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1. INTRODUCTION

Stringent new requirements to reduce gravity-induced
uncertainties in inertial systems, to control Geodetic and
Geophysical (G&G) factors during the test and evaluation of
inertial instruments, and to achieve mobility for new classes
of ballistic missile systems motivate more accurate means to
measure the earth's gravity field. These requirements demand
increasingly fine local gravity data, more accuracy at high
spatial frequencies, and, in many cases, coverage of large
areas.

In this report, high-resolution digital terrain ele-
vation data (DTED) are used to compute the effect of terrain
variations on the very high-frequency vertical gravity field
in a local area (wavelengths shorter than 10 km). The terrain
effect is computed with a specified root-mean-square (rms)
accuracy as determined by an error covariance analysis that
accounts for the finite extent of the DTED.

The terrain effect is only a portion of the total

gravity disturbance, because regional, continental, and global-

sized density variations deep below the earth's crust also
contribute significantly. Nevertheless, at very short wave-
lengths the terrain effect is expected to dominate the gravity
field in most areas (Ref. 1). Therefore, the high-frequency
terrain effect is used as a reasonable estimate of the gravity

disturbance at wavelengths shorter than 10 km.

This report describes a new analytical technique for

using DTED to compute the high-frequency terrain effect on
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gravity. The methodology is applicable for estimating all \,
three components of the high-frequency gravity vector from "
. ")
DTED, for determining the lowest spatial frequency appropriate R
’
for the estimation, for sizing the zones of DTED coverage needed 4
for a specified accuracy, and for applying modern vector/parallel -
numerical processing techniques on supercomputers. The approach ,ﬁg
described here is novel in two ways: it uses a direct quadrature {é
approach to compute the terrain effect, and it includes systematic %‘
control of accuracy. W
b
0'.",
While, in principle, the accuracy of DTED could be $.
\J
approximately 1 to 3 m rms, in practice much of the data now in ;ﬁ
place are of unknown accuracy. Thus, the results presented Y
h ¢
herein, as well as widespread use of the methodology described ﬁ'
in the sections which follow, appeal to the future. This future h
will be realized when DTED accuracy can confidently be known f-
to match its current precision. ",
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2. BACKGROUND

The problem addressed in this report is to estimate
the high-frequency vertical gravity field of the earth at
points on a horizontal grid. The vertical component of gravi-
ty is to be estimated at points that are uniformly spaced at
three arc second intervals over a rectangular area containing
several hundred thousand such points. The longest wavelengths
of interest are about 10 km. Because these wavelengths are much
smaller than the radius of the earth, the problem is formulated
using the flat-earth approximation (i.e., the reference ellipsoid

is approximated locally by a horizontal plane).

2.1 PROBLEM STATEMENT

The technical approach taken in this work is to use the
local terrain effect on gravity, suitably filtered to attenuate
low-frequency components, as the desired gravity estimate. This
local terrain effect is defined as the gravity due to the earth's
mass above a reference plane in a local geographical area that
is large enough to provide a specified rms accuracy at high
spatial frequencies. To compute the terrain effect, Newton's
law of gravitation is used to express the vertical gravity as a
volume integral over the local mass. The mass density of the
3 kg/m3, which is the

mean crustal density, and the surface of the earth is represented

earth is modeled as constant at 2.67 x 10

by DTED on a uniform grid. The DTED are expressed as heights

above sea level to the nearest meter.
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The terrain-effect integral is formulated as illus-
trated in Fig. 2.1-1, which depicts a vertical cross-section of
the earth's crust. A Cartesian coordinate system is used, with
variables x and y measuring position in the horizontal plane and
variable z measuring height. The observation point P has coordi-
nates (x_,y

PP
gravity is to be computed. The reference surface is at height

,zp); this is a generic point at which the vertical

24> and the earth's surface at position (X,y) has height h(x,y).
The terrain effect at point P is the integral of the gravity
contributions from all infinitesimal mass elements such as the
one at point (x,y,z) in Fig. 2.1-1. The gravity potential at
point P due to all mass elements is denoted ¢(P) and is given
by Newton's law:

. ™
- p(x,y,2z) -
¢ (P) G/[[Rp(xp’yp’zp’x’y’z) dxdydz (2.1-1)
-0
. . . -11 3 -1 -2
where G is the gravitational constant (6.672x10 m kg “-s 7),

p is the mass density, which is modeled as a constant (2.67><103
kg-m-3), and Rp is distance from the observation point. The
vertical component of the terrain effect at point P is denoted
g(P) and is measured positive in the downward (negative z)

direction. From potential theory, it follows that

g(p) = - 20F) (2.1-2)

Therefore,

(2.1-3)

g(P)
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P=(o,o,zp)

EARTH'S SURFACE
2 = h(x, y)

REFERENCE SURFACE

= |
Z=2 o \
Figure 2:.1-1 Vertical Cross-Section of Earth's Crust

in Relation to Observation Point P

The integration with respect to z in Eq. 2.1-3 can be
expressed in closed form. For mathematical convenience, this
integration is performed in two steps:

h(x,y) z, h(x,y)
zZ -z zZ -z ' zZ -z
e =T
R R R
P p ' p
2z zg zp (2.1-4)

The decomposition of Eq. 2.1-4 leads to the following expression
for the vertical terrain effect:

2-3
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g(p) = 2nGp|zp-zol + Gp < - %)dxdy (2.1-5)

4
¥ -0

where q and r are defined by Fig. 2.1-1 and by Egqs. 2.1-6, 2.1-7,

and 2.1-8:
' L
3 q(x_,y_,X,y) = (x 'X)2 + (y 'Y)z ’ (2.1-6)
W p’’p P P
.'i‘.
R ;
:’ d(z,x,y) = z, - h(x,y) (2.1-7)
;‘:v L
4 . 2
-?‘5
t%
i In Eq. 2.1-5, the terrain effect is expressed as the sum of two

terms, which are termed the slab effect and the terrain correc- l

o tion. The slab effect is the first term and, analogously to a
Bouguer plate, represents the vertical component of gravity due

W to an infinite horizontal slab of mass filling the space between

2 the lower reference surface and the observation point. The ter- 5
ne , . . . ) . . -
i rain correction is the two-dimensional integral over the hori-

a8

" zontal plane, which accounts for terrain deviations from the

k¥ top of the slab.

.x

W

LK N . . .

Y, In this analysis, all observation points have the same

heights so that zp is fixed, and the slab effect is constant.
i The major challenge in computing the terrain effect is the
¢ numerical evaluation of the terrain-correction integral in
Eq. 2.1-5, i.e.

2-4
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I(P) = Gp T q dxdy (2.1-9) o
Yo ';
(]
X
Integral I(P) must be evaluated for each grid point P at which S'
gravity is being computed. :
.. ‘
Y
X 4
2.2 PREVIOUS APPROACHES 9y
]
¢
This section reviews previous approaches to the calcu- ﬁ!
lation of terrain corrections on a dense grid using DTED: the :;
prism approach and two variations on the more recent Fast }
Fourier Transform (FFT) approach.
. N
o
2.2.1 PRISM Approach rm
N
A frequently used approach to evaluating the terrain "
effect based on DTED is to approximate the terrain as a col- A
lection of prisms of constant mass density and then apply an :%
analytic expression for the gravity disturbance due to each oy
prism (e.g. Ref. 1). Flat-topped prisms are often used in "
which h(x,y) is assumed constant on each of a set of rectangles "
in the x-y plane. The formula for each prism requires the evalu- ,s
ation of eight logarithms and eight arctangents, along with %
numerous subtractions. This approach imposes several drawbacks:
the high computational cost of evaluating the transcendental }f
functions, ill-conditioning due to cancellation errors, and A
the introduction of spurious high frequency gravity signal due ;,
»

to the abrupt edges of the prisms.

A recently developed alternative is the FFT approach
(Refs. 2, 3, and 4), in which the terrain-correction integral




is approximated as a sum of linear convolutions that are M
implemented as multiplications in the spatial frequency domain. %ﬂ

The key approximation in evaluating Eq. 2.1-9 is to replace

al iy
t

O |1
s

by »

_1d2 J
2

Note that this approximation is quite accurate for g>>d. Further
discussion and application, accounting for this restriction,
is presented in Section 3.2. The result is

[e ]

2 o8

o [[2 o
q

” i

.l

by
2.2.2 FFT Approach v

oo

For the case of the classical terrain correction, in

L i

which the computation point P is on the :.surface of the terrain,

T~

the FFT method is developed with the simplification, z, = hp,

A
2 R,

where hp = h(xp,yp) and

d = hp - h(x,y) (2.2-2)

| ey “x"x" °
£ T

The first term on the right side of Eq. 2.1-5 then reduces to

<3
£

the classical Bouguer reduction (e.g., Ref. 5). Note that for
h
z, 7

p the integral in Eq. 2.2-1 fails to converge. (A simple On

2-6 »
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example of this divergence is the trivial case in which zp # 0
and h(x,y) = 0.)

The next step in the FFT method is to define

f(x,y) = (x* + y7) (2.2-3)
so that

1 _ - - -

q3 = f(xp X, yp y) (2.2-4)

Equation 2.2-1 may then be written as

[+

I(P)

n

-L6p (h(x,y)-h )2 £(x_-x,y -y) dxdy (2.2-5)
2 P P P

Exranding the squared quantity leads to a sum of linear convo-
lutions of f with h and h2, plus a constant term. The convo-
lutions may be evaluated (approximately) by multiplication in
the discrete spatial frequency domain with the use of a two-
dimensional FFT. Clearly, one advantage of such a method is
that, upon return from the frequency domain, the values of the

terrain effect are available on an entire grid of points.

One troublesome problem, however, is that the integral
of £ over the x-y plane is divergent, which causes the Fourier
transform of f to become undefined. Furthermore, expanding
EqQ. 2.2-5 results in a difference of infinite quantities. None-
theless, according to Refs. 3 and 4, replacing £(0,0) by 0 in
the discrete computations can lead to reasonable numerical
results. In this instance, the argument is made that the
integral of f over the plane can be replaced by the discrete
Fourier transform of the discretized, modified f, evaluated at

zero frequency. Unfortunately the process is ad hoc and uni-

versal applicability cannot be assured.




2 and 4, is to replace

A variation, proposed in Refs.
f by

-3/2
g(x,y) = (x? + y2 + b?) (2.2-6)
where b is a nonzero constant whose dimension is length. It

can be shown that

J]- g(x,y) dxdy = 2n/b (2.2-7)

and that the Fourier transform of g exists and has a simple

analytic form.

2.2.3 Modified FFT Approach

References 2 and 4 advocate choosing as small a value

of the parameter b as possible. However, Ref. 6 shows that
substitution of
1/2
(% + b?)
for
R 2 2,172 2.2-8
= I - -
b (q (zp z)“) ( )

in the rightmost integral of Eq. 2.1-4 leads directly to the

approximation

[ ]

I(P) = - % Gp Jj (h(x,y)-zp)2 g(xp-x, yp-y) dxdy

(2.2-9)




R I AT URR T

instead of Eq. 2.2-5. Equation 2.2-9 shows that b2 should be a
kind of average of (zp-z)2 and should not be arbitrarily chosen
to be as small as possible. Note also that, in the formulation

a8acad $ah oal Tay sal #20 e Ca¥ sal €28 AR ca¥ 2l al saB Vo9 Wnl 28 Tap dol saf i wad .

of Eq. 2.2-9, the FFT approach is no longer limited to computation

points on the terrain surface; zp in Eq. 2.2-9 need not equal hp,
and I(P) can be readily evaluated in terms of the convolution
of g with h and hZ.

However, even with the improvements afforded by
Eqs. 2.2-6 and 2.2-9, an approximation is involved in the FFT
method, which (like the prism representation) may incur high-
frequency errors and edge-effect problems. Therefore, instead
of applying one of the conventional methods, the preferred
technique pioneered herein is a completely alternative approach
to the computation of terrain corrections. It is simple in
principle yet appears to have been overlooked previously because
of the unavailability of modern parallel processing resources:
direct quadrature of Eq. 2.1-9. .

2-9
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3. ANALYTICAL APPROACH

This chapter discusses several issues related to ‘3
L
the numerical integration in Eq. 2.1-9: §
iy
° Avoiding cancellation errors in the eval-
uation of the integrand using finite pre- o
cision arithmetic. X
..
¢
° Accounting for the singularity at the %

origin in Eq. 2.1-9.
° Determining the extent of the integration

domain needed to achieve the required
accuracy for short-wavelength gravity.

The next three sections discuss each of these issues.

CAATX

-

3.1 AVOIDING CANCELLATION ERRORS

Equation 2.1-9 is unsuited for numerical computations,
because the integrand is the difference of two terms nearly
equal to each other. When finite precision floating point
arithmetic is used, the mantissas of both terms almost coincide, ¢
and the difference between the two numbers is reflected only in :
their least significant bits. The relative accuracy with which
the difference can be computed is equal to that fraction of the

mantissa where the two terms differ.

-—
e = -

The errors that arise from computing the difference

-

between two nearly equal numbers are usually termed cancella-

tion errors. To avoid them, Eq. 2.1-9 can be written as

X

3-1
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[+ -]
I(P) = G q-r g*r dxdv = -G __EE:_QE dxd
- P qr r+q TV T 7O qr(r+q) ¢
- o (3.1-1)
which reduces to
-3
. d2
I(P) - -Gp EFTE:ET dxdy (3.1‘2)

-0

The integrand in Eq. 3.1-2, although more complicated than the
integrand of Eq. 2.1-9, is now much better suited for numerical
computations. ’

3.2 ACCOUNTING FOR THE SINGULARITY AT THE COMPUTATION POINT

The integrand in Eq. 3.1-2 is singular at the computa-
tion point P, where (x,y) = (xp,yp). By changing to polar coor-
dinates centered on the computation point, it can be seen that
the singularity at the computation point is integrable. Thus,
from a purely theoretical point of view, the singularity pre-
sents no problem. However, the limiting process needed to
integrate the singularity requires the knowledge of h(x,y)
over a continuum in the neighborhood of (xp,yp). Since, in
practice, the terrain elevation, h(x,y), is known only on a
discrete set of points, the behavior of h(x,y) near (x_,y_)

PP

has to be inferred from the values at (xp,yp) and at points

nearby.
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A planar approximation to the terrain elevation is )

used in the neighborhood of the origin; that is

h(x,y) = ax + by + ¢ (3.2-1)

with the parameters a, b, and ¢ chosen to make Eq. 3.2-1 the
best (least-squares) planar* fit to the terrain elevation di- d
rectly under the computation point and the four nearest grid
points. Using the notation of Fig. 3.2-1, the values of the M

parameters are
G-02024
VALUES AT THE ORIGIN AND AT POINTS NEARBY

| : 1ho 4 |

1
1

o T o o eus S
T pea e

B NacSncer

Figure 3.2-1 Grid Points Used to Approximate \
h(x,y) near the Origin ;

*
Note that, if appropriate, there is no reason why a higher
order surface could not be used.

- o .
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h - h
1,0 -1,0
a = e (3.2-2)
h - h
O,l o)-l -
b 2(ay) (3.23)
and
h + h + h + h +h
c= 20,07 ™M,0 oél -1,0  0,-1 (3.2-4)

MACSYMA* (Ref. 7) was used to obtain the integral of
Eq. 3.1-2 after substituting the planar approximation for h(x,y)
in the integrand. The integration was done by expanding the
integrand as a Taylor series in the planar slope, and then inte-
grating the series term by term. Ideally, one would perform the
integration over a rectangle of area A = (2Ax)-(2Ay) centered at
the computation point. This is not tractable in practice, how-
ever, so a circle of radius Ro’ chosen so that nRo2 = A,
(For the DTED used in this study, R, = 95 m.) Some

numerical experiments were conducted to determine how many terms

is used

instead.

in the series were needed to obtain an accuracy of 0.01 mgal.
The results showed that terms up to degree 2 are sufficient,
given the ranges of terrain elevations and slopes in the DTED
used for this study. The formula used to compute the contribu-
tion to the terrain correction from the area directly under the

computation point is

4 2,2 4
ot 6e Ro + 4e ) szi
4(R§ + e2)%

(3.2-5)

R

I_(P) = 2nGp (Rg + e2)% . R, - e+ (e -

*MACSYMA is a trademark of Symbolics Inc.
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2 + bz)!é is the slope of the planar approximation

where s = (a
and e = |z_ - ¢] is the vertical distance from the point P to

the planar approximation.
3.3 EXTENT OF THE INTEGRATION DOMAIN

The integration in Eq. 3.1-2 cannot be performed numer-
ically over the entire x-y plane. The domain of integration has
to be truncated, thereby introducing errors in the computation.
Ideally, the truncation errors should be at least as small as
those caused by discretization effects. Thus it is appropriate
to relate the size of the integration area explicitly to the
desired accuracy of the numerical integration. Insight into the
dimensions of the required region of integration is gained by
noting that short-wavelength components of gravity are due to
nearby masses. Therefore, the integration in Eq. 3.1-2 needs
to extend only far enough to account accurately for these wave-

lengths.

The error made by limiting the integration in Eq. 3.1-2

to a circle of radius R centered at the computation point is

__a®
qr(r+q)
qQ>R

dxdy (3.3-1)

S1(x_,y._, = -G
(xp y zp) P

p

In the geographical area of interest, the values of d are of the
order of a few hundreds of meters. Since R is expected to be

of the order of ten or twenty kilometers, the approximation
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r ~ q is quite accurate for g>R, and Eq. 3.3-1 simplifies to )
§I(x z ) = S8 LA (3.3-2) H

p’yp, p = 2 q3 Xay . 4

-

a>R t

-3
Furthermore, because it is always true that r > q, the integrand :$
of Eq. 3.3-1 is less than or equal to the integrand of Eq. 3.3-2; ;y
therefore, Eq. 3.3-2 provides an upper bound on §1I. ‘$
"

Note that the integral in Eq. 3.3-2 is a convolution, My,

which is conveniently rewritten as :
2 0
d“(z_,x,y) )

= L(_;B p I.
A [(x,-x) + (y,-y) 1 X

(3.3-3) .
where the integration domain is "
)

A= { Il -2+ (v -9)%1% > R} (3.3-4) )

P P "
0
4

Hence, the truncation errors can be obtained as the convolution Ny
of the squared height difference, dz(zp,x,y), and the function .rv
)
0 if q(x_,y_,x,y)<R o

T(x,y) = { ¢ R N
i ——_% if Q(x 'Y ;X,y)>R .s
- 2q O "

(3.3-5) )

.‘\‘

RS
If the terrain elevation is modeled as a stationary Y
R

random process, then the squared elevation is also stationary, %
and it follows from Eq. 3.3-3 that the truncation-error power ;
spectrum is f
33
|'|
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_ a2 i
¢61 = |T| L (3.3-6)

where ¢s is the power spectrum of the squared elevation dif-
ference, s(x,y) = d2(x,y), and T is the Fourier transform of
T defined by

- 2 -i2n(£yx+f,y)
T(fy,£,) = H T(x,y) e dxdy (3.3-7)
-0

This Fourier transform can be expressed as

- - -nGp -
T(fl,fz) R Q(2nRf) (3.3-8)
with f = (f%'+ f%)%. The function Q is computed numerically

in terms of Jo, the Bessel function of the first kind, order
zero

J_(u)
Q(x) = .[ o 5 du (3.3-9)
u
X

For any given choice of R, Eq. 3.3-6 provides a decom-

position of the truncation errors into their spectral components.

The variance of the errors at wavelengths shorter than 10 km,
og, is obtained by integrating the spectral density ¢61 over
radial frequencies higher than fo = 1/10 cyc/km; that is,

2 _ 2 -
o, = J].ITI L dfldf2 (3.3-10)

f>fo
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Note that the error variance og depends on the choice of R
through the function T (see Eq. 3.3-8). To determine how large R
should be, a table of values of og as a function of R is con-
structed. The integration radius, R, is then chosen as that
value in the table for which the error variance is within the
required limits. Before such a table can be constructed,
however, the spectrum ¢s in Eq. 3.3-10 must be evaluated.

In the current study, the spectral density of the
squared elevation differences, ¢s, was estimated using the DTED
in the study area. Various east-west and north-south tracks
were selected in the area, and the values of s = d2 were
computed from the terrain elevation along each track. One-
dimensional power spectra were then obtained by fitting autore-
gressive models to d2-m (where m is the sample mean along the
track) using the "covariance method” (Refs. 8-10). The esti-
mated along-track spectra tended to cluster into two groups:
one for the northern, and another for the southern region of
the study area.

This clustering reflects differences in ruggedness
which are visually apparent from a graphical display of the
terrain elevation (Fig. 3.3-1). 1In the range of frequencies
of interest, the spectrum for the northern tracks is uniformly
higher than that for the southern tracks. This behavior corre-
sponds to the more rugged terrain in the northern region of the
area being analyzed.

It can be seen from Eq. 3.3-10 that the larger L the
larger the error variance of the truncation errors, and the
more stringent the requirement on the value of R. Therefore,
the model for the northern region was used in the determination
of the value of R.
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The function ¢_ needed in Eq. 3.3-10 is the two-
dimensional power spectrum of the squared terrain differences.
Modeling b, as isotropic, it can then be computed from the cor-
responding one-dimensional along-track spectrum using the Abel
transform (Refs. 11 and 12). The result is a spectrum, ¢(f),
that is a function of radial frequency only:

0 (£),6,) = o (£1+£5)1/2 (3.3-11)

Since the function T is also only a function of f (see
Eq. 3.3-8), Eq. 3.3-10 simplifies to

0% = 2n j IT(E) |20 (£) £ df (3.3-12)
£

o]

Equation 3.3-12 was used to compute the data in Table ° 3-1,
which lists different values of R and the corresponding rms
truncation error 0, For example, if the vertical terrain ef-
fect is computed for wavelenghts shorter than 10 km using DTED
within a 3-km radius of the computation point, then Table 3.3-1

indicates that the rms error due to the finite amount of DTED
is 0.0081 mgal.
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TABLE 3.3-1
RMS TRUNCATION ERROR CAUSED BY
FINITE EXTENT OF DTED

' RADIUS RMS ERROR*
R 8
(km) (mgal)

.083
.013
.0081
.0054
.0031
.0017
.0012
.0010
.00078
.00054
.00010

NEYooO~NOTUISWN -

[N e
COQOCOOOOOOO

*For wavelengths shorter than 10 km.
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4. DISCUSSION

4.1 DATA

The Defense Mapping Agency provided the DTED used for
this analysis. These DTED cover a region that includes the
Clinton-Sherman Airport in Oklahoma and consist of terrain
heights above sea level on a uniform latitude-longitude grid
having a point spacing of three seconds of arc, with the heights
expressed to the nearest meter. The object of the present
analysis is to estimate the high-frequency vertical gravity
field in a 512 by 512-point subregion that includes a topo-
graphic feature called Baker Peak. It is desired to compute
the local terrain effect at each grid point in this subregion
with an rms accuracy of 0.01 mgal for wavelengths shorter than
10 km. According to Table 3.3-1, to achieve this accuracy,
DTED are needed within a 3-km radius of each computation point.
Therefore, the numerical quadrature of the terrain-correction

2

integral was performed over a square area spanning 9n km“ and

centered on each computation point.

In Fig. 3.3-1, the DTED are rendered as a three-dimensional
surface, with the vertical scale greatly magnified for visual
clarity. Although the northern (upper) half of Fig. 3.3-1 looks
mountainous, the DTED actually fall in a range from approxi-
mately 200 m to 700 m above sea level. The region depicted in
Fig. 3.3-1 extends 57 km east-west and 65 km north-south. The
average distance between grid points is 76.5 m east-west
and 92.7 m north-south.

4-1
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4.2 COMPUTATIONAL APPROACH

o W W B

To generate estimates of high-frequency gravity on a
dense grid, the local terrain effect is first computed at each
grid point. Then the resulting two-dimensional (2-D) field
is filtered with a 2-D high-pass filter. Computing the terrain -
effect is the major data processing effort, because the terrain
effect integral in Eq. 3.1-2? must be evaluated at each point
on the grid. In particular, for the 512 by 512-point grid used

in this paper, the terrain effect integral is evaluated

S S

numerically 262,144 times. Each of these numerical quadratures

involves the following three steps: (1) the integrand is
evaluated at the 4,189 grid points within the 54 by 71 point
domain of integration; (2) at each of these points, the value

of the integrand is multiplied by a weighting factor, Wi

L X

determined by the numerical quadrature rule; and (3) the re-
sulting products are summed and scaled by the grid-spacing
factor 4-Ax-Ay.

S It

The computational approach described here is appropri-

ate for computers having a Cray-type architecture for parallel ¢
vector computation, e.g., the Alliant FX/8 minisupercomputer N
used in this study. On such machines, arithmetic operations k

applied uniformly to large arrays can be performed much more
rapidly than an equivalent number of scalar calculations.
Therefore, to achieve high computational speed, the computations

are expressed as uniform operations on large arrays.

The terrain effect integral is evaluated using the "

following nine-point numerical quadrature formula (Ref. 13): g

9
[f f(x,y) dxdy = 4-Ax-Ay Z f(xk,yk)wk + 0(A2) (4.2-1)
S k=1
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where the domain S is the 2-Ax by 2-Ay rectangle (-Ax < x < AX,
-Ay < y < Ay) of area A = 4-Ax+Ay. As depicted in Fig. 4.2-1,
the knot points (xk,yk) are on a rectangular grid with spacings

Fal™om oo

-

Ax and Ay in the X and y directions, respectively, and the
weights, Awk, are the outer product of the weights (1/6, 2/3, '
1/6) for the three-term Simpson's formula. The error of this o)
quadrature rule is asymptotically of order A2 as A goes to )
zero.

According to the error analysis in Section 3.3, the
domain of the terrain-effect integral can be truncated to
a rectangular area centered on the computation point P as de-
picted schematically in Fig. 4.2-2. This domain contains
(2M+1)+ (2N+1) DTED grid points. Applying Eq. 4.2-1 to each
adjacent 9-point rectangle and summing the results over the
domain depicted in Fig. 4.2-2 will yield the desired numerical
quadrature, except for the center region containing point P, D
which is omitted from this quadrature. The center region is
handled separately as discussed in Section 3.2. To achieve 3
high speed on a parallel-vector computer, the multiple appli- <
cations of Eq. 4.2-1 should be formulated as a single large !
array operation. This is done by developing a single (2M+1)
by (2N+1)-point (large-scale) quardrature formula that is equiv-
alent to multiple applications of the 9-point formula. The
resulting weight pattern over the interior of the domain is .
depicted in Fig. 4.2-2. (The weights along the outer edges

- b e

)
"

and the weights along the omitted inner region containing point
P are different from the interior pattern depicted in Fig. 4.2-1)

¥

After evaluating the terrain correction integral on

r o

. the 512 by 512 grid, the final step in estimating high-frequency
gravity is to filter-out the low-frequency components of the
~ computed terrain effects. A 2-D finite-impulse-response high-
pass filter is used for this purpose. The output of the filter,
y(j,k), is the value of the input datum, x(j,k), minus the

4-3
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average of x(j,k) over a (2Nx+l) by (2Ny+1)-point rectangle
centered on point (j,k):

N N
y X
Z EH(m,n)x(j-m,k-n) (4.2-2)

y(j,k) =

m=-Ny n=-Nx
H(0,0) = 1 - <2Nx+1)‘1(2ny+1)'l (4.2-3)
H(m,n) = -(2Nx+1)'1<2Ny+1)'1 (4.2-4)

The transfer function of this filter, ﬁ(Fy,Fx), is expressed

using the normalized frequencies, Fx = Axfx and Fy = Ayfy,

where Fx and Fy range in absolute value from 0 to 1/2:

ﬁ(Fy,Fx) =1 - ﬁy(Fy)ﬁx(Fx) (4.2-5)
H (F ) = sinc[(2N +1)F ]/sinc(F,) (4.2-6)
H (F ) = sinc[(2N +1)F 1/sinc(Fy) (4.2-7)
sinc(0) = 1 (4.2-8)
sinc(x) = sin(nx)/(nx) for x # 0 (4.2-9)

The frequency response of this filter (i.e., the squared magni-
tude of the transfer function) is plotted in Fig. 4.2-3 for
F_ = 0 as a function of the dimensionless east frequency w_f

P y x'x’
where W is the length of the filter impulse response in the x

direction, and fx is the frequency expressed in cycles per unit
length (i.e., wxfx = (2Nx+1)Axfx = (2Nx+l)Fx). The low-frequency
limit of this filter is defined as the frequency for which the
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squared mangitude of the transfer function is 1/2. It can be
shown that a specified low-frequency limit, fO’ is achieved for
both north and ceast frequencies by selecting the filter para-
meters Nx and Ny to satisfy the following formulas, in which

int(x) denotes the value of x rounded to the nearest integer:

_ 0.76 1 _
I 0.76 1 -
4-6
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4.3 RESULTS

The results of using the computational approach des-
cribed in Section 4.2 are depicted in Fig. 4.3-1, which is a
three-dimensional rendering of the estimated vertical gravity
field for wavelengths shorter than 10 km. The elevation, z
is equal to the average of the DTED over the analyzed area.
The northern (upper) region in Fig. 4.3-1, which contains

1.2 x 105 grid points, has an rms value that is five times the

?

Figure 4.3-1 Three-Dimensional Rendering of
Estimated Vertical Gravity for
Wavelengths Shorter than 10 km
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4.3 RESULTS

The results of using the computational approach des-
cribed in Section 4.2 are depicted in Fig. 4.3-1, which is a
three-dimensional rendering of the estimated vertical gravity
field for wavelengths shorter than 10 km. The elevation, zp,
is equal to the average of the DTED over the analyzed area.
The northern (upper) region in Fig. 4.3-1, which contains
1.2 x 105 grid points, has an rms value that is five times the

Figure 4.3-1 Three-Dimensional Rendering of
Estimated Vertical Gravity for
Wavelengths Shorter than 10 km
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rms field in the southern region, which contains 1.2 x 10" grid
points. Key statistics for the estimated gravity fields in

these two regions are compared in Table 4.3-1.

The error analysis in Section 3.3 indicates that the
high-frequency vertical terrain effect was computed with an
rms error of 0.0081 mgal, because the DTED data extended 3 km
from each computation point. To verify this small error, the
terrain effects were recomputed using DTED data within a 10-km
radius of each computation point. According to Table 4.3-1,
the rms error of this computation is 0.00054 mgal. This more
accurate field calculation was subtracted from the original re-
sults, and the rms difference was consistent with the theoreti-
cal rms error of 0.0081 mgal given in Table 3.3-1 for R = 3 km.

An additional error analysis, not presented here,
shows that a much larger extent of DTED (i.e., larger R)
is required to achieve similar accuracies when computing the
deflections of the vertical contributed by the terrain effect.
For example, an rms accuracy of 0.15 mgal requires DTED within
a 10-km radius of each computation point.

TABLE 4.3-1

STATISTICS OF ESTIMATED GRAVITY FIELDS
FOR WAVELENGTHS SHORTER THAN 10 km

GRAVITY 1IN GRAVITY IN
STATISTIC NORTHERN REGION SOUTHERN REGION
(mgal) (mgal)
MAXIMUM 18.0 1.5
MINIMUM -6.8 -2.2
STD. DEV. 3.0 5 0.6 4
NO. POINTS 1.2x10 1.2x10
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4.4 SUMMARY AND APPROPRIATE NEXT STEP

The formulation developed in this report surmounts cer-
tain mathematical difficulties formerly associated with cal-
culating that portion of the gravity field which is induced by
visible terrain. It also uses to advantage modern parallel- -

© processing computer architectures to optimize calculations
which would be arduous or impractical if performed in scalar
B sequential fashion. A statistical error analysis provides the
; means to control accuracy. The approach is applied to digital
i terrain elevation data from the Clinton-Sherman test range to
develop both a set of terrain-effect gravity values and an under-
standing of the accuracy with which the field can be determined.

The accuracy uncertainty associated with the DTED
motivates further efforts to understand and quantify the data
o errors., Is there a frequency range over which the accuracy
. does approach its precision? Can the errors be predicted?
Can they be modeled? Resolution of these issues could provide
the impetus for turning DMA's DTED base into a very useful
tool for supplementing gravity data needed to support DoD
% weapon systems programs.
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