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1. INTRODUCTION

Y-ong path atmospheric transmission in atmospheric window bands such as

the 3-5 pm, 8-12 tm, and millimeter wave regions can be limited by absorption

in the line wings. There are now a number of critical military applications,

including infrared search and track detection of cruise missiles and bombers,
infrared imaging from space, millimeter wave communications, laser target

designation, and laser weapons beam propagation which require detailed

knowledge of absorption lineshapes and their influence on atmospheric

radiation transport. There are also potential geophysical applications such

as atmospheric sounding and trace species monitoring which require better

lineshape knowledge than that currently available. Lastly, there is still

active interest in energy fluxes in planetary atmospheres and the global

radiation budget, which motivated the first studies of atmospheric window

transmission.V

These needs have resulted in the development of a large body of

atmospheric transmission calculation technology, primarily through the

Air Force Geophysics Laboratory (AFGL). Development continues on

sophisticated computer codes such as the AFGL LOWTRAN family for low spectral

resolution and FASCODE, based on the AFGL line parameters compilation. For

both codes, the largest uncertainties are in continuum components which

reO dominate in window bands. 1 This has generated continued interest, including
0 diode laser and conventional absorption spectroscopy experiments, AFGL

workshops on high resolution atmospheric transmission and yearly AFGL Symposia

on Seeing Through the Atmosphere, as well as an International Workshop on

Atmospheric Water Vapor.
2
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This is the tenth and final R&D Status Report for Contract Number

F19628-85-C-0183, "Molecular Line Shape Effects on Atmospheric Window

Absorption". It covers work through contract termination on February 3, 1988,

and includes a review of all work on the contract since the start date of

September 9, 1985. The objective of the program was to develop theoretical

methods for predicting the shape of molecular absorption lines in the wing

regions. The investigation included but was not limited to asymptotically

correct forms valid in the far wings and near line center (to give line

widths). Its motivation was to assess the effect of line shapes on

atmospheric window absorption, so that systems of particular interest included

water-water, water-nitrogen, and carbon dioxide-nitrogen. Particular emphasis

was placed on the temperature dependence of line shapes and widths, since
these are among the most sensitive experimental tests of detailed theories.

1.1 Background and Research Objectives

The shape of infrared spectral line near line center is known to be well

described by the Lorentz function. The problem of calculating absorption near

the center of a strong line is therefore that of computation of the Lorentz

width. Microscopic theoretical formulations are available which allow

evaluation of a width operator in terms of intermolecular potentials. From

the assumptions used in deriving easily evaluated expressions for the width

operator which are valid near line center, (or simply from the requirement

that the integrated absorption over the entire lineshape must be finite), it

is clear that at some point in the line wing, the Lorentz function can no

longer be correct. The problem of predicting the wing functional form as well

as absolute magnitude has attracted much attention, but work to date has

produced either formal derivations which stop short of numerical results, or

calculations of wing behavior which are highly approximate.

1
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Davies, Tipping and Clough3 ,4 (DTC) developed an explicitly time

dependent theory for spectral line broadening based on the dipole moment

autocorrelation function. In contrast to earlier treatments, the DTC theory

is fully quantum mechanical and rigorously satisfies the fluctuation

dissipation theorem on a microscopic level. In addition, whereas alternate

is quantum mechanical approaches5 ,6 (e.g. those based on close-coupling

calculations or various approximations thereof) are typically limited to

line widths for smaller molecular systems, the DTC formulation provides the

entire frequency dependent absorption profile for more complicated molecular

systems.

The DTC formulation relies on two basic approximations. First, it is

assumed that the many body collisional problem for far wing absorption can be,

at least qualitatively, reduced to treatment of the scattering interaction

between a single pair of absorbing (radiator) and perturbing molecules and

then simply multiplying by the total number of such pairs. Second, it is

assumed that the anisotropic intermolecular interaction is sufficiently weak

to permit the time dependent scattering transition probabilities to be treated

using pertubation theory. Although there is some evidence that the so-called

single-perturber approximation does qualitatively reproduce observed spectral

features at low gas densities, 7,8 the reliance on perturbation theory is more

problematic.

One unresolved issue associated with perturbative treatments of line

broadening is the implicit restrictions on the intermolecular interactions

which may contribute to far-wing absorption. For example, scattering

resonances and/or complex formation cannot be adequately treated within the

DTC formulation; rather, it is generally assumed that the dominant

interactions responsible for far-wing absorption arise from long range
0 anisotropic interactions. However, even in this case, perturbation theory

breaks down as the impact parameter approaches zero. Practical applications,

1-3



therefore, require ad-hoc cutoff functions which ensure physically reasonable

values for the absorption coefficient in strong collision regimes.

Davies and Fahey used the DTC theory, assuming dipole-dipole and dipole-

quadrupole interactions and neglecting line coupling effects, to treat

far-wing continuum absorption for the H20-H20 system.
4 We have also used DTC

theory to study this system. In both cases it was found that the calculated

profile failed to agree with available experimental data. In particular, the

theoretical far-wing absorption cross sections had the wrong temperature

dependence. In addition, our analysis indicated that the cutoff functions

needed to ensure well behaved absorption profiles under strong intermolecular

interactions were affecting the H20-H20 line shapes out to 1000 cm
- 1 off line

center.

On the basis of this analysis it was suggested that additional research

was needed to develop theoretical methods which were either nonperturbative

or, at least, less dependent upon ad hoc cutoff functions to deal with strong

collisions between the radiating and perturbing species. In addition, it was

also suggested that the theoretical methods and corresponding computer codes

should be more general with respect to the type of intermolecular interactions

with which they can deal.

Accordingly, our research has focused on developing two theoretical

methods which showed promise for achieving these goals. Both methods are

based on the dipole autocorrelation function formulation and assume uncoupled

lines and the binary collision approximation. The first method, discussed in

Section 4, is based on a generalization of the Leavitt-Korff cutoff-free

impact theory of line broadening.9 This method, although based on

perturbation theory, uses a linked-cluster resummation of the perturbation

s's. expansion to yield absorption cross sections which remain well-behaved in

N- strong collision regimes without resorting to ad hoc cutoff functions. The

1-4
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second technique, the Recursive-Residue-Generation Method (RRGM)10 ,1 1 is a

nonperturbative method which can treat arbitrary intermolecular interactions.

1.2 Report Outline

Section 2 discusses the basic approach and common approximations invoked

by the theoretical methods described in this report. Section 3 describes the

application of the DTC method (developed in Appendix A) to H20 self-broadening.

Section 4 describes the GLK method and gives results for the H20

self-broadening. Section 5 describes the RRGM method which is illustrated by

an application to HCl-Ar. A summary is presented in Section 6.

Some mathematical details are treated in the Appendices. In addition to

a formal description of the DTC lineshape in Appendix A, Appendix B and C

contain a description of the matrix elements of high order multipole

interaction and computational techniques for radial matrix elements,

respectively.

1-5
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2.0 OVERVIEW OF THEORETICAL METHODS

9.

2.1 Autocorrelation Function Formulation of the Line ShaDe

The absorption coefficient per unit path length, a(w), for a dilute gas

is related to the thermally averaged dipole autocorrelation function for the

system, $(t), by1 2

2

a(w) = 4 (1- e 4 e it (2-1)S3c 27tri

* where = I/kBT, nr is the number density of radiating dipoles, and f(t) is

the dipole autocorrelation function for a single radiator interacting with Np

perturbers,

•(t) = Tr[p(O) . feiH t ' /N e-it/ (2-2)

where p(O) is the initial density matrix, - is the initial dipole moment

operator and H is the Hamiltonian operator for the system. We shall assume a

canonical system so that

e-OH _ e-H
p(O) = p(H) e T OH) Qp (2-3)

Tr(e ) p

.4 is the canonical density operator with partition function Qp. In addition,

the present report will specifically treat foreign broadening by perturbing

molecules which do not absorb in the spectral regions of interest. The dipole

* moment operator is then 11 = 1r where Ur is the dipole moment of the absorbing

species (radiator). However, self-broadening may be treated in basically the

2-1
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same fashion.4 Lastly, defining the complex time variable z = t-i? and using

the cyclic invariance of the trace operation, Eq. (2.2) can be rewritten as

t _ . eiHt/l - iHz/(-
'§4(t) i Tr[P ee (2-4)

-. P

where the Boltzmann statisCical weight has been incorporated into the time

evolution of the dipole moment operator.

2.2 Uncoupled lines and Binary Collision ARnroximations

All calculations in this report will assume uncoupled lines and the

binary collision approximation. The uncoupled line approximation assumes that

* there are not collision induced correlations between zero-order transitions.

Then, the autocorrelation function may be expressed as a sum of correlation

functions for each dipole transition, i.e.,

t~~t) t f(t)
i f

where i and f refer to initial and final states. The binary collision

approximation assumes that the Np perturber autocorrelation function is simply

the product of Np identical single-perturber autocorrelation functions. In

this case it is shown in Appendix A that

(t), iWif T -npPif (t)
iftt)ae e

where wif is the transition frequency, np the perturber intensity, S the

system volume, and 'if is approximately a properly normalized single perturber

correlation function.

2-2
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3.0 APPLICATION OF DTC THEORY TO H20 SELF-BROADENING

3.1 1120 Absorption In the 10 urm Region

For atmospheric "window" transmission, H20 absorption is particularly

importatt in the 10 pm region. It is generally thought that absorption in

- this region is due to wings of lines in the 6.3 pm and pure rotation bands.

It has also been speculated that dimers (H20 * H20 or H20 * N2 ) or larger

clusters may be responsible for much of the absorption. Since line wing and
dimer absorption have the same pressure dependence, and indeed, at observed

temperatures could have the same continuum spectral appearance, it is not

* possible to distinguish between different mechanisms from present experimental

or theoretical work.

Line wing absorption is often reported as the ratio of observed

absorption to that expected for a Lorentzian lineshape. This ratio is denoted

x. At this time, the general observation is that water continuum absorption

in the extreme wings lies below the absorption predicted by summing the

Lorentzian line wings from pure rotational transitions. 13  This is illustrated

in Figure 3.1 which displays the temperature dependent X factor corresponding

to the ratio of the experimental absorption to the absorption computed by

summing Lorentzians for all distant lines on the HITRAN tape, after

subtracting out all nearby lines. 14,15

In Figure 3.1, the experimental X factors at 1000 cm- 1 range from 0.1 to

0.6 and decrease with increasing temperature. To understand the theoretically

predicted temperature dependence of far wing absorption, the DTC formulation

was used to treat a few isolated H20 rotational lines. The model system and

results are presented in Section 3.2. The predicted temperature dependence is

'-" . discussed in Section 3.3.

3-1
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3.2 Application to H20 Self-Broadening

The DTC method, assuming uncoupled lines and the binary collision

approximation, was used to treat a few isolated lines for the H20/H20 system.

The zeroth-order Hamiltonian is given by

H = 0 + Ho0+ Ho
0 P RP

where HO, HO are rigid rotor Hamiltonians for the H20 molecules with

eigenstatesl j,i,m> and eigenvalues &(j,T). The operator H;p describing the

relative motion of the H20 molecules is given by

" -o a 2  a L 2

where p is the reduced mass for two point particles with reduced mass P H20

. R is the intermolecular separation, and L is the total angular momentum.

°- ... Using the spherical harmonics satisfying

LI em> = r12e(e + 1)1 k m>

RP ---

23R 3-3
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the stationary states of 0 can be expressed asl £x> =

I kii> I E> where the radial eigenfunctions satisfy

+2r 2 t)+ 0(R t& t>
21 R2 aR 2

2UR 21pR

For the present calculation the isotopic intermolecular interaction has been

modeled by a 6-12 Lennard-Jones potential

V (R) = V° [ (6/R) 12 -2(6/R) 6]

* The anisotopic coupling interaction responsible for modifying the H20

rotational lines was represented as an multiple expansion which includes terms

, through electrostatic dipole/quadrupole.

V(R,6,0) = VDD(R,0,0) + VDQ(R,0,0) + VQD(R,0,0)

In a cartesian coordinate system these terms are given by

V 3~~l R)( R)JDD R 1 * 2 (- (2 )

VDQ 2R4 [2R-&2.i 1 - 5 (R*jI)(R Q2.R)]

where u1, U and Q1 and Q2 are dipole and quadrupole cartesian tensors for

the radiator (1) and perturber (2), respectively. Parameter values are given

in Reference 4.

The DTC chi-factors at 1000 cm-1 for the (4,1,5) - (5,2,5) H20 rotational

*. transition are shown in Figure 3.2. In addition to being an order of

magnitude smaller than the experimental results the theoretical chi-factors

% 3-4
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also show a positive temperature dependence. We were able to show that this

is not unexpected, using simple qualitative arguments. We review that work

here.

3.3 Temperature Deuendence of the Halfwidth Function in DTC Theory

Simple models to correlate DTC results can be found in analytic

approximations to Anderson theory for line widths. A particularly useful

review is given by Birnbaum in Volume 12 of Advances in Chemical Physics. It

is shown that the line broadening cross section consists of two factors. The

first is a coefficient which is proportional to a power of the temperature.

The second is a function of a resonance factor which is proportional to the

total change in rotational energy of the absorbing and colliding molecules.

Much rule-of thumb analysis of linewidth temperature behavior is done by

assuming that in the important line broadening collisions, total changes in

rotational energy and therefore the resonance factor are small, and its

function remains near one. In that case, the power of the temperature

corresponding to the DTC definition of the linewidth is (n-3)/(n-l), where n
is the exponent varies from zero to one-half as the potential is varied from

dipole-dipole (n=3) to hard-sphere. The DTC predictions on resonance lie

within this range, but for non-resonant photons the predictions increase much

more rapidly with increasing temperature.

In fact there is no reason for the water-water system to follow the above

simple dependence. For non-resonant photons, the resonance factor (which is

- essentially the collisional change in momentum required to conserve energy)

contains the difference between the photon and transition energies. Large

contributions are obtained with transitions with small resonance factors,

except that each transition is weighted by the Boltzmann factor for the

initial rotational state of the perturber. That weighting determines an

average, non-zero resonance factor.

3-6



By taking the resonance factor function to be an exponential of a power

of the inverse temperature, one can deduce averages of the translational

energy change during a collision by fitting the resulting exponential

- expression to the predicted DTC temperature dependence for the (4,1,4) -

(5,0,5) transition. The variation in this quantity with varying photon

energy, with excluding or including dipole-quadrupole forces, and between the

initial- and final-state contributions is with only one exception in

accordance with the expectation that larger average translational energy

changes will be associated with smaller, more-temperature dependent terms.

The one possible discrepancy, between the two potential choices for the

initial state term and a 1000 cm-1 photon, may be due to the different

weighting of perturber rotational transitions in the two cases.

In order to investigate the details of which collisional transitions are

most important, we developed a computer program (S2TERM) which read the same

input files as the DTC HWIDTH program, for a single translational energy and

angular momentum quantum number (Z). S2TERM examines the contributions to the

linewidth function from all rotational transitions in absorber and pertuber,

then prints out data for only those whose contribution is above a certain

fraction of the total. The simplification is impressive - for example, for

the (11,3,8) - (12,4,9) dipole-quadrupole and quadrupole-dipole calculations

for Z = 0, 400 cm- 1 translational energy and a 1211.3 cm- 1 photon energy, 47

and 59 terms out of 10,000 give over half and almost two-thirds of the totals.

The data printed out in the S2TERH lists include the changes in absorber

* and perturber rotational energy and relative translational energy, t2e

Boltzmann factor for the perturber initial rotational state, the transition

strengths for both rotational changes, and the matrix element appropriate to

the residual change in translational energy. It is the product of the last

• four terms that determines the contribution from a given pair of rotational

transitions.

5.3-7
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The sum of the three collisional energy changes satisfy an energy

conservation relation with the difference between the photon and transition

energies. The relation is different for the initial and final state terms.

Using the notation in the GTE final report is

(E i C , ) + ( Ej - j,) + (Ek  E k,) - (w - wf) =0

for the initial state term, and

(C - j ) + - J) + (Ek ,Ek) + (W- = 0

for the final state. If we designate the first three terms as Accoll, these

relationships can be illustrated as follows,

w~i jJk- J f'Jk' ---

f Wf

ji AE AColl

ll W JfJk
J1 t J'k --- j Jk---

It can be seen that for initial absorber states of relatively low energy,

much of the downward change in system energy required to accommodate the

off-resonance photon will have to come either from perturber transitions from

high rotational states with small Boltzmann weightings, or from large changes

in translational energy giving rise to small matrix elements. There are no
V such constraints on the final state term, so that in the far (blue) wing the

important terms in its sum are one to two orders of magnitude larger than

those contributing to the initial state cross section. However, the energy

needed to carry the state f into f' should also appear in a Boltzmann

weighting, and the inverse of the factor e[-Oft(w-wfi)] (a detailed balance

factor) multiplying the initial state term restores the proper ratio.

3-8



In the low-J (strong line) cases studied, the final and detailed balance

weighted initial state terms are of the same order of magnitude. Although the
detailed balance factor has a very strong negative temperature dependence,

much like that actually observed in water-water far wing absorption, the

initial state term for low J's has a very strong positive temperature

dependence as well as a small magnitude (both due to perturber rotational

Boltzmann factors). Meanwhile, the contributions from the final state term

come mostly from higher J transitions as well, since high transition strengths

and large translational matrix elements (when a transition between two high

J's can mat up most of the energy difference) make up for smaller perturber

rotational populations. The result of these trends is the strong positive

temperature dependence seen in the GTE predictions.

This temperature dependence is less strong when dipole-quadrupole forces

are included. It is reasonable to expect some further improvement is

quadrupole-quadrupole forces were included. It is also less strong for

absorbers in high initial rotational states. S2TERM analysis shows these

trends to be explained by the above discussion, specifically by changes in the

perturber J states which can contribute and the resulting changes in cross

section magnitude and temperature dependence. We ran GTE far wing predictions

for two high-J and two low-J transitions, and found no behavior which could

not be correlated as described above. Although high-J lines have negative

temperature dependence and super-Lorentzian wings as do the observed wings,

their intensities are much too small for them to make significant

contributions.
S

One conclusion which can be drawn from the above investigations and our

earlier work on the unimportance of bound and quasi-bound states is that the

only source of strong negative temperature dependence of wing absorption is

* the detailed balance factor. If this were true, one would expect that the

observed temperature dependence would become more strongly negative with

increasing frequency difference from line center. Our analysis of the data

a 3-9
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0

reported by Burch seems indeed to show a variation in the temperature exponent

that parallels that obtained from fitting the exponential in inverse

temperature to a T-n form.

The observations are not so precise that any agreement would constitute

proof, and in fact the observed exponent seems to be about one higher than

that obtained from the detailed balance term alone, without any modifications

by linewidth factors which still will increase with temperature. On the other

hand, comparison with experiment does not seem to rule out the possibility

that a predictive method based on the GTE model, but with additional

transitions included to improve linewidth term magnitudes and temper .ture

dependences, might in fact be an accurate description of wing absorption.

0

0

.4.
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4.0 CUT-OFF FREE THEORY FOR ROTATIONAL LINESHAPES

4.1 Generalized Leavitt-Norff Theory of Line Broadening

Leavitt and Korff9 derived a variation on Anderson's impact theory 16 of

line broadening which remains well-behaved as the impact parameter approaches

zero. Consequently, applications do not require ad hoc cutoff functions to

preserve unitarity in strong collision regimes. There are two key features to

their derivation. First, it is assumed that the time evolution operator is

both energy conserving and invariant with respect to orientations of the

radiating and perturbing molecules. Second, a linked-cluster theorem

for degenerate states is used to decompose each order in the perturbation

series in terms of its linked-cluster expansion. Subsequent factorization and

resunmmation then yields an expression for the interruption function in which

Anderson's S2-functions
16 have been exponentiated. In this section, the

Leavitt-Korff half-width theory is generalized for frequency dependent

lineshapes.

In Equation (A.14), the Hamiltonian Ho (for convenience we will drop the
WF superscript and subscript s notation) for a single perturber interacting

with the radiating molecule is

H =H o0 + (4-1)
'.. o Hp p

00U- 0
where H is the rigid rotor Hamiltonian for the perturber with eigenstates

P

H 0 1 X > =Ho Ij m > = E jp p mp > (4-2)P P P PP P jP P P

is the Hamiltonian operator for two structureless particles interacting

through a two-body local isotropic potential V°(R)

4
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o = [L-2 + v° ]o (4-3)
NP 2u ()

0

The stationary states of H are
RP

NPIk> 2: NPI t me C (4-4)

Using these zeroth-order states, the trace in Equation (A-14) can be evaluated

to give

P PTr[ ... l= p(Ejp p E) < I im, X iu (z) I Ji'imi X;p '

x <jffff i' I u+(t) I Jf mf XpP k > (4-5)

As a first approximation to Equation (4.6a) it is assumed that the matrix

elements of the time evolution operators are approximately given by

<jiiim1 'X I U(z) biim x; ' > M m 6p 6 U (z) (4-6a)

<jim i I u+z hffmm i i k~ XUf ;;

<'i X I U+(z) -> 6, 6X, (t) (4-6b)

f I iftfmf "iXP P f~

*. where

.11i(z) = f(2J 1+1)(2Jp+1)(21 + 1) <- i T U i X V(z) I im M X k >

m i mp mZ (4-7a)

4-2
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and

Uf (z) = [(2jf+l)(2jp+l)(2 + 1)]'- < jff)p k Utt) I jtmX >

f P it (4-7b)

As in Reference (1), the basis of this approximation is that the resulting

expression for autocorrelation function reduces to that given by DTC when the

perturbation is weak. Substituting Equation (4-6) into Equation (4-5) gives

Tr[... = 6, 6 ' fdc (2jp+1)(2£+1) p(E. + e) U.(z) 04(t)
, m . m f. mf jp IP z PpTp

Then, substituting Equation (4-8) back into Equation (A-14) and performaing

* the summations of magnetic quantum numbers gives

".-.. Qif Ct) = fd (2jp+l)(2t+l) p(E + E)Ui(z) 1(t) (4-9)

ifp p £  JPTP i

The matrix elements Ui and Uf can be evaluated using the linked-cluster theorem

for degenerate states as described in Reference (9) giving
.,%

I s ,i(z)
nn

U U (z) = e (4-10a)

I Sn f(t)

Uf (t) = en (4-10b)f

where the Sn functions are

z z
* *nf fn-l-

Sn,i(z)= (-i/i)jf dzl'j dzn [(2ji+ l)(2ip+ 1)(2t + 1)]

0 0

4-3
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(0) x~
x " < X X ik I IV(z1 ) ... V(zn)]L lxi Xpk > (4-11a)

mt Mp m£

and

tt tn_

Snf (i/)n dtl dt [(2f + l)(2j + 1)(21 + 1)]
- 1

0 0

x Z Z <X p I [V(tl) ... V(t )](O) I Xfxp; > (4-11b)X f P n L fmf mp mI

As in Reference (9), the subscript L indicates that in evaluating the quantity

in brackets all subproducts which are diagonal in all quantum numbers and

rotationally invariant in the spaces of the radiator, perturber and radial

vector are excluded, while the superscript (0) indicates that the entire

quantity is rotationally invariant. As noted in Reference (9), the first order

terms Sl,i and Sl, f are complex and only contribute to the line shift. The

S2-functions are then the first terms to contribute to line broadening. These

are given by

z z1

S2,1 ( z ) = -(l/f) 2 f dZl f dz2[(2Ji + 1)(2jp+ 1)(21+ -1 x
0 0 P

x XkIV(z ) I Xx Xk ><X ' X; ~ V(z2) IXiP >
i P 1 iP i P2 i

m m p m (4-12a)

t t

S2 ,f(t) =-(I10) 2  dtx fl dtz[( 2jf+ 1)(2jp+ 1)(21+1)- 1 X X '

0 0

4-4
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x Z< x i~p I V(t ) I X' ''><X' X'
P 1~ ~ i V(t 2 ) IXiXP

mi m P 
(4-12b)

where the primes on the summations indicate that no diagonal terms are to be

included in the summation. Then, up through second order in the interaction,

./ ~the single-perturber autocorrelation function is

Qif(T) = I I I fde p(E. + c) e s 2 ' i ( z ) + S2 ,f(t) (4-13)

Details for evaluating matrix elements of the anisotropic interaction potential

_ V, assuming a multipole expansion are given in Appendices B and C, for

arbitrary orders of the multipolar tensors.

4.2 Comvarison With Davies. TiDRing and Clough for H20 Self-Broadening

The generalized-Leaviff-Korff approach was used to treat H2 0

self-broadening using the molecular Hamiltonian given in Section 3.2.

Figure 4.1 shows chi-factors obtained from the DTC and GLK methods out to 900

cn- 1 off line center, assuming dipole-dipole interactions only. At 100 cm- 1

the DTC and GLK results agree. For higher frequencies, however, the GLK

chi-factors are 2-3 times smaller than those given by DTC.

= '.

'. "
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5.0 RECURSIVE RESIDUE GENERATION METHOD

5.1 General Description of the Method

RRGM is a nonperturbative method for constructing time dependent

* transition amplitudes that is particularly well-suited to problems with large,

but sparse matrices.10, I I In this method, the Hamiltonian for the system is

first tridiagonalized using the Lanczos Recursion Algorithm. 17 Subsequent

- diagonalization of the tridiagonal (Jacobi) matrix yields the residues and

eigenvalues needed to determine a given transition amplitude.

If { l a>} and {EaI are the eigenstates and eigenvalues of the

* Hamiltonian H, the time dependent transition amplitude between two

* nonstationary states ] i> andl f> is

Afi(t) = <f ! e-iHt/r I i> = <f i a><a i>e- iEat/= R fi(a) e- iEat/ 5

a a

where Rfi(a) = <f I a > < al i> is the off diagonal residue corresponding to a
simple pole Ea for the Green's function,

Gf(a) = <f I (z-H)-1{I i> = <f a > < a I i> = Rf (a) (5-2)fi z-E z-E
a a a a

For smaller systems the residues and eigenvalues needed to evaluate Afi(t) can

be obtained by standard diagonalization methods. For larger systems, however,

these procedures are usual l.y prohibited by computer storage requirements.

RRGM circumvents this difficulty because the actual eigenvectors are never

explicitly generated.

5-1
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It is easily shown that upon defining the vectors

- 0 > = [Ii> + f>]/,2 (5-3a)

Ivo0> = [I i> - I f>]/1/2 (5-3b)

the off-diagonal residue Rfi(a) can be expressed in terms of the diagonal

*% . residues associated with the vectors I uo> and l v0> as

R fi(a) = <fI c><a I i> = [<oU0 1 ><a uo> - <v0 1 ><a I Vo>]/2

= [R (a) - R (a)]/2 . (5-4)

In addition, if l u0> is the first vector of a set of vectors [I ui>l and I v0>

is the first vector in another orthonormal set of vectors {[I vi>), each of

which tridiagonalizes the Hamiltonian H, i.e.

'..-,

U+HU = J (5-5a)

V +V = J (5-5b)

then the residues Ruo,u0 and Rvo,v0 can be determined by diagonalizing the

Jacobi matrices Jv and Jv. Specifically, if Tu and TV are the matrices which

diagonalize Ju and Jv, respectively, then the needed residues are given by

R uoUo(a) =(Tu) la(Tu)a,1 (5-6a)

R (a) (T) (T) (5-6b)
v0 9v 0  V l'a v a'l

It is important to note that only the first column of the Tu and Tv matrices

are needed to determine all the residues and eigenvalues required to compute
the transition amplitude Afi.

.5- ,t. .. #5-2
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Up to this point there has been no reduction in the computational

requirements. Rather, the initial problem of diagonalizing the Hamiltonian H

has simply been exchanged for the equally formidable problem (for larger

systems) of determining the two Jacobi matrices. The key feature in RRGM is

that the columns of the transformation matrices U and V (as well as the

diagonal and off-diagonal elements of Ju and Jv) are determined recursively

using the Lanczos tridiagonalization algorithm17 so that only two columns of

the complete matrices are required in fast storage. For example, starting

with the initial recursion vector l u0> and its self-energy ao=<u0 I H I u0>, the
second vector in the set is defined byI ul> = [(H-a0 ) Ju0>]/b 1 where bI is the

norm of the so-called residual vector, (H-a0 ) Juo>. The self-energy a0 and

norm bI are the first diagonal and off-diagonal elements of Ju. Subsequent

recursion vectors I un> and diagonal an and off-diagonal bn elements of Ju are
then determined by the three-term recursion relation

I un+l> = [(H-a n ) un > - bi Un-1>]Ibn+l (5-7)

where an = <un I H Jun> and bn+l normalizes the residual vector [(H-an) J un> -

bnI unl>]. By construction, each recursion vector is implicitly orthogonal
to all previous vectors. A second application of the Lanczos algorithm

starting with vo> as the initial recursion vector yields the diagonal and

off-diagonal matrix elements of Jrv Diagonalization of the two Jacobi matrics

is straightforward and gives the residues in Equation (5-6).

To r ively realize the full potential of RRGM, the Hamiltonian matrix

must be t, tively sparse and/or the intermolecular coupling matrix elements

easily computed so that large amounts of storage are not required for coupling

matrix elements. This indeed tends to be the case for the spectral line

broadening problem for three reasons. First, the intermolecular interaction

4 can often be represented by an expansion (e.g. multipole expansion or a

numerical fit to a Legendre polynominal expansion) whose individual terms can

be factored into components which act only on the subspaces for the separated

5-3



molecular/atomic species and their relative motion. Second, selection rules

and/or conservation of total angular momentum further decrease the number of

nonzero coupling matrix elements within a given subspace. Third, a portion of

the interaction coupling resides entirely in the coupling of angular momenta

and is easily computed in terms of Clebsch-Gordan coefficients and 6-j symbols.

The net consequence is that although the coupling matrix elements are

significantly more complicated for line broadening than in earlier

applications of RRGM, the basic requirements for implementation of RRGH should

be satisfied.

5.2 ARvlication to HCl-Ar

As a preliminary test of the method, RRGH has been used to calculate the

* dipole autocorrelation function for the Ji = 5 -> Jf = 6 pure rotational line

of a dilute HCl-Ar mixture. The HCl-Ar system has been previously treated by

Boulet and Robert within a unified semiclassical theory using curved classical

trajectories and including all orders in the inter-molecular interaction. 18

The results from this latter method were used in comparisons against the RRGK

-i results.

5.2.1 System Hamiltonian and Matrix Elements

In treating HCl-Ar rotational line broadening we have used the

space-fixed Arthurs and Dalgarno1 9 rigid rotor theory for scattering of a

structureless atom by a I-state rigid rotor diatomic. The coordinate system. .

* in this approach has its origin at the system center-of-mass and its axes

aligned with space-fixed directions. The Hamiltonian, after separating out

the center-of-mass motion, for a single radiator (HC1)--perturber (Ar) pair is

*2
.H H - + V (5-8).... , rad 2V

, . 5-40.

0,=

)**)*



where V is the Born-Oppenheimer intermolecular potential, V is the Laplacian

operator of R (vector between the atom and diatomic center-of-mass), v is the

reduced mass of Ar relative to HCi, and Hrad is the Hamiltonian for the

nuclear motion of the radiator. Since we are interested in rotational line

broadening, we will simplify the problem by neglecting the diatomic

vibrational degree of freedom and treating HCI as a rigid rotor. The

eigenfunctions of Hrad then satisfy

Hra Y. = E. Y.rad jm j jmj (5-9)

where Yjmj is a spherical harmonic in the angular degrees-of-freedom of r,

(er,Or). Similarly, if L is the angular momentum of Ar relative to HCI, then

the eigenfunctions of the operator L2 and Lz are YZ,me (R,0R).

Since the total angular momentum J = Jrad + L is conserved, it is

convenient to couple Yjmj and Y£,NZ to form eigenfunctions of j2 Jz,

Jrad 2 and L2 using the Clebsch-Gordan expansion

] I
j iH> = I I (jmj I mL I jHM) bm > I emI> (5-10)

M = -j me = -

In addition, since RRGM relies of matrix operations, the translation continuum

will be discretized by enclosing the atom-diatomic system in a sphere of

radius Ro . A spherical Bessel basis set,

Sn(R) k nR 2ko J (knR) n-8sin(knR)
nR (5-11)

0 0

* k n -

n R

is then used to span the translational quasi-continuum.

5-5
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In terms of these zero-order basis functions the Hamiltonian matrix

elements are

<J'fE'JtH'nlI H bJjUn> 6 6JMIH tI(Ej + I 6 6, + (5-12)= l 8pR° 2 ) n'n

.4 L n>} 6 6.,. + <j'l'Jfn'I V hUJin>]
2U 91<nlRVA

If the intermolecular potential is expanded in Legendre polynomials

V(R,O) = VX(R) PX(cosO) (5-13)

then the coupling matrix elements for fixed total angular momentum J are

j <I'l'JHn'I V bj£JMn> = [ <n' VX(R) 6>fX(j'L';J';J) (5-14)rX
where the fX are the Percival-Seaton coefficients

20

f (j'E';j';J) = (.1) (ijO ljj)o) (.'o£ 1'1X0) x (5-15)

k~e'j' L'J

[(2j'+l) (29'+l) (2j+l) (2t+l)] {j , I

* Several different potentials have been proposed to describe the HCI-Ar

system. Typically, they are of the form given in Equation 5-13. In both our

calculations and those of Boulet and Robert, 18 the semiempirical "A2 "

potential of Kircz et al.2 1 was used. In this case X = 0, 1 and 2 and the

* radial potentials VX(R) are 6-12 Lennard-Jones potentials whose parameters
were obtained by fitting half-widths calculated using semiclassical S-matrix

s-6



theory to experimental measurements. These radial functions are displayed in

Figure 5.1.

5.2.2 Dipole Autocorrelation Function

Since the Hamiltonian is diagonal in the total angular momentum

. (Eq. 5-12), the single-perturber dipole autocorrelation function

§(T) = Tr[p {elHT/f j e - iHt/H p(H)}] (5-18)

can be expressed as a sum of terms corresponding to fixed initial and final

total angular momentum. Specifically, for the ji -> Jf transition in the

uncoupled line approximation and using the zero-order basis set defined in
* 5.1.1,

J. +J

@jf ( ) (1/3) (-1) ) f[(2ji+l)(2jf+l)] I <Ji.II I if> r x

(5-19)

Jif f
i J f Jiif

with

="Jif £i+f I~~ii Jtif
.. (r) =f (2J+1 J ( + X) (-1)

" iff Zi If [if f I I[f f I

<jf Z nf n iHT/ jf £fJfnf> <jiIfJinf I e'iHE/Re-4 H I JitiJini>

n nnf (5-20)

For comparison with the results of Boulet and Robert, 18 it is necessary

to relate the single perturber correlation function § (T) to the

autocorrelation function for a dilute mixture §np(T) where np is the perturber

5-7
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density. By analogy with DTC theory (Appendix A), this is accomplished by

assuming that the autocorrelation function for Np perturbers, §N p('), is

simply the product of Np uncorrelated single-perturber distributions. Then,

NN P i(Ef-E i) nK -i(Ef-Ei)/K N (

N 0 e () = [e f(T)] (5-21)
p

where the complcx exponential factor cancels out the zero-order time

dependence from Hrad. Following normalization to unity at t = 0, Equation

5-21 should be equal to the normalized autocorrelation function in

Reference 18, i.e.,

e -i(E -Ei )/l§ N -np a 3(T)
S[e (i)] = e p(5-22)

or

$(t = - In[e i (E f- E ') T/ K

3n [e f (')] (5-23)

1 where a is the Lennard-Jones distance parameter and 9 = Np/np is the system

volume

4nR 3

3 0 =(5-24)3

* for a sphere of radius Ro . In Equations 5-22 and 5-23, the "potential

correlation function" *(r) is defined as the average over velocity and impact

parameter of the time evolution of initial and final zero-order states.

5-9
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5.2.3 Preliminary Results

As a preliminary test of the RRGM method, 0(i) was initially calculated

by assuming the diagonal transition (1i = lf and ni = nf in Equation 5-19) are

the dominant contributors to the autocorrelation function at short times. The

results from this calculation are shown in Figures 5.2 and 5.3 for times up to

1.0 and 0.4 ps, respectively. There is a clear discrepancy between the RRGM

and French results, even for time less than 0.4 ps. Since our analysis of the

convergence of the RRGM results with respect to the number of recursions

indicates that our results should be accurate (at least up to about 0.4 ps),

the discrepancies in Figure 5.3 probably result from a lack of convergence

with respect to the size of the basis set and/or the neglect of off-diagonal

transitions in Eq. (5-22).

Despite the discrepancies, there are also some encouraging features.

- Most notable is the indication of long time (impact) behavior starting at

t-i about 0.6 ps. The slope of the approximately linear long time tail for the

RRGM results gives a halfwidth of 0.02 cm- 1 which is in reasonably good

agreement with experimental measurements. In addition, there is some

indication that for times greater than about 0.2 - 0.3 ps only a relatively

few transition amplitudes are contributing to the autocorrelation function.

Significantly more transitions appear to contribute to the short time dynamics.

However, these transitions can be treated quite accurately with just a few

recursions. As a result, although a great amount of CPU time was expended in

obtaining the RRGM results, intelligent optimization of the FORTRAN codes in

* terms of which transitions and corresponding numbers of recursions are used to

compute the autocorrelation function could significantly decrease the required

-. CPU time.

5-10
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6.0 SUMMARY

Several critical military, geophysical, and energy related applications

require accurate predictions of long path transmission in atmospheric window

bands. Accurate predictions of transmission in these regions requires, in

turn, more accurate characterization of far off resonance absorption line

shapes than currently available. Accurate experimental absorption data is

presently difficult to determine because of large experimental uncertainties.

At the same time, theoretical approaches have typically been limited by severe

computational (cpu time and storage) requirements.

This report has presented an analysis of two distinct approaches to the

. problem of calculating far wing absorption for collision induced broadening.

The first approach uses standard time dependent perturbation theory to

evaluate the time dependent, dipole autocorrelation function, followed by a

frequency Fourier transform to give the absorption cross section. Two methods

of this kind were evaluated which differed in the limit that perturbation

theory broke down. The second approach evaluates the autocorrelation function

nonperturbatively using the recursive residue generation method (RRGH).

The perturbation approaches closely resemble Anderson's impact theory for
us

-. half-widths in that they are strictly valid only for weak interactions. These

approaches do offer some improvement in principle, in that they treat all

* degrees of freedom quantum mechanically and satisfy the fluctuation

dissipation theorem. In addition, although the Davies, Tipping, and Clough

(DTC) method relies on ad-hoc, Anderson-like cutoff functions in the frequency

domain to ensure physically well balanced absorption cross sections in strong

* collision regimes, the generalized Leavitt-Korff (GLK) method is cut-off free

in the sense that the autocorrelation function remains well behaved as the

impact parameter approaches zero.

0
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The perturbation methods have been used to treat H20 self broadening.

H20 absorption is particularly important in the 10 pim region where absorption

% is thought to arise from line wings of the 6.3 jim and pure rotation bands.

Experimental measurements in this region indicate that the x-factors (ratio of

observed absorption to that predicted from Lorentzian line shapes) range from

0.1 to 0.6 and show a decrease with increasing temperature between 250 and

400 K.

Application of the DTC method to one of the stronger rotational lines of

H20, (4,1,4) -+ (505), gave x-factors at 1000 cm-1 which were approximately an

order of smaller than experimental x-factors at the same frequency. In

addition, the calculated x-factors showed a strong positive temperature

dependence for 250 < T < 400. The DTC results were based on aultipole

expansion up to and including dipole-quadrupole interactions. Higher order

interactions would increase the x-factors and may even change their

temperature dependence. However, since multipole expansions often converge

slowly, it is unclear to what extent these interactions would improve line

wing behavior. Initial results (up to 400 cm- 1) from the GLK method tended to

differ from DTC X-factors further off resonance. This difference was not

-.' large enough to cause us to suspect any significant change in the temperature

-. dependence.

A Analysis of our results suggest two conclusions. First, a multipole

expansion of the anisotropic electrostatic interaction is probably

insufficient to accurately characterize far wing absorption for self-broadened

SH 20. Second, strong collisions contribute to the absorption up to 1000 cm-1

off line center. The calculated absorption strengths can differ significantly

depending upon the approximations or cut-off functions used to ensure
.. physically reasonable absorption cross sections in strong collision regions.

6-2
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Based on these conclusions, the RRGM was explored as a possible approach

to line broadening. RRGM is a nonperturbative method which can treat more

general interactions than the typical multipole expansion. As part of an

-' initial feasibility study, the method was used in a restricted context to

determine HCI-Ar line wings. In general the results were encouraging but more

work is required for applications to systems of atmospheric interest.

.%j
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APPENDIX A.

DERIVATION OF DAVIES, TIPPING, AND CLOUGH LINESHAPE FUNCTION

The time evolution in Eq. (2-4) :an be treated using standard time

dependent perturbation theory by first partitioning the Hamiltonian into

zeroth-order and perturbative terms

H + Ho + V (A-1)

',..

Vi and then defining the time evolution operator U(z) by

* -iHz/fi -il Hz/fi
e =e U(z) (A-2a)

e +iHz/ + () iH z /r (A-2b)' e U+(z) e o

The operator U(z) satisfies the integral equation

iz

U(z) = 1 V(z') U(z') dz' (A-3)

0

V(z) = e iHo Z/f V eiH 0Z/ (A-4)

.subject to the initial condition that U(O) = 1. Eq. (A-3) can be solved

iteratively to give the usual perturbative series, i.e.

" inf Z f z n- l
U(z) = (- ±nf dzI ... [V(z I) V(z 2) ... V(Z)] dz

. n=o 00n

(A-5)

In DTC theory,3 Ho represents the zeroth-order Hamiltonian for the

isolated molecules plus the kinetic energy operators for their relative motion

and any isotropic intermolecular interactions, while the perturbation V

AA-1
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.0

represents the anisotropic interactions which do not commute with Ho . The

zeroth-order Hamiltonian can then be further decomposed as

HO  + H° 0(A-6)

0
where H is the molecular Hamiltcnian for the radiator and H contains the
remaining zeroth-order terms. Here we will neglect vibration-rotational

interactions and take H to be the Hamiltonian for a rigid rotor with
eigenstates

,Not I jim > = E j' I j' m > (A-7)

where j is the total angular momentum, m is the projection on the quantization

axis and T represents any additional quantum numbers needed to completely
specify the rotational state.

Performing the trace over radiator states in Eq. (2-4) and using the

Wigner-Eckart theorem to evaluate the dipole matrix elements, the

autocorrelation function becomes

I(t) = it I (2jl + 1) p(Ei) < Jiti" V lljf 'Cf > (A-8)
i f i f

" -'<:x < J' T' 11 )1 ,_, > e_ fi'..t C
.' ,J f J J i ,+, ,T

- Jf f i i ii,ff

~A-2



where

C(t) =(2j. + 1)- 1 OP Y X j MV1, Mljf 1 , mi)
1ii

ii',ff, m.iM m f

Of" M__ 1, mi * 1, 4, mI) x Tr [p.H (A-9)

<"1 'j m1 I',U) jij j m > < j Tfmf U+(T) If Tj mf >1< Jl i ii f f f

and

4OE

p(E ) = (A-lOa)

* Tr[e-R] QR

- -H -- H
P(H) e 0 (A-lb)

Tr[e -O o] "p

are the canonical density matrices for the zeroth-order Hamiltonians HR and

% Ho and Tr is the quantum mechanical trace associated with Ho.

For sufficiently low perturber deisities, it has been shown that many

spectral features can be reproduced, at least qualitatively, by invoking the

binary collision approximation. In this approximation, the Np-perturber

autocorrelation function is taken to be the simple uncorrelated product of

0 single perturber autocorrelation functions. Equation (A-9) then becomes

. C(t) = [Q(t) INp (A-11)
ii' ,ff' ii', ff'

A-3
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where

Q(t) = (2ji + 1) 1  X X X , X Jf Mrf 1, m I if 1, Jis mi)
ii',ff' m m i m f m i mf

Oil Mf 1 DR i , 1, Ji, m ) x Tr [p(H) (A-12)

j! T m1  U ) j fE f U+(t) I , M >1

I l(z) l 'i DR > < j f

is the autocorrelation function for the interaction between the radiator and a

single perturber (designated by the subscript or superscript s).

The single perturber autocorrelation function given in Equation (4-12)

includes line coupling effects. When the zeroth-order absorption lines are

well separated, however, the calculation can be simplified considerably by

invoking the uncoupled line approximation. In the present context, the

uncoupled line approximation is

Q(t) 6 6 Q(t) (A-13)
ii',ff' ii' ff' if

where Qif(t) is given by

Q(t)f -1 ( I I I (i m f1, m I 1, j m
if (2j 1+1) 1 Xf f

m i f i fI

x (jf, M Is1, mI if, 1Iis mi) x Tr [p(Hs) (A-14)

<ii i I us(Z)I iimi> <f ffI u+s (t) I f Ef Mf >1

*A-4



Either Qii,ff(t) or Qif(t) is evaluated in DTC theory by substituting the

perturbation series, Equation (A-5), for U(z) and U(t) and keeping only terms

up to second order in the interaction. This procedure breaks down, however,

for strong collisions leading to values for the autocorrelation function which

are not physically reasonable. Consequently, in applications it is necessary

to introduce cutoff functions which ensure that the correlation functions are

always well behaved. In general, there is no formal basis for these

functions.
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APPENDIX B

COUPLING MATRIX ELEMENTS OF THE LONG RANGE ANISOTROPIC INTERACTION

In this appendix we determine the coupling matrix elements of the long

range anisotropic interaction V between two molecules in an uncoupled basis

set

consisting of molecular eigenfunctions for the internal degrees-of-freedom for

each molecule

a 1 > = 'X llMl> (B-2a)

a 2 > = 1 2J2M2 >  (B-2b)

a spherical harmonic I £mZ> for the relative angular momentum, and radial
eigenfunctions I ZE> for the relative translational motion. Following a brief

discussion of the long range electrostatic interaction desired by Leavitt,
1 3

the Q functions (the squares of matrix elements of V summed over all magnetic

quantum numbers) which arise in a perturbative treatment of line broadening

9i are derived for arbitrary orders in a multipolar expansion of V.

cd We start with the electrostatic interaction given by Leavitt 24 for two

* charge distributions separated by a distance R

* B- 1



V2 (291 + 2 j2+) /Rz1+L2+1

2z

V = 2 Z (1) (2) BR)

(1) (2)
where Qt1,.l and Q12,U2 are multipolar moment operators for the

molecular systems 1 and 2, respectively, and C+ is the adjoint of the

irreducible spherical tensor given by

C (R) - ( 2 1 (R) (B-4)
, . ..'(2t+1) ,

where Yt,,(R) is an ordinary spherical harmonic. The factor of the form

() is the binomial coefficient a!/b!(a-b)! and (a, a, b, 0 I a, b, d, 6)
is the Clebsch-Gordan coefficient for the vector coupling of a and b to give

te rrli and r2j are position vectors for charges qi and qj in

A charge distributions 1 and 2, then the moment operators are given by

(11)Q1= q r1i C C1,1(r id (B-5a)

(2 1
Q(2) = r2 C (r (B-5b)

2223'u 22 C2 2,U12 r2j)

As used in Equation (A-3), the multipolar moment operators are each

defined relative to the laboratory reference frame. The spherical harmonic

Y,p then specifies the orientation of the vector relative to the

Z., laboratory z-axis.

A B-2



The electrostatic interaction given in Equation (A-3), is invariant to

the simultaneous rotation of all particles in the system. Most earlier

expressions for the electrostatic multipolar interaction25 require the

application of rotation matrices to arrive at an equivalent form. This

invariance is easily seen by noting that upon letting p = UI + V2, the

summation over 11l and P2 becomes

,  R) -, (e1 P 1 2  ' 1 -m 1 '9t2 ' 2' ) QX +l
( 1) 2 (2)

1~~1) 1 £.. I= +'

S The summation over pl corresponds to the contraction of the multipole tensors

Q£,Ul and QE2,V2 of order £1 and £2 in the molecular spaces 1 and 2,

into a tensor Q£1+£2 ,p of order £1 + £2 in both spaces. Then using

+
C k(R) = (-1) C I11(R) (B-7)

* the summation over p corresponds to a scalar product to give a rotational

invariant in the spaces 1, 2 and R, i.e.,

-...] = Z (- )1' Q jj) 1 + - = Q(1,2,) (B-8)
l32' RI+2-(R) oo

Ill 1'2 1 2'0,

4°B-

0
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The matrix elements of V in the uncoupled basis set, Equation (B-2), are

vv = 'v (B-9)

ax a

92 21 1 + 29 2 --(11+E2+1)

1 1 12

x 1 J19 I l'( ) lm

01U22,J£ 121+2u+2) <1 I zl+ il2

X<T' J2 M)1 2,112  2J2m2> <2'1m,1. K+e 2 I+ 12 r2 .

If the Wigner-Eckart theorem is applied to the matrix elements of

Q2tIl 1, Q2.2,U2 and C11+122 ,U1+U 2,

<34 Jj rl lJm = (Jl,mlflil1 jl.2lJ ,m ) (B-10a)

X <Ti j, 11 Q M)1 1 1Jl >

<T j2'M 22 k2 J2 m2? z (02' m29YU'i2 I J2' 1 2'J2'M2) (B-l0b)

4B-4
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0,

. -
1E' il C+ m > =(1) <L'm C fr's >

z1 2+ 2 2 ll+1 12 _ 1 £l+£2,11,, 2

ill= (-1) 2 '+l

x(£ ,O, 1 +e 2$ 0 j1 +z£l2£2,,O) (B-l0c)

the matrix elements of V become

Va' = t 1 tI2 BI zI, 2  (B-11)

where

• -. , £2 (2 +22) <'O (£ 1 +L2 +-1)

A = (-I) 2 <V' R- z 1 + > (B-12)

1 2 U 1

%<KI 'IIQ ')It 1j><iIq 2I I ( 2)Kj >

Li 221

Mx <; 1~ 9 1{ 1J 1 2_ J2 k{ 2 ll 22 2

4-.i

x (t, 0, L1 + a'2 o l, 0, k1 + L 29' 0)

1 2

.B-5
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and

B = £ ( 1,1,£ , Q.I L 2 ,+ 1 1 (B- 13)
1 2 1 2

1. 2~ 211121
v.x (zmxP, 1 +12,-(14t+112 )1 Z1911+1 29,V ',mi)

x (j 2 ,m2 ,L 2 ,p j 2 ,l 2 ,j .,mI)

,. where the factor AL 1,Z2 is independent of magnetic quantum numbers.

For a perturbative treatment of line broadening, we are particularly
,.-... interested in the rotationally invariant quantities

Q == Z i (B-14)

"1 M1 2 Em mI

which upon substituting Equation (A-11) becomes
,N

"Q'A"A * B ( B-15 )

1' 1 1 2 -- , * 1 z2 1 2
1, 1 2 '1 2

S
where m refers to the set of magnetic quantum numbers (ml, m2, mi)

B-6
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Substituting Equation (A-13) for B 1 2 , the summation over m and m' is

( i (-1) (- 1 9  (',l E ,', 1+ 2 )
2 lP

! M

z' 9 ! 2 ' 'I'-, (2,m, 1+Q2,p1+p2 j f,,Q1+Q.2,Q.'m,')
. m{ m{I

m2 m 2

x (jl, l,9 l ,{ ,z ;, m') (ji, l'," , bit j1 , ,' ) (B-16)

1. 1

M mI

m1 m1

Using the Clebsch-Gordan symmetry relations, the summations over mI and m1

are easly evaluated to give

B-7
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S I.. (2j 1+1) 0 ~( 1 9m1~ji'-i' jil 11 1-1'1  (B-17a)
m4 m (2Z 1+1)(21 1 +1)] m

x (jim 1 ,i' -Muj 'j"" ]I,,)
1 11 1

(2j +1)1
1__ _ _ _ _ _ 1 3

*Similarly, the summnations over M2, *2' and me, e' are

- (211+1) f

1+) 6 1 ,6 , (B-17b)

0 ~ 2 [(2 1+1)(2 1.- ) L2 9 2 l22112

(2t'+l)
I*.. [2%22+)(L+2 1 6L£wL 6

1+ 2 j+ (B-17c)

so that the sutmmation over m and ;' reduces to

(2j 1 + )(2j 2+ )(2f'+1) 6£ 
(B 18

(2Z +1)(212+1)(21 +2Z2+1) 1'st 1 2'

~ 2 (LiL,11)L, 2 2'tl 1p+" 2) (ll1'12'U2 22i 21 29112

(2j +1)(2j +1)(2t'+l)
1 26

B-8



Then substituting back into Equation (A-15) and performing the summations over

[1' and Z2' , we find

-Q (2j1+1)(2j 2+1)(29'+1)

Q-= X 1 2 I ,' 2 (-19)
-t1,2(29 1 +1) (2 2 2+l) 2g

~291+2£ 2

1 2

= (2j1+1)(2j 2 +1)(2'+1)(Z,O, 1 +2, 01 +,1+fs2, ',O) 2

z (2 1 +1)(22 +)

Z ' 1 +z1++1)1 M (1Ix > 1 <T2 j; 11 Q(2)

B-9
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APPENDIX C

RADIAL MATRIX ELEMENTS OF R-X

When the anisotropic interaction potential is expressed as an expansion

in multipolar moment operators for the radiator and perturber, the coupling

matrix elements will include radial factors of the form

Ittl,, £ LE <' T 'c T R-zc) (C-1)

where X is the sum of the orders of the multipole tensor operators for the

radiator and perturber and Te. are radial eigenfunctions with energy,

2

In general, the eigenfunctions and integral in Equation (B-i) may be

determined by numerical integration (method 1 below). However, the

computation time may be reduced by using suitable approximations to the
2

eigenfunctions in the limits k2 > L(2+l)/PR (hard core regime) and
2

k2 < Z (j+I)/P R (centripetal regime) where PR is the radius of the

interaction region of the isotropic potential. The three basic methods used

to evaluate Equation (B-I) are summarized below. This discussion follows

closely the description given in the DTC final report,4 but has been

0- generalized where applicable to arbitrary values of X.

Method 1: Numerical Integration

* In the current source code MATRIX, as well as the previous GTE code

OVERLAP, the eigenfunctions 'ZE(R) are evaluated at a series of equally

spaced grid points by numerically solving Schrodinger's equation using

Numerov's method. 22 The integral in Equation (B-i) is then evaluated using a

C-1

0, "
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simple trapezoidal or Simpson numerical quadrature. Typically, the radial

grid extends from R = 0 out to R = Rmax such that

R-min + 1) < tol
max

where tol is a user specified tolerance and Xmin corresponds to the lowest

order (longest range) interaction, e.g., dipole-dipole for two asymmetric

rotors.

Method 2: Anvroximate Eigenfunction in the Hard Core Regime

In the limit R - -, the eigenfunctions have the form

sin [kR - £1/2 + 6 (k)]
Yt (R) - (C-2)

R -*- R

where 6j (k) is an energy dependent phase shift.

At energies sufficiently large relative to the centripetal barrier (i.e.,
2

k2 > Z(E+l)/PR), the radial wavefunctions approach their asymptotic

sinusoidal form relatively close to the classical turning point on the

repulsive wall. Defining Ra as the radial position at which the asymptotic

.y limit is approximately valid for a given pair of wavefunctions, Equation

(B-l) may be written as

R *iiI  jt,, jt =dR 2  1j '  £ A X,
A R X+ + I ,1 , ,  (C-3)

f0 R
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where the asymptotic contribution to the matrix element is given by

A I f dR sin(k'R+O')sin(kR+O) (C-4)

R R
a

and 0 = 6e(k) -f/2

The asymptotic integration may be easily evaluated for arbitrary X as follows.

If we define generalized sine and cosine integrals

IC (k,Bx) f cos(kR+) dR (C-5)

S f LimX~m = Rm
x

then

S, =R [I I (k_,8_,Ra  I (k+,o+,Ra (C-7)
Vec R0 X+l a' TX+l ak,+,)o0

where

',

k- k' k

i e' -

% (C-8)

k+ ffk' -k

A.0+ =0' - e

,, C-3
'p
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For m = 1 and arbitrary k and 0,

iC

1 C = -cos(8) Ci(kRa) + sin(B) si(kRa) 
(C-9)

11 = -cos(O) si(kRa) - sin(O) Ci(kRa) (C-10)

where si and Ci are usual sine and cosine integrals defined in Abramowitz and

Stegun2 3 as

Ci(x)= - f c dt (C-11)

x-
si(x) -- - j -- ) (C-12)./2. t

x

For m > 1, the integrals in Equation (B-5) and (B-6) may be evaluated by

integrating by parts. For example, letting

- I cos(kR a +0)
Q ' -

(C-13)

a

S sin(kR a+0)
L.-.R . (C-14)

a
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the cosine integral in (B-5) becomes with successive integrations

C
C Qm-1 k s'I. I - (C-15)

(m-i) (m-i) r-

Im C1 C C

+- -- -2 m-2(m-1) (m-1) (m-2) (m-1) (m-2)

(m-i) (m-i) (m-2) (m-i) (m-2) (m-3)

~m-3
0 (m-i) (m-2) (m-3)

or, more generally,

CC S C S C
I m AO_ ;2+A3(;3 A4(;4 A50- (C-16)

where

* A = kf1 for n = 1,2,3,...,m-1 (C-17)
._ (m-i) (m-2) (m-3) ... (m-n)

C-5
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By inspecting Equation (B-15) it is seen that the last term in the series for

a given m is

(-l)M /2 k A m- 1 1S if m is even, and

(-1) 2 k A I1C if m is odd.

Therefore, letting

N

SC () (-1) -(2n+l) (B-18)SJN (m) - A2nnll

n=o

17 and

N
- S(-1)n+1 Ai2 (B-19)SN Cm) = 1 A2  2n

we have for integer q = 1,2,

SC = SC + S S  + (_) q k A IS  for m 2q (B-20)m q-1 q-1 A2q-11

I =SC + S + (-1) k A I for a 2q+l (B-21)
m q-1 q 2q 1

Method 3: ARvroximate Radial Wavefunctions in the Centrinetal Regime

In the absence of an isotropic intermolecular potential VO(R), the finite

solutions to the Schrodinger equation are the spherical Bessel functions

Jl(P) - (211/ P)t J+l/2 (p) p - kR (B-22)

C-6
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which are proportional to pt for p - 0 and have the asymptotic form

sin (p - 1/2 1)
j(p) - (B-23)

P

By comparing the asymptotic limits in Equations (B-2) and (B-23) it is seen

that outside the interaction region the functions Tee and j1 differ only
by the phase shift 6t(k). In addition, since the shape of the wavefunction

is determined mainly by the form of the potential to the right of the smallest

classical turning point, the functions Tee and jZ are not very different

when k2 < E(Z+I)/PA so that 61(k) is small when I > kPR. Thus, in

the centripetal regime (low E, high £),

TY (R) j, (p) (B-24)

and

x + 1/2 (k'R) J I + 1/2 (kR)
1 (k'k) dR /(B-25)

')f.Ig:',L*: 2 R

This is a Weber-Schafheitlin type integral which for X > -1 and (L' + I -X +

2) > e is proportional to a hypergeometric function, i.e.,

*.. = _
,' Z 2 k a

Z - 2F1 (A,B,C;Z) (B-26)

2 r(c)r(l-B)

1 0

C-7
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where r is the gamma function, 2F1 is the Gauss hypergeometric series and

A + I' -X +2)

B = O (- ('-I) - X + 1)

*' (B-27)
C=A+B+X

Z f (k/k')20

with e = sign (k'-k) = ± 1 depending on whether k-k is positive or negative

and kmax equals either k' or k depending upon which is larger.

For k' = k (Z = 1), (B-28)

2F (AB,C; ) = .
r(c-A)r(c-B)

Since C = A + B + X with X a positive integer, the hypergeometric function may

be evaluated using Equation 15.3.11 in Abramowitz and Stegun1 S for k' 0 k,

giving

CX-1% Z 2 K S - S
max 1 2 (-9

I (B-29)
x r(A+x)r(B+x)r(B)r(l-B)
2

with

-XA

S r(x)r(1-x) r(.c nIriBn (i-Z)n (B-30)
n=0 nir(1-X+n)

4',
n-

-..y c-a
",4 -



and

$2 = (Z-l) x r(A+X+nr(B+X+n) (lZ)n x (B-31)

n0 n! (n+X)!

{ln(l-Z) - O(n+l) - 0(n+X+l) + O(A+X+n) + *(B+X+n)}

where 0 is the digamma function. In calculations the summation in Equation

(B-31) is carried out until the relative difference between successive values

for S2 is less than a specified convergence tolerance.

Siitce X is a positive integer, the parameters A, B, and C are integers

* divided by two. The parameters A and C are always positive and vary from

1 to emax + 1 and from 3/2 to Emax + 3/2 respectively, where Imax is the

largest accessible value of 1. In addition, the selection rules on changes in

the relative angular momentum, - V V -k V X, require that B varies from J-)
to 2 .

ot
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