R A I R T R R A N TRt U OGN S I BN S W L Y R MU AN AL AR Y R O T O U O O K ORI mmwxnrx

Ultolivooil ALu / ! '
.l - SECURITY CLASSIFICATION OFFHIS PAGE (When “au Fnuﬁed) l! I Il F![F (\0 P, ‘ ¥ a
i REPORT DOCUMENTATION PAGE pEF EAD INSTRUCTIONS :
¥ . REPORT NUMBER 2. GOVT ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER Al l'
AFIT/CI/NR 88- 4O §
" 4. TITLE (and Subtitle) S. TYPE OF REPOKT & PERIOD COVERED X
A CLASSIfIcATION OF 08 SICNATLD MS THESIS 5 o
LDG‘C SYSTEMS 6. PERFORMIN(? ORG. REPORT NUMBER ’ ‘ '
: ' by
7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s) .:
a KELLY ANN SHAW Y
P
PERFORMING ORGANIZATION NAME AND ADORESS 10. :S(E)iR‘A OELKESEINTT.NPURMOBJEESST. TASK i . . 't
;, OO AFIT STUDENT AT: SYRACUSE UM\VERSITY L
: LN SR
m . CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
1988 _
8 , 1. Nuuasngr PAGES al v,
fhet ()
F . MONITORING AGENCY NAME & ADDRESS(!f different from Controlling Olfice) 15. SECURITY CLASS. (of thie report) k‘-_:‘i ::
ﬂ < AFIT/RR UNCLASSIFIED R
Wright-Patterson AFB OH 45433-6583 P,
- 6 1Sa. ggﬁéégiléﬂCATlON/ DOWNGRADING : .
§ < «w DISTRIBUTION STATEMENT (of this Report) ~: b
.: DISTRIBUTED UNLIMITED: APPROVED FOR PUBLIC RELEASE DTI'O | B
4 W
iy SN
| ELECTE o
; 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, it different from Report) L !
. SAME AS REPORT Q e
= i . .) ‘
| 0 SUPPLEMENTARYNOTES Approved for Public Release:~ IAW AFR 190-1 S
LYNN E. WOLAVER 18 L gy 4
Dean for Research’/ghd Professional Development o
Air Force Instituté of Technol ogg)
Wright-Patterson AFR OH 45433-6583 X

19. KEY WORDS (Continue on reverse side if necessary and identily by block number)

i 20. ABSTRACT (Continue on reverse side if neceasary and ldentify by block number)

. ATTACHED)
I)
. .
AN :
B
!
. !
b 8¢
y DD ,ForM
. D an 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE UNCLASS[F]EQ :
R . idralpstg Ay | .
! SECURITY CLASSIFICATION OF THIS PAGE (Hhen Data Entered) "
- : 't
Ly LY " . -u" ot v' . R ' o
! A ‘ Y . s Tk AR *
S, . v ' ,';} "l "{ ? ; ,‘ o .(“\" IO RN (e !) - l '
]

"C\' P

’) . } . . " N ! \
2 () A . r
it) 3 AT IR R I A'.,'l’.‘a‘:'l‘-'u.. 1’.'1'- s'.’c'.'.'.';'.‘t'. l'. A’.,‘t 5 l'._t'. i ARG l’. 0‘. ¥ ..6. IO o t‘.'l J":..l‘ .l' '.,l\ '|. ety

R R R T R R R Ry R ST DR URY UL 1750 WM L SO LS L/ W LW LW RN R S WO ™ W WU O IO L TR W SO R RGO eOr O

/ ABSTRACT
\
\

N
> Logic systems can be defined using a trichotomized rather
éhan tne dichotomized universe.used in classical logic. We
partition these designated logic systems using the negation (or
complement) fuaction into the designated, antidesignated and
;;utral logic classes.

The complement function alone is not sufficient to
uniquely determine an assignment of logic elements to partition
classes. Using a modified definition of conjunction within the
designated 1logic system framework we can uniquely determine an
assignment up to equivalence for any designated logic systemn.

We build a hierarchy of mathematical systems to describe

Cconny ter .
properties found in some common designateHV(EGEic systems.
Starting with a simple algebra and imposing constraints we end up
with an order defined for some of the designated logic systems.
Using thisahierarchy we find the number of conjunction functions
homomorphic to classical 1logic when only designated and

antidesignated values are conjoined. The logic systems described

by these twelve homomorphisms are designated 1logic systems

closest in behavior to classical logic. ! R K <—~~__,

& a

- -

- -

- -

-

-" - A

W A T S U P U T VS S TS

P UaY Gt 0a? ot dav Gat Bt g BV

A Classification of Designated Logic Sysrtems

By

K2lly Ann Shaw

B.S. June 1983,

A Thesis submirtted to

The Faculty of

Syracuse Univarsity

The Graduate School of Engineering and Applied Science
of The George Washington University in partial satisfaction
of the requirements for the degree of Masters of Science

February. 1988

Thesis directed by
Oscar N. Garcia

Professor of Electrical Engineering and Computer Science

QUALITY
INSPECTEQ

2

Py

TS

Accesicn For

NTIS CRA&I N
DTIC TAR)
Urannourced O
Jushticaten o _
B
Deebation |
e s
AvHiasity Cuues

b ——— - - . fme e ——

Toovsan andfor
Dt 1 Speeal

a4 |

I——— :'o'

S —— Y

RN D TS LT U e S T IR

NN R RN A R R R RO A N O R A R R O OO O R T TINOT T UR OV I Y T %'

TABLE OF CONTENTS

PREFACE « .+ « o v v v o v v v v v v v v v v

LIST OF ILLUSTRATIONS « « « « « « « . . wvii

LIST OF TABLES + + « &« & o « e & o o o o o« « . viii

ABSTRACT . . . + v v ¢ v & o v o o o o s & o o o« o & X

Chapter
1. INTRODUCTION« « « « « v & « v v u « o . 1
e 2. DESIGNATED LOGIC SYSTEMS 4
E 2.1 Modal and Deviant Logics 4
2.2 Truth Values and Rules of Inference . . . 6
2 2.3 Other Functions in Logic Systems 7
2.4 Designated and Antidesignated Truth Values 9
B 2.5 Designated Logic Systems 11
i 2.6 Examples . . . « . ¢ . v e e e e e e e e 13
; 2.7 The CREATE-LOGIC Program 15
2.8 SUMMALrY . « -« « « « o « o o o o o o o o« 19
j 3. ASSIGNING LOGIC VALUES USING COMPLEMENTATION . . 20
f 3.1 Complement Cycle Patterns 21
L J.2 Fartiticning Covustraints Using Cycles . . 26
Q 3.3 Cycle-classes of Logic Elements 29

ii

R A S A A S S SRS IS LS D AT RN o. oy

5.

Mo s U W WO Y 18 2”8 a" o'k a¥h 2t “a 0 at i ad. - *3 ate atl’ g T 0 et

3.4 The FIND-CYCLES Program 2L

3.5 SUMMAry . . « . 4 . e e e e e e e e e 34
FINDING A PARTITION USING CONJUNCTION 36
4.1 Conjunction in Designated Logic Systems . 36
4.2 Equivalent Partitions 43
4.3 Identity Elements and the Supremum 49
4.4 Zero Elements and the Infimum 52

4.5 An Algorithim for Partitioning All Designated

Logic Systems 55

4.6 The FIND-ASSIGN Program 60
4.7 SUMMATLY « « ¢ ¢ v v v o v« W e e e 63

A HIERARCHY OF DESIGNATED LOGIC SYSTEMS . e e 64
5.1 Designated Algebras 64
5.2 Designated Monoids 65
5.3 Ordered Designated Systems 66
5.4 The CLASSIFY Program« +« « « « « . 71
5.5 Summary v e e e e e e e e e 73

CONJUN&TION HOMOMORPHISMS IN THE DESIGNATED
HIERARCHY « « o v o o« « o« « « 74

6.1 Conjunction Classes in Designated Logic
SYStems 4 4 e e e e e e e e 74

6.2 Conjunction in Designated Algebras 77

D or—aox

o =™ = oy

PRt S e

Wy F FoF -

n_v

o A0 §oa Ay

NNV ER LN LY LW L Sag cal el vab b L 0l bk 20 10 AL 0" LA a'A

6.3 Conjunction in Designated Monoids
6.4 Conjunction in Ordered Designated Systems

6.5 Examples

6.6 Summary
7. CONCLUSIONS « « v « « « . .
Appendix
1. LOGIC SYSTEM DEFINITIONS
2. THE CREATE-LOGIC PROGRAM
3. THE FIND-CYCLES PROGRAM
4. THE FIND-ASSIGN PROGRAM . . .
5. THE CLASSIFY PROGRAM . . .

BIBLIOGRAPHY« . .

iv

77

79

82

84

87

S0

105

110

120

132

Xl g ay

\

.!
{

WS PR LN WAL s A e 3]

A OIS SO PSR EEA NI T o XU R UN U Y IR XH YN TN S " IR N U]! AN NSRS A v

T e s w

-rH

PREFACE y

When Dr. Garcia and I began research on this paper over a

-

year ago we started with the idea of using non-classical 1logic

A

systems in a concrete Computer Science application. We were

motivated towards the study of non-classical 1logic by the

A

research of Mr. Moussavi. He found that classical logic, because

-

it lacked the capability of dealing with unknown quantities, was

inadequate to the task of modeling rule based systems. This gave

D e @

us a concrete example of the usefulness of non-classical 1logic
systems.
As we began to study the topi¢, however, we found that

some of our most basic questions were not answered in the

¢

literature. Some of these questions were:

Ragagy

'What is a rule of inference?'
'What is a truth value?'
'What differentiates a logic system from an algebra?’
'What characterizes a logic system?'

-y - e

As we searched for answers the nature of our research
changed. We were no longer searching for an application, we were)
searching for the nature and definition of a logic system with s
the hope of working with these systems in a mathematical (or at
least non-philosophic) mode. "

;
v

P TR PN IS AT WA =, oty . i R .
R O X O C D e DS R S o TR TN TS Y T N W T, Y TR T M TH R N K S M P) -a.m.vWﬁﬁﬁﬁﬂﬁﬁxﬁﬁﬂg

e

i
3
¢
bl
B

by
&

This paper 1is the fruit of our research. Although our

results can't as yet be

application, we think
understanding non-classical
I would 1like to

Technology for funding this

used 1in any concrete practical
they provides a sound basis for

logic systems.

thank the Air Force Institute of

research.

vi

P p—— . .
A N ML LA N A T N a A ARSI NITHG MR AL AN NS S DN

Figure

10.
11.
12.
13.
14.
15.
ls.

17.

MR R RS U LR I TR el a a t AR IR 3 . ERPIRTOoY ' i"u.|..’ g

ILLUSTRATIONS

Two Classifications of Designated Logic Systems
Two Partitions of Two-valued Logic Systems
Two Partitions of Three-valued Logic Systems
Three Partitions of Four-valued Logic Systems
Cycle Patterns For a Set of Three Elements
Cycle Patterns For a Set of Five Elements
Cycle Patterns For»a Set of Five Elements

P3 With Cycle Pattern 3

Two Possible Partitions of K3

The Partition of K3

The Partition of B3

Equivalent Assignments in L4

The Partition of ILL6

A Graph of Table 23

A Graph of Table 24

M6 Represented as a Lattice

A Hierarchy of Designated Logic Systems

Page

13

14

14

15

22

23

25

28

29

38

40

46

60

67

69

70

74

KT

-

T,

ALt B

-~
- -

A
o
I

~

[

"
&

N
Y

5 AT LT S0 AT LT TN TOA FOTTOA T YOI TUN RN FUNE TON TOM TS PN T PO WO U PO RN TR TON IGR O

10.

11.

12.

13.

14.

15.

le.

17.

RO O O R S RO DR SO QG R MO OB A XM S K MR OO R A WA W

LIST OF TABLES

The Principle of Excluded Middle in L3
Complementation in P3
Complementation in K3
Complementation in M6

Complementation in P4

A Complement Function Which Is

Complementation

Complementation

and Conjunction

and Conjunction

Not

in

in

a Permutation

K3

B3

Complementation and Conjunction in P4 . .
Comolementation and Conjunction in SL3
Equivalent Conjunction F.nctions in SL3
Complementation and Conjunction in L4
Equivalent Conjunction Functions in L4
Non-Equivalent Conjunction Functions in K3 . . .

Four Mappings of Complementary Cycle-classes in
Pd i i i e e e e e e e e e e e

Non-Equivalent Conjunction Functions in P4 . . .

The Supremum in P4 « « « « .

viii

------ -

WGIWWRY,

0 Fat ot 5. Bat ot 0a* 12 0y’

Page

30

31

33

39

40

42

45

46

47

47

48

t
BT A " PR TS

A=

"
v

¢

RTINS SIS

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32,

TR U W W W WU T U WU WU WU WO WUV O W WV R AR AR O R VR R s d PR

The Supremum in L4

The Infimum in P4

The Infimum in L4
Complementation and Conjunction in ILL6
Complementation and Conjunction in CYC4

An Ordered Conjunction Function . .
Conjunction For Example 5-3 .

Conjunction and Disjunction in M6 .
Conjunction and Disjunction in B3

A Conjunction Table For Classes D, N and A
Function && With Classical Agreement . . .
&& in a Designated Algebra
&& When Conjunction Has an Identity Element

&& in a Designated Monoid When N && N = A

&& in an Ordered Designated System

51

53

54

59

66

67

€68

70

71

76

76

77

78

79

81

l'l'.

. o o . 8

P ap B 0D 4

L e edB o

O O A N N I Y T DY N O T O Ov T O etk gty s aatabatn e, hay TIAN IV AR

ABSTRACT

Logic systems can be defined using a trichotomized rather
than the dichotomized wuniverse used in <classical 1logic. We
partition these designated logic systems using the negation (or
complement) function into the designated, antidesignated and
neutral logic classes.

The complement function alone 1is not sufficient to
uniquely determine an assignment of logic elements to partition
classes. Using a modified definition of conjunction within the
designated 1logic system framework we can uniquely determine an
assignment up to equivalence for any designated logic system.

We Dbuild a hierarchy of mathematical systems to describe
properties found in some common designated logic systems.
Starting with a simple algebra and imposing constraints we end up
with an order defined for some of the designated logic systems.
Using this hierarchy we find the number of conjunction functions
homomorphic to <classical 1logic when only designated and
antidesignated values are conjoined. The logic systems described
by these twelve homomorphisms are designated logic systems

closest in behavior to classical logic.

-
|

b vat

W -

N
-

LK X

-

P el el

PN e m Y

LI L TN A PSR N, W W W W W LAY, ¢
“ I‘ O }‘.R".eb"nﬁk\@f&.\‘}.ﬂ.ﬂ.&?ﬂ’ﬂi DT, 10 :{\:n'&

CHAPTER 1 g

INTRODUCTION

When thinking of 'logic' we tend to think in Aristortelian

" om B

e

{J
terms, or 1in terms of the Principia Mathematica (Russell and !
Whitehead, 1910}. The world becomes dichotomized into 'that which

is ctrue’ and 'that which 1s false.' There are, however, an A

— o~
-l o

e
N

infinite number of non-classical logics which lend themselves to

-

real world problems. For example, the future contingency

e e

statement '"there will be a sea battle tomorrow" would have the !

value ‘'unknown' in some non-classical logics since 1its wvalua

P

Y M o
- -)

cannot be defined without the use of modal operators 1in an

extension of classical logic.

-

We would like to be able to answer two questions about any

g Ko A

v e

Computer Science application using a non-classical logic system: v
'what kind of logic do we have,' and more importantly 'what Kkind

K of 1logic do we need?' To do this we must first understand the

-
T W

« structure of non-classical 1logics and find how they are both

'\ similar to, and different from classical logic. In other words.

AL A

we must classify them.

X In chapter two we introduce designated and antidesignated

»
l
¢
t
\l

R N TR T e IR AT M M N XN A SR R AR 2% .._ " ‘|. ' N YR .-"-* VN ‘ RO ‘}«“- Yai'd """fw'

A

2)

TR AN

2

P RTEIGL AN RN

n
J
'3
<

logic values and define Designated Logic Systems giving

examples of how some of the deviant 1logics fit into thais

framework.

In chapter three we partition the designated logics 1inrtc

=

o Y

I

three classes (designated, antidesignated and neutral) using thns

[
e, T

negation (complement} function. Using the cycles of a permutation

;i there are a finite number of classes for any finite logic system

enumerated by a regular generating function (the same function

used to count integer partitions).

In chapter four we use the logic's conjunction to uniquely

determine an assignment of logic elements to partition classes up

to equivalence.

4
;} In chapter five we build a hierarchy of mathematical \

systems which characterize properties of the designated 1logic

systems. We use this hierarchy in chapter six to examine a

special <class of Designated Logic Systems whose behavior 1is

homomorphic to classical logic when conjoining designated and

%

antidesignated values. The twelve resulting conjunction functions

;' are closest to <classical 1logic of all the designated 1logic

systems when the neutral class is not enpty.

Neither permutations, <classifications nor mathematical

BROLOOODEN ':’h'x'.'u'..ﬁ..\\'.'ﬂ..A’-.t‘.‘q'..i‘. W0, l'u’l’.‘.‘..b.n.i.- I...d'l (L% l.-"'r W, .v .o \

N R R N N N VWO LS Vi L A A A LY UN WX N A R KR TR T K OO T O . W WETNTARUN W RPN RN W A R

hierarchies are new. We hope their use ro classify and particion
Designated Logic Systers illuminates the nature of thsse systars
and 1leads to a better understanding of their possibie wuses 1in

applications of Computer Science.

R ;:‘.izn‘e“;z!‘\‘ \': -"-‘l'y.l’-gt.n l‘.!‘.l‘..h“h"l‘!.\‘ 8 \‘!"’. ‘ ..l.‘q A '\‘ M .'n‘."q...l* At . 'u'- N \F‘ ..\ 'f f‘.\. A ¢~" W 3

CHAPTER 2

DESIGNATED LOGIC SYSTEMS

Usually, when we think of logic systems, we think cf two
valued classical logic. There are, however, an infinite number of
logic systems which extend or modify classical logic. In this
chapter we will introduce several non-classical logics and define

terms used to describe Designated Logic Systems.

2.1 Modal and Deviant Logics

Non-classical 1logics fall into two categories: modal
logics and deviant logics [Haack, 1974]. While modal 1logics
extend classical logic, deviant logics deny some principle of
classical logic.

Susan Haack, 1in her Philosophy of Logics [Haack, 1978],

defines modal logic systems as those logics sharing the same
vocabulary 1and valid formulae as classical 1logic but having
additional quantifiers and inferences valid in its system. The
set of theorems in classical logic is a subset of the set of
theorems in a modal logic. Two modalities she discusses in detail

are 'necessary' and 'contingent' formulae. For example, 1in

ISR MR NN i) ; LRI YT A N P g % Oy 7 My Mg Wy Wg W T Ty R PATAYLAAT R Y ALY
NG OO AT o La XA " O i S Lt B S 300 R S) Y. x \ N

Arlt.l- » 3

KT R RN R KU RE R Y R AU R TR VR U LR W UN Y N U D N U R R R TR L M T A R

classical logic preposition p may be either true or false. Whzn
preceded by the 'necessary' modal, as 1in 'necessarily p.'
proposition p is always true ([Haack, 1978].

Paraphrasing from Rescher, modal 1logic results when
propositional 1logic formulae are subject to a general form of
quantification (Rescher 1968] . Rescher does not limir
quantification to the traditional existential and wuniversal
quantifiers we normally associate with the predicate calculus.
For Rescher, a modal can be any quantifier used in <the form
'<modal operator><logic formula>' as in the formula "It 1is
necessary that p => p."

Aristotle formulated the two classical modalirties,
apodeictic (necessarily) and problematic (possibly) {Aristotle,
Prior Analytics], but other modal quantifiers exist in, for
example, the epistemic (I know x or I think x) and deontic (I
should do x} logics.

While modal 1logics extend classical logic by means of

A
quantification, deviant 1logics rival <classical 1logic. Haack
defines a 1logic L1l as deviant if "...the class of wff [well
formed formulael] of L1 and the class of wff of [Classical Logic]

coincide, but the class of theorems/vzlid inference of L1 differs

(4
EEHQHRB&RB&HN%E&GM%%&HNOHHG&QT&‘

e

K ;‘_—

)
|
U

Pl g3t gl RN RN LN R N A R R R AR R A A O LA Y U N SN T T T T I I T I O T I,

9

from the class of theorems/valid inferences of [Classical Logicl!™
{Haack, 1974}. .

By her definition, the set of theorems in classical logic

V-
B ot

is not a subset of the set of theorems in a deviant logic. This

is the difference between a modal logic and a deviant logic. 1In

w

-

this paper we will be concerned with the deviant 1logics and

classical logic rather than modal logic.

BT e -

2.2 Truth Values and Rules of Inference.

In any 1logic system there will be at least two truth '

values and at least one rule of inference used to manipulate

o

truth values. These two structures characterize all logic systems

(!
and are what differentiate logics from algebras. In <classical :

§
logic we use truth values 'true' and 'false’' along with several -

X
rules of inference such as modus ponens, modus tollens and
resolution. N

Therefore, to understand 1logic systems, we must first .
understand fruth values and rules of inference. Truth values are
simply the set of elements in a logic which can be assigned as
the value of any 1logic formula. As we stated earlier, in

classical logic the set of logic values is {(true,falsei.

The definition of a rule of inference depends on the

W SO

Eaa AR A,

)

3

TR TR S 0, S S A N T 8T T T T T R T T R T N R Pt :'

RN N SR U LA U R TG R U R R R U R R O N O O O O YO

~J
-——

definition of tautology. In classical logic, well formed formula=
may take a value which is always true, always false, or sometimes

true and sometimes false depending on value assignments to their

atomic parts. These well formed formulae are defined as !
tautologies, contradictions and contingencies respectively. :
Langer says of a principle of inference "... if a proposition may

be asserted (i.e. is "granted" or otherwise "known as true”), and 3

this proposition implies another proposition, then the latter may

also be asserted" [Langer, 1953)]. 1Irving Copi states that a é
i
tautology is true by its form alone independent of empirical f
investigation [Copi, 1972]. We then accept the definition of a 5
rule of inference as a tautology of the form '(p) => (q)' where p é
i

and ¢ are well formed formulae. Using rules of inference together

with postulates of a logic system, we can derive other

P Nt =

tautologies in the form of deduced theorems.

-

2.3 Other F%nctions in Logic Systems.

Thus far we have discussed only the implication function "3
in logic systems (we will represent the implication function by 3

the infix operator =>). There are other functions usually found

in 1logic systems such as negation (represented by the prefix

IR AR NN AR AR R XM AV A AN KU R AURLY UN UN UN LA ST UV LR A B a0 Ak Ya® Kol v g 12 o Vel V.9 0 00 4.0 0,00, 4 4 @ 4. 8°

operator ")}, conjunction (represented by the infix operator &).
disjunction (represented by the infix operator +) and equivalencs
{represented by the infix operator <=>).

The negation function is usually a permutation of the
logic values where "x (read "not xX") denotes the converse of some
formula x. In classical logic, not true is false while not false
is true.

Conjunction and disjunction are functions representing the
truth value of a series of well formed formulae. In classical
logic conjunction of a number of formulae takes the value of
false if any one of the formulae is false, otherwise it takes the
value true. Disjunction takes the value true if at least one
formula in the series is true.

The equivalence function, in classical logic, yields a
truth value representing the equality of two well formed
formulae. In classical logic, (p) <=> (q) if and only if p and g
both have the value true, or both have the value false.

4
Therefore, true is equivalent to true and false is equivalent to

false, but true is not equivalent to false.

In classical logic, and in some deviant logics such as

Kleene's three-valued 1logic system and Post 1logic systems,

S N N P U W U R L SO O YO N W RO T YO Y PO Y T ™M T ™

implication and equivalence funcrions are defined in terms of
conjunction, disjunction and negation. Implication is wusually
defined as (p) => (g) = “(p) + (q) and equivalence 1is usually
defined as (p) <=> (q) = ((p) => (q)) & ({(q) => (p}). In o~ur
discussion of designated 1logic systems we will classify the

logics using the negation and conjunction functions.

2.4 Designated and Antidesignated Truth Values

Logic system with more than two truth values may have
definitions of tautology. contradiction and contingent formulae
different from their definitions in classical logic. For example,
in a logic system with two logic values representing truth, say
tl and t2, a tautology c¢ould be defined as a well formed formula
taking only the values tl or t2 for all assignments to its atomic
parts.

Rescher defines the terms designated and antidesignated to

mean those values in a logic which represent 'trueness' and

'falseness'ﬂ[Rescher, 1968]. Using these definitions, a tautology
'y is a well formed formula which takes only designated values for
| all possible assignments to 1its atomic parts. Likewise, a
contradiction takes only antidesignated values [Haack, 1978}.

Contingencies will take both designated and antidesignated values

O Ot O O O O R O T A A e e O DA O e e o D O L T N O DN N D OO0

I I I I TR W W L W W U U L WU T R I OO I O T g Bt tar Sa¥ Ad 4ai a0 $e? ot Bav $a¥ da¥ ba¢ 47 ¢

10

depending on the particular substitution instance of values rto
the formula's atomic components.

Example 2-1. Rescher defines the grouping of designated
and antidesignated values in Lukasiewicz' three valued logic (L3)
such that all tautologies and contradictions in classical logic
held in L3 as well. 1In his example, T and I are designated while
F and I are antidesignated (Rescher, 1968}. Note that I is both
designated and antidesignated. 1In classical logic the principle
of Excluded Middle states that (p) + “{(p) is a tautology. Table 1
shows that Excluded Middle is a tautology in L3 when both T and I
are designated (we refer the reader to Appendix 1 for a complete

definition of L3).

Table 1

The Principle of Excluded middle in L3.

]

X X

H H A

- ™
M H i+
333
H H A
mH A
LI
HoH A+

Other assignments of values in L3 to the designated -"and

antidesignated categories are possible (e.g. T is designated and

S .-

-

A

L T A N N

T~ -

-

T

A

both I and F are antidesignated); however, some contradictions

and tautologies 1in classical logic would no longer hold in L3

(e.g. 9 + "q would not be a tautology) [Rescher, 1968].

2.5 Designated Logic Systems.

Rescher's motivation for assigning values to designarad
and antidesignated sets rests with his desire to force deviant
logics to resemble classical logics in their tautologies. One
could choose to require the Principle of Excluded Middle to be a
tautology in a deviant iogic and then assign values fo designated
and antidesignated sets. Likewise one could choose to hold the
Principle of Contradiction (not both p and “p} invariant and
assign 1logic values as required. We choose to make as many
tautologies hold as possible with the fewest number of
restrictions. To do this we will hold the principle of
contradiction as an invariant and use Rescher's classification
scheme with suitable modifications.

Rescher states that for the principle of contradiction to
hold in a 1logic system all logic values must fall into the
designated class or the antidesignated class of logic values. He

uses 'or' in its inclusive meaning since a value may be both

designated and antidesignated. [Rescher, 1968]. He also

€

TR TR TGas PO LA A R O " AT A R ISP A R N W TP S W T W W s ey 4 o'e

12

constrains the assignments based on negation using the following
rules:

If x is designated then “x is antidesignated
If x is antidesignated then "x is designated

If we call the set of designated values D and the set of
antidesignated values A, a Designated Logic System based on
Rescher's rules would look like figure 1 (a).

We propose a conceptually similar yet more explicit
classification of logic values within a logic system. Let D be
the set of strictly designated logic values and A be the set of
strictly antidesignated 1logic wvalues in a logic system. An
element x of a logic system is strictly designated if x 1is
designated and “x 1is not designated (i.e. x 1is not both
designated and antidesignated). An element x in a logic system is
strictly antidesignated if x is antidesignated and "x 1is not
antidesignated (i.e. X is not both designated and
antidesignated). All 1logic wvalues not falling into either

4
category will be placed in set N for logically neutral values.
This enables us to partition the set of 1logic values into

disjoint subsets as in figure 1 (b). It also allows us to

reformulate the rules by which the subsets of logic values are

y - ot - f f~ l'_.l‘ 1 :. o’ XA

T m

L g

- -

-

-
£

-
v

xR

P s L . : N
e e T T T T A R R R R I S T N

2d g e bl € g iR R A 0 R B D R a0 A ' e 0, Y ‘A eV av ath anuh anh aty s’ ata ata ‘gl gty * et ala o in o Aa ab * ol AR 200 als"

13

defined. The new rules are as follows:

If x is designated then "x is antidesignated
If x is antidesignated then "x is designated
if % is neutral then "X is neutral.

(a) (b)

Figure 1. Two Classifications of Designated Logic Systems.

We call 1logic systems using this partitioning scheme

Designated Logic Systems. The remainder of this paper is limited

to the investigation and classification of these systems.

2.6 Examples.

Example 2-2. Given a designated logic system of two logic
values, the partition of its logic values must fall into one of
the two possible partitions shown in figure 2. Figure 2 (a) 1is

the partition in classical logic.

BEPEICERERE

OO O OO O OO OGO OO O O O O e R Y N Yo X XS 0 D O T OO M O O o

d
-

gt

AR RA NN NN U AN T WL WL WUV WP WU NRUW WP PO AR T M IO Y AR LA LN v 4] ADRCRL B PSSR gie A0ty 4

14

(a) (b)

Figure 2. Two Partitions of a Two-valued Logic System.

Example 2-3. 1In a three valued designated logic system
there are also only two possible partitions of the logic values,
illustrated in figure 3. Figure 3 (a) represents the partition in
Kleene's, Lukasiewicz' and Bochvar's logics while figure 3 (b)
represents the partition in Post's three valued logic¢ (complete

definitions of these logic systems may be found in Appendix 1).

{a) (b)

Figure 3. Two Partitions of a Three-valued Logic System.

- .
B e = -

- ETELE A,

L\

-

P 'Y\ ‘
h. R

1}

YON PO TON UK TUR PR TG IR R TR PO R Tl T R TSR W TR W I O U O o Y o o O T R o ey

15

Example 2-4. Given a designated logic system of four
values, the three possible partitions of its logic values are

shown in figure 4. Figure 4 (a) is the partition of Lukasiewicz’

four wvalued 1logic (L4). The reader will find a complete 2\
definition of L4 in Appendix 1. !
3
)
1
6 ===
W
J
\3
3l
'
t.
O d
.0
.!
bt
(a) (b) (c) A
)
Byl
B¢
Figure 4. Three Partitions of a Four-valued Logic System. f
-
(
et
<)
]
Because each designated value in a designated logic system
must have an associated antidesignated value, there are [n/2] + 1 .
. .) &
(|n/2| represents the 'floor' function applied to n/2) possible)
partitions for any set of n elements (n > 1). If n is even the F
s ¢
<
set N can have 0, 2, 4, ... n elements while if n is odd the set "
N can have 1, 3, 5, ... n elements. N
o
2.7 The CREATE-LOGIC Program. L;
)
CREATE-LOGIC is a LISP program written to illustrate some of "
3
'
1 .i
]
D,
’
) o) o,
ERROONTOS SHOROOON DY WHALRE Y n NN ‘\ ln’! ! h .I N |\ .- ‘. ' "\'.-’ ‘* .."\ \ " o)‘Xy'\“-r AL '-'f ."‘ SOl fo‘

the principles discussed in this chapter. The source code for
CREATE-LOGIC may be found in Appendix 2. Using the program
CREATE-LOGIC, we create and store logic values and functions for
later use with other LISP programs written for this paper. In
the following examples we create files for Boolean logic, L3 and
others. The 1logic functions are stored in file ‘'"b:<lname>.lsp"

where <lname> is the logic name.

\4

{load 'b:thesis)
loading "B:THESIS.lsp"

L I

(create-logic)

Enter logic name: > bool ;create classical logic

Enter logic function:
> (7 ((T) F) ;negation
1> ((F) T))

Enter logic function:

> (T ((TT) T ;conjunction
1> ((T F) F)
n ((F T} F)
1 ((F F) F))

Enter loqic‘function:

> (v ((TT) T) ;disjunction
1> ((T F) T)

1> ((FT) T)

1> ((F F) F))

Enter logic function:

PR I R) At AW LB A3 1y Pl Sak Fal T TN UY " 4% 478 4", . ‘Db’ el flad st fav 0¥ V2" $a7 vav o ig a¥ 0 P4 O

17

> (=> ((T T) T) ;implication
1> ((T F) F)
1> ({(F T) T)
1> {(F F) T))

Enter logic function:

> (<= ({(TT) T) ;equivalence
1 ((T F) F)

L ((F T) F)

» ((F F) T})

Enter logic function:
> nil
NIL
>
The functions of Boolean logic are now stored in file

"b:bool.lsp" and can be retrieved as necessary. Similarly, we

will create a file to store the functions and logic values of L3.

> (create-logic)

Enter logic name: > L3 ;create Luk's L3
Enter logic function:

> (7 ((T) F) ;negation

1> ((I) I)

1 ((F) T))

Enter logic function:

Y (C ((TT) T) ;conjunction
1> ((T 1) I)
1> ((T F) F)
1> ((I T) I)
) ((I 1) 1)
1> ((I F) F)

P 2 00

-

t
oY

ol S5

-.‘__"i' -

QI T XN ~ SRS T 2

S 5cq

-
e

o

1 ((F T) F)
1> ((F I) F)
Fip ((F F) F))

Enter logic formula:

> (v ({(TT) T)
1> ((T I) T)
1> ({T F) T)
1> ((I T) T)
1> ((I I) I)
i ((I F) I)
» ((F T) T)
1 {(F I) I)
b ((F F) F))

Enter logic formula:

> (=> ((T T) T)

1> ((T I) I)
1> ((T F) F)
» ((L T) 1)
1> ((T 1) T)
1> ((I F) I)
1 ((F T) T)
1> ((F I) T)
1 ((F F) T))

Enter logic formula:

> (<=> ((TT) T)

1> ((T I) I)
1 ((T E) F)
1> ((IT T I)
1 ((T I) T)
1> ((I F) I)
1 ((F T) F)
1> ((F I) I)
L ((F F) T))

Enter logic formula:

R R A R RT O R RA R R RN

VRN el <ub vab @a) eud ol Vb dal va)

18

;disjunction

;implication

;equivalence

vig el Sal v,

WU

<
g

e

oSS S X

[O

2.8 Summary.

Logic systems can be partitioned into Designated,

Antidesignated and Neutral classes of truth values. Because the

negation function takes designated values into antidesignated

values and antidesignated values into designated values, we can

use negation to partition the logic values of a logic system. If

a logic system has a partition of its logic values meeting these

constraints, we call it a Designated Logic System. A Designated

Logic System of n logic values must have one of n/2 + 1

possible partitions of its logic wvalues.

CHAPTER 3

ASSIGNING LOGIC CLASSES USING COMPLEMENTATION

As noted in chapter two, we can use the negation function
of a 1logic system to find the partition of a designated 1logic
system. In classical logic we call the negation function 'not.’
In logic systems with more than two truth values it may be
unclear what we mean by the term 'not x.' For example, given the
set {a,b,ci, 'not a' could mean 'either b or ¢ or both,' being a
specific exclusion of the element "a" rather than a function
mapping designated values to antidesignated values. To avoid
possible confusion we will <call the negation function
‘complement’ rather than 'negation' when talking about designated
logic systems. Thus, "X will read 'the complement of x' rather
than 'not x.'

If the complement function of a Designated Logic System is
a pernmutation, we can find the system's partition by specifying

its cycles. Complement functions which are not permutations are

of no interest to this paper.

3.1 Complement Cycle Patterns

A permutation is a function of a set onto itself. In a set
of n distinct elements there are n! permutations of those
elements. For example, given a set of two elements {(T,F}{, there

(T F) (T F) (T F)
are two permutations: (T F) and (F T). Permutation (T F) means T

(T F)
maps to T and F maps to F while permutation (F T) means T maps to

F and F maps to T.

Every permutation is uniquely defined by its cycles. Given
a permutation function F, a cycle is an ordered list of elements
(X1 X2 ...X1) such that F(x1) = %2, F({X2) = x3, ... F(x1-1) = x4
and F(x1) = X1 . In classical logic "T = F and "F = T so the only
cycle is (T F).

Let Ci1.,3 represent the jtb cycle of i elements in a
permutation. If there are k cycles of length i then we say N{(Ci)
= k. The set of N(Ci)'s represented as a sum of individual
elements inﬁa permutation is the permutation's cycle pattern. For
example, if a permutation of four elements has two cycles of
length one and one cycle of length two, 1its cycle pattern would
be 1 + 1 + 2. Although there are n! permutations of n elements,

not all the cycle patterns are distinct.

OO OO0 A o D P A0

LI T DA Lt L U LA U A L T A LA A L AR 20 Va8 Vol $al 0ol 0ah 2a0 3.0) A4 A "0 atBav6 07588 00 o' & o 75 ath 2l a8 ald, 0]

22

Example 3-1. Given a set of three elements {a,b,c! there
(a b ¢) (a b ¢} (a b ¢!
are six possible permutations: (a b <), (a ¢ b), {b a ¢),
(a b c) (a b c) {a b c)

(b ¢ a), (c ab) and (c b a). As can be seen in fiqure 5, chere
are only three unique cycle patterns out of the six possible

permutations.

(a)(b){(¢) C1.1 = (a) Ci.2 = (b) Ci.3 = (c) N(C1) = 3
(a)(bc¢c) Ci.1 = (a) C2.1 = (b ¢) N(Ci) = 1 N(Cz} =1
(a b)(c) Ci.1 = (c) C2.1 = (a b) N(Ci1) =1 N(Cz) =1
(a b ¢) C3.1 = (a b c) N(Ca) =1
(a ¢ b) Ci.1 = (a ¢ b) N(C3) =1
(a c})(b) Ci.1 = (b) C2.1 = (a ¢) N(Ci) = 1 N(Cz2) =1

Figure 5. Cycle Patterns for a Set of Three Elements.

The number of distinct cycle patterns for a set of n
elements 1is equal to the number of ways n non-distinct objects
can be placed into n non-distinct cells with empty cells allowed
({this 1is a restatement of the integer partition enumeration
problem). Using a generating function we can calculate the number
of distinct cycle patterns for n elements as the coefficient of

the term X* in the following equation {[Liu, 1968].

RN R e L T T gty e O T L A P U B el T A e i T ety

- e W w4

o T T e o

- -

e N

N

- Y

- P
-

.
n
[}

23

n : n (3-1)
T (1 - Xi)
i=1
Because the number of cycle patterns is finite for any n
elements, we can associate a large number of 1logics with
relatively few cycle patterns.
Example 3-2. In a set of five logic values there are seven
cycle patterns. We can f£ind them by enumeration as shown in

figure 6.

1+1+1+1+1 N(Ci) =5

. 1+1+1+42 N(Ci) = 3 N(C2) = 1
' 1+2+2 N(Ci1) = 1 N(Cz) = 2
1+1+3 N(Ci) = 2 N(C3) =1
2+3 N(Cz) = 1 N(Cs) =1
1+4 N(Ci1) =1 N(Ca) =1
5 N(Cs) = 1

B Figure 6. Cycle Patterns for a Set of Five Elements.

We cdn derive the same result using equation 3-1 with n =

5. The coefficient of the X® term in equation 3-2 will be the

b

number of cycle patterns possible for a set of five elements.

1 (3-2)
(1 - X)(1 - X2)(1 - X3)(1 - X4) (1 - X®)

pu——

R O g O I K T ISR S KRN AN M NN G K I M M

N O SR M IR MMM Ml N M R NI ™

Vi a2k a3 n S Al o3 oada¥ s a@ tad ind gl Pa® vad #a) Uad Oub Goh B al VR b Oah Yalk'teh’

24

When expanded, equation 3-2 is the polynomial 1 + X + 2X< + 3X* +
5X¢ + 7X3 4+ . . . The coefficient of X% is seven, so there are
seven possible cycle patterns of permutations of five elements.
Although equation 3-1 will allow us to find the number of
different cycle patterns, it will not tell us what those patrterns
are. We can develop a recursive procedure to generate the cycle
patterns of n elements given the cycle patterns of n-1 elements.
Assume we are given a cycle pattern of n-1 elements in the form a
+a+... +a+b+b+ ... +b+ .., k=n-1. From it we can

generate k + 1 cycle patterns of n elements:

l1+a+a+ ... +a + b+ ... +b + ... + k
a+a+ ...+ (a+1)+Db+ ... +Db+ ... + k
a+a+ ... + a + b+ ...+ (b+1) + ... + k
a+a+ ... +a + b+ ... +Db + ... + (k + 1)

Some of the k + 1 cycle patterns will be repeated in
several expansions of n - 1 elements. For example, given the five
cycle pattgrns of n = 4 elements we can transform them into the
seven possible cycle patterns of n = 5 elements.

1 +1+1+1=>1+1+1+1+1
1 +1+1+2

1 +1+ 2 => X/#/1/#/1/#/2 already generated
1 +2 +2
1 +1 + 3

1+ 3 => 1/#/1/#/3 already generated

d
o

By A S

P e e

o=

- B AL

25

2 + 3
1 + 4
2 + 2 => L/#/2/#/2 already generated
2/#/3 already generated
4 => 1I/#/4 already generated
5

Figures 7 (a) through 7 (g) show the seven cycle patterns

for five elements. 1In the next section we will discuss how cycle

patterns determine the partitions shown in figure 7.

1+1+1+1+1
(a)

2+2+1
(c)

Lo

2+1+1+1 2+3 1+4
(d) (e) (£)

Figure 7. Cycle Patterns for a Set of Five Elements.

S R o A N Ty e L SO N OSSO

A T N T R T N T T R R O O O R O O O IO X U R TR TGO I O PR TITTAN PTPUS

26

5
(g)

Figure 7 - Continued. Cycle Patterns for a Set of Five Elements.

3.2 Partitioning Constraints Using Cycles.

Using constraints imposed on elements in classes D, A and
N 1in chapter two, we can see that all elements in odd cycles
(cycles containing an odd number of elements) must be in the set
N: given the cycle (x: xXz2...x21+1), 1f X1 is in D then x2 is in A
and x3 is in D and xs is in D and ... and xz2:+: is in D and x: is
in A. This contradicts the first assumption since D and A are
disjoint. Likewise, we could prove that if x: is in A then X1 1is
in D for xxﬂin an odd cycle. Therefore all elements in odd cycles
must be in the set N.

Although there 1is no pressing mathematical necessity to
place elements of even cycles in classes D and A, we will do so

whenever possible to simplify the classification and partitioning

-
o w e

AR Ry 3

-

L]

-

2 AL

SRR NN LV 00T S 8 a0 (P s o N N R W

27

process. If we do not require even c¢ycles to
whenever possible, we increase the number of

for a complement function with k even cycles

K 3
= (52"

A2 .

There are cases, as we will see in Chapter

possible to put all even cycles in sets D

special cases and do not increase the numerical complexity of

classification procedure.

Given an even cycle (xX: X2 ... X21),

i-1} is a subset of D then {xz3y | 1 < j < i}

Likewise, if (xX23+1 | 0 ¢ j < i-1} is a subset of A then

< J < i} is a subset of D.

Example 3-3. Given a Post logic of three elements

is a subset of

be placed in D and A

possible assignments

not
are

the

Jj <

A.

1

we

can find its cycle pattern and its partition using the definition

of complementation in table 2.

4 .able 2

Complementation in P3

i
17 2
2 1 3
301
O GO 7, M M 0P R TN %™ 7

T SN o AN,

N B NI T AR T

R A R T O R R I R O O O T AR o e gbe pravaua At ahatab Sl b al vag YIRS YUV W N T i s,

28

This permutation has only one cycle of three elements, <=0
its cycle pattern is 3. Also, since there are only odd cycles,
all logic values in P3 must be in N as shown in figure 8. In
general, any odd numbered Post system will have cycle pattern n

with all elements in class N.

Figure 8. P3 With Cycle Pattern 3.

Example 3-4. Given complementation in Kleene's three-
valued logic (K3) as shown in table 3, we can determine its cycle
pattern and its partition but we are unable to assign specific

logic values to each partition class.

Table 3

Complementation in K3

[}

!
T | F
I I
FI T

R TN S A A e e A A A AR e T e

Rl A o=

PR "‘i

RS

29

There are two cycles in K3's complement permutation. (I}
is a cycle of one element and (T F) is a cycle of two elements,
so the cycle pattern of K3 is 2+1. Although we know K3's cycle
pattern and partition, we are unable to determine a unique
assignment of K3's elements to specific <¢lasses within the
partition. Until we attach further meaning to logic wvalues 1in
Designated Logic Systems, all possible assignments of elements in
even cycles to partition classes are isomorphic. Both possible

assignments of K3's elements are shown in figure 9.

A\
& >

Figure 9. Two Possible Partitions of K3.

3.3 Cycle-classes of Logic Elements.
A

Given a complement permutation with an even cycle (a: a:

are in the same class, as are elements az, a¢« ... azi1. We define
the term cycle-class to be the set of elements in both the same

cycle and the same <class. We can use the cycle-class

T o b A R K R P M 8 = SRR 55 4GP 0 o TP

specification of 1logic values to preserve the complemenrtary
nature of elements 1in even cycles without the necessity of
determining the specific «class of 1individual elements. This
allows us to circumvent the problem of discussing logic values in
terms of their isomorphic representations similar to those 1in
example 3-4.

Example 3-5. Given Moussavi's six-valued logic (M6),
detailed in appendix 1, with the complement permutation defined

by table 4, there are six cycle~-classes of the six elements since

each element is in its own cycle-class.

Table 4

¥
A
!
©
R

¥

Complementation in Mé

Example 3-6. Given the complement permutation in a Post
logic of four elements as defined in table &5, there are two

cycle-classes: (1,3} and {2,4}.

AR : U 2 LU ‘ - - -
IR OO ‘J"\‘;’\i MURJOCK AR BN X ‘a’,..;‘- RUN X l‘.‘.c’«‘b‘w (OO RN X l‘»'t'-'t'.‘l‘ 1k |'-.O v l'- (Al N O.o.""t‘l ‘Q. SF M AN W ’..! (UM AT N M iy U

AR ER AR KT A RS AN AR LN UN LY U PR UV VUV ! O NN RN R T T T I O R o o oY

31

Table 5

Complementation in P4

B oW D
[l - VSR N |

In general, all elements in an odd cycle are in the same
cycle-class while elements in even cycles form two complementary
cycle-classes. If a complement permutation has j odd cycles and k

even cycles, the logic system has j + 2k cycle-classes in all.

3.4 The FIND-CYCLES Program.

The LISP program FIND-CYCLES finds the odd and even cycles
in a 1logic using the complement function. The logic must have
been created using the CREATE-LOGIC program described in chapter
two, and the complement function must be defined by the symbol -~

If the complement function is a permutation, FIND-CYCLES
returns a ;list of the even and odd cycles. If the complement
function is not a permutation, a message to that effect is sent
to the user. The LISP code for FIND-CYCLES is in appendix 3.

Below are some examples using FIND-CYCLES on various

logics we defined using CREATE-LOGIC. In the first example we

A T M i Th N O A L N TR L T i T a L W 0 € L W W o W

D~

‘...
X

b
&,
Yy

&

DL AR TR aWe ¥R L3 e 187293 g¥a gl Zio gty aVaely 464" a0 nt at e P atE 2% A AR a R A Y 478 8V RVA 20 ath.a'% 2%A a2 »ti’

32

apply FIND-CYCLES to <Classical logic and the results are as
expected: no odd cycles and one even cycle.
> (find-cycles)

Enter logic name: > bool
; loading "b:BOOL.lsp"
(NIL ((T F)))

> odd

NIL

> even

({(T F))

When we apply FIND-CYCLES to an odd numbered Post system
we get opposite results: no even cycles and one odd cycle.
> (find-cycles)
Enter logic name: > Post3
; loading "b:POST3.1lsp"
{(((1 2 3)) NIL)
> odd
({1 2 3))
> even
NIL
When we apply FIND-CYCLES to a logic with multiple odd and
even cycles such as M6, neither the set of even cycles nor the

set of odd é¢ycles is NIL.

> (find-cycles)

Enter logic name: > sixval
; loading "b:SIXVAL.1lsp"
({((U) (K)) ((T F) (K1 KO)))
> odad

({(U) (K))

-

"’

o’

ALt Vel AR S Sah el D Bud Sob Tind Fob #o¢

¥
J
f

33
> even
((T F) (K1 KO))

When we apply FIND-CYCLES to a complement function that is
not a permutation, we receive an error message. The logic non-
perm has a complement function as shown in table 6. Since the
function 1is not a permutation, FIND-CYCLES returns an error

message.

Table 6

A Complement Function Which is Not a Permutation

o B = |
)

> {(find-cycles)

Enter logic name: > non-perm
; loading "b:NON-PERM.lsp"
not a permutation

NIL

> odd

NIL

> even

NIL

We will use the sets of odd and even cycles in the LISP

program FIND-ASSIGNMENT explained in chapter 4 to determine the

assignment of logic values to classes D and A. The elements 1in

ﬁ&kﬁﬁ&ﬁﬁ&ﬂﬁ&ﬂd&%ﬁ?&d&bﬂﬁbﬁwbﬁkﬁﬂkﬁﬁﬁidjg

NS ALY UL TR TG R RO WISE POK PO YU O S A WA U WU R T U NN AP AN LSRN AN

34

odd cycles are already known to be in class N.

3.5 Summary.

Given the complement permutation of a 1logic, we can
associate with it a specific cycle pattern. The cycle pattern of
the compiement function is sufficient to specify a partition of
the designated logic, but not always sufficient to determine a
unique assignment of logic values to partition classes. We know
elements of even cycles will be in either the set D or the set A,
while all elements of odd cycles will be in set N, so any logic
with only odd cycles will have all elements in N. Elements of
even cycles will have more than one possible assignment as we saw
in example 3-4. In a logic system with k even cycles there are 2k
isomorphic assignments of elements to classes D and A.

Because we cannot specify a unique assignment of logic
elements in even cycles we use cycle-classes of the logic
elements. xhe use of cycle-classes when referring to elements in
even cycles allows us to preserve the complementary nature of
elements 1in even cycles without regarding problems of wunique

identification posed by the isomorphic assignments possible using

only complementation as an assignment constraint.

- e A e S -

e K X

CEcy

oy g gl S

Ve

- -

A -
- -

LI

o

G
\J

C X R N O A, S I e

I AR A R R N LR R L R N R R RN A O I AN R R KT €. maltal vad “at ot tal 2l ¢,

35

The program FIND-CYCLES finds the odd and even cycles in a
complement permutation. We will use this information laver to
discover assignments of logic values to partition classes.

In the next chapter we will investigate an assignment
scheme based on the conjunction function together with methods
defined in this chapter and develop an algorithm for determining

the assignment of elements in Designated Logic Systems to the

partition classes D, N and A.

" e 2

ool X d

CHAPTER 4

FINDING A PARTITION ASSIGNMENT USING CONJUNCTION

In the previous chapter we discovered that complementation
did not suffice to assign all logic values to a unique partition
class in a Designated Logic System. 1In this chapter we will wuse
the complement permutation together with the conjunction function
to wuniquely determine the assignment of values in a designated

logic system to within equivalence.

4.1 Conjunction in Designated Logic Systens.

In classical logic, the conjunction of two elements is not
true if at least one argument is false. We would 1like to
generalize the definition of conjunction in Designated Logic
Systems. Given a designated 1logic system with conjunction
function &, if x & y is designated (i.e. an element of D) then
both x and y are designated (i.e. X, y are elements of Dj}.
Otherwise the conjunction function 1is unconstrained. Any
conjunction function meeting these constraints is a well-defined

conjunction function. If we are given a conjunction function

which does not meet these constraints we say it is an ill-defined

TSIV IR R BRI R R A R U R R U LR L U W W L P VAL U T LY R P Y O O R I T I IO T N T TN T

- W

37 A

conjunction function.

In a system with k even <c¢ycles in the complement

e -

permutation there are 2Fk possible assignments of elements to

-

classes of the partition since every even cycle-class may be

e et ey

either in D or in A. As a result of our definitions, any

)

L g

assignment of 1logic elements for which conjunction is well

defined 1is a possible assignment of the logic elements within a

e - -]

Designated Logic System.

In chapter three we were unable to determine a unique 5
assignment for Kleene's three-valued logic using only the cycle
pattern imposed by complementation. Using the definition of
conjunction in K# we can determine the only possible assignment
of logic values to classes of the partition.

Example 4-1. Given Kleene's three-valued logic with the

g

conjunction and complement functions defined in table 7, either T

- - v,

is designated and F antidesignated, or T is antidesignated and F

designated (see example 3-4). I, of course, is neutral.
4

-
-

i e T8 OO OO W W

AT V% a'0 st ey aPE A" Pl WM NG U R LR LN UL N R UL L U YT U T UM W WS

"
]
W1
|
9
38 v
(]
3

Table 7)
..Q
l‘g
Complementation and Conjunction in K3 &
X
.t
- l'l
i & T IF s

T { F T\ TIF

I I IIF N
FIT F!FFF %

3
$
0.¥

)
-
If we assign T to the designated class and F to the ?
't
1
antidesignated <class, the conjunction function shown in table 7 j$
e,
is well defined since a & b is designated only when a = b = T. If !w
we assume the alternate assignment (F designated and T &:
(]

AN

antidesignated), the conjunction function is not well defined
)
since T and F are not both designated yet T & F = F. Because T J
C‘t
'
designated and F antidesignated is the only assignment in K3 for a
W)
which conjunction is well defined, the only possible assignment ;
3
of K3's logic values can be seen in figure 10. %,
e
l‘ §
)
N
%
4 o
l‘v‘

Figure 10. The Partition of K3. Wy

SEATE LN\ A e T VRS AU R LA R A O A O M N T M AN M S K L WL N WO VOOV AN e LA W™

39

Example 4-2. Given Bochvar's three-valued logic (system
B3) with complementation and c¢onjunction as shown in table 8, we
see that either T is designated and F antidesignated, or F 1is

designated and T antidesignated. Again, I is neutral.

Table 8

Complementation and Conjunction in B3

13
T H AR
" H 33
H H KA
B oH M

oM

If we assume T is designated and F antidesignated, the
conjunction function defined in table 8 1is well defined.
Alternately, if F is designated and T antidesignated, conjunction
is not well defined (T & F = F yet T and F are not both
designated). The only possible assignment of B3's logic values in

a Designated Logic System, as shown in figure 11, is D = (T}, A =

(F} and N = {I}.

T e e

IR LY R I ' g by 3 g3 P Ral fa B Wl e 97 Bt fad”

40

Qe

Figure 11. The Partition of B3.

"Example 4-3. If we have Post

Logic

complementation and conjunction defined by table

possible assignments of elements to the
antidesignated classes. Either D = (1,3} and A
{2,4} and A = {1,3} (N is empty since there are
P4).
Table 9
Complementation and Conjunction in
. - & 1234
11 2 143332
21 3 21 3 442
31 4 31 3412
4 11 4 | 22 22
An examination of the conjunction table

RANN SRR NT B Bav ba- = ga* o

System P4 with
9, therea are two
designated and
= {2,4} or D =

no odd cycles in

shows that 3 & 4 =

KX Ko X

L of Rl LU P]
; Ay ?

PRIt RIS URT CATURTT AT W URTT R Y VAN A X O RO U Y “Ra " > o8 ' ‘A avA a1g okl g 2828, 4°

41

2. Since 3 and 4 are in complementary <c¢lasses, 2 must be
antidesignated. Also, since 2 and 4 must be in the same <c¢lass
("(72) = 4), 4 is also antidesignated and A = (2,4}). Since 1 & 2
= 3, and 2 is antidesignated, 3 must be antidesignated. This is a

contradiction and we are forced to conclude there are no

- e,

assignments of elements in P4 for which <conjunction 1is well

defined. e

We can generalize this conclusion and claim that there is f
no possible assignment of logic elements in a Post system with an %
even number of elements greater than two for which conjunction is
well defined within the Designated Logic System framework. First,

we know it is true of P4 by example 4-3. Assume we have an even

-

numbered Post system Pn where n > 6. Because of the nature of
complementation in Post systems (i.e. it is cyclic mod n), we

know that elements 1 and 3 are in the same class (either D or A)

e ™.,

-

but in a different class than elements 2 and 4. If 1 and 3 are
designated then 2 and 4 are antidesignated. Likewise, if 1 and 3
are antidesignated then 2 and 4 are designated. We also know that

l1 & 2 =3, sol and 3 must not be designated. Because 2 & 3 = 4 \

T @

we know 2 and 4 must not be designated, and the system does not

= =
e o -

have an assignment of logic values for which conjunction is well

N]]
RSN

~t1g-'-'1'1'u'v AR A Vad vap ¢] IR AR 0.9 8,0 120" ') @ 18 ¥’ . gg g™ J *olle¥ ..‘.'u-'. R Y XIS

42

defined.

There are some logic systems which have more than one
possible assignment of logic values preserving the definition of
conjunction in Designated Logic Systems. In this situation we are
unable to specify a unique assignment of the logic elements.

Example 4-4. Assume we have a designated 1logic system
whose conjunction and complement functions are defined by table

10. We will <call this system the Skeptic's three-valued logic

system or SL3. We know from the complement permutation that N
[I}. We also know that either T 1is designated and F

antidesignated, or F is designated and T antidesignated.

Table 10

Complementation and Conjunction in SL3

M H3
-

m
mH R
H oS3
H o H -
mo- Hm

>

We can not determine a unique assignment of SL3's 1logic
values since both possible assignments preserve the definition
of conjunction in Designated Logic Systems. If T is designated, a

& b =T if and only if a = b = T. If F is designated, a & b = F

Al RO RRE AL ot VAt S R AV v VR 6 S GVE L A Vo GO

P T AL G

4T 2R

T R T L T N R T R N R R T T R R O O O e Y O O R YO R Y L Y Y LV oY TV AV U T TN U UW UV

B

43

e - -,

3

o

if and only if a = b = F. Using conjunction as the determining :
i factor both assignments are possible within the framework of

Designated Logic Systems. We will examine these types of systems
K (i.e. systems with multiple possible assignments) 1in greater
K detail in section 4.2.

Although we can now uniquely determine the assignment of
many more Designated Logic Systems, there are some systems for
which we need additional information. Logic systems with ill-
) defined conjunction {(conjunction is not well defined for any
§ assignment of 1logic wvalues to partition classes) and 1logic

systems with multiple possible assignments are two such examples.

4.2 Equivalent Partitions. \

‘ As we saw in example 4-4, some logic systems have more

than one possible assignment yielding well defined conjunction 3

functions. These logic systems have equivalent partitions.
Given a <c¢ycle whose logic values we can not uniquely

assign to partition classes, we know the cycle is even since all

3' odd cycles are in N. As we saw in chapter two, every even cycle
* 3 I3 . v
K is divided into two complementary cycle-classes. If we can map !

elements of an even cycle to elements in its complementary cycle-

m e el
3 3

o W e

N L T M A o P, P
M N 0.8 N P "ol AN .i. 'M¢M¥JPJ.MI.' .;'E:.‘I.Ah

RO WU M XNIO) .A..l'-‘n..‘l Y a".) l’-t'- \ ..| I...l... O

RREVE YA BTN IO PO FUR R JETOPCIMU WAUNL ¥ W WU WY MG AR A W LR 2 RO O T W O O R O K N O O o O v R IV N NIV UN Y U (

44

class such that the conjunction function is identical, the twce
possible partitions are equivalent.
; Assume we have a logic system whose complement function

has an even cycle c¢1.5. If we can find a function f: § -> S which

maps elements of ¢i1.) to elements in its complementary cycle-
class while all other elements in the 1logic are mapped to
themselves such that £(x) & f£(y) = £f(x & y) for all x and y 1in

the logic, then the two partitions are equivalent.

-~

Example 4-5. Given the SL3 logic defined in example 4-4

;
ii with the mapping £(T) = F, £(F) = T and £(I) = I, the assignment

) D = {T}, A = {F}, N = [{Il is equivalent to the assignment D =

; {F}, A = (T}, N = {I}] since the two conjunction functions are the !
% H
‘X ‘
" same (see table 11). }
K 1
W Table 11]
» "
§ Equivalent Conjunction Functions in SL3 N
N

3 & | TIF & { FIT]
¢ *riTII F! FITI

iy I {1171 I III)
- F I IITF T | IIT *
v ;
’ |
p

It 1is possible to have a logic where some even cycles are

specifically assigned while other even cycles are not.

AT -

. .
PRI SR

L)
¥

,'.‘,.\,(w,rr .r‘-r -r.\-r-r-. -r'. . LY ,,\. S g\‘\:

S A T R SR e T e T4 T T AT

378 U TR M at wth atdly et i Y at8 ath otk w¥B 2Vl at W aa oty a2t a?h atd abs a2 a¥a” WL MU N MU NN ULV Y - e . g

45

Lukasiewicz' four-valued logic (L4) is such a systemn.

Example 4-6. Logic system L4 has conjunction and
complementation as defined in table 12. Using the complement
permutation we know TT and FF are in complementary classes as are
FT and TF. Because FF & TT = FF, we know FF is antidesignated and
TT is designated. Conjunction is well defined both when FT is
designated and TF antidesignated, and when TF is designated and
FT antidesignated. Therefore there are two possible assignments

of the elements in L4 to partition classes.

Table 12

Complementation and Conjunction in L4

T & | TT TF FT FF
TT | FF TT { TT TF FT FF
TF | FT TF { TF TF FF FF
FT | TF FT | FT FF FT FF
FF | TT FF | FF FF FF FF

4

Let £ be a mapping such that £(TT) = TT, f(FF)

FF, £(TF)
= FT and £(FT) = TF. The two conjunction functions are equal as

shown in table 13. Therefore, the two possible assignments shown

in figure 12 are equivalent.

WIC K

-~

46

Table 13

Equivalent Conjunccion Functions in L4

& | TT TF FT FF & | TT FT TF FF
TT : TT TF FT FF TT | TT FT TF FF
TF | TF TF FF FF FT | FT FT FF FF
FT | FT FF FT FF TF | TF FF TF FF
FF | FF FF FF FF FF | FF FF FF FF

Figure 12. Equivalent Assignmencts in L4.

Example 4-7. There are no equivalent assignrents in
Kleene's three-valued logic. The only even cycle is (T F), so the
only possible mapping is £(T) = F, £(I) =1 and f(F) = T. As we

EY

can see from table 14, the two conjunction functions are net

equal, so the two assignments are not equivalent.

O AT Ll M ¥ = 2 A O AT NSNS T TN

N I N R R O LR N U IR R LA U TS T A R RS R M R WX AN NN PL WU N WL WO w U O WU W O]

4
"y
b

Ly

»
- - A

-
e T

4
K1

NIRRT R R RV I A R LA R N T U S L AU R O T I AT T T viITeT Y > Y v 4

47

Table 14

Non-Equivalent Conjunction Functions in K3

oM 3R
T oH 1
T H H(H
B B W L
H H TR
3 H m(m
HoH -
3933

Example 4-8. There are four possible mappings of elements
to their complementary cycle-class in a Post system of four
elements with conjunction and complementation as defined in

example 4-3. The four mappings are listed in table 15.

Table 15

Four Mappings of Complementary Cycle-Classes in P4

x | fi(x) | f2(x) | f3(x) | £4(x)
1 2 H 4 ! 2 i 4
2 | 1 ' 3 i 3 H 1
3 | 4 i 2 ! 4 | 2
4 | 3 i 1] 1 ! 3

A
Table 16 shows the resulting conjunction functions; none

are equal to conjunction in P4. Hence, there are no equivalent

assignments in P4.

A’

-

-

> O L

L L

NP RTANURUPUCP U I R AN LU R AR R, R

Table 16

Non-Equivalent Functions in P4

(a)
Conjunction

Using equivalent conjunction functions we can classify

some logic systems whose values we couldn't uniquely assign. Aall
Designated Logic Systems with well defined conjunction functions
have a unique assignment up to equivalence.

Logicg with no assignment preserving the definition of
conjunction in Designated Logic Systems continue to elude us. 1In
the next section we will learn more about these systems in an
attempt to find a method of imposing an assignment on their logic

values.

ot Iy, i T, e A N e D i L S S R R g N e T

49

4.3 Identity Elements and the Supremum.

An identity element in a mathematical system with a binary
operator * is defined as an element s such that s * x = X * 8 = x
for all elements x within the system. In a designated logic
system we will call element s an identity element if s & X = x &
s = x' for all x in the logic where x' is in the same cycle-class
as x. If s is unique we will call s the supremum of the logic
system.

Every identity element must be in the same <c¢ycle class.
Assume we have a logic system with two identity elements: sl and
s2. Also assume sl and s2 are not in the same cycle-class. By the
definition of identity elements sl & X = X & sl = x' where x and
x' are in the same cycle-class therefore sl & s2 = s2 & sl1 = s2'
where s2 and s2' are in the same cycle-class. By the definition
of identity elements s2 & X = X & s2 = X' where x and X' are 1in
the same cycle-class. Therefore s2 & sl = sl & s2 = sl' where sl
and sl' areﬂin the same cycle-class. We must conclude that sl' =
s2' and sl and s2 are in the same cycle-class. This contradicts

our assumption that sl and s2 were in different cycle-classes, so

all identity elements must be in the same cycle-class.

Example 4-9. P4 has two cycle-classes, {1,3} and (2,41}.

iy
(RN
v
Lo
"

From table 17 we see 23 & = %' for all ~ ain S. Thar=

1
J
o]
'_4
5
1]
._J
W
3
m
3
t
e
o

element 3 is an identity element. Als», 3 is th:

P4 with that property, so 3 is also the supremum,.

Table 17

The Supremum in P4

1
3
3
3
2

(O =3 IS OVIR [8)
[NST g - SER VY IR [W8]

4
2
2
2
P)

|
1
1
'
[}
1
L]
i
]
1

In any even numbered Post system Pn, the supremur will fte
n-1. By the definition of conjunction in Post systems, we know
that x & (n-1) = "(min("x, (n-1))) = “(min((x+1) mod n,n). Since
all elements of Pn must be iess than or equal to n, min({x+1) nod
n.n) = (x+1) mod n = "x. Therefore, x & (n-1) = “"x which is in
the same cycle-c¢lass as X, o0 n-1 is the supremum in any even
Post system.?

If a logic system has a conjunction function preserving
the definition of conijunction in Designated Logic Systems, and at

ileast one even cycle, all identity elements (including the

supremum if it exists) will be designated. Because we assume the

T LM SN AT PN

LAY

VANS

|§
b
)

Lt P PVATELE WL WA WAT AL WL W T W W) A oWa® w57 Uat gt it WaT 07 ba” B2t de a4t §at Rt $at Bab §.¢ 90 g0 g8° S 0ad Fa0 Bl .4 0.5 0at $.9 §28 Do

51

XA

logic system has an even cycle we know that set D is not enmpty

and set A is not empty. Assume s is an identity element but s is

not designated. Also assume element X is designated (we know x

3

exists because D is not empty). Because X & s = X' where x and g
X' are 1in the same cycle-class, the result x & s must be é
designated. This contradicts the definition of conjunction: the %
\

result can be designated only if all of its arguments are %
()

designated. Therefore s must be designated. i
||

If an identity element is in a cycle of length two, it is s

3

the strict identity element we call the supremum. We know that é
all identity elements must be in the same cycle~class. §
Y

Example 4-10. In L4 TT & x = x & TT = x for all x in the :‘

logic system. TT 1is not only an identity element, it is the f
U

supremum since no other element has that property (see table 18). é
:

Table 18)

The Supremum in L4 !

Although we can identify the supremum element in a
Designated Logic System if the supremum exists, we cannot always
determine its class. If conjunction is well defined and there is
at least one even cycle in the complement function, the supremum
will be designated. If all logic values are in N, any identicty
elements will be in N. In a system whose conjunction function is
not well defined, the supremum could be in any class (e.g. the
even Post systems of more than two elements). We must conclude
that identifying the supremum will not enable us to specify an

assignment of the logic's elements.

4.4 Zero Elements and the Infimum.

In mathematical systems with a binary operation *, a zero
element 2z has the property 2 * x = x * z = z for all x 1in the
system. We will define a zero element in Designated Logic Systens
as an element z such that x & z = z & x = z' for all x in the
logic where z and z' are in the same cycle-class. If the =zero
element is' unique, we will call it the infimum of the logic
systemn.

All zero elements must be in the same cycle-class. Assume
we have two zero elements z1l and z2 not in the same cycle-class.

By our definition of a zero element z1 & Xx = x & z1 = z1' where

1

ot R R AR WU W U N A T N N RN AR e T I eI vy ‘Ul Eall OB laf wal Wal ol dafl tul Ga8 ¥

53

2l and z1' are in the same cycle-class. Therefore z1 & z2 = 22 &
2zl = z1'. By the same definition of a zero element z2 & X = X &
z2 = z2' where 22 and z2' are in the same cycle-class. Therefore
22 & 21 = 2zl & z2 = z2'., Because zl' = z2' 2z1 and z2 must be in

the same cycle-class which contradicts our assumption so all zero
elements must be in the same cycle-class.

Example 4-11. 1In P4 with conjunction and complementation
as defined in example 4-3, 4 is a zZero element. As shown in table
19, 4 & x = 2 for all x in P4, and 2 and 4 are in the same cycle-
class. Since 4 is the only element with this property, it is also

the infimum.

Table 19

The Infimum in P4

&+ 12 3[4
. 113332
213442

\ 313412

[T 2272

We can generalize the above result and say n 1is the
infimum for any Post system of n elements where n is even. 1In a

Post system, n & x = “(min{("n,"x)) = " (min(l, (x+1) med n}}) = "1 =

R T T N I SR KK K TS K TR T =, Ko MA M MATIC o X0 {70 L5 TR o ol U O A PR T 47

<L el

2 ;'11 A’l:

a4 doa 0t A g B 0 a0 I R R Tl B S 6 AR 0 aig n'd g'h av4 a’ Tal oW N 2?8 2% 2% "a%) a'h" " > avgal) iakatatatota Jle” -vv‘.r-‘

54

2. Since n and 2 are in the same cycle-class (2 ""n), element n

is the infimum. :

When a zero element is in a cycle of length two, it is a
strict zero element where z & X = x & 2z = z for all x 1in he
logic system. If z is in a cycle of length two, z is in a cycle-
class <containing itself alone. Therefore if z & x = z' where 2z
and z' are in the same cycle-class, z must be equal to z' and z &
X = Z.

Example 4-12. In L4 element FF is in a cycle of 1length

e W e~

two. Also, FF & x = x & FF = FF for all x in the logic (see table

20) so FF is a strict zero element.

Table 20

The Infimum in L4

& | TT TF FT[FF|

TT | TT TF FT|FF
TF | TF TF FF|FF :
\ FT | FT FF FT|FF 1
4

Although we can identify the infimum if such an element \
exists, we cannot determine its class other than to note it can

not be designated when conjunction is well defined. Assume z is

"A!"‘ *““".*) ﬁ“-‘ L “x‘ ‘a' O .&' ‘l\"t‘t.j“\ l’-t.- ..s.”‘. ~'l‘-'l.-.l’-.l‘-l'a'l'-‘l % t‘.‘ .c .- Y u—wr A;W.M::QH‘;

LR)

T T O R s

designated and some element X is not designated (either in N or
A). By our definition of a zero element, 2z & X = z' must be
designated. This contradicts our definition of defined
conjunction, so z must not be in D.”

When we have a system with well defined conjunction, we

can determine the class of the infimum. If it is in an even

cycle, the infimum is antidesignated since it can not be

designated. If it is in an odd cycle, the infimum is neutral
since all elements of odd cycles are in N. If we have a system
with ill-defined conjunction, identifying the infimum does not
help us find an assignment for the logic elements since z could

be in any of the three partition classes.

4.5 An Algorithm for Partitioning All Designated Logic Systems.

Thus far we are able to determine a unique assignment of a
system's 1logic values up to equivalence when the conjunction
function is*well defined. There are, however, some logic systems
we were unable to assign. Logic systems with no possible
assignment of logic values to partition classes for which
conjunction is well defined cannot be partitioned uéing

constraints we have discussed.

4
R R O A N RE AT, O R S T A A R T T A o A O VA TRV WA v

PSR IRISA, V RR TP SPLT T TRIN TR I YRR Fem T Pt M I WO NG W R T O T T T e T T T TS T

56

There are several possible solutions to this problem. We
can ignore logics having no possible assignments, eliminating
them from our discussion. We could define the class in which the
supremum resides as designated, or we could specify different
classes for logics with ill-defined conjunction functions.

The first solution, eliminating logics with no possible
assignments from our discussion, is very tempting. Clearly, if
the system does not have conjunction within our constraints, that
system will have 1little in common with <c¢lassical 1logic. The
principle »f contradiction would not hold in these logics since
there could be a value in the logic, <call it X, such that " (X &
"X) is antidesignated. I would use this pruning method only as a
last resort since we do not want to discount the Post systems
from our discussion.

The second solution requires that there be a supremum in
the 1logic system, something we can't guarantee. This solution
would allow us to admit the Post systems since they do have a
supremum, ;owever, we would no longer have any 'principle of
conjunction' (if a & b is designated then both a is designated
and b is designated) for Designated Logic Systems (see example 4-

3). Again, we would consider this solution only if there were no

-
A A K

> W

L

N A T N A A A At A, L I W Y N O A Y

DO SO AR FOTION TR TRt SR O PO O MO O T M 0 W W ¥ U0 L X LR Y W LN LW LW D R e R R S R L ¥ Y e Y Y T (VL W (" ¥

57

other viable alternatives.

In the third solution we would redefine the <c¢lasses for
systems with ill-defined conjunction. For example, rather than
classes D, N and A we could define the supremum c¢lass, the

infimum class and the neutral class. The logic systems with well

s b

defined conjunction would be a subset of these logics where the
supremum class is designated, etc. This classification would put

the Post systems in a 'separate but equal' category from the

L s ie e e s i

i designated logic systems. This is better than eliminating them
because it allows us to admit the fundamental difference between
Post systems and other logics more closely related to classical

logic. This solution seems to solve our difficulties with the

-

Post systems. In truth, however, it 1is merely a covert
X implementation of the first solution, i.e. to eliminate
[\
g
K troublesome logics from our discussion.
i Finally, we could elect to put ail logic values

contributin? to ill-defined conjunction into the neutral class,
i along with other elements in its cycle. For example, in a Post
\ system of more than two values, all elements would be in N. This
solution will allow any possible system to be classified as a

Designated Logic System .ince, in the wors case, conjunction is

- A v e = ke

-3
L
! 1
(9

G A 1 N G P T N o M A g0, e T, O BN D P POV P N N I o U MR T A AT b AT DT AT TN Ve

L et i A gdocal AW ale 87 AVAATR RV R .0 i g0 heh AN WA W R/ W ¥

well defined when all logic values are in the neutral class. We
lose the ability of determining the logic's partition using the
cycles of the complement function, however, vyet this seems a
lesser evil than arbitrary pruning.

We can now develop an algorithm for partitioning a
Designated Logic System. First, use the cycles of the complement
function to determine the set of possible partitions. If all the
cycles are odd, the only partition possible is one in which all

elements are in the neutral class. Given Kk even cycles there are

2k possible assignments of the logic values, assuming conjunction

is well defined for some assignment.

Next, using the conjunction function, determine all
possible assignments preserving the definition of conjunction in
designated logic systems. If there is more than one assignment
meeting this constraint, they are equivalent. If there 1is no
possible assignment for which conjunction is well defined, place
the even ¢ycles causing ill-defined behavior in the neutral
class. In the worst case all values will be placed in the neutral
class.

Example 4-13. Assume we have a logic system with

conjunction and complementation as defined in table 21. We will

\ - - oy . , E - - . -] .
‘l".'i‘u‘l‘; I‘-.’l’- “I,‘.k_‘.\ ’u‘i’-.!.l |‘~.Q.t ". N A% "..- LA I‘n W, - A Lo N b “l Y. '\ ‘ LR e .\.' ‘ ""K" ** “‘ N

v §¥e On il D

y cad ol ak uB Vay chlatal. Cab fab 2 f v G a0 4ad G Y2t et col tal Cod o) val Sa0 Vol tad

call this logic system ILLS6.

Table 21
Complementation and Conjunction in ILL6

& T Tl T2 F1 F2
T T Tl T2 F1 F2
T1 Tl Tl T2 F1 F2
T2 T2 Tl T2 T2 F2
F1 F1 F1 T2 F1 F2
F2 F2 F2 F2 F2 F2
F F F F F F

The conjunction function shows two even cycles, one of
length two and one of length four. Elements T and F can be easily
partitioned into T in the designated set and F in the

antidesignated set since T & F = F but a & b = T if and only if a

Elements Tl, T2, Fl and F2 can be classified into either

Tl and T2 designated with Fl1 and F2 antidesignated, or Tl and T2

antidesignated with Fl1 and F2 designated. Since F1 & Tl = Fl1, Fl

and F2 must be antidesignated with Tl and T2 designated. We note,
however, that Fl & T2 = T2, so Tl and T2 can't be designated.
Since there is no assignment of elements T1l, T2, F1l and F2 into

classes D and A for which we have well defined conjunction, we

VU U USROS U U UTURGT ST 0 AT Y RO

Y
LY
N
° 0
\J
60 !
'
)
[O,¢
must reassign 1its even cycles. If we put cycle (T F) in the)
(]
neutral c¢lass, there will be no assignment of 1logic wvalues é
4
resulting in well defined conjunction. If we place cycle (T1 F2 o
I
T2 F1) in N, however, we have well defined conjunction when T is)
f.
designated and F antidesignated. The resulting assignment 1is ;i
§
shown in figure 13.

L)
"
3
§
: g
f w b
. :
,)
Figure 13. The Partition of ILLS6. »
“3
4
bt
4
4.6 The FIND-ASSIGN Program. 3
The LISP program FIND-ASSIGN will determine the partition ;
and assignment of any 1logic system when given a complement é
w i

, permutation and conjunction function. The source code for FIND-
2 3
! ASSIGN may be found in appendix 4. ’
R |t
7. The following examples of FIND-ASSIGN execution show how %)
. L . N
the program can determine the partition and assignment of h
L]
. . . M
Kleene's logic (as we saw in example 4-1) and Bochvar's logic (as %
'i
, \
- we saw in example 4-2). 3
]

RO O O O O O Oy D N M I NN A O MM M e 0 MM B K MO I M 0 0, M A A A S A Ao

N R R TN AR R T A KR AT AR A A A L L VS T VN N TS U N Y Y N YUY LI Y U 8 8% "0 0%0 $%0.8'2.0°8 848 800 8 0% 8 0y

61

X

> (find-assign)

Enter logic name: > kleene ’
; loading "b:KLEENE.lsp"” v

Designated values: (T)

Neutral values: (I)

Antidesignated values: (F) \
NIL t
> o
> (find-assign)

Enter logic name: > bochvar R
; loading "b:BOCHVAR.l1lsp" ?

Designated values: (T)
Neutral values: (I)
Antidesignated values: (F)
NIL %
>

When there are equivalent partitions, FIND-ASSIGN will
choose one semi-arbitrarily. If there are elements 'true,' o
‘false, ' 'T' or 'F' in the logic, FIND-ASSIGN will attempt to

select +the assignment placing 'true' or 'T' in the designated

class and 'false' of 'f' in the antidesignated class (there is no

K

strict mathematical necessity for this assignment, merely English
language co;ventions for the name of logic wvalues). FIND-ASSIGN ?
chooses the assignment of logic values in SL3 (see example 4-4)
such that T is designated and F antidesignated.

> (find-assign)

Enter logic name: > sl3

h,
‘w
“
2

e T T T R A T T T S B R e A R oA ¢

.....

REMASACACAGDONGOOHOD0BCNAON A “"v' ..'V

R I TN T N T R R N T T U T T S R T O T R I R T T "o¥R ata™ 08 Rat da® s Sab

62

; loading "b:SL3.1lsp"
Designated values: (T)
Neutral values: (I)
Antidesignated values: (F)
NIL
>

When there is no possible assignment resulting in well
defined conjunction, FIND-ASSIGN will selectively place even
cycles 1in the neutral class until an assignment is found. FIND-
ASSIGN will place the fewest even cycles in N as possible. In the
following example (see example 4-13), FIND-ASSIGN places cycle
(T1 F2 T2 F1) in the neutral class, but not cycle (T F}.

> (find-assign)

Enter logic name: > no-assig
; loading "b:NO-ASSIG.lsp"

Designated values: (T)
Neutral values: (T1 F1 T2 F2)
Antidesignated values: (F)

As a last resort, FIND-ASSIGN will place all even cycles
in the neutral class. In example 4-3 we saw the Post system of

4

four elements did not have an assignment of its logic values for
which conjunction is well defined. FIND-ASSIGN will places all of
P4's elements in the neutral class.

> (find-assign)

Enter logic name: > pd

OO A N N W T e e Y T e e e T e e N T Lt e e e e
QT LT G0 0 VT T AT I T A L A A T R RO P I S T AU S PR N

-

-

)
]
]
:
X

L

e YT U CINTL AD L BT AZUAL KU AN RARA KXY X Gl a0 a9 e 0V RV A0 5. 0¥ gt a0 e th-a R atiia\d atavats votavadne Dot Ga¥ (a0 @5 0.8 aub g8 *

63

; loading "b:P4.1lsp”
Designated values: NIL

Neutral values: (3 2 1 4)
Antidesignated values: NIL

4.7 Summary. (

In this chapter we have developed a system to find an
assignment of logic values to partition classes we defined 1in ‘
chapter two: designated, antidesignated and neutral. This
assignment is wunique for each logic system up to equivalence
iy within the framework of Designated Logic Systems. The LISP E
3 program FIND-ASSIGN will find the assignment of any system given
complementation and conjunction.

In the next chapter we will use what we have discovered
about these systems to build a hierarchy of mathematical systems
characterizing different properties found in Designated Logic

Systems.

e N W . G T YT W W w .
O AN S e N A T T A N N -\.A'.h.)'\i\'_'. N

TR TR AL TR N TR TR LT T T8 AL " O SR RN RO pbudps hat vty . P N gt a R ath ATE oVE u'S ath avi

gl oy

£ a

CHAPTER 5 !

-

-

A HIERARCHY OF DESIGNATED LOGIC SYSTEMS

-
-4.

Although we can now classify designated logic systems

based on their partitions and class assignments, we can classify Ky

-
oyl

them further based on shared mathematical properties. In this

St

chapter we will explore those shared properties and develop a

d
hierarchy of mathematical systems to classify the designated 2
A

logic systems. Using these <classifications we can find é
Y,

similarities between the Designated Logic Systems and c¢lassical ?
logic. "
3

5.1 Designated Algebras. "
An algebra is a set of elements S together with a number ﬁ

X

of operations defined on that set. We call [S, ,&] a designated i
algebra if S 1is a set of logic elements, ~ 1is a complement i
permutation‘ as defined in chapter three and & is a well defined g
conjunction function as defined in chapter four. i
We saw from the conclusions in chapter four that every ;f
Designated Logic System is also a designated algebra since every 'i

set of elements has at least one assignment where conjunction is

64

'S

:

T T AT T XN T i P T O Mt T PR TV N T S R Tk S B M Y

N I R O T e o e oy, a3 !B 000 0¥ 0"

65

well defined. Using this property we can show the Principle of
Contradiction is a tautology in any Designated Logic System.
Assume there is some value x in a designated logic system
such that the principle of contradiction does not hold. In other
words, there is some x such that "(x & "x) is antidesignated.
This means there is some x such that x & "x is designated. By the
definition of conjunction in Designated Logic Systems we know
there 1is no such x, so the principle of contradiction is a

tautology in any Designated Logic System.

5.2 Designated Monoids.

A monoid is a set S together with an associative function
and an identity element s such that s & x = x & s = x for all x
in the set S. We call [S,”,&] a designated monoid if it is a
designated algebra, contains at least one identity element as
defined in chapter three, and & is associative. Any designated
logic without an identity would not be a designated monoid. Nor
wouldﬁ%ﬁy s;stem with non-associative conjunction.
vaample 5-1. Assume we have a logic system whose
conjunction and complement functions are defined by table 22. We
will call this logic cyc4 and note that cycd has cycle-classes {1

31 and {2 4}. Cyc4 is a designated monoid with identities 1 and 3

g 0 X MO MM

e p e o]

-

-

O e

A M KT

-
‘. -
% S

L b S

2y 5% B

O OO O OO O O O O O T Y N O O O D o o o Lo D Ot e i O Do O S Tt i)

cay

RSO OOGSOOINE OO VMMM MM MM WO,

ALY NN A L RIT T U AR LR OCR N R MA R LT R PN PV O R O ATy BN R 0 h 6 B A

66

(recall the definition of identities in a designated monoid: the
identity element need only map elements into the same cycle-

class).

Table 22

Complementation and Conjunction in Cycd

- & | 1 2 3 4
1412 1112314
2 13 212341
31 4 313412
4 11 4 | 4123

Example 5-2. A Post system of four elements is not a
designated monoid. As shown in example 4-9, P4 has the identity
element 3. However, since conjunction is not associative in Post

systems of more than two elements, P4 is not a designated monoid.

5.3 Ordered Designated Systems.

Let < be an order on S such that if x & y = w then w ¢ x
)
and w < ¥. This order can be represented as directed graph. If x
< y then there is a directed path from x to ¥y and x & ¥ = X.

Example 5-3. Let [$S, ,&] be a designated monoid with the

conjunction function described by table 23.

,,,,,,,

K JC X 8 4

L

BN o A

LI I S I

v, N

T T W

¢

Ao -

SN

-y N N -

DAFTCATNR LW AP LT P AT LAY T PP T TUN TN POAT SN TN U TO PO U ROU AN X RN KX W RN R WA A WM WUV WU WURU N WU

Table 23

An Ordered Conjunction Function

N X £ 40|
N X T 4 0
N X % XKKK
N XN X<
NNENZE L E
N % N X X XX
N N N N N N[N

This designated monoid may be represented by the directed graph
in figure 14. For example, since y & w = w there is a directed

path from y to w and w € y.

Y v

A N
W

N/

Figure 14. A Graph of Table 23.
4
Given a designated monoid represented as a graph, two
elements x and y are comparable (either x (¢ y or y < x} if and
only if there 1is a directed path from X to y or there is a
directed path from y to x. Two elements are incomparable if there

is no directed path from x to y and no directed path from y to x.

RANA I LTL P - SR Y P AP RN N B T P R SRR S, [,
S O 8 o O e 3O O O D T ot e e e e R e e e e i T e v 7 A 2 o i

e Ry =

&

- -y ey S

ALK Ay

(]

Ya I LT L a g te” 23" a6 st 38" et WL e M N WU W U U T OIS a0 a0 ¢a% an? (8 ga¥ Ca? et 20 as dat ¥ : SR 4B Bat f'

68

S S e 7 R K

If, for any two comparable values x and y, x < y implies x

~—

-
-

& v = x, then & is a greatest lower bound function and < defines

a partial order on the set of logic values. If < defines a

partial order of the logic elements in a designated monoid, we

say [S,”,&] is an ordered designated systenm. 3
Example 5-4. Let S be a set of six elements represented by ;
\
¢
the integers zero through five. Also, let [S,”,&] be a designated $
Y
monoid with the conjunction function defined in table 24. .
%
J
o
(N
Table 24 ¢
Conjunction For Example 5-3 é
W
»
& 1 012345 0
0! 012345)
11114445 ;
21 242445 v,
31 344445 .
4 | 4 44445 u
51 555555 Y
)
ot
4
Then <« defines a partial order on the set S and [S, ,&] 1is an N
ordered designated system represented by the graph in figure 15.
]
!

, - . o L AR AR A U e e . m
T B N T, T e V0 e T A A W T, T o T U S G (AR R T

TR I, LT SR T W UL LU R (U AN A AR K NA N RN LW DY UL U LRURTTONRON ' 0" e a4 gt e atuiin v ot S At

69

AN
1 2 3
\)}/

I
§

Figure 15. A Graph of Table 24.

We can define another function called least upper bound
(lub) as follows. 1If glb(w,x) = y then lub(w,y) = w and lub(x,y)
= X. In other words, given an ordered designated system
represented as a directed graph, if there is a directed path from
X to y then lub(x,y) = x.

A partially ordered set (poset) is called a lattice if a
unique glb and lub exist for every possible pair of elements of
S. A Designated Logic System can be represented as a lattice if
it 1is an ordered designated system and the lub function defined
disjunction‘in the Designated Logic System.

Example 5-5. Given system M6 with & and + defined by table
25, s8system M6 can be represented as a lattice as shown in figure

16.

Z

(Rt Pt

-8

-

-

.-snﬁ-ﬁt

PR

XX S

Py e ar w

oy o

1

L]

‘. Y . . R g - -y n e s vy -y Mg - . N N .
v ‘Q'*'x"f;'i,n’if;".o L) n"a‘l;‘tl’\l”." L X X - I . “‘..’ N A \k .("'\"‘A' ‘ l"' ’ - (Y { ”f \’"." " A '.7" .\.! AN '.D‘ |. o

70

Table 25

Conjunction and Disjunction in M6

& { T F UKl KO K + { T F UKl RO K
T + T F UKl KO K TV T T T T T T
F {| F F F F F F F! T F UKl KO K
U { U F U URKOKO ut! T U UK1U K1
Kl | K1 F U K1 KO K Kl { T K1 K1 K1 K1 K1
KO | KO F KO KO KO KO KOy T KO UKl KO K
K I K FKO KKO K K1 T KK1EKI K K
T
'
K1
/ \
U K
\ /
KO
i
F

Figure 16. M6 Represented as a Lattice.

Example 5-6. Given conjunction and disjunction functions

v:?{@

var;s B3, the logic wvalues can not be represented as a

As can be seen in table 26, there are two possible
orderings. T-F-I is the order when glb defines conjunction and I-

T-F is the order when lub defines disjunction.

L I

o g 0T,

~ "l

B R R A R At e AR R A AR AT AR a8 aUh MA avh a A Rl R aVA aVS atd ati A’ ot h kA ld Ve le n bl BBt e tat alE i Y UA" th”. B et ot e’ 8¢ Sat Bt G4 Gat
Iad ¢, VO RO LT Y ; » OO ! " - WUV R

5.4 The CLASSIFY

n »Nm A a o WOl A

71

Table 26

Conjunction and Disjunction in B3

M H AR
o= 3
HoH A
T - m ™
moH [+
HH3(R
H H HH
- 3T

Program.

The LISP
Designated Logic

in this chapter.

as an ordered designated system represented as a lattice. If this
is possible, CLASSIFY will print the order from the 'least true'

to the 'most true' elements. If the logic can't be classes as a

lattice, CLASSI

elements. Failing this, CLASSIFY checks for identity elements and
associative conjunction. If the logic passes these tests it is a
designated monoid. If all these attempts fail, CLASSIFY defines

the logic as a designated algebra.

> (classify)

Enter logic name

; loading "b:SIXVAL.lsp"

Designated values: (T K1)

Neutral values:

S O SS W AERE LR L P IhIN
ARSI AS GO KL N s UM > /O e e N " e puM o

program CLASSIFY finds the classification of a
System within the mathematical hierarchy defined

First, CLASSIFY attempts to classify the logic

FY attempts to find a partial order of the logic

: > sixval

(U K)

AT SRR RS I T O N L T I A AT RS R AT R TR Lt S L L VLN
» W (% Wy #4000 1V By 8% P 0y 0 1% 19 0% M H N M S P W 1. N %) -

RN

EEN R WL R &

A U W R P R R PR R AN VAN LY PN L Yy U Ry RSP

72

Antidesignated values: (F KO)

Elements form a lattice.

(F) <= (KO) <= (U K) <= (K1) <= (T)
NIL

>

> (classify)

Enter logic name: > bochvar
; loading "b:BOCHVAR.lsp"

Designated values: (T)
Neutral values: (I)
Antidesignated values: (F)

Elements form a poset.
(I) <= (F) <= (T)

NIL

>

> (classify)

Enter logic name: > cycd
; loading "b:CYC4.1lsp"

Designated values: NIL
Neutral values: (3 2 1 4)
Antidesignated values: NIL

Logic is a designated monoid with identities:

NIL
>
> (classify)
A
Enter logic name: > p4
; loading "b:P4.1lsp"

Designated values: NIL
Neutral values: (3 2 1 4)
Antidesignated values: NIL

Logic is a designated algebra.
NIL

I IO ORI 4. \I’"b " "v('-‘u"' r 5 '~ q;‘v’." ¥ R '-1_'-." "0 Tn,

MG PR o N
Al B ad fa) - (3 b

g et valin“dvs $%" 78 8",

&

(3 1)

N X

73

5.5 Summary.

The Designated Logic Systems can be placed in an hierarchy
of mathematical systems with ever increasing constraints. Every

Designated Logic System is also a designated algebra, but not all

are designated monoids (e.g. systems with no supremum and systems
with non-associative conjunction). Not all designated monoids

define a partial order and not all partial orders can be
represented as a lattice. Any system whose conjunction function
does not impose the same order as its disjunction function can
not be represented as a lattice. Figure 17 shows the hierarchy
and where some of the systems studied in this chapter belong.
Classical 1logic can be represented as a lattice where F <
T. Thus, the further down in the hierarchy a designated 1logic
system falls, the more closely it resembles classical logic.
The mtthematical definitions used in this chapter may be
found in the following references: Grimaldi 1985, Lipschutz 1976,
Liu 1977, Preparata and Yeh 1973, Ross and Wright 1985 and Stanat

and McAllister 1977.

Wy '.'.‘ “.‘.h‘ ‘t n .." e % , p “‘ . '4 'u';,l'. tfv"- F}' "R (P n p’\f"f\d’.‘- .‘-‘f,‘ W AT A AT AR \- AT - -}V

ISR F R T SR ThLL WO

LR 8 gk yak Pl U"g".ﬁ TN L PO (RANPENES £50,8%p.¢" a0"2. *po ‘ A% W1} VX Ava At gty Bavgl .‘L

74

DESIGNATED ALGEBRAS

(P3,P4)
! + associativity
H + supremum
A
DESIGNATED MONOIDS
(CYC4)
i + partial order
|
v
ORDERED DESIGNATED SYSTEMS (POSET)
(B3)
! + disjunction order
i
v
ORDERED DESIGNATED SYSTEMS (LATTICE)
(K3 and M6)

Figure 17. A Hierarchy of Designated Logic Systems.

In the next chapter we will discuss homomorphisms between

the Designated Logic Systems and three valued logics. Using these

homomorphisms we can 1limit the number of conjunction

possible at each level of the hierarchy.

forms

<

T g s

v ‘-.'P-
\‘ﬂ‘x XAX LT

D S s

&

L ey

.“—{,"".‘»-f"*"‘\

. o9

A

- ?’1}'{-. .‘_.{-{?- T{"f{ {,-

rl'f.‘r': ,; .: <

L ELALCAT €

St

e et

A

o A W owm e - o

L e e

R R T R RS o S Ay .4' RIS U) A AW UY N UM VX, WM XM 4 XN B NA NN W WA ‘R e a2 h 4 e 204"

CHAPTER 6

CONJUNCTION HOMOMORPHISMS IN THE DESIGNATED HIERARCHY

In the hierarchy developed in chapter five we used a
series of constraints to define a broad classes of designated
logic systems. These classes were the designated algebra, the
designated monoid and the ordered designated system. We would
like to know how many types of conjunction functions there are
possible at each level of the hierarchy such that the functions
agree with classical logic when only designated and
antidesignated values are in question. This will give us an idea
of the complexity imposed on logic systems as a result of the

third (neutral) logic class.

6.1 Conjunction Classes in Designated Logic Systens.

Because 1logic systems may have a very large number of
elements, we would 1like to be able to describe conjunction
functions using the 1lcgic's partition classes rather than
individual elements. We will define function && to be &&: (D,N,Aj}
x {D,N,A} -> ((D,N,A}, (D,N}I, (D,A}, (N,A}, (DI, (N}, (A}, @i

such that if X && Y = Z, there is some element a in X and some

74

- X%

o LS

- X

._x_3

st 2}

A,

. . . g , R LA T ok AR A" k™ N T P M m e T g N Ny P W
T L e 1 S N TS T S R T R 0 TR 0 R 08, 0, g T O R N B T A S N A S i A N N A N N Y

PR P I WG SO KT R AT R VR RIS VA Rt M A RO o T, Lo AR b ek eah vab as ek e TR R TR OO T

75

element b in Y such that a & b is an element of z for all z in 2
where & is conjunction in the logic system. For example, if we
wanted to define the && function for Mé with conjunction given in
table 25, we would begin by finding Mé6's class assignments. We
know from the FIND-ASSIGN examples in chapter 4 that Mé's
assignments are D = {T, Kl}, N = {U, Ki and A = (F, KOI. To find
the value of D && D in M6 we would list all classes in which the
results of a & b fall where a, b are elements of D. We see the

following results:

T & T = T T is an element of D
T & K1 = K1 Kl is an element of D
K1 & T = K1 Kl is an element of D
Kl & K1 = K1 K1 is an element of D
Therefore, D & D = {D} in M6.

Likewise the value of N && N in M6 may be found using the

same procedure.

K & K K K is an element of N
K & U = KO KO is an element of A
U & K = KO KO is an element of A
U&U= U U is an element of N

4

Therefore N & N = (N, Al in M6.
Table 27 is a representation of function && where P is the

power set of {D,N,Al. In general, there are 9% possible functions

since && can result in any element of {D,N,Al's power set for any

-

-
[t

v e _ue ae S w4

A

AT Y N _P_8s_3
- Ay

76

pair from the set {D,N,A}.

Table
A Meta-Conjunction Table

&&

27

For Classes D, N and A

» 2 0
o v w0
o Y o |
g 'Y o>

When we 1limit the functions in question to those which

agree with classical logic

when only designated and

antidesignated values are in question, there are only 7% possible

functions as seen in table 28 where P-@ represents an element

from the the power set of (D, N

empty) set.

Table

’

28

A} not including the null (or

Function && With Classical Agreement

&& D

N

A

(D}

(A}

P-2

N | P-9 P-@ P-9
i P-2

(Al

(A}

L

W W W W e S i G
A e e S RN Wl N

Vg e de B e R,

<t

e

-

e

o s

A B e SR,y

. -

4 W o

AN

R A RIRNR 3 - " “ e) T - . P R e TR « *
T T T A A L T s G 1 G Y T Rt T g R A AR LSRN

Cat B30 dal 330 1ed 8.5 1879, %08V 66 MMM R W KUY U U O S IO o o T T O O I T N T R U N TR WURT YOV

77

6.2 Conjunction in Designated Algebras.

Given a designated algebra, we can 1limit the possible
conjunction forms. In a designated algebra if a & b is designated
then both a is designated and b is designated. As shown in table
29, there are only 3% possible functions where NA = {{N,Al {NI

fall.

Table 29

&& in a Designated Algebra

&& | D N A
D | (D} NA (A}
N | NA NA NA
Al {A} NA (Al

6.3 Conjunction in a Designated Monoid.

A designated monoid has at least one identity element and
an associative operator &. We can use the definition of a
designated monoid to limit the number of conjunction forms.

“inen‘ a designated monoid, the existence of an identity
element allows us to limit the possible conjunction forms to
those shown in table 30 where (] represents an element from the
set {{N}, (N, Al}. Assume we have the identity element s in D.

Since 8 & x = x' for all x in the logic where x and x' are in the

e

S U N T W YUY TR VRN LN VN R T O T Y N o O N R R O R IO T TR TR RPN

78

same cycle-class, D && N and N && D can take a value from the
list ({N}, {N,Al). Note there are now a total of 3% x 22 possible

functions.

Table 30

&& When Conjunction Has an Identity Element

& ! D N A
D! (bt O ia}
N ! [(CJ NA NA
A ! (Al NA Al

When we include the associative property of designated

monoids as an additional constraint, we can limit the function

patterns again. Assume N && N = {A}. Then we know (N && N) && N

N & (N && N), so A & N = N && A.

Thus, in a designated monoid we have three cases: N && N
{N}, N & N = (A} and N & N = {N, A].
When N && N = A there are only the 22 + 22 + 22 = 12

possible functions we see in table 31.

BSOS LD h * age L) LA TSN N T T D N R
UL A U e O I O OO X O S O P i o & I WA A T T TR AN e F NN N T e e T A

v L S

s
O o S @

s

- e

f RN

!,

e B0 ; A G ~ .
ISR 1“‘:" u’tﬁ"‘s LX) i'..“ct‘ll! PRV PV A4 ¢

Sy TR N e TR W U a0t IR ARt R U N AN kRt Ut fa B BRI Y Mt het €% Ua” Gat Uat Na® 907 02§15 du¥ ia Uat @V Sa¥ ot 829 Sa0 tat g8

79

Table 31

&& in a Designated Monoid When N && N = {A}
& ! D N A & ! D N A & | D N A
D | IiD} 1A} D !iD} [J iA) D !{D} [JiaA}
N | (AN N { O (A} {NA} N [AL (A}
A [{A}[N}{A} A [[A}[NA} (A} A (A} {A}{A}

Otherwise there are 32 x 23 possible functions since D &&

N and N && D can be an element from {{N}, (N, Al}, N && A and A
&& N can be an element from {{N}, f{A}l, (N, Al}] and N && N can be
either (A, N} or [(N}. There are, therefore, 3% * 32 = 72

conjunction forms when N && N is not {A}j. Thus, there are 72 + 12
= 84 possible conjunction forms which both agree with classical
logic when only designated and antidesignated valued are

considered and are designated monoids.

6.4 Conjunction in an Ordered Designated System.

An ordered designated system has several properties we can
make use of‘when determining the number of possible conjunction
forms. Some of these properties are reflexivity, commutativity
and the existence of the infimum.

Since all ordered designated systems are designated

monoids we know there are at most 84 possible conjunction forms

AR Sy ¥ 1 L Y L -~

8 »

) . ‘l 1 ‘-'f-’,‘, ‘,‘v"."n '-.,\ -‘. "'J"".n"f‘d'\l“f.‘-'-‘-" -'\-('?-‘ '-'.‘-"i'-‘."f;""‘“""’? A

e - |

-

A A g

7 s

Ul e e

-

0

-

S “t“'v,.}"v 5’&“:,"«1.5’0?"!"’0. ‘ !,l..l' >.\< Oy D'J .".'.l.l.. 2 ,l.m 'f\'f' ’ .' l‘ h" Y) o.l.h ' A%, . ‘.\'ﬂ Si\i&., mﬂﬁ}h"

LY TR AL TN R R L PN LRGN HU W W WU W% o W A o A R R T N TN I I Y I DU T T O, IV URTYY

80

for ordered designated systems. We can use the reflexive property
(X & x = X) of ordered designated systems to limit the number of
possible conjunction forms by noting N && N # {A}] since there
will be at least one instance when the conjunction of two neutral
values will be neutral. This leaves us with 72 possible
conjunction functions as described in the previous section.
Because the glb function 1is unique for any pair of
elements in the ordered designated system, we know conjunction is
commutative. We can use this property to limit the number of
possible conjunction functions. Since D & N = N & D can be
either [N} or [N, A}, N & A = A && N can be either (N}, {Al or
(N, A} and N && N can be either [N} or [N, A} there are 2 * 3 * 2
= 12 possible conjunction forms for an ordered designated systen.
When the infimum is in N there are eight possible
functions as there are eight functions when the infimum is in A.
Of these sixteen possible functions, four are the same, so we end

up with the }welve conjunction types shown in table 32 (a) - (1).

P 2o~

-, e~

X
.
{

PR W, W0 A L W W WRIWNA WU N U WA R W DR Wy Wi, & B acD el ot vl ot g A'y X

81 by
¥
Table 32

&& in Ordered Designated Systems g
L
&& | D N A && | D N A && i D N A "
D ! (DI Nt (Al D i (D} {NAL (A} D | (Dt (Nt (Al .

N ; {N} {N{ {A} N {INA} IN} |A} N | (N} {NA}IlA)
A+ {Al AL {AL A 1 LAt LAY TAY A | LAt (AL 1Al ?
(a) (b) (c) 1
b4
]
&& | D N A && | D N A && | D N A 3
D { i1D} {(NA}{Al D | {D} {IN} (A} D i {DI {NA}{AY J
N | (NA} {NA{{A} N | {N} (N} {(NA} N [{NA{ (N} ({NA} “
A} (A}l (A} (A} A ! [A}l {NA}IA) A ! {A} [NAtIA) '
(d) (e) (£) 3
")
3
b
& | D N A && | D N A && | D N A o
D | (D} {NA{{A} Dt (DI {N} (A} D t (D} (N}l At)
N | INA} [NA}{NAj N | {N} (NA}{NAj} N (N} (N} Ny Y
A | {At {NAl A} A | {A} {NAL{AY A (At [Nt {aAl b
(g} (h) (1) .
by
~
N
~

&é& | D N A && | D N A && | D N A
D | (D} (N} (A} D ! (D} INA}IA} D ! (DI INA}I{A}
N | (NI} jNAilN} N | [NA} [N} ([N} N | {NA}{ {(NA} (N} 3
A | (A} N} {a) A | [A! [N} A} A ! A} N} (A} Ny
(3) (k) (1))
We can find a homomorphism between any ordered designated 3
R
system and one of these twelve functions when conjunction agrees 3

IS KRV

447,

o

LTS ERMNTU] ! ¥ 5.0} " L)
R Nt O S D O D I X A D D DO DS, D 0 ARl

Y R T N TN R U R T T S N T T S o T T TR W I W T W W) 48

82

with classical logic in the designated and antidesignated cases.
These twelve homomorphisms describe those logic systems which

resemble classical logic most closely.

6.5 Examples.

Example 6-1. Kleene's 1logic 1is homomorphic to the
conjunction form in table 32 (a).

Example 6-2. Bochvar's 1logic 1is homomorphic to the
conjunction form in table 32 (i).

Example 6-3. M6 is homomorphic to the conjunction form in

table 32 (c¢).

6.6 Summary.

We can find the conjunction form of those designated logic
systems most like classical logic using a homomorphism between
the <classes of the logic partition and the <c¢lasses to which
conjunction maps. Those logics most like classical logic behave
identically , to classical 1logic when no neutral values are
conjoined.

At each level of the designated hierarchy developed in the
last chapter we can specify the number of conjunction forms which

are closely related to classical logic. Using the constraints of

by

s

AT R gt i

LS

P LEAL LS,

23

. b Ij'in‘ "X'

KX

4~ g x.®
.
Ao A ar s

TN e T S o

B RS

M SN

’
v

5y
]

« el 1,1,)7' v,

>,

A N T N R S AR I R R AR M O A P KW A Y AN LA VR L ¥ T U N S o Ty N Y YO TR T ANE I WR

83

R NN

the algebraic structures in the hierarchy we prune the number of
possible functions from 33 functions in a designated algebra to

1| twelve in an ordered designated system.

oo W e
AL W R

e

-,

>

wr et WL
s il ¢

e 2
e

. o
2 L

o " e

N Y
-

Tusen |

e e

. e T Th e e

4
13

e A e T T e
e . TR N - O -
Al e N A A A A A AT AT A L A A A

T

?A"..l’c,’l’q.t‘n,i’v,l’ v W iy M iy h

R
%)
o

.\< ’-..’ -.‘ a2 f._r\r&-'\q'_'.'\{_‘:_‘.'.‘.l'_..r_ .
AN Dl a I BV

CHAPTER 7

CONCLUSION

; In this work we have enhanced our understanding of the

non-classical 1logics by providing a survey of some of the more
3 important systems, defining designated logic systems, developing
an algorithm for partitioning these systems and a c¢lassification
scheme based on shared mathematical properties and similarities
to classical logic.

In order to <c¢lassify the many-valued logic systems we
needed to understand their structure. We built an algorithm for
defining a partition of 1logic values into three classes:
designated (or truth-like) values, antidesignated (or false-like)
values and neutral values. By allowing tautologies to take either
designated or neutral values, and by allowing contradictions to
5 take either antidesignated or neutral values, we built a system
gf for which many of the tautologies and contradictions in classical
,ﬁ logic hold in the designated logic systems as well.

W We defined a number of criteria for logic systems in the
form of constraints imposed on their complement and conjunction

o functions. We called 1loyic systems meeting these constraints
' 84

a1

e A O P O O T T T e e T e T N N T A I TR R M N)

R R AR AT R RN RS -‘-alv.oa.o"‘ci»..-‘.,‘~ ol Sl 620 G b Vok Gk doh®

85

Designated Logic Systenms.

Using these constraints we developed an algorithm for
finding all possible partitions of logic values into classes D
{designated), N (neutral) and A (antidesignated). Thus, for any
algebraic system having a permutation and binary function, we can
find a classification of its elements such that the algebraic
system is a Designated Logic System.

The hierarchy of Designated Logic Systems defined <classes
of logic systems based on shared mathematical properties. At the
highest level of the hierarchy, the lattice, the Designated Logic
Systems closely resemble classical 1logic. This hierarchy,
together with the homomorphisms, show us there are relatively
few forms of Designated Logic Systems which closely resemble
classical 1logic. If the Designated Logic System agrees with
classical 1logic whenever only designated and antidesignated
values are in question, and if the logic's elements fall into the
lattice structure in the designated hierarchy, there are only
twelve possible conjunction forms the logic can have regardless
of the number of its elements.

Although we do not assert that our classification scheme

and definitions presented in this paper are the only correct

x_8 o 8

o)

-

MO,

R T T T N T R T T N O Y S A D T T oy

method of defining and classifying Designated Logic Systems, we
have developed a methodology which will enable any algebraic
system to be transformed into a Designated Logic Systems given a
permutation and a binary function.

This classification of logic systems opens many questions
for further research: What is the smallest number of logic values
required in each of the 12 classes? What happens to the <c¢lasses
when the definition of conjunction is changed (made more or less
constrained)? What 1is the relationship between each of the
classes? These questions, if researched, may provide further
insight into the nature of Designated Logic Systems.

Any truthful study of the human reasoning process will
show 'not all things are either strictly true nor strictly
false.' People think, make decisions and correlate data and
events with uncertain and incomplete data. To understand human

reasoning we need non-classical logic tools. We hope this paper

will provide a basis for an understanding of the algebraic nature

of these systems.

g s arw Lag U ¥ e . g s : 2 . s w A
< ‘.\9’ Sy ‘\“' 7‘!‘.‘\‘}%‘ '\QW‘).L“‘,'.’_, I.ull‘- I‘h‘(‘.’l'u“ 0"!'."-"!“!."0 Yy "-. () l-.'h The 'l« all f.QJl. w x

USRS RN Y VRN U NN R YR VTN RO A R TUN TN T UK RN PO TUN TOM O FO0 U PO O U ST A R RN

APPENDIX 1

LOGIC SYSTEM DEFINITIONS

Classical Logic and Deviant Logic Definitions.

All logics are defined for NEGATION (7}, CONJUNCTION (&) .
DISJUNCTION (+), IMPLICATION (=>) and EQUIVALENCE (<=>}.

CLASSICAL LOGIC

i & ! T F + { T F => |\ T F <=> | T F
T | F T ! T F T'!T T T ! T F T ! T F
FIT F | F F FI!I T F Ft! T T Fi{F T
THE THREE VALUED LOGIC OF LUKASIEWICZ (L})
T4 & | T I F + { T I F => { T I F
T | F TI T I F T {T T T T!{T I F
Iti!1I I{I I F I!{ 1T I 1I I/T T 1
FI T FI{F F F FiT I F Fi!iT T T
<= | T I F
T.! T I F
I, I T I
F+F I T

(Lukasiewicz, 1920}

THE FOUR VALUED SYSTEM OF LUKASIEWICZ

‘gl logic values are of the form <a,b> where a and b are
element$ of (T,Fl. Assume AND, OR, IMPLY, EQUAL and NOT are

conjunction, disjunction, implication, equivalence and negation
as defined in classical logic. The values of each function are

> ae e

R o

I T T Y U U U TR R R T S WU IR TSR TSy R WU N M W WV I T N R N T O O I O OO

88

“<a,b> = <NOT(a),NOT(b)>
<a,b> & <c,d4> = <AND(a,c) ,AND(b,d)>
<a,b> + <¢,d> = <OR(a,c),0R(b,d)>
<a,b> => <c,d>» = <(IMPLY{(a,c),IMPLY(b,d)>
<a,b> <«=> <c,d> = <(EQUAL(a,c),EQUAL(b,d)>

THE THREE VALUED SYSTEM OF BOCHVAR

} & | T I F + | T I F => | T I F
T { F T i T I F T!{T I T T T I F
I I I +I I I I {1 I I 1 I I I 1
F I T F I F I F F.!1 T I F FI{T I T
<=> | T I F

T, T I F

I VI I 1I

FI{F I 7T
[Bochvar, 1939])

THE THREE VALUED SYSTEM OF KLEENE

- & | T I F + 1T I F => ' T I F
T ! F T'!T I F T!T T T T T I F
I 1I I+ I I F I+ T I 1I I T I I
FIT FIF F F FI1 T I F FiIT T T
<=> { T 1 F

T4{T I F

I ! I I 1I

FI{F I T

THE n VALUED SYSTEMS OF POST
Post defines a logic system of n values as:
‘P = (p+l) mod n (here '+' denotes integer addition)
(p + @) = min(p,q)
(p & q) = “("p + "q)

n P L%
C M' *

AT

et

R X

LA

2 R R LA

L, W T

ST A A I

‘.-E'-

¥

.

IR MR YN

Rt €)

89

+
&

p

(p => q)

(q => p)

= (p => q)

{(p <=> q)

- e
-

& a4

1921]

[Post,

(P3)

POST'S THREE VALUED SYSTEM

MOUSSAVI'S SIX-VALUED LOGIC

{(T,F,U}

R =

{T, U}
{F, Ul

KO

K1l

Lo R

KO K

K1

KO

K1l

-

KO

o
£

-

KO K

K1

K1l

KO

K1

KO

K1

o ol e =

KO KO KO KO

F

KO

K1l

KO

KO

KO

7T - e

KO K

K1l

K
T
K

Kl KO

KO
T

K1l
T

T
KO

T
K1

B>

K1l
K

K1l

K1

K1
K1

U Kl KO

KO

K1l

K1l

Kl

Kl K1
KO

T

K1

K1l
K

K1 K1 K1
K

K1l

KO K KO
K

Ki
K1 K

KO

K1l

K1l

Kl

19861

(Moussavi,

e

T e DO XA

AR BPULE T WY \ 14 g% « g9 4] gy 'R 4 * * REANGREN AT Wy LT AN R AN b ¢pd vak val wdd 7)

APPENDIX 2
THE CREATE-LOGIC PROGRAM
The following LISP program is the source code used to create
logic systems. Logic systems defined using this program are in
the correct format for use with the FIND-CLASS and ORDER

programs.

: CREATE-LOGIC
;The following functions query a user for a logic name and logic
;functions. It then creates an output file and defines the
;logic's functions and logical terms. After all functions for
;the new logic have been defined, these functions, along with

;a comprehensive list of logic values, is written to the file
;b:<logic name>.lsp.

;CREATE-LOGIC generates a logic system from sc¢ratch

; Input: none.

;Output: a logic system of terms and functions written to the
;file b:<logic name>.lsp

’

{defun create-logic ()
{progn

(terpri)

(princ "Enteri logic name: ")
(setq lname (read))

(setq lname (strcat "b:" (symbol-name lname) ".1lsp"))

(setq ofile (openo lname))

{setq flist nil) ;initialize list of functions

{setqg vlist nil) ;initialize list of values

(getfun ofile) ;generate the logic functions

(printvals vlist ofile)}) ;save the functions to disk
90

W PY AR LX) ¥ W , ‘ N N
o e D O O A O N X N S N LA AN I DN

a9 Vol vat

K iR QN

(4

B R e e

by

L ot

\

- B A

[e

e o oy do

- -

]
W
'
¢

TR A N R AR R R R AN R M LA AW WY FLR' R %0 000 20 0 a8 4™ "¢ a4 at) afgiatsat) gt "plaata o tat Ba Set Bat 0yt et Rat

91

;GETFUN gets individual logic functions from the user. A typical

;logic definition might include definitions for conjunction,
;disjunction, negation and implication. Functions must be input

;in the form: (<fname> ((vall ([vall2]) result) i
; {(vall (val2]) result)]) '
;For example, AND in classical logic would be defined as

: {AND ({(T T) T)

; {({(T F)} F)
: ((F T) F)
H ((F F} F))
; Input:

H ofile: the output file to which the logic functions will
H be written. /
;Output: a series of logic functions and a list of function

names as well as a list of logic values.

{defun getfun (ofile)

(progn
(terpri) '
{princ "Enter logic function: ")
(terpri)
({setq logfun (read)) ;read the next function)
(cond Y
{(null logfun) (printf flist ofile)) :if no function, write
(t (progn ;results to output file
(writef logfun) ;otherwise extract new
(setq vlist (writevals (cdr logfun) nil)) \
{writefun logfun ofile) ;logic values and go ;
(getfun ofile)})))) ;back for more functions ‘

;WRITEF qeneﬁates the function list for the logic. If you define
;a logic using “,v and °, WRITEF will form a list of those three
;functions along with the number of arguments each take.

;Input:

; logfun: a logic function which needs to be added to the 3
; function list (flist).

;Returns: the updated function list.

{defun writef (logfun)

{setq flist (cons (list (car logfun) (length (caadr logfun};)}

i
R DS DU OB NSO OO O \l.';'.‘:‘-‘l’-I‘.‘l"‘l‘\ PO R DR M ,..t ‘. '\“ m\;’:i‘} Qf.‘ m Q gﬂ hﬁ‘ ;_':‘K.‘FJ h.:"‘i:‘:"::

OO RPN MO LA Mo M SONSE A T R T

flist)))

; PRINTF prints the function list to the output file. This creates
;a permanent record of all functions defined for the logic being
;created.

; Input:

; flist: a list of function-name function-degree pairs.

ofile: the file name to which the list will be printed.
;Returns: nothing.

~e

.
’

{defun printf (flist ofile)

(progn
{terpri ofile)
{(princ "(setq flist '" ofile) ;when the logic is loaded
(prinl flist ofile) ;into the LISP environment,
(princ ")" ofile) :flist be a complete list of
(terpri ofile))) ;all defined functions

;WRITEVALS collects and generates a list of logic values for the
:logic system. For example, in classical logic there are two
:logic values: true and false. In L3 there are three: T, I and
;F.
; Input:
logfun: a newly defined logic function
vlist: the current list of logic values
Returns: the updated vlist. Any logic value refered to in logfun
but not contained in vlist will be added to vlist.

s Se ws v =

(defun writevals (logfun vlist)
{cond
((null logfun) vlist)
({(listp (car logfun))
(writgpvals (cdr logfun) (writevals (car logfun) vlist)))
{(not (pember (car logfun) vlist)) (cons (car logfun) vlist))
(t viist)))

; PRINTVALS prints vlist to the output file. This creates a
;permanant record of all logic values for the logic.

; Input:

: vlist: the list of logic values in a logic system

H ofile: the output file to which vlist will be written
;Returns: nothing

W O P o ~ R LY DA RV SRV TRV N
DN , , ! ANy AT, R

e e

A I I AT U T SR S S T T TS W R W T S T T S T T Ty 18 avi gk abd" TR

93

e s Ve

.
’

{defun printvals (vlist ofile)

)
(cond !
({null vlist) (close ofile)) :
(t (progn
{terpri ofile) g
{princ "(setq vlist '" ofile) ;vlist is a list of all defined -)
(prinl vlist ofile) rlogic values for a specific '
(princ ")" ofile) ;system.

{terpri ofile)
{close ofile)))))

;WRITEFUN writes the function definition to the output file.]
; Input: \
; logfun: the logic function to be defined.

: ofile: the output file to which the logic function will
H be written.

;:Example:

; If logfun were

; (= ((t) £)

; ((£) t))

; the following would be written to ofile:

; (defun -~ (x) 1
; {cond ({equal x '(t)) 'f) <

A Yy

({equal x '(£f)) 't)))
Returns: nothing.
‘ w A
{defun writefun (logfun ofile) y
{cond
{{null logfun) nil) ;done writing functions
{t (progn
(terpri ofile) 9
(princ "(%Ffun " ofile) ;start definition "(defun fn ... $
(prinl (car logfun) ofile) !
(princ " (x) (cond " ofile) swrite conditional statement
(terpri ofile)
{genfun (cdr logfun) ofile) ;enter each function pair .
{princ "))" ofile) ;then close fn and cond parens
{terpri ofile)}))))

- g

;GENFUN generates the 'equal' parts of the logic functions.
; Input:

I T W T T I e T VS N L WL R
398, K llan o a2 Xt nrinnlatn o

-
’
-
’

.
r

RN AR R NN R T ROy U YU JYUY T VN UNLY, AT sabotal taba sk vad Ok b Sa

94

logfun: the logic function to be printed
ofile: the output file to which the logic function will
be printed.

:Example:

.
v

-
’

.
’

If logfun were ({(t f£f) t) ...) the following line would be
printed by a single iteration of genfun:

{{equal x '(t £)) t)

and genfun would be called to operate on the cdr of logfun.

;Returns: nil

-
’

(defun genfun (logfun ofile)

{cond
{(null logfun) nil) ;generated all function pairs
(t (progn

(princ “"((equal x '" ofile)

(prinl (caar logfun) ofile)

(princ "} '" ofile)

({prinl (cadar logfun) ofile)

{princ ")" ofile)

(terpri ofile)
(genfun (cdr logfun) ofile))}))

The following examples show the results of defining various

logic systems using program CREATE-LOGIC.

(defun

CLASSICAL LOGIC

{x) (cond

{{equal x '(T)) 'F)
((equal x '(F)) 'T)

V)

)

(defun ~ (x) {(cond

{(equal x '(T T)) 'T)
{(equal x '(T F)) 'F)
{{equal x '(F T)) 'F)
((equal x '(F F)) 'F)

))

{defun V (x) (cond

S

Ll LMol T R IIGEE LT Al s

prod

PACE XS A

- "‘"Tf ey 'f /|

LT A

A A 4 X o)

\ A h T

S fat bl R R AT UYL R N URN Ry Ry Wy TR R L P O AL ol 82D 2l ¥ak Taf Vah Vb & 23 < mb *

gt
"

"l

)

| %)

»

i 95 Vo,
o,
0
o

((equal x '(T T)) 'T) O]

((equal x '(T F)} 'T) »

(lequal x '(F T)) 'T) .
((equal x '(F F)) 'F) 3

y) 7

+

{defun => (x) (cond
{{equal x '(T T)) 'T)
{{equal x '(T F)) 'F)
({equal x '(F T)) 'T)
{{equal x '(F F)) 'T)
))

(setq flist '((=> 2) (V 2) (° 2) (7 1)))

| T

(setq vlist '(F T))

LN LT NN

LUKASIEWICZ'S 3-VALUED LOGIC %i
o
(defun ~ (x) (cond h
((equal x '(T})} 'F) ’
(lequal x '(I)) 'I) N
{(equal x '(F)) 'T) ﬁ‘
}) L
4
(defun -~ (x) (cond ;
((equal x '(T T)) 'T) 3
((equal x '(T I)) 'I) ~3
((equal x '(T F)) 'F) 3
((equal x '(I T)) 'I) i,
((equal x '(I I)) 'I)]
((equal x '(I F)) 'F) A
((equal x '(f T)) 'F) Yy
((equal x '(F I)) 'F) oy
((equal x '(F F)) 'F) 2
)))
3
(defun V (x) (cond $f
{{({equal x '(T T)) 'T) o
((equal x '(T I)) 'T)
{{equal x '(T F)) 'T) i
'
Oa‘
s
3
1]

5.a0 O ol et b TaR Ta b el e g S ah A gl Sab Fal o AR tal Yad S8 N iip vl v f wad o) 6x3 2l Seh dal Sed tplltel) gl sal ta) 92l soh r A al eal bl o
¢
!
96
(
o %4
((equal x '(I T)) 'T) o
((equal x '(I I}) 'I))
({equal x '(I F)) 'I) .
{(equal x '(F T)) 'T) by
((equal x '(F I)) 'I) !
((equal x '(F F)) 'F) 51
))
p_
(defun => (x) (cond %
((equal x '(T T)) 'T) &
{{equal x '(T I)) 'I) '
{{equal x '(T F)) 'F))
{(equal x '(I T)) 'T) f:
((equal x '(I I)) 'T) 3
({equal x '(I F)) 'I)
((equal x '(F T)) 'T) g'
({equal x '(F I)) 'T) y
{(equal x '(F F)) 'T) :
) W
l‘::
(defun <=> (x) (cond Q
({equal x '(T T)) 'T))
({equal x '(T I)) 'I) "
((equal x '(T F)) 'F) o
{{equal x '(I T)) 'I) I
((equal x (I I)) 'T) ;&
((equal x '(I F)) 'I))
({equal x '(F T)) 'F) ?
{{equal x "(F I)) 'I) ¥
((equal x '(F F)) 'T) %
)) A
)
(setq £list '((<=> 2) (=> 2) (V 2) (~ 2) (- 1))) by
4 oy
(setq vlist '(F I T)) &
\k
KLEENE'S 3-VALUED LOGIC) -
it
o
{defun -~ (x) (cond $
{{equal x '(T)) 'F) R
((equal x '(I)) 'I) J
W,
Ka
.

%

Coay

((equal x
)

{defun -~
{ (equal
{ (equal
((equal
((equal
{ (equal
((equal
{ (equal
{ (equal
((equal
})

MoxoM oKX XN XX

(defun V
{ {equal
{ (equal
((equal
{ {equal
{ (equal
((equal
((equal
((equal
((equal
))

MoM oM MMM N NR

(defun =>
({equal x
{(equal x
((equeixn
((equal
{ (equal
{ (equal
{ (equal
((equal
((equal
))

Mo% XXMM

97

'(F)) 'T)
{x) (cond
(T T)) 'T)
‘(T Ii) 'I)
‘(T F)) 'F)
(I T)) 'I)
(I I)) 'L
'(I F)) 'F)
"(F T)) 'F)
'(F I)) 'F)
'(F F)) 'F)
(x) (cond
‘(T T)) 'T)
"(I T)Y) 'T)
'(F T)) 'T)
(T 1)) ')
(I I)) 'I)
'(F I)) 'I)
‘(T F)) 'T)
(I F}) 'I)
*(F F)) 'F)
(x) (cond
(T T)) 'T)
(T, I)) 'I)
'*(T F)) 'F)
(T) 'T)
'(I I)) 'I)
(I F)) 'I)
'(FT)) ')
'"(F I)) 'T)
'‘(F F)) 'T)

IR K 0 S '
FEENELR MR N NN OO,) 1‘"!’: ad, ...l. -.!.t‘l.n.l AlM “n.l’o."u\ 0 4% M. LACUMLY

s . . - -
e R R S S L R C AR RS NI

o de B 9% Ea® @t Bt Bal Bal ot B.8Y e ata &b dlm" .
(SR U $ g 8730 a » ANNMNY WUYLUNWLYLN 8, L » A OO OO O RO RO R OOTR ."‘l

o SAY

A 5

{x) (cond
(T T)) 'T)
(T I)) 'I)
'(T F)) 'F)
(I T)) 'I)
"(I I)) 'I)
(I F)) 'I)
"(F T)) 'F)
'(F I}) 'I)
'(F F}) 'T)

{defun <=>
{ (equal x
{ (equal
{ (equal
({equal
({equal
{ (equal
{ (equal
{ (equal
((equal
))

E I T B -

'((<=> 2)

(setq flist

(setq vlist '(T I F))

(defun -
((equal x
{(equal x
((equal x
))

{x) (cond
(1)) '2)
'(2)) '3)
'(3)) '1)

{defun V (x)
! ({equal ' (1
{ (equal (1
({equal (1
((equal (2 1))
{ (equal ‘(2 2))
{ (equal '(% 3))
((equal (3 1))
{ (equal (3 2))
{ {equal (3 3))
))

{cond
1))
2))
3))

'1)
'1)
'1)
'1)
'2)
'2)
'1)
'2)
'3)

A

{defun ~
((equal x
{ (equal x

(x) (cond
(1 1))
(1 2))

'3)
'3)

(=> 2) (v 2) (% 2)

POST'S 3-VALUED LOGIC

(= 1))

99

{(equal x '{1 3)) '2)
({(equal x '(2 1)) '3)
({equal x '(2 2)) '1)
{(equal x '(2 3}) '2)
((equal x '(3 1)) '2)
{{equal x '(3 2)) '2)
((equal x '(3 3)) '2)

))

(defun => (x) {(cond

((equal x '(1 1)) '1)
{{equal x '(1 2)) '2)
((equal x '(1 3)) '2)
({equal x '(2 1)) '1)
((equal x '(2 2)) '2)
((equal x '(2 3)) '3)
{(equal x '(3 1)) '1)
{(equal x '(3 2)) '1)
((equal x '(3 3)) '1)

))

(defun <=> (x) (cond

((equal x '(1 1)) '3)
((equal x '(1 2)) '3)
((equal x '(1 3)) '3)
((equal x '(2 1)) '3)
((equal x '(2 2)) '1)
((equal x '(2 3)) '2)
((equal x '(3 1)) '3)
((equal x '(3 2)) '2)
((equal x '(3 3)) '3)

))
(setq £list '((<=> 2) (=> 2) (7 2) (V. 2) (7 1))

(setq vlist '(2 3 1))
BOCHVAR'S 3-VALUED LOGIC

{defun -~ (x) (cond

A s T I T T T T r r T R O O O OOOY N e e° g e 7y
4
"
100 i
£
((equal x '(T)) 'F) ‘.
{(equal x '(I)) 'I) "
{{equal x '(F)) 'T) J
)) 4
(defun ~ (x) (cond ¢
({equal x '(T T)) 'T) .
((equal x '(T I}) 'I) 3
{{equal x '(T F)) 'F) ¥
{(equal x '(I T)) 'I) :
((equal x '(I I)) 'I) X
{(equal x '(I F)) 'I) .
({equal x '(F T)) 'F) §
((equal x '(F I)) 'I) :
((equal x '(F F)) 'F) d
») A
(defun V (x) (cond k
({(equal x '(T T)) 'T) ?
((equal x '(T I)) 'I) v
((equal x '(T F}) 'T) N
((equal x '(I T)) 'I) t
((equal x '(I I)) 'I) s
((equal x '(I F)) 'I) s
((equal x '(F T)) 'T) ﬁ
{(equal x '(F I}} 'I)]
{(equal x '(F F)) 'F) 0
}) o
"
(defun => (x) (cond ﬁ
((equal x '(T T)) 'T) N
{{equal x '(T I)) 'I) .
{(equal x '(T F)) 'F) ;
({equal x '(B T)) 'I) ﬁ
((equal x '(I I)) 'I) :
((equal x '(I F)) 'I) 3
{{equal x '(F T}) 'T) x
{(equal x '(F I)) 'I) '
((equal x '(F F)) 'T) 3
))

(defun <=> (x) (cond

101

{(equal x '(T T)) 'T)
((equal x '(T I)) 'I)
{(equal x '(T F)) 'F)
((equal x '(I-T)) 'I)
{(equal x '(I I)) 'I)
{{equal x '(I F)) 'I)
((equal x '(F T)) 'F)
{{equal x '(F I)) 'I)
((equal x '(F F)) 'T)
))

(setg flist '((<=> 2) (=> 2) (V 2) (° 2) (7 1)))

{setq viist '(F I T))

(defun -~ (x)

MOUSSAVI'S 6-VALUED LOGIC

{cond

{(equal x '(T)) 'F)
((equal x '(F)) 'T)
((equal x '(U)) 'U)
{(equal x '(R1)) 'KO)
{(equal x '(KO0)) 'K1l)
({equal x '(K)) 'K)

))

{(defun ~ (x)

({equal x ' (T
({(equal x '(T
((equal x '(T
((equal x ' (T
((equal x '(T
((equal x ' (7P
((equal x ' (F
((equal x ' (F
((equal x '(F
((equal x ' (F
({(equal x ' (F
((equal x '(F
((equal x '(U
((equal x '(U

(cond

T)) 'T)
F)) 'F)
uy) 'u)
K1)) 'K1)
K0)) 'KO)
K)) 'K)
T)) 'F)
F)) 'F)
u})) 'F)
R1)) 'F)
KO)) 'F)
K)) 'F)
T)) 'U)
F)) 'F)

-

{ (equal
((equal
((equal
({equal
((equal
((equal
((equal
{ {equal
{ {equal
{ (equal
((equal
((equal
({(equal
{ (equal
{ (equal
{ (equal
((equal
{ {equal
((equal
({equal
((equal
{{equal
))

(defun V (x)

((equal
((equal
({equal
((equal
({equal
((equal
((equal
((equal
((equal
((equal
((equal
{ (equal
((equal
{ (equal
((equal
{ (equal
{ lequal

I R EEEREEEER]

L A B L

EE A B

ARARNR G

(U U))

'(U K1)
'(U KO))
'(U K))

'(K1 T))
'(K1 F))
'(K1 U))
'(K1 K1)
‘(K1 KO)
'(K1 K))
'(KO T))
'(KO F))
‘(K0 U))
' (KO K1)

IR IA AN R T TR

102

'U)
'U)
'KO)

'K0)
'Kl)
'F)
'U)

) 'KR1)
) 'KO)
'K)
'KO0)
'F)
'KO)
) 'KOQ)

' (KO KO)) 'KO)

' (KO K))
'(K T))
"(K F))
'(K U))
'(K K1))
'(K R0O))
'{K K))

‘(T T))
'(T F))
(T U))
"(T K1))
(T KO))
‘(T K))
(F T))
"(F F))
' (F, U))
'(F K1))
'(F KO))
'"(F K))
(U T))
' (U F))
(U U))
' (U R1))
' (U KO))

(cond

'KO)
'K}
'F)
'KO0)

'K)

'KO)
'K)

'T)
'T)
'T)
'T)
'T)
'T)
'T)
'F)
'U)
‘K1)
'KO)
'K)
'T)
'U)
'U)
'Kl)
'U)

_.
EN5"

SaSr.

f e I

rrd ™

20
-

- o

-
ot

(({equal x '(U

{(equal x ' (K1
((equal x ' (K1
((equal x ' (K1
((equal x '(K1
({equal x '(K1
((equal x ' (K1
({equal x '(KOQ
((equal x ' (KO
((equal x—1(KO
{(equal x ' (KO
((equal x ' (KO
((equal x ' (KO
({{equal x '(K

{(equal x ' (K

{(equal x '(K

{(equal x '(K

{((equal x '(K

((equal x '(K

))

(defun => (x)

{(equal x '(T

({equal x '(T

{lequal x ' (T

{{equal x '(T

{{equal x ' (T

{{(equal x '(T

((equal x ' (F

{(equal x '(F

{(equal x '(F

((equal x ' (F

((equal x '(F

({equal x (¢
({equal x '(U

((equal x '(U

((equal x '(U

((equal x '(U

((equal x '(U

((equal x '(U

((equal x ' (K1
{(equal x ' (K1

K)) 'K1)
T)) 'T)
F)) 'K1)
U)) 'K1)
K1)) 'K1)
KO)) 'K1)
K)) ‘K1)
T)Y) 'T)
F)) 'KO)
u)) ')
K1)) ‘K1)
KO)) 'KO)
K)) 'K)
T)) 'T)
F)) 'K)
U)) 'K1)
K1)) 'K1)
KO)) 'K)
K)) 'K)

{cond
TY) 'T)
F)) 'F)
u)) 'U)
K1)} 'K1)
K0)) 'KO)
K)) 'K)
T)) 'T)
F)) 'T)
u)) 'm
K1)) 'T)
KO0)) 'T)
K)) 'T)
T)) 'T)
F)) 'u)
u)) 'y
Ki}) 'K1)
K0)) 'U)
K)} 'KR1)
T)) 'T)
F)}) 'KO)

ACLRER LN AL

GIREOLY

IR POl JEI R R O T T

((equal
{ {equal
{ (equal
{ (equal
((equal
{ (equal
{ (equal
{{equal
{ (equal
((equal
{ (equal
{ (equal
((equal
({ (equal
{ (equal
((equal
})

(setqg flist

(setq vlist

"(K1 U))
'(K1
' (K1
' (K1
' (KO
' (KO
' (KO
' (KO
' (KO
' (KO K))
'"(K T))

"(K F))

"(K U))

'(K K1))
'"(K KO0))
(K K))

K))
T))
F))
U))

I I I - I R B I

(T

K1)}
K0))

K1))
K0))

2)

CRAR AN

'U)
'K1l)
'K0)

'K)

'T)

'K1l)

'K1)
‘K1)
'K1)

'K1l)

'T)
IK)
'K1l)

'K1)
'K)

'K)

(" 1)

'(F KO U K K1 T))

» 4.0 v

(v 2)

#," Sa* Pa¥ §2*

104

(=> 2)))

oSN PNV P P R i Y LUV LNy

P O A e T T T R o T O R S T TP R

]
£
’
(e

IR S TS ST WA MU WA SO WU U VO IR IR B U TN LR N IR A X RN NY XK YW A’

APPENDIX 3
THE FIND-CYCLES PROGRAM
As discussed in chapter three, program FIND-CYCLES finds all
the odd and even cycles in a logic system using the
complementation function. If the complement function is not a

permutation, FIND-CYCLES returns an error message.

: FIND-CYCLES

:FIND-CYCLES finds all odd and even cycles in the complementation
;permutation of a logic. If the logic's negation function is not
:a permutation, find-cycles returns an error message. Otherwise
;find-cycles returns a list of even cycles and a list of odd
;cycles in the form ((vl v2...vn){(vl v2 ...vn)...) where each set
;of vl...vn values is one cycle.

-
’

=
=)
o
=4
ot

The logic whose cycles are to be found. The negation
function must be defined in the format created by the
program CREATE~LOGIC. The logic function file must be
b:<lname>.lsp where <lname> is the argument to FIND-
CYCLES.

Returns:
A list of the odd and even cycles of the selected logic.

O we N my e wg W~

’ i

{defun find-cycles ()
(progn

({terpri)

(princ "Enter logic name: ")
(load (strcat "b:" (symbol-name (read)) ".lsp"))
(setq even nil)
(setq odd nil)
{cond
{{not (permutationp vlist nil)) (progn

105

TN AT, X b ¥) T P] o ¢ W . “y
R ISR SO Mt SR I R .;'i,n'... Wiatess X) ..0.,| ..'I,Q.C,' ,.'.,',. ,..l,. .o‘l,g,. . W' Wi o

s TSN
N X ()

T

s

Lot o]

.~

O XX X

- -

X L o o

390574 870 iy g a ia dTatAYI AU RN N0 9 R Sad b b g 4" R et A S A AV SO A Rl U) b uy s rale- SV aVa dva TS

106

(princ "not a permutation')
(terpri)}))
(t (progn
{cycle vlist)
(list odd even))))))

; PERMUTATIONP determines if the complement function in the given
;logic is a permutation.

;Input:

H ivals: the list of elements whose complements need to be
H determined.

H ovals: the list of elements the complement of some value
H erstwhile in ivals. For example, if T was in ivals and T
: = F then F will be in ovals.

;Returns:

: T if the complement function is a permutation

H nil if the complement function is not a permutation
{defun permutationp (ivals ovals)

{cond

({and (null ivals) (same-list ovals vlist)) t)

((null ivals) nil)

({member (- (list ({(car ivals))) ovals) nil)

{t (permutationp (cdr ivals) {(cons (- (list (car ivals)))
ovals)))}))

;:CYCLE finds all cycles in a permutation and puts them in global
;lists odd and even.

[4

sInput:
; vals: the list of values in a permutation to find the
H cycles for.

:Returns:
H Nothing. Global lists odd and even are updated.
H 4

{defun cycle (vals)
(cond

{(not (null vals))

{cycle (save-cyc (find-cycle (list (car vals))} vals))}}))

:SAVE-CYC simply stores the cycle in the correct global list
;and removes that cycle's elements from the vals list.

.
’

o g g0 L |

. .
I B X ot

A 2%

Pan o

R T T T N T T TR T

2 ot ati gt TR Y n R R A B FaC D S SRl ol 8 el 40tk ab Ve tal VAt SR eab Vol ol vk el Sad (b Sab sl ¥ei <pi

107

;Input:
: cyc: the cycle to be stored
: vals: the list of elements to update
;Returns:
: The updated vals list
(defun save-cyc (cyc vals)
(prog2
(if (evenp (length cyc))
(setq even (cons cyc even))
(setq odd (cons cyc odd)))
(rem-cycle vals cyc)))

:FIND-CYCLE finds the remaining cycle of the elements in cyc.

: Input:

: cyc: the list of values already in the cycle.

;Returns:

: the entire cycle in reverse order

(defun find-cycle {(cyc)

(cond
((member (~ (list (car cyc))) cyc :test equal) cyc)
(t (find-cycle (cons (~ (list (car cyc))) cycl)))))

;REM-CYCLE removes all elements of list cyc from list vals

Input:

vals: the input list to alter

cyc: the list of elements to remove from vals.
Returns:

The updated vals list

g ws we s w§ ws wo

(defun gem-cycle (vals cyc)
(cona
((null eyc) vals)
(t (rem-cycle (remove (car cyc) vals) (cdr cyc)))})

:ADD-IF adds item to input list if it is not already a member.

;Input:
: item: the item to add to 1

. PoiN

el o

S, a5

o

o5

- - oy

Gl d T Lt

S K X

o AR

Dol 2

YT e
o

?“’Tll'

Ll it g8 g8 of O Rusl
T vy - Ve N

LG d b e e g YT 0 R R A et et 0t a?E 070 28 g) VR a e 040 avg at altataka bet Uh' 0ad bat a® (a0 gut ot Gat et 0l gt Bt 8.9 gt Rat 00t g0

—

108

; 1 : the list to be changed }

;Returns:

; The updated list. 4
¢

’ 'l

(defun add-if (item 1) v

(cond '

((member item 1 :test equal) 1)
{t (cons item 1))))

: SAME-LIST return T if two lists have the same elements,
;else return nil.

1

.
L4

;Input:
; 1l1: one list to compare {
; 12: the other list)
;Returns: .
; A boolean.)
H "
({defun same-list (11 12) k
(cond b
((null 11) (null 12)))
((member (car 11) 12) (same-list (cdr 11) .
(remove (car 11) 12 b
:test equal)))]
{t nil)))
3
;SPLIT splits an even cycle into two halves. Each half
:will either be in the designated class or the antidesignated
;class of a designated partition of a logic's values. Q
: O
; INPUT: by
; cyc - the cycle to split
:RETURNS: ”
; A list of the two halves of the cycle. For example, if ¥
H the cycle is (vl v2 v3 v4), SPLIT will return the list)
; ((vi v3) (v2 vd)). ‘
(defun split (cyc) N
{cond
((null cyec) nil) :
(t (expand-split (car cyc) (cadr cyc) (split (cddr cyc)))))) Y

, Lo . By - . ; U)
N O e X N G TR R O T L Mo AT O s MO O W b .". ..'(‘_-('Nq": i}m:%k NG

VRO R KO AT W 0 W ARSI

109

; EXPAND-SPLIT adds values to each half of a split cycle. For
;example, given (expand-split vl v2 ((v3) (v4)}), the function
;will return ((vl v3) (v2 v4)).

; Input:

: vl - the value to ad4d to the first half of the split.

: v2 - the value to add to the second half of the split.

: 1 - the previously split values.

;Returns:

: A new split list with vl and v2 added.

(defun EXPAND-SPLIT (vl v2 1)
(list (cons vl (car 1)) (cons v2 (cadr 1))))

:GEN-CYCLE-CLASSES generates a list of all the cycle
;classes in the logic.

;Input:

H evencyc: a list of all the even cycles.
;Returns:

; A list of all the cycle-classes.

(defun gen-cycle-classes (evencyc)
(cond
{{null evencyc) odd)
(t (append (split (car evencyc))
(gen—-cycle-classes (cdr evencyc))))))

X, T Y ¥ L X

g A0, N

o, 1 Vo

-

S S

g
-
-

N
%

w

"’ At‘-)Y.

[VUWIRUWURUWUTAVUNY W X, Wy

APPENDIX 4

THE FIND-ASSIGN PROGRAM
Program FIND-ASSIGN determines the assignment of 1logic
values to partition classes using the algorithm developed 1in

chapter four.

H FIND-ASSIGN

:This series of programs finds all possible assignments of logic
;elements to designated and antidesignated classes. We assume
;the conjunction function of the logic is defined as specified
:in the CREATE-LOGIC program and that it is loaded. FIND-ASSIGN
;finds all possible assignments of even cycles in the logic which
;result in well defined conjunction. If there are no such
;assignments, FIND-ASSIGN attempts to find the offending cycles
;and puts them into the neutral class.

(defun find-assign ()
{progn
(setq possible nil)
(setq D nil)
(setqg A nil)
(if (not (boundp 'find-cycles)) (load 'b:cycle))
{find-cycles)
(setg N (flatten odd))
(1f (consp even) (test-assign even nil nil))
(if (and (consp even) (null possible)) (find-fault))
(if (and (consp even) (ccnsp possible))
(do-assign (best-assign possible)))
(terpri)
(princ "Designated values: ")
{prinl D)
(terpri)
(princ "Neutral values: ")
(prinl N)

110

o Pl o

g ~ﬂ-\ ~ .'f\ NN e e
9 » ol L 4 e i) o

S

A A A

G~ s~ T

PR . .-.;'-- .u‘;’- ---"‘\._* n‘ LN 4‘? !

1

AT SR

IDROROUE

: ¢ f ; A oA r
m‘\'lA.’\‘— RSO AN IR A -‘l'g"'o n‘l.'.a...n‘,'ll"l MUK My Mg M MW A ﬁ.. o ¥ g X

[P IO PRRCIIE TEK TLM IO P O A NN R R AE RN A VAR AW PN L VW U UM VW U U U A LA UG U, R,

111

(terpri)

(princ "Antidesignated values: ")
(prinl A)

(terpri)))

;FLATTEN takes a multi-level list and returns a flat list
;in its place.

;Input:

: exp: the expression to flatten

;Returns:

H The flat expression.

’

(defun flatten (exp)
(cond

((null exp) nil)

((atom exp) (list exp))

(t (append (flatten (car exp)) (flatten (cdr exp))))))

:DO-ASSIGN makes the final assignment of values to the
;designated and antidesignated classes.

-
14

; Input:

; alist: the assignment to make in the form ((D) (A))

H where D is the designated values and A the antidesignated.
;Returns:

; The sets D, A and N as globals.

L4

(defun do-assign (alist)
(progn

(setq D (car alist))
(setq A (cadr alist))
alist))

)

:TEST-ASSIGN finds all possible assignments of even cycles and
:tests them to find any resulting in well defined conjunction.
;:All such assignments are stacked in the global location

: POSSIBLE.

;Input:

H evencyc: a list of all the even cycles to be tested.

; D-prime: a test assignment of designated values.

-

Pl

opclcs

LRt 4

KR Loy

N S NN e NN

LR ST R IR A RN K TR A W WO WU R Y PR AR AR T T TR ™

112

A-prime: a test assignment of antidesignated values.

~e ~e

;Returns:
possible: a list of all possible assignments in the
form (((desig) (antidesig)) ({(desig) (antidesig)) ...)

-~ wo wa

(defun test-assign (evencyc D-prime A-prime)
(cond
{(and (null evencyc) (testp D-prime (cddar (cddr (car “)))))
(setq possible (cons (list D-prime A-prime) possible)))
{(not (null evencyc))
(progn
{test—~assign (cdr evencyc) (append D-prime
(classl (car evencyc)))
{append A-prime
(class2 (car evencyc))))
(test-assign (cdr evencyc) (append D-prime
(class2 (car evencyc)))
(append A-prime
(classl (car evencyc))))
possible)}))

;CLASS1 collects all the even numbered elements of an even
;cycle. For example, given a cycle (a b ¢ d e £), Classl would
;return (a ¢ e).

;Input:

; evencyc: the even cycle

;Returns:

: The even half of the even cycle.

({defun classl (evencyc)

{cond

((null &vencwc) nil)

(T (conj'(car evencyc) (classl (cddr evencyc))))))

;CLASS2 selects the even numbered elements from an even cycle.
;Input:

; evencyc: the even cycle to be split

sReturns:

: The odd numbered elements of the even cycle.

iy Ny ATy N v { (' o ™y
R O A MK NN XM N M AN CHN KN MMM MICNOC KM NG HM N Mo A AU RO M A MR ATI S L SR ATy Y

RS S AL IUT L NECLII Y TR g Y AU Rl UG T A AT R AKX ANRKRE AN ER KN RUTANRN LYW, Nl Yal oal Gl ol ogh

113

.
’

(defun class2 (evencyc)

(cond
({null evencyc) nil)
(t (cons (cadr evencyc) (class2 (cddr evencyc))))))

:TESTP returns T if an assignment of elements to the designated
;and antidesignated classes results in well defined conjunction.
;Otherwise TESTP returns NIL.

(defun testp (desig conj)

{cond

({null desig) T)

({null conj) T)

((and

(member (eval (cadar conj)) desig)

{or

{not (member (car (eval (caddr (caar conj)))) desig))

(not (member (cadr (eval (caddr (caar conj)))) desig)))) nil)
(T (testp desig (cdr conjl)l)}))

;BEST-ASSIGN selects the best possible assignment of designated
;and antidesignated values based on the names true, T, false and
;F. BEST-ASSIGN tries to put T or true in the designated class
;and false or F in the antidesignated class.
;Input:
H plist: the list of possible assignments in the form
: ({((D) (A)) ((D) (A)) ... ((D) (A))).
Returns:

The best possible assignment of values to the

designated and antidesignated classes.

~8 “e me <~

(defun best-dssign (plist)
{cond)
({equal (length plist) 1) (car plist))
((and (member 'true vlist) (member 'false vlist))

(find-both 'true 'false plist))
((and (member 'T vlist) (member 'F vlist))
(find-both 'T 'F plist))
((member ‘'false vlist) (find-~f nil 'false plist))
((member ‘'F vlist) (find-f nil 'F plist))

¥

LR I A A

il SR

114

((member 'true vlist) (find-t 'true plist))
{ (member 'T vlist) (find~t ‘T plist))
(T (car plist))))

;FIND-BOTH attempts to find an assignment for which F or false
;is antidesignated and T or true is designated. Failing this,
;FIND-BOTH will try to find where F or false is antidesignated.

;Input:

: desig: the default designated value of the system. This will
; either be T or true.

H antidesig: the default antidesignated value of the system.

H This will be either F or false.

: plist: the list of possible assignments.

sReturns:

: a list of the form ((D) (A)) where D is the designated

: values and A is the antidesignated values.

(defun find-both (desig antidesig plist)

(cond
({(null plist) nil)
((and (member desig (caar plist)) (member antidesig

(cadar plist)})
(car plist))
((find-both desig antidesig (cdr plist)))
(t (find-f desig antidesig plist)})))

;FIND-F attempts to find an assignment where the default anti-
;designated value is assigned to the antidesignated class. If
;this fails, FIND-F attempts to put the default designated
;value in the designated class. If the default designated value
;is nil, there, neither T nor true are elements of the logic.
; ‘
;Input:
desig: the default designated value of the logic system. It
will be either true or T.
antidesig: the default antidesignated wvalue of the logic
system. It will be either F or false.
plist: the list of possible assignments.
Returns:
A list of the form ((D) (A)) where D is the designated
values and A the antidesignated.

~e MP my e wE Se w0~

~e

PRI IR R R R R LA R IR A R R T UN T Y Y T I I Y I LY oYY D

115

(defun find-f (desig antidesig plist)
(cond
((null plist) nil)
({member antidesig (cadar plist)) (car plist))
((find-f desig antidesig (cdr plist)))
(t (find-t desig plist))))

;FIND-T will attempt to find an assignment of logic values to

;partition classes such that the default designated value of

;the system is in the designated class. If this fails, FIND-

;will return the first assignment in the list.

:Input:

H desig: the default designated value of the logic system.
H plist: the list of possible assignments.

sReturns:

A list of the form ((D) (A)) where D is the designated
values and A the antidesignated.

LYY SN

(defun find-t (desig plist)
{cond
{(null plist) nil)
((member desig (caar plist)) (car plist))
((find-t desig (cdr plist)))
(t (car plist))))

; FIND~FAULT will find the elements of a logic's even cycles
;causing the logic to have poorly defined conjunction.

; FIND-FAULT will delete the fewest even cycles from the
;D-A classification and put them in N. FIND-FAULT first
;tries to find an assignment after deleting one even

;cycle from Hhe even cycle list. Then two, three

;As a last resort, FIND-FAULT will put all logic elements
;in the neutral class.

.
1]

:Input:
None although the global EVEN is used.

Returns:
Updated globals EVEN, POSSIBLE and N reflecting the
new values in N removed from EVEN.

~e we we o -~

$'g S5 870 #'p 8’9 47¢ g 079 ¢

-
Jogliaghl %

_.~a| i -

e
"‘O - e .

I I i

T

POE T ar ws

.'

¢

ot

B B]

-

- a

e

L

T T T T D R s

A oath e a4 8ty g*N B N [T N\ Al o arh aVE A B 4t VA atE a¥ia"R ald e’ - ot Yy Wi

116

(defun find-fault ()

{cond

((equal (length even) 1) (adjust-even even))

(T (adjust-even (delete-cycles 1 (C (length even) 1))))))

;C will find all combinations of R items out of a set of N
;distinct items. The formula for this is N!/(N-R)!R!. If N=R
;then C(N,R)=1, if N < R then there are no possible
;combinations. The problem is equivalent to having N balls and
;R boxes. Try to see how many different sets of balls will
;£ill the boxes.

:Input:
: N: the number of elements to choose from
H R: the number of elements to choose.
Returns:

A list of all possible choices.

~e wms wp

{defun C (N R)

(cond

({¢ N R) nil) ;fewer balls than boxes
((= N R) (list (consec N))) ;equal balls and boxes
{{= R 1) (singleton N}) ;only one box

(t (append (app N (C (1- N) (1- R)))
(C (1- N) R)))))

;CONSEC lists the integers from 1 to N if N is positive, else
;it returns nil. For example, (consec 3) would reture (1 2 3).

=
o
]
[~
o

N: the number of consecutive integers to list.
Returns:
The list ff consecutive integers.

e e NP ws wp ~g

{defun consec (N)

(cond

((<= N 0) nil)

((= N 1) '(1))

(t (cons N (consec (1- N))))))

; SINGLETON lists individual numbers from 1 to N in individual
;lists. For example, (singleton 3) would return ((1)(2)(3)).

vk atdiaty aig giet

-_-

- .

- -

X X X Pl s ey -

O O

C N

AP HERE C R EV S N

I L AR A IR LA R RS X RN

; Input:

: N: the number of singletons to create y
;Returns: :
: The list of singleton lists.

-
’

(defun singleton (N)

(cond

{({<= N 0) nil)

(t (cons (list N} (singleton (1- N))))))

S a-aa—N—r—

;APP appends N to each list in L. For example, (app 4 '
:((3 2) (3 1) (2 1))) would return ((4 3 2)(4 3 1)(4 2 1)).

.
14
-
’

Input:
N: The number to append to each list
L: The list to append to

Returns:
A list of the appended lists.

o om o

e we w3 v =

(defun app (N L)
(cond

((zerop N) L))
((null L) nil)

(t (cons (cons N (car L)) (app N (cdr L)))))) !

;ADJUST-EVEN will remove elements from even cycles and place
;then in class N.

Input:
l: the list of even cycles h
Returns:
Updated EVEN and N as globals.

® we W we wa o

’

(detunﬁgpjusé-even (1)

(if (coltesp 1) (progn
(delete (car 1) even :test equal)
(setq N {append (car 1) N))

{adjust-even (cdr 1)))))

L -

;DELETE-CYCLES tries to find a possible assignment of
;elements to classes D and A by deleting even cycles

-y g = 1 ., 5, . 4 i ‘ H ¥ I W,
R N L e L R A T A L L TN I i e T X M OO M e

RIBLARTAINTCR TR IR U ME W AU AR SRS RN RO N T AN o o RN A TIOY PRI o TN

118 “'.
o,
;and putting them in N. DELETE-CYCLES starts off deleting ﬁ
;one cycle at a time, then two ... As a last resort, !.
;DELETE-CYCLES will put all elements in class N. ':
H ':.:
;Input: wq
; num: the number of cycles to delete from even. !ﬁ
: combos: all possible combinations of num elements R
: to be deleted from the even cycle list. For example, ;ﬁ
: if num is 2 and there are 4 even cycles, combos would .ﬁ
; be the list ((1 2) (1 3) (1 4) (2 3) (2 4) (3 4)). E,.?
; Every possible combintaion of two elements would be o
: removed from even until one combination was found to)
; result in well defined conjunction. ﬁ
;Returns: '$
: A list of the even cycles to be deleted from EVEN. The éﬁ
H elements from these same cycles will be added to class N. .&
: ’
(defun delete-cycles (num combos) ﬁ
(cond m
((equal num (length even)) even) ﬁ
((null combos) h'

(delete~cycles {1+ num) (C (length even) (1+ num))))

{(test-assign (remove-cyc (car combos) even) nil nil)
{list-cyc (car combos) even)) Y

(t (delete-cycles num (cdr combos)))))

;REMOVE-CYC removes the elements of 11 from 12.

;)
’ “

;Input: A
: 11: the list of elements to remove :$
: 12:the list to remove them from i
;Returns:)
;: The list 12 with elements from 11 removed. '%
; A "
(defun remove-cyc (11 12) ﬂﬁ
(cond)
({null 11) 12) 3
(T (remove-cyc (remove (car (last 11)) 11 :test equal) <
(remove (nth (1- (car (last 11))) 12) g

12 :test equal))))) ~d

W

;LIST-CYC lists the elements of 12 numbered in 11 with ?r
"

o

a one origin.

Input:
11: the list of element numbers to list
12: the list of elements to list
Returns:
A list of the elements.

NP Ne mE Ne wp Sa wp w»

(defun list-cyc (11 12)

{cond

({null 11) nil)

(T (cons (nth (- (car 11) 1) 12) (list-cyc (cdr 11) 12))})})

LM TONRE RN R RO R WL/ W-ATN U WU VWA U URAT U U ATV WA RITAN KU R X AN ENE NN AN MU X VN UKL FURY YUNU WL WUV WVUWUORTY

3;‘.
W
0,
i
t
2
{
f
APPENDIX 5 ﬁ
)
§
¢
Y
THE CLASSIFY PROGRAM i
1,
Program CLASSIFY determines where in the hierarchy developed '1
(
in chapter five logic systems fit. CLASSIFY tries in turn: ;
s
0
v
lattice, poset, momoid and algebra. All logic systems default to g

algebra if they don't fall into any of the three other

categories.

: CLASSIFY

1CLASSIFY determines where a logic fits into the hierarchy ,
;0f designated logic systems. The logic may be a lattice, a ;
;poset, a monoid or an algebra. Classify also finds the

;designated and antidesignated values of a logic. %

; %

{defun classify () 2

(progn K
(if (not (boundp 'find-assign)) (load 'b:assign))

(find~-assign) !

(setq even nil) .

(setq odd nil) ;

(cycle vlist) "

{cond .

{(latticep) (progn Iy

+ (terpri) b

(princ "Elements form a lattice. ") “)

(terpri) '

{print-order (orderup vlist (make-and-slist vlist .

(init-slist vlist)))) \

(terpri))) 5

({(posetp (make-~and-slist vlist (init-slist vlist))) by

(progn A

(terpri) .

.'

o

ol

120)

e Tl 3 4

e 0 e A i e T P R
o S e e e o A Lo b oy T L N D Lot

Gat pd . w g"hbe PaTRYa RS BTa K¥a g8 3. % 800 &%y BV $0s @i 3Ya A% by % “a.8%. 6% 4Y i 80 82 408" 2.0 Al kot Balt® IR ETRTR)

121

({princ "Elements form a poset. ")
{terpri)
(print~-order (orderup vlist
(make-and-slist vlist (init-slist vlist))))
{terpri)))
({and (assocp vlist vlist vlist)
({find-idents vlist (gen-cycle-classes even)))
{progn
(terpri)
{princ "Logic is a designated monoid with identities: ")
(print (find-idents vlist (gen-cycle-classes even)))
(terpri)))
(¢t (progn
(terpri)
(princ "Logic is a designated algebra.")
(terpri))))))

;PRINT-ORDER will print out logic values in 'least true' to
; 'most true' order.

;Input:

; ord: a list of the ordered logic values

;Returns:

: The list printed to default output sink

’

{defun print-order (ord)
{cond
({(null (cdr ord)) (prinl (car ord)))
(t (progn (prinl (car ord))
{princ " <<= ")
(print-order (cdr ord))))))

; LATTICEP

;Given a set of logic values and the functions AND (") and OR
;(v), These functions will find a possible ordering of the
;values.

.
’

;O0rder the current logic system using the current AND (") and OR
; (v) functions. Returns the order of the arguments if there is
;one, else returns the possible orderings.

.
[4

(defun latticep ()

“—.‘Q —

T

W
-

s S T SO IR

O W I R T U P U U WU WU TR AR TR X (S R TS X IO e gy » $a7 80% 0" bat Gat $a® bu* 0a0 §.b 4 S BV " Sa® Ba? it Ma¢ _pa® gat

- W W W

122

(and (posetp (make-and-slist vlist (init-slist vlist)))
(equal-order (orderup vliist
(make-and-slist vlist ({(init-slist vlist)))
(orderup vliist
(make-or-slist vlist (init-slist vlist))))))

;Determine if two orderings are identical.
:Input:
H ol: an ordering of logic values of the form ((...)¢{(...)(...)
; 02: ditto
Returns:
T if the orderings are identical, otherwise Nil

~r w~p w3

(defun equal-order (ol o2)

(cond

((null ol) (null o2))

{{same-list (car ol) (car o2)) (equal-order (cdr ol) {(cdr o2)))
(t nil)))

;Order all elements in a logic system from the least to the most
;'true.' Logic elements on the same level will be listed
;together. Use the function AND to determine order.

;Input:

H arglist: the list of logic wvalues to order

: slist: a list of the form ((x1 (...))}(x2 (...})) ...)

: such that the xi are greater than or equal to any

: element in their association list.

:Returns:

H The ordering of the input argument list.

-
’

{defun orderup (arglist slist)
(cond
((null arglist) ni.)
((equal (length arglist) 1) (list arglist))
{t (cons (setq min (find-min slist vlist (length vlist)))
(orderup (new-arglist min arglist)
(new-slist min slist))))))

;make an association list of all logic values and a list of all
;other logic values less than it.

.
’

IO veataatidal gl .~ : A

Aa-t A

z }..F’ AT E

X
-

-
Pt R

LK o F

P

x

»
Mo o)

.

> e
P

A

ST B

" SR

TG e e W e

et W e o

L a0 L G VST ROV G L S U] WIS R SIS CR AR R AT S CHRER LR SO e SO R TR, W

Lol Bt d a9 ey 8 8 8 R e g 0T V0" e i g ¥ a By ath"a e e g9 1t Gav fot- O N R IR N IR T T T O

123

;Input:
: args: the list of logic values.
; slist: An association list of the form

; {((x1 (...))
H (x2 (...))

; (xn (...))

: as described above.

; Returns:

; The association list based on the function AND (7)

{defun make—-and-slist (args slist)
(cond
{{null args) slist)
(t (make-and-slist (cdr args)
(make~and-slist2 (car args) vlist slist)})))

;find all possible values of (argl ° arg2) and enter the resulst
;in the respective slists for each element

-
r

;Input:

; argl: The first argument for ANDing to every possible logic
; value.

; arg2: The list of all possible second arguments for ANDing.

slist: The list thus far of logic association lists
Returns:
The slist updated for argl.

~e

-e ws o~

{defun make -and-slist2 (argl arg2 slist)

(cond .

((null arg2) slist)

(t (make~and-slist2 argl (cdr arg2)
(add-arg (° (list argl (car arg2))) {(car arg2)
(add~arg (° (list argl (car arg2))) argl slist))))))

:Make a list of all values less than the current value using the
; function OR.
;ditto input and output for make-and-slist

.
14

A B N

VAN

S X AL

'
124 o,
-
h
(defun make-or-slist (args slist) h
(cond L
({null args) slist) Y
(t (make-or-slist (cdr args) (make-or-slist2 (car args) -4
vlist slist))))) J
t
;Find all values in arg2 less than or equal to argl and update o
:slist to reflect these changes. It
;Ditto input and output for make-and-slist2 ?
H ¢
(defun make-or-slist2 (argl arg2 slist) 2
(cond :‘
((null arg2) slist) *«
(t (make-or-slist2 argl (cdr arg2))
(add-arg argl (V (list argl (car arg2))) v
(add-arg (car arg2) (v (list argl s
{car arg2))) ?‘
slist)))))) X
A0
N
;add argl to arg2's slist if it is not already a member Pz
; Input:)
: argl: the logic value to be added to argl's association)
; list. o
; arg2: the logic value whos association list will be updated. Q
: slist: the association list to be updated. N,
:Returns: s
; The updated slist. z'
{defun add-arg (argl arg2 slist) w
(cond)
((equal (caar slist) arg2) Y
(cond !
((member argl (cadar slist)) slist) .
(t (cons * =
(list arg2 (cons argl (cadar slist))! ;f
(cdr slist))))) Tl
(t (cons (car slist) (add-arg argl arg2 (cdr slist)))))) Li
\ ¢
;initialize the slist to (({x1 ()) :’
: (x2 ()) ... (xn ())) o~
:Input: ;‘
; arglist: the list of logic values .
N
‘I
\J
hut
b
-

I RITRITR,, RN RARN X K S WYR XY N XARAY - R P AR 2 D B BB Rl B el » <, . N e . . B . <
3 . Pl T b 0y b -

125

.l

;Returns:
: The initialized association list.

{defun init-slist (arglist)

Fog™ ™™ot ™ N

({cond
((null arglist) nil)
(t {(cons (cons (car arglist) '(())) (init-slist

{cdr arglist}}))))

-
O -

N ;return T if two lists have the same elements, else return nil

.
4 d

-

; Input:
0 : 11: one list to compare 3
g : 12: the other 1list ¥
: ;Returns: (3
0 ; A boolean. N
i (defun same-list (11 12)]
3 (cond \
K ((null 11) (null 12))
J ({member (car 1l1l) 12) (same-list (cdr 11) g
. (remove {(car 11) 12
. :test equal)))
: (t nil))))
: !
g ;return the set of minimum values in a list.
;Input: *
: slist: the association list for each logic value. by
; minlist: the current list of minimal logic values.)
: len: the number of logic values 'less' than the current b
. ; minimal logic values,.
! ;Returns: By
& ; The list jof minimal logic values. >
h

X (defun find-min (slist minlist len)
{cond
({null slist) minlist)
((< (length (cadar slist)) len)
(find-min (cdr slist) (list (caar slist))
{length (cadar slist)))) :
({(equal len (length {(cadar slist)))

A e T

v

9
]
¢

Ve s

RIOREMOI0 * (AN 0 A AP LY IS | LT AN LIULTLY nvn'
M A D R RS R AR R SRS RSN SRS VS RO OGN N N D';'C‘»‘C’t‘t‘- WY D‘:‘l‘- l'.‘l’.‘ W A 0‘0 AN “n, AL, (W .u‘ .l."i X m

126

(find-min (cdr slist) ({(cons (caar slist) minlist) len))
(t (find-min (cdr slist) minlist len)}))

;delete an association list entry from a list

:Input:

H key: the logic value whos association list is to be deleted.
: slist: the list of association lists.

;Returns:

: The updated association list.

-
’

(defun delist (key alist)

{cond

((assoc key alist) (remove (assoc key alist) alist :test equal))
(t alist)))

;delete all association lists of minlist from slist
;return the new slist

;Input:
H minlist: the list of minimal values whos association lists
: are to be deleted.

: slist: the list of association lists.

(defun new-slist (minlist slist)

{cond

{{null minlist) slist)

(t (new-slist (cdr minlist) (delist (car minlist) slist)))))

;delete elements of minlist from arglist and return resulting

;arglist.

;Input:

H minlist: the list of values to be deleted from the arglist.

: arglist: the remaining list of logic values to be ordered.

;Returns: 4

H The updated argument list.

(defun new-arglist (minlist arglist)

{cond

((null minlist) arglist)

({t (new—-arglist (cdr minlist) (remove (car minlist) arglist
:test equal)))})

"

|

L
R R AL CRAR LR VR TR LN, i EE R G '“}{{('{}éxﬁkg

O\

LR R R AR X N RN RN TN KN 200 T TUN AN AN T N O AR AR N IO R R O K A R R T R O O e o T

127

;ASSOCP determines if a conjunction function is associative
;by testing the equivalence of (a ~ b) - c¢c with a =~ (b ~ ¢)
;for all possible a's b's and c's.

-
r

;Input:

: avlist: the list of possible values for a

; bvlist: the list of possible values for b

: cvlist: the list of possible values for c
;Returns:

H T if the conjunction function is associative and
; nil otherwise.

-
r

(defun assocp (avlist bvlist cvlist)
(cond
{(and (consp cvlist) (is-assoc (car avlist)
{car bvlist)
{car cvlist)))
(assocp avlist bvlist (cdr cvlist)))
((consp c¢vlist) nil)
((and (null cvlist) (consp (cdr bvlist)))
(assocp avlist (cdr bvlist) vlist))

((and (null cvlist) (null (cdr bvlist)) {(consp (cdr avlist)))

(assocp (cdr avlist) vlist vlist))
(t £)))

-

;IS-ASSOC returns t if (a ~ b) ~ ¢ = a {b

-~

c).

H
)
e
]
'

a,b,c: the three logic values to test
Returns:
T if they are associative, else nil.

. wp e wms we e

(defun is-assoc (a b c¢)
(equal ¢* (list (° (list a b)) c))
% (1ist a ((1ist b ¢))))))

;POSETP returns T if a logic can be represented as a poset,
;otherwise POSETP returns nil.

3

;Input:
: slist: the association list of logic values to other
: values <= to it.

et -‘

SAE S m s

L

RIS UMK MM AN, PSRN RN ..‘l..'l,, N \‘4‘ A «l.q L) .\'..q‘. .'P o ,.' l’.ui. 3, - 0.0 -)' y

128

;Returns:
: T if the logic is a poset, else nil.

(defun posetp (slist)

{and (transitivep vlist slist)
(reflexivep slist)
(antisymmetricp vlist slist)))

;TRANSITIVEP returns T if the relation defined by conjunction
;is transitive. If a <= b and b <= ¢ then a <= c¢.
; Input:
; args: the list of elements to test.
; slist: the association list representing the <= relation
;Returns:
: T if the relation is transitive, else nil.
(defun transitivep (args slist)
{cond
((null args) t)
({{not (trans2 (car args)
{cadr (assoc (car args) slist)) slist)) nil)
(T (transitivep (cdr args) slist)})))

; TRANS2 determines if a <= b and b <= c means a <= ¢ for a
;specific ¢ in the logic.
; Input:
x1l: the specific ¢
xllist: all values in the logic <= x1
slist: the <= relation
Returns:
T if a <7 b and b <= x1 implies a <= x1 for all a, b
in the logic. Otherwise nil.

.6 N s Ne me ve ~s

(defun trans2 (x1 xllist slist)
{cond
{(null x1llist) ¢t)
{{not (sublist (cadr (assoc¢ (car xllist) slist))
(cadr (assoc x1 slist)))) nil)
(t (trans2 x1 (cdr xl1llist) slist))))

A

OO OO

129

;SUBLIST returns T if 11 is a sublist of 12, else nil.
s Input:
; 11: the prospective sub~list
H 12: the prospective super-list
:Returns:
: T if every element of 11 is an element in 12, else nil.
(defun sublist (11 12)
{cond
((null 11) t)
{(not (member (car 1l1l) 12 :test equal)) nil)
(t (sublist (cdr 11) 12))))

:REFLEXIVEP returns T if x <= x for all x in the logic.

.
’

;Input:

: slist: the list representing the <= relation.

;Returns:

H T if the relation is reflexive, else nil.

(defun reflexivep (slist)

{(cond
{(null slist) t)
((not (member (caar slist) (cadar slist) :test equal)) nil)
(t (reflexivep (cdr slist)))))

; ANTISYMMETRICP determines if the relation is
;antisymmetric.

:Input:
H args: the list of logic values to test
; sligt: the relation

: T if the relation is antisymmetric, else nil.

{defun antisymmetricp (args slist)
{cond
((null args) t)
((not (symm2 (car args) (cadr (assoc (car args) slist))
slist)) nil)
(t (antisymmetricp (cdr args) slist))))

;:SYMM2 determines if x <= y and y <= x for a specific x.
;Input:
: x1l: the specific x
; xllist: the list of all elements <= x1
: slist: the relation
;Returns:
H T if Xx <= y and y <= x implies x = y for all y in
H the logic.
(defun symm2 (xl1 xllist slist)
(cond
((null xl1llist) t)
((and (not (eqgual x1 (car xllist)))
(member x1 (cadr (assoc (car xllist) slist))
:test equal)) nil)
(t (symm2 x1 (cdr x1llist) slist))))

;FIND-IDENTS finds all the identity elements in the logic.
;Element e is an identity element if e “ X = x ~ e = X' where
;X and X' are in the same cycle-class for all x in the logic.
; Input:

; vals: the remaining logic values to check.

H clist: a list of all the cycle-classes in the logic.
;Returns:

A list of all the identity elements in the logic. If there
are none, returns nil.

-8 wo «o

(defun find-idents (vals clist)
{cond
((null vals) nil)
((checkl (cdr vals) vlist clist)
(cons (car vals) (find-idents (cdr vals) clist)))
(t (find-idents (cdr vals) clist))))

;CHECK1 checks to see if arg is an identity element of the
;logic;

arg: the element to be tested as an identity

LR LG

A R R R R R A R R T R R R N T 0.8 ' 4ad e

131

H argiist: all the values to check againsc
: clist: a list of all the logic's cycle-classes
;Returns:
H T if arg is an identity element, else nil.
(defun checkl (arg arglist clist)
{cond

{(null arglist) t)

({not (member (car arglist)

(find~cycle-class ("~ (list arg (car arglist)))
¢clist))) nil)
(t (checkl arg (cdr arglist) clist))))

; FIND-CYCLE-CLASS finds the cycle-class of arg.

-
14

;Input:
H arg: the element whose cycle-class is to be found.
; clist: the list of all the logic's cycle-classes.

;Returns:
; The cycle-class of arg, or nil if there is none.
{defun find-cycle-class (arg clist)
(cond
((null clist) nil)
{ (member arg (car clist)) (car clist))
(t (find-cycle-class arg (cdr clist)))))

rd
- L oy

- e

S

P LA A

RO M MR AN R PR AR M : ' Lt PL . , :
B R O O O O X M O I O I RS AN n T O TN OMY M)

AU I T LI R AT I R U R T, L R R R N L TN TV W U SR PO A R R TR Y X AR VY Ua R taveta-ql gl
[} » CRN AT N RN T L J

BIBLIOGRAPHY ':‘

(4

h

Aristotle. Prior Analytics, trans. H. P. Cooke and H. $ﬁ
Tredennick. London: William Heinemann Ltd., 1967. N

e

Church, Alonzo. Introduction to Mathematical Logic. ‘é

Priceton: Princeton University Press, 1956. ¢3

'.Q:,,

'

Copi, 1Irving M. Introduction to Logic. New York: Macmillan &
Publishing, 1972. '

"

v !

Grimaldi, Ralph P. Discrete and Combinatorial Mathematics. ‘ﬁ

Reading: Addison-Wesley Publishing Co., 1985. ﬁ%

0’(

Haack, Susan. Deviant Logic. Cambridge: Cambridge University o
Press, 1974. ool

)

o

. Philosophy of Logics. Cambridge: Cambridge (&
University Press, 1978. v

WE

Hilbert D. and Ackermann, W. Principles of Mathematical ﬁ:
Logic. New York: Chelsea Publishing Co., 1950. 55

g‘(

&

Kneale, William and Kneale, Martha. The Development of R
Logiz. Oxford: Clarendon Press, 1984. R

)

.\

Langer, Susan K. An Introduction To Symbolic Logic. New N

York: Dover Publications, Inc., 1953. iQ

(3

Lipschutz, Seymour. Discrete Mathematics. New York: McGraw-)

Hill, Inc., 1976. it

. o

Liu, €. L. Elements of Discrete Mathematics. New York: t“
McGraw-Hill, Inc., 1977. ;

(X3

. Introduction to Combinatorial Mathematics. New 'ﬁ

York: McGraw-Hill, Inc., 1968. .ﬁ

N

¢

Lt

4

132 Y

AT AATEAALA . . e N .o -
T e e T T A A R

Ll e e BT dva gt A Aty Bia hty @Vh Bip Bip 8%y g 300 455,070, 0°0 8 0 40 R R e 'R 0 0 B S0 R 0 gat o0 90 9a0 0,8 .0 9 §.7 gl $.¥ ¢ %202 0" 00 62" W ¥

133 ¢

Moussavi, Massoud. Modeling Rule-Based Systems Using a Six
Valued Logic. Research Proposal. George Washington
University, 1986.

Post, E. L. "A General Theory of Elementary Propositions."” The
American Journal of Mathematics, xiii (1921), 163-
185.

Rescher, Nicholas. Topics in Philosophical Logic. Dordrecht:
D. Reidel, 1968.

Many-valued Logic. New York: McGraw-Hill, Inc.
1969.

Rosenbloom, Paul C. The Elements of Mathematical Logic. New
York: Dover Publications Inc., 1950.

Ross, Kenneth A. and Wright, Charles R. B. Discrete
Mathematics. Englewood Cliffs: Prentice-Hall, Inc.,

‘ 1985.
; Russell, B. and Whitehead, A. Principia Mathematica.

Cambridge, 1910.

Stanat, Donald F. and McAllister, David F. Discrete
Mathematics in Computer Science. Englewood Cliffs:
Prentice-Hall, Inc., 1977

Stolyar, Abram Aronovich. Introduction to Elementary
Mathematical Logic. Hanover: Halliday Lithograph
Corp., 1970.

Turner, Raynmond. Logics for Artificial Intelligence. West
Sussex: Ellis Horwood Limited, 1984.

Winston, Patric H. Artificial Intelligence. Reading: Addison
Wesley, 1984.

AN

AR . s 8 v N p 1] i b) . P P v 3 R
o LT G VR O A T T S A Ve P, T L G P ooty et e

