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1. INTRODUCTION
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Tong path atmospheric transmission in atmospheric window bands such as

-

the 3-5 um, 8-12 um, and millimeter wave regions can be limited by absorption

Hy
K
Pt

in the line wings. There are now a number of critical military applications,
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including infrared search and track detection of cruise missiles and bombers,
infrared imaging from space, millimeter wave communications, laser target

designation, and laser weapons beam propagation which require detailed

:g;"‘.‘,
=

T

)

knowledge of absorption lineshapes and their influence on atmospheric
i radiation transport. There are also potential geophysical applications such

as atmospheric sounding and trace species monitoring which require better

3;; lineshape knowledge than that currently available. Lastly, there is still
L;i; active interest in energy fluxes in planetary atmospheres and the global
ii;: radiation budget, which motivated the first studies of atmospheric window
iu;“ transmission.

:& These needs have resulted in the development of a large body of

§;§ atmospheric transmission calculation technology, primarily through the

Air Force Geophysics Laboratory (AFGL). Development continues on

sophisticated computer codes such as the AFGL LOWTRAN family for low spectral

?,h; resolution and FASCODE, based on the AFGL line parameters compilation. For
:E; both codes, the largest uncertainties are in continuum components which

.jfﬁ dominate in window bands.l This has generated continued interest, including
gay diode laser and conventional absorption spectroscopy experiments, AFGL

'35 workshops on high resolution atmospheric transmission and yearly AFGL Symposia
iﬁ on Seeing Through the Atmosphere, as well as an International Workshop on

S Atmospheric Water Vapor.2
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This is the tenth and final R&D Status Report for Contract Number
F19628-85-C-0183, "Molecular Line Shape Effects on Atmospheric Window
Absorption”. It covers work through contract termination on February 3, 1988,
and includes a review of all work on the contract since the start date of
September 9, 1985. The objective of the program was to develop theoretical
methods for predicting the shape of molecular absorption lines in the wing
regions. The investigation included but was not limited to asymptotically
correct forms valid in the far wings and near line center (to give line
widths). 1Its motivation was to assess the effect of line shapes on
atmospheric window absorption, so that systems of particular interest included
water-water, water-nitrogen, and carbon dioxide-nitrogen. Particular emphasis
was placed on the temperature dependence of line shapes and widths, since

these are among the most sensitive experimental tests of detailed theories.

1.1 Background and Research Objectjves

The shape of infrared spectral line near line center is known to be well
described by the Lorentz function. The problem of calculating absorption near
the center of a strong line is therefore that of computation of the Lorentz
width. Microscopic theoretical formulations are available which allow
evaluation of a width operator in terms of intermolecular potentials. From
the assumptions used in deriving easily evaluated expressions for the width
operator which are valid near line center, (or simply from the requirement
that the integrated absorption over the entire lineshape must be finite), it
is clear that at some point in the line wing, the Lorentz function can no
longer be correct. The problem of predicting the wing functional form as well
as absolute magnitude has attracted much attention, but work to date has
produced either formal derivations which stop short of numerical results, or

calculations of wing behavior which are highly approximate.

1-2
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Davies, Tipping and Clough3’4 (DTC) developed an explicitly time
dependent theory for spectral line broadening based on the dipole moment
autocorrelation function. In contrast to earlier treatments, the DTC theory
is fully quantum mechanical and rigorously satisfies the fluctuation
dissipation theorem on a microscopic level. In addition, whereas alternate
quantum mechanical approaches3:6 (e.g. those based on close=-coupling
calculations or various approximations thereof) are typically limited to
line widths for smaller molecular systems, the DTC formulation provides the
entire frequency dependent absorption profile for more complicated molecular

systems.

The DTC formulation relies on two basic approximations. First, it is
assumed that the many body collisional problem for far wing absorption can be,
at least qualitatively, reduced to treatment of the scattering interaction
between a single pair of absorbing (radiator) and perturbing molecules and
then simply multiplying by the total number of such pairs. Second, it is
assumed that the anisotropic intermolecular interaction is sufficiently weak
to permit the time dependent scattering transition probabilities to be treated
using pertubation theory. Although there is some evidence that the so-called
single-perturber approximation does qualitatively reproduce observed spectral
features at low gas densities,7’8 the reliance on perturbation theory is more

problematic.

One unresolved issue associated with perturbative treatments of line
broadening is the implicit restrictions on the intermolecular interactions
which may contribute to far-wing absorption. For example, scattering
resonances and/or complex formation cannot be adequately treated within the
DTC formulation; rather, it is generally assumed that the dominant
interactions responsible for far-wing absorption arise from long range
anisotropic interactions. However, even in this case, perturbation theory

breaks down as the impact parameter approaches zero. Practical applicationms,

1-3
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S therefore, require ad-hoc cutoff functions which ensure physically reasonable
v values for the absorption coefficient in strong collision regimes.

N

;:: Davies and Fahey used the DTC theory, assuming dipole-dipole and dipole~
1

fiﬂ quadrupole interactions and neglecting line coupling effects, to treat

far-wing continuum absorption for the H20~H30 system.“ We have also used DTC

x

Pl
)=

i}:: theory to study this system. In both cases it was found that the calculated
,tﬁ profile failed to agree with available experimental data. In particular, the
Y theoretical far~wing absorption cross sections had the wrong temperature
(’ dependence. In addition, our analysis indicated that the cutoff functions
g:; needed to ensure well behaved absorption profiles under strong intermolecular
: : interactions were affecting the Hy;0-H70 line shapes out to 1000 em~l off line
i:.{ center.
®
:2: On the basis of this analysis it was suggested that additional research
NE; was needed to develop theoretical methods which were either nonperturbative
:i: or, at least, less dependent upon ad hoc cutoff functions to deal with strong
- collisions between the radiating and perturbing species. In addition, it was
2;&: also suggested that the theoretical methods and corresponding computer codes

should be more general with respect to the type of intermolecular interactions
with which they can deal.
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Accordingly, our research has focused on developing two theoretical

iuﬁ methods which showed promise for achieving these goals. Both methods are

lié based on the dipole autocorrelation function formulation and assume uncoupled

.o lines and the binary collision approximation. The first method, discussed in

f:; Section 4, is based on a generalization of the Leavitt-Korff cutoff-free

‘%ﬁ impact theory of line broadening.? This method, although based on

‘23 perturbation theory, uses a linked-cluster resummation of the perturbation

“r' expansion to yield absorption cross sections which remain well=-behaved in ;
S strong collision regimes without resorting to ad hoc cutoff functions. The
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D second technique, the Recursive-Residue-Generation Method (RRGH)los11 is a

nonperturbative method which can treat arbitrary intermolecular interactions.

X 1.2 Report Outline

Section 2 discusses the basic approach and common approximations invoked
x by the theoretical methods described in this report. Section 3 describes the
application of the DTC method (developed in Appendix A) to Hy0 self-broadening.
[, Section 4 describes the GLK method and gives results for the Hy0
self-broadening. Section 5 describes the RRGM method which is illustrated by

- ‘-'

an application to HCl-Ar. A summary is presented in Section 6.
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Some mathematical details are treated in the Appendices. In addition to
a formal description of the DTC lineshape in Appendix A, Appendix B and C

contain a description of the matrix elements of high order multipole

a

interaction and computational techniques for radial matrix elements,

respectively.
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:A 2.0 OVERVIEW OF THEORETICAL METHODS

l\~:

v

. 2.1 Autocorrelation Function Formulation of the Line Shape

] A
e .
‘ The absorption coefficient per unit path length, a(w), for a dilute gas
§§*y is related to the thermally averaged dipole autocorrelation function for the
)
3& system, $(t), by12
i
N 4n%n *

e - — L _.~Bhw dt  -iwt _
;“G a(w) 3c (1-e y [ Py d(t) (2-1)
N o
h.

?ﬁ where B = 1/kgT, n, is the number density of radiating dipoles, and $(t) is
VT the dipole autocorrelation function for a single radiator jinteracting with Np
4;:j perturbers,
( iH .

S t/R -iHt/R

o 8(t) = Te[p(0)}i . {'Mt/R o illt/Ay, (2-2)
:5;: where p(0) is the initial density matrix, ﬁ is the initial dipole moment
(-2 operator and H is the Hamiltonian operator for the system. We shall assume a

canonical system so that

0O}

Y
-
-~
AN
"y -BH -BH
W e e
T p(0) = p(H) = BH. = Q (2-3)
e Tr(e ) P
b
- v
I is the canonical density operator with partition function Q,. In addition,
B ) P P
;:d the present report will specifically treat foreign broadening by perturbing
3 "J
o molecules which do not absorb in the spectral regions of interest. The dipole
) N '
® moment operator is then ﬁ = ﬁr where ﬁr is the dipole moment of the absorbing
"
;:§§ species (radiator). However, self-broadening may be treated in basically the
A
\i-\
¥ "
A
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same fashion.% Lastly, defining the complex time variable z = t-iBfR and using

the cyclic invariance of the trace operation, Eq. (2.2) can be rewritten as

#(t) = -

%

where the Boltzmann statiscical weight has been incorporated into the time

Tr[; .

evolution of the dipole moment operator.
2.2 Uncoupled lines and Binary Collision Approximations

All calculations in this report will assume uncoupled lines and the
binary collision approximation. The uncoupled line approximation assumes that
there are not collision induced correlations between zero-order transitioms.
Then, the autocorrelation function may be expressed as a sum of correlation

functions for each dipole tramsition, i.e.,

ety =1 1

¢, (t)
i % if

where i and f refer to initial and final states. The binary collision
approximation assumes that the Np perturber autocorrelation function is simply
the product of Np identical single-perturber autocorrelation functions. In

this case it is shown in Appendix A that

if

iw, . T -n QY _(t)
Qif(t) ae e P if

where wis is the transition frequency, np the perturber intensity, Q the

system volume, and Y;f is approximately a properly normalized single perturber

correlation function.
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3.0 APPLICATION OF DTC THEORY TO H,0 SELF-BROADENING

a3 : 3.1 H50 Absorption In the 10 um Region

] i
":f: For atmospheric "window" transmission, Hy0 absorption is particularly
.
Ko~ importaut in the 10 pm region. It is generally thonght that absorption in
N

f ..""-

s this region is due to wings of lines in the 6.3 um and pure rotation bands.

It has also been speculated that dimers (H20 ¢ Hy0 or Hy0 « Nj) or larger

iE;E clusters may be responsible for much of the absorption. Since line wing and
::ii dimer absorption have the same pressure dependence, and indeed, at observed
:;?Q temperatures could have the same continuum spectral appearance, it is not
g‘; possible to distinguish between different mechanisms from present experimental
;raj or theoretical work.
R
%;E: Line wing absorption is often reported as the ratio of observed

f absorption to that expected for a Lorentzian lineshape. This ratio is denoted
;}é} X. At this time, the general observation is that water continuum absorption
:Si in the extreme wings lies below the absorption predicted by summing the
hkﬂl Lorentzian line wings from pure rotational transitions.13 This is illustrated
'i)ﬂ in Figure 3.1 which displays the temperature dependent X factor corresponding
inj to the ratio of the experimental absorption to the absorption computed by
. i% summing Lorentzians for all distant lines on the HITRAN tape, after
é:f subtracting out all nearby lines.l4,15
:; In Figure 3.1, the experimental x factors at 1000 cm™1 range from 0.1 to
’€L$ 0.6 and decrease with increasing temperature. To understand the theoretically
;EQ; predicted temperature dependence of far wing absorption, the DTC formulation
;kb was used to treat a few isolated Hy0 rotational lines. The model system and
.- results are presented in Section 3.2. The predicted temperature dependence is
l;;} discussed in Section 3.3.
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ati to H20 Self-Broade

The DTC method, assuming uncoupled lines and the binary collision
approximation, was used to treat a few isolated lines for the H,0/H;0 system.

The zeroth-order Hamiltonian is given by

_ 40 o o
Ho = HR + HP + HRP

where Hg, Hg are rigid rotor Hamiltonians for the Hy0 molecules with

eigenstates | j,1,m> and eigenvalues £(j,T). The operator Hap describing the

relative motion of the Hy0 molecules is given by

o B ag2a 12
RP ZURZ 3R 3R ZURZ

where u is the reduced mass for two point particles with reduced mass y = Hy0
R is the intermolecular separation, and L is the total angular momentum.

Using the spherical harmonics satisfying

1] > = K222 + 1) | tm>

L| tm> = fim | tm>

3-3
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the stationary states of ng can be expressed as |lu£> =

[ln> lzg> where the radial eigenfunctions satisfy

2 2
[-B5 L B by ] | ee> = o >
2uR 2uR

For the present calculation the isotopic intermolecular interaction has been

modeled by a 6-12 Lennard-Jones potential

V. (R) =V [ (6/R)'? ~2¢6/R)%)

The anisotopic coupling interaction responsible for modifying the Hy0
rotational lines was represented as an multiple expansion which includes terms

through electrostatic dipole/quadrupole.

V(R,8,8) = V) (R,8,0) + Vo (R,6,9) + Vo (R,0,4)

In a cartesian coordinate system these terms are given by

__1_4.-¢_~>.->.
Vop = 3 (4 * ¥, = 30 ¢ Ry, « B)]

-3 a2 . .-» -

VDQ = 4 [ZR.QZ.ul 5 (R ul)(R QZ.R)]
2R

where ¥y, Uy and Q; and Qz are dipole and quadrupole cartesian tensors for

the radiator (1) and perturber (2), respectively. Parameter values are given

in Reference 4.

The DTC chi-factors at 1000 cm~l for the (4,1,5) + (5,2,5) Hy0 rotational
transition are shown in Figure 3.2. In addition to being an order of

magnitude smaller than the experimental results the theoretical chi-factors

3-4
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Mt also show a positive temperature dependence. We were able to show that this
{ . is not unexpected, using simple qualitative arguments. We review that work
"" |
fS"s here.
@
s }

v,
ot 3.3 Temperature Dependence of the Halfwidth Function in DTC Theory

[fl
;‘: Simple models to correlate DTC results can be found in analytic
:'ﬁ approximations to Anderson theory for line widths. ~ A particularly useful

¥
"Q review is given by Birnbaum in Volume 12 of Advances in Chemical Physics. It
. -
( is shown that the line broadening cross section consists of two factors. The
'QQ} first is a coefficient which is proportional to a power of the temperature.
!
;#:3 The second is a function of a resonance factor which is proportional to the

e
X total change in rotational energy of the absorbing and colliding molecules.
W]

®

= Much rule-of thumb analysis of linewidth temperature behavior is done by
o, "

¢\_ assuming that in the important line broadening collisions, total changes in
;*:. rotational energy and therefore the resonance factor are small, and its

e
H*f' function remains near one. In that case, the power of the temperature
15? corresponding to the DTC definition of the linewidth is (n-3)/(n-1), where n
Y
:‘ is the exponent varies from zero to one-half as the potential is varied from
'i:j dipole~dipole (n=3) to hard-sphere. The DTC predictions on resonance lie
:)J within this range, but for non~-resonant photons the predictions increase much
e more rapidly with increasing temperature.
e .
~

b ; In fact there is no reason for the water-water system to follow the above
iy : simple dependence. For non-resonant photons, the resonance factor (which is
R essentially the collisional change in momentum required to conserve energy)
:ﬁﬁg contains the difference between the photon and transition energies. Large
30
!uﬁ: contributions are obtained with transitions with small resonance factors,
v
i :? except that each transition is weighted by the Boltzmann factor for the
,gL: initial rotational state of the perturber. That weighting determines an
iy average, non-zero resonance factor.
s
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By taking the resonance factor function to be an exponential of a power
of the inverse temperature, one can deduce averages of the translational
energy change during a collision by fitting the resulting exponential
expression to the predicted DTC temperature dependence for the (4,1,4) -
(5,0,5) transition. The variation in this quantity with varying photon
energy, with excluding or including dipole~quadrupole forces, and between the
initial- and final-state contributions is with only one exception in
accordance with the expectation that larger average translational energy
changes will be associated with smaller, more-temperature dependent terms.
The one possible discrepancy, between the two potential choices for the

initial state term and a 1000 cm~l photon, may be due to the different

weighting of perturber rotational transitions in the two cases.

In order to investigate the details of which collisional transitions are
most important, we developed a computer program (S2TERM) which read the same
input files as the DTC HWIDTH program, for a single translational energy and
angular momentum quantum number (£). S2TERM examines the contributions to the
linewidth function from all rotational transitions in absorber and pertuber,
then prints out data for only those whose contribution is above a certain
fraction of the total. The simplification is impressive - for example, for
the (11,3,8) - (12,4,9) dipole~quadrupole and quadrupole-dipole calculations
for £ = 0, 400 cm~1 translational energy and a 1211.3 cm~1 photon energy, 47

and 59 terms out of 10,000 give over half and almost two-thirds of the totals.

The data printed out in the S2TERM lists include the changes in absorber
and perturber rotational energy and relative translational energy, the
Boltzmann factor for the perturber initial rotational state, the transition
strengths for both rotational changes, and the matrix element appropriate to
the residual change in translational energy. It is the product of the last
four terms that determines the contribution from a given pair of rotational

transitions.
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fﬁb The sum of the three collisional energy changes satisfy an energy
! conservation relation with the difference between the photon and transition
AN
‘5§ energies. The relation is different for the initial and final state terms.
DA
LYo Using the notation in the GTE final report is
B
)
R (eji— sj.i) + ( €y = eJ.) + (sk - ek.) - (w - wfi) =0
)
:"-
ég: for the initial state term, and
AT
( b
= Cig ig) P g T B e m) F W mag) =0
o
tf;: for the final state. If we designate the first three terms as At.o1], these
. relationships can be illustrated as follows,
ggﬁi
Y
YN j Jk-"——- jf'Jk' ——
v Ye
1" j Jk X At:coll w
. Ae
"vfb fcoll w g Jk——
oo 3 Ik - j ot
Lo
N 'l'

O

B! It can be seen that for initial absorber states of relatively low energy,

@:i much of the downward change in system energy required to accommodate the

X E% off-resonance photon will have to come either from perturber transitions from

ﬁ\l high rotational states with small Boltzmann weightings, or from large changes

:L} in translational energy giving rise to small matrix elements. There are no

;$?j such constraints on the final state term, so that in the far (blue) wing the

i:ﬁé important terms in its sum are one to two orders of magnitude larger than

¢?J those contributing to the initial state cross section. However, the energy

?‘: needed to carry the state f into f' should also appear in a Boltzmann

‘ﬁfz weighting, and the inverse of the factor e[-BA(w-wgj)] (a detailed balance

Rfjg factor) multiplying the initial state term restores the proper ratio.
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idﬁ In the low~J (strong line) cases studied, the final and detailed balance
g'n weighted initial state terms are of the same order of magnitude. Although the
'¢§ " detailed balance factor has a very strong negative temperature dependence,
N much like that actually observed in water-water far wing absorption, the

k)

f# initial state term for low J's has a very strong positive temperature

*? dependence as well as a small magnitude (both due to perturber rotational

: - Boltzmann factors). Meanwhile, the contributions from the final state term
et
! #ﬁ come mostly from higher J transitions as well, since high transition strengths
7 and large translational matrix elements (when a transition between two high
?p\' J's can mal up most of the energy difference) make up for smaller perturber
;39; rotational populations. The result of these trends is the strong positive

v}

ey temperature dependence seen in the GTE predictions.

X p
ne

gL. This temperature dependence is less strong when dipole-quadrupole forces
Ayt
;;}j are included. It is reasonable to expect some further improvement is

.ﬁbj quadrupole-quadrupole forces were included. It is also less strong for

]
o absorbers in high initial rotational states. S2TERM analysis shows these
(\q. trends to be explained by the above discussion, specifically by changes in the
1 o
! :j perturber J states which can contribute and the resulting changes in cross
%Y
;‘:: section magnitude and temperature dependence. We ran GTE far wing predictioms
f ) for two high-J and two low=J transitions, and found no behavior which could
E? not be correlated as described above. Although high~J lines have negative

)
:d“ temperature dependence and super-Lorentzian wings as do the observed wings,
A0

:b; their intensities are much too small for them to make significant
o

oy contributions.

Qr‘
;;j: One conclusion which can be drawn from the above investigations and our
:2:: earlier work on the unimportance of bound and quasi-bound states is that the
:3&3 only source of strong negative temperature dependence of wing absorption is
.‘ the detailed balance factor. If this were true, one would expect that the
Tay
*jﬁﬁ observed temperature dependence would become more strongly negative with
'{é increasing frequency difference from line center. Our analysis of the data
bl
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reported by Burch seems indeed to show a variation in the temperature exponent

that parallels that obtained from fitting the exponential in inverse

temperature to a T™R form.

The observations are not so precise that any agreement would constitute
proof, and in fact the observed exponent seems to be about one higher than
that obtained from the detailed balance term alone, without any modifications
by linewidth factors which still will increase with temperature. On the other
hand, comparison with experiment does not seem to rule out the possibility
that a predictive method based on the GTE model, but with additional
transitions included to improve linewidth term magnitudes and tempe: .ture

dependences, might in fact be an accurate description of wing absorption.
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(, 4.0 CUT-OFF FREE THEORY FOR ROTATIONAL LINESHAPES

v

n

N 4.1 Generalized Leavitt-Korff Theory of Line Broadening

Ot

' Leavitt and KorffJ derived a variation on Anderson's impact theory16 of
:ﬁ‘ line broadening which remains well-behaved as the impact parameter approaches
)

:{ zero. Consequently, applications do not require ad hoc cutoff functions to
:g preserve unitarity in strong collision regimes. There are two key features to
( their derivation. First, it is assumed that the time evolution operator is
f*ﬁ both energy conserving and invariant with respect to orientations of the

ES radiating and perturbing molecules. Second, a linked-cluster theorem

Y

;:2 for degenerate states is used to decompose each order in the perturbation

,' series in terms of its linked-cluster expansion. Subsequent factorization and
;;} resummation then yields an expression for the interruption function in which
{}j Anderson's Sz-functions16 have been exponentiated. In this section, the

ﬁk Leavitt-Korff half-width theory is generalized for frequency dependent
(__ lineshapes.

3::

'y -~

j. In Equation (A.14), the Hamiltonian H, (for convenience we will drop the
h{: superscript and subscript s notation) for a single perturber interacting

; with the radiating molecule is

s

‘:: - o o

» = + -

:: Ho HP HRP (4-1)
‘:

s o

:" where H is the rigid rotor Hamiltonian for the perturber with eigenstates
N~y P

e

N 2, > =12 j >=E | j > (4-2
° plip” = fplipTpmp ™=ty TlpTpm )
ol

e is the Hamiltonian operator for two structureless particles interacting

AV

K through a two-body local isotropic potential VO(R)

o

-~ 4-1
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2
H, = - 72+ v°m) (4-3)
;
2! o
The stationary states of H are
' RP
]
1
"
K o [ _ 4O -
g Hpplk> = B, [em e > (4=4)
( Using these zeroth~order states, the trace in Equation (A-14) can be evaluated

to give

-
- -y

-

.'-i

- - . ¢ b t
Tr[...] =} z p(E, . +£) < ijmg kal U(z) | jitimixp kK'>
pN k

XA ]

'
P P

X
[

) . t P + ' ? -
5 x <jetemodp k | U"(t) ijtfmf Apk > (4=5)

{ As a first approximation to Equation (4.6a) it is assumed that the matrix

elements of the time evolution operators are approximately given by

' ? v -
<jgrymy Mgkl UG it map k' > =8

191" Syar 8 Uy (2) (4~6a)

9 vyt P + s e ~ &t -
; <jgreme A k' UT@) ligtmd, k> = amfm; prx; GK . Te (1) (4-6b)

where

2 - -1 e >
e U, (2) = [(2)+1)(2§,+1) (22 + 1)] E E E < jrm, k|uz) Jyrmp k>

. i B} (4~7a)
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and

= - . . -1 X 2 . 2
T (2) = [(25#D)Q2j,+1) (28 + 1] g g E < jgrmg K| ute) | i mpr, & >

fP ¢ (4~7b)
As in Reference (1), the basis of this approximation is that the resulting

expression for autocorrelation function reduces to that given by DTC when the

perturbation is weak. Substituting Equation (4-6) into Equation (4-5) gives

;r[...]

[l
o
o

c 1 Y Y fde @i o, +6) T(2) Tt
ip Tp & Ip%p

Then, substituting Equation (4-8) back into Equation (A-14) and performaing

the summations of magnetic quantum numbers gives

Q(t) = § 12 J e 2512041 pEy ¥ ©) (@) Tpe)  (4-9)

The matrix elements ﬁi and ﬁf can be evaluated using the linked-cluster theorem

for degenerate states as described in Reference (9) giving

- ) Sn,l(z)

Ui(z) = " (4-10a)
_ z Sn,f(t)

U; (t) = " (4=-10b)

where the S, functions are

n-1
OR (-i/ﬁ)n;/ﬁ dzq .:/f dz, [(2)+ 1(2i ¢ 1)(2¢ + 1)]

4-3
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i

xT T3 <k e ... V(zn)]io) | 32k > (4-11a)
mi mp mz
and
t t
n n-1 . . -1
5, ¢(8) = (=i/R) f dt, f dt [2ig D)+ DL+ D]
[o] (e}
xT T I <k | veep .. V(tn)]I(‘o) | x K > (4-11b)
mf mp mz

As in Reference (9), the subscript L indicates that in evaluating the quantity
in brackets all subproducts which are diagonal in all quantum numbers and
rotationally invariant in the spaces of the radiator, perturber and radial

ﬂ vector R are excluded, while the superscript (0) indicates that the entire

’ quantity is rotationally invariant. As noted in Reference (9), the first order
terms S; j and §) ¢ are complex and only contribute to the line shift. The
Sy-functions are then the first terms to contribute to line broadening. These

are given by

z z

1 L ] 1 ]
- 2 -1
Sz,i(z) = -(1/K) fdzl f dz, [(2j,+ 1)(2jp+ D (284D)] ~ x ;- )x:' E'
o o i P
x T ¥ T <appklvez) [agap kg ap k' vz, [apgk >
T Tp g (4-12a)
t t
- 2 1 -1 ] ' ]
Sz’f(t) = -(1/K) fdtlf dt_[(2j .+ 1)(2]p+ 1)(20+1)] x) Y z
o o X; X; k'




o,
z_ 1 ] x
AP A

2

x 3 T L <apgklveep Iap g kad ap K[ vee,) [ Ak >
m, mp m, (4=12Db)

where the primes on the summations indicate that no diagonal terms are to be

| JEER

included in the summation. Then, up through second order in the interaction,

it

v

;ﬁv the single-perturber autocorrelation function is

e

..!_:.
oo 5, () +5, (t)
( ‘ Qif(t) =y ¥y 3 .j(.de p(Ej . +e) e ’ (4-13)
o ip tp * PP

-

{:j Details for evaluating matrix elements of the anisotroric interaction potential
,iﬁ V, assuming a multipole expansion are given in Appendices B and C, for

gﬁ arbitrary orders of the multipolar tensors.
o 4.2 Comparison With Davies, Tipping and Clough for H,0 Self-Broadening

i"'\ -

AN
( o The generalized-Leaviff-Korff approach was used to treat Hy0
KO

‘::' self-broadening using the molecular Hamiltonian given in Section 3.2.
Fl ™ \'
?iﬁ Figure 4.1 shows chi-factors obtained from the DTC and GLK methods out to 900
N
M cm~l off line center, assuming dipole-dipole interactions only. At 100 cm~1
:;!J the DTC and GLK results agree. For higher frequencies, however, the GLK
L. chi-factors are 2-3 times smaller than those given by DTC.
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5.0 RECURSIVE RESIDUE GENERATION METHOD

5.1 General Description of the Method

RRGM is a nonperturbative method for constructing time dependent
transition amplitudes that is particularly well-suited to problems with large,
but sparse matrices.10s11 1In this method, the Hamiltonian for the system is
first tridiagonalized using the Lanczos Recursion Algorithm.17 Subsequent
diagonalization of the tridiagonal (Jacobi) matrix yields the residues and

eigenvalues needed to determine a given transition amplitude.

If {I o>} and {E,} are the eigenstates and eigenvalues of the
Hamiltonian H, the time dependent transition amplitude between two

nonstationary statesl i> andl f> is

Afi(t) - <f! e-1Ht/E !i> = 2 <f| a><a| i>e-1Eat/ﬁ= -iEat/E

a

y Rfi(a) e (5-1)
a

where Rfj(a) = <f| ¢ > < a| i> is the off diagonal residue corresponding to a

simple pole E, for the Green's function,

-1, <fla><ali> Rei (o)
G, (a) = <f| (=) | 1> = g :‘Ea e g —z-_?a— (5-2)

For smaller systems the residues and eigenvalues needed to evaluate Ag;(t) can
be obtained by standard diagonalization methods. For larger systems, however,
these procedures are usually prohibited by computer storage requirements.

RRGM circumvents this difficulty because the actual eigenvectors are never

explicitly generated.
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It is easily shown that upon defining the vectors

lug> = 111> +| 2172 (5-3a)

[vy> = (11> -] 1/v2 (5-3b)

the off-diagonal residue Rgj(x) can be expressed in terms of the diagonal

residues associated with the vectors| up> and | vo> as

Rfi(a) = <f| a><a| i> [<u0 |a><a |u0> - v |a><u| vo>]/2

[R (a) - R (a)]/2 . (5-4)
uysl, VorYo

In addition, ifl ug> is the first vector of a set of vectors ﬂ uj>} and| vo>

is the first vector in another orthonormal set of vectors {|V1>}- each of

which tridiagonalizes the Hamiltonian H, i.e.

vty = 3, (5-5a)
+
Vv = g, (5-5b)

then the residues Rug,ug and Rvg,vg can be determined by diagonalizing the
Jacobi matrices Jy, and J,,. Specifically, if T, and Ty are the matrices which

diagonalize J,; and J,, respectively, then the needed residues are given by

R ()

(T 4T

1,eTy (5-6a)

a,l

R (a) = (T ), (T)

0*Vo vil,a''via,1 (5-6b)

It is important to note that only the first column of the T, and Ty matrices
are needed to determine all the residues and eigenvalues required to compute

the transition amplitude Agj.

s 3% | .

W5 LY, Lo ]

n
“

P AWy

3OO0 ) Y Y
e g R




A

1z S
AT

Zr e

[ WL

,
l' ) “ Y

>

(0

Rftrsl BP LA

Up to this point there has been no reduction in the computational

requirements. Rather, the initial problem of diagonalizing the Hamiltonian H
has simply been exchanged for the equally formidable problem (for larger
systems) of determining the two Jacobi matrices. The key feature in RRGM is
that the columns of the transformation matrices U and V (as well as the
diagonal and off-diagonal elements of J, and J,;) are determined recursively
using the Lanczos tridiagonalization algorithm17 so that only two columns of
the complete matrices are required in fast storage. For example, starting
with the initial recursion vectorl ug> and its self-energy a0=<u0l Hl up>, the
second vector in the set is defined byl uy> = [(H-ao)l up>]/by where by is the
norm of the so-called residual vector, (H-ag) |u0>. The self-energy ag and
norm by are the first diagonal and off-diagonal elements of J;. Subsequent
recursion vectors | u,> and diagonal a, and off-diagonal b, elements of J, are
then determined by the three-term recursion relation

| u = [(H-a ) |u > - b ] u 1/ L, (5-7)

>
n+1

where a, = <u, 'H ,un> and bp41 normalizes the residual vector [(H-ap) Iun> -
bnl u,-1>]. By construction, each recursion vector is implicitly orthogonal
to all previous vectors. A second application of the Lanczos algorithm
starting with |v°> as the initial recursion vector yields the diagonal and
off-diagonal matrix elements of J,,. Diagonalization of the two Jdacobi matrics

is straightforward and gives the residues in Equation (5-6).

To r .1vely realize the full potential of RRGM, the Hamiltonian matrix
must be 1. tively sparse and/or the intermolecular coupling matrix elements
easily computed so that large amounts of storage are not required for coupling
matrix elements. This indeed tends to be the case for the spectral line
broadening problem for three reasons. First, the intermolecular interaction
can often be represented by an expansion (e.g. multipole expansion or a
numerical fit to a Legendre polynominal expansion) whose individual terms can

be factored into components which act only on the subspaces for the separated
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molecular/atomic species and their relative motion. Second, selection rules

and/or conservation of total angular momentum further decrease the number of

sz &
x5
L4

nonzero coupling matrix elements within a given subspace. Third, a portion of

]
A, 4

AT

the interaction coupling resides entirely in the coupling of angular momenta

Py
&

Polr
A

and is easily computed in terms of Clebsch-Gordan coefficients and 6-j symbols.

The net consequence is that although the coupling matrix elements are

g
"

N~
3 U
p
o -
.

ot
Ao significantly more complicated for line broadening than in earlier
B
5%$J applications of RRGM, the basic requirements for implementation of RRGM should
o .
{ £ be satisfied.
S
S 5.2 Application to HCl=Ar
e
JP': As a preliminary test of the method, RRGM has been used to calculate the
A’H’ dipole autocorrelation function for the jj = 5 => j§ = 6 pure rotational line
3}:} of a dilute HCl-Ar mixture. The HCl-Ar system has been previously treated by
':&: Boulet and Robert within a unified semiclassical theory using curved classical
?f: trajectories and including all orders in the inter-molecular interaction.18
(. J The results from this latter method were used in comparisons against the RRGM
“j:$ results.
2 . P
g
¢

5.2.1 System Hamiltonian and Matrix Elements

Ot

3
-,

In treating HCl-Ar rotational line broadening we have used the

g

space-fixed Arthurs and Dalgarnold rigid rotor theory for scattering of a

)

’

ol

: structureless atom by a I-state rigid rotor diatomic. The coordinate system

o in this approach has its origin at the system center-of-mass and its axes
‘\;: aligned with space~fixed directions. The Hamiltonian, after separating out

A the center-of-mass motion, for a single radiator (HCl)--perturber (Ar) pair is

S
a_ i
.,

2 2
- _ b -
H=H_, ZHV +V (5-8)
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&= where V is the Born-Oppenheimer intermolecular potential, V is the Laplacian
(* operator of R (vector between the atom and diatomic center-of-mass), u is the
;Q reduced mass of Ar relative to HC1l, and Hpgq is the Hamiltonian for the

'2 nuclear motion of the radiator. Since we are interested in rotational line
) broadening, we will simplify the problem by neglecting the diatomic

:‘v vibrational degree of freedom and treating HC1l as a rigid rotor. The

'i eigenfunctions of Hpgzq4 then satisfy

t

3

( Hoad ijj = E, ijj (5-9)

>

;5 where ijj is a spherical harmonic in the angular degrees-of-freedom of r,

i)

L' (6y,¢,). Similarly, if L is the angular momentum of Ar relative to HC1l, then
K)

fa the eigenfunctions of the operator LZ and L, are Yg,mp (6g,¢R).
'J-
N Since the total angular momentum J = Jy.aq4 + L is conserved, it is

ii convenient to couple ijj and Yy g to form eigenfunctions of J2, J,,

’ Jraq? and L2 using the Clebsch-Gordan expansion

rad

(
W j .

3 | jeom> = § Y (m tm | j2.4) |jm,> | tm > (5-10)
v m, = —j m = =g J j j

3 j L

!

- In addition, since RRGM relies of matrix operations, the translation continuum e
k; will be discretized by enclosing the atom-diatomic system in a sphere of

*% radius R,. A spherical Bessel basis set,

®

% Zk sin(k R)

! = —B-g? 253 m° -

5. xn(R) = = R J (k R) "R 8 R (5-11)
N .

- nm

.' kn "R

,S‘ o
rr

‘o

y is then used to span the translational quasi-continuum.
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In terms of these zero-~order basis functions the Hamiltonian matrix

elements are

<i'e' 3wl lieaun> = 80 8,0, [{(E] + n-—5-) 60 + (5-12)
auR°
B’ 2 :
t - st at .
o 2(2+1)<n'| R™9 n>} Bgrg 8yry + <i'l JMn'| v |j2IMn>)
If the intermolecular potential is expanded in Legendre polynomials
(5-13)

V(R,8) =} V,(R) P, (cos0)
X

then the coupling matrix elements for fixed total angular momentum J are

<3'2"Mn'| V [j2oMn> = ¥ <n'va(R) h>fx(j'z';jE;J) (5-14)
X
where the f) are the Percival-Seaton coefficients20
B LT
£,(3''332;3) = (1) (j030 |j5n0) (2'oed 2'2r0) x (5-15)
3 j' e
[(25'+1) (22'+1) (25+1) (2e+D)]® {, gl

Several different potentials have been proposed to describe the HCl-Ar
In both our
calculations and those of Boulet and Robert,l8 the semiempirical "A,"

In this case A = 0, 1 and 2 and the
radial potentials Vy(R) are 6-12 Lennard-Jones potentials whose parameters

system. Typically, they are of the form given in Equation 5-13.
potential of Kircz et al.2l was used.

were obtained by fitting half-widths calculated using semiclassical S-matrix

f-’
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o theory to experimental measurements. These radial functions are displayed in
s Figure 5.1.

; X 5.2.2 Dipole Autocorrelation Functjion

.)\‘

N

S:] Since the Hamiltonian is diagonal in the total angular momentum

Ef; (Eq. 5-12), the single-perturber dipole autocorrelation function

L
{“' 8(v) = Te[i {HV/E T /R 41 (5-18)
ﬁi can be expressed as a sum of terms corresponding to fixed initial and final
:5 total angular momentum. Specifically, for the jj; -=> jg transition in the

_Q uncoupled line approximation and using the zero-order basis set defined in
? 5.1.1,

0

<.

'3 J o+ T, 3

_ .. (1) = (1/3) (-1) [2i#n@ign]? < lulip P x
4 Jji¢ i f i f
( (5-19)
'JE JiJf

b Y S (1)

54 J,o T, dile

5 i'f

Q."

with

Vi

~§Z J.J LA, J.j.0 j.J, L

‘ i“f i f (197 ii7f

S .7 7 (1) = (23.41) (23 41) Y ¥ (-1) { § } x

[+ FeF: 1 £ JgTgl 7 "glel

o

\

. . iHt /R < -iHt/R_-BH

o E g <agh Ten; le L Jg tedemg <igteTinele e | 3y2,3ynp>

s i'f (5-20)
@ For comparison with the results of Boulet and Robert,l8 it is necessary
,ﬁ to relate the single perturber correlation function ¢ (1) to the

A

iﬁ autocorrelation function for a dilute mixture @np(t) where np is the perturber
140
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V(R,8) = VO(R) + VI(R)Pl(cose) + VZ(R)Pz(cosﬁ)
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Figure 5.1. Radial Components of the Anisotropic Potential for HCl-Ar.
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o density. By analogy with DTC theory (Appendix A), this is accomplished by
s- assuming that the autocorrelation function for Np perturbers, QNP(I), is
'# simply the product of Np uncorrelated single-perturber distributions. Then,
$

N . .
\ P 1(Ef-Ei) /R -1(Ef-Ei)t/ﬁ NP
o QN (ty=1e 8(1) = [e $(1)] (5-21)
A P
o\
i where the complex exponential factor cancels out the zero-order time
éh dependence from Hyz4. Following normalization to unity at t = 0, Equation
v 5-21 should be equal to the normalized autocorrelation function in
N
:ﬁ Reference 18, i.e.,
\,
| s
N i(E_~E.)t/R N n_ o (1)
° milBgmby -
\ [e £ V7 sy P=e?P (5-22) l
Ny
)"d or
o
%)
-i(E_-E,)t/R
( s =-Lmle 77 4] (5-23)
b L o
‘N
}: where 0 is the Lennard-Jones distance parameter and § = Np/np is the system
S
! volume
)
R
3
C 4mR
2 Q=—% (5-24)
o for a sphere of radius R,. In Equations 5-22 and 5~23, the "potential
J correlation function" (1) is defined as the average over velocity and impact
‘Q: parameter of the time evolution of initial and final zero-order states.
o
o
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5.2.3 Preliminary Results

As a preliminary test of the RRGM method, ¥(1) was initially calculated
by assuming the diagonal transition (lj = 1l¢ and nj = ng in Equation 5-19) are
the dominant contributors to the autocorrelation function at short times. The
results from this calculation are shown in Figures 5.2 and 5.3 for times up to
1.0 and 0.4 ps, respectively. There is a clear discrepancy between the RRGM
and French results, even for time less than 0.4 ps. Since our analysis of the
convergence of the RRGM results with respect to the number of recursions
indicates that our results should be accurate (at least up to about 0.4 ps),
the discrepancies in Figure 5.3 probably result from a lack of convergence
with respect to the size of the basis set and/or the neglect of off-diagonal
transitions in Eq. (5-22).

Despite the discrepancies, there are also some encouraging features.
Most notable is the indication of long time (impact) behavior starting at
about 0.6 ps. The slope of the approximately linear long time tail for the
RRGM results gives a halfwidth of 0.02 em~1 which is in reasonably good
agreement with experimental measurements. In addition, there is some
indication that for times greater than about 0.2 ~ 0.3 ps only a relatively
few transition amplitudes are contributing to the autocorrelation function.
Significantly more transitions appear to contribute to the short time dynamics.
However, these transitions can be treated quite accurately with just a few
recursions. As a result, although a great amount of CPU time was expended in
obtaining the RRGM results, intelligent optimization of the FORTRAN codes in
terms of which transitions and corresponding numbers of recursions are used to
compute the autocorrelation function could significantly decrease the required
CPU time.
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6.0 SUMMARY

Several critical military, geophysical, and energy related applications
require accurate predictions of long path transmission in atmospheric window
bands. Accurate predictions of transmission in these regions requires, in
turn, more accurate characterization of far off resonance absorption line
shapes than currently available. Accurate experimental absorption data is
presently difficult to determine because of large experimental uncertainties.
At the same time, theoretical approaches have typically been limited by severe

computational (cpu time and storage) requirements.

This report has presented an analysis of two distinct approaches to the
problem of calculating far wing absorption for collision induced broadening.
The first approach uses standard time dependent perturbation theory to
evaluate the time dependent, dipole autocorrelation function, followed by a
frequency Fourier transform to give the absorption cross section. Two methods
of this kind were evaluated which differed in the limit that perturbation
theory broke down. The second approach evaluates the autocorrelation function

nonperturbatively using the recursive residue generation method (RRGM).

;:ﬂ: The perturbation approaches closely resemble Anderson's impact theory for
i;as half-widths in that they are strictly valid only for weak interactions. These
‘:;: approaches do offer some improvement in principle, in that they treat all

o degrees of freedom quantum mechanically and satisfy the fluctuation

:ii dissipation theorem. In addition, although the Davies, Tipping, and Clough
:i’ (DTC) method relies on ad-hoc, Anderson-like cutoff functions in the frequency
E?: domain to ensure physically well balanced absorption cross sections in strong
Qﬁ collision regimes, the generalized Leavitt-Korff (GLK) method is cut-off free
‘Zﬁj in the sense that the autocorrelation function remains well behaved as the
'tis impact parameter approaches zero.
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. The perturbation methods have been used to treat Hy0 self broadening.
s p 2

b H-0 absorption is particularly important in the 10 pm region where absorption
1,518 2 p p P

’Q is thougkt to arise from line wings of the 6.3 um and pure rotation bands.
y "
;h : Experimental measurements in this region indicate that the Xx-factors (ratio of
k)

i

observed absorption to that predicted from Lorentzian line shapes) range from

NN 0.1 to 0.6 and show a decrease with increasing temperature between 250 and
NN 400 X.

oy

poan Application of the DTC method to one of the stronger rotational lines of
'_; HoO0, (4,1,4) + (505), gave x-factors at 1000 cm~! which were approximately an

‘ 23 order of smaller than experimental x-factors at the same frequency. In

"\: addition, the calculated x-factors showed a strong positive temperature

L.?; dependence for 250 < T < 400. The DTC results were based on wultipole

Wi

expansion up to and including dipole~quadrupole interactions. Higher order

«
s N

interactions would increase the X-factors and may even change their

[l
o
PR e
’

temperature dependence. However, since multipole expansions often converge

» 1. ’
..
v

slowly, it is unclear to what extent these interactions would improve line

T

wing behavior. 1Initial results (up to 400 cm'l) from the GLK method tended to

RO
.:Q; differ from DTC x-factors further off resonance. This difference was not
.\-
‘i:; large enough to cause us to suspect any significant change in the temperature
=" dependence.
N
ﬁ' Analysis of our results suggest two conclusions. First, a multipole
.54
ﬁQ expansion of the anisotropic electrostatic interaction is probably
.-'\\'l
: o insufficient to accurately characterize far wing absorption for self-broadened
o H90. Second, strong collisions contribute to the absorption up to 1000 cm~1
.-‘Jn.'
N off line center. The calculated absorption strengths can differ significantly
;52? depending upon the approximations or cut-off functions used to ensure
\fij physically reasonable absorption cross sections in strong collision regioms. <
®
g
e
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s
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Based on these conclusions, the RRGM was explored as a possible approach
to line broadening. RRGM is a nonperturbative method which can treat more
E: * general interactions than the typical multipole expansion. As part of an
5 initial feasibility study, the method was used in a restricted context to
. .  determine HCl-Ar line wings. In general the results were encouraging but more

.t work is required for applications to systems of atmospheric interest.
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Bt
W
] _“: DERIVATION OF DAVIES, TIPPING, AND CLOUGH LINESHAPE FUNCTION
0w
¥
[D The time evolution in Eq. (2-4) z2n be treated using standard time
\\ dependent perturbation theory by first partitioning the Hamiltonian into
zeroth-order and perturbative terms
O
.‘ . H+Hy +V (A-1)
%
: :_ and then defining the time evolution operator U(z) by
2
® -1 -
ey e iHz/R _ e iHoz/ﬁ U(z) (A-22)
s .
i‘ JHilz/h U+(z) = JiH z /R (A-2b)
vf:-
( The operator U(z) satisfies the integral equation
o
a8
. z
‘-’ ? ] )
-.:', U(z) =1 - V(z') U(z') dz (A-3)
¢ 0
V(z) = e1l{°z/fi v e-1H°z/ﬁ (A-4)

Y
5

P é""‘z‘ u

subject to the initial condition that U(0) = 1. Eq. (A-3) can be solved

o ™
j: iteratively to give the usual perturbative series, i.e.

!J"
'\::;: s i.n z zn-l

2’ - -
o U(z) Yy o« ﬂ)_[ dz1 f [V(zl) V(zz) V(zn)] dzn
._:‘. n=o 0 0 ‘
o5 (a-5) |
‘ .
5 In DTC theory,3 H, represents the zeroth-order Hamiltonian for the 1
Y
R }_J( isolated molecules plus the kinetic energy operators for their relative motion

oo

o and any isotropic intermolecular interactions, while the perturbation V
o

2
.

A-1

_ﬁ_u,
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represents the anisotropic interactions which do not commute with H,. The

zeroth-order Hamiltonian can then be further decomposed as

— w1 u -
H =H, +H (A-6)

where H; is the molecular Hamiltcnian for the radiator and Ho contains the
remaining zeroth-order terms. Here we will neglect vibration-rotational

interactions and take H; to be the Hamiltonian for a rigid rotor with
eigenstates

Heljm > =&, | jmm > (A-7)

where j is the total angular momentum, m is the projection on the quantization
axis and 1 represents any additional quantum numbers needed to completely

specify the rotational state.

Performing the trace over radiator states in Eq. (2-4) and using the
Wigner-Eckart theorem to evaluate the dipole matrix elements, the

autocorrelation function becomes

o(t) =

L

§ ; E, ;. (25, + 1) p(E) < jye b w i, v > (A-8)

' iw e.tt (T)
£4 cii',ff'

L ] s ¥
x < g otg I "JiTi > e
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s where

4 -1
- : + [ s .
o o) =i *DT I YL LG e L mlie 1, 5y, m)
5: ’ i f if
.5 -
:lj st ' 1 | st ) t - o
1 \‘ (Jf’ mf’ ’ m Jf’ 1! Ji’ mi) X Tr [P(Ho) (A-g)
e
::-« <i' | ]; s < i |U+(|"'>
QY jg ymg 10@ 1y vy omy I T¢ B RERFAYLIES
\
and
o
‘.h
oA -BE -BE,
A o(E ) = &—1— = <1 (A-10a)
Y
A i -BH2 o
g e Trfe " R] QR
M
RS
N ~ -
2 - H -BH_
N p(H ) = S——= = == (A-10b)
oA 'I‘r [e BHo] Qp
N
\.) are the canonical density matrices for the zeroth-order Hamiltonians Hp and
O H, and Tr is the quantum mechanical trace associated with H,.
O o o
l‘) For sufficiently low perturber deusities, it has been shown that many
il
;"." spectral features can be reproduced, at least qualitatively, by invoking the
“E binary collision approximation. In this approximation, the Np-perturber
ot autocorrelation function is taken to be the simple uncorrelated product of
® single perturber autocorrelation functions. Equation (A-9) then becomes
4
R 1
L L
N
7 c(t) =[Qt) I'p (A-11)
1:{_: ii',ff' ii',ff' i
;-'.* |
b |
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where

at) =@ +DTY T Y T
m m m,

Bt

Ge mgy Lom |3, 1, 35, m))

1 1
i S S S S
(g mp 1, ml 3y, 1, 35, mi) x Tr [p(H) (A-12)
! l
<jppmp log@ s e > <ioom 1o @3] o) mg >

is the autocorrelation function for the interaction between the radiator and a

single perturber (designated by the subscript or superscript s).

The single perturber autocorrelation function given in Equation (4-12)
includes line coupling effects. When the zeroth-order absorption lines are
well separated, however, the calculation can be simplified considerably by
invoking the uncoupled line approximation. In the present context, the

uncoupled line approximation is

Q(t) = 6 6 Q(t) (A-13)
ii',ff' ii' ff' if

where Qj¢(t) is given by

-1 . .
Wt)ye =@+ T T Y Y TGgmplimlygl i, m)
m ll‘li mf Illi mf

x g my 1, m) 3, 1, 3, @) x Tr [p(H®) (A-14)
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Either Qii,ff(t) or Qjf(t) is evaluated in DTC theory by substituting the

perturbation series, Equation (A-5), for U(z) and U(t) and keeping only terms
up to second order in the interaction. This procedure breaks down, however,
for strong collisions leading to values for the autocorrelation function which
are not physically reasonable. Consequently, in applications it is necessary
to introduce cutoff functions which ensure that the correlation functions are

always well behaved. In general, there is no formal basis for these

functions.
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: .::." COUPLING MATRIX ELEMENTS OF THE LONG RANGE ANISOTROPIC INTERACTION
NN

)
R In this appendix we determine the coupling matrix elements of the long
',?: y range anisotropic interaction V between two molecules in an uncoupled basis
:'I. set
'»'I-s
{
e | a>=| o> [ a,> | tm > | Le> (B-1)
{
4 }
¥ consisting of molecular eigenfunctions for the internal degrees-of-freedom for

b
:g:".n each molecule

®
i

N - . -

W | @> = | ¥ iym> (B-2a)
059
I‘)l
-t | e)> = | %,j,m,> (B-2b)
(
e a spherical harmonic | fmg> for the relative angular momentum, and radial
S .
:'\"; eigenfunctions | fe> for the relative translational motion. Following a brief
: '.:i discussion of the long range electrostatic interaction desired by Leavitt,13
E
3 the Q functions (the squares of matrix elements of V summed over all magnetic
o quantum numbers) which arise in a perturbative treatment of line broadening
&.‘E are derived for arbitrary orders in a multipolar expansion of V.
'i »

@ We start with the electrostatic interaction given by Leavitt24 for two
4%
;'.i:' charge distributions separated by a distance R

"
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IRt £, 2. + 22

e 2 1 2 L.+2, +1 4
K vy 3 n 2L, Highth (B-3)
)
o 1%
DO 4
v 4+ -
" (1) (2) C (R)

x T T (Luntu, | 2,004 u 4 ) Q

\C‘\ THRY 1°71°72° "2 1°7°2°71 72°71 "2 "1’"1 22’“2 9.1+2.2,u1+u2

ht 172
s

)
o (1) 2)
(' : where Qll,ul and ng’uz are multipolar moment operators for the

o molecular systems 1 and 2, respectively, and ct is the adjoint of the

AN

’.__-" irreducible spherical tensor given by
SO
; . 4 .

¢ ® = 1 — Tty m (B=4)
a‘!_:.‘ ’ (22"'1) ’

o
-_';:__: where Yg’u(R) is an ordinary spherical harmonic. The factor of the form
(f) is the binomial coefficient a!/b!(a-b)! and (a, «, b, B | a, b, d, §)
( . is the Clebsch-Gordan coefficient for the vector coupling of a and b to give
-jf.:: the resultant d. If :11 and ;Zj are position vectors for charges qj and qj in
'(‘::: charge distributions 1 and 2, then the moment operators are given by

o
?- (1) Y .
-c" Q, u =y 9T C, u (ru) (B-5a)
-d 1’71 { 1’71
JJ )

® (2) _ 2 - -

3 %, ., = 2 Y72y Co oy, (Fap) (B-5b)
e s

vl ]

I
[ As used in Equation (A-3), the multipolar moment operators are each
;'" defined relative to the laboratory reference frame. The spherical harmonic 1
',;:‘ Yg ,u then specifies the orientation of the R vector relative to the
E’:‘ laboratory z-axis. 1
i
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The electrostatic interaction given in Equation (A-3), is invariant to

the simultaneous rotation of all particles in the system. Most earlier
expressions for the electrostatic multipolar interaction?5 require the
application of rotation matrices to arrive at an equivalent form. This
invariance is easily seen by noting that upon letting u = uj + uy, the

summation over }j; and uy; becomes

= + R (1) (2)
1 2 1’71 "2 1

The summation over 1 corresponds to the contraction of the multipole tensors
le’ul and QEZ:“Z of order £; and %5 in the molecular spaces 1 and 2,
into a tensor le+¢2’u of order #7 + £2 in both spaces. Then using

+“__u - _
u(R) = (-1) CE,-u(R) (B-7)

the summation over U corresponds to a scalar product to give a rotational

invariant in the spaces 1, 2 and R, i.e.,

1,2 ° 1,2,i
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The matrix elements of V in the uncoupled basis set, Equation (B-2), are

V =<V (B-9)

.‘_) L. 20. + 2% (L. 4L, +1)
“ z 2 (_1) 2 ( 1 2)i <l'€'| R 1 72 Iz£>
'}

221

PN 1 %
K0 (1)

] 1
T T puptyand £,0,0 4 u b)) <t 5] o] Qzl
; T ,

»

u |7’13'1"'1>

(2)
£y

+
£1+22,u1+u2
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] et 1 ] L L]
<ty 3y mjlQ u Iry3 mp> <t'm, lem,>
o< If the Wigner-Eckart theorem is applied to the matrix elements of
- QLy, M1, Qe u2 and CLy+iy,uy+uy,
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R
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»
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<¥] i) m | sz"l frm> = Goompstou §p.25,37m)) (B-10a)
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<€, i, m) %, .1, b, 3, mp> = Gpomystyumy | 5,02,055,m)) (B-10b)

e

~

EEAADLL

« <1y 31 Q{2 5yt

SN e PR
! X A XA
;5) 25-‘2) 7

b n 9

B-4

X -
S
A

YT
] MRANSY

e e
“ .‘.%‘.‘

fa
RS

" o A Y B ol W A T T " T e T
Oy o I o o T o T i . T ST
0,5V, NS, Ve T 0 5 ¥y ™ Mo bl 2 1 L 5 ..‘.b.f‘




.
-
(53

«.,. _
¥ i"“.
1
.

2 EL LA

1

ot o )

B

)
e

P

>
&
PPl

utu
+ 1 2 [ [
<¢'m,'| c ltm > = (-1) <'m,'| C I
1 21+£2, u1+u2 1 11+12,ul+u2 2

\4

£

' ,{.. -
}~);'

{":'

éﬁﬁ@

Lt B

e
AL IS
PSR T Tht S

RUPETCTUTRR NN AN

- Y o

x (£,0,8 40, 0| z,zl+zz,z',0) (B-10¢)

)“l.

x
,l

SRR

¥y

2

the matrix elements of V become
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Vi,= L A, By (B-11)
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where the factor Ah,lz is independent of magnetic quantum numbers.
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For a perturbative treatment of line broadening, we are particularly

AL @

interested in the rotationally invariant quantities
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AN which upon substituting Equation (A-11) becomes
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. where n_x refers to the set of magnetic quantum numbers (mj;, mp, mg)
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Substituting Equation (A-13) for BLjfy, the summation over m and m' is
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Using the Clebsch-Gordan symmetry relations, the summations over ;1 and ;1'
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Similarly, the summations over my, mp' and my, my' are

(2j1+1) 3

2 2 [...] = [( ( \ ] 52 ztéu uo (B-l7b)

' 28 _+1) (28, '+1) 2°72 272

mz m2 1 1
z 2 (22'+1) 3
[...]= TYE 5 1 1 O v,1 (B=17¢)
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so that the summation over m and m' reduces to
(2j1+1)(2j2+1)(2£'+1)
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Then substituting back into Equation (A-15) and performing the summations over

PR, o

£1' and ¢,', we find
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APPENDIX C

RADIAL MATRIX ELEMENTS OF R-}

When the anisotropic interaction potential is expressed as an expansion
in multipolar moment operators for the radiator and perturber, the coupling

matrix elements will include radial factors of the form

=(2+1
= <Yﬂ,'8' |R ( ) I st> (c-1)

where )\ is the sum of the orders of the multipole tensor operators for the

radiator and perturber and Y. are radial eigenfunctions with energy,

2u

In general, the eigenfunctions and integral in Equation (B-1) may be
determined by numerical integration (method 1 below). However, the
computation time may be reduced by using suitable approximations to the
eigenfunctions in the limits k2 > 2(2+1)/P; (hard core regime) and

k2 < ¢ (2+1)/P; (centripetal regime) where PR is the radius of the
interaction region of the isotropic potential. The three basic methods used
to evaluate Equation (B-1) are summarized below. This discussion follows
closely the description given in the DTC final report,4 but has been

generalized where applicable to arbitrary values of ).

Method 1: Numerjcal Integration

In the current source code MATRIX, as well as the previous GTE code
OVERLAP, the eigenfunctions Yy (R) are evaluated at a series of equally
spaced grid points by numerically solving Schrodinger's equation using
Numerov's method.22 The integral in Equation (B-1) is then evaluated using a

C-1
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( simple trapezoidal or Simpson numerical quadrature. Typically, the radial
ﬁ&; grid extends from R = 0 out to R = Ryay, such that

o

|‘\ )

| "

gr; -(xmin *hH

il R < tol

. max

O

e where tol is a user specified tolerance and \yi, corresponds to the lowest
{} order (longest range) interaction, e.g., dipole-dipole for two asymmetric

rotors.

[ 2
Y,

G

id
b 2 Sl

In the limit R + », the eigenfunctions have the form

-

IV 0 > 3
.a‘l./..i' ¢ f"} N Xy

sin [kR = €n/2 + § (k)]
Yo (R (c-2)
R+ = R

x
}‘,J'

where 6g (k) is an energy dependent phase shift.

S

At energies sufficiently large relative to the centripetal barrier (i.e.,
b, k2 > 2(£+1)/P;), the radial wavefunctions approach their asymptotic
sinusoidal form relatively close to the classical turning point on the

e repulsive wall. Defining R; as the radial position at which the asymptotic
iy limit is approximately valid for a given pair of wavefunctions, Equation

W (B~1) may be written as

N - f dRRz—&J—&L+ .

L'e', e - D L', te (c-3)
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where the asymptotic contribution to the matrix element is given by

1 + t s +
AI:.E- ge = f dR sin(l R+0 )sin(kR+0) (C~4)
R RX+1
a

and 6 = 8y(k) - &n/2

The asymptotic integration may be easily evaluated for arbitrary ) as follows.

If we define generalized sine and cosine integrals

-/: ggsiﬁxiﬂl dr

IE (k,8,x) = (c-5)
1: (k,0,x) = J(. iiﬂi&xigl dR (C-6)
then
A\ =L C 1€ -
Torer 0e = R, [Tep (0LR) = Iy (kpu8.0R )] (c-7
where
k. = k' - k
6. =0' -0
(C-8)
ky = k' - k
0, =0' -9
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For m > 1, the integrals in Equation (B-5) and (B-6) may be evaluated by

( For m = 1 and arbitrary k and O,

o )
b c

< I] = -cos(B) Ci(kRq) + sin(B) si(kRy) (C~9)

~.

> 1

) I3 = -cos(8) si(kRq) - sin(8) Ci(kRy) (c-10)
h J'.’v
7
-‘_.__ where si and Ci are usual sine and cosine integrals defined in Abramowitz and
k :-.:. Stegun23 as
k¥ -
93 Ci(x) = - f cosfel 4 (c-11)
: N x

) -

.

.‘\a‘
< si(x) = = f —t-ﬂ"ﬁp (C-12)
e

< x

o

¢
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integrating by parts. For example, letting

e
o
o
Rt c cos (kR _+9)
e
[<-7. Q¢ =——— (c-13)
R
2 .
‘. 8
:::’ g sin(kR_+8)
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13 = C~-14
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the cosine integral in (B-5) becomes with successive integrations
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e where

kn-l
A = for n =1,2,3,...,m~-1 (C-17)

n (m=1) (m-2) (m-3) ... (m=-n)
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By inspecting Equation (B-15) it is seen that the last term in the series for
o, a given m is

18 _1ym/2 S
T (-1) k Am-l I1 if m is even, and

m=1
2

1:.‘ (-1) k A

C
) -1 I1 if m is odd.

L) Therefore, letting

»
a4

(LA

c
Bon+1 Q-(2n+1) (B-18)

li-'r'-
PR

N
sg (@) = T (-1)
=0

Z00
-}

and

—
4

sy = 5 0™, &, (B-19)
- n=1

o]
\:" we have for integer q = 1,2, ...

cC_<C ] q S -
D Iy =81t S DY kA, T form=2q (B-20)

; C_.C S . ;1.9 C _
Sq-1 *Sq t (DY kA, T for m = 2q+1 (B-21)

]
]

ot In the absence of an isotropic intermolecular potential VO(R), the finite

by solutions to the Schrodinger equation are the spherical Bessel functions

: e = et a, L ) e =R (B-22)
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which are proportional to pz for p + 0 and have the asymptotic form

p—

Y
jQ sin (p - 1/2 &m)
~ ; - B-23

_J

By comparing the asymptotic limits in Equations (B-2) and (B-23) it is seen

p
L)
usﬁ that outside the interaction region the functions Yy, and jg differ only
W

C: by the phase shift §g(k). In addition, since the shape of the wavefunction
g

is determined mainly by the form of the potential to the right of the smallest

=

classical turning point, the functions Yg, and jg are not very different

,-:
o when kZ < £(2+1)/P} so that §y(k) is small when & > kPg. Thus, in
N,
,:g the centripetal regime (low €, high ¢),

?
Vo = 3 -
vl Yoo (R =3, (p) (B-24)
L2 and
WOk
NP % T (k'R) J (kR)
o o LI (k.k)g dp L+ 172 g+ 1/2 (B-25)
RN L't ,28 2 A
V}: o R

Ca'
1 .~ﬂ

This is a Weber-Schafheitlin type integral which for A > -1 and (&' + £ -\ +

2) > 0 is proportional to a hypergeometric function, i.e.,

'liﬁpji;Q)'

x
P A
>

N

)

=

I = max ,F; (A,B,C;2) (B-26)
X
2" T(C)I'(1-B)
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(“ where [ is the gamma function, jF; is the Gauss hypergeometric series and

-
»
"
r ]

o

n

34 (L' +2L-)+2)

2 (-0(L'=2) - )+ 1)

AN (B-27)
(.-
A+ B+ )

L4
A
Q
[}

(k/k')28

s
(3]
"

! .‘ with ©

sign (k'-k) = * 1 depending on whether k'-k is positive or negative
éﬁ: and kpay equals either k' or k depending upon which is larger.

AV For k' =k (Z =1), (B-28)

8 FL(4,8,0;1) = LEM(C=A)
( ‘ r(C-A)T(C-B)
)

Since C = A + B + X\ with A\ a positive integer, the hypergeometric function may

A be evaluated using Equation 15.3.11 in Abramowitz and Stegunl5 for k' # k,
:ﬂ v giving

a:j X' ' _ Z 2 K Sl - Sz (8-29)
Y el te N T(A+A)T (BT (B)T (1-B)

with
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and

= LA ) T (B+A+n)
s, = (z-1)X Y th 124 (1-2)"
n! (n+d)!

x (B-31)
n=0

{In(1-2) - ¢(n+1) = p(n+i+1) + P(A+M4n) + P(B+i+n)} |

where ¢ is the digamma function. In calculations the summation in Equation
(B-31) is carried out until the relative difference between successive values

for Sy is less than a specified convergence tolerance.

Siuce X is a positive integer, the parameters A, B, and C are integers
divided by two. The parameters A and C are always positive and vary from
1 to gy + 1 and from 3/2 to fp,, + 3/2 respectively, where ;.. is the
largest accessible value of £. In addition, the selection rules on changes in
the relative angular momentum, - A V £'=¢ V )\, require that B varies from 4-)
to 4.
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