
SECURITY CLASSIFICATION OF'THIS PAGE ("a~nhaise!neAed), Mrlf. F11 F COPY-
REOTDOCUMENTATION PAGE READ INSTRUCTIONS

REPORT NUMBER2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

AFIT/CI/NR 88- 4 b
4. TITLE (and Subtitle) 5. TYPE OF REP-OFT &PERIOD COVERED

A, CLA5JIfCATi0J 0 1CAATED MS THESIS

LoGIC SY5TVA3 6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(&) 0. CONTRACT OR GRANT NUMBER(s)

PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT. TASK
AREA & WORK UNIT N4UMBERS

00 AFIT STUDENT AT: 'yACusk upVrj~si-r

CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

(0 1988
* 13. NUMBER31F PAGES

1. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) IS. SECURITY CLASS. (0f this report)

Wright-Patterson AFB OH 45433-6583 UCASFE
I5a. DECLASSIFICATION/ DOWNGRADING

SCHEDULE

DISTRIBUTION STATEMENT (of this Report)

DISTRIBUTED UNLIMITED: APPROVED FOR PUBLIC RELEASE D[
ELECTE

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different from Report)

SAME AS REPORT

D
IS.SUPLEENARYNOES Approved for Publi elease: IAW AFR 190-1

LYNN E. WOLAVER i 4
Dean for Professionalf Development
Air Force Institu of T echnolog
Wright-Patterson AFE OH 45433-6. 3

19. KEY WORDS (Continue on reverse side if necessary and identify by block num ber)

20. A13STRACT (Continue on reverse side If necessary and Identify by block number)

ATTACHED

8 81
DD I FA 7 1473 EDITION OF I NOV 65 IS OBSOLETE UNCLASSIFIEPJ

SECURITY CLASSIFICATION OF THIS PAGE (&hen Data Entered)

,. *1 4 .. ,f. . *
*~~ ~~ ?4 V ~:

4 .~~~ 1 4W Kx* '' ~ 44

I*~~~~d 111, ,~. I.4

(ABSTRACT

Logic systems can be defined using a trichotomized rather

than the dichotomized universe used in classical logic. We

partition these designated logic systems using the negation (or

complement) function into the designated, ancidesignated an"

neutral logic classes.

The complement function alone is not sufficient to

uniquely determine an assignment of logic elements to partition

classes. Using a modified definition of conjunction within the

designated logic system framework we can uniquely determine an

assignment up to equivalence for any designated logic system.

We build a hierarchy of mathematical systems to describe
CO 1)'n"'-

properties found in some common designate'logic systems.

Starting with a simple algebra and imposing constraints we end up

with an order defined for some of the designated logic systems.

Using this hierarchy we find the number of conjunction functions

homomorphic to classical logic when only designated and

antidesignated values are conjoined. The logic systems described

by these twelve homomorphisms are designated logic systems

closest in behavior to classical logic.

vxvx--

A Classification of Designated Logic Systems

By

Kelly Ann Shaw

B.S. June 1983, Syracuse University

A Thesis submitted to

The Faculty of

The Graduate School of Engineering and Applied Science
of The George Washington University in partial satisfaction
of the requirements for the degree of Masters of Science

February, 1988

Thesis directed by
Oscar N. Garcia

Professor of Electrical Engineering and Computer Science

Acces Gcn For

NTIS CRA&I

DTIC TAB _1

INSPECTEQ~

2
..

B.i; ,.ii Cucs

0! i t ',,:a d o

TABLE OF CONTENTS

PREFACE...........................v

LIST OF ILLUSTRATIONS..................vii

LIST OF TABLES.....................viii

ABSTRACT..........................X

Chapter

1. INTRODUCTION.....................1

2. DESIGNATED LOGIC SYSTEMS...............4

2.1 Modal and Deviant Logics............4

2.2 Truth Values and Rul~es of Inference . . . 6

2.3 Other Functions in Logic Systems 7

2.4 Designated and Antidesignated Truth Values 9

2.5 Designated Logic Systems 11

2.6 Examples...................13

2.7 The CREATE-LOGIC Program...........15

2.8 Summary...................19

3. ASSIGNING LOGIC VALUES USING COMPLEMENTATION . 20

3.1 Complement Cycle Patterns..........21

.3.2 Fartiticaing ~~L..i~~ Using Cycles . . 26

3.3 Cycle-classes of Logic Elements 29

3.4 The FIND-CYCLES Program ..

3.5 Summary 34

4. FINDING A PARTITION USING CONJUNCTION 36

4.1 Conjunction in Designated Logic Systems 36

4.2 Equivalent Partitions 43

4.3 Identity Elements and the Supremum 49

4.4 Zero Elements and the Infimum 52

4.5 An Algorithim for Partitioning All Designated
Logic Systems 55

4.6 The FIND-ASSIGN Program 60

4.7 Summary 63

5. A HIERARCHY OF DESIGNATED LOGIC SYSTEMS 64

5.1 Designated Algebras 64

5.2 Designated Monoids 65

5.3 Ordered Designated Systems 66

5.4 The CLASSIFY Program 71

5.5 Summary 73

6. CONJUNCTION HOMOMORPHISMS IN THE DESIGNATED

HIERARCHY 74

6.1 Conjunction Classes in Designated Logic
Systems 74

6.2 Conjunction in Designated Algebras 77

iii

6.3 Conjunction in Designated Monoids . . . 77

6.4 Conjunction in Ordered Designated Systems 79

6.5 Examples 62

6.6 Summary 82

7. CONCLUSIONS 84

Appendix

1. LOGIC SYSTEM DEFINITIONS 87

2. THE CREATE-LOGIC PROGRAM 90

3. THE FIND-CYCLES PROGRAM 105

4. THE FIND-ASSIGN PROGRAM 110

5. THE CLASSIFY PROGRAM 120

BIBLIOGRAPHY 132

iv

PREFACE

When Dr. Garcia and I began research on this paper over a

year ago we started with the idea of using non-classical logic

systems in a concrete Computer Science application. We were

motivated towards the study of non-classical logic by the

research of Mr. Moussavi. He found that classical logic, because

it lacked the capability of dealing with unknown quantities, was

inadequate to the task of modeling rule based systems. This gave

us a concrete example of the usefulness of non-classical logic

systems.

As we began to study the topic, however, we found that

some of our most basic questions were not answered in the

literature. Some of these questions were:

'What is a rule of inference?'

'What is a truth value?'
'What differentiates a logic system from an algebra?'

'What characterizes a logic system?'

As we searched for answers the nature of our research

changed. We were no longer searching for an application, we were

searching for the nature and definition of a logic system with

the hope of working with these systems in a mathematical (or at

least non-philosophic) mode.

V

This paper is the fruit of our research. Although our

results can't as yet be used in any concrete practical

application, we think they provides a sound basis for

understanding non-classical logic systems.

I would like to thank the Air Force Institute of

Technology for funding this research.

vi

p

6

p

ILLUSTRATIONS

Figure Page

1. Two Classifications of Designated Logic Systems 13

2. Two Partitions of Two-valued Logic Systems 14

3. Two Partitions of Three-valued Logic Systems 14

4. Three Partitions of Four-valued Logic Systems 15

5. Cycle Patterns For a Set of Three Elements . . . 22

6. Cycle Patterns For a Set of Five Elements 23

7. Cycle Patterns For a Set of Five Elements 25

8. P3 With Cycle Pattern 3 28

9. Two Possible Partitions of K3 29

10. The Partition of K3 38

11. The Partition of B3 40

12. Equivalent Assignments in L4 46

13. The Partition of ILL6 60

14. A Graph of Table 23 67

15. A Graph of Table 24 69

16. M6 Represented as a Lattice 70

17. A Hierarchy of Designated Logic Systems 74

vii

LIST OF TABLES

Table Page

1. The Principle of Excluded Middle in L3 10

2. Complementation in P3 27

3. Complementation in K3 28

4. Complementation in M6 30

5. Complementation in P4 31

6. A Complement Function Which Is Not a Permutation . 33

7. Complementation and Conjunction in K3 38

8. Complementation and Conjunction in B3 39

9. Complementation and Conjunction in P4 40

10. Comolementation and Conjunction in SL3 42

11. Equivalent Conjunction Fnctions in SL3 44

12. Complementation and Conjunction in L4 45

13. Equivalent Conjunction Functions in L4 46

14. Non-Equivalent Conjunction Functions in K3 47

15. Four Mappings of Complementary Cycle-classes in

P4 47

16. Non-Equivalent Conjunction Functions in P4 48

17. The Supremum in P4 50

viii

18. The Supremum in L4..................51

19. The Infimum in P4.................53

20. The Infimum in L4.................54

21. Complementation and Conjunction in ILL6.......59

22. Comnplementation and Conjunction in CYC4.......66

23. An Ordered Conjunction Function..........67

24. Conjunction For Example 5-3.............68

25. Conjunction and Disjunction in M6.........70

26. Conjunction and Disjunction in B3.........71

27. A Conjunction Table For Classes D, N and A 76

28. Function && With Classical Agreement.........76

29. &&in a Designated Algebra..............77

30. &&When Conjunction Has an Identity Element . .. 78

31. && in a Designated Monoid When N && N = A 79

32. &&in an Ordered Designated System..........81

ix

ABSTRACT

Logic systems can be defined using a trichotomized rather

than the dichotomized universe used in classical logic. We

partition these designated logic systems using the negation (or

complement) function into the designated, antidesignated and

neutral logic classes.

The complement function alone is not sufficient to

uniquely determine an assignment of logic elements to partition

classes. Using a modified definition of conjunction within the

designated logic system framework we can uniquely determine an

assignment up to equivalence for any designated logic system.

We build a hierarchy of mathematical systems to describe

properties found in some common designated logic systems.

Starting with a simple algebra and imposing constraints we end up

with an order defined for some of the designated logic systems.

Using this hierarchy we find the number of conjunction functions

homomorphic to classical logic when only designated and

antidesignated values are conjoined. The logic systems described

by these twelve homomorphisms are designated logic systems

closest in behavior to classical logic.

x

CHAPTER 1

INTRODUCTION

When thinking of 'logic' we tend to think in Aristotelian

terms, or in terms of the Principia Mathematica (Russell and

Whitehead, 1910]. The world becomes dichotomized into 'that which

is true' and 'that which is false.' There are, however, an

infinite number of non-classical logics which lend themselves to

real world problems. For example, the future contingency

statement "there will be a sea battle tomorrow" would have the

value 'unknown' in some non-classical logics since its value

cannot be defined without the use of modal operators in an

extension of classical logic.

We would like to be able to answer two questions about any

Computer Science application using a non-classical logic system:

'what kind of logic do we have,' and more importantly 'what kind

of logic do we need?' To do this we must first understand the

structure of non-classical logics and find how they are both

similar to, and different from classical logic. In other words,

we must classify them.

In chapter two we introduce designated and antidesignated

1

2

logic values and define Designated Logic Systems giving sore

examples of how some of the deviant logics fit into this

framework.

In chapter three we partition the designated logics into

three classes (designated, antidesignated and neutral) using th-

negation (complement) function. Using the cycles of a permutation

there are a finite number of classes for any finite logic system

enumerated by a regular generating function (the same function

used to count integer partitions).

In chapter four we use the logic's conjunction to uniquely

determine an assignment of logic elements to partition classes up

to equivalence.

In chapter five we build a hierarchy of mathematical

systems which characterize properties of the designated logic

systems. We use this hierarchy in chapter six to examine a

special class of Designated Logic Systems whose behavior is

homomorphic to classical logic when conjoining designated and

antidesignated values. The twelve resulting conjunction functions

are closest to classical logic of all the designated logic

systems when the neutral class is not empty.

Neither permutations, classifications nor mathematical

1111 11115-11 1 !! -F I 1S .11 f I I1 1

3

hierarchies are new. We hope their use co classify and partitic-n

Designated Logic Systen's illuminates the nature of these syster"s

and leads to a better understanding of their possible uses in

applications of Computer Science.

CHAPTER 2

DESIGNATED LOGIC SYSTEMS

Usually, when we think of logic systems, we think of two

valued classical logic. There are, however, an infinite number of

logic systems which extend or modify classical logic. In this

chapter we will introduce several non-classical logics and define

terms used to describe Designated Logic Systems.

2.1 Modal and Deviant Logics

Non-classical logics fall into two categories: modal

logics and deviant logics (Haack, 1974]. While modal logics

extend classical logic, deviant logics deny some principle of

classical logic.

Susan Haack, in her Philosophy of Logics (Haack, 1978],

defines modal logic systems as those logics sharing the same

vocabulary and valid formulae as classical logic but having

additional quantifiers and inferences valid in its system. The

set of theorems in classical logic is a subset of the set of

theorems in a modal logic. Two modalities she discusses in detail

are 'necessary' and 'contingent' formulae. For example, in

4

5

classical logic proposition p may be either true or false. When

preceded by the 'necessary' modal, as in 'necessarily p,

proposition p is always true (Haack, 19781.

Paraphrasing from Rescher, modal logic results when

propositional logic formulae are subject to a general form of

quantification (Rescher 1968]. Rescher does not limit

quantification to the traditional existential and universal

quantifiers we normally associate with the predicate calculus.

For Rescher, a modal can be any quantifier used in the form

'<modal operator><logic formula)' as in the formula "It is

necessary that p => p."

Aristotle formulated the two classical modalities,

apodeictic (necessarily) and problematic (possibly) (Aristotle,

Prior Analytics], but other modal quantifiers exist in, for

example, the epistemic (I know x or I think x) and deontic (I

should do x) logics.

While modal logics extend classical logic by means of

quantification, deviant logics rival classical logic. Haack

defines a logic Ll as deviant if "...the class of wff [well

formed formulae] of Li and the class of wff of [Classical Logic)

coincide, but the class of theorems/v&lid inference of Li differs

6

from the class of theorems/valid inferences of (Classical Logicj

(Haack, 1974]

By her definition, the set of theorems in classical logic

is not a subset of the set of theorems in a deviant logic. This

is the difference between a modal logic and a deviant logic. In

this paper we will be concerned with the deviant logics and

classical logic rather than modal logic.

2.2 Truth Values and Rules of Inference.

In any logic system there will be at least two truth

values and at least one rule of inference used to manipulate

truth values. These two structures characterize all logic systems

and are what differentiate logics from algebras. In classical

logic we use truth values 'true' and 'false' along with several

rules of inference such as modus ponens, modus tollens and

resolution.

Therefore, to understand logic systems, we must first

understand truth values and rules of inference. Truth values are

simply the set of elements in a logic which can be assigned as

the value of any logic formula. As we stated earlier, in

classical logic the set of logic values is ftrue,falsel.

The definition of a rule of inference depends on the

7

definition of tautology. In classical logic, well formed formula,

may take a value which is always true, always false, or sometimes

true and sometimes false depending on value assignments to their

atomic parts. These well formed formulae are defined as

tautologies, contradictions and contingencies respectively.

Langer says of a principle of inference "... if a proposition may

be asserted (i.e. is "granted" or otherwise "known as true"), and

this proposition implies another proposition, then the latter may

also be asserted" [Langer, 1953). Irving Copi states that a

tautology is true by its form alone independent of empirical

investigation [Copi, 1972]. We then accept the definition of a

rule of inference as a tautology of the form ' (p) => (q)' where p

and q are well formed formulae. Using rules of inference together

with postulates of a logic system, we can derive other

tautologies in the form of deduced theorems.

2.3 Other Functions in Logic Systems.

Thus far we have discussed only the implication function

in logic systems (we will represent the implication function by

the infix operator =>). There are other functions usually found

in logic systems such as negation (represented by the prefix

operator), conjunction (represented by the infix operator &).

disjunction (represented by the infix operator +) and equivalence

(represented by the infix operator <=>).

The negation function is usually a permutation of the

logic values where -x (read "not x") denotes the converse of some

formula x. In classical logic, not true is false while not false

is true.

Conjunction and disjunction are functions representing the

truth value of a series of well formed formulae. In classical

logic conjunction of a number of formulae takes the value of

false if any one of the formulae is false, otherwise it takes the

value true. Disjunction takes the value true if at least one

formula in the series is true.

The equivalence function, in classical logic, yields a

truth value representing the equality of two well formed

formulae. In classical logic, (p) <=> (q) if and only if p and q

both have the value true, or both have the value false.

Therefore, true is equivalent to true and false is equivalent to

false, but true is not equivalent to false.

In classical logic, and in some deviant logics such as

Kleene's three-valued logic system and Post logic systems,

9

implication and equivalence functions are defined in terms of

conjunction, disjunction and negation. Implication is usually

defined as (p) => (q) = (p) + (q) and equivalence is usually

defined as (p) <=> (q) = ((p) => (q)) & ((q) => (p)). In our

discussion of designated logic systems we will classify th

logics using the negation and conjunction functions.

2.4 Designated and Antidesignated Truth Values

Logic system with more than two truth values may have

definitions of tautology, contradiction and contingent formulae

different from their definitions in classical logic. For example,

in a logic system with two logic values representing truth, say

tl and t2, a tautology could be defined as a well formed formula

taking only the values tl or t2 for all assignments to its atomic

parts.

Rescher defines the terms designated and antidesianated to

mean those values in a logic which represent 'trueness' and

'falseness' A(Rescher, 1968]. Using these definitions, a tautology

is a well formed formula which takes only designated values for

all possible assignments to its atomic parts. Likewise, a

contradiction takes only antidesignated values (Haack, 1978).

Contingencies will take both designated and antidesignated values

10

depending on the particular substitution instance of values to

the formula's atomic components.

Example 2-1. Rescher defines the grouping of designated

and antidesignated values in Lukasiewicz' three valued logic (L3)

such that all tautologies and contradictions in classical logic

hold in L3 as well. In his example, T and I are designated while

F and I are antidesignated (Rescher, 19681. Note that I is both

designated and antidesignated. In classical logic the principle

of Excluded Middle states that (p) + -(p) is a tautology. Table 1

shows that Excluded Middle is a tautology in L3 when both T and I

are designated (we refer the reader to Appendix 1 for a complete

definition of L3).

Table 1

The Principle of Excluded middle in L3.

_+ _ T I F X I X+ "X

TIF TITTT T T

III 1T1 I II I

FIT FITIF Fl T

Other assignments of values in L3 to the designated and

antidesignated categories are possible (e.a. T is designated and

both I and F are antidesignated); however, some contradictions

and tautologies in classical logic would no longer hold in L3

(e.g. q + -q would not be a tautology) [Rescher, 1968].

2.5 Designated Logic Systems.

Rescher's motivation for assigning values to designated

and antidesignated sets rests with his desire to force deviant

logics to resemble classical logics in their tautologies. One

could choose to require the Principle of Excluded Middle to be a

tautology in a deviant logic and then assign values to designated

and antidesignated sets. Likewise one could choose to hold the

Principle of Contradiction (not both p and -p) invariant and

assign logic values as required. We choose to make as many

tautologies hold as possible with the fewest number of

restrictions. To do this we will hold the principle of

contradiction as an invariant and use Rescher's classification

scheme with suitable modifications.

Rescher states that for the principle of contradiction to

hold in a logic system all logic values must fall into the

designated class or the antidesignated class of logic values. He

uses for' in its inclusive meaning since a value may be both

designated and antidesignated. [Rescher, 1968]. He also

12

constrains the assignments based on negation using the following

rules:

If x is designated then -x is antidesignated
If x is antidesignated then -x is designated

If we call the set of designated values D and the set of

antidesignated values A, a Designated Logic System based on

Rescher's rules would look like figure 1 (a).

We propose a conceptually similar yet more explicit

classification of logic values within a logic system. Let D be

the set of strictly designated logic values and A be the set of

strictly antidesignated logic values in a logic system. An

element x of a logic system is strictly designated if x is

designated and -x is not designated (i.e. x is not both

designated and antidesignated). An element x in a logic system is

strictly antidesignated if x is antidesignated and -x is not

antidesignated (i.e. x is not both designated and

antidesignated). All logic values not falling into either

category will be placed in set N for logically neutral values.

This enables us to partition the set of logic values into

disjoint subsets as in figure 1 (b). It also allows us to

reformulate the rules by which the subsets of logic values are

13

defined. The new rules are as follows:

If x is designated then "x is antidesignated
If x is antidesignated then -x is designated

if x is neutral then -x is neutral.

Dr

(a) (b)

Figure 1. Two Classifications of Designated Logic Systems.

We call logic systems using this partitioning scheme

Designated Logic Systems. The remainder of this paper is limited

to the investigation and classification of these systems.

2.6 Examples.

Example 2-2. Given a designated logic system of two logic

values, thd partition of its logic values must fall into one of

the two possible partitions shown in figure 2. Figure 2 (a) is

the partition in classical logic.

1~4

NS

e\A
0

(a) (b)

Figure 2. Two Partitions of a Two-valued Logic System.

Example 2-3. In a three valued designated logic system

there are also only two possible partitions of the logic values,

illustrated in figure 3. Figure 3 (a) represents the partition in

Kleene's, Lukasiewicz' and Bochvar's logics while figure 3 (b)

represents the partition in Post's three valued logic (complete

definitions of these logic systems may be found in Appendix 1).

.I
N e

(a) (b)

Figure 3. Two Partitions of a Three-valued Logic System.

I

15

Example 2-4. Given a designated logic system of four

values, the three possible partitions of its logic values are

shown in figure 4. Figure 4 (a) is the partition of Lukasiewicz'

four valued logic (L4). The reader will find a complete

Jefinition of L4 in Appendix 1.

0

6

V A

A N

(a) (b) (c)

Figure 4. Three Partitions of a Four-valued Logic System.

Because each designated value in a designated logic system

must have an issociated antidesignated value, there are + 1

(n/a2 represents the 'floor' function applied to n/2) possible

partitions for any set of n elements (n > 1). If n is even the

set N can have 0, 2, 4, ... n elements while if n is odd the set

N can have 1, 3, 5, ... n elements.

2.7 The CREATE-LOGIC Program.

CREATE-LOGIC is a LISP program written to illustrate some of

I

16

the principles discussed in this chapter. The source code for

CREATE-LOGIC may be found in Appendix 2. Using the program

CREATE-LOGIC, we create and store logic values and functions for

later use with other LISP programs written for this paper. In

the following examples we create files for Boolean logic, L3 and

others. The logic functions are stored in file "b:<iname>.lsp"

where <lname> is the logic name.

> (load 'b:thesis)

loading "B:THESIS.lsp"
T
> (create-logic)

Enter logic name: > bool ;create classical logic

Enter logic function:
) (- ((T) F) ;negation
1> ((F) T))

Enter logic function:

) ((T T) T) ;conjunction
1> ((T F) F)
1> ((F T) F)
1> ((F F) F))

Enter logic function:

> (v ((T T) T) ;disjunction
1> ((T F) T)
1> ((F T) T)
1> ((F F) F))

Enter logic function:

.. .. . , ' ' , , , , .

17

> (=> ((T T) T) ;implication

1> ((T F) F)
1> ((F T) T)
1> ((F F) T))

Enter logic function:

> (<=> ((T T) T) ;equivalence

1> ((T F) F)
1> ((F T) F)
1> ((F F) T))

Enter logic function:

> nil

NIL

The functions of Boolean logic are now stored in file

"b:bool.lsp" and can be retrieved as necessary. Similarly, we

will create a file to store the functions and logic values of L3.

> (create-logic)

Enter logic name: > L3 ;create Luk's L3

Enter logic function:
> (((T) F) ;negation
1> ((i) i)
1) ((F) T))

Enter logic function:

> (^ ((T T) T) ;conjunction
1> ((T I) I)
1> ((T F) F)
1> ((I T) I)
1) ((I I) I)
1> ((I F) F)

18

1 > ((F T) F)
1> ((F I) F)

1> ((F F) F))

Enter logic formula:

> (v ((T T) T) ;disjunction
1> ((T I) T)
1> ((T F) T)
1> ((I T) T)
1> ((I I) I)
1> ((I F) I)
1> ((F T) T)
1> ((F I) I)
1> ((F F) F))

Enter logic formula:

> (=> ((T T) T) ;implication
1> ((T I) I)
1> ((T F) F)
1> ((I T) I)
1> ((I I) T)

I> ((I F) I)
1> ((F T) T)
1> ((F I) T)
1> ((F F) T))

Enter logic formula:

> (<=> ((T T) T) ;equivalence
1> ((T I) I)
1) ((T ') F)
1) ((I T) I)
1> ((I I) T)
1> ((I F) I)
1> ((F T) F)
1> ((F I) I)
1) ((F F) T))

Enter logic formula:

~%

19

> nil
NIL

2.8 Summary.

Logic systems can be partitioned into Designated,

Antidesignated and Neutral classes of truth values. Because the

negation function takes designated values into antidesignated

values and antidesignated values into designated values, we can

use negation to partition the logic values of a logic system. If

a logic system has a partition of its logic values meeting these

constraints, we call it a Designated Logic System. A Designated

Logic System of n logic values must have one of In/2i + 1

possible partitions of its logic values.

CHAPTER 3

ASSIGNING LOGIC CLASSES USING COMPLEMENTATION

As noted in chapter two, we can use the negation function

of a logic system to find the partition of a designated logic

system. In classical logic we call the negation function 'not.'

In logic systems with more than two truth values it may be

unclear what we mean by the term 'not x.' For example, given the

set {a,b,cl, 'not a' could mean 'either b or c or both,' being a

specific exclusion of the element "a" rather than a function

mapping designated values to antidesignated values. To avoid

possible confusion we will call the negation function

'complement' rather than 'negation' when talking about designated

logic systems. Thus, x will read 'the complement of x' rather

than 'not x.'

If the complement function of a Designated Logic System is

a permutat-ton, we can find the system's partition by specifying

its cycles. Complement functions which are not permutations are

of no interest to this paper.

20

21

3.1 Complement Cycle Patterns

A permutation is a function of a set onto itself. In a set

of n distinct elements there are n! permutations of those

elements. For example, given a set of two elements {T,FI, there

(T F) (T F) (T F)
are two permutations: (T F) and (F T). Permutation (T F) means T

(T F)
maps to T and F maps to F while permutation (F T) means T maps to

F and F maps to T.

Every permutation is uniquely defined by its cycles. Given

a permutation function F, a cycle is an ordered list of elements

(x1 X2 ...xt) such that F(xi) = X2, F(X2) = x3, F(xi-i) = xi

and F(xi) = xi. In classical logic -T = F and -F = T so the only

cycle is (T F).

Let Ci.j represent the jtb cycle of i elements in a

permutation. If there are k cycles of length i then we say N(Ct)

k. The set of N(C)'s represented as a sum of individual

elements in a permutation is the permutation's cycle pattern. For

example, if a permutation of four elements has two cycles of

length one and one cycle of length two, its cycle pattern would

be 1 + 1 + 2. Although there are n! permutations of n elements,

not all the cycle patterns are distinct.

22

Example 3-1. Given a set of three elements la,b,ci there

(a b c) (a b c) (a b c)
are six possible permutations: (a b c), (a c b), (b a c),

(a b c) (a b c) (a b c)
(b c a), (c a b) and (c b a). As can be seen in figure 5, there

are only three unique cycle patterns out of the six possible

permutations.

(a)(b)(c) Ci.t = (a) C1 .2 = (b) C1 .3 = (c) N(Ci) = 3

(a) (b c) C,.1 = (a) C2.I = (b c) N(Ci) = 1 N(C2) = 1
(a b)(c) CI. I = (c) C2. I = (a b) N(Ci) = 1 N(C2) = 1
(a b c) C3 .1 = (a b c) N(C3) = 1

(a c b) C3,t = (a c b) N(C3) = 1
(a c)(b) Ci.i = (b) C2.I = (a c) N(C,) = I N(C2) = 1

Figure 5. Cycle Patterns for a Set of Three Elements.

The number of distinct cycle patterns for a set of n

elements is equal to the number of ways n non-distinct objects

can be placed into n non-distinct cells with empty cells allowed

(this is a restatement of the integer partition enumeration

problem). Using a generating function we can calculate the number

of distinct cycle patterns for n elements as the coefficient of

the term Xn in the following equation (Liu, 19681.

23

1

n (3-1)
-r(l - xi

i=l

Because the number of cycle patterns is finite for any n

elements, we can associate a large number of logics with

relatively few cycle patterns.

Example 3-2. In a set of five logic values there are seven

cycle patterns. We can find them by enumeration as shown in

figure 6.

1+1+1+1+1 N(Ci) = 5

1+1+1+2 N(Ci) = 3 N(C2) = 1

1+2+2 N(Ci) = 1 N(C2) = 2
1+1+3 N(C,) = 2 N(C3) = 1

2+3 N(C2) = 1 N(C3) = 1
1+4 N(Ci) = 1 N(C4) = 1
5 N(Cs) = 1

Figure 6. Cycle Patterns for a Set of Five Elements.

We cin derive the same result using equation 3-1 with n =

5. The coefficient of the X5 term in equation 3-2 will be the

number of cycle patterns possible for a set of five elements.

1 (3-2)
(1 - X) (1 - X2) (1 - X3) (1 - X4) (I - X5

24

When expanded, equation 3-2 is the polynomial 1 + X + 2X, + 3X ,

5X4 + 7X5 + . . . The coefficient of X3 is seven, so there are

seven possible cycle patterns of permutations of five elements.

Although equation 3-1 will allow us to find the number of

different cycle patterns, it will not tell us what those patterns

are. We can develop a recursive procedure to generate the cycle

patterns of n elements given the cycle patterns of n-l elements.

Assume we are given a cycle pattern of n-l elements in the form a

+ a + ... + a + b + b + ... + b + ... k = n - 1. From it we can

generate k + 1 cycle patterns of n elements:

1 + a + a + + a +b +... +b + ... + k
a + a + .. + (a + 1) + b + .. + b + .. + k

a + a + + a + b + ... + (b + 1) + ... + k

a + a + ... +a + b + ... + b +... + (k + 1)

Some of the k + 1 cycle patterns will be repeated in

several expansions of n - 1 elements. For example, given the five

cycle patterns of n = 4 elements we can transform them into the

seven possible cycle patterns of n = 5 elements.

1 + 1 + 1+1=> 1 + 1 + 1 + 1 + 11+1+1+2

1 + 1 + 2 => 1IIz///#A12 already generated
1+2+2
1+1+3

1 + 3 => z/*/Z/*/A already generated

n- K MR

25

2+3

2 + 2 => 2I*121*12 already generated

2/HA already generated
4 => Vi-/A already generated

5

Figures 7 (a) through 7 (g) show the seven cycle patterns

for five elements. In the next section we will discuss how cycle

patterns determine the partitions shown in figure 7.

N

1+1+1+1+1 3+1+1 2+2+1

(a) (b) (c)

NI

2+1+1+1 2+3 1+4
(d) (e) (f)

Figure 7. Cycle Patterns for a Set of Five Elements.

ai

KXWX

26

5
(g)

Figure 7 - Continued. Cycle Patterns for a Set of Five Elements.

3.2 Partitioning Constraints Using Cycles.

Using constraints imposed on elements in classes D, A and

N in chapter two, we can see that all elements in odd cycles

(cycles containing an odd number of elements) must be in the set

N: given the cycle (xi X2 ... X21,+), if xI is in D then x2 is in A

and X3 is in D and xa is in D and ... and X21 1 is in D and x, is

in A. This contradicts the first assumption since D and A are

disjoint. Likewise, we could prove that if xi is in A then x, is

in D for xt in an odd cycle. Therefore all elements in odd cycles

must be in the set N.

Although there is no pressing mathematical necessity to

place elements of even cycles in classes D and A, we will do so

whenever possible to simplify the classification and partitioning

27

process. If we do not require even cycles to be placed in D and A

whenever possible, we increase the number of possible assignments

for a complement function with k even cycles from 2K to

.. 4.

There are cases, as we will see in Chapter 4, when it is not

possible to put all even cycles in sets D and A. These are

special cases and do not increase the numerical complexity of the

classification procedure.

Given an even cycle (xi X2 ... X21), if fx2j+, ; 0 < J <

i-l is a subset of D then fx2J 1 1 < j ! il is a subset of A.

Likewise, if Ix2j+, 1 0 < j (i-11 is a subset of A then {x2j 1

< j < il is a subset of D.

Example 3-3. Given a Post logic of three elements (P3), we

can find its cycle pattern and its partition using the definition

of complementation in table 2.

.able 2

Complementation in P3

-

112
213
311

28

This permutation has only one cycle of three elements, so

its cycle pattern is 3. Also, since there are only odd cycles,

all logic values in P3 must be in N as shown in figure 8. In

general, any odd numbered Post system will have cycle pattern n

with all elements in class N.

(IN
N

Figure 8. P3 With Cycle Pattern 3.

Example 3-4. Given complementation in Kleene's three-

valued logic (K3) as shown in table 3, we can determine its cycle

pattern and its partition but we are unable to assign specific

logic values to each partition class.

Table 3

Complementation in K3

- I
TIF

FIT

29

There are two cycles in K3's complement permutation. (I)

is a cycle of one element and (T F) is a cycle of two elements,

so the cycle pattern of K3 is 2+1. Although we know K3's cycle

pattern and partition, we are unable to determine a unique

assignment of K3's elements to specific classes within the

partition. Until we attach further meaning to logic values in

Designated Logic Systems, all possible assignments of elements in

even cycles to partition classes are isomorphic. Both possible

assignments of K3's elements are shown in figure 9.

]D

T

Figure 9. Two Possible Partitions of K3.

3.3 Cycle-classes of Logic Elements.

Given a complement permutation with an even cycle (a, a2

are in the same class, as are elements a2, a4 ... a21 . We define

the term cycle-class to be the set of elements in both the same

cycle and the same class. We can use the cycle-class

30

specification of logic values to preserve the complementary

nature of elements in even cycles without the necessity of

determining the specific class of individual elements. This

allows us to circumvent the problem of discussing logic values in

terms of their isomorphic representations similar to those in

example 3-4.

Example 3-5. Given Moussavi's six-valued logic (M6),

detailed in appendix 1, with the complement permutation defined

by table 4, there are six cycle-classes of the six elements since

each element is in its own cycle-class.

Table 4

Complementation in M6

- I

TI F

KO0 1 1(1

F(1 T(Fl T

Example 3-6. Given the complement permutation in a Post

logic of four elements as defined in table 5, there are two

cycle-classes: 11,31 and 12,41.

I

31

Table 5
I

Complementation in P4

1 2

3 14

In general, all elements in an odd cycle are in the same

cycle-class while elements in even cycles form two complementary

cycle-classes. If a complement permutation has j odd cycles and k

even cycles, the logic system has j + 2k cycle-classes in all.

3.4 The FIND-CYCLES Program.

The LISP program FIND-CYCLES finds the odd and even cycles

in a logic using the complement function. The logic must have

been created using the CREATE-LOGIC program described in chapter

two, and the complement function must be defined by the symbol -.

If the complement function is a permutation, FIND-CYCLES

returns a ilist of the even and odd cycles. If the complement

function is not a permutation, a message to that effect is sent

to the user. The LISP code for FIND-CYCLES is in appendix 3.

Below are some examples using FIND-CYCLES on various

logics we defined using CREATE-LOGIC. In the first example we

32

apply FIND-CYCLES to Classical logic and the results are as

expected: no odd cycles and one even cycle.

> (find-cycles)

Enter logic name: > bool
. loading "b:BOOL.lsp"
(NIL ((T F)))
> odd

NIL
> even

(HT F))

When we apply FIND-CYCLES to an odd numbered Post system

we get opposite results: no even cycles and one odd cycle.

> (find-cycles)

Enter logic name: > Post3
; loading "b:POST3.lsp"

1(((2 3)) NIL)

> odd

((1 2 3))
> even

NIL

When we apply FIND-CYCLES to a logic with multiple odd and

even cycles such as M6, neither the set of even cycles nor the

set of odd dycles is NIL.

> (find-cycles)

Enter logic name: > sixval
loading "b:SIXVAL.lsp"

(((U) (K)) ((T F) (KI KO)))
> odd
((u) (K))

33

> even
((T F) (KI KO))

When we apply FIND-CYCLES to a complement function that is

not a permutation, we receive an error message. The logic non-

perm has a complement function as shown in table 6. Since the

function is not a permutation, FIND-CYCLES returns an error

message.

Table 6

A Complement Function Which is Not a Permutation

- i

TJF
UI F

F T

> (find-cycles)

Enter logic name: > non-perm
loading "b:NON-PERM.lsp"

not a permutation
NIL
> odd
NIL
> even
NIL

We will use the sets of odd and even cycles in the LISP

program FIND-ASSIGNMENT explained in chapter 4 to determine the

assignment of logic values to classes D and A. The elements in

jji

34

odd cycles are already known to be in class N.

3.5 Summary.

Given the complement permutation of a logic, we can

associate with it a specific cycle pattern. The cycle pattern of

the complement function is sufficient to specify a partition of

the designated logic, but not always sufficient to determine a

unique assignment of logic values to partition classes. We know

elements of even cycles will be in either the set D or the set A,

while all elements of odd cycles will be in set N, so any logic

with only odd cycles will have all elements in N. Elements of

even cycles will have more than one possible assignment as we saw

in example 3-4. In a logic system with k even cycles there are 2k

isomorphic assignments of elements to classes D and A.

Because we cannot specify a unique assignment of logic

elements in even cycles we use cycle-classes of the logic

elements. The use of cycle-classes when referring to elements in

even cycles allows us to preserve the complementary nature of

elements in even cycles without regarding problems of unique

identification posed by the isomorphic assignments possible using

only complementation as an assignment constraint.

El

35

The program FIND-CYCLES finds the odd and even cycles in a

complement permutation. We will use this information later to

discover assignments of logic values to partition classes.

In the next chapter we will investigate an assignment

scheme based on the conjunction function together with methods

defined in this chapter and develop an algorithm for determining

the assignment of elements in Designated Logic Systems to the

partition classes D, N and A.

19!

110 , 1 111 '.

CHAPTER 4

FINDING A PARTITION ASSIGNMENT USING CONJUNCTION

In the previous chapter we discovered that complementation

did not suffice to assign all logic values to a unique partition

class in a Designated Logic System. In this chapter we will use

the complement permutation together with the conjunction function

to uniquely determine the assignment of values in a designated

logic system to within equivalence.

4.1 Conjunction in Designated Logic Systems.

In classical logic, the conjunction of two elements is not

true if at least one argument is false. We would like to

generalize the definition of conjunction in Designated Logic

Systems. Given a designated logic system with conjunction

function &, if x & y is designated (i.e. an element of D) then

both x an4 y are designated (i.e. x, y are elements of D).

Otherwise the conjunction function is unconstrained. Any

conjunction function meeting these constraints is a well-defined

conjunction function. If we are given a conjunction function

which does not meet these constraints we say it is an ill-defined

36

conjunction function.

In a system with k even cycles in the complement

permutation there are 2k possible assignments of elements to

classes of the partition since every even cycle-class may be

either in D or in A. As a result of our definitions, any

assignment of logic elements for which conjunction is well

defined is a possible assignment of the logic elements within a

Designated Logic System.

In chapter three we were unable to determine a unique

assignment for Kleene's three-valued logic using only the cycle

pattern imposed by complementation. Using the definition of

conjunction in K# we can determine the only possible assignment

of logic values to classes of the partition.

Example 4-1. Given Kleene's three-valued logic with the

conjunction and complement functions defined in table 7, either T

is designated and F antidesignated, or T is antidesignated and F

designated (see example 3-4). I, of course, is neutral.

38

Table 7

Complementation and Conjunction in K3

- i
& TIF

-___ & TIF

TIF T:TIF
IiI IIIIF
F T FtFFF

If we assign T to the designated class and F to the

antidesignated class, the conjunction function shown in table 7

is well defined since a & b is designated only when a = b = T. If

we assume the alternate assignment (F designated and T

antidesignated), the conjunction function is not well defined

since T and F are not both designated yet T & F = F. Because T

designated and F antidesignated is the only assignment in K3 for

which conjunction is well defined, the only possible assignment

of K3's logic values can be seen in figure 10.

N

Figure 10. The Partition of K3.

39

Example 4-2. Given Bochvar's three-valued logic (system

B3) with complementation and conjunction as shown in table 8, we

see that either T is designated and F antidesignated, or F is

designated and T antidesignated. Again, I is neutral.

Table 8

Complementation and Conjunction in B3

-I & I TIF
TIF TITIF
III I:III
FIT FIFIF

If we assume T is designated and F antidesignated, the

conjunction function defined in table 8 is well defined.

Alternately, if F is designated and T antidesignated, conjunction

is not well defined (T & F = F yet T and F are not both

designated). The only possible assignment of B3's logic values in

a Designated Logic System, as shown in figure 11, is D = (TI, A =

IFI and N = III.

',

M

40

NID .1
A

Figure 11. The Partition of B3.

Example 4-3. If we have Post Logic System P4 with

complementation and conjunction defined by table 9, there. are two

possible assignments of elements to the designated and

antidesignated classes. Either D = 11,31 and A = 12,4k or D =

f2,41 and A = 11,31 (N is empty since there are no odd cycles in

P4).

Table 9

Complementation and Conjunction in P4

___&11234

112 1 13332
213 2 3442

314 3 13412
411 4 12222

An examination of the conjunction table shows that 3 & 4=

11111 11161

41

2. Since 3 and 4 are in complementary classes, 2 must be

antidesignated. Also, since 2 and 4 must be in the same class

(-(-2) = 4), 4 is also antidesignated and A = 12,41. Since 1 & 2

= 3, and 2 is antidesignated, 3 must be antidesignated. This is a

contradiction and we are forced to conclude there are no

assignments of elements in P4 for which conjunction is well

defined.

We can generalize this conclusion and claim that there is

no possible assignment of logic elements in a Post system with an

even number of elements greater than two for which conjunction is

well defined within the Designated Logic System framework. First,

we know it is true of P4 by example 4-3. Assume we have an even

numbered Post system Pn where n > 6. Because of the nature of

complementation in Post systems (i.e. it is cyclic mod n), we

know that elements 1 and 3 are in the same class (either D or A)

but in a different class than elements 2 and 4. If 1 and 3 are

designated then 2 and 4 are antidesignated. Likewise, if 1 and 3

are antidesignated then 2 and 4 are designated. We also know that

1 & 2 = 3, so 1 and 3 must not be designated. Because 2 & 3 = 4

we know 2 and 4 must not be designated, and the system does not

have an assignment of logic values for which conjunction is well

42

defined.

There are some logic systems which have more than one

possible assignment of logic values preserving the definition of

conjunction in Designated Logic Systems. In this situation we are

unable to specify a unique assignment of the logic elements.

Example 4-4. Assume we have a designated logic system

whose conjunction and complement functions are defined by table

10. We will call this system the Skeptic's three-valued logic

system or SL3. We know from the complement permutation that N =

III. We also know that either T is designated and F

antidesignated, or F is designated and T antidesignated.

Table 10

Complementation and Conjunction in SL3

- :_& TIF

T F T TII
IIlII ~

F T FIIIF

We can not determine a unique assignment of SL3's logic

values since both possible assignments preserve the definition

of conjunction in Designated Logic Systems. If T is designated, a

& b = T if and only if a = b = T. If F is designated, a & b = F

43

if and only if a = b = F. Using conjunction as the determining

factor both assignments are possible within the framework of

Designated Logic Systems. We will examine these types of systems

(i.e. systems with multiple possible assignments) in greater

detail in section 4.2.

Although we can now uniquely determine the assignment of

many more Designated Logic Systems, there are some systems for

which we need additional information. Logic systems with ill-

defined conjunction (conjunction is not well defined for any

assignment of logic values to partition classes) and logic

systems with multiple possible assignments are two such examples.

4.2 Equivalent Partitions.

As we saw in example 4-4, some logic systems have more

than one possible assignment yielding well defined conjunction

functions. These logic systems have equivalent partitions.

Given a cycle whose logic values we can not uniquely

assign to partition classes, we know the cycle is even since all

odd cycles are in N. As we saw in chapter two, every even cycle

is divided into two complementary cycle-classes. If we can map

elements of an even cycle to elements in its complementary cycle-

r l' 9 ~ * g P ' l

44

class such that the conjunction function is identical, the two

possible partitions are equivalent.

Assume we have a logic system whose complement function

has an even cycle ci. j . If we can find a function f: S -> S which

maps elements of ci . to elements in its complementary cycle-

class while all other elements in the logic are mapped to

themselves such that f(x) & f(y) = f(x & y) for all x and y in

the logic, then the two partitions are equivalent.

Example 4-5. Given the SL3 logic defined in example 4-4

with the mapping f(T) = F, f(F) = T and f(I) = I, the assignment

D = ITI, A = {F1, N = III is equivalent to the assignment D =

(FI, A = IT), N = III since the two conjunction functions are the

same (see table 11).

Table 11

Equivalent Conjunction Functions in SL3

& TIF &IFIT
T TII FIFII

I1III IIIII

FIIIF T IIT

It is possible to have a logic where some even cycles are

specifically assigned while other even cycles are not.

45

Lukasiewicz' four-valued logic (L4) is such a system.

Example 4-6. Logic system L4 has conjunction and

complementation as defined in table 12. Using the complement

permutation we know TT and FF are in complementary classes as are

FT and TF. Because FF & TT = FF, we know FF is antidesignated and

TT is designated. Conjunction is well defined both when FT is

designated and TF antidesignated, and when TF is designated and

FT antidesignated. Therefore there are two possible assignments

of the elements in L4 to partition classes.

Table 12

Complementation and Conjunction in L4

" & TT TF FT FF

TT FF TT TT TF FT FF
TF FT TF 1 TF TF FF FF
FT TF FT FT FF FT FF
FF TT FF FF FF FF FF

Let f be a mapping such that f(TT) = TT, f(FF) = FF, f(TF)

= FT and f(FT) = TF. The two conjunction functions are equal as

shown in table 13. Therefore, the two possible assignments shown

in figure 12 are equivalent.

46

Table 13

Equivalent Conjunction Functions in L4

& I TT TF FT FF & TT FT TF FF

TT i TT TF FT FF TT TT FT TF FF

TF 1 TF TF FF FF FT FT FT FF FF

FT 1 FT FF FT FF TF TF FF TF FF

FF FF FF FF FF FF FF FF FF FF

Tr -r 1: r Ft

A A

Figure 12. Equivalent Assignments in L4.

Example 4-7. There are no equivalent assignments in

Kleene's three-valued logic. The only even cycle is (T F) , so the

only possible mapping is f(T) = F, f(I) = I and f(F) = T. As w

can see from table 14, the two conjunction functions are not

equal, so the two assignments are not equivalent.

4.1

47

Table 14

Non-Equivalent Conjunction Functions in K3

& 1 T I F & F I T
TITIF FIFIT

III1F IIIIT
FIFFF T1TTT

Example 4-8. There are four possible mappings of elements

to their complementary cycle-class in a Post system of four

elements with conjunction and complementation as defined in

example 4-3. The four mappings are listed in table 15.

Table 15

Four Mappings of Complementary Cycle-Classes in P4

x f I(X) I f (x) f3x) f4(x)
11 2 1 4 1 2 4
2 1 3 3 1
3 4 2 4 2
4 3 1 1 3

Table 16 shows the resulting conjunction functions; none

are equal to conjunction in P4. Hence, there are no equivalent

assignments in P4.

48

Table 16

Non-Equivalent Functions in P4

&11234
113332
213442

313 4 12
4:2222

(a)
Conjunction in P4

& 12 1 4 3 & 1 4 3 2 1 &1 2 3 4 1 &1 4 1 2 3
2 14 4 4 1 4 1 2 2 2 3 21 4 4 4 3 4 1 2 2 2 1
1 4 3 31 31 2 1 1 3 31 4 1 1 3 1 1 2 3 3 1
4 14 3 21 2 1 21 4 3 4 141 2 3 2 11 3 4 1
3 1 1 1 11 11 3 3 3 3 11 3 3 3 3 31 11 1 1

(b) (c) (d) (e)

fi(x) f2 (x) f3 (x) f4 (x)

Using equivalent conjunction functions we can classify

some logic systems whose values we couldn't uniquely assign. All

Designated Logic Systems with well defined conjunction functions

have a unique assignment up to equivalence.

Logic: with no assignment preserving the definition of

conjunction in Designated Logic Systems continue to elude us. In

the next section we will learn more about these systems in an

attempt to find a method of imposing an assignment on their logic

values.

I

XVR'W1AIXiXXV tIM 1.F V1LN V

49

4.3 Identity Elements and the Supremum.

An identity element in a mathematical system with a binary

operator * is defined as an element s such that s * x = x s = x

for all elements x within the system. In a designated logic

system we will call element s an identity element if s & x = x &

s = x' for all x in the logic where x' is in the same cycle-class

as x. If s is unique we will call s the supremum of the logic

system.

Every identity element must be in the same cycle class.

Assume we have a logic system with two identity elements: sl and

s2. Also assume sl and s2 are not in the same cycle-class. By the

definition of identity elements sl & x = x & sl = x' where x and

x' are in the same cycle-class therefore sl & s2 = s2 & sl = s2'

where s2 and s2' are in the same cycle-class. By the definition

of identity elements s2 & x = x & s2 = x' where x and x' are in

the same cycle-class. Therefore s2 & sl = sl & s2 = sl' where sl

and sl' are in the same cycle-class. We must conclude that sl' =

s2' and sl and s2 are in the same cycle-class. This contradicts

our assumption that sl and s2 were in different cycle-classes, so

all identity elements must be in the same cycle-class.

Example 4-9. P4 has two cycle-classes, {1,31 and 12,41.

From table 17 we see 3 & x = x' for all x in S. Therefor:

element 3 is an identity element. Also, 3 is the only element In

P4 with that property, so 3 is also the supremum.

Table 17

The Supremum in P4

1 333

2 3442
1 13 4 1 2
4 2"2 2 2

In any even numbered Post system Pn, the supremum will be

n-1. By the definition of conjunction in Post systems, we know

that x & (n-i) = -(min(-x,-(n-1))) = -(min((x+l) mod n,n). Since

all elements of Pn must be iess than or equal to n, min((:.:+l) mod

n,n) = (x+l) mod n = -x. Therefore, x & (n-i) = --x which is in

the same cycle-class as x, so n-i is the supremum in any even

Post system.'

If a logic system has a conjunction function preserving

the definition of conjunction in Designated Logic Systems, and at

least one even cycle, all identity elements (including the

supremum if it exists) will be designated. Because we assume the

M

51

logic system has an even cycle we know that set D is not empty

and set A is not empty. Assume s is an identity element but s is

not designated. Also assume element x is designated (we know x

exists because D is not empty). Because x & s = x' where x and

x' are in the same cycle-class, the result x & s must be

designated. This contradicts the definition of conjunction: the

result can be designated only if all of its arguments are

designated. Therefore s must be designated.

If an identity element is in a cycle of length two, it is

the strict identity element we call the supremum. We know that

all identity elements must be in the same cycle-class.

Example 4-10. In L4 TT & x = x & TT = x for all x in the

logic system. TT is not only an identity element, it is the

supremum since no other element has that property (see table 18).

Table 18

The Supremum in L4

& -- TF FT FF
1T TT TFFT F

TF 1 TF TF FF FF

FT 1 IFT FF FT FF
FF 1 FF !FF FF FF

52

Although we can identify the supremum element in a

Designated Logic System if the supremum exists, we cannot always

determine its class. If conjunction is well defined and there is

at least one even cycle in the complement function, the supremum

will be designated. If all logic values are in N, any identity

elements will be in N. In a system whose conjunction function is

not well defined, the supremum could be in any class (e.g. the

even Post systems of more than two elements). We must conclude

that identifying the supremum will not enable us to specify an

assignment of the logic's elements.

4.4 Zero Elements and the Infimum.

In mathematical systems with a binary operation *, a zero

element z has the property z * x = x * z = z for all x in the

system. We will define a zero element in Designated Logic Systems

as an element z such that x & z = z & x = z' for all x in the

logic where z and z' are in the same cycle-class. If the zero

element is' unique, we will call it the infimum of the logic

system.

All zero elements must be in the same cycle-class. Assume

we have two zero elements zl and z2 not in the same cycle-class.

By our definition of a zero element zl & x = x & zl = zl' where

53

z1 and zl' are in the same cycle-class. Therefore zl & z2 = z2 &

z1 = z1'. By the same definition of a zero element z2 & x = x &

z2 = z2' where z2 and z2' are in the same cycle-class. Therefore

z2 & z1 = zl & z2 = z2'. Because zl' = z2' zl and z2 must be in

the same cycle-class which contradicts our assumption so all zero

elements must be in the same cycle-class.

Example 4-11. In P4 with conjunction and complementation

as defined in example 4-3, 4 is a zero element. As shown in table

19, 4 & x = 2 for all x in P4, and 2 and 4 are in the same cycle-

class. Since 4 is the only element with this property, it is also

the infimum.

Table 19

The Infimum in P4

&11234

l13332
2:3442
3:3412
122

We can generalize the above result and say n is the

infimum for any Post system of n elements where n is even. In a

Post system, n & x = "(min(n,-x)) = "(min(1, (x+l) mod n)) = ~i =

& 1 1 3 7

54

2. Since n and 2 are in the same cycle-class (2 = --n), element n

is the infimum.

When a zero element is in a cycle of length two, it is a

strict zero element where z & x = x & z = z for all x in he

logic system. If z is in a cycle of length two, z is in a cycle-

class containing itself alone. Therefore if z & x = z' where z

and z' are in the same cycle-class, z must be equal to z' and z &

x = Z.

Example 4-12. In L4 element FF is in a cycle of length

two. Also, FF & x = x & FF = FF for all x in the logic (see table

20) so FF is a strict zero element.

Table 20

The Infimum in L4

& 1 TT TF FTrF

FT 1 FT FF FT FF

I FF I FF FF FF' F

Although we can identify the infimum if such an element

exists, we cannot determine its class other than to note it can

not be designated when conjunction is well defined. Assume z is

55

designated and some element x is not designated (either in N or

A). By our definition of a zero element, z & x = z' must be

designated. This contradicts our definition of well defined

conjunction, so z must not be in D".-

When we have a system with well defined conjunction, we

can determine the class of the infimum. If it is in an even

cycle, the infimum is antidesignated since it can not be

designated. If it is in an odd cycle, the infimum is neutral

since all elements of odd cycles are in N. If we have a system

with ill-defined conjunction, identifying the infimum does not

help us find an assignment for the logic elements since z could

be in any of the three partition classes.

4.5 An Algorithm for Partitioning All Designated Logic Systems.

Thus far we are able to determine a unique assignment of a

system's logic values up to equivalence when the conjunction

function isiwell defined. There are, however, some logic systems

we were unable to assign. Logic systems with no possible

assignment of logic values to partition classes for which

conjunction is well defined cannot be partitioned using

constraints we have discussed.

'a' '- ' , r \~\ . ~

56

There are several possible solutions to this problem. We

can ignore logics having no possible assignments, eliminating

them from our discussion. We could define the class in which the

supremum resides as designated, or we could specify different

classes for logics with ill-defined conjunction functions.

The first solution, eliminating logics with no possible

assignments from our discussion, is very tempting. Clearly, if

the system does not have conjunction within our constraints, that

system will have little in common with classical logic. The

principle -)f contradiction would not hold in these logics since

there could be a value in the logic, call it X, such that -(X &

-X) is antidesignated. I would use this pruning method only as a

last resort since we do not want to discount the Post systems

from our discussion.

The second solution requires that there be a supremum in

the logic system, something we can't guarantee. This solution

would allow us to admit the Post systems since they do have a

supremum, however, we would no longer have any 'principle of

conjunction' (if a & b is designated then both a is designated

and b is designated) for Designated Logic Systems (see example 4-

3). Again, we would consider this solution only if there were no

57

other viable alternatives.

In the third solution we would redefine the classes for

systems with ill-defined conjunction. For example, rather than

classes D, N and A we could define the supremum class, the

infimum class and the neutral class. The logic systems with well

defined conjunction would be a subset of these logics where the

supremum class is designated, etc. This classification would put

the Post systems in a 'separate but equal' category from the

designated logic systems. This is better than eliminating them

because it allows us to admit the fundamental difference between

Post systems and other logics more closely related to classical

logic. This solution seems to solve our difficulties with the

Post systems. In truth, however, it is merely a covert

implementation of the first solution, i.e. to eliminate

troublesome logics from our discussion.

Finally, we could elect to put all logic values

contributinv to ill-defined conjunction into the neutral class,

along with other elements in its cycle. For example, in a Post

system of more than two values, all elements would be in N. This

solution will allow any possible system to be classified as a

Designated Logic System .,ince, in the wors case, conjunction is

. ..

58

well defined when all logic values are in the neutral class. We

lose the ability of determining the logic's partition using the

cycles of the complement function, however, yet this seems a

lesser evil than arbitrary pruning.

We can now develop an algorithm for partitioning a

Designated Logic System. First, use the cycles of the complement

function to determine the set of possible partitions. If all the

cycles are odd, the only partition possible is one in which all

elements are in the neutral class. Given k even cycles there are

2k possible assignments of the logic values, assuming conjunction

is well defined for some assignment.

Next, using the conjunction function, determine all

possible assignments preserving the definition of conjunction in

designated logic systems. If there is more than one assignment

meeting this constraint, they are equivalent. If there is no

possible assignment for which conjunction is well defined, place

the even cycles causing ill-defined behavior in the neutral

class. In the worst case all values will be placed in the neutral

class.

Example 4-13. Assume we have a logic system with

cvnjunction and complementation as defined in table 21. We will

59

call this logic system ILL6.

Table 21

Complementation and Conjunction in ILL6

- i & I T T1 T2 F1 F2 F

T F T I T T1 T2 F1 F2 F
T1 F2 T1 IT1 T1 T2 F1 F2 F
T2 1 Fl T2 1 T2 T1 T2 T2 F2 F
Fl1 T F1 IF F1 T2 Fl F2 F
F2 1T2 F2 1 F2 F2 F2 F2 F2 F
F T Fl F F F F F F

The conjunction function shows two even cycles, one of

length two and one of length four. Elements T and F can be easily

partitioned into T in the designated set and F in the

antidesignated set since T & F = F but a & b = T if and only if a

=b = T.

Elements Ti, T2, F1 and F2 can be classified into either

Ti and T2 designated with Fl and F2 antidesignated, or Ti and T2

antidesignated with Fl and F2 designated. Since F1 & Ti = F1, Fl

and F2 must be antidesignated with TI and T2 designated. We note,

however, that F1 & T2 = T2, so TI and T2 can't be designated.

Since there is no assignment of elements TI, T2, F1 and F2 into

classes D and A for which we have well defined conjunction, we

U,

60

must reassign its even cycles. If we put cycle (T F) in the

neutral class, there will be no assignment of logic values

resulting in well defined conjunction. If we place cycle (T1 F2

T2 Fl) in N, however, we have well defined conjunction when T is

designated and F antidesignated. The resulting assignment is

shown in figure 13.

F Z.; F I

Figure 13. The Partition of ILL6.

4.6 The FIND-ASSIGN Program.

The LISP program FIND-ASSIGN will determine the partition

and assignment of any logic system when given a complement

permutation and conjunction function. The source code for FIND-

ASSIGN may he found in appendix 4.

The following examples of FIND-ASSIGN execution show how

the program can determine the partition and assignment of

Kleene's logic (as we saw in example 4-1) and Bochvar's logic (as

we saw in example 4-2).

.4

61

> (find-assign)

Enter logic name: > kleene
loading "b:KLEENE.lsp"

Designated values: (T)
Neutral values: (I)
Antidesignated values: (F)
NIL

> (find-assign)

Enter logic name: > bochvar
loading "b:BOCHVAR.lsp"

Designated values: (T)
Neutral values: (I)
Antidesignated values: (F)
NIL

When there are equivalent partitions, FIND-ASSIGN will

choose one semi-arbitrarily. If there are elements 'true,'

'false,' 'T' or 'F' in the logic, FIND-ASSIGN will attempt to

select the assignment placing 'true' or 'T' in the designated

class and 'false' of 'f' in the antidesignated class (there is no

strict mathematical necessity for this assignment, merely English

language conventions for the name of logic values). FIND-ASSIGN

chooses the assignment of logic values in SL3 (see example 4-4)

such that T is designated and F antidesignated.

> (find-assign)

Enter logic name: > s13

62

loading "b:SL3.lsp"

Designated values: (T)
Neutral values: (I)
Antidesignated values: (F)
NIL

When there is no possible assignment resulting in well

defined conjunction, FIND-ASSIGN will selectively place even

cycles in the neutral class until an assignment is found. FIND-

ASSIGN will place the fewest even cycles in N as possible. In the

following example (see example 4-13), FIND-ASSIGN places cycle

(TI F2 T2 Fl) in the neutral class, but not cycle (T F).

> (find-assign)

Enter logic name: > no-assig
loading "b:NO-ASSIG.lsp"

Designated values: (T)

Neutral values: (Ti Fl T2 F2)
Antidesignated values: (F)

As a last resort, FIND-ASSIGN will place all even cycles

in the neutral class. In example 4-3 we saw the Post system of

four elements did not have an assignment of its logic values for

which conjunction is well defined. FIND-ASSIGN will places all of

P4's elements in the neutral class.

> (find-assign)

Enter logic name: > p4

: : ' ' ,,/ , .,) " ,-.;.,, , ..-/, ,'..-...-

63

loading "b:P4.lsp"

Designated values: NIL
Neutral values: (3 2 1 4)
Antidesignated values: NIL

4.7 Summary.

In this chapter we have developed a system to find an

assignment of logic values to partition classes we defined in

chapter two: designated, antidesignated and neutral. This

assignment is unique for each logic system up to equivalence

within the framework of Designated Logic Systems. The LISP

program FIND-ASSIGN will find the assignment of any system given

complementation and conjunction.

In the next chapter we will use what we have discovered

about these systems to build a hierarchy of mathematical systems

characterizing different properties found in Designated Logic

Systems.

4i

CHAPTER 5

A HIERARCHY OF DESIGNATED LOGIC SYSTEMS

Although we can now classify designated logic systems

based on their partitions and class assignments, we can classify

them further based on shared mathematical properties. In this

chapter we will explore those shared properties and develop a

hierarchy of mathematical systems to classify the designated

logic systems. Using these classifications we can find

similarities between the Designated Logic Systems and classical

logic.

5.1 Designated Algebras.

An algebra is a set of elements S together with a number

of operations defined on that set. We call [S,-,&] a designated

algebra if S is a set of logic elements, - is a complement

permutation as defined in chapter three and & is a well defined

conjunction function as defined in chapter four.

We saw from the conclusions in chapter four that every

Designated Logic System is also a designated algebra since every

set of elements has at least one assignment where conjunction is

64

65

well defined. Using this property we can show the Principle of

Contradiction is a tautology in any Designated Logic System.

Assume there is some value x in a designated logic system

such that the principle of contradiction does not hold. In other

words, there is some x such that -(x & -x) is antidesignated.

This means there is some x such that x & -x is designated. By the

definition of conjunction in Designated Logic Systems we know

there is no such x, so the principle of contradiction is a

tautology in any Designated Logic System.

5.2 Designated Monoids.

A monoid is a set S together with an associative function

and an identity element s such that s & x = x & s = x for all x

in the set S. We call [S,-,&] a designated monoid if it is a

designated algebra, contains at least one identity element as

defined in chapter three, and & is associative. Any designated

logic without an identity would not be a designated monoid. Nor

woulad&y system with non-associative conjunction.

Example 5-1. Assume we have a logic system whose

conjunction and complement functions are defined by table 22. We

will call this logic cyc4 and note that cyc4 has cycle-classes 11

31 and (2 41. Cyc4 is a designated monoid with identities 1 and 3

66

(recall the definition of identities in a designated monoid: the

identity element need only map elements into the same cycle-

class).

Table 22

Complementation and Conjunction in Cyc4

S1 & 21234
1 12 111234
2 13 21 2341
3 14 313412
4 11 414123

Example 5-2. A Post system of four elements is not a

designated monoid. As shown in example 4-9, P4 has the identity

element 3. However, since conjunction is not associative in Post

systems of more than two elements, P4 is not a designated monoid.

5.3 Ordered Designated Systems.

Let <be an order on S such that if x & y = w then w < x

and w < y. This order can be represented as directed graph. If x

< y then there is a directed path from x to y and x & y = x.

Example 5-3. Let [S,-,&] be a designated monoid with the

conjunction function described by table 23.

V.

67

Table 23

An Ordered Conjunction Function

& sy vwxz

s s Y VWx z
y yy x w x z

V VXVZXZ

w wwzwz z
xl x x xzx z
ZIZZZZZZ

This designated monoid may be represented by the directed graph

in figure 14. For example, since y & w = w there is a directed

path from y to w and w < y.

S

'I V

\/

Figure 14. A Graph of Table 23.

Given a designated monoid represented as a graph, two

elements x and y are comparable (either x y or y < x) if and

only if there is a directed path from x to y or there is a

directed path from y to x. Two elements are incomparable if thele

is no directed path from x to y and no directed path from y to x.

68

If, for any two comparable values x and y, x < y implies x

& y = x, then & is a greatest lower bound function and (defines

a partial order on the set of logic values. If < defines a

partial order of the logic elements in a designated monoid, we

say [S,-&] is an ordered designated system.

Example 5-4. Let S be a set of six elements represented by

the integers zero through five. Also, let [S,-,&] be a designated

monoid with the conjunction function defined in table 24.

Table 24

Conjunction For Example 5-3

& 1012345
0 1012345
1 1114445

2 1242445

3 1344445
4 1444445
5 1555555

Then (defines a partial order on the set S and [S,-,&] is an

ordered designated system represented by the graph in figure 15.

- A A A %~A ~~A2~ ~ :*ft~*.

69

1 .3

Figure 15. A Graph of Table 24.

We can define another function called least upper bound

(lub) as follows. If glb(w,x) = y then lub(w,y) = w and lub(x,y)

= x. In other words, given an ordered designated system

represented as a directed graph, if there is a directed path from

x to y then lub(x,y) = x.

A partially ordered set (poset) is called a lattice if a

unique glb and lub exist for every possible pair of elements of

S. A Designated Logic System can be represented as a lattice if

it is an ordered designated system and the lub function defined

disjunction in the Designated Logic System.

Example 5-5. Given system M6 with & and + defined by table

25, system M6 can be represented as a lattice as shown in figure

16.

I.9 .t..!

70

Table 25

Conjunction and Disjunction in M6

& T F U K1 KO K +1 T F U K1 KO K
T 1 T F U K1 KO K T T T T T T T
F I F F F F F F F T F U K1 KO K
U 1 U F U U KO KO U T U U K1 U K1
KI 1 K1 F U K1 KO K K1 1 T KK1 K1 K1 K1
KO KO F KO KO KO KO KO T KO U K1 KO K

K 1 K F KO K KO K K T K K1 K1 K K

T

Ki

U K

KO

F

Figure 16. M6 Represented as a Lattice.

Example 5-6. Given conjunction and disjunction functions

in var's B3, the logic values can not be represented as a

latt As can be seen in table 26, there are two possible

orderings. T-F-I is the order when glb defines conjunction and I-

T-F is the order when lub defines disjunction.

1

'~d~ ~ MJ~~X .~$ Mr ~ "TV" M TZ 77777br', Mm KI. WW. W.W' K . W VWVW

71

Table 26

Conjunction and Disjunction in B3

&ITIF + TIF

TITIF T TITI1III IIIII

FIFIF FITIF

5.4 The CLASSIFY Program.

The LISP program CLASSIFY finds the classification of a

Designated Logic System within the mathematical hierarchy defined

in this chapter. First, CLASSIFY attempts to classify the logic

as an ordered designated system represented as a lattice. If this

is possible, CLASSIFY will print the order from the 'least true'

to the 'most true' elements. If the logic can't be classes as a

lattice, CLASSIFY attempts to find a partial order of the logic

elements. Failing this, CLASSIFY checks for identity elements and

associative conjunction. If the logic passes these tests it is a

designated monoid. If all these attempts fail, CLASSIFY defines

the logic as a designated algebra.

> (classify)

Enter logic name:) sixval
; loading "b:SIXVAL.lsp"

* -q

Designated values: (T K1)
Neutral values: (U K)

72

Antidesignated values: (F KO)

Elements form a lattice.
(F) <= (KO) <= (U K) <= (K1) <= (T)
NIL

> (classify) a

Enter logic name: > bochvar
loading "b:BOCHVAR.lsp"

Designated values: (T)
Neutral values: (I)
Antidesignated values: (F)

Elements form a poset.
(I) <= (F) <= (T)
NIL
>

> (classify)

Enter logic name: > cyc4
; loading "b:CYC4.lsp"

Designated values: NIL
Neutral values: (3 2 1 4)
Antidesignated values: NIL

Logic is a designated monoid with identities: (3 1)
NIL

> (clamsify)

Enter logic name: > p4
loading "b:P4.lsp"

Designated values: NIL
Neutral values: (3 2 1 4)

Antidesignated values: NIL

Logic is a designated algebra.
NIL

'S

73

5.5 Summary.

The Designated Logic Systems can be placed in an hierarchy

of mathematical systems with ever increasing constraints. Every

Designated Logic System is also a designated algebra, but not all

are designated monoids (e.g. systems with no supremum and systems

with non-associative conjunction). Not all designated monoids
•I

define a partial order and not all partial orders can be

represented as a lattice. Any system whose conjunction function

does not impose the same order as its disjunction function can

not be represented as a lattice. Figure 17 shows the hierarchy

and where some of the systems studied in this chapter belong.

Classical logic can be represented as a lattice where F <

T. Thus, the further down in the hierarchy a designated logic

system falls, the more closely it resembles classical logic.

The mathematical definitions used in this chapter may be

found in the following references: Grimaldi 1985, Lipschutz 1976,

Liu 1977, Preparata and Yeh 1973, Ross and Wright 1985 and Stanat

and McAllister 1977.

.4

* 4 "

p

74

DESIGNATED ALGEBRAS
(P3,P4)

+ associativity
+ supremum

V

DESIGNATED MONOIDS

(CYC4)
+ partial order

V
ORDERED DESIGNATED SYSTEMS (POSET)

(B3)
+ disjunction order

V

ORDERED DESIGNATED SYSTEMS (LATTICE)
(K3 and M6)

Figure 17. A Hierarchy of Designated Logic Systems.

In the next chapter we will discuss homomorphisms between

the Designated Logic Systems and three valued logics. Using these

homomorphisms we can limit the number of conjunction forms

possible at each level of the hierarchy.

1:

I T

CHAPTER 6

CONJUNCTION HOMOMORPHISMS IN THE DESIGNATED HIERARCHY

In the hierarchy developed in chapter five we used a

series of constraints to define a broad classes of designated

logic systems. These classes were the designated algebra, the

designated monoid and the ordered designated system. We would

like to know how many types of conjunction functions there are

possible at each level of the hierarchy such that the functions

agree with classical logic when only designated and

antidesignated values are in question. This will give us an idea

of the complexity imposed on logic systems as a result of the

third (neutral) logic class.

6.1 Conjunction Classes in Designated Logic Systems.

Because logic systems may have a very large number of

elements, wp would like to be able to describe conjunction

functions using the lcgic's partition classes rather than

individual elements. We will define function && to be &&: ID,N,AI

x ID,N,AI -) ((D,N,AI, ID,NI, (D,AI, 1N,A1, (DI, NI, (Al, Of

such that if X && Y = Z, there is some element a in X and some

74

75

element b in Y such that a & b is an element of z for all z in Z

where & is conjunction in the logic system. For example, if we

wanted to define the && function for M6 with conjunction given in

table 25, we would begin by finding M6's class assignments. We

know from the FIND-ASSIGN examples in chapter 4 that M6's

assignments are D = (T, K11, N = {U, KI and A = (F, K01. To find

the value of D && D in M6 we would list all classes in which the

results of a & b fall where a, b are elements of D. We see the

following results:

T & T = T T is an element of D
T & K1 = K1 Kl is an element of D
K1 & T = K1 Kl is an element of D
K1 & K1 = K1 Kl is an element of D

Therefore, D && D = {DI in M6.

Likewise the value of N && N in M6 may be found using the

same procedure.

K & K = K K is an element of N

K & U = KO KO is an element of A
U & K = KO KO is an element of A
U & U - U U is an element of N

Therefore N && N = (N, Al in M6.

Table 27 is a representation of function && where P is the

power set of {D,N,AI. In general, there are 98 possible functions

since && can result in any element of {D,N,AI's power set for any

76

pair from the set ID,N,Al.

Table 27

A Meta-Conjunction Table For Classes D, N and A

&& D N A
DIPPP
NIPPP

A PPP

When we limit the functions in question to those which

agree with classical logic when only designated and

antidesignated values are in question, there are only 75 possible

functions as seen in table 28 where P-0 represents an element

from the the power set of ID, N, Al not including the null (or

empty) set.

Table 28

Function && With Classical Agreement

&&I D N A
D I {Dl P-0 (Al

N I P-0 P-0 P-0
A I (Al P-0 (Al

77

6.2 Conjunction in Designated Algebras.

Given a designated algebra, we can limit the possible

conjunction forms. In a designated algebra if a & b is designated

then both a is designated and b is designated. As shown in table

29, there are only 35 possible functions where NA = ({N,A1 INI

Table 29

&& in a Designated Algebra

&&1 D N A
D I (DI NA IAI
N J NA NA NA
A 1 (Al NA (Al

6.3 Conjunction in a Designated Monoid.

A designated monoid has at least one identity element and

an associative operator &. We can use the definition of a

designated monoid to limit the number of conjunction forms.

given a designated monoid, the existence of an identity

element allows us to limit the possible conjunction forms to

those shown in table 30 where Q represents an element from the

set ((NI, (N, All. Assume we have the identity element s in D.

Since s & x = x' for all x in the logic where x and x' are in the

78

same cycle-class, D && N and N && D can take a value from the

list (Ni, {N,Al). Note there are now a total of 33 x 22 possible

functions.

Table 30

&& When Conjunction Has an Identity Element

&& I D N A
D 1 IN (Al

N I 0 NA NA
A I JAI NA IAI

When we include the associative property of designated

monoids as an additional constraint, we can limit the function

patterns again. Assume N && N = [Al. Then we know (N && N) && N =

N && (N && N), so A && N = N && A.

Thus, in a designated monoid we have three cases: N && N =

{NI, N && N = JAI and N && N = IN, Al.

When ,N && N = A there are only the 22 + 22 + 22 = 12

possible functions we see in table 31.

I

79

Table 31

&& in a Designated Monoid When N && N = (Al

&& 1 D N A && 1 D N A && 1 D N A
D IIDI 0fAl D I{D}[I]fA D JID} I fA}
N I C3IAlINI N Q 0 IAlfNAl N I C3AlHAl
A HAIIN}|A} A IA}[NAlfAl A IAHfA}{A}

Otherwise there are 32 x 23 possible functions since D &&

N and N && D can be an element from [{NI, IN, A!1, N && A and A

&& N can be an element from {{Ni, (Al, {N, All and N && N can be

either fA, N1 or (NI. There are, therefore, 33 * 32 = 72

conjunction forms when N && N is not JAI. Thus, there are 72 + 12

= 84 possible conjunction forms which both agree with classical

logic when only designated and antidesignated valued are

considered and are designated monoids.

6.4 Conjunction in an Ordered Designated System.

An ordered designated system has several properties we can

make use of4 when determining the number of possible conjunction

forms. Some of these properties are reflexivity, commutativity

and the existence of the infimum.

Since all ordered designated systems are designated

monoids we know there are at most 84 possible conjunction forms

AL J" V ~~.,.---.

80

for ordered designated systems. We can use the reflexive property

(x & x = x) of ordered designated systems to limit the number of

possible conjunction forms by noting N && N $ JAI since there

will be at least one instance when the conjunction of two neutral

values will be neutral. This leaves us with 72 possible

conjunction functions as described in the previous section.

Because the glb function is unique for any pair of

elements in the ordered designated system, we know conjunction is

commutative. We can use this property to limit the number of

possible conjunction functions. Since D && N = N && D can be

either IN) or IN, AJ, N && A = A && N can be either (NI, {AI or

IN, Al and N && N can be either IN} or IN, A) there are 2 * 3 * 2

= 12 possible conjunction forms for an ordered designated system.

When the infimum is in N there are eight possible

functions as there are eight functions when the infimum is in A.

Of these sixteen possible functions, four are the same, so we end

up with the twelve conjunction types shown in table 32 (a) - (1).

Table 32

&& in Ordered Designated Systems

&& D N A && D N A && D N A

D IDI INI IA! D 1 (DI NAI (Al D IDI IN1 iAl

N INI INI IA1 N ;INAI iNJ IAl N (NI INAIIA)

A {AI At (At A I 1A AAI (At A 1 AI 1AJ iAJ

(a) (b) Ic)

&& D N A &&1 D N A && D N A

D 1Dl NAIIAI D I IDI (NI JAI D IDI NAIIAI

N IHNAI NAI{AI N (N (NI INAI N (NAI (NI {NAI

A I (AI JAI IA) A IAl NAIIA) A JAI INAIIA)

(d) (e) (f)

&& 1 D N A && I D N A && D N A

D (DI NAI(Al D 1 (DI (NI (Al D IDI INI (AI

N HNAI INAIINA N IN) (NAI(NAI N 1I(NI (NI IN)

A (Al INAI (AI A ; (Al (NAIfAI A (Al (NI (Al

(g) (h) Ii)

&& D N A && 1 D N A && I D N A

D I (DI (NJ (At D : ID INAIIAl D I IDI INAI (AI

N I (Ni INAIN N (INAI INI (NI N 1fNAI INAI (NI

A I (Al (NI (Al A IAl INI (Al A I (Al (NI (AI

(j) (k) ()

We can find a homomorphism between any ordered designated

system and one of these twelve functions when conjunction agrees

weJ

82 .

with classical logic in the designated and antidesignated cases.

These twelve homomorphisms describe those logic systems which

resemble classical logic most closely.

6.5 Examples.

Example 6-1. Kleene's logic is homomorphic to the

conjunction form in table 32 (a).

Example 6-2. Bochvar's logic is homomorphic to the

conjunction form in table 32 (i).

Example 6-3. M6 is homomorphic to the conjunction form in

table 32 (c). a

6.6 Summary.

We can find the conjunction form of those designated logic

systems most like classical logic using a homomorphism between

the classes of the logic partition and the classes to which

conjunction maps. Those logics most like classical logic behave

identically to classical logic when no neutral values are

conjoined.

At each level of the designated hierarchy developed in the

last chapter we can specify the number of conjunction forms which

are closely related to classical logic. Using the constraints of

8.3

the algebraic structures in the hierarchy we prune the number of

possible functions from 35 functions in a designated algebra to

twelve in an ordered designated system.

t.

CHAPTER 7

CONCLUSION

In this work we have enhanced our understanding of the

non-classical logics by providing a survey of some of the more

important systems, defining designated logic systems, developing

an algorithm for partitioning these systems and a classification

scheme based on shared mathematical properties and similarities

to classical logic.

In order to classify the many-valued logic systems we

needed to understand their structure. We built an algorithm for

defining a partition of logic values into three classes:

designated (or truth-like) values, antidesignated (or false-like)

values and neutral values. By allowing tautologies to take either

designated or neutral values, and by allowing contradictions to

take either antidesignated or neutral values, we built a system

for which many of the tautologies and contradictions in classical

logic hold in the designated logic systems as well.

We defined a number of criteria for logic systems in the

form of constraints imposed on their complement and conjunction

functions. We called logic systems meeting these constraints

84

85

Designated Logic Systems.

Using these constraints we developed an algorithm for

finding all possible partitions of logic values into classes D

(designated), N (neutral) and A (antidesignated). Thus, for any

algebraic system having a permutation and binary function, we can

find a classification of its elements such that the algebraic

system is a Designated Logic System.

The hierarchy of Designated Logic Systems defined classes

of logic systems based on shared mathematical properties. At the

highest level of the hierarchy, the lattice, the Designated Logic

Systems closely resemble classical logic. This hierarchy,

together with the homomorphisms, show us there are relatively

few forms of Designated Logic Systems which closely resemble

classical logic. If the Designated Logic System agrees with

classical logic whenever only designated and antidesignated

values are in question, and if the logic's elements fall into the

lattice structure in the designated hierarchy, there are only

twelve possible conjunction forms the logic can have regardless

of the number of its elements.

Although we do not assert that our classification scheme

and definitions presented in this paper are the only correct

86

method of defining and classifying Designated Logic Systems, we

have developed a methodology which will enable any algebraic

system to be transformed into a Designated Logic Systems given a

permutation and a binary function.

This classification of logic systems opens many questions

for further research: What is the smallest number of logic values

required in each of the 12 classes? What happens to the classes

when the definition of conjunction is changed (made more or less

constrained)? What is the relationship between each of the

classes? These questions, if researched, may provide further

insight into the nature of Designated Logic Systems.

Any truthful study of the human reasoning process will

show 'not all things are either strictly true nor strictly

false.' People think, make decisions and correlate data and

events with uncertain and incomplete data. To understand human

reasoning we need non-classical logic tools. We hope this paper

will provide a basis for an understanding of the algebraic nature

of these systems.

APPENDIX 1

LOGIC SYSTEM DEFINITIONS

Classical Logic and Deviant Logic Definitions.,

All logics are defined for NEGATION (-), CONJUNCTION (&t.

DISJUNCTION (+), IMPLICATION (=>) and EQUIVALENCE (=>i.

CLASSICAL LOGIC

; & 1 T F + 1 T F I=> T F <=> 1 T F

T I F T I T F T I T T T I T F T I T F

F I T F I F F F I T F F I T T F I F T

THE THREE VALUED LOGIC OF LUKASIEWICZ (L3)

_ &IT I F +-IT I F => T I F

TIF TIT I F TIT T T TfT I F

IiI III I F 1IT I I lIT T I

FIT FIF F F FIT I F FIT T T

<=> I T I F

TIT I F

III T I

FIF I T

(Lukasiewicz, 1920]

THE FOUR VALUED SYSTEM OF LUKASIEWICZ

logic values are of the form <a,b> where a and b are

element of T,FI. Assume AND, OR, IMPLY, EQUAL and NOT are
conjunction, disjunction, implication, equivalence and negation
as defined in classical logic. The values of each function are

87

88

-<~>= <NOT(a),NOT(b)>

(a,b> & <c,d> = AND(a,c),AND(b~d)>
<b)+ <c,d> = OR(a,c),OR(b,d))

(a,b> => (c,d> =<IMPLY(a,c),IMPLY(b,d)>

(ab> <=> <c,d) < EQUAL(a,c),EQUAL(b~d)>

THE THREE VALUED SYSTEM OF BOCHVAR

&_ &IT I F + 1T I F =>IT I F
T 1F T 1T I F T 1T I T T 1T I F
I !I I !I I I I iI I I I1111I1
F 1T F 1F I F FI1T I F FI1T I T

<= T I F

TI1T I F

FI1F I T

[Bochvar, 1939)

THE THREE VALUED SYSTEM OF KLEENE

& &IT I F +IT I F => 1T I F
TI1F T 1T I F TI1T T T T 1T I F
I iI 1I I 1F 1 1T I I 1 1T I I
F 1T FI1F F F FI1T I F FI1T T T

<= T I F
T 1T I F

F 1F I T

THE n VALUED SYSTEMS OF POST

Post defines a logic system of n values as:

p = (p.4.) mod n (here '+' denotes integer addition)
(p + q) =min(p,q)
(p & q) -(-p + -q)

89

(p => q) = -p+ q
(p <=> q) = (p => q) & (q => p)

[Post, 1021)

POST'S THREE VALUED SYSTEM (P3)

__ &1 2 3 + 11 2 3 =1i1 2 3
1 12 1 13 3 2 1 i1 12. 1 11 2 2
2 13 2:13 12 2 11 2 2 2 11 2 3
3 11 3 12 2 2 3 11 2 3 3 111 1

<= 1 2 3
1 3 32
2 3 1 2

313 2 3

MOUSSAVI'S SIX-VALUED LOGIC

K =IT,F,Ul

1(1 IF,Ul

I & T F U 1(1 K0 K
T IF T I T F U 1(1KO0K
F IT F I F F F F F F
U IU U I U F U U KO0 KO
1(11(1 K l1:1(1 F U 1(1 K0 K
KO 011(1 K 10KO(F KO01K01K01(O
K 1 K K I1K F KO K KO K

+ IT F U Kl1KO0K => T F U 1(1KO0K

T I T T .T T T T T I T F U Ki 1O0K
F I T F b K11KOK FI:T T T T T T
U I T U U 1(1 U Ki U I T U U 1(1 U 1(1
Kl T 1(11(11(1 Ki 1(1 Kl T 1(0 U 1(1KO0K

KO IT 1(0 U 1(1KO0K KO 1T 1(11(11(11(2 Ki
K IT K 1(11(1K K K I T K 1(11(1K K

(tMoussavi, 1986]

APPENDIX 2

THE CREATE-LOGIC PROGRAM

The following LISP program is the source code used to create

logic systems. Logic systems defined using this program are in

the correct format for use with the FIND-CLASS and ORDER

programs.

CREATE-LOGIC

;The following functions query a user for a logic name and logic
;functions. It then creates an output file and defines the
;logic's functions and logical terms. After all functions for
;the new logic have been defined, these functions, along with
;a comprehensive list of logic values, is written to the file
;b:(logic name>.lsp.

;CREATE-LOGIC generates a logic system from scratch

;Input: none.
;Output: a logic system of terms and functions written to the
;file b:<logic name>.lsp

(defun create-logic ()
(progn
(terpri)
(princ "Enterlogic name: ")

(setq iname (read))
(setq aname (strcat "b:" (symbol-name lname) ".lsp"))
(setq ofile (openo lname))
(setq flist nil) ;initialize list of functions
(setq vlist nil) ;initialize list of values

(getfun ofile) ;generate the logic functions
(printvals vlist ofile))) ;save the functions to disk

90
III~ Fr

11M

91

;GETFUN gets individual logic functions from the user. A typical
;logic definition might include definitions for conjunction,
;disjunction, negation and implication. Functions must be input
;in the form: (<fname> ((vall [val2]) result)

((vall (val2]) result)])
;For example, AND in classical logic would be defined as

;(AND ((T T) T)
(T F) F)
((F T) F)
((F F) F))

;Input:
ofile: the output file to which the logic functions will

be written.
;Output: a series of logic functions and a list of function

names as well as a list of logic values.

(defun getfun (ofile)
(progn
(terpri)
(princ "Enter logic function: ")

(terpri)
(setq logfun (read)) ;read the next function
(cond
((null logfun) (printf flist ofile)) ;if no function, write
(t (progn ;results to output file

(writef logfun) ;otherwise extract new

(setq vlist (writevals (cdr logfun) nil))
(writefun logfun ofile) ;logic values and go
(getfun ofile)))))) ;back for more functions

;WRITEF generates the function list for the logic. If you define

;a logic using ^,v and -, WRITEF will form a list of those three
;functions along with the number of arguments each take.

;Input:
logfun: a logic function which needs to be added to the

function list (flist).
;Returns: the updated function list.

(defun writef (iogfun)

(setq flist (cons (list (car logfun) (length (caadr logfun),1

1 ', 10 1

92

flist)

;PRINTF prints the function list to the output file. This creates
;a permanent record of all functions defined for the logic being
;created.
;Input:

flist: a list of function-name function-degree pairs.
ofile: the file name to which the list will be printed.

;Returns: nothing.

(defun printf (flist ofile)
(progn

(terpri ofile)
(princ "(setq flist '" ofile) ;when the logic is loaded
(prinl flist ofile) ;into the LISP environment,
(princ ")" ofile) ;flist be a complete list of
(terpri ofile))) ;all defined functions

;WRITEVALS collects and generates a list of logic values for the
;logic system. For example, in classical logic there are two
-logi< ,,alues: true and false. In L3 there are three: T, I and
;F.
;Input:
; logfun: a newly defined logic function

vlist: the current list of logic values
;Returns: the updated vlist. Any logic value refered to in logfun

but not contained in vlist will be added to vlist.

(defun writevals (logfun vlist)
(cond
((null logfun) vlist)
((listp (car logfun))

(writpvals (cdr logfun) (writevals (car logfun) vlist)))
((not (Vanber (car logfun) vlist)) (cons (car logfun) vlist))
(t vlisIl})

;PRINTVALS prints vlist to the output file. This creates a
;permanant record of all logic values for the logic.

;Input:
vlist: the list of logic values in a logic system
ofile: the output file to which vlist will be written

;Returns: nothing

93

(defun printvals (vlist ofile)
(cond
((null vlist) (close ofile))
(t (progn

(terpri ofile)
(princ "(setq vlist '"ofile) ;vlist is a list of all defined
(prinl vlist ofile) 7logic values for a specific
(princ ""ofile) ;system.
(terpri ofile)
(close ofile))

;WRITEFUN writes the function definition to the output file.
Input:

logfun: the logic function to be defined.
ofile: the output file to which the logic function will
be written.

;Example:
If logfun were

; V Ht) f)
((f) t))

the following would be written to ofile:
(defun - Wx

(cond ((equal x '(t)) 'f)
((equal x '(f)) It)))

Returns: nothing.

(defun writefun (logfun ofile)
(cond
((null logfun) nil) ;done writing functions
(t (progn

(terpri ofile)
(princ "(defun " ofile) ;start definition '(defun fn..
(prini (calr logfun) ofile)
(princ " (x (cond " ofile) ;write conditional statement
(terpri ofile)
(genfun (cdr logfun) ofile) ;enter each function pair
(princ "W)" ofile) ;then close fn and cond parens
(terpri ofile))

;GENFUN generates the 'equal' parts of the logic functions.
Input:

94

logfun: the logic function to be printed
ofile: the output file to which the logic function will
be printed.

;Example:
If logfun were ((t f) t) ...) the following line would be
printed by a single iteration of genfun:
((equal x '(t f)) t)
and genfun would be called to operate on the cdr of logfun.

;Returns: nil

(defun genfun (logfun ofile)
(cond
((null logfun) nil) ;generated all function pairs
(t (progn

(princ "((equal x '" ofile)

(prinl (caar logfun) ofile)
(princ ") '" ofile)

(prinl (cadar logfun) ofile)
(princ ")" ofile)

(terpri ofile)
(genfun (cdr logfun) ofile)))))

The following examples show the results of defining various

logic systems using program CREATE-LOGIC.

CLASSICAL LOGIC

(defun - (x) (condequal x 'M(T) 'F)

((equal x '(F)) 'T)

(defun (x) (cond
((equal x '(T T)) 'T)
((equal x '(T F)) 'F)
((equal x '(F T)) 'F)
((equal x '(F F)) 'F)

(defun V (x) (cond

95

((equal x '(T T)) 'T)

((equal x '(T F)) 'T) 0

((equal x '(F T)) 'T)

((equal x '(F F)) 'F)

(defun => (x) (cond

((equal x '(T T)) 'T)

((equal x '(T F)) 'F)

((equal x '(F T))

((equal x '(F F)) 'T)

(setq flist '(> 2) (V 2) (2) 1 1)))

(setq vlist '(F T))

LUKASIEWICZ'S 3-VALUED LOGIC

(defun - (x) (cond

((equal x '(T)) 'F)
((equal x '(I)) 'I)

((equal x '(F)) 'T)

(defun (x) (cond p
((equal x '(T T)) 'T)
((equal x '(T I)) 'I)

((equal x '(T F)) 'F)

((equal x '(I T)) 'I)
(equal x'(
((equal x '(I F)) 'F)

((equal x '(T)) 'F)

((equal x '(F I)) 'F)
((equal x '(F F)) 'F)

(defun V (x) (cond
((equal x '(T T)) 'T)
((equal x '(T I)) 'T)
((equal x '(T F)) 'T)

p

96

((equal x *(I T)) 'T)
((equal x '(I IV) 'I)
((equal x ' (I F)) 'I)
((equal x '(F T)) 'T)
((equal x '(F IV) 'I)%
((equal x '(F F)) 'F)

(defun =) Wx (cond
((equal x ' (T T)) 'T)
((equal x '(T IV) 'I)
((equal x '(T F)) 'F)
((equal x ' (I T)) 'T)
((equal x '(I IV) 'T)
((equal x '(I F)) 'I)
((equal x ' (F T)) 'T)
((equal x '(F IV) 'T)
((equal x '(F F)) 'T)

(defun <=> (x (cond
((equal x '(T T)) 'T)
((equal x '(T IV) 'I)
((equal x ' (T F)) 'F)
((equal x '(I T)) 'I)
((equal x ' (I IV) 'T)
((equal x '(I F)) 'I)
((equal x '(F T)) 'F)
((equal x '(F IV) -^I)
((equal x '(F F)) 'T)

(setq f list '(('2) (>2) (V 2) (2) 1 3))

(setq vlist '(F I T))

KLEENE'S 3-VALUED LOGIC

(defun Wx (cond
((equal x '(T)) 'F)
((equal x '(I)) 'I)

rig AN

97

((equal x '(F)) IT)

(defun (x) (cond

((equal x '(T T)) IT)

((equal x ' (T V)) 'V)

((equal x I(T F)) 'F)

((equal x '(1 T)) I)

((equal x '(I V)) I)

((equal x '(1 F)) 'F)

((equal x '(F T)) 'F)

((equal x '(F V)) 'F)

((equal x '(F F)) 'F)

(defun V Wx (cond

((equal x '(T T)) 'T)

((equal x '(I TV) 'T)

((equal x '(F T)) 'T)

((equal x '(T V)) 'T)

((equal x '(I V)) 'V)
((equal x '(F V)) 'V)

((equal x '(T F)) 'T)

((equal x '(I F)) 'V)
((equal x '(F F)) 'F)

(defun -) Wx (cond

((equal z 'T V)) IT)

((equal x '(TI)) 'V)

((equtl: '(T F)) 'F)

((equal 3t_ I(I T)) IT)

((equal X '(1 V)) 'V)
((equal x '(1 F)) 'V)

((equal x '(F T)) IT)

((equal x '(F V)) IT)

((equal x '(F F)) IT)

98

(defun <=> (x) (cond
((equal x '(T T)) 'T)
((equal x '(T I)) 'I)
((equal x '(T F)) 'F)
((equal x '(I T)) 'I)

((equal x '(I I)) 'I)
((equal x '(I F)) 'I)
((equal x '(F T)) 'F)
((equal x '(F I)) 'I)
((equal x '(F F)) IT)

(setq flist '((<=> 2) (=> 2) (V 2) (2) (1)))

(setq vlist '(T I F))

POST'S 3-VALUED LOGIC

(defun - (x) (cond
((equal x '(1)) '2)
((equal x '(2)) '3)
((equal x '(3)) '1)

(defun V (x) (cond
((equal x '(1 1)) 'l)
((equal x '(1 2)) 'l)
((equal x '(1 3)) '1)
((equal x '(2 1)) '1)
((equal x '(2 2)) '2)
((equal x '(j 3)) '2)
((equal x '(3 1)) '1)
((equal x '(3 2)) '2)
((equal x '(3 3)) '3)

(defun (x) (cond
((equal x '(1 1)) '3)
((equal x '(1 2)) '3)

99

((equal x '(1 3)) '2)

((equal x '(2 1)) '3)

((equal x '(2 2)) '1)

((equal x '(2 3)) '2)

((equal x '(3 1)) '2)

((equal x '(3 2)) '2)

((equal x '(3 3)) '2)

(defun => (x) (corid
((equal x '(1 1)) '1)

((equal x '(1 2)) '2)

((equal x '(1 3)) '2)

((equal x '(2 V)) 'I)

((equal x '(2 2)) '2)

((equal x '(2 3)) '3)

((equal x '(3 1)) '1)

((equal x '(3 2)) 'l)

((equal x '(3 3)) 'l)

(defun <=> (x (cond

((equal x '(1 1)) '3)

((equal x '(1 2)) '3)

((equal x '(1 3)) '3)

((equal x '(2 1)) '3)

((equal x '(2 2)) '1)

((equal x '(2 3)) '2)

((equal x '(3 1)) '3)

((equal x '(3 2)) '2)

((equal x '(3 3)) '3)

(setq flist '(''2) (=> 2) (2) (V 2) U1)))

(setq vliut '(2 3 1)

BOCHVAR'S 3-VALUED LOGIC

(defun (x) (cond

100

((equal x '(T)) 'F)
((equal x '(I)) 'I)
((equal x '(F)) 'T)

(defuri (x (corid
((equal x '(T T)) 'T)
((equal x '(T V)) 'I)
((equal x '(T F)) 'F)
((equal x '(I T)) 'I)
((equal x '(I V)) 'I)
((equal x '(I F)) 'I)
((equal x '(F T)) 'F)
((equal x '(F V)) 'I)
((equal x '(F F)) 'F)

(defun V {x (cond
((equal x '(T T)) 'T)
((equal x '(T V)) 'I)
((equal x '(T F)) 'T)
((equal x '(I T)) 'V)
((equal x '(I V)) 'I)
((equal x '(I F)) 'V)
((equal x '(F T)) 'T)
((equal x '(F V)) 'I)
((equal x '(F F)) 'F)

(defun -> Wx (cond
((equal x '(T T)) 'T)
((equal x '(T V)) 'I)
((equal x '(T F)) 'F)
((equal x '(3 T)) 'I)
((equal x '(I V)) 'I)

((equal x '(I F)) 'I)
((equal x '(F T)) 'T)
((equal x '(F V)) 'I)
((equal x '(F F)) 'T)

(defun <=> (x (cond

101

((equal x '(T T)) 'T)
((equal x '(T I)) 'I)
((equal x '(T F)) 'F)
((equal x '(I T)) 'I)
((equal x '(I I)) 'I)
((equal x '(I F)) 'I)
((equal x '(F T)) 'F)
((equal x '(F I)) 'I)
((equal x '(F F)) 'T)

(setq flist '((<=) 2) (>2) (V 2) (2) (1)))

(setq vlist '(F I T))

MOUSSAVI'S 6-VALUED LOGIC

(defun W x (cond
((equal x '(T)) 'F)
((equal x '(F)) 'T)
((equal x '(U)) 'U)
((equal x '(Ki)) 'KO0)
((equal x '(1(O)) 'K(1)
((equal x 'MK) 'K)

(defuri Wx (cond
((equal x '(T T)) 'T)
((equal x '(T F)) 'F)
((equal x '(T U)) 'U)
((equal x '(T Ki)) 'K(1)
((equal, x '(T KO0) 'KO0)

((equal x '(1 K)) 'K)
((equal x '(F T)) 'F)

((equal x I(F F)) 'F)
((equal x '(F U)) 'F)
((equal x '(F KV1) 'F)
((equal x '(F 1(0)) 'F)
((equal x '(F K)) 'F)
((equal x '(U T)) 'U)
((equal x '(U F)) 'F)

102

((equal x '(U U)) 'U)
((equal x '(U K1)) 'U)
((equal x '(U KO)) 'KO)
((equal x '(U K)) 'KO)
((equal x '(K T)) 'KI)
((equal x '(K1 F)) 'F)
((equal x '(K1 U)) 'U)
((equal x '(K. K)) 'Kl)
((equal x '(KI KO)) 'KO)
((equal x '(KI K)) 'K)
((equal x '(KO T)) 'KO)
((equal x '(KO F)) 'F)
((equal x '(KO U)) 'KO)
((equal x '(KO KI)) 'KO)
((equal x '(KO KO)) 'KO)
((equal x '(KO K)) 'KO)
((equal x '(K T)) 'K)
((equal x '(K F)) 'F)
((equal x '(K U)) 'KO)
((equal x '(K K1)) 'K)
((equal x '(K KO)) 'KO)
((equal x '(K K)) 'K)

(defun V (x) (cond
((equal x '(T T)) 'T)
((equal x '(T F)) 'T)
((equal x '(T U)) 'T)
((equal x '(T K1)) 'T)
((equal x '(T KG)) 'T)
((equal x '(T K)) 'T)
((equal x '(F T)) 'T)
((equal x '(F F)) 'F)
((equal x '(FU)) 'U)
((equal x '(F K1)) 'K1)
((equal x '(F KG)) 'KO)
((equal x '(F K)) 'K)
((equal x '(U T)) 'T)
((equal x (U F)) 'U)
((equal x '(U U)) 'U)

((equal x '(U Kl)) 'K1)
((equal x '(U KG)) 'U)

103

((equal x '(U K)) 'Ki)
((equal x '(Ki T)) 'T)
((equal x '(K1 F)) 'Ki)
((equal x '(Ki U)) 'Ki)
((equal x '(Ki Ki)) 'Ki)
((equal x '(K1 KG)) 'Ki)
((equal x '(KI K)) 'KI)
((equal x '(KO T)) 'T)
((equal x '(KO F)) 'KG)
((equal-x---- KO U)) 'U)
((equal x '(KO K1)) -K3)1.
((equal x '(KG KO)) 'KO)
((equal x '(KG K)) 'K)
((equal x '(K T)) 'T)
((equal x '(K F)) 'K)
((equal x '(K U)) 'Ki)
((equal x '(K KI)) 'KI)
((equal x '(K KG)) 'K)
((equal x '(K K)) 'K)

(defun => (x) (cond
((equal x '(T T)) 'T)

((equal x '(T F)) 'F)
((equal x '(T U)) 'U)
((equal x '(T KI)) 'KI)
((equal x '(T KG)) 'KG)
((equal x '(T K)) 'K)
((equal x '(F T)) 'T)
((equal x '(F F)) 'T)
((equal x '(F U)) 'T)
((equal x '(F K1)) 'T)
((equal x '(F KO)) 'T)
((equal x '(0 K)) 'T)
((equal x (U T)) 'T)
((equal x '(U F)) 'U)

((equal x '(U U)) 'U)
((equal x (U Ki)) 'KI)
((equal x '(U KG)) 'U)
((equal x '(U K)) 'KI)
((equal x '(KI T)) 'T)
((equal x '(KI F)) 'KG)

104

((equal x '(El U)) 'U)
((equal x ' (Kl El)) 'Kl)
((equal x '(Kl KO)) 'KO0)
((equal x '(Kl K)) 'K)
((equal x '(KO0 T)) 'T)
((equal x '(KO F)) 'K1)
((equal x '(KO0 U)) 'El)
((equal x '(KO0 El)) 'Kl)

((equal x '(KO KO)) 'El)
((equal x '(KO K)) 'El)
((equal x '(K T)) 'T)
((equal x '(K F)) 'K)
((equal x '(K U)) 'El)
((equal x '(K K1)) 'El)
((equal x '(K KO)) 'K)
((equal x '(E K)) 'K)

(setq flist '((- 2) (- 1) (V 2) (>2)))

(setq vlist '(F KO0 U K El T))

APPENDIX 3

THE FIND-CYCLES PROGRAM

As discussed in chapter three, program FIND-CYCLES finds all

the odd and even cycles in a logic system using the

complementation function. If the complement function is not a

permutation, FIND-CYCLES returns an error message.

FIND-CYCLES

;FIND-CYCLES finds all odd and even cycles in the complementation
;permutation of a logic. If the logic's negation function is not
;a permutation, find-cycles returns an error message. Otherwise
;find-cycles returns a list of even cycles and a list of odd
;cycles in the form ((vl v2...vn) (vl v2 ...vn)...) where each set
;of vl.. .vn values is one cycle.

;Input:
The logic whose cycles are to be found. The negation

; function must be defined in the format created by the
program CREATE-LOGIC. The logic function file must be
b:(lname>.lsp where <miname> is the argument to FIND-

; CYCLES.
;Returns:

A list of the odd and even cycles of the selected logic.

(defun find-cycles ()
(progn
(terpri)
(princ "Enter logic name: ")

(load (strcat "b:" (symbol-name (read)) ".lsp"))
(setq even nil)
(setq odd nil)
(cond
((not (permutationp vlist nil)) (progn

105

A , %'',. w.%

106

(princ "not a permutation")
(terpri)))

(t (progn
(cycle vlist)

(list odd even))))))

;PERMUTATIONP determines if the complement function in the given
;logic is a permutation.
;Input:

ivals: the list of elements whose complements need to be
determined.
ovals: the list of elements the complement of some value
erstwhile in ivals. For example, if T was in ivals and -T
= F then F will be in ovals.

;Returns:
T if the complement function is a permutation
nil if the complement function is not a permutation

(defun permutationp (ivals ovals)
(cond

((and (null ivals) (same-list ovals vlist)) t)
((null ivals) nil)
((member (- (list (car ivals))) ovals) nil)
(t (permutationp (cdr ivals) (cons (- (list (car ivals)))

ovals)))))

;CYCLE finds all cycles in a permutation and puts them in global
;lists odd and even.

;Input:
vals: the list of values in a permutation to find the
cycles for.

;Returns:
Nothing. Global lists odd and even are updated.

(defun cycle (vals)
(cond
((not (null vals))
(cycle (save-cyc (find-cycle (list (car vals))) vals)))))

;SAVE-CYC simply stores the cycle in the correct global list

;and removes that cycle's elements from the vals list.

107

Input:
cyc: the cycle to be stored
vals: the list of elements to update

;Returns:
The updated vals list

(defun save-cyc (cyc vals)
(prog2
(if (evenp (length cyc))

(setq even (cons cyc even))

(setq odd (cons cyc odd)))
(rem-cycle vals cyc)))

;FIND-CYCLE finds the remaining cycle of the elements in cyc.

;Input:
cyc: the list of values already in the cycle.

;Returns:
the entire cycle in reverse order

(defun find-cycle (cyc)

(cond
((member ((list (car cyc))) cyc :test equal) cyc)
(t (find-cycle (cons F (list (car cyc))) cyc)))))

;REM-CYCLE removes all elements of list cyc from list vals

;Input:
vals: the input list to alter

; cyc: the list of elements to remove from vals.

;Returns:
The updated vals list

(defun,$m-c~cle (vals cyc)
(cond %

((null cyc) vals)
(t (rem-cycle (remove (car cyc) vals) (cdr cyc)))))

;ADD-IF adds item to input list if it is not already a member.

;Input:
item: the item to add to 1

108

1 the list to be changed
;Returns:

The updated list.

(defun add-if (item 1)
(cond
((member item 1 :test equal) 1)
(t (cons item 1))))

;SAME-LIST return T if two lists have the same elements,
;else return nil.

;Input:
11: one list to compare
12: the other list

;Returns:
A boolean.

(defun same-list (11 12)
(cond
((null 11) (null 12))
((member (car 11) 12) (same-list (cdr 11)

(remove (car 11) 12
:test equal)))

(t nil)))

;SPLIT splits an even cycle into two halves. Each half
;will either be in the designated class or the antidesignated
;class of a designated partition of a logic's values.

;INPUT:
cyc - the cycle to split

;RETURNS:
A list of the two halves of the cycle. For example, if
the cycle is (v! v2 v3 v4), SPLIT will return the list
((vi v3) (v2 v4)).

(defun split (cyc)
(cond
((null cyc) nil)
(t (expand-split (car cyc) (cadr cyc) (split (cddr cyc))))))

MUM- Orr' o

109

;EXPAND-SPLIT adds values to each half of a split cycle. For
;example, given (expand-split v1 v2 ((v3) (v4))), the function
;will return ((vl v3) (v2 v4)).

;Input:
vi - the value to aed to the first half of the split.
v2 - the value to add to the second half of the split.
1 - the previously split values.

;Returns:
A new split list with vl and v2 added.

(defun EXPAND-SPLIT (vl v2 1)
(list (cons vi (car 1)) (cons v2 (cadr 1))))

;GEN-CYCLE-CLASSES generates a list of all the cycle
;classes in the logic.

;Input:
evencyc: a list of all the even cycles.

;Returns:
A list of all the cycle-classes.

(defun gen-cycle-classes (evencyc)
(cond
((null evencyc) odd)
(t (append (split (car evencyc))

(gen-cycle-classes (cdr evencyc))))))

L i

APPENDIX 4

THE FIND-ASSIGN PROGRAM

Program FIND-ASSIGN determines the assignment of logic

values to partition classes using the algorithm developed in

chapter four.

FIND-ASSIGN

;This series of programs finds all possible assignments of logic

;elements to designated and antidesignated classes. We assume 0

;the conjunction function of the logic is defined as specified
;in the CREATE-LOGIC program and that it is loaded. FIND-ASSIGN
;finds all possible assignments of even cycles in the logic which
;result in well defined conjunction. If there are no such
;assignments, FIND-ASSIGN attempts to find the offending cycles
;and puts them into the neutral class.

(defun find-assign ()
(progn
(setq possible nil)
(setq D nil)
(setq A nil)
(if (not (boundp 'find-cycles)) (load 'b:cycle))
(find-cycles)
(setq N (flatten odd))
(if (consp even) (test-assign even nil nil))
(if (and (cdrsp even) (null possible)) (find-fault))
(if (and (consp even) (ccnsp possible))

(do-assign (best-assign possible)))
(terpri)
(princ "Designated values: ")

(prinl D)
(terpri)
(princ "Neutral values: ")

(prinl N)

110

(terpri)
(princ "Antidesignated values: ")

(prinl A)
(terpri)

;FLATTEN takes a multi-level list and returns a flat list
;in its place.
;Input:

exp: the expression to flatten
;Returns:

The flat expression.

(defun flatten (exp)
(cond
((null exp) nil)
((atom exp) (list exp))
(t (append (flatten (car exp)) (flatten (cdr exp))))))

;DO-ASSIGN makes the final assignment of values to the
;designated and antidesignated classes.

Input:
alist: the assignment to make in the form ((D) (A))

; where D is the designated values and A the antidesignated.
;Returns:

The sets D, A and N as globals.

(defun do-assign (alist)
(progn
(setq D (car alist))
(setq A (cadr alist))
alist))

;TEST-ASSIGN finds all possible assignments of even cycles and
;tests them to find any resulting in well defined conjunction.
;All such assignments are stacked in the global location
;POSSIBLE.

;Input:
evencyc: a list of all the even cycles to be tested.

; D-prime: a test assignment of designated values.

112

A-prime: a test assignment of antidesignated values.

;Returns:
possible: a list of all possible assignments in the
form (((desig) (antidesig)) ((desig) (antidesig)) ...

(defun test-assign (evencyc D-prime A-prime)
(cond
((and (null evencyc) (testp D-prime (cddar (cddr (car)))))
(setq possible (cons (list D-prime A-prime) possible)))

((not (null evencyc))
(progn
(test-assign (cdr evencyc) (append D-prime

(classl (car evencyc)))
(append A-prime

(class2 (car evencyc))))

(test-assign (cdr evencyc) (append D-prime
(class2 (car evencyc)))

(append A-prime

(classi (car evencyc))))
possible))))

;CLASS1 collects all the even numbered elements of an even
;cycle. For example, given a cycle (a b c d e f), Class1 would
;return (a c e).

;Input:
evencyc: the even cycle

;Returns:
; The even half of the even cycle.

(defun classl (evencyc)
(cond
((null ;vencpC) nil)

(T (cons (car evencyc) (classl (cddr evencyc))))))

;CLASS2 selects the even numbered elements from an even cycle.

;Input:
evencyc: the even cycle to be split

;Returns:
The odd numbered elements of the even cycle.

113

(defun class2 (evencyc)
(cond
((null evencyc) nil)
(t (cons (cadr evencyc) (class2 (cddr evencyc))))))

;TESTP returns T if an assignment of elements to the designated
;and antidesignated classes results in well defined conjunction.
;Otherwise TESTP returns NIL.

(defun testp (desig conj)
(cond
((null desig) T)
((null conj) T)
((and
(member (eval (cadar conj)) desig)
(or
(not (member (car (eval (caddr (caar conj)))) desig))
(not (member (cadr (eval (caddr (caar conj)))) desig)))) nil)
(T (testp desig (cdr conj)))))

;BEST-ASSIGN selects the best possible assignment of designated
;and antidesignated values based on the names true, T, false and
;F. BEST-ASSIGN tries to put T or true in the designated class
;and false or F in the antidesignated class.

;Input:
plist: the list of possible assignments in the form

; (((D) WA) ((D) WA) ... ((D) (AM) .

;Returns:
The best possible assignment of values to the

; designated and antidesignated classes.

(defun best-essign (plist)
(cond

((equal (length plist) 1) (car plist))
((and (member 'true vlist) (member 'false vlist))

(find-both 'true 'false plist))
((and (member 'T vlist) (member 'F vlist))

(find-both 'T 'F plist))
((member 'false vlist) (find-f nil 'false plist))
((member 'F vlist) (find-f nil 'F plist))

X III

X~rXVWVRNMULVN UTUMAn

114

((member 'true vlist) (find-t 'true plist))
((member 'T vlist) (find-t 'T plist))
(T (car plist))))

;FIND-BOTH attempts to find an assignment for which F or false
;is antidesignated and T or true is designated. Failing this,
;FIND-BOTH will try to find where F or false is antidesignated.

;Input:
desig: the default designated value of the system. This will
either be T or true.
antidesig: the default antidesignated value of the system.

; This will be either F or false.
plist: the list of possible assignments.

;Returns:
; a list of the form ((D) (A)) where D is the designated

values and A is the antidesignated values.

(defun find-both (desig antidesig plist)
(cond
((null plist) nil)
((and (member desig (caar plist)) (member antidesig

(cadar plist)))
(car plist))

((find-both desig antidesig (cdr plist)))
(t (find-f desig antidesig plistM))

;FIND-F attempts to find an assignment where the default anti-
;designated value is assigned to the antidesignated class. If
;this fails, FIND-F attempts to put the default designated
;value in the designated class. If the default designated value
;is nil, there, neither T nor true are elements of the logic.

;6

;Input:
desig: the default designated value of the logic system. It
will be either true or T.
antidesig: the default antidesignated value of the logic

; system. It will be either F or false.
; plist: the list of possible assignments.
;Returns:

A list of the form ((D) (A)) where D is the designated
values and A the antidesignated.

N

115

(defun find-f (desig antidesig plist)
(cond
((null plist) nil)
((member antidesig (cadar plist)) (car plist))
((find-f desig antidesig (cdr plist)))
(t (find-t desig plist))))

;FIND-T will attempt to find an assignment of logic values to
;partition classes such that the default designated value of
;the system is in the designated class. If this fails, FIND-T
;will return the first assignment in the list.

;Input:
desig: the default designated value of the logic system.

; plist: the list of possible assignments.
;Returns:

A list of the form ((D) (A)) where D is the designated
; values and A the antidesignated.

(defun find-t (desig plist)
(cond
((null plist) nil)
((member desig (caar plist)) (car plist))
((find-t desig (cdr plist)))
(t (car plist))))

;FIND-FAULT will find the elements of a logic's even cycles
;causing the logic to have poorly defined conjunction.
;FIND-FAULT will delete the fewest even cycles from the
;D-A classification and put them in N. FIND-FAULT first
;tries to find an assignment after deleting one even
;cycle from the even cycle list. Then two, three ...
;As a last resort, FIND-FAULT will put all logic elements
;in the neutral class.

;Input:
None although the global EVEN is used.

;Returns:
Updated globals EVEN, POSSIBLE and N reflecting the
new values in N removed from EVEN.

116

(defun find-fault ()
(cond
((equal (length even) 1) (adjust-even even))
(T (adjust-even (delete-cycles 1 (C (length even) 1))))))

;C will find all combinations of R items out of a set of N
;distinct items. The formula for this is N!/(N-R)!R!. If N=R
;then C(NR)=I, if N < R then there are no possible
;combinations. The problem is equivalent to having N balls and
;R boxes. Try to see how many different sets of balls will
;fill the boxes.

;Input:
N: the number of elements to choose from

; R: the number of elements to choose.
;Returns:

A list of all possible choices.

(defun C (N R)
(cond
(((N R) nil) ;fewer balls than boxes
((= N R) (list (consec N))) ;equal balls and boxes
((= R 1) (singleton N)) ;only one box
(t (append (app N (C (1- N) (1- R)))

(C (1- N) R)M)

;CONSEC lists the integers from 1 to N if N is positive, else
;it returns nil. For example, (consec 3) would reture (1 2 3).

;Input:
N: the number of consecutive integers to list.

;Returns:
The list of consecutive integers.

(defun consec (N)
(cond
(((= N 0) nil)
((= N 1) '(1))
(t (cons N (consec (1- N))))))

;SINGLETON lists individual numbers from 1 to N in individual
;lists. For example, (singleton 3) would return ((1)(2)(3)).

117

;Input:
N: the number of singletons to create

;Returns:
The list of singleton lists.

(defun singleton (N)
(cond
(((= N 0) nil)
(t (cons (list N) (singleton (1- N))))))

;APP appends N to each list in L. For example, (app 4
;((3 2) (3 1) (2 1))) would return ((4 3 2)(4 3 1)(4 2 1)).

;Input:
N: The number to append to each list

; L: The list to append to
;Returns:

A list of the appended lists.

(defun app (N L)
(cond

((zerop N) L)
((null L) nil)
(t (cons (cons N (car L)) (app N (cdr L))))))

;ADJUST-EVEN will remove elements from even cycles and place
;then in class N.

;Input:
1: the list of even cycles

;Returns:
Updated EVEN and N as globals.

;

(defun -just-even (1)

(if (cdip 1) (progn
(delete (car 1) even :test equal)
(setq N (append (car 1) N))
(adjust-even (cdr 1)))))

;DELETE-CYCLES tries to find a possible assignment of
;elements to classes D and A by deleting even cycles

1 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ r v 11 l 011 1.1111111117111 J1111i '!I11111

118

;and putting them in N. DELETE-CYCLES starts off deleting
;one cycle at a time, then two ... As a last resort,;DELETE-CYCLES will put all elements in class N.

;Input:
num: the number of cycles to delete from even.
combos: all possible combinations of num elements

to be deleted from the even cycle list. For example,
if num is 2 and there are 4 even cycles, combos would
be the list ((1 2) (1 3) (1 4) (2 3) (2 4) (3 4)).
Every possible combintaion of two elements would be
removed from even until one combination was found to
result in well defined conjunction.

;Returns:
A list of the even cycles to be deleted from EVEN. The
elements from these same cycles will be added to class N.

(defun delete-cycles (num combos)
(cond
((equal num (length even)) even)
((null combos)
(delete-cycles (1+ num) (C (length even) (1+ num))))

((test-assign (remove-cyc (car combos) even) nil nil)
(list-cyc (car combos) even))

(t (delete-cycles num (cdr combos)))))

;REMOVE-CYC removes the elements of 11 from 12.

;Input:
11: the list of elements to remove

12:the list to remove them from
;Returns:
; The list 12 with elements from 11 removed.

(defun remove-cyc (11 12)
(cond
((null 11) 12)
(T (remove-cyc (remove (car (last 11)) 11 :test equal)

(remove (nth (1- (car (last 11))) 12)
12 :test equal)))))

;LIST-CYC lists the elements of 12 numbered in 11 with

0 W L . _KI'I

h'I&U 1 j

119

;a one origin.

;Input:
11: the list of element numbers to list
12: the list of elements to list

;Returns:

A list of the elements.

(defun list-cyc (11 12)
(cond
((null 11) nil)
(T (cons (nth (- (car 11) 1) 12) (list-cyc (cdr 11) 12)))))

- -

r '4 %

I

APPENDIX 5

THE CLASSIFY PROGRAM

Program CLASSIFY determines where in the hierarchy developed

in chapter five logic systems fit. CLASSIFY tries in turn:

lattice, poset, momoid and algebra. All logic systems default to

algebra if they don't fall into any of the three other

categories.

CLASSIFY

;CLASSIFY determines where a logic fits into the hierarchy
;of designated logic systems. The logic may be a lattice, a
;poset, a monoid or an algebra. Classify also finds the
;designated and antidesignated values of a logic.

(defun classify ()
(progn
(if (not (boundp 'find-assign)) (load 'b:assign))
(find-assign)
(setq even nil)
(setq odd nil)
(cycle vlist)
(cond

((latticep) (progn
i (terpri)

(princ "Elements form a lattice. ")

(terpri)
(print-order (orderup vlist (make-and-slist vlist

(init-slist vlist))))
(terpri)))

((posetp (make-and-slist vlist (init-slist vlist)))
(progn
(terpri)

120

q

121

(princ "Elements form a poset. ')

(terpri)
(print-order (orderup vlist

(make-and-slist vlist (init-slist vlist))))
(terpri)))

((and (assocp vlist vlist vlist)
(find-idents vlist (gen-cycle-classes even)))

(progn
(terpri)
(princ "Logic is a designated monoid with identities: ")

(print (find-idents vlist (gen-cycle-classes even)))
(terpri)

(t (progn
(terpri)
(princ "Logic is a designated algebra."
(terpri)))))

;PRINT-ORDER will print out logic values in 'least true' to
;'most true' order.

;Input:
ord: a list of the ordered logic values

;Returns:
The list printed to default output sink

(defun print-order (ord)

(cond
((null (cdr ord)) (prinl (car ord)))
(t (progn (prinl (car ord))

(princ" (= ")

(print-order (cdr ord))))))

;LATTICEP
;Given a Iettof logic values and the functions AND () and OR
;(v), These functions will find a possible ordering of the
;values.

;Order the current logic system using the current AND (-) and OR
;(v) functions. Returns the order of the arguments if there is
;one, else returns the possible orderings.

(defun latticep ()

er W VP r,1w'

122

(and (posetp (make-and-slist vlist (init-slist vlist)))
(equal-order (orderup vlist

(make-and-slist vlist (init-slist vlist))

(orderup vlist
(make-or-slist vlist (init-slist vlist))))

;Determine if two orderings are identical.
;Input:

ol: an ordering of logic values of the form ((...)(...) ...)
02: ditto

;Returns: I

T if the orderings are identical, otherwise Nil

(defun equal-order (ol o2)
(cond
(null ol) (null o2))
((same-list (car ol) (car o2)) (equal-order (cdr oi) (cdr o2)))
(t nil)))

;Order all elements in a logic system from the least to the most
;'true.' Logic elements on the same level will be listed
;together. Use the function AND to determine order.

;Input:
arglist: the list of logic values to order
slist: a list of the form ((xl (...) (x2 (...)) ...)

such that the xi are greater than or equal to any
element in their association list.

;Returns:
The ordering of the input argument list.

(defun orderup (arqlist slist)
(cond
((null arglisk) ni-)
((equal (length arglist) 1) (list arglist))
(t (cons (setq min (find-min slist vlist (length vlist)))

(orderup (new-arglist min arglist)
(new-slist min slist))))))

;make an association list of all logic values and a list of all V
;other logic values less than it.

123

Input:
args: the list of logic values.
slist: An association list of the form

((xl ())

(x2 (...

(xn(...))
as described above.
Returns:

The association list based on the function AND (')

(defun make-and-slist (args slist)
(cond
((null args) slist)
(t (make-and-slist (cdr args)

(make-and-slist2 (car args) vlist slist)))))

;find all possible values of (argl arg2) and enter the resulst
;in the respective slists for each element

;Input:
argl: The first argument for ANDing to every possible logic

value.

arg2: The list of all possible second arguments for ANDing.

slist: The list thus far of logic association lists
;Returns:

The slist updated for argl.

(defun make-and-slist2 (argl arg2 slist)
(cond A

((null arg2) slist)
(t (make-and-slist2 argl (cdr arg2)

(add-arg ((list argl (car arg2))) (car arg2)

(add-arg ((list argl (car arg2))) argl slist))))))

;Make a list of all values less than the current value using the

;function OR.
;ditto input and output for make-and-slist

124

(defun make-or-slist (args slist)
(cond
((null args) slist)
(t (make-or-slist (cdr args) (make-or-slist2 (car args)

vlist slistfl))))

;Find all values in arg2 less than or equal to argi and update
;slist to reflect these changes.
;Ditto input and output for make-and-slist2

(defun make-or-slist2 (argi arg2 slist)
(cond
((null arg2) slist)
(t (make-or-slist2 argi (cdr arg2)

(add-arg argi (V (list argi (car arg2)))
(add-arg (car arg2) (v (list argi

(car arg2)))
slist)))))

;add argi to arg2's slist if it is not already a member
Input:

argi: the logic value to be added to arg2's association
list.
arg2: the logic value whos association list will be updated.
slist: the association list to be updatod.

Returns:
The updated slist.

(defun add-arg (argi arg2 slist)
(cond
((equal (caar slist) arg2)
(cond

((member argi (cadar slist)) slist)
(t (cons A

(list arg2 (cons argi (cadar slist)))
(cdr slist)))))

(t (cons (car slist) (add-arg argi arg2 (cdr slist)))))

;initialize the slist to ((xl M)

(x2 M) ... (xn M)

Input:
arglist: the list of logic values

125

;Returns:
The initialized association list.

(defun init-slist (arglist)
(cond
((null arglist) nil)
(t (cons (cons (car arglist) ' (())) (init-slist

(cdr arglist))))))

;return T if two lists have the same elements, else return nil

;Input:
11: one list to compare
12: the other list

;Returns:
A boolean.

(defun same-list (11 12)
(cond
((null 11) (null 12))
((member (car 11) 12) (same-list (cdr 11)

(remove (car 11) 12

:test equal)))
(t nil)))

;return the set of minimum values in a list.

;Input:
slist: the association list for each logic value.

minlist: the current list of minimal logic values.
len: the number of logic values 'less' than the current

minimal logic values.
;Returns:

The list 4of minimal logic values.

(defun find-min (slist minlist len)
(cond
((null slist) minlist)
(((length (cadar slist)) len)
(find-min (cdr slist) (list (caar slist))

(length (cadar slist))))
((equal len (length (cadar slist)))

126

(find-min (cdr slist) (cons (caar slist) minlist) len))
(t (find-min (cdr slist) minlist len))))

;delete an association list entry from a list
;Input:

key: the logic value whos association list is to be deleted.
slist: the list of association lists.

;Returns:
The updated association list.

(defun delist (key alist)
(cond
((assoc key alist) (remove (assoc key alist) alist :test equal))
(t alist)))

;delete all association lists of minlist from slist
;return the new slist
;Input:

minlist: the list of minimal values whos association lists
; are to be deleted.

slist: the list of association lists.

(defun new-slist (minlist slist)
(cond
((null minlist) slist)
(t (new-slist (cdr minlist) (delist (car minlist) slist)))))

;delete elements of minlist from arglist and return resulting
-arglist.

;Input:
; minlist: the list of values to be deleted from the arglist.

arglist: the remaining list of logic values to be ordered.
;Returns: A

The updated argument list.

(defun new-arglist (minlist arglist)
(cond
((null minlist) arglist)
(t (new-arglist (cdr minlist) (remove (car minlist) arglist

:test equal)))))

127

;ASSOCP determines if a conjunction function is associative
;by testing the equivalence of (a ^ b) - c with a - (b c)
;for all possible a's b's and c's.

;Input:
avlist: the list of possible values for a
bvlist: the list of possible values for b
cvlist: the list of possible values for c

;Returns:
T if the conjunction function is associative and
nil otherwise.

(defun assocp (avlist bvlist cvlist)
(cond
((and (consp cvlist) (is-assoc (car avlist)

(car bvlist)
(car cvlist)))

(assocp avlist bvlist (cdr cvlist)))

((consp cvlist) nil)
((and (null cvlist) (consp (cdr bvlist)))
(assocp avlist (cdr bvlist) vlist))

((and (null cvlist) (null (cdr bvlist)) (consp (cdr avlist)))
(assocp (cdr avlist) vlist vlist))

(t t)))

;IS-ASSOC returns t if (a - b) - c = a - (b c).

;Input:
a,b,c: the three logic values to test

;Returns:
; T if they are associative, else nil.

(defun is-assoc (a b c)
(equal t^ (list (- (list a b)) c))

,I (list a (- (list b c))))))

;POSETP returns T if a logic can be represented as a poset,
;otherwise POSETP returns nil.

;Input:
slist: the association list of logic values to other

; values (= to it.

128

;Returns:
T if the logic is a poset, else nil.

(defun posetp (slist)
(and (transitivep vlist slist)

(reflexivep slist)
(antisymmetricp vlist slist)))

;TRANSITIVEP returns T if the relation defined by conjunction
;is transitive. If a <= b and b <= c then a <= c.

;Input:
args: the list of elements to test.
slist: the association list representing the <= relation

;Returns:
T if the relation is transitive, else nil.

(defun transitivep (args slist)
(cond
((null args) t)
((not (trans2 (car args)

(cadr (assoc (car args) slist)) slist)) nil)
(T (transitivep (cdr args) slist))))

;TRANS2 determines if a <= b and b <= c means a <= c for a

;specific c in the logic.

;Input:
xl: the specific c

; xllist: all values in the logic <= xl
slist: the <= relation

;Returns:
; T if a <= b and b <= xl implies a <= xl for all a, b
; in the logic. Otherwise nil.

(defun trans2 (xl xllist slist)
(cond
((null xllist) t)

((not (sublist (cadr (assoc (car xllist) slist))
(cadr (assoc xl slist)))) nil)

(t (trans2 xl (cdr xllist) slist))))

129

;SUBLIST returns T if 11 is a sublist of 12, else nil.

;Input:
11: the prospective sub-list
12: the prospective super-list

;Returns:
T if every element of 11 is an element in 12, else nil.

(defun sublist (11 12)
(cond
((null 11) t)

((not (member (car 11) 12 :test equal)) nil)
(t (sublist (cdr 11) 12))))

;REFLEXIVEP returns T if x <= x for all x in the logic.

;Input:
slist: the list representing the <= relation.

;Returns:
T if the relation is reflexive, else nil.

(defun reflexivep (slist)
(cond
((null slist) t)
((not (member (caar slist) (cadar slist) :test equal)) nil)

(t (reflexivep (cdr slist)))))

;ANTISYMMETRICP determines if the relation is
;antisymmetric.

;Input:
; args: the list of logic values to test

; slipt: tle relation
;Returns:

T if the relation is antisymmetric, else nil.

(defun antisymmetricp (args slist)
(cond

((null args) t)
((not (symm2 (car args) (cadr (assoc (car args) slist))

slist)) nil)
(t (antisymmetricp (cdr args) slist))))

130

;SYMM2 determines if x <= y and y <= x for a specific x.

;Input:
xl: the specific x
xllist: the list of all elements <= xl
slist: the relation

;Returns:
T if x <= y and y <= x implies x = y for all y in
the logic.

(defun symm2 (xl xllist slist)
(cond
((null xllist) t)
((and (not (equal xl (car xllist)))

(member xl (cadr (assoc (car xllist) slist))
:test equal)) nil)

(t (symm2 xl (cdr xllist) slist))))

;FIND-IDENTS finds all the identity elements in the logic.
;Element e is an identity element if e - x = x ^ e = x' where
;x and x' are in the same cycle-class for all x in the logic.

;Input:
vals: the remaining logic values to check.

; clist: a list of all the cycle-classes in the logic.
;Returns:

A list of all the identity elements in the logic. If there
are none, returns nil.

(defun find-idents (vals clist)
(cond

((null vals) nil)
((checkl (c~r vals) vlist clist)
(cons (car vals) (find-idents (cdr vals) clist)))

(t (find-idents (cdr vals) clist))))

;CHECK1 checks to see if arg is an identity element of the
;logic;

;Input:
arg: the element to be tested as an identity

AM

131

arglist: all the values to check againsL
clist: a list of all the logic's cycle-classes

;Returns:
T if arg is an identity element, else nil.

(defun checkl (arg arglist clist)
(cond
((null arglist) t)
((not (member (car arglist)

(find-cycle-class (- (list arg (car arglist)))
clist))) nil)

(t (checkl arg (cdr arglist) clist))))

;FIND-CYCLE-CLASS finds the cycle-class of arg.

Input:
arg: the element whose cycle-class is to be found.
clist: the list of all the logic's cycle-classes.

;Returns:
The cycle-class of arg, or nil if there is none.

(defun find-cycle-class (arg clist)
(cond
((null clist) nil)
((member arg (car clist)) (car clist))
(t (find-cycle-class arg (cdr clist)))))

1 1 IS 111 1111, 11111111,11 -116 1 1111 111 1111 '1111'1,111

V

I

I

BIBLIOGRAPHY

Aristotle. Prior Analytics, trans. H. P. Cooke and H.

Tredennick. London: William Heinemann Ltd., 1967.

Church, Alonzo. Introduction to Mathematical Logic.
Priceton: Princeton University Press, 1956.

Copi, Irving M. Introduction to Logic. New York: Macmillan
Publishing, 1972.

Grimaldi, Ralph P. Discrete and Combinatorial Mathematics.
Reading: Addison-Wesley Publishing Co., 1985.

Haack, Susan. Deviant Logic. Cambridge: Cambridge University

Press, 1974.

Philosophy of Logics. Cambridge: Cambridge

University Press, 1978.

Hilbert D. and Ackermann, W. Principles of Mathematical

Logic. New York: Chelsea Publishing Co., 1950.

Kneale, William and Kneale, Martha. The Development of

Logic. Oxford: Clarendon Press, 1984.

Langer, Susan K. An Introduction To Symbolic Logic. New

York: Dover Publications, Inc., 1953.

Lipschutz, Seymour. Discrete Mathematics. New York: McGraw-

Hill, Inc., 1976.

Liu, C' L. Elements of Discrete Mathematics. New York:
McGraw-Hill, Inc., 1977.

• Introduction to Combinatorial Mathematics. New

York: McGraw-Hill, Inc., 1968.

132

i i rre , - I

1
133

Moussavi, Massoud. Modeling Rule-Based Systems Using a Six

Valued Logic. Research Proposal. George Washington

University, 1986.

Post, E. L. "A General Theory of Elementary Propositions." The
American Journal of Mathematics, xiii (1921), 163-
185.

Rescher, Nicholas. Topics in Philosophical Logic. Dordrecht:
D. Reidel, 1968.

_ Many-valued Logic. New York: McGraw-Hill, Inc.

1969.

Rosenbloom, Paul C. The Elements of Mathematical Logic. New
York: Dover Publications Inc., 1950.

Ross, Kenneth A. and Wright, Charles R. B. Discrete
Mathematics. Englewood Cliffs: Prentice-Hall, Inc.,
1985.

Russell, B. and Whitehead, A. Principia Mathematica.

Cambridge, 1910.

Stanat, Donald F. and McAllister, David F. Discrete
Mathematics in Computer Science. Englewood Cliffs:
Prentice-Hall, Inc., 1977

Stolyar, Abram Aronovich. Introduction to Elementary
Mathematical Logic. Hanover: Halliday Lithograph
Corp., 1970.

Turner, RayAond. Logics for Artificial Intelligence. West
Sussex: Ellis Horwood Limited, 1984.

Winston, Patric H. Artificial Intelligence. Reading: Addison

Wesley, 1984.

