo +), ko,
-4<0, qo-, is eliminated even though the signs of the differences are satisfactory.
It is important to realize that inf and minf are not like normal landmark
values; they each represent a whole interval of hyperreal numbers. As a result, 7
corresponding values that include an infinity are never unique, hence less
useful for filtering. Filtering HR-QR tuples with inconsistent corresponding
values reduces the number of possible states from 9 to 5.

In addition to these checks on the order of magnitude of parameters that
are related by a constraint, it is useful to check the order of magnitude of the
qualitative derivatives of parameters involved in a constraint. Again consider
the constraint F = MULT(K, Q) and suppose that the qualitative derivative
of F is (Inc, negi) and that of K is sid, then the qualitative derivative of
Q must be (dec, negl). However, if the heat exchanger had infinite thermal
conductivity, i.e. K were minf then the situation would be more complicated.
HR-QSIM uses a qualitative version of the rule:

Tt-(FG) = FAG + G±F
dtdt

This rule reduces the number of possible new successor states from 5 to 39

Either X transitions to --<x0,0>- while Q and F remain in their halos:

9The relative power of these filtering rules is skewed by the order of application.
Whichever filter is applied first usually culls out the greatest number of inconsistent pos-
sibilities. A more accurate metric is the increased number of possible successors when a
given filter is turned off. _
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[X(A 2)] = (-<xo,O >-,(inc in!))
[Q(A2)] = ((HALO qo -),(dec fin))
[F(A 2)] = ((HALO fo +),(inc fin))

Or Q and F transition out of their halos while X remains in its:

[X(A 2)] = ((HALO xo +),(inc inf))
[Q(A 2 )] = (-<O,qo>-,(decfin))
[F(A2 )] = (-<fo,O>-,(incfin))

Or all three parameters transition out of their halos:

[X(A 2)] ((HALO xO +),(inc inf))
[Q(A 2 )] ((HALO qo -),(dec fin))
[F(A2 )] = ((HALO fo +),(inc fin))

The next sections explains how HR-QSIM uses the predecessor-persistence
and successor-arrival filters to determine that only the first of these possibil-
ities is reasonable.

3.3.4 Predecessor- Persistence Filter

The final extensions have to do with time. QSIM's temporal representation is
simple: states persist for either an instant (a closed point of time) or a finite
open interval. Furthermore, QSIM can quickly tell how long any state will
last; if the predecessor state lasted for an instant, the successor will persist
for an interval anA vice versa. The situation is not so simple for HR-QSIM.
Since the qualitative hyperreal representation allows derivatives to have a
negligible order of magnitude, a state might last for an infinite time before
a parameter transitioned to a new landmark value. And if some parameter
had an inf derivative, then the state might persist for only a negligible time.

Since the original QSIM cases are also still possible, I distinguish between
the following four qualitative lengths of time: 0, negl, fin, and inf. HR-QSIM
uses two techniques, predecessor-persistence filtering and -successor-arrival
filtering (section 3.3.5), to deduce the temporal extent of qualitative states
and to prune inconsistent successors during simulation.

The difference between the two techniques results from the following in-
teresting observation about transitions in the qualitative hyperreal represen-
tation:

7 7 ' . €
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It may take longer for a parameter to transition to a new
qualitative value than it spends in its old value.

Lest this sound confusing, consider the following concrete example.
Let P be a parameter, in other words a function from the hyperreals to

the hyperreals, defined as the identity function P(t) = t (see figure 3.10).
Consider the set of times that the qualitative value, (halo 0 +) accurately
describes P (below I formalize this notion as the "persistence of a parameter's
value"). I claim that P persists in (halo 0 +) for a negligible length of time. -N
One can derive a contradiction otherwise. For example, if P persists in
the halo for a standard finite time, to, then that would imply that to Ei
(HALO 0+) in other words that to is an infinitesimal. This contradicts the
assumption that to was a standard finite number. Persistence values of inf and
0 also result in contradictions. Thus P maintains the value of (HALO 0 +)
for negl time.

P(t) = t

-<0. inf>-

(HALO 0 +) S
TIME

0 NegI Fin

Figure 3.10: The Difference Between Peristence and Arrival Times

Now consider the time it takes for P to reach the qualitative value, -<0,
inf>-. The next section formalizes this notion as 'successor-arrival time'; here
I argue that P's successor-arrival time is fin. By definition of --<0, inf>-,
when P reaches this qualitative value it must have taken a standard real

value, ro. Thus ro time must have elapsed since P left 0. Since only negi
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time passed reaching (HALO 0 +) from 0,10 P must take fin-negl=fin time
to arrive at its new qualitative value. But this means that P takes longer
to reach its new value than it spends in its original value." Remember that , >

this is true even though there is no intervening hyperreal value sandwiched
between (HALO 0 +) and -<0, infr-.

Several benefits result from considering persistence and arrival temporal

measures separately. The relationship between the time when one state ends
and another starts is made clear. The resulting theory of hyperreal sinu-
lation is clean, even if unintuitive. Finally, an effective algorithm results.

The remainder of this section concerns predecessor-persistence filtering, a
technique for eliminating impossible successor states by checking persistence
times. Section 3.3.5 deals with the related technique, the successor-arrival
filter. Both techniques use a common mechanism, the DISTANCE-RATE-TIME

TABLE to compute temporal values. This table is indexed by rate and dis-
tance values and returns a time value. In both cases, the rate expressions
come directly from the order of magnitude of the parameter's qualitative
derivative. The difference between the time a parameter will persist in its
current value and the time required to reach its successor value comes from
the distance used to index into the table. To calculate the time a parameter
can persist in a qualitative value, the 'width' of the qualitative value is used
as a table index.

Width of a Qualitative Value

Intuitively, the width of a qualitative value is the order of magnitude of the

maximum distance between any two members of the set of hyperreal points
that underlie the qualitative value. ,-.

Definition 21 Let P be a parameter and F be a qualitative hyperreal value
of P. Define the set of hyperreal points of F as

POINTS(F) =- {piP(t) = p ' HR-QVAL(P(t))= F}i

'°This is justified below, but it makes intuitive sense since zero's halo is only a negi
distance from zero.

"Mathematically oriented readers who are interested in the cause of this phenomena
are directed to the fact that the hyperreal numbers do not have the least upper bound
property.

-p.'
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Define the WIDTH of a qualitative value, F, as the maximum element of the
set:

{OM(Iv - u1) I Vv,u E POINTS(L)}

A maximum value exists for this set, since it has at most four members:
0, negl, fin, and inf. " This definition yields the following intuitive result:

Proposition 15 Let r be the qualitative hyperreal value of a parameter. If
I' is a landmark point, then WIDTH(F) = 0. If r is the halo of a landmark,
then WIDTH(F) = negl. If F is either inf or minf, then WIDTH(F) = inf.

Otherwise WIDTH(F) = fin.

By using these width values as an index to the distance-rate-time table
(figure 3.11), HR-QSIM calculates how long each parameter can persist in
its current qualitative value.

Distance-Rate-Time Table

The distance-rate-time table (figure 3.11) determines the length of time it
takes to go some distance at a given rate. An entry of '?' in the table
indicates that inf, fin, negi, or 0 time may elapse (but see the improvements
in section 3.3.6). When calculating the time that a parameter will persist in
a qualitative value, the order of magnitude of the parameter's derivative and
the width of the qualitative value are used as indices.

Predecessor-Persistence Filtering

HR-QSIM calculates persistence values for two reasons. From the persis-
tences of each parameter, one can determine how long a qualitative state is
a valid description of a system. Secondly, by comparing the persistences of
all the parameters in a system, one can often filter out inconsistent transi- A
tions that were not eliminated by the transition tables or constraint filters.
Since the heat exchanger does not provide a good illustration, consider the..- ..
following simple example.

"2It is important to compute the maximum after computing the order of magnitudes,
rather than the order of magnitude of the largest value, since no maximum or least upper
bound for Iv - ul need exist.
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Distance
inf fin negl 0

inf ? negi negi 0
Rate fin inf fin negi 0

neg1 inf inf ? 0

Figure 3.11: The Distance-Rate-Time Table

Suppose the two parameters, X and Y, are both increasing at the same
fin rate, and this rate is held constant. In the predecessor state, X has the

landmark value, 0, and Y has the (HALO 0 -) as its value. Constraint

filtering leaves three sets of possible transitions:
Either X transitions off 0 before Y changes to 0:

[X(,) ] = ((HALO 0 +)(inc fin)).:."",

[Y(A+1 )] = ((HALO 0 -),(inc fin))

Or Y reaches 0 before X leaves 0:

[X(A+,)] = (0,(inc fin)) 0

[Y(A+,+)] = (O,(inc fin))

Or they both transition at the same time:

[X(,) ] = ((HALO 0 +),(inc fin)) -

[Y(A+ , )J (0,(Inc fin))

The question is, which of these successor states is possible? The answer

comes from analyzing the persistence of the predecessor state. The width of
X's qualitative value is Oand X is moving with fin speed, so the distance-rate- 0

time table lists X's persistence as 0. Y has the same rate and has negl width,
so Y's persistence is negi. This means that Y must persist in its qualitative 1 "7
value for longer than X. In other words, X must transition before Y and
only the first of the three transition sets shown above is consistent.

The general predecessor-persistence filtering algorithm is shown below.

Inputs are two sets: parameter HR-QRs in the predecessor state and HR-QRs
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for the proposed successor state. Output is a set of possible persistences for .
the predecessor state or the empty set if the proposed successor is inconsis-
tent.

1. Set SP the set f , n egl, fin, infl.

2. For each parameter, X

(a) Using X's speed and the width of its value in the predecessor state, "
let P the set of X's possible persistences from the distance-rate-
time table.

(b) If X transitions from one qualitative state to another from the
predecessor to the successor states, set SP =SP intersect P.

(c) Otherwise, if X has the same qualitative value, HR-QVAL, in the
predecessor and successor states, remove any time values from SP
that are greater than the largest value in P.0

3. If SP is empty, the successor state is inconsistent, otherwise SP is the
set of possible persistences for the predecessor state.

3.3.5 Successor-Arrival Filter

Like persistence values, arrival times are both intrinsically interesting and
useful as a means for eliminating inconsistent transitions that have escaped
the scythe of other filters. This section discusses how arrival times are used
in filtering; see section 3.4.1 for an explanation of how the scale phase uses
arrival values to answer comparative analysis questions.

Successor-arrival filtering is very similar to predecessor-persistence filter-
ing. Both compute a qualitative length, width and distance respectively, and
use it as an index to the distance-rate-time table (figure 3.11). Likewise,
both techniques use individual parameter times to narrow the range of al-
lowable times for the state transition as a whole. The difference between t-he
two techniques results from a different focus: on the predecessor state for
persistence filtering and on the successor state for arrival filtering.
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Distance Between Qualitative Values

Calculating the time that a parameter takes to arrive at a new qualitative
value from an old one requires a notion of the distance between the two
different values. Intuitively, the distance between two qualitative values is
the order of magnitude of the minimum distance between any two points in 0
the hyperreal sets underlying the two qualitative values. -

Definition 22 Let P be a parameter and let r and E be qualitative hyperreal
values of P. Define the DISTANCE between r and E as the minimum element
of the set: I

{OM(Jv - ul) I Vv C POINTS(r) Vu E POINTS(E)}

As with the definition of width, it is important that the minimum operator
is applied after converting hyperreal differences into order of magnitudes. As
-ne would hope, this definition of distance behaves as required for a metric
[341; it is symmetric, obeys the triangle inequality' 3 , and the distance from
one qualitative value to itself is guaranteed to be zero.

Propo.ition 16 Let F and E be qualitative hyperreal values of a parameter.
If F is a landmark point and E is one of the halos of the landmark, then

DISTANCE(", E) = negi. If r is a halo and E is an adjacent finite interval, S
then DISTANCE(I, E) = fin. Finally, DISTANCE(-<i, inf-, inf) = inf.

Thus the width of a halo is negl while the distance from the halo to a N
neighboring finite interval is fin. This leads to the conclusion that a param-
eter starting from 0 with fin speed may spend negl time in (HALO 0 +), yet
take fin time to reach -<0, inf>-.

Successor-Arrival Filtering

The successor-arrival filtering algorithm is an enhancement on the predecessor-
persistence filter. The inputs are parameter HR-QRs for the predecessor and 0b. -,

proposed successor states. If the successor state is consistent, then sets of
possible persistence and arrival times are output. The trick is to restrict the
state arrival time, SA, with the persistence value of an unchanging parameter
and with the arrival value of a parameter that changes.

"3 The distance between a and b plus the distance between b and c is greater or equal to -
the distance between a and c.
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1. Set SP = the set {0, negl, fin, inf}. 0

2. Set SA = the set {negl, fin, inf}.

3. For each parameter, X

(a) Using X's speed and the width of its qualitative value in the pre-
decessor state, let P = the set of X's possible persistences from,
the distance-rate-time table.

(b) Using X's speed and the distance from its qualitative value in the
predecessor state to its value in the successor state, let A : the
set of X's possible arrivals from the distance-rate-time table.

(c) If X transitions from one qualitative value to another from the
predecessor to the successor states,

* Set SP = SP intersect P.

* Set SA = SA intersect A.

(d) Otherwise, if X has the same qualitative value in the two states,

* Remove any time values from SP that are greater than the
largest value in P.

" Remove any time values from SA that are greater than the 0

largest value in P (not A! Since this parameter is not chang-
ing, the next state must arrive while this parameter is still
persisting). V

4. See section 3.3.6 page 89 for an extra step. S

5. If SP or SA is empty, the successor state is inconsistent, otherwise SP
and SA are the sets of possible persistences and arrivals respectively.

Heat Exchanger Example

The heat exchanger example provides a nice illustration of successor-arrival
filtering. Recall that the transform phase gave the initial state the following
HR-QRs:
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[X(O) = (xo,(incin))
[V(O)] = (inf, std)

[Q(O)] = (qo,(dec fin))
[F(O)] = (fo,(inc fin))
[K(O)] = (ko, std)

This state can persist for only a point of time (denoted 0) because several
parameters are moving from landmarks. The second state arrives in neg-
time and has new HR-QRs for X, Q, and F:

[X(A 1 )] = ((HALO xo +),(inc ini)

[Q(A 1 )]= ((HALO q• -),(dec fin))
[F(A1 )] = ((HALO f• +),(inc fin))

Recall that the constraint filters were unable to choose between three pos- , e N.
sible successors of this state. The question was whether X would transition
from its halo before, after or at the same time as Q and F transitioned from
their halo. Since each parameter is in a halo, each has a qualitative width
of neg, and since each is moving towards a finite interval, each parameter
must travel a fin distance before transitioning. Plugging these values into the
distance-rate-time table leads to the conclusion that every parameter has a
persistence value of negi. Since all parameters have the same persistence
value, the state as a whole has that persistence: AIJ = neg.

Using distance as an index to the distance-rate-time table shows that X
has a negi arrival value, but Q and F have fin arrival values. Successor-
arrival filtering uses these values to keep only those successor states in which
X transitions before Q and F. For example, consider the successor in which
all three transition at the same time. This candidate would have the following
HR-QRs:

[X(A2 )] = (-'o,0>-,(Inc inf))
[Q(A 2)] = (-<O,qo-,(decfin))
[F(A)] = (-<fo,0>-,(incfin))

Since both X and Q have transitioned, SA the intersection of the sets
of their arrival times: {negjIn {fin} 0. Thus this successor is inconsistent.
Now suppose that Q and F transition before X; the successor state would
have the following HR-QRs:

85

% %



[X(A 2)] ((HALO xo+),(inc in!))

[Q(A 2)] = (-<o,qo>-,(decfin))
(F(A 2)] = (-<fo,O>-,(inc fin)) ,

Since Q is transitioning, SA is set to its initial value intersected by the
set of Q's arrival times; thus SA = {fin}. But since X isn't changing, the
successor state's arrival time must be less than X's largest persistence value,
negl, so fin is not acceptable. Once again, no arrival time makes sense for this
successor state so the successor is inconsistent. The only set of transitions
that pass the test are the following; they arrive in negi time.

[X(A2)] (-< xo, O-, (Inc inf))
[Q(A2)] = ((HALO qo-),(dec fin))
[F(A2 )] = ((HALO fo+), (inc fin))

Since X's distance is still fin, similar reasoning holds again. This state
persists for negl time until X transitions to (HALO 0 -) and then to 0
(always arriving in negl time) while Q and F remain in the halo of their
original landmark values. Note the central role of persistence calcidations
and successor-arrival filtering in ensuring the correct result for exaggera-
tion. While the enhanced transition tables and constraint filtering are also
important, persistence and arrival filtering are responsible for deducing that
negligible heat is lost when oil moves infinitely fast through a heat exchanger.

3.3.6 Improving the Temporal Filters

Although the distance-rate-time table as shown in figure 3.11 is sufficient
to disambiguate the behavior of the infinite velocity heat exchanger, the
ambiguity resulting from in rate and infdistance is a major liability in many
other examples. For example, consider a block attached to a stretched spring
on a frictionless, horizontal surface and the comparative analysis question
"What happens to the period of oscillation when the spring is made more
stiff?"

Since the period decreases, we would like exaggeration to be able to con-
clude that a system with inf spring constant will have a period of negl du-
ration. However, this is impossible using the distance-rate-time table above.
The first step is easy-since K minf an infinite force is applied, and the
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equation F = MA requires that acceleration be infinite. The question is how 0

long will it take before V arrives at inf? Since V is initially zero, it has an
infinite distance to travel, yet its derivative, A, is also inf. The ambiguity of
the persistence table shown above precludes an answer. One would like to
conclude that it will only take negl time for V to reach infinity, because then
even the distance-rate-time table above could conclude that X will travel the
finite distance to its rest position in negi time. If it took longer than negl
time for V to transition to inf, say fin time, then it would take at least fin
time for X to reach rest position, and the scale phase would be unable to
definitively answer the comparative analysis 'piestion.

Moving Infinitely Far, Infinitely Fast

In fact, it is possible to eliminate the ambiguity from the distance-rate-time ,
table inf divided by inf entry, in exactly half the cases. The determinant
is the direction of travel. There are only two ways that a parameter can 0

transition after travelling an infinite distance-it must be moving from inf
or minf to a finite value or vice versa. If the parameter is moving infinitely
fast towards an infinite value, then the transition will occur in negl time,
otherwise it could take negl, fin, or even inf time.

Proposition 17 Infinite-Distance-Arrival Rule
Let Si and Si+1 be adjacent hyperreal qualitative states in a behavior. Let

P be a parameter. If P has a finite value in Si and an infinite value in Si+1
and if P's qualitative derivative has order of magnitude OM = inf in S,, then
P has negl arrival time; after negl time, P will have reached an infinite value.

Proof: Since the width of P's qualitative value is fin, P has negl persistence.
Let to be one of the time points in this open interval of negi persistence. Let
R be a parameter defined as:

R(t) = t - to

Since to was chosen from an open interval, there are times when P has a
finite value and R has a negligible value. Now consider which parameter

transitions first: R moving to a finite value or P moving to an infinite one?
Since R's change is an NS-transition and P's is a SN-transition, propo-

sition 14 states that they cannot happen together. Furthermore, R cannot

87 S
IO

% IV'p d&, %' %/ %* %$i



transition before P since R has an arrival time of fin while P's persistence 0

time is negl. Thus P must transition before R. In other words,

3t, such that HR-QVAL(P(t 1 )) = inf A HR-QVAL(R(t l )) = (HALO 0 +)

Thus by definition of R and (HALO 0 ±),

OM(t, - to) = negl

So P must arrive in neql time E

This rule is both surprising and important to exaggeration's success. As
the spring example hinted, a number of exaggerated systems have transitions
that access the inf divided by inf entry in the persistence table. Without the
disambiguation provided by the infinite arrival rule, exaggeration would solve
fewer comparative analysis problems.

In case the preceding proof seems obscure, the remainder of this section
contains an intuitive justification of the rule that should clarify the underlying
phenomena. In addition, I explain why the rule doesn't apply to parameters
transitioning in the reverse direci ion.

Let 1 P = inf and let P transition from a finite value to inf There are
three cases: the arrival time could be negl, fin, or inf Suppose that it doesn't
take negltime. Perhaps instead it takes fin time to transition to infinity. Then
P doesn't take on an infinite value until some standard finite: timc, to, has
passed. Then after time -'Q, P must still have a finite value. But this means

22
that even though P has been traveling at iinfinite speed for finite time ff,
it has only gone finite distance. This contradicts the P persistence value
from the original table. The other possibility also produces a contradiction.
If it takes infinite time for P to reach an infinite value, then P will again

have traveled at most finite distance after finite time. The only consistent

possibility is that the transition happens in negi time. Of course, this is only
a sketchy argument, but it illuminates the formal proof.

Note that the argument does not work when P is transitioning from inf to
a finite value. Transitions in this direction can take negi, fin, or even inf time
to arrive. For example, suppose P takes the finite time, to, to reach a finite
value from inf. What is P's value after time !1? It is perfectly consistent
that P still be inf. By time t., P's underlying hyperreal value could have
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0

changed an infinite amount without a change in qualitative value because the
inf qualitative value has an infinite width and thus an arbitrary persistence. 14

Moving Negligibly Far, Negligibly Fast

It is also possible to restrict the possible times taken to traverse a negi dis-
tance at negl speed. For example, suppose parameter P is at landmark P0 and
increasing with negi rate. The distance-rate-time table shows that its persis-
tence must be 0, but its arrival time for the successor value (HALO P0 +)
is ambiguous since negl distance is traversed at negl speed. In fact, the ar-
rival time cannot be fin or inf- it must be negl. Suppose that the arrival 0

time was fin, that means that fin time elapses before P takes on a value in
(HALO Pa +), but this leaves neg! time unaccounted for. What value did R
take for these times? Since there are no values between Po and (HALO Pa +),
an arrival value of fin or inf results in a contradiction.

The reverse case results when P has qualitative value (HALO Pa +) and
is increasing towards -<Po, inf-with neglrate. Since the distance between
values is fin, the arrival time is inf. The distance-rate-time table, however.
is ambiguous regarding P's persistence value: negl, fin, and inf are all listed
as possible. In fact, negl is impossible since that would leave fin time unac-
counted. P's arrival value must be either inf or fin. The following proposition 0

generalizes these cases.

Proposition 18 Temporal Continuity Rule
The time for a state Si to arrive at a successor Sj+j can never be less

than the persistence of Si. In addition, the arrival time can not be more than 0
one order of magnitude larger than the persistence time.

This rule is implemented as an enhancement to the predecessor-persistence
/ successor-arrival algorithm (page 84):

4. Remove any values from SA that are more than one order of magnitude
greater than the largest value of SP. Remove any values of SP that are
more than one order of magnitude smaller than the smallest element .,_.,
of SA.

14The actual proof cannot be reversed for a similar reason. If P is moving from an
infinite to a finite value then the initial state's persistence value is not guaranteed to be
negL Thus one cannot conclude that P transitions before R.
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3.3.7 Irrelevant-Transition Filter -

For many examples, the transition tables and filters described above are
sufficient to enable qualitative simulation. Some examples, however, cause
intractable branching if just these filters are used. In these cases, most every
state has several successor states; the result is an exponential number of
predicted behaviors. Close inspection of these cases reveals that many of the
transitions are irrelevant - they do not affect observable quantities. In fact,
almost all intractable branching is caused by predicted changes in the order
of magnitude of the HR-QDIR of the highest order derivative in the system.

For example, consider the spring / block system with negligible mass.
Position is initially steady at the landmark xo, velocity has a HR-QR of
(O,(inc in!)) and acceleration has a HR-QRof (inf std). There is only one
successor:

[X(A )] = ((HALO xo +),(inc negi))
[V(A 1 ) = ((HALO 0 +),(inc inf))

[A(A 1 )l (inf,(dec negi))

V will only take negi time to arrive at its successor value, -0, inf -, and
once it does, a single unbranching behavior will take velocity to inf and po-
sition to zero. Unfortunately, it is perfectly consistent that before V reaches_,
-<0, inf -, A could change qualitative derivatives (dec negi) to (dec fin) to (dec
in!) back to (dec fin) and so on, all in negi time. Since each of these states
lasts for negi time, the changes have little physical significance.

Of course, one cannot simply ban successor states that differ only in
the order of magnitude of some parameter's derivative - sometimes these
transitions are necessary to enable a later change that is physically significant.
The trick is to filter only the transitions which are guaranteed to be irrelevant.
For example above, it is reasonable to allow A to change from (dec negl) to
(dec fin) to (dec inf) since each of these derivative values might enable an
interesting successor. But when A tries to switch back to (dec fin), it is
reasonable to blow the whistle. A successor that repcats this previous state
cannot be a useful.

In general, the irrelevant-transition filter compares a candidate successor
state with the immediately preceding states. If the candidate is equal to a
previuus state and all intervening states differ only in the order of magnitude
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values of parameter derivatives, then the candidate is eliminated. This ap-
proach does not disconnect any possible states. If a qualitative state, S,, is
part of a behavior that fails to satisfy the filter, then there is guaranteed to
be a behavior that includes Si and satisfies the filter.

Without using the irrelevant-transition filter, exaggeration would solve
far fewer problems. By using the irrelevant-transition filter, HR-QSIM eliin-
inates intractable branching in the following problems (see appendix F for
details):

" Every spring / block model with negi mass.

" Every spring / block model with in! spring constant.

* The pendulum model with inf gravity.

" The projectile with decreasing gravity and inf initial velocity.

3.3.8 Summary

Exaggeration largely reduces a comparative analysis problem to the problem
of simulating a system with parameters using a qualitative hyperreal repre-
sentation. Since comparative analysis is a challenging task, one should not
be surprised that the process of hyperreal qualitative simulation is difficult.
This section described one way to build such a simulator. QSIM was taken
as the base for exaggeration's simulate phase, because of its availability, ef- r

ficiency and precise specification. However, the techniques described in this
section, are applicable to all qualitative simulation approaches:

" Exploiting hyperreal continuity, by distinguishing OC-, CO-, NS-, and
SN-transitions,

" Enforcing order of magnitude consistency in corresponding values and S

derivatives,

" Predecessor-persistence filtering with the width of predecessor qualita-
tive values as an index to the distance-rate-time-table, , ,

" Successor-arrival filtering with the distance between predecessor and 0
successor qualitative values as an index, and the
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* Infinite-distance rule to disambiguate the distance-rate-time table,

The computational complexity of exaggeration in general and the simulate
phase in particular is addressed in section 4.4. The possible advantages of
other approaches to qualitative simulation are discussed in section 5. The
next section concludes the basic presentation of the exaggeration algorithm
by describing how the scale phase interprets the simulate phase results to
answer comparative analysis questions.

3.4 Scale Phase

The scale phase answers comparative analysis questions by comparing a stan- 4"
dard behavior of the original system (figure 3.12) i" with the hyperreal be-
havior (figure 3.13) that HR-QSIM produces from the transformed initial
conditions. If the behaviors are qualitatively different, i.e. have different
qualitative values, then the comparative analysis question can often be an- "
swered.

StateS1 : [X(O)] (xo, inc)0
[Q(O)] = (qo, dec)
[F(O)j = (fo, inc) Persistence: 0

StateS2 : [X((O,t 1 ))] = ((xo, O),inc)
[Q((O,t 1 ))] = ((O,qo),dec)

[F((O, ti))] = ((fo, 0), inc) Persistence: fin

StateS3 : X(t 1 )] = (0, inc)
[Q(tl)] = ((O,qo),dec)
IF(t 1 ) = ((fo,O),inc) Persistence: 0

Figure 3.12: Behavior of a Standard Heat Exchanger %

"5 This figure uses square brackets to denote QSIM's qualitative representation, not
HR-QRS.
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StateS [X(O)] = (xo,(inc in!))
[Q(o)] = (qo,(dec fin))
[F(0)] = (fo,(inc fin)) Persistence: 0

Arrival: ncgl
StateS: [X(.A)] = ((HALO x0 ±),(inc in!))

[Q(A )] = ((HALO qo -),(dec fin))
[F(.A6)] = ((HALO fo ),(inc fin)) Persistence: ngl"

Arrival: neffgl.,

StateS,: [X(Ajl (-<xo,0>-,(inc in!)) A
[Q(A,)] = ((HALO qo -),(dec fin))

[F(A,)] = ((HALO fo +),(incfin)) Persistence: negl
Arrival: negl

StateSd: [X(Ad)] = ((HALO 0 -),( ini))

[Q(Ad)] = ((HALO qo -),(dec fin))
[F(Ad)] = ((HALO fo +),(inc fin)) Persistence: negi

Arrival: negi
StateSe: [X(A)] = (O,(inc inf))

[Q(A)= ((HALO qo -),(dec fin))
[F(Aj)] = ((HALO fo +),(incfin)) Persistence: 0

Figure 3.13: Behavior of an Infinite Flow Rate Heat Exchanger

The scale phase's first task is to choose what to compare in the two be-
haviors; this depends on the specific comparative analysis question. If the
question is one of a parameter's relative change value at an event, the scale
phase must match events. If the question concerns the duration of a time in-
terval, then the scale phase must match events that start and end the interval. A.
In both cases, an abstract description of corresponding events is required. In
the EXAG implementation this description is simply the conjunction of par-
tial specifications for the HR-QRs of one or more parameters. For example,
one can specify the event when the hot oil exits the heat exchanger by spec-
ifying that X equal the landmark zero. By leaving its qualitative derivative
unspecified, this description specifies a qualitative state in both the original
and exaggerated behaviors, (S 3) and (S,) respectively. ...e

Since the comparative analysis question asked what happens to the heat
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of the oil as it exits, the qualitative value of parameter Q is now compared
in the two states. In 83, Q = (O, qo) while Q = (HALO qo -) in the S,; thus

heat is greater in the exaggerated behavior. Since an extreme increase in
velocity caused a noticeable increase in output heat, the scale phase concludes

that any increase in velocity will cause some increase in output heat. While
this conclusion is not guaranteed sound, it is frequently correct. Section
4.3.1 explains the conditions that cause faulty predictions, while the rest of

this section considers two remaining details in the scale phase algorithii:

questions about durations and cases when the simulate phase predicts more

than one possible exaggerated behavior.

3.4.1 Scaling Durations

Answering comparative analysis questions about changes in the time dura-
tion between two events requires the ability to measure lengths of behavioral
fragments for standard and exaggerated systems. Recall that standard be- N

haviors alternate between states persisting for closed time points and ones

lasting for open intervals of standard real duration. This implies that there

is a finite, noninfinitesimal time between any two events that do not occur
in the same standard state.

The time is easy to measure in exaggerated behaviors as well, because
HR-QSIM's successor-arrival filtering step computes arrival times for each
state. All that is required is a means of adding the times from individual
states to determine the length of a whole behavioral fragment. Qualitative

addition of times is defined in by the table of figure 3.14; notice that this is

just the maximum operator.

inf fin negl 0 -

inf inf inf inf in,

fin inf fin fin fin 0.

negi inf fin negl negl
0 inf fin negl 0

Figure 3.14: Temporal Addition

S,
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The scale phase answers questions about durations by comparing the ...-
elapsed time between corresponding events. For example, consider the straight- .x
forward comparative analysis question "Does the oil exit the pipe sooner if if 9
moves faster?" Event descriptions of X = xo0 and X = 0 specify the starting 2 t'
and ending states S, and S3 in the standard behavior and S,, and S, in
the exaggerated one. Since ,t # S"3 the standard oil remains in the heat 5 -'-
exchanger for finite time. Since the arrival times of the states between S', %,.

and S,+ are all negl, temporal addition concludes that the oil requires negli- -".,

%

gible time to leave the heat exchanger when the flow rate is infinite. Since r ;
negl < fin, the scale phase concludes that in general, the oil will exit sooner_•
if the flow rate is increased.

One might ask why arrival times are used rather than adding the persis-
tence values for the relevant states. The reason that arrival values are the
relevant metric is because the question is how long does it take to each the
state of interest. For the heat exchanger example it makes little difference
whether arrival or persistence times are used, but consider the case of a pro-
jectile moving at constant, fin speed. How long does it take to reach infgfrom
zero? There are two intervening qualitative values: (HALO 0 +) and -0 in ,

inf-. The sum of the persistences is: O+fin=fin, while the sum of the arrival

times is negt+inf=inf. This latter answer is clearly the intuitive one. !
Since there is still ambiguity in the distance-rate-time table even with the

infinite arrival rule, some states may not have firm arrival values. In these
cases, it can be impossible to deterine the exact length of an exaggeratedfinite. ,Since

behavioral fragment, so the scale phase may not be able to answer the con-
parative analysis question. If one of the other states in the fragment has an

inf arrival value, however, then one can concludert a the whole behavior
will persist for inf time even if some states are ambiguous. Thus temporal
ambiguity in individual states does not necessarily doom the scale phase. ro-

3.4.2 Multiple Behaviors,...-,
The preceding discussion finessed one point -d it assumed that there was
only one standard and one exaggerated behavior. Since frequently neither
of these assumptions is true, the scale phase algorithm is more complicated.
For example, QSIM predicts three behaviors for the standard heat exchanger.

Figure 3.12 represents the behavior in which the oil exits before reaching
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thermal equilibrium, but behaviors in which thermal equilibrium is reached V

before the oil exits and exactly when the oil exits are also possible. Although

HR-QSIM predicts a unique behavior for the infinite rate heat exchanger.

this is not the case for all examples. ,SJ.

Thus, the scale phase can't necessarilly just compare the value of a pa-

rameter from a single standard behavior to a single exaggerated behavior.,.
Two possibilities exist: compare all exaggerated behaviors to some specific

standard behavior or compare all standard behaviors pairwise with the ex-

aggerated behaviors. The current implementation does the former. Just as

DQ analysis makes use of information implicit in the modeler's choice of a

single behavior (section 2.5), exaggeration also benefits from this constraint.

For the question "What happens to output temperature if the flow rate is

increased?", the choice of initial behavior is irrelevant; all three standard

behaviors predict that heat will decrease a finite amount while it decreases

negligibly in the exaggerated behavior.
To see how the modeler's selection of an initial standard behavior facil- .

itates exaggeration, consider the question "What happens to output ten-i-

perature when thermal conductivity, K, is increased?" HR-QSII generates .

a single behavior which predicts that with K = rninf, heat transitions to

zero in negi time. In other words, thermal equilibrium is reached long before

the oil exits the pipe. But two of the three standard QSIM behaviors also

predicted that there would be zero heat as the oil left the pipe. Unless the a.

modeler chooses the standard behavior in which the oil exits before reaching

thermal equilibrium, the scale phase would have no qualitative difference on .. *

which to base an answer. By matching against a single standard behavior.

exaggeration takes advantage of the knowledge in the mind of the human

who chose the initial behavior and ambiguity is reduced. .. ,'-.
*?1,.'-.x

3.5 Summary

Exaggeration solves comparative analysis problems in a manner fundamen-.N-_
tally different from DQ analysis - by converting the comparative analysis

problem into a new simulation problem and analyzing the result. The process

is divided into three phases: transform, simulate, and scale. This chapter . .

traced exaggeration's performance on the question "What happens to the
output temperature of hot oil in a heat exchanger when the oil's flow rate is
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increased?" The transform phase constructed the model of a heat exchanger
where the oil moved infinitely fast. The simulate phase (implemented as the
HR-QSIM algorithm) predicted that oil in this model would leave after cool-
ing only a negligible amount. Finally, the scale phase compared the results

from the standard and hyperreal qualitative simulations and noticed that the
output temperature was qualitatively higher in the exaggerated case; it then ."

concluded that, in general, increases in velocity cause increases in output
temperature.

This section concentrated on the technical details of the exaggeration
algorithm, in particular how HR-QSIM works. The qualitative hyperreal
representation was introduced and used to motivate changes to the QSIM al-
gorithm. Predecessor-persistence and successor-arrival filtering were shown
to be critical to hyperreal simulation in two ways: they both compute impor-
tant temporal information about each qualitative state and they eliminate
many inconsistent transitions, restricting the number of proposed qualitative
behaviors. %

The next chapter compares exaggeration to DQ analysis on many dimen-
sions: theoretical, competence, computational performance, and explanatory
quality. Unlike DQ analysis, exaggeration is shown to be unsound; it's an-
swers are not always correct. Like DQ analysis, exaggeration is incomplete. S

Neither technique can solve all comparative analysis problems. Exaggera-
tion, however, appears to solve a larger class of problems than DQ analysis;
the reasons for this are discussed. ,%
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Chapter 4

Analysis of Techniques

This chapter compares the techniques of DQ analysis and exaggeration along
several dimensions: their theoretical foundation (section 4.2), their ability to
answer comparative analysis questions correctly (section 4.3), their algorith-
mic complexity (section 4.4), and the quality of the explanations that they .

produce (section 4.5). First, however, the similarities between the techniques
are discussed.

4.1 Similarities and Shared Problems

The qualitative nature of both DQ analysis and exaggeration is both the key
to their power and the cause of their shared weaknesses. Several classes of
questions stump both techniques; in these cases, the reason is always that the
qualitative abstraction is inappropriate for the problem at hand. The cases
are divided into three groups: questions that are fundamentally ambiguous,
questions that result in ambiguity from qualitative arithmetic, and questions
that depend on the distinction between linear and monotonic functions.

4.1.1 Ambiguous Questions -

Some questions simply don't contain enough information to be answerable.
For example, neither DQ analysis nor exaggeration could answer the question
"What would happen to the period of oscillation, if the mass of the block
was heavier and the spring was more stiff?" because there is no answer to %
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this question as stated. The increased mass tends to increase the period, but
the increased spring constant tends to decrease it. Thus the duration might
increase, decrease or remain unchanged.

Neither technique answers incorrectly; they both terminate without gen-
erating an answer. It would be nice if my techniques could tell that there
was no answer and complain that the question was poorly phrased, but as it
is, neither exaggeration nor DQ analysis recognizes that the difficulty is in
the question rather than inadequate reasoning abilities.

4.1.2 Qualitative Arithmetic is Ambiguous S

Since DQ analysis and exaggeration use the same qualitative arithmetic uti-
lized by other forms of qualitative reasoning, it should not be surprising that
ambiguity causes a problem here as well.

The model of a projectile fired from a cannon in a uniform gravitational
field serves to demonstrate the problems due to qualitative arithmetic. Nei-
ther technique can deduce that the time to apogee will not change if the
projectile mass is increased. The culprit is inherent ambiguity of qudlitative
values- relative change values do not form a group under multiplication
[40] and thus there are not guaranteed inverses. This affects DQ analysis as
follows. Since M is increased but G remains unchanged, F = MG leads to
the conclusion that F. But what is the relative change value for accelera-
tion? F = MA results in ambiguity because there is no unique value for fT
divided by f. Exaggeration faces the same problem: if mass is infinite, then
force must be also. But since there is no unique value for inf divided by inf,
acceleration could be negl, fin, or inf. This problem affects all qualitative
reasoning systems; qualitative simulation programs have the same problem
as those for comparative analysis. v

Another example, the oscillating spring / block clearly shows the parallel. .

Although both techniques deduce that increasing mass will increase the time
taken from an initial extreme until the first transition (X= 0) is reached,
neither technique can deduce that the whole period will increase in length
(without explicit equations for energy conservation in the model). Because of
the qualitative arithmetic, DQ analysis is unable to show that X112, i.e., that
X sweeps out the same distance when the mass is increased. Because of this,
X is not known to be a covering perspective so the derivative and duration
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theorems can not be used. Thus there is no way to determine the RC value for
the second quarter of the period. Exaggeration displays the same problem
of ambiguity in the temporal filtering algorithms. With an infinite mass,
acceleration is negligible and velocity is transitioning from a negligible value
towards zero. Since the qualitative value of velocity has negl width and the

distance to the qualitative value is also negl, neither predecessor-persistence
nor successor-arrival filtering can say whether the transition will takc negl,
fin, or (the correct answer) inf time.

This problem is directly analogous to QSIM's prediction of spurious be-
haviors [271. Given a Hooke's law description of the spring/block, QSIM
produces many possible behaviors in addition to the correct description of
stable oscillation. Furthermore, both the DQ problem and exaggeration's
impotence can be alleviated in the same way that Kuipers caused QSIM to

disregard behaviors other than stable oscillation-by augmenting the struc-
tural description with equations describing conservation of energy. DQ anal-
ysis, for example, can deduce that since potential energy is equal to force 0

times distance, increasing the block's mass leaves total energy unchanged.

This allows it to recognize X as a covering perspective and deduce that the

duration increases for each of the period's four transition intervals. Similarly,
exaggeration can perform persistence and arrival filtering on the additional

parameters to conclude that it takes inf time for the block to reach it's ex-
treme position.,A

The problem of ambiguous qualitative arithmetic is an important area for

future work. One approach is inspired by the success of the manual inclusion
of redundant (conservation) equations; perhaps it would be appropriate for
programs to perform some symbolic algebraic manipulation before generating .

qualitative solutions [47]. Struss (40] has shown that care must be exercised
in this activity, since small changes in the form of qualitative equations fre-

quently result in radical changes to their solutions. Dormoy and Raiman [14]

recently demonstrated the qualitative Gauss rule, a type of algebraic manip-
ulation that is solution preserving. While it cannot eliminate all problems
with ambiguity, it would help with the projectile problem above. Incorpora-

tion of a limited algebraic reasoner into qualitative reasoning systems seems
very promising.
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4.1.3 Linearity is not Represented

A second problem faced by both DQ analysis and exaggeration is the insen-

sitivity of qualitative techniques to the difference between a linear function

and one which is simply monotonic. For example, given the Hooke's law

description of an oscillating spring and block on a frictionless, horizontal sur-

face (F = -KX), neither technique can answer the question "What happens

to the period of oscillation if the amplitude is increased?"

In fact, the answer is that the period does not change, but exaggera-

tion can not predict this because of ambiguity in the successor-arrival and

predecessor-persistence filters. The transform phase constructs an initial

state with infinite displacement, and constraint propagation concludes that

force and acceleration must also be infinite. The infinite arrival rule predicts

that velocity will transition to infinity in negligible time, but then ambiguity

sets in. With V = inf, the question is how long will it take X to move from

inf to zero? Unfortunately, the distance-rate-time table is ambiguous and

the infinite-distance rule (proposition 17) does not apply since X is moving

from infinity rather than to infinity. It could take negl, fin, or in! time for X

to transition and HR-QSIM cannot determine which.

DQ analysis cannot solve the question either, apparently for a very dif-

ferent reason: no useful perspective exists to enable the duration rule. There

is no system parameter P such that VP11). Clearly X won't work as a per-

spective, since it doesn't sweep out the same range in the two cases. In fact,

it is easy to prove that no artificial perspective could satisfy the equation.

Proposition 19 Given the definition of V as specified above for the spring/block

example with XO, let t1 = T(71 ) and t = T(, ). There are no continuous,
real valued, functions P, P such that

P(O) = P(O) po A
P(t ) = P( 1 )= p, A
V(P-(p)) = V(P-(p)) Vp E (po,pi)

Proof: Since X 0, initial potential energy is higher in the perturbed system,

so kinetic energy is greater at 7y1. This means that Vt, i.e.,

Because V and V are continuous I'.
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lim i'(t) =and t-t

nlim 
V(t) 

= V,

Similarly,

lim P(p)
p--.p1

and

lim P-(p) = P,
P-Pi

Thus

lim(V(P-(p)) - V(P-(p))) - v, # 0
P-;i

So there exists some q E (po,Pl) such that

f,(JP-'(q)) = V(P-'(q))

Thus there is no function, P, that can act as a perspective such that
V11(0,). This really shouldn't be very surprising. After all, the block really
does move faster. The only reason that the period is unchanged is that the
increased velocity is exactly counterbalanced by the increased distance the
block must travel. It would be foolish to try and claim the velocity doesn't
increase when it does. Instead. an intuitive explanation should account for
the balance of the change in velocity and distance.

This type of explanation is outside the realm of current theories of qual-
itative physics because it depends on the fact that Hooke's law is a linear
equation. Nonlinear oscillators, like pendulums, do change their period when
amplitude is changed. Because qualitative techniques do not distinguish be-
tween linear and nonlinear, yet monotonic, functions, they are incapable of
solving questions that depend on those distinctions. Future work might in-
vestigate the possibility of explicit reasoning about linear equations, and the S
related issue of symmetry.
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4.2 Theoretical Difference

This section considers several questions relating to the theoretical difference
between exaggeration and DQ analysis. What are the techniques doing?
Why do they perform differently? Can either technique substitute for the
other if augmented with additional knowledge or assumptions? The short
answers are that the two techniques are fundamentally different. While each
technique can be augmented to simulate the other, the assumptions required
are not always realistic.

4.2.1 Predicting Partial Derivatives

Since the relative change notation expresses how a parameter changes given
an initial perturbation, it is natural to ask about its relationship to the stan-
dard mathematical tools for expressing relative change: partial derivatives.
In the following proposition it is handy to think of parameter C as the cause,
and E as an effect.

Proposition 20 If f0o and all other independent and boundary condition

parameters have an RC value of 110 and E4o then
OE

< 0

at time zero.

This statement can be extended to any transition, yi, by normalizing
with respect to time. While the relationship between RC values and partial

derivative is straightforward for values at transition points, the connection is
more subtle for interval RC values because of the presence of perspectives.

Exaggeration Requires Monotonicity

Although both techniques try to find the sign of the partial derivative of
one parameter with respect to another, they do it in different ways. DQ
analysis computes the partial derivative's sign directly, while exaggeration
approximates the partial derivative by evaluating the equation at an asymp-
tote and returning the slope of a straight line though this limiting value and
the original point.
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To understand these points, it is useful to consider examples that are
even simpler than the heat exchanger. The question of partial derivatives p

is complicated by the fact that the heat exchanger parameters are defined
with differential equations and change over time. Comparative analysis seeks
the partial derivative of the solution of the differential equation model. By
considering simple algebraic equations instead of differential equations, the
problem of solving the equations is eliminated and the fundamental difference
between DQ analysis and exaggeration illuminated.

For example, consider the equation:

1 0
Y=5 + x

A simple comparative analysis question would be "What happens to Y if
X is increased?" In other words, what is the sign of a ? DQ analysis solves
this by propagating the perturbation through the equation: if Xft then -.
Since 511, DQ analysis concludes that Y4J. Exaggeration, on the other hand,
evaluates the equation to find Y's value when X is inf. Because - = negl,
this asymptotic value for Y is lower than its current value. The scale phase

concludes that the qualitative partial derivative is JL.

EXAG Predicts

_X X x
Current Value Current Value Inf Current Value

Figure 4.1: Exaggeration Approximates a Curve with a Line through an "

Asymptote

Since the scale phase can be thought of as approximating the partial
derivative by drawing the slope of a straight line between the current and
asymptotic values (figure 4.1), it might appear that exaggeration would pro-
duce sound answers only for linear systems. However, since comparative
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analysis only requires the sign of the partial derivative, exaggeration only re-
quires that a system respond monotonically to the perturbation, not linearly.

4.2.2 Predicting Asymptotes

As the previous section considered what assumptions were necessary to guar-
antee that ex ,geration correctly predict qualitative partial derivatives, it is
natural to ask what knowledge must be added to DQ analysis to achieve
exaggeration's ability to predict asymptotic values. Consider the following
two equations:

1

Y 8 + -x

As X tends towards inf, Y takes on different values in these two equa-

tions, yet the partial derivative (and hence the relative change value predicted
by DQ analysis) is the same. Given a quantitative representation, the as-
sumption of linearity would allow one to predict Y's value for any value of

X. However, a linearity assumption is not strong enough for prediction of
asymptotic values given a qualitative representation. The relative change
value predicted by DQ analysis can accurately predict an asymptotic value

only when the function is constant. This case is so trivial, it is unlikely to
be useful.

This analysis shows the theoretical relationship between the two tech-

niques, yet the question remains: "For any given problem, which technique
will work better?" The next section discusses this issue.

4.3 Competence Difference

There are several possible meanings to the question "Which technique works
better?" Here I consider competence: "When does each technique work?" An
ideal answer would be a characterization of the sets of comparative analysis

questions that each technique correctly solves. Although this discussion is S

not that precise, it does illuminate the reasons for differences in competence.
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Neither technique is strictly stronger - each has advantages that enables it
to out perform the other on a subclass of problems. The discussion starts
with questions that stump exaggeration and then consideres the weaknesses
of DQ analysis.

4.3.1 Weaknesses of Exaggeration

The first difference in competence was introduced in the previous section:

nonmonotonicity. The following simple algebraic example shows exaggera-
tion's weakness with nonmonotonic systems.

Y =X +-

DQ analysis is unable to answer the question "What happens to Y if X is
increased?" because of ambiguity: Since Xf and -L1t, the .nim ib indetermi- 0

nate. This is as it should be; the answer depends on the original quantitative
value of X and is thus outside qualitative reasoning.

Exaggeration, however, willingly supplies an answer. If X Z inf then
neg so Y = inf, thus by approximating the curve with a straight line,

the scale phase would conclude that increasing X increases Y" (figure 4.2a)
and hence decreasing X decreases Y. But if the transform phase exaggerated

to an infinitesimal value, then 1 would equal inf so Y would equal inf.

This would suggest the opposite: that increasing X decreases Y. The results
are inconsistent; whichever transformation exaggeration makes will result in
an incorrect answer for some initial value of X.

While it is easy to check the monotonicity of an algebraic equation by
finding the roots of its derivative, there is no easy way to ensure monotonic-
ity of the solution of an arbitrary system of differential equations. The trick
of exaggerating in both directions suffices to detect simple types of nonmono-
tonicity with one inflection point, but fails to detect nonmonotonic functions
like cubic equations (figure 4.2b). Perhaps the only way to verify exaggera-
tion's soundeness would be to step out of qualitative reasoning and solve the
differential equations using standard algebraic techniques. For linear equa-
tions, a closed form solution would be easily obtainable. If the equations
were nonlinear, Sacks' PLR program [36,351 could be used to generate and

solve a piecewise linear approximation. Although neither of these techniques
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Y Y

X X "

a.) Y=X+I/X b.) Y=X +...

Figure 4.2: Nonmonotonic Systems can Fool Exaggeration

generates explanations, they could be used to check monotonicity and thus

validate exaggeration's predictions.

4.3.2 Weaknesses of DQ Analysis

While DQ analysis, unlike exaggeration, is guaranteed to answer CA ques-
tions correctly, it is common for DQ analysis to produce no answer at all.

Exaggeration can correctly solve many problems that are too difficult for
DQ analysis. An example of a projectile fired from a cannon illustrates this
point. Given an increase in muzzle velocity, Vft, as a perturbation, DQ "

analysis predicts that apogee will occur later, but is unable to predict that

the projectile will rise higher or take longer to fall back to the ground. If
energy conservation equations are added explicitly, then DQ analysis reaches
the correct conclusion. However, exaggeration gets the right answer to all
these questions without requiring energy conservation equations.

If one considers a more realistic projectile model in which gravity dimin-

ishes with increasing altitude, then DQ analysis fails to conclude any of the
three results - even with energy conservation equations. Exaggeration, on S

the other hand, correctly answers all three.
Why does DQ analysis perform so poorly? The problem appears to be

that the DQ analysis rules match on the syntax of the system's differential
equation model. For example, one common rule applies when a parameter's

derivative is a linear function of the parameter. Since the rule only has access
to the model's syntactic description, it might fire if the model unified with

107

%

PA %
-- %A~'



NO 

the patterns (D/DT.X ?v) and (MULT ?x ?k ?v). But what if the model

was more indirect and included the two equations V = KU and U = KX
instead of V = KX? If K was a positive constant, the two formulations
would be equivalent, but the system would not know it. Since there are an
infinite number of ways to write equivalent models, a finite set of rules cannot
recognize them all without help. If all models were expressed as sets of first
order linear equations, then it might be possible for an algebraic manipula-
tor to translate them into canonical form. But since nonlinear models are

allowed and can contain arbitrary monotonic function constraints, this is not
obviously feasible.

Exaggeration is less sensitive to model differences since it does not try to

differentiate the equations, only evaluate them. For the sets of differential
equations that are used to model physical systems evaluation means quali-
tative simulation; the result is a time behavior that satisfies the differential
equation. When two sets of differential equations evaluate (simulate) to the
same values (time behaviors), exaggeration considers them equivalent. Thus .

exaggeration reaches answers more frequently because simulating a differen-
tial equation model is easier than directly computing the partial derivatives
of its solution.

The following example demonstrates a different form of brittleness in DQ 0
analysis which is also caused by a lack of algebraic reasoning. Imagine two
containers, each initially filled to the same level with liquid. Suppose that
a pump moves liquid from container B to A, but that the wall between
the containers is permiable. If there is a pressure gradient from A to B,

then liquid will seep backwards. The system can be modeled with seven
parameters, the fluid level in the containers L. and Lb, the difference in
height' H, the rate of pumped and seeping flow Fp and F,, net flow F,
and the permiability of the wall separating the containers P, obeying the

following constraints:

Lb MINUS( La) (4.1)

La = ADD(Lb, H) (4.2)

Fo MULT(H, P)F, = ADD(F,, F,) (4.3) %

F, = .4- L (4.4) 0

Height difference is also used to represent difference in pressure. %
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0- 0

Level B

Flow

4- Pumped Flow

Figure 4.3: Equilibrium State for Pumped Containers

Given this model, QSIM quickly determines that the height difference 0

between the two containers will rise until an equilibrium value is reached
in which there is no net flow (figure 4.3). Both DQ analysis and exaggera-

tion correctly solve the comparative analysis question "What happens to the

height difference if the rate of pumped flow is greater?" DQ analysis uses
the following line of reasoning:

Since there is a greater pumped flow, the rate of seepage must
be greater at equilibrium. This means that the height (pressure)
difference must be greater.

This explanation is simple and to the point. Unfortunately, DQ analysis
(unlike exaggeration) does not realize that L. is higher at equilibrium even
though this is a simple algebraic consequence of a greater height. This inad-
equacy would not be solved by preprocessing the differential equation model

into canonical form. Postprocessing the output of DQ analysis, however,
might increase coverage. This is an interesting avenue for future research.

As explained in the section above, different types of ambiguity are the
cause for the incompleteness of DQ analysis. Yet DQ analysis handles am-

biguity differently from other forms of qualitative reasoning. For example,
when QSIM is faced with ambiguity about a parameter's value, it branches,
spawning perhaps three new behaviors: one with the parameter equal to a
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landmark value, one greater and one less. QSIM can do this because the •
nature of inequality guarantees that either A < B, A = B, or A : B. While
this is true for RC values at transition points, it is not true for RC values
over intervals.

Proposition 21 Non-Exhaustivity
Given two parameters, V and P, such that P is a covering perspective over an
interval (-ti,-i+,), it is not necessarily the case that one of V +1 1,,,, VIj(,, %

or V (i,i+l) holds.

Proof: Appendix B provides an example which proves this statement f- •
Thus unlike qualitative simulators, DQ analysis can not branch when

faced with uncertainty, it simply acts mute.

4.4 Performance Difference

This section considers the worst case computational complexity of the two
comparative analysis techniques. The quick answer is that DQ analysis is
considerably more efficient than exaggeration: polynomial rather than expo-
nential in the length of simulation time.

4.4.1 DQ Analysis is Polynomial

Since DQ analysis is implemented as a forward chaining rule system based on
a propositional database, two kinds of operations are suggested as possible
computational metrics: the number of database matches and the number

of actual rule firings. There are two reasons why the number of database
matches is the best metric. Since no rule can fire before being miatched to
the database, the number of matches is a more conservative metric and thus.-
more appropriate as a worst case measurement. Secondly, informal metering
of the ARK substrate indicates that the vast majority of compute time is
actually spent performing the matches. -

Unlike many forward chaining systems, one can show that DQ analysis -,,-

has a tight bound on the number of entries that can be stored in the database. AN.",

This in turn limits the number of matches that can be performed before the
rule system reaches quiescence.
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Each database entry is one of a constant number of types. The 'relative
change over an interval' type is the most important from the perspective of
this analysis because it has the greatest number of independent slots and thus S,
spawns the greatest potential number of entries. Since this type's pattern is
instantiated by two parameter slots (one for the parameter being compared
and one for the perspective) and one time slot, there are O(TP) entries in
the database where P is the number of parameters in the si stem and T is

the temporal length of the behavior.
Every time that a new entry is made to the database, it is matched against,-.

every rule to see if it enables one to fire. Assuming R rules and E entries,
the number of matches is greater than O(RE) because some entries can be
matched against some rules in more than one way. For example, it is very
common for the conjunctive antecedent of a rule to contain two patterns of
the same type, as shown here.

( (AND (RC ?v (?start ?middle) ?c (P- ?x))
(RC ?v (?middle ?end) ?c (P- ?x))) , "

(RC ?v (?start ?end) ?c (P- ?x)) t.A

stupid-rule)

If there were E database entries with this 'relative change over an interval'

type, then this rule might be satisfied O(E 2 ) ways. Since the set of rules is

fixed, there exists a finite bound, a, on the maximum number of conjuncts in

a rule antecedent. Thus the total number of database matches is O(RE ' )
or equivalently O(RT"P"o).

Although this is a worst case analysis, the average case complexity is
probably similar. For systems of seven parameters, with behaviors that con- %

tain ten time points or intervals, running in the current base of eighty rules,

it takes about three minutes to reach quiescence.,%

4.4.2 Exaggeration is Exponential

Let P denote the numLer of parameters in the system, let C be the num-
ber of constraints, and T the length of time before the event of interest.

The transform phase is fast, O(P) since the most expensive operation is the A
reformulation of each parameter's quantity space.

2For the current rule set a ; 6.
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As a first step in the complexity analysis of the simulate phase, consider

the time required for HR-QSIM to generate the successors of a qualitative
state. The analysis is very similar to that of QSIM [27, page 312]. Transition
tables generate possible values in O(P) time. The most expensive constraint
filter is the check of corresponding values which grow over time resulting in
a complexity of O(PT) time. Waltz filtering requires 0(C) time. Unfortu-
nately, when the parameter values are combined into global interpretations,
0(2P) interpretations are possible in the worst case. In practice, the number
of interpretations is much smaller, between three and one, decreasing as the
number of constraints rises. Predecessor-persistence and successor-arrival
filtering require O(P) time for each interpretation.

Thus, on average HR-QSIM, like QSIM before it, produces each successor
state in linear time. While it is possible to construct pathological cases where
each state has an exponential number of successors, these seem quite rare.
Even with the common case of bounded branching, however, the situation
is far from rosy. Since HR-QSIM generates a tree of states in breadth first
fashion, the number of states produced is exponential in T, the maximum
time :onsidered. In fact, the situation is effectively worse for HR-QSIM than

it is for QSIM. Because parameters pass through infinitesimal halos on their
way from a landmark to a finite interval, more qualitative states are needed

to represent the 'same' behavior. This means that T is almost twice as large
for a HR-QSIM behavior as for an analogous QSIM behavior.

The scale phase is also exponential in T because it needs to compare each

behavior against the original QSIM behavior. The number of HR-QSIM be-

haviors is equal to the number of leaves on the state tree which is exponential S

in the depth, T, of the tree. In practice, the constant factor is so much lower
for the scale phase than the simulate phase, that its speed is not an issue.

The preceding analysis is worst case. For many problems, HR-QSIM pro-
duces a single unbranching behavior. Out of the more than fifty compara-

tive analysis problems attempted, only three had truly intractable branching
(appendix F). With these problems additional heuristics or manual search
control would have been necessary for exaggeration to reach an answer.

..'. .
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4.5 Explanation Difference

A final question applies to those comparative analysis problems that are
answered by both techniques. Which of the resulting explanations is better?
Since comparative analysis is distinguished from sensitivity analysis by its
ability to generate explanations, this is an important question to answer.

Unfortunately, the multitude of factors affecting the perceived quality of an
explanation make this difficult question as well. I start by addressing criteria
for a good explanation.

0

4.5.1 What Makes a Good Explanation?

While psychological studies are probably the best way to measure the quality

of explanations, such studies are beyond the scope of this thesis. Instead, I 1W _p

present abstract desiderata that explanations should meet. One factor not

included is the quality of the natural language text, since I am concerned with

the nature of the underlying argument, not the way in which that argument

is presented. In fact, DQ analysis has only a rudimentary algorithm for
transforming proof trees into English text, while no such algorithm has been

implemented for exaggeration. It goes without saying that any argument is

improved by good diction, but the issues involved are unrelated to those of
this thesis.

* The most obvious criterion is that the explanation should answer the
question and do so correctly. Section 4.3 showed that DQ analysis
meets this requirement, but exaggeration does not.

" The explanation should be grounded in information already known by
the listener. Unless this criterion is met, the listener cannot graft the

explanation into his previous understanding and will remain confused.
Both DQ analysis and exaggeration meet this requirement by only us-
ing information that is made explicit in the problem specification. Note
that I have not addressed the major question of student modeling. The

problem of gauging what a person knows and choosing an understand- %
able and appropriate model is a topic for future research.

" The explanation should not contain extraneous information that might
confuse or distract the listener. DQ analysis certainly satisfies this
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requirement-the constraint propagator maintains a dependency struc-
ture showing which rules led to any conclusion and exactly what facts
were involved. A differential qualitative explanation is simply a refor-
matted version of the dependency tree.

At one level exaggerated explanations meet this requirement, but at
another level the current implementation is deficient. The distinction..
is one of detail in the explanation. If one assumes that the explanation
does not need to explain why the exaggerated system has the behavior
predicted by HR-QSIM, then no irrelevant facts are introduced. The
conclusion follows directly from an observation of a difference in the
standard and hyperreal behaviors. However, if one assumes that the
explanation should justify the hyperreal behavior, then irrelevancies
occur. The problem is the fundamental way that QSIM is structured.
Rather than deducing causal connections between parametric values,
QSIM (and HR-QSIM) generate the space of all possible behaviors and
then discard the inconsistent ones. Although the strategy results in an
elegant and (on average) speedy algorithm, there is no way to justify a
behavior other than to say that the alternatives were inconsistent. As
a result there is no way to isolate the facts that underlie a parameter's
hyperreal value. Fortunately, this limitation is not basic to the idea of._.
exaggeration, only to this implementation of the simulate phase. If any
of the other qualitative simulators [16,8,491 had been used as a basis
for the simulate phase, this problem would not apply.

explanation should not require mathematical sophistication. While
iathematical arguments will quickly convince those who appreciate

Lftem people unfamiliar with mathematical concepts and notation will
likely get lost. Both DQ analysis and exaggeration produce explana-
tions that meet this goal.

9 The explanation should be short. Long and complicated arguments
are by definition more difficult to understand. The problem is to be
precise about measuring the length of an explanation. The next section i-

argues that for a class of comparative analysis problems, exaggeration

generates explanations that are simpler than those produced by DQ
analysis.
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0 The explanation should say familiar things in familiar ways. If obvious

points are couched in unfamiliar terms, then recognition and compre-
hension take longer. Section 4.5.3 explains why both DQ analysis and
exaggeration sometimes generate unnatural explanations.

It is interesting to note that the popular learning technique, explanation
based generalization (EBG) [29,13], uses the word 'explanation' in the same
sense that I do. The fact that EBG requires the first three of my criteria to
generalize successfully lends extra weight to the desiderata. To support this
argument I implemented an EBG algoiithm [24] that correctly generalizes
the explanations produced by DQ analysis (section 2.3).

4.5.2 Exaggeration can Produce Simpler Answers

In some cases DQ analysis and exaggeration produce similar explanations, 0

but there are also cases when the explanations are very different. The oscil-
lating spring / block is an example of a system on which the two perform ,K

similarly. Given a question about the relative change of period caused by an
increase in mass, DQ analysis deduces that force is the same, so acceleration
is smaller, so velocity is smaller, so the time is longer. Exaggeration needs
a similar line of reasoning to justify the fact that a block with infinite mass
has infinite period: force is finite, so acceleration is infinitesimal, so velocity
is infinitesimal, and so on.

More interesting are the explanations that are not parallel. A good ex-
ample is the question "What happens to output temperature when hot oil
passes more quickly through a heat exchanger?" A DQ explanation needs
to follow through the details of the constraint model of heat flow, but an
exaggerated explanation can disregard the details of heat flow because it has
negligible effect when the oil moves infinitely fast. Consider the following
possible heat exchangers (not all implemented):

* Hot oil flows through a bath of coolant held at constant temperature.

H Hot oil flows through a bath of coolant that gradually warms.

* Hot oil flows down a pipe in one direction while warming coolant flows 0
through a concentric pipe in the other direction.
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" Hot oil and coolant flow in same direction through concentric pipes. ,

" Any of the above models with thermal conductivity changing as a funr-
tion of temperature difference.

" Any of the above models complicated by modeling the thermal mass of
the pipe wall. This causes two heat flows: from the oil to the pipe wall
then from the wall to the coolant.

In fact DQ analysis can only answer the comparative analysis question on
the first (and simplest) heat exchanger model, but if it could reason about the
others its answers would get more and more complicated. The exaggerated
answer, on the other hand, could remain the same for each of these models.
The details of the heat flow process are irrelevant since the flow rate is only
finite and the oil is moving infinitely fast. In these cases the exaggerated
explanation is simpler because it abstracts irrelevant detail from the heat
flow process.

Although the answer is simpler, the simulate phase of exaggeration makes
no simplifying assumptions and in fact performs more work on the more
complex models. Getting computer problem solvers to autonomously refine
their models with simplifying assumptions is an important subject for future
research.

4.5.3 Unnatural Explanations

Both DQ analysis and exaggeration sometimes generate correct, yet unnatu-
ral explanations. The underlying cause of the awkwardness is the expression
of a familiar idea in an unfamiliar way.

For example take the question "What happens to the output temperature
of the hot oil if it moves more rapidly through the heat exchanger?" Since
the oil is cooling as it moves through the exchanger, one would like the
answer expressed "The oil will cool less" rather than "It will exit hotter."
Unfortunately, neither DQ analysis nor exaggeration makes commitment to I k

a strong process ontology [16] that would facilitate this distinction.
A second example of a correct yet cognitively dissonant explanation con-

cerns the use of perspectives in DQ analysis. Many times a problem can
be solved using one of several perspectives and to the program they all look
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alike. As a result, the explanation might be parameterized in terms of, say,
force rather than position. Although the argument would be right, it would
be unfamiliar. The problem is not new [61, but it won't go away without
careful heuristics explaining common ways of viewing the world.

A third example of awkwardness applies only to exaggeration. The idea
behind exaggeration is to transform a small perturbation into a change that
is large enough to make the overall influence obvious. In this thesis, I discuss
transformations to infinite and infinitesimal values because these values have
qualitatively different behavior that can be deduced abstractly. Since people
live in the world and remember past observations, they don't always need to
use such extreme examples. Often they can simply remember an exaggerated
system that is adequate for the scale phase without performing simulation.
In other words a perfectly valid (and natural) exaggerated explanation of the

increased mass oscillator example might be:

What happens to the period of oscillation if you increase the
mass of the block? Well, Uncle Fred had an oscillator like this
with a wicked big mass and it sure did have a long period. Thus,
I bet an increase in mass increases period.

A related example emphasizes this problem. Imagine a projectile fired
upwards at some velocity. What happens to the projectile's flight time if
initial velocity is decreased? Exaggeration solves this problem correctly with
the following argument:

If the initial velocity was negligible, then the projectile would S
stop climbing after a negligible time since gravity causes a finite
deceleration. In this time, the projectile would have climbed only
a negligible distance, so the fall time will also be negligible. Thus
a negligible velocity results in negligible flight time so decreasing
velocity decreases flight time.

While this explanation is correct, it is rather unnatural. A much simpler .

explanation is the following:,-.-

If the initial velocity was zero, the projectile wouldn't go any-
where. In other words, the flight time would be zero. Thus
decreasing initial velocity decreases flight time.
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The current theory of exaggeration specifies transforming to a positive
infinitesimal rather than zero because it is safer. Many systems become dis-continuous when a parameter goes to zero and this give unreliable answers.3

In this example, a transform value of zero is safe and actually preferable to
the value of negL. However, the general problem of determining the most
natural explanation is a difficult one. -.'

4.6 Combining the Techniques

Since the strengths of DQ analysis and exaggeration are complementary, it
is natural to consider combining them. The advantage of DQ analysis is
the guarantee that when it answers a question, the explanation is correct.
Exaggeration, on the other hand, can generate incorrect answers for systems
in which the perturbation causes nonmonotonic changes in parameter values.

There appears to be no general, qualitative method of ensuring that a system
reacts monotonically.

On the other hand, exaggeration appears to solve many more compara-
tive analysis problems than does DQ analysis. Both techniques solve some
problems that stump the other, but exaggeration has the upper hand. By
combining the techniques, one could create a high level architecture more ef-
fective than either technique alone. A comparative analysis problem should
first be subjected to DQ analysis. If that works, then a sound answer is
guaranteed. If DQ analysis fails, then apply exaggeration. Now check exag-
geration's predictions with all of the relative change values that DQ analysis
is able to deduce. If they all agree, the chances are good that nonmonotonic
behavior is absent. Finally, exaggerate the perturbation in the opposite di-
rection and check that the resulting predictions are the opposite of the first
transformation. Although there will still be pathological cases, these precau-
tions would maximize the heuristic power of the exaggeration method.

3 For example, try exaggerating the spring constant to zero in the oscillating spring /
block example, or oil velocity to zero in the heat exchanger system.
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Chapter 5

Related Work o

Despite its importance, little previous attention has been devoted to the
questions of comparative analysis by artificial intelligence researchers. This
chapter starts by discussing the related engineering field of sensitivity analy-
sis, and then proceeds to summarize previous AI research of interest. Alter-
nate temporal representations are mentioned first because they are relevant
to both the DQ and exaggeration approaches. Next, de Kleer's work on IQ

analysis and Forbus' approach to DQ analysis are presented. The chapter
next considers Al work related to exaggeration: Raiman's FOG, Kuiper's N-
time scale abstraction, and Davis' order of magnitude solution of qualitative
differential equations.

5.1 Sensitivity Analysis

Sensitivity analysis is a common engineering technique for calculating the
effect on system performance due to variations in system parameters. Com-
parative analysis is a qualitative version of sensitivity analysis. The sensitiv-
ity of a quantity Y to perturbations in a parameter X is defined [1] as the S
product:

OY x

aX Y :

Because of its important application to design, considerable work has been
done on efficient methods for calculating sensitivities. Approaches include
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numerical and symbolic differentiation, construction of an incremental net-
work, and analysis of an adjoint network [1].

Compared to either DQ analysis or exaggeration, these methods have
a major advantage-they generate a quantitative value for sensitivity. But
sensitivity analysis has two limitations. Sensitivity analysis requires an ex-
plicit equation for all quantities of interest. Thus sensitivity analysis could "

not answer the spring / block problem until it was provided with a formula
for period of oscillation. For linear systems like the spring / block, these
equations could be derived automatically. For nonlinear systems, no general
soultion technique exists. One could introduce piecewise linear approxima-
tions as suggested by Sacks ??, but there is no way to ensure that the reulting
equations are valid.

A more important limitation of sensitivity analysis, however, is the fact
that it does not generate an explanation; all it provides is the answer. For
many purposes this is acceptable, but not for comparative analysis.

The technique of comparative statics [38,23], long used in economics to
compare two different equilibrium behaviors, suffers from the same limitation.
It requires an explicit formula for the partial derivative in question.

5.2 Williams' Temporal Representation

QSIM [271 is a simple, easy to use simulator that has significantly sped the
implementation of both exaggeration and DQ analysis. However, QSIM has
defects; its weak temporal representation is a major problem that affects my
comparative analysis techniques.

As explained by Hayes in [21], systems that represent behaviors as a se-
quence of states force a total ordering on transitions. Because qualitative
reasoning is often unable to determine an unambiguous order of transitions,
the behavior must branch to consider multiple possibilities. If events interact,
the various branches often have interesting qualitative differences. But fre- 0

quently, the alternate behaviors are equivalent and just complicate reasoning

and consume processing resources. ."

To combat this problem, Williams introduced the notion of concise episodes
[451, and has devised an efficient simulator (called a Temporal Constraint
Propagator) to manipulate them. Just as standard qualitative simulators

using Williams' temporal representation would improve on QSIM, exagger-
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ation's simulate phase would produce fewer extraneous behaviors if it used
the representation. Although this would not increase the competence of the 6
overall exaggeration algorithm, it would simplify interpretation performed I '
by the scale phase and might increase overall speed. The underlying tech-
niques of predecessor-persistence and successor-arrival filtering would still be
applicable.

Similarly, a DQ analysis implementation that used Williams' concise
episode representation would have several advantages over CA. Williams is
building such a system for use in automated design [48].

* The propositions of section 2.2 would still be true, and could be en-

coded more easily. CA requires explicit rules for composing dura-
tions over intervals (e.g., if DURATION (0,1) and DURATIONft(l, 2) then
DURATIONft(0, 2)). These computationally expensive rules would be sub-
sumed by the temporal constraint propagator.

* The search for topologically distinct behaviors (section 2.5) would be
simplified because the space would be smaller. By eliminating irrel-
evant order distinctions, the number of different behaviors would be
smaller. Only if it was qualitatively interesting would there be any
need to consider a behavior in which two parameters reach transitions
simultaneously.

5.3 de Kleer's IQ Analysis

de Kleer's theory of Incremental Qualitative (IQ) analysis [6] is the prede-
cessor of DQ analysis and marks the start of artificial intelligence work in
comparative analysis. The overall goal de Kleer was trying so solve was the
recognition and explanation of electronic circuit function given a schematic.
The resulting program, QUAL, worked in two phases. First, the circuit was
simulated to determine its qualitative behavior. Then the behavior is parsed
using a grammar for common circuit functions. QUAL works successfully on
hundreds of examples.

de Kleer calls QUAL's first phase causal analysis:

Causal analysis takes a description of the circuit's topology
as an input and produces a qualitative description of the circuits
incremental behavior as an output ([6, page 20]).
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Causal analysis is halfway between the notion of qualitative simulation and 1 0

that of comparative analysis. The interesting behavior of the circuits that de.__
Kleer investigated is not at steady state, rather it is the perturbations from
equilibrium that are interesting:

Causal analysis produces a causal argument which is a qualita- •
tive description of how the circuit equilibrates - how it responds
to perturbations from it equilibrium state ([6, page 501).

Causal analysis is implemented with a technique called IQ analysis. IQ
analysis uses the same fr 4. notation of DQ analysis, but these values refer to
the values of parameter derivatives, not to the difference between parameter
values in alternate worlds. In other words, IQ analysis is concerned with
the evolution of a single behavior considered as a pattern of perturbations to
steady state values, rather than the comparison of two alternate behaviors.
As a result, IQ analysis has no explicit notion of time. When the IQ value for
a parameter changes, its old value is lost. This means that IQ analysis cannot
answer questions that would be easy for DQ analysis. For example, "If the
perturbation to V was greater, would it take longer to reach equilibrium?"

IQ analysis is thus designed to solve a specific class of simulation problems
rather than arswer comparative analysis questions. However, IQ analysis in-
spired Forbus to consider DQ analysis, the first work on comparative analysis N
per se.

5.4 Forbus' DQ Analysis

In his work on Qualitative Process (QP) theory, Forbus introduced differen-
tial qualitative analysis [16, pages 159-1611 and contrasted it with de Kleer's J

IQ analysis. However, Forbus attempted no implementation and his formal-
ization has serious problems. Forbus defined a quantity Q, to be greater than
Q2 over an interval, 1, if for all instants in the interval, Q, > Q2 measured •
at that instant. Unfortunately, this definition has several problems. Since
the quantification is over a single interval of time, it is impossible to make
comparisons of systems whose time behavior changes as a result of a pertur-
bation. Thus his attempt to formalize "distance equals rate times duration"
in predicate calculus is severely limited. Rates can only be compared if the
duration of an interval is unchanged.
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But even if the quantification was correct, time-wise comparison is almost
never a useful one to make. In the spring/block case, for example, it simply
isn't the case that the heavy-block is always moving slower than the small-
block; the periods get out of phase. The key to solving these problems is in the
use of perspectives discussed earlier. The comparison on velocity (necessary
to predict that the period lengthens) is valid only from the perspective of
position. %

5.5 Raiman's FOG

The formal basis for exaggeration was inspired by Raiman's FOG system
for order of magnitude reasoning [32]. FOG is a representation that reduces
qualitative reasoning ambiguity by explicitly modeling the fact that some
parameters are negligible compared to others. Unlike previous attempts at i
order of magnitude reasoning, Raiman's rules are based on nonstandard anal-
ysis [33] and are, therefore, consistent. On the surface there appears to be Q!
considerable overlap between exaggeration and FOG, but in fact the systems
are quite different. The main similarity is the shared foundation of nonstan-
dard analysis and the hyperreal numbers, which results in a similar model of
quantity space.. S

Although FOG does not represent a quantity space explicitly, it is im-
plicit in the FOG relations: < (infinitely less than), - (infinitesimally close
to), and -- (same order of magnitude)' These relations are as expressive

as exaggeration's qualitative hyperreal representation with disjunction. For
example, one can write X E (HALO xo "-) as X ; x0 A [X] = , and

X E -<0,z 0>- is equivalent to

X x0 A [X] = + A Y = X + o A [Y] - -i 0

The FOG expression X ;z 0 translates to:

X E (HALO 0 -) V X = 0 V X E (HALO 0 +)

Although the two representations are equivalent, one may be considerably.,'-".I%, "

more convenient than the other for a specific task. The brevity and specificity -.
of the qualitative hyperreal representation is a big advantage for simulation.

Raiman's actual terms, Ne, Vo, and Co, are French abbreviations for the same relations
[32]. ? P.I
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But FOG is just an algebraic reasoner. Since it doesn't know about
derivatives and integration, it cannot do qualitative simulation (as is required
for exaggeration's simulate phase). Within the scope of algebraic reasoning,
however, FOG's performance is impressive. Raiman poses the qualitative
physics problem: "If two masses, one much smaller than the other, are moving
towards each other with similar velocities, what will their velocities be after
an elastic collision?" He demonstrates that approaches based on standard
qualitative algebras are defeated by ambiguity. In contrast, FOG uses the
assumption that one mass is negligible compared to the other to correctly
predict that the velocity of the big mass will be relatively unaffected while
the small mass will reverse direction and retreat at three times its original
speed.

While this appears to be dynamical reasoning, it is not. The equations
of motion for an elastic collision are discontinuous and thus cannot be dif-
ferentiated. Instead, FOG solves the problem using explicit equations for
conservation of energy and momentum. Extending FOG to perform qual- ."

itative simulation would be a major task, requiring (among other things)
analogs of the predecessor-persistence filter and the successor-arrival filter.

5.6 Kuipers' Time Scale Abstraction

Time scale abstraction [261 is a technique for reducing ambiguity in quali-
tative simulation by modeling a complex system as a hierarchy of smaller,
interacting equilibrium mechanisms. For example, Kuipers describes the kid-
ney's sodium / water balance mechanisms in terms of two mechanisms that
operate at different speeds. The water balance adjusts volume in a matter 4N

of minutes while the sodium balance adjusts sodium excretion over periods
of hours and days. Kuipers observes that the amount of sodium appears
constant to the water balance mechanism but the water mechanism seems to
be instantaneous from the eyes of the sodium mechanism. Thus:

When a faster mechanism views a slower oite as being con-
stant, the slower one can simply be treated as c ource of values
for certain parameters. When a slower mechanis.n views a faster
one as instantaneous, a relation among shared variables may be
treated by the fast mechanism as the result of a process over time,
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and by the slow mechanism as a functional relationship ([26, page
622]).

Kuipers extended QSIM [27} to handle mechanism hierarchies by switch-
ing between submodels, starting with the fastest time scale. An alternate way
to simulate this hierarchical model would be to use HR-QSIM. By specifying
sodium's derivative as negligible, the water :nechanism would be guaran-
teed to reach equilibrium first, avoiding the intractable branching of a flat
model. But I propose this solely to demonstrate the relationship between
the two techniques. Kuipers' approach has the advantage that the time scale
abstraction is explicit, not buried as it would be for HR-QSIM.

But there is an advantage to the HR-QSIM approach. Kuipers had to
carefully hand construct his model hierarchy, manually assuring consistency
of two views of the water balance mechanism: the fast model (a QSIM struc-
tural description) and the slow model (a single constraint in the sodium

mechanism). With the HR-QSIM approach, the abstraction assumption can
be introduced automatically. For example, consider a flat model of the two
mechanisms combined with no time scale information. If exaggeration were
given the comparative analysis question "What if the sodium's 'velocity' were
less?" then it would automatically generate a description of the system with
the time scale abstraction. Unfortunately, exaggeration's simulate phase,
HR-QSIM, could not take advantage of the abstraction since it is not ex-
plicit. The case is similar to that of the infinite flow rate heat exchanger %
discussed in section 4.5.2. Unifying the modeling abilities of exaggeration
with the explicit representation of Kuipers' work is an important topic for
future research.

5.7 Davis' CHEPACHET

Intrigued by my formulation of exaggeration (personal communication, [421), 0
Ernie Davis' attacked the problem of order of magnitude solution of qualita- . .
tive differential equations [3]. The resulting CHEPACHET program is a di-
rect analog of exaggeration's simulate phase. HR-QS1M and CHEPACHET
are very similar. In fact HR-QSIM's use of four transition tables (section
3.3.2) follows from Davis' temporal topology rule. The two programs appear
to be equivalent in terms of systems they can simulate and ambiguities they
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filter. However, HR-QSIM uses a more expressive qualitative representation
that is more appropriate for exaggeration.

5.7.1 Algorithm Differences

CHEPACHET and HR-QSIM take fundamentally different approaches to
solving qualitative differential equations: HR-QSIM does qualitative simu-"%
lation, but CHEPACHET produces an envisionment. HR-QSIM assumes a

fixed initial state and produces the set of possible behaviors that could result
from that initial specification. CHEPACHET, on the other hand, generates

the graph of all possible states and the transitions between them, even if only

a small subgraph is reachable from any initial state. The relative merits of
the two approaches have been widely debated in the literature [171; it seems

clear that both have advantages. Envisionments are more general, but also
much larger and thus considerably more expensive to produce. Given the
goal of exaggeration, qualitative simulation is the appropriate choice.

Although CHEPACHET and HR-QSIM take different approaches to tem-

poral filtering, the approaches appear to be equivalent. In place of HR-

QSIM's predecessor- persistence and successor-arrival filtering, CHEPACHET
uses several inference rules based on the notion of a parameter's VARIANCE,
how much the parameter is allowed to change during a time interval. The

resulting inference rules are quite elegant-very simple (e.g., no need for
HR-QSIM's infinite arrival rule), yet powerful. Both HR-QSIM and CHEPA-
CHET characterize a state in terms of four types of quantities. Both systems

use the parameter's order of magnitude, the parameter's derivative order of

magnitude, and the parameter's persistence time.' In addition, HR-QSIM
uses the parameter's arrival time while CHEPACHET uses the parameter's
variance. The one drawback to using variance measures rather than arrival

times as this fourth quantity is its lack of physical significance. This com-,-6 %

plicates the process of understanding the reasons for CHEPACHET's predic-
tions -- an important liability since exaggeration is primarily an explanation
technique.

'Davis calls it time duration or 'delta T' since he does not distinguish between persis-
tence and arrival times.
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5.7.2 Qualitative Representation

CHEPACHET's qualitative representation is a subset of the qualitative hy-
perreal representation; landmarks other than zero are not allowed. In other
words, there are seven possible values: ZERO, ±SMALL (infinitesimals),
±MEDIUM (finite, noninfinitesimal numbers, and ±LARGE (infinite num-
bers). Davis asserts [31 that it is easy to extend his representation to handle
additional orders of magnitude (e.g., VERY-SMALL and VERY-LARGE),
but this does not make up for the lack of multiple landmarks within a single
order of magnitude.

To see the limitations of the CHEPACHET representation, , onsider the 0
comparative analysis question "What happens to the output temperature of
hot oil passing more quickly through a heat exchanger?" When HR-QSIM is
given the description of oil moving infinitely fast, it predicts that the output
heat will drop a negligible amount from qo to (HALO q0 -). Since this
is greater than the largest predicted value, -<0, q0>-, in the case where oil 0

velocity is finite, the scale phase can conclude that output heat increases
when flow rate increases. ..

But CHEPACHET could not support this deduction without some con-
tortions. Assuming that CHEPACHET correctly predicts that Q does not
transition to SMALL or ZERO when V is LARGE, there is still no way to
compare the standard and hyperreal output values to see which is larger.
Both (HALO q0 -) and -<O, q0 >- are represented as MEDIUM in the CHEP-
ACHET representation.

One might argue that there is a simple fix to the problem: simply create
a new parameter, Q-LOST, and add a constraint linking it to Q. This new
parameter would distinguish the two cases by ending with a value of -SMALL
when flow is infinite and -MEDIUM when oil velocity is finite. However, there
are problems with adding extra parameters.

Who or what adds the new parameters to the model? This modeling
step should not be lightly undertaken by a program, yet is an unattractive
burden for a person. The addition of numerous new parameters complicates
the model and makes it harder for people to understand and harder for
programs to analyze. Extensions would be required to the scale phase if it
were required to automatically analyze the Q-LOST parameter when asked
a question about Q. Since an additional parameter is necessary for every
landmark, this scheme would require the dynamic addition of parameters
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when new landmarks are added during simulation - an extra complication. .

In theory, the ±LARGE, ±MEDIUM, ±SMALL, ZERO vocabulary is viable,
but considerable work would be required to make it as easilly expressive as
the qualitative hyperreal representation. Because of this extra expressiveness,
HR-QSIM is a more appropriate choice for exaggeration's simulate phase than
CHEPACHET.
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Chapter 6

Conclusions

In this chapter, I summarize the main contribution of the thesis, suggest
areas for future research, and present a few concluding remarks.

6.1 Summary

This thesis makes a number of contributions to the field of qualitative physics.

" It formalizes the problem of comparative analysis and distinguishes it
from qualitative simulation.

* It solves the problems with previous treatments of relative change by
explicitly accounting for multiple perspectives.

" It codifies the knowledge necessary for performing DQ analysis as a set
of inference rules. The rules are proven sound and have been imple-
mented using a forward chaining rule engine.

" It explains how the qualitative hyperreal representation extends For- 0

bus' notion of quantity space [16] to handle infinitesimal and infinite
hyperreal values.

* It presents predecessor-persistence and successor-arrival filtering and
shows how they are used in a simulator that uses the qualitative hy-
perreal representation.
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* It introduces exaggeration, a nov'el method for solving comparative
analysis problems, and shows how qualitative hyperreal simulation is %

central to its operation.

* It compares the two comparative analytic techniques on a wide variety
of dimensions so that future researchers can easily understand their
strengths and weaknesses and use them effectively as black boxes.

6.2 Future Work
S

As is often the case, this work exposes new questions as it answers others.
There are many areas that deserve further attention.

6.2.1 Augmenting DQ Analysis

As described in section 4.3.2, small changes in comparative analysis questions
can render DQ analysis unable to answer. Three approaches show promise
for increasing the coverage of DQ analysis:

" Since the DQ analysis rules match the system model syntax, small
changes in the model (e.g., multiplication of a derivative by a constant)
often result in decreases in competence. Can the models be converted
into some kind of canonical form?

" Sometimes DQ analysis is able to deduce a relative change values for
one parameter, but not for other parameters even if their value is de- -
termined by the first's. For example, DQ analysis determines that an Ib
increase in the fluid pump rate between two adjacent containers re- -6

sulted in a greater equilibrium height difference (section 4.3.2) but is
unable to conclude that this means one level is higher than before and %

the other lower. Integrating the algebraic methods of [47] would likely
solve this and related problems.

" Proposition 21 states that relative change values over transition inter-
vals are not exhaustive. Given a parameter X and a perspective P itP P 'Xi i sP tu

is possible that neither Xfl(,i+,), nor XII(,i+l), nor is a true
statement. As a result, DQ analysis cannot branch on the possible cases
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in the hopes of eliminating some through contradictions. However, rel-
ative change values at transitions (rather than the intervals between
them) are exhaustive. It is not clear how great an advantage limited
branching would be, but it would at least solve the pumped containers
problem described in the bullet above.

6.2.2 Other Uses for Exaggeration

Although this thesis has treated exaggeration solely from the standpoint of a
comparative analysis technique, exaggeration has a much greater potential.

Section 3.2.1 suggests how exaggeration might be used to solve a com-
parative analysis question that is not differential in nature: "Which heat ex-
changer can cool to a lower temperature, the regular or counterflow design?"
The question is different from the other comparative analysis problems dis-
cussed because the difference between the two systems cannot be expressed as
a differential change in a parameter. In one system velocity is positive and in
the other it is negative. Exaggeration can be used to answer the question, but %
only through an obscure transformation. If the heat exchanger is infinitely
long then the oil will be in thermal equilibrium as it exits. Thus in one oil
will exit the counterflow exchanger at a lower temperature, the temperature
at which the coolant enters. Future work should be spent on developing a
theory of exaggeration's applicability to nondifferential comparative analysis
problems. Specifically, what parameter should be transformed?

Another example of exaggeration's potential utility as a subroutine is
shown by the comparative analysis problem: "When traveling a fixed distance
in the rain, will you stay drier by running?" To model this situation, I make
the following assumptions. The rain is falling straight down with uniform
density. The person is a stick figure, leaning forward at an angle, 0, from
vertical. Finally, the person only gets wet on his sides, not on the top of his
head (which has zero area and is protected by a tiny hat anyway). Straight
exaggeration might lead one to think that wetness is independent of speed. I')7

After all, if one were to move infinitely fast,one would get soaked by all the J.

rain in the volume swept out. But if one moved with infinitesimal speed,
then it would take an infinite time to get there and one's back would get
soaked (remember that the figure is angled forward). This answer is incorrect 0
because the system behaves nonmonotonically to changes in speed. In fact,
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exaggeration can be used to show that every angle, 9, specifies a unique speed
that will allow the figure to traverse the distance without being touched by a
single drop of rain. Suppose the person were prone, 0 = 900, then if he could
fly infinitely fast he wouldn't get touched. If the figure is completely vertical,
0 = 0', then standing still keeps him dry; 0 = negi degrees necessitates
a negligible speed. Again, the question for research is how to choose the
correct transformation and how to use the simulation results.

6.2.3 Reasoning about Discontinuous Systems

Although DQ analysis and exaggeration are both limited to continuous sys-
tems, many systems are discontinuous. How could the techniques of compar-
ative analysis be extended to handle such systems? One possible approach
would be to model the system in terms of piecewise continuous fragments.
flow would the individual models be created? How would an overall answer
be composed from the trends of the pieces?

An interesting example (suggested by Paul Horwitz) to consider is that
of a rocket navigating under the following, rather strange conditions. The
rocket is not subject to gravity, but does experience linear friction: doubling
initial velocity causes the rocket to go twice as far before coming to rest. If
we assume that the space is one dimensional, the friction law can be written
V = Vo - kX. Finally, assume that instead of engines, the rocket has a
keypad. When the pilot types an integer value, that number is added to the
ships current velocity. The ship's initial velocity is zero.

If there is no friction, k = 0, then the rocket can stop at any position
with the following simple procedure: type one on the keypad (or minus one
if the desired point is to the left), wait until reaching the point, type minus
one. However, if there is friction, then the rocket can only stop at certain
discrete points. Clearly, one of these points is reached by typing one and
waiting for friction to bring the ship to a halt at X = x0 . However, it may
be less clear that there is no way to stop before x0 . Suppose the captain
tries typing minus one halfway between the origin and x0 . Before typing the
number, friction will have reduced the velocity from one to one half. Adding
minus one to one half gives minus one half. Thus the ship will cruise back
and stop at the origin. Any attempt to stop at a location other than Nx0
for integer N is futile.
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Now consider a comparative analysis question: "What happens to the
distance between stopping points if friction is decreased?" Recalling the case
for zero friction, one might be tempted to answer that the distance between
resting points will decrease. In fact the opposite is true - halving the friction
doubles the distance between stopping points. The mystery boils down to
a simple discontinuity. If there is zero friction, one can stop anywhere, but
if there is negligible friction, one can only stop at the origin and at infinity.
Can a comparative analysis program make sense of system's like this?

6.2.4 Reasoning with Multiple Models 0

Despite the obvious utility of qualitative physics, there are serious prob-
lems with all qualitative reasoning techniques proposed so far. The inherent
ambiguity of the qualitative algebra underlying these techniques seems to
be unavoidable [40]. The resulting exponential branching limits qualitative
simulation and comparative analysis techniques to small models of no more
than a dozen parameters. Future work must focus on ways to reason about
larger, more complex systems. One promising way to do this is by the use
of multiple models of a system. Each model could encode a particular way
of looking at the system (distinguished by different simplifying assumptions)
appropriate for a specific class of problems. The following issues need to be
solved. Given a problem, how is an appropriate model selected? Given a
model and a solution generated from the model, how can one be sure that
the solution is sufficient (in other words how can one be sure that the model
was appropriate?) What structures the space of possible models? How can
one switch between models?

Several researchers have done work that is relevant to this approach.
Randy Davis' hardware troubleshooter [5] introduces more complex models
of a circuit when simple models fail to explain the misbehavior. Patil's ABEL
program [31] built multilevel causal descriptions of a human patient's illness.
Kuipers models a kidney with time-scale abstraction [26] to reduce ambiguity.
Weld's theory of aggregation [44] explains how new models of a system's
behavior can be constructed dynamically and used in qualitative simulation.
Collins and Forbus [2] discuss ways of integrating multiple models of fluid
processes. This is an exceptionally important area for research.
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6.2.5 Mixed Qualitative Quantitative Reasoning

While qualitative reasoning has its place, it isn't appropriate for quantitative
problems. For some time researchers have given lip service to the problem of
integrating the two approaches, but little has been done. Simmons' quantity
lattice [391 and Sacks' QMR program [371 are notable exceptions. The key
issue is not so much developing a representation which unifies both types of
reasoning, rather understanding when each is appropriate, and knowing how
one type of reasoning affects the model for the other. Thus this area of work
has much in common with that of the previous section. 0

6.3 Conclusions

DQ analysis and exaggeration have been tested on dozens of simple compara-
tive analysis examples from the domains of mechanics, thermodynamics and

electronics. Both techniques can be used to generate symbolic explanations
for how and why the behavior of a system will change given a structural
perturbation. Both techniques work well on many, but not all comparative
analysis questions.

DQ analysis is sound; whenever it deduces an answer, the answer is guar- 0
anteed to be correct. Exaggeration, on the other hand, will frequently an-
swer incorrectly for systems in which the perturbation causes nonmonotonic
changes in parameter values. Unfortunately, there appears to be no general,
qualitative method of ensuring that a system reacts monotonically.

On the other hand, exaggeration appears to solve many more compara-
tive analysis problems than does DQ analysis. Both techniques solve some
problems that stump the other, but exaggeration has the upper hand. The
difference lies in DQ analysis' reliance on syntactic matching of rules to the
differential equation model. To handle every case, DQ analysis would need
to solve the intractable problem of simplifying equations to canonical form. 70
Exaggeration, however, needs only to evaluate the equations, not prove them
equivalent, to predict relative change values.

The two techniques complementary strengths suggest a powerful high
level architecture. Given a problem, first try to solve it with DQ analysis.
If that works, then a sound answer is guaranteed. If DQ analysis fails, then
apply exaggeration. Now check exaggeration's predictions with all of the rel- 4 ,.
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ative change values that DQ analysis is able to deduce. If they all agree, the

chances are good that nonmonotonic behavior is absent. Finally, exaggerate

the perturbation in the opposite direction and check that the resulting pre-

dictions are the opposite of the first transformation. Although there will still

be pathological cases, these precautions maximize the heuristic power of the

exaggeration method.
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Appendix A

Glossary

The glossary starts with a list of symbol types that clarifies some of the math
in this thesis, then moves on to specific terms in alphabetic order. Whenever
appropriate a reference is made to the best description of the term in the -

text.

Caligraphic Letters Denote sets of real or hyperreal numbers, except S
which denotes a qualitative state and T which denote a function from
transitions to times. (Section 2.1.2).

Lowercase Letters Denote specific real or hyperreal values. For example,
v0 might be the initial velocity of some object.

Uppercase Greek Letters Denote qualitative values.

Uppercase Letters Denote parameters in a system. For example, V fre- ',,',.

quently denotes velocity. (Section 2.1).

-a, b>- Signifies an open interval of finite numbers between a and b and not
including the infinitesimals surrounding a or b. (Section 3.1.2).

Signifies the perturbed system. A

7, The ith transition. See transition. N

11 The relative change value signifying that the perturbed system is greater 1
than the original. (Section 2.1.2).
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ii The relative change value signifying that the perturbed system is equal to

the original. (Section 2.1.2).

The relative change value signifying that the perturbed system is less than

the original. (Section 2.1.2).

ARK A version of AMORD used to implement DQ analysis.

Behavior A sequence of qualitative states. (Section 2.1). "-p " %

Behavioral Topology The ordered sequence of transitions that distinguishes

one behavior from other possible paths through the tree of states pro-

duced by the qualitative simulator. (Section 2.5).

CO-transition A change in value from a closed point to an open interval.

(Section 3.3.2).

Covering Perspective A parameter which is strictly monotonic over an

interval between two transitions and which has the same value at both

transitions in both the original and perturbed systems. (Section 2.1.3).

dec Signifies that a parameter is decreasing, i.e. its derivative is negative.

DISTANCE The distance between two qualitative hyperreal values. For ex-

ample, the distance between (HALO 0 +) and --<0, inf>- is fin. Used by
the successor-arrival filter. (Section 3.3.5).

Distance-Rate-Time Table A table for computing the time required to

traverse a given distance (or width) at a given rate. (Figure 3.11 in

section 3.3.4).

Distinguished Time Point The time when a parameter reaches a land-

mark value. (Section 2.1).

Duration Rule The duration rule formalizes "distance equals rate times

time" for DQ analysis. (Section 2.2.1).

fin Finite. An order of magnitude: greater than all infinitesimals but smaller
than any infinite number.
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HALO Every real number has a halo of hyperreal numbers surrounding it,
infinitesimally closely. (Section 3.1.2).

HR-QDIR Hyperreal qualitative direction: a pair of a standard qualitative
direction (inc, dec, or std) and an order of magnitude. (Section 3.1.2).

HR-QR The hyperreal qualitative representation of a parameter's state con-
sisting of the pair of the parameter's value and its derivative: (HR-QVAL,

HR-QDIR). (Section 3.1.2).

HR-QSIM An implementation of the simulate phase of exaggeration. The
hyperreal qualitative simulator. (Section 3.3).

HR-QVAL A hyperreal qualitative value, for example a landmark value, a
halo, a finite interval, inf, or minf. (Section 3.1.2).

Hyperreal Numbers The field of numbers which include the standard reals S
as well as infinitesimals and infinities. (Section 3.1.1).

inc Signifies that a parameter is increasing, i.e. its derivative is positive.

inf Infinity. Both an order of magnitude and a possible value in the qualita-
tive hyperreal representation. (Section 3.1.1).

Infinite Arrival Rule A rule which says that a parameter will take only
negligible time to reach infinity from a finite value if it is going infinitely '-
fast. (Section 17).

Interval Derivative Rule A rule that expresses the relationship between
one derivative and another, e.g., "greater acceleration leads to higher
velocity." (Section 2.2.2).

Landmark Value An important qualitative value of a parameter. Often
distinguished by the modeler, but sometimes deduced by a program.
(Section 2.1).

minf Minus infinity a possible value in the qualitative hyperreal representa-
tion. (Section 3.1.1). "P
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negl Negligible. Both an order of magnitude and a possible value in the
qualitative hyperreal representation. The same thing as infinitesimal.
(Section 3.1.1).

Next Value Tables Tables used to generate the possible next values of each
parameter. (Section 3.3.2).

Nonstandard Analysis A theory of calculus developed by Abraham Robin-,
son that gives a consistent formalization of the notion of infinitesimal
numbers. (Appendix C). ,

NS-transition A change in value from a nonstandard open interval to a
standard open interval. For example, from inf to -<0, inf - (Section
3.3.2).

OC-transition A change in value from an open interval to a closed point.
(Section 3.3.2).

OM The order of magnitude part of the qualitative hyperreal representation
of derivative. (Section ??).

Parameter Defined as a reasonable function of time. Used to represent a
variable in a system. For example, V frequently denotes velocity as a
function of time. (Section 2.1).

Partial Perspective A parameter which is strictly monotonic over an in-
terval between two transitions, but which does not necessarily have
the same value at both transitions in both the original and perturbed
systems. (Section 2.1.3).

Perspective See partial perspective.

Predecessor-Persistence Filter A simulation technique for eliminating
inconsistent states by checking the amount of time a parameter's qual-
itative value persists. (Section 3.3.4).

QDIR QSIM's qualitative representation for the direction a parameter is inov- -. Z-.

ing. Either inc, dec, or std. (Section 2.1). 0

QS A QSIM qualitative state. (Section 2.1). =,, -A
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QSIM Kuipers' program for qualitative simulation [27J.

Qualitative Hyperreal Representation An extended quantity space rep-
resentation that includes infinitesimal and infinite values. Used by ex-
aggeration. (Section 3.1.2).

QVAL QSIM Qualitative value. (Section 2.1)..

Relative Change A notation used by DQ analysis to describe how a pa-
rameter changes value. Possible values are: f'[, i f, and 11. (Section 2.1.2).

RC See relative change.

S A variable denoting a qualitative state.

Scale Phase The final phase of exaggeration which compares standard and
hyperreal qualitative behaviors to answer a comparative analysis ques- 0
tion. (Section 3.4). %

Simulate Phase The middle phase of exaggeration which simulates the ex-
aggerated system produced by the transform phase. (Section 3.3).

SN-transition A change in value from a standard open interval to a non-
standard open interval. For example, from -<0, inf -to inf. (Section
3.3.2).

State Tree The tree of states generated by QSIM or HR-QSIM. Any path
through this tree is a behavior. 0

std Signifies that a parameter is not changing, i.e. its derivative is zero.

Structural Description A set of qualitative differential equations that re-
lates the various parameters in a system. (Section 2.1).

Successor-Arrival Filter A simulation technique for eliminating inconsis-
tent states by checking the amount of time a parameter takes to arrive
at the next qualitative value. (Section 3.3.5).

System A group of parameters related by a structural description. (Section

2.1).
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T The time function, which takes transitions to the times when they occur.
(Section 2.1.2).

Topologically Equal See behavioral topology.

Transform Phase The first phase of exaggeration. It takes the perturba-
tion from the comparative analysis problem and constructs and exag- ,
gerated system description which is simulated by the simulate phase.
(Section 3.2).

Transition The event when a parameter changes from one qualitative value S

to another. A transitions is written as a lowercase gamma: y. (Section
2.1).

WIDTH The qualitative value of the maximum difference between two hy-
perreal numbers that share a qualitative hyperreal value. For example,
the width of (HALO 0 +) is negL (Section 3.3.4). %
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Appendix B

A Useful Example .

This section constructs an example which serves both as a counter-example
for a generalized version of the derivative rule and as the proof of the non-
exhaustive proposition. Suppose that A, V, and X are parameters such that
A = V, V X, and X is a covering perspective over (-i, -i,). The
derivative rule (proposition 3) showed that if A and V are positive over the
interval (-yi, -yi+i) and if -V-fi, and x then Vx

Unfortunately, the derivative rule is not true for arbitrary perspectives.
The following abberation should convince you of this. I show three parame-
ters, V, A, and P such that A V and P is a covering perspective over

(70,7). Yet although All,) the parameter V has no consistent behavior %.d%

(00
from the perspective of P. During part of the interval V t' and during part

Here are the details. Over the absolute time interval (0, 1) define:

V(t) = t2

A(t) = V(t) = t A-(a) = a

P(t) = A(t) = t P-(p) = p
V (t) = t

3
4t A-'(a) a! .p

P(t) A(t) = t P-'()= p

Note that P(0) =P(0) = 0 and P(1) = P(1) l and P is strictly monotonic,

so P is a valid perspective over this interval. Since P A and P A the self

W
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reference theorem shows that AII(0,I). So what does V do from the perspective

of P? Consider p 1:

V(P'I(p)) !P and Vl(P-1 (p)) -

2 162' 3 81

Now let p =8

VpIP =1P2 32 13 16 V2- 32
-,1p) and V(P-1 (p)) p

So for a small value of p the corresponding is larger than v, but for larger p

the situation is reversed. Thus it is neither the case that V P,)nor VII(',I
nor V,) even though A11 10,).

(00

V
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Appendix C

Readings in Nonstandard
Analysis

There are a wide variety of sources for people who wish to learn more about 0
nonstandard analysis, but most of them are old or out of print. A Scientific
American article [4] by Davis and Hersh is a good starting point; it provides
a good history and flavor for the material but does not present any tech-
nical details. Henle and Kleinberg [22] have a book designed for use in a
freshman calculus class. Assuming no mathematical background, it defines
the infinitesimals and shows how they can be used to define derivatives and
integrals. The book is easy to understand, but is so slow and devoid of proofs
that it is rather frustrating to read. Keisler has two books on the subject.
One is similar to Henle and Kleinberg, an alternative book for college fresh-
man, the other, [25], is for teachers who are using the first. This teacher's
guide is the best book for people who are mathematically literate yet not
experts. Specifically, no background in model theory is required. The treat-
ment is elegant and all theorems are proven. Robinson [33] is the classic
source as he figured it all out. Unfortunately, his text assumes considerable
sophistication and a strong background in model theory.

.4A
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Appendix D

HR-QSIM Transition Tables

This section contains the procedural encoding of the qualitative hyperreal
transition tables discussed in section 3.3.2. There are four types of transi-
tions: CO-transitions have a topology which is closed on the left yet open on
the right, OC-transitions are open on the left and closed on the right, and
both NS- and SN-transitions have an open-open topology.

Each of the tranlition functions takes four arguments: hr-qval is the
parameter's current value (e.g., (HALO 0 +)), qdir and om are the two com-
ponents of the parameter's current HR-QDIR (e.g., inc and negi), and qspace
is the parameter's quantity space, i.e., an ordered list of its landmark values.
Each of the transition functions returns a list of possible next values. The car
of each 'next-value' is the HR-QVAL and the cadr is the HR-QDIR, repre-

sented as a two element list: (qdir om). Since finite intervals are represented
as two element lists, they look indistinguishable from QSIM open intervals.'
Thus the qualitative hyperreal representation (-<0, inf>-, (dec negl)) is repre-
sented by the following list: ((0 inf) (dec neg)).

'The representation is unique, however, because open intervals are not used by HR-
QSIM. 0
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(defum CO-TRANSITIONS (br-qval qdir om qapace)
(ignore qspace)
(if (landmark? hr-qval) ; HR-QVAL closed -can change

(if (sql qdir Istd) ; HR-QDIR can change too

(list '((halo .hr-qval +) (inc neg))

'((halo hbr-qval -) (dec neg))

'(,hr-qval (std 0)))

(list '((halo hbr-qval .(if (sql qdir line) '+ 1-)) C,qdir ,om))))

a; lse HR-QVAL is not closed and can't change.

(if (sql qdir Istd)

(list '(.hr-qval (std 0)) ;HR-QDIR can change

'(,hr-qv'al (inc neg))
'(.hx-qval (dec neg)))

(list '(,hr-qval (,qdir ,om)))))) ; R-QDIR can't change

(defun OC-TRANSITIOIS (hr-qval qdir om qspace)

(ignore qspace)
(if (and (landmark? br-qval)

(member qdir '(inc dec)))

nil ;Must change but can't

(product-space
(list (cons hr-qval ;Old HR-QVAL still ok

(if (and (halo? hr-qval)
(or (and (eql qdir 'ine) (sql (caddr hr-qval) ')

(and (sql qdir 'dec) (sql (caddr hr-qval) '))

(list (cadr hr-qval)) ;Halo center also possible

(cons nil)) ;No other possible HR-QVALs

(os'(,qdir ,om) ;Old HR-QDIR is always ok

(if (sql on 'neg)
'((std 0)) ;Also param could stop

nil)))))) ;Not in this case

(defun IS-TRANSITIOIS (hr-qval qdir on qapace)
(cond ((sql qdir 'std)

(list '(.bx-qval (,qdir .om)))) ;No change possible

((landmark? hx-qval)
nil) ;Inconsistent

((or (finite-interval? hr-qval) Stan HR-QVAL can't chng

(and (sql hr-qval. 'mi) (sql qdir line)) ;Nor these nonstandards

(and (sql hr-qval 'minf) (sql qdir 'dec))

(and (halo? hr-qval) (or (and (sql (caddr hx-qval) '+) .J

(sql qdir 'dec))

(and (sql (caddr hr-qval)'-

(sql qdir line)))))

J.
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(product-space (list '(,hr-qval) (ns-hr-qdir-transitions qdir om))))

(t ; lonstans that can chng
(lot ((alt (cozid ((sql hr-qval 'mini)

'(mni (succ 'mini qspace)))
((sql hr-qval 'i)
'(,(prod 'ini qspace) iiI))

((sql (caddr hr-qval) '+)

'(,(cadr hr-qval) ,(succ (cadz hr-qval) qspace)))%10N
((ql (cadir hr-qval) I-)
'(.(prod (cadr hr-qval) qapace) ,(cadr hr-qval))))))

(product-space (list '(,br-qval ,alt)
Cns-hr-qdir-transitions qdir om)))))))0

(deiiin SI-TRAISITIOIS (hr-qval qdir on qspace)
(ignore qspac.)
(cond ((sql qdir 'std) ;Denyv can't change

(list 'C,hr-qval (.qdir ,om)))) .. so HR-QVAL stuck

((andmark? hr-qval)
ail) ,Must change but can't
((finite-interval? hr-qval) ;These can change

(let ((alt (cond ((and (eql qdir 'mnc)
(sql (cadr hr-qval) 'ini))

'ini)
((and (eqi qdir 'dec)

(sql (car hr-qval) 'mini))

'mini)
((oql qdir 'mnc) '(halo ,(cadx hr-qval)-)
(t '(halo ,(car hr-qval) +))

(product-space (list '(,hr-qval ,alt)

(sn-hr-qdir-transit ions qdir am)))))
(t (poutsae(it"hvl Nonstan HR-QVALs can't change

(sn-hr-qdir-trazisit ions qdir am))))))

The following two utility functions determine whether a parameter's HR-
QDIR can change given the type of transition (NS- or SN-) being considered.
For example, if a HR-QDIR changes from (inc negi) to (inc FIN) that is
an NS- transition since the parameter's derivative must have transitioned
from (HALO 0 +) to -<0, inf - for the HR-QDIR to change. Since the system%
model may not have provided an explicit parameter name for the derivative,e
it is best to check derivative transitions at this point rather than count on
constraint filtering to eliminate inconsistencies.

(defun NS-HR-QDIR-TRANSITIOIS (qdir am)
% e ...
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(case om
(o '((.qdir omM)It

(neg '((,qdir ,om) (,qdir fin)))
(fin '((,qdir ,om))) ;HR-QDIR can't change

(iuf '((,qdir ,om) (,qdir fin))))

(defun SN-HR-QDIR-TRANSITIOIS Cqdir am)

(case om
(0 '((,qdir *om)))

(nag '((.qdir ,omM)

(fin '(C,qdir ,om) C.qdir nag) C,qdir inf))
(i '((,qdir ,om)))))

%, %.
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Appendix E

Program Output for the
Spring and Block

This chapter shows the actual behavior of the current implementation of DQ 0

analysis and exaggeration on the example of a block attached to a spring on a .

horizontal, frictionless table. The model includes explicit energy conservation
equations to reduce ambiguity. The next section presents the actual code , .

input description. Following sections show the output generated by the two
techniques given an increase in the mass of the block.

E.1 Model of the System

(define- ED LINEAR-SPRING-W-EC Define qual. differential eq.
(independent K K TE) , These parameters are constants

(dependent A I V F VV KE PE) , These parameters may change

(boundary X V N K) , These parameters may be perturbed

(print-names (A "Acceleration")
(V "Velocity")
(I "Position")
(F "Force")
(N "Kass")
(K "Spring Constant"))
(VV "Velocity Squared")) Np

(KE "Kinetic Energy"))
(PE "Potential Energy"))

(Ti "Total Energy"))
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(constraints ((d//dt X V)) ; Vel = position's time deriv

((d//dt V )) ; Definition of acceleration
((mult M A F)) ; Newton's second law of motion

((mult X K F)) ; Hooke's law

((mult V V VV)) ; Definition of velocity squared
((mult VV M KE)) ; Definition of kinetic energy 40

((mult F F PB)) ; Cheating definition of PE %

((add PB KE TE))) ; Definition of total energy

(quantity-spaces (K (minf k* 0 inf)) ; Spring constant, k*, is negative

(M (mini 0 m* in))
(TE (mini 0 te* in!)))) ; Landmark te* is positive

(define-init RELEASE-DISPLACED ; Define named initial conditions

linear-spring-w-ec ; for this qualitative diff. eq.

((X ((minf 0) std)) ; X is initially between minf & 0

(F ((0 inf) std))

(A (Co in) std)) 0
(TE (toe std))
(M (m* std)) ; Mass is steady at landmark m* %

(K (k* std))

(V (0 inc)))) ; V is at landmark 0 & increasing

E.2 DQ Analysis Output

When the user selects the model shown above, the CA program applies QSIM
to it, producing a single behavior corresponding to stable oscillation. Next
a propositional encoding of the model, the behavior, and a perturbation
(M 0) are loaded into the database. Then ARK applies inference rules to
deduce as many relative change values as possible. When no more rules
match, the database contents are displayed. For simplicity, only relevant
database propositions are printed (e.g., the propositional encoding of the
system behavior is not). S.

Time: 0 . '

(RC V 0 DEQ)

(Rc X 0 DQ)
(RC M 0 DUP) ; This is the initial perturbation

(RC K 0 DEQ) ; Spring constant unchanged

(RC F 0 DEQ)
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(RC A 0 DDE) ;Acceleration initially down
(RC PE 0 DBQ)
(RC TV 0 DBQ)
(RtC KB 0 DEQ)
(RC TE 0 DBQ)

Time: C0 1)
(RtC V (0 1) DDE (Cc- X)) V down from the perspective X
(RtC V (0 1) DD (C- F)) ;'C-' means covering perspective
(RtC V (0 1) DD (C- PE))
(IC r (0 0) DDE (C- KB))
(RtC 1 (01) DQ (C- W)
(RtC 1 (0 1) DQ (C- F))
(RtC X (0 1) DBQ (C- PB))
(RC 1 C0 1) DBQ (C- KB))
(RC N (0 1) DUP (C- W)
(RtC N (0 1) DUP (C- F))
(RC M (0 1) DUP (C- PB))
(Cc M (0 1) DUP (C- KB))
(RtC K (0 1) DQ (C- W)
(RtC K C0 1) DBQ (C- F))
(RtC K (0 1) DBQ (C- PB)
(RtC K (o 1) DBQ (C- KB))
(RtC F(0 1) DBQ (C- 1))
(RtC F C0 1) DBQ (C- F)) 4
(RtC F (0 1) DBQ (C- PB)
(RC F Co 1) DBQ (C- KB))
(ftC A (0 1) DDE (C- 1)) ;A down from the perspective I
(RtC A C0 1) DDE (C- F))
(Cc A (0 1) DDE (C- PB))
(RC A Co 1) DDE (C- KB))
(RC PB (0 1) DBQ (C- X))
(ftC PB C0 1) DBQ (C- F))
(ftC PS (0 1) DBQ (C- PB)
(ftC PE (0 1) DBQ (C- KB))
(ftC VV (0 1) DDE (C- W)
(RtC VV C0 1) DDE (C- F))
(ftC VT C0 1) DDE (C- PB)
(RtC VV (0 1) DDE (C- KB))
(ftC KS C0 1) DBQ (C- W)
(RtC KB (0 1) DBQ (C- F)
(RtC KB (0 1) DBQ (C- PB))0
(ftC KB Co 1) DBQ (C- KB)) ,9,

(ftC TE C0 1) DBQ (C- W)
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(RC TI (o ) DEQ (C- F)) S
(RC TZ (0 1) DEQ (C- PZ))
(RC TE (0 1) DEQ (C- KE))
(DURATION (0 1) DUP) ; Thus it takes longer!
(DISTAICE-BY K (0 1) DEQ)
(DISTANCE-BY PE (0 1) DEQ)

(DISTANCE-BY F (0 1) DE) S
(DISTANCE-BY A (0 1) DDS)

(DISTAiCE-YBT (0 1) DEQ) ; X moves same distance
(DISTANCE-BY TE (0 1) DEQ)

(DISTANCE-BY KE (0 1) DEQ) 4

(DISTANCE-BY V (0 1) DDN)

(DISTANCE-DY VV (0 1) DDE)

Time: 1
(RC V I DDN) ; Maximum velocity is lower

(RC 1 1 DEo)
(RC M 1 Due)(RLC K I DEQ)

(RC F I DEQ)
(RC A 1 DZQ)

CRC PE I DEQ)
(RC T 1 DUP) ; Time of transition is bigger
(RC VV I DDE) ; Although V squared is less ...

(IC KE I DEQ) ; Kinetic energy is the same S
(RC TE 1 DEQ)

One can ask to see the justification for any proposition in the database.
Below I list the dependency tree for the assertion that it takes longer for the
heavier block to reach rest position. Unlike the display above, here I show all
propositions in the tree regardless of their importance. The subexpression
'(P- X)' means that the parameter X is a partial perspective.

(DURATION (0 1) DUP) is IN due to DURATION-THEOINEMI:
(OPPOSITE-RC DDI DUP) is IN because it's a PREMISE
(DISTANCE-BY X (0 1) DEQ) is IN due to DISTANCE:

(SIGN X (O 1) -) is IN because it'% a PREMISE
(RC 1 0 DEQ) is IN because it's a PREMISE
(RC I I DEQ) is IN due to ZERO-DOES-NOT-CHANGE:

(QMAG I 1 0) is IN because it's a PREMISE
(TRANSITION-POINT 1) is IN because it's a PREMISE

(IC V (0 1) DDW (P- )) is IN due to DERIVATIVE-THEOREM1:
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(OTHER-RC DDE + DDE) is IN because it's a PREMISE

(OTHER-IC DDE + DDE) in IN ===already explained==
(SIGN V (0 1) +) is IN because it's a PREMISE

(SIGN A (0 1) +) is IN because it's a PREMISE
CRC A (0 1) DDE (P- W) is IN due to NULT-INT-D:

(NULT M A F) in IN because it's a PREMISE

CRC M (0 1) DUP CP- X)) is IN due to WEAKEN-PERSPECTIVE-RC-VALUES:

(RC M C0 1) DUP (C- W) is IN due to INTERVAL-CONSTANT-THEOREM:

(RC M 0 DUP) is IN because it's a PREMISE
(QDIR M (0 1) STD) is IN because it's a PREMISH

(PERSPECTIVE CC- 1) C0 W) is IN due to COVERING-PERSPECTIVE-DEFN:
(RC I 0 DEW) is IN ===already explained===

CRC XI£ DEW) is IN ===already explained=

(PERSPECTIVE (P- X) (0 W) is IN due to PARTIAL-PERSPECTIVE-DEFNI:

CQDIR 1 (0 1) INC) is IN because it's a PREMISE

CRC F (0 1) DEQ (P- X)) is IN due to NULT-INT-C:
(NULT I K F) is IN because it's a PREMISE

CRC I C0 1) DEQ (P- W) is IN due to WEAKEN-PERSPECTIVE-RC-VALUES:

(RC 1 (0 1) DEQ CC- W) is IN due to SELF-REFERENCE:

(PERSPECTIVE (C- 1) (0 1)) is IN ===already explained===

(RC K (0 1) DEQ CP- 1)) is IN due to WEAKEN-PERSPECTIVE-RC-VALUES:

CRC K (0 1) DEQ (C- X)) is IN due to INTERVAL-CONSTANT-THEOREM:

CRC K 0 DEW) is IN because it's a PREMISE

(QDIR K (0 1) STD) is IN because it's a PREMISE

(PERSPECTIVE CC- X) (0 W) is IN z==already explained===

(SIGN 1 CO 1) -)is IN ==already explained===

(SIGN K (0 1) -)is IN because it's a PREMISE

(RC A 0 DDE) is IN due to NULT-POINT-B:

(NULT N A F) is IN ===already explained---

(RC N 0 DUP) is IN ===already explained=--

(RC F 0 DEW) is IN due to MIJLT-POINT-C:%
(NULT I K F) is IN ===already explained===

CRC 1 0 DEW) is IN ==aready explained=

CRC K 0 DEQ) is IN ===already explained===

(RC V 0 DEW) is IN because it's a PREMISE

CRC I 0 DEW) is IN ===already explained=

CD//DT V A) is IN because it's a PREMISE

(D//DT X V) is IN because it's a PREMISE
CD//DT I V) is IN ===already explained-=
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E.3 Exaggeration Output

Given the perturbation M 0 the transform phase of exaggeration creates a
new state, XS60, to encode the exaggerated initial conditions (i.e. infinite
mass). HR-QSIM generates four possible behaviors one of which is shown
below.

State S60 persisting(O), and arriving (NEG):
PE PEI (STD 0)
KB :0 (STD O)
VV 0 (STD O)
F : F2 (STD O)
A : (HALO 0 ) (STD 0)
V : 0 (INC REG)
I : X (STD )

State XS81 persisting(INF FIN KEG), and arriving (INF):
P : (HALO PEI -) (DEC lEG)
K : (HALO 0 +) (INC "G)
TV : (HALO 0 +) (INC lEG)

F : (HALO F2 -) (DEC NEG)
A : (HALO 0 +) (DEC KEG)
V : (HALO 0 +) (INC BEG)
I : (HILO 115 +) (INC lEG) -

State IZ83 persis-ing(INF), and arriving (INF):
P : (0 PE) (DEC KEG)
KE : (0 INF) (INC KEG)
TV : (HALO 0 +) (INC IEG)
F : (0 F2) (DEC HEG)
A : (HALO 0 +) (DEC KEG)
V : (HALO 0 +) (INC lEG)
X : (1150) (INC HEG)

Stat. XS66 persisting(INF FIN HEG), and arriving (INF FIN NEG):
PE (HALO 0 +) (DEC lEG)

KB (0 INF) (INC NHG)

V : (HALO 0 -) (INC lEG)
F :(HALO 0 +) (DEC KEG)
A (HALO 0 +) (DEC KEG)
V :(HALO 0+) (INC JIG)

I (HALO 0- (INC lEG):e
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State XS67 persisting(O), and arriving (NEG):
PE :0 (STD O)
KE : KEI (STD 0)
VV : (HALO 0 +) (SD 0)
F : 0 (D.3C NEG)
A :0 (DEC NEG) S
V : (HALO 0 +) (STD 0)
1 : 0 (INC NEG)

State IS69 persisting(INF FIN), and arriving (INF):
PE : (HALO 0 +) (INC NEG)
KE : (HALO KEI -) (DEC NEG)
VV : (HALO 0 +) (DEC NEG)
F : (HALO 0 -) (DEC NEG)
A : (HALO 0 -) (DEC NEG)
V : (HALO 0 +) (DEC NEG)
x : (HALO 0 +) (INC NEG)

State IS71 persisting(INF), and arriving (INF):
PE : (0 PEI) (INC NEG)
KE : (0 KE1) (DEC NEG) 0*1.
VV : (HALO 0 +) (DEC NEG)
F : (MINF 0) (DEC NEG)
A : (HALO 0 -) (DEC NEG)
V : (HALO 0 +) (DEC NEG)
1 : (0 INF) (INC NEG)

State XS73 persisting(INF FIN lEG), and arriving (INF FIN NEG):
PE : (HALO PEI -) (INC NEG)

KE : (HALO 0 +) (DEC NEG)
vv (HALO 0 +) (DEC lEG)
F : (MINF 0) (DEC NEG)
A : (HALO 0 -) (DEC NEG)
V : (HALO 0 +) (DEC KEG)
I (0 INF) (INC NEG)

State XS76 persisting(O), and arriving (KEG):
PE : PEI (STD 0)
KR :0 (STDO0)
VV :0 (STD O) ',

F :F3 (STDO) 
A : (HALO 0-) (STD 0) 0

V :0 (DEC NEG) %-

I :116 (STD O) % %%
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State XS77 persisting(INF FIN), and arriving (INF):
PE (HALO PEI -) (DEC NEG)
KE (HALO 0 +) (INC NEG)
VV : (HALO 0 +) (INC KEG)
F (HALO F3 +) (INC KEG)

A : (HALO 0 -) (INC KEG)

V (HALO 0-) (DEC KEG)
x : (HALO XI6-) (DEC NEG)

State XS80 porsisting(INF), and arriving (INF):

PE (0 PEI) (DEC KEG)
KE (0 KEI) (INC KEG)

VV : (HALO 0 +) (INC KEG)
F (F3 0) (INC KEG)
A (HALO 0 -) (INC MEG)
V : (HALO 0 -) (DEC KEG)
x (0 Xi) (DEC MEG)

State 1S84 persisting(INF FIN MEG), and arriving (INF FIN KEG):
PE (HALO 0 +) (DEC KEG)
KE (HALO KE1 -) (INC NEG)

VV (HALO 0 +) (INC KEG)
F : (HALO 0-) (INC NEG)

A (HALO 0-) (INC KEG)
V : (HALO 0-) (DEC KEG)
I : (HALO 0 +) (DEC KEG)

State XS88 persisting(O), and arriving (KEG):
PE :0 (STD O)
KE : KEl (STD 0)

VV : (HALO 0 +) (STD O)
F : 0 (INC MEG)

A :0 (INC KEG)

V : (HALO 0-) (STD 0)
x :0 (DEC KEG)
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Appendix F

List of Examples Implemented

This appendix contains a list of examples and the perturbations I used to test
DQ analysis and exaggeration. I start with a brief description of the model,
present the constaint equations, and list the results for several comparative
analysis questions. I state only whether a problem was solved - for space
and time reasons the generated explanations cannot be included.

1. Projectile

This is the simplest model of a projectile fired upwards in a uniform _
gravitational field. I tried several initial conditions: Y = 0 and Y > 0. /. -

(constraints ((d//dt Y V)) .
((d//dt V Q)))

* Increased V:

DQ analysis deduces that rise time increases.

Exaggeration deduces that rise time increases, maximum height
increases, and fall time increases. ]

" Increased G:

DQ analysis deduces that rise time decreases.

Exaggeration deduces that rise time decreases, maximum height
decreases, and fall time decreases. o
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2. Projectile with Mass,6

(constraints ((d//dt Y W)
((d//dt V A))
((mult K A F))

((Caut H a F)))

" Increased V:

DQ analysis deduces that rise time increases.

Exaggeration deduces that rise time increases, maximum height
increases, and fall time increases.

" Increased G:

DQ analysis deduces that rise time decreases.

Exaggeration deduces that rise time decreases, maximum height
decreases, and fall time decreases.

" Increased M: Neither DQ analysis or exaggeration deduce any-
thing interesting due to ambiguous qualitative arithmetic.

3. Projectile with Mass and Energy Conservation @

NPE means negative potential energy.

(constraints ((d//dt Y V))

((d/dt V 1))
((malt v V TV))

((add IPX " KB)) ,

((Mult N A F))
((..It H G F))) •

Increased V:

DQ analysis deduces that rise time increases and maximum height
increases.

Exaggeration deduces that rise time increases, maximum height
increases, and fall time increases.
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" Increased G: 0

DQ analysis deduces that rise time decreases.

Exaggeration deduces that rise time decreases, maximum height
decreases, and fall time decreases.

" Increased M: Neither DQ analysis or exaggeration deduce any-
thing interesting due to ambiguous qualitative arithmetic.

4. Projectile with Decreasing Gravity .Z1

The multiplication constraint says that A = V" •

(constraints C(d/Idt Y V))
((d//dt V ))
((mult Y k G)))

" Increased V:

DQ analysis deduces nothing of interest.

Exaggeration deduces that rise time increases, maximum height
increases, and fall time increases.

" Decreased V:

Exaggeration deduces that rise time decreases, maximum height ,

decreases, and fall time decreases.

" Increased G:

DQ analysis deduces nothing of interest. 0

Exaggeration deduces nothing conclusively. Simulation is quick
but ambiguous - for example, some behaviors take negl time to
apogee, but some take longer.

" Decreased G:

Exaggeration deduces that rise time increases and maximum height
increases. It is unable to unambiguously conclude that fall time
increases. .j\ =

5. Projectile with Decreasing Gravity and Energy Conservation

(constraints ((d//dt Y V)) ...
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((suit V V KW.

((-t A NPE))
((add PE TX K))
((It Y A )))

e Increased V: _

DQ analysis deduces that NPE increases at apogee.

Exaggeration deduces that rise time increases and maximum height .
increases.

9 Increased G:
DQ analysis deduces that NPE increases at apogee.

Exaggeration branches intractably.

6. Simplest Spring

This model is from Kuipers' library. The list of values following the
monotonic function constraint is a set of three corresponding values.

(constraints ((d//dt I V))
((d//dt v ))
((M- A 1) (0 0) (min inm) (inf minf)))

* Increased X:

Neither technique deduces anything. In fact, no answer is possible.

7. Ernie Spring %

(constraints ((d//dt I ))
((d//dt V t))
((mult K-over-M X A)))

e Increased K-over-M:

DQ analysis and exaggeration deduce that the duration (until rest
position) decreases.

I Decreased K-over-M:

Exaggeration deduces that duration increases.
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8. Standard Spring

As with most of the spring models, this was tested with two initial
conditions - either position or velocity initially zero. The results listed
here are for initial V =0 and X < 0.

(constraints ((d//dt I V))
C(d//dt V A))
((sut M A F)) *,Pi'

((ut I K F)))

I Increased M:

DQ analysis and exaggeration deduce that the duration increases.

* Decreased M:

DQ analysis and exaggeration deduce that the duration decreases.

" Increased K:

DQ analysis and exaggeration deduce that the duration decreases.

I Decreased K: '

DQ analysis and exaggeration deduces that the duration increases.

* Increased K and decreased M: I

DQ analysis deduces that the duration decreases. ,

I Decreased K and increased M:

DQ analysis deduces that the duration increases.

e Increased X: 
.

DQ analysis and exaggeration deduce that maximum velocity in- It
creases:

9. Spring with Energy Conservation

(constraints ((d//dt I V))

((dI/dt V A)) W

((ut M A F))

((mult I K F)) '- '

((nit V V VV)) 
((Unit VV M KE))
((Iit F F PE))
((add PE KB TB)))
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* Increased M:

DQ analysis deduces that the duration of all transition intervals
increase, and that maximum displacement is unchanged.

Exaggeration deduces that duration increases. With a 50 state
limit, HR-QSIM takes 47 seconds to generate several behaviors

that are 18 states long.

* Increased K:

DQ analysis deduces that the duration until first transition de-
creases, but cannot deduce the other durations because total en-

ergy and thus potential energy have increased making it impossible

to conclude that the maximum displacement is unch:nged.

Exaggeration branches intractably.

10. Linear Pendulum

The tests were done with initial conditions that specified dropping the
pendulum from an elevated position with zero velocity.

(constraints ((d//dt Y V))
((d//dt V A))
((mult M A FY))

((mu.lt F T F))
((mult M G F)))

* Increased M:

Neither technique deduces anything.

* Increased G:

DQ analysis and exaggeration deduce that the fall time decreases.

* Decreased G:

Exaggeration deduces that the fall time increases. .

* Increased Y:

DQ analysis deduces nothing. (This run was done with transition

derivative rules inactivated).

* Decreased Y:

Exaggeration deduces maximum velocity decreases.

162

Ar P-V %
Z , 5N.



11. Constant-Coolant Heat Exchanger

Hot oil flows through a pipe with velocity V losing heat to a constant
temperature coolant surrounding the pipe. Q is oil heat (indistinguish-
able from temperature), F is heat flow, K is the thermal conductivity
of the pipe.

(constraints ((d//dt Q F))
((d//dt X V))

((mult Q F)))

" Increased V:

DQ analysis and exaggeration deduce that the oil spends less time
in the exchanger and that the oil exits with more heat.

" Decreased V:

Exaggeration deduces that the oil exits slower and cooler, 0

* Increased K:

DQ analysis and exaggeration deduce that the oil loses more heat.
The irrelevant-transition filter is essential for exaggeration's suc-
cess. In addition, DQ analysis concludes that the oil will spend
the same time in the exchanger.

" Decreased K:

Exaggeration deduces that the oil loses less heat.

* Increased X:

DQ analysis and exaggeration deduce that more time is spent in
the exchanger and more heat is lost. :.-'

" Decreased X:

Exaggeration deduces that less time is spent and less heat lost.

12. Warming-Coolant Heat Exchanger

In this model, the coolant warms as the hot oil cools. OQ is the heat
of the oil, WQ is the heat of the coolant water, F and MF are heat
flow and minus heat flow respectively.
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(constraints ((dI/dt OQ W)
((minus F HF))
(Cd//dt UQ HF))
((d//dt X V))
((add WQ DQ 0))
((mult K DQ F)))

" Increased V:

DQ analysis deduces only that less time is spent in the exchanger.

Exaggeration deduces that less time is spent, output oil heat is
higher, and water heat is lower. S

DQ analysis deduces only that more time is spent in the exchanger.

" Increased X:

Exaggeration deduces that more time is spent and recognizes that
oil and water reach thermal equilibrium, but is unable to distin-
guish this from the fin heat change in all the standard behaviors.

* Decreased X:

Exaggeration deduces that less time is spent, output oil heat is
higher, and water heat is lower.

* Increased K: . 7

DQ analysis deduces that duration is unchanged. e",%

Exaggeration deduces only that fin heat is lost in negi time, but
then branches intractably. Five initial states each reached a 50
state limit producing 181 behaviors. S

* Decreased K: : ,
Exaggeration had no problem. One five state behavior produced.,

Deduced that less heat was lost by the oil and gained by the
water. (Unable to deduce that the time spent in the exchanger
was unchanged.) r-1W

13. Walled Heat Exchanger

In this model, heat flows from the oil to the pipe wall and then into the
water. The two flows have separate thermal conductivity. NET-FLOW
is the sum heat flow into the pipe wall.
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(constraints ((d/Idt OQ F))

((d.I/dt WQ MF2))

((d//dt PQ NET-FLOW))
((minus Fl NFl)
((minus F2 MF2)) 

WWI

((add MF1 F2 NET-FLOW))

((add PQ DQt OQ))
((add WQ DQ2 PQ))
((mult KI DQ1 F))

((mult K2 DQ2 F2))

((d//dt X 7))

* Increased V:
DQ analysis deduces that duration is decreased.

Exaggeration deduces that duration is decreased, output oil heat
is increased, water heat is decreased, and pipe heat is decreased.

* Increased K1 and increased K2:

DQ analysis deduces that duration is unchanged.

Exaggeration branches intractably.

* Decreased K1 and decreased K2:

Exaggeration still branches intractably-with a 500 state limit
HR-QSIM generates 325 behaviors that are 9 states long and X
does not pass -<xo, 0>-. The problem is that NET-FLOW can
keep changing HR-QDIR.

14. Double Flow Heat Exchanger

This is a modification the heat exchanger in which two 'substances' are
being exchanged: heat (Q) and danger (D). This example was defined
primarily to test the DQ analysis topological code.

(constraints ((d//dt Q F))
(Cd//dt I V))
((muit K Q F)
((d.//dt D E))
((muit C D E)))

* Increased V:

DQ analysis and exaggeration deduce that duration is decreased,
output heat is increased, and output danger is increased. %
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15. Super-Heated Boiler

This is a rather inaccurate model of a boiler connected to a steam
superheater in series. The chief question is what happens to the steam
output temperature when warmer water is presented to the boiler?
DQ analysis correctly answers that the steam will cool down since the
boiling rate (Rb) will increase causing more steam to compete for the
superheater's heat. See (2] for a better model of this system.

The list (212 0 212) is a set of corresponding values that the add con-
straint must obey.

(constraints ((add Ti deltaT Thoil) (212 0 212))
((muit lb deltaT Fb))
C(dI/dt I Rb))
((d//dt Ts Fs))

* Increased Ti:

DQ analysis deduces that the boiling rate increases, and the out-
put temperature of the steam decreases.

16. Two Transitions

This model was used to test the DQ analysis topology algorithm.

(constraints ((di/dt I D))

((d//dt B D)))

17. Three Transitions

This model was used to test the DQ analysis topology algorithm.

(constraints ((d//dt I DA))
((d//dt B DB))
((d//dt C DC)))

18. Fragmenting Three ,

This model was used to test the DQ analysis topology algorithm. In
one behavior, three parameters transition at once, but by perturbing -
D, they can be forced to all split apart.
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(constraints ((d//dt A D))
((d//dt B N))
((d//dt C CD))
((mult D MD ONE)))

19. Pumped Containers

See section 4.3.2 for a discussion of this model. The DQ analysis expla-
nation is very nice. La and Lb are the fluid levels of containers A and

B, H is the height difference, Fp is the pumped flow, Fs is the seeping
flow, and Fn is the net flow. S

(constraints ((minus La Lb))

((add Lb H La))

((add Fp Fs Fr))
((mult H PERMIABILITY Fs))

((d//dt La Fn)))

" Increased Fp:

DQ analysis deduces that equilibrium height and seeping flow are
increased.

Exaggeration deduces that the equilibrium height, level in A, and
seeping flow are increased while the level in B is decreased.

" Increased PERMIABILITY:

DQ analysis deduces that the equilibrium seeping flow is unchanged
(since it is equal to pumped flow) thus height is decreased. ,

Exaggeration deduces that height and the level in A are decreased
while the level in B is increased.

20. Series RC Circuit

Close a circuit to charge a capacitor hooked in series with a resistor.

(constraints ((D//dt Vc dVc)) '.

((add Vr Vc V))
((mult R I Vr))

((mult C dVc I)))
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" Increased C:
DQ analysis and exaggeration deduce that it takes longer to charge
the capacitor. ., ,b-

" Increased R:

DQ analysis and exaggeration deduce that it takes longer because •

the current is smaller.

" Increased V:

DQ analysis and exaggeration deduce nothing of great interest.

21. Parallel RC Circuit 0

See [50, p350] for a description of this circuit.

(constraints ((mult R Ir V))
((minus Ir Ic))
((D//dt V dv))
((mult dV C Ic)))

* Increase R:
DQ analysis and exaggeration deduce that it takes longer for the
capacitor to discharge. •

9 Increase V:

Neither technique deduces anything interesting.

e Increase C:

DQ analysis and exaggeration deduce that it takes longer for the •

capacitor to discharge.

22. Two RC Series Circuits in Parallel

(constraints ((D//dt Vcl dVcl))

((D//dt Vc2 dVc2))

((add Vrl Vc1 ))

((add Vr2 Vc2 V))
((mult R1 II Vrl))
((mult R2 12 Vr2))
((mult C1 dVci I1))

((mult C2 dVc2 12))
((add II 12 I))) .
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" Increase R2:

DQ analysis deduces that the t; to charge C2 will increase, but
that the time to charge Cl won' change.

Exaggeration deduces that it will take longer to charge C2.

* Decrease C2: 0

DQ analysis deduces that the time to charge C2 will decrease, but
that the time to charge C1 won't change.

Exaggeration deduces nothing of interest.

0
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