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INTRODUCTION

Introduction

This research project is explicitly tied to the Diels-Alder (DA)
catalysis cycle for carbonyl transformations.! As such, an
understanding of the need for, and the basic principles of such a
cycle are essential to understanding the nature of this project.
Therefore, a fairly extensive desription of this catalytic scheme
follows a description of the need to improve the process of carbonyl
transformations. Since the DA catalysis cycle utilizes Diels-Alder
cycloaddition/cycloreversion systems, a brief overview of the
Diels-Alder and retro-Diels-Alder reactions is also provided. Lastly,
this part will introduce the author's attempt to fill some vital

technology voids.

Background

Acrylamide is a major industrial chemical due to the increasing
use of its polymers in surfactant production, waste water treatment,
and oil recovery.? Carboxamides are generally prepared via
hydration of the corresponding nitriles.? However, the strongly
acidic or basic conditions required also promote hydrolysis of the

product carboxamide to the carboxylic acid as well as hydrolysis of

other functional groups present.l>2 Even under forcing conditions,
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nitrile hydrations are slow, as are other carbonyl transformations

such as alcoholysis of carboxamides to carboxylic esters. An
effective catalytic cycle for carbonyl conversions would increase the
usefulness of nitriles and carboxamides as synthetic precursors as
well as eliminate the problems which occur where such precursors are
already used. In 1984, Czarnik introduced a novel catalytic cycle
vhich formally catalyzes the conversion of acrylamide to ethyl

acrylate.!

DA catalysis cycle for a,B unsaturated carbonyl

transformations:

The title catalysis cycle is depicted schematically in Figure
1.} The cycle is characterized by Diels-Alder cycloaddition of
9-(2-pyridyl)anthracene (1) and acrylamide to yield ortho adduct (2)
and meta adduct (3). Compound 2 undergoes ethanolysis to 4 in the
presence of metal ions and refluxing ethanol, whereas 3 does not.
Cycloreversion of 4 yields 1 and ethyl acrylate.l An extension of
this work performed by Nanjappan is depicted in Figure 2.3 In this
case, the ortho adduct (5) of 1 and acrylonitrile is hydrated to a
carboxamide adduct (7). Meta adduct (6) remains intact.3 This
phenomenon can be adequately explained in terms of the ability of
ortho adducts to chelate metals due to the proximity of the pyridyl
nitrogen and nitrile nitrogen (or carbonyl oxygen as the case may
be). Ligation thereby polarizes the carbonyl group and facilitates

nucleophilic attack.”
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A current drawback of the DA catalysis cycle is the high
temperature required for cyloreversion of adducts following the
carbonyl transformation. To be practical, the cycloaddition, carbonyl
transformation and cycloreversion must all occur at reasonable rates

and temperatures., Data related to cycloreversion temperatures and

subtstituent effects are lacking.>®

Apparently, steric interactions play a minor role in the
retro-Diels-Alder reaction. Steric bulk dramatically decreases the
rates of cycloaddition while only slightly accelerating the
cyclor:eversion.G’7 This has been rationalized in terms of the late

'transition state for cycloaddition, and conversely the early

transition state for cycloreversion.6

Diels-Alder cycloaddition/cycloreversion reactions:

The Diels-Alder (DA) reaction is a 7%s + w’s
electrocyclic reaction. That is, a component with 47 electrons
(diene) and a 2w component (dienophile) condense suprafacially to
form a cyclohexene moeity as shown in Figure 3. The factors
facilitating the Diels-Alder reaction can, in general, be attributed
to electron withdrawing substituents on the dienophile and electron
donating substituents on dienes.

Anthracenes participate as dienes in the Diels-Alder reaction as
shown in Figure 4. Anthracene cycloadditions occur almost exclusively
across the 9,10 positions. At elevated temperatures, the adducts
cyclorevert in a retro-Diels-Alder reaction to yield the starting

anthracene and dienophile.
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FIGURE 4 : Diels-Alder reaction scheme (anthracene)




The retro-Diels-Alder reaction, a n’s + o®s + o’s
electrocyclic process, is depicted in Figure 5. Until recently, a
systematic study of substituent effects on retro-Diels-Alder (rDA)
reaction rates had never been reported.6 Although Nanjappan noted
these cycloreversions were accelerated by electron withdrawing and
conjugating substituents, even if highly electron donating,% the
study only encompassed investigation of substituents on the
dienophile component. This research group is currently investigating
a wide variety of 9,10-disubstituted anthracenes, and the impact of
those substituents on the rate of rDA reactions. Until such
information is available further advances will have to be based on
vhat literature precedents are available and chemical intuition.

Literature citings of anionic accelerated rDA reactions appeared
in the 1960's and 1970's.8 In 1980, cycloreversions were
accelerated not only by an alkoxy anion, but also by the
trimethylsiloxy substituent.? Chung's work confirms this phenomenon

for adducts of bis-9,10-(trimethylsiloxy)anthracene.l?

Summary

In order for the DA catalysis cycle to have practical utility,
the Diels-Alder reaction must be reversible at reasonable
temperatures. More simply, a cycloaddition/cycloreversion equilibrium
must be established. For this to occur, the rDA reaction must at
least be on the same time scale as the DA reaction at a given
temperature. Compound 8 , bis-(di-t-butylsiladioxy)[b,i]-

9,10-dimethylanthracene, (Figure 6) was proposed as a theoretically
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FIGURE 5 : Retro Diels-Alder reaction scheme
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CH3
t—Bu t—Bu

FIGURE 6 : Bis-(di-t-butylsiladioxy)(b,1]}-9,10-dimethyl-
anthracene (8).
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interesting molecule which should be synthesized and investigated for

DA/rDA reactivity.ll Cycloaddition was expected to be facile due to
the strongly electron donating siloxy substituents and the lack of
steric bulk at the reactive site. The heavily siloxy substituted
adducts of 8 presented a high potential for facile cycloreversion.
The objective of this research project was to synthesize and

investigate the Diels-Alder reactivity (both forward and reverse) of

polysiloxyanthracenes and the cycloadducts thereof.

0.0 8.0°900.0
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CHAPTER I
SYNTHESIS OF POLYSILOXYANTHRACENES 1

AND RELATED COMPOUNDS J

Introduction

Three novel compounds, bis-(di-t-butylsiladioxy)[b,i]- d
9,10-dimethylanthracene (8), bis-(di-t-butylsiladioxy)ib,i]- 4
9,10-diphenylanthracene (9, Figure 7), and the Diels-Alder adduct
(10) of 8 and acrylonitrile were synthesized. Compounds 8 and 10
;i were synthesized for their potential to provide vital Diels-Alder/ t
retro Diels-Alder reactivity data for the DA catalysis cycle
discussed previously. The bis-(dimethylsiladioxy) (11A, Figure 8)
and bis- (diphenylsiladioxy) (11B) derivatives of 9,10-dimethyl-
anthracene were also target molecules. The inability to isolate 11B
indicated it and 11A may be too reactive to isolate easily. Thus,
effort was directed solely at synthesizing the di-t-butylsilylene
T derivative. Limited successes in the synthesis of 8 lead to the
proposal of 9 as a potentially useful singlet oxygen sponge, as

shown in Figure 9.

-12-
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FIGURE 7 : Bis-(di-t-butylsiladioxy){b,1})-9,10-diphenyl-

anthracene (9) and bis-(di-t-butylsiladioxy)(b,i]-
9,10-dimethyl-11-cyancethanoanthracene (10).
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FIGURE 8 : Bis-(dimethylsiladioxy)([b,i]}-9,10-dimethylanthracene :§
(11A) and bis-(diphenylsiladioxy)[b,1]-9,10-dimethyl- !

anthracene (11B). )
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FIGURE 9 : Diels-Alder reaction of Bis-(di-t-butylsiladioxy)- :
{b,i]- 9,10-diphenylanthracene with singlet oxygen. Y
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Materials and Methods

Synthesis of bis-(di-t-butylsiladioxy)[b,i]-9,10-dimethyl

anthracene (8):

The overall synthesis of 8 is depicted schematically in Figure
10. A combination of procedures from Boldt!? and Lindsey!?
yielded 9,10-dimethyl-2,3,6,7-tetramethoxyanthracene (13) by
condensing veratrole (12) and acetaldehyde in the presence of
sulfuric acid . Cleavage of the four methoxy functions with boron
tribromide!? worked famously. Thus, the prime starting material,
9,10-dimethyl-2,3,6,7-tetrahydroxyanthracene (14), was very readily
accessible.

The silylation of 14 to form 8 with di-t-butyldichlorosilane
is an extremely clean and high yielding reaction, however, finding
appropriate reaction conditions was not as straightforward as

i expected.

Synthesis of bis-(di-t-butylsiladioxy)[b,i]-9,10-dimethyl-

| 11-cyanoethanoanthracene (10):

Compound 8 is useful for studying the kinetics of the
Diels-Alder reaction. However, an understanding of the retro

Diels-Alder reactivity of adducts of 8 was also required if useful

data for the DA catalysis cycle was to be obtained. Thus, the
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title cycloadduct was synthesized. No problems were encountered.
The reaction shown in Figure 11 was carried out in refluxing
acrylonitrile. Butylated hydroxytoluene (BHT, 16) was added as a

radical inhibitor to avoid arylonitrile polymerization.

Synthesis of bis-(di-t-butylsiladioxy)[b,i]-9,10-diphenyl-

anthracene (9):

As menticned earlier, compound 9 was proposed as a potential
singlet oxygen sponge, or reversible singlet oxygen trap. The
endoperoxide adduct (15) may prove to be a convenient, controllable
chemical source of singlet oxygen.l* Endoperoxide adducts of
other 9,10-diphenylanthracenes have proven synthetically useful for
this purpose,15 that is, they thermally decompose to parent
anthracene and singlet oxygen, which can be trapped by singlet
oxygen acceptors.l® The mechanism of decomposition of 1,4
anthracene endoperoxides is fairly well established as concerted,
vhereas debate lingers over the mechanism for decomposition of 9,10
endoperoxides.1® It appears as though these compounds decompose
via the singlet diradical intermediate 1D shown in Figure
12.15 At this point the diradical can decompose to parent
anthracene and singlet oxygen or intersystem cross to triplet
diradical 3D which decomposes to parent anthracene and triplet
oxygen. Electron donating groups appear to facilitate the loss of

singlet vs. triplet oxygen.l® Thus, compound 9 is, potentially, a

very useful tool.

1)
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FIGURE 12 : Proposed mechanism for loss of molecular oxygen
. from anthracene endoperoxides.
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The synthesis of bis-(di-t-butyldioxasilyl)[b,i]-9,10-diphenyl-

anthracene was very straightforward. The reaction scheme in Figure
13 mimicks the synthesis of the related 9,10-dimethyl derivative.

The first step is higher yielding for the 9,10-dimethyl derivative,

but the last two are virtually the same. Investigations into the
reactivity of this compound with singlet oxygen are left to future

researchers.

Results and Discussion

v - -
L IO I R )

‘-‘.o.

Synthesis of bis-(di-t-butylsiladioxy)[b,i]-9,10-dimethyl-

anthracene (8):

Several unsuccessful attempts to isolate 11B from the reaction
of 14 with diphenyldichlorosilane coupled with Corey's citingl®
of the instability of five membered silylene rings indicated
attention should be focused primarily on the more stable
di-t-butylsilylene derivative.

The temporary nonavailability of di-t-butyldichlorosilanel’
from the manufacturer apeared to be only a momentary setback since
a novel silylating agent, di-t-butylsilyl ditriflate,l® was
introduced in 1984.16 The silylation was run with limited success
using this new reagent. Enough product was produced to characterize
by 1H NMR (Plate I) and mass spectrometry (Plate II), but not

enough to isolate in a synthetically useful sense.
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Five theories were proposed for the inability to isolate the
product from a seemingly straightforward reaction: 1) improperly
purified starting material/reagents; 2) hydrolytic instability of
product to traces of water in solvents/ atmosphere; 3) thermal
oxidation; 4) photooxidation/ photodimerization; and 5) that the
starting material had some unexpected lack of reactivity toward
silylation. The first two theories were readily discounted as the
sole sources of incomplete reaction. Extreme care was taken in
purification and drying of starting material, solvents and bases.
The possibility of photochemical processes was a primary concern. A
10* M solution of 9,10-dimethyl-2,3,6,7-tetramethoxyanthracene
in freshly degassed chloroform completely decomposes upon exposure
to indirect sunlight in less than 45 minutes. !H NMR of the
reaction products indicates simple dimerization is not the only
product. Thus, it is possible that degassing was not totally
effective. Reaction of anthracenes with singlet oxygen to form
endoperoxides (Figure 14) is well documented.l#,19,20,21 At first
glance, the concentration of singlet oxygen in solution could not
be expected to account for any major decomposition; the fact that
anthracenes are photosensitizers could account for an excessively
high concentration of singlet oxygen in solution if degassing was
not effective. This possibility prompted an expansion of the scope
of this project, to include the synthesis of 9, which was discussed
earlier. The potential for oxidation, photooxidation and
photodimerization was minimized by degassing solvents and

protecting the reaction vessel from light.
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FIGURE 14

Formation of anthracene endoperoxides.
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When these precautions were taken and a significant yield of 8 was o
)
still not achieved, a fundamental change to the reaction was made.
The reaction depicted in Figure 15 was attempted, but to no avail. .
A
About this time, di-t-butyldichlorosilane became available. The \
]
first attempt with this reagent in refluxing acetonitrile?? _
¢
yielded 8 as the only detectable product in 787 yield after ﬁ
£
recrystallization. Various repititions show the reaction to be $
Uy
marvelously consistent with the only yield limitation being the -
Q.g
individual's persistence to recover trace amounts from the mother E
bt
it
liquor following crystallization. The reaction with Q
]
di-t-butylsilylditriflate was repeated under identical conditions 'N
4
and a 07 yield of 8 was obtained. W
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EXPERIMENTAL
General:

All reagents and solvents used were bought from Aldrich

Chemical Company or the Ohio State University stores unless

otherwise noted. Melting points were determined on an

o

Electrothermal Melting Point Apparatus and are uncorrected. UV

spectra were taken on a Hewlett-Packard 8451A Diode Array

Spectrophotometer. Mass spectra were obtained from the Ohio State

R e

University Chemical Instrument Center by use of a VG-70-250s (or

- -

Kratos MS-30) mass spectrometer. High field NMRs (!H and 13C)

fy

v were accomplished on a Bruker 250 MHz machine. Triethylamine was

B

distilled from potassium hydroxide. Dichloromethane and
acetonitrile solvents wer dried over calcium chloride and calcium

hydride respectively, then distilled from phosphorous pentoxide. h

T e v

9,10-Dimethyl-2,3,6,7-tetramethoxyanthracene (13):

‘: Reagents and reaction conditions are a combination of those X
% cited by Boldt!? and Lindsey.13 To an ice cooled solution of
veratrole (32 mL, 250 mmol) in acetic acid (125 mL) was slowly
added an ice cooled solution of acetaldehyde (21 mL, 377 mmol) in
- methanol (20 mL). The resulting solution was stirred for 1 h.
Concentrated H,S0, (95%, 125 mL) was added dropwise over 90

min. The reaction was stirred at 0°C for 20 h, then poured over

)
BRSO OGOBOADRD Iy . L ho! ¥ 4 ; » : ” - gy
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ice water2?3 (1400 mL) to give a yellow/pink mixture. A beige

solid was collected and crystallized from chloroform and dried to

x_&-. R

yield 9.13 g (22.42) of 13, mp> 340°C as pale yellow flakes:!H
NMR (CDC1,) & 7.47 (s, 4, Ar-H), 4.10 (s, 12, OCH,), 2.95

(s, 6, Ar-CH;); MS m/e 326 (M*, base peak), 327 (M'+1), 311
(M*-CH,), 283 (M'-C,H,), 268 (M'-C,H,-CH;); HRMS

m/e 326.1523 (C,oH,,0, requires 326.1518).

9,10-Dimethyl-2,3,6,7-tetrahydroxyanthracene (14):

This compound was prepared by the procedure of Boldt.l2
9,10-Dimethyl-2,3,6,7-tetramethoxyanthracene (8.0 g, 24.5 mmol) was
suspended in freshly dried and distilled dichloromethane (350 mL).
Boron tribromide (6.5 mL, 69 mmol) was quickly injected. After 90
min, and several color changes, the reaction mixture reached a
greenish yellow color. The crude product was collected as a bright
yellow solid and washed with water (2 x 100 mL). The crude product
was crystallized from acetic acid and dried in a vaccuum oven for
24 h at 80°C to yield (5.56 g, 84%)%* of 14, which decomposes
without melting 235-250°C, as greenish brown needles: 1H NMR
(DMS0-d%) & 9.45 very broad (Ar-OH), 7.40 (s, 4, Ar-H), 2.71
(s, 6, Ar-CH,;); MS, m/e 270 (M*, base peak), 271 (M*+1), 255
(M*-CH,), 253 (M'-OH), 242 (M*-C,H,), 241
(M*-C,H.), 227 (M*-C,H,); HRMS m/e 270.0886

(C,¢H,,0, requires 270.0892).
167144
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Bis-(di-t-butylsiladioxy)[b,1]-9,10-dimethylanthracene (8):

9,10-Dimethyl-2,3,6,7-tetrahydroxyanthracene (400.0 mg, 1.48

mmol) was dissolved in freshly dried and distilled acetonitrile (50
mL) in a 100 mL, 3 neck round bottom flask under nitrogen
atmosphere. The solution was mixed at room temperature for 15 min.
Freshly dried and distilled triethylamine (0.8 mL, 5.74 mmol) was
injected and a yellow precipitate immediately formed; the contents
were stirred an additional 5 min. Di-t-butyldichlorosilane (0.7 mL,

i 3.31 mmol) was added dropwise over 5 min and the temperature was
increased to gentle reflux for 16 h. The reaction mixture was

B | evaporated under reduced pressure to a dark solid, taken up in

chloroform (300 mL), and proportioned between chloroform and sodium

bicarbonate/water solution (twice). The chloroform layer was then

washed with sodium chloride/water, dried over potassium carbonate,

and evaporated under reduced pressure to give a pale yellow-green

solid, which was crystallized from chloroform to yield 810 mg (99%)

of 8, mp > 340°C as off-white granules: H NMR (CDCl,) &

7.61 (s, 4, Ar-H), 2.90 (s, 6, Ar-CH,), 1.15 (s, 36,

C(CH;);); 3¢ NMR (CDC1,) 6 148.79 (C-OR), 126.64

(unlabled quaternary Carbon), 124.75 (C-C-CH,;), 104.55 (C-H),

26.17 [C-(CH,);], 21.56 [C-(CH;),]), 14.90 (Ar-QHB); MS,

m/e 550 (M*, base peak), 551 (M*+}), 552 (M*+2), 436 (M*- 2

: t-Bu), 322 (M*-4 t-Bu), 57 (t-Bu*); HRMS m/e 550.2942

(Cy,H,40,51, requires 550.2935).
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9,10-Diphenyl-2,3,6,7-tetramethoxyanthracene (15):

To an ice cooled solution of veratrole (32 mL, 250 mmol) in
acetic acid (125 mL) was slowly added an ice cooled solution of
benzaldehyde ( 25 mL, 246 mmol) in methanol ( 21 mL). The resulting
solution was stirred in an ice bath for 10 min. Concentrated
H,80, (95%, 125 mL) was added dropwise over 30 min. The
reaction vessel was kept at 0°C for 20 h, then the contents were
poured over ice water (1000 mL). The bright yellow-green residue
was collected, washed with water (2 x 100 mL), and dissolved in
chloroform. The bright yellow-green solution turned red while
evaporating under reduced pressure. The solution was evaporated to
a red residue. Methanol selectively solublized impurities. A bright
yellow solid was collected from the methanol mixture and was dried
to yield 6.93 g (12.5%) of 15, purified by crystalization from
chloroform with a few drops of ethanol: !H NMR (CDC1,) &

7.55 (m, 10, Ph-H), 6.82 (s, 4, Ar-H), 3.72 (s, 12, OCH;); MS,
m/e 450 (M*), 451 (M*+1), 436 (M'+1-CH,), 420
(M*+1-0CH,;), 228 (base peak); HRMS m/e 450.1829 (CyoH,c0,

requires 450.1829).

9,10-Diphenyl-2,3,6,7-tetrahydroxyanthracene (16):

9,10-Diphenyl-2,3,6,7-tetramethoxyanthracene (1.69 g, 3.74
mmol) was suspended in freshly dried and distilled dichloromethane
(200 mL). To this mixture was added boron tribromide ( 1.5 mL,

mmol). The mixture immediately turned dark purple and eventually
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turned pale green. A pale green solid was collected and washed with

-
'

water ( 2 x 100 mL). The green paste was crystallized from ethanol

to give 16 (yield undetermined)? mp 284-286°C as pale yellow

e e

transparent rhomboids that turn opaque brown upon drying: IH NMR

(DMSO-d%) & 9.4-9.2 very broad (Ar-OH), 7.50 (m, 10, Ph-H), -

3
-

6.65 (s, 4, Ar-H), 3.4 (q, CH,CH,0H), 3.35 (CH,CH,0H), 1.05

(t, CH,CH,0H). Anal. (C,¢H,;0, * 2EtOH) Calc. C= 74.06,

S St M

H= 6.21, O= 19.73; Found C= 73.76, H= 6.1726. MS, m/e 394 (M*,

base peak), 395 (M'+1), 377 (M*-OH), 366 (M*-C,H,); HRMS

(g ey RigSamup o g e

m/e 394.1230 (C,.H,s0, requires 394.1205).

Bis-(di-t-butylsiladioxy)[b,i]-9,10-diphenylanthracene (9): g

. i
9,10-Diphenyl-2,3,6,7-tetrahydroxyanthracene (16.0 mg, .04l ;
mmol) was dissolved in freshly dried and distilled acetonitrile (5 é
mL). As triethylamine (.025 mL, 0.16 mmol) was added, the red ﬁ
solution immediately turned dark. Di-t-butyldichlorosilane (.017 #
mL, .08 mmol) was injected. The reaction temperature was increased %
to gentle reflux for 20 h. The orange reaction mixture was ;
evaporated to dryness under reduced pressure, taken up in ;
chloroform (100 mL) and extracted twice with sodium %
S

%

bicarbonate/water solution (100 mL). The chloroform layer was then
washed with sodium chloride/water solution (100 mL) and dried over
potassium carbonate. The chloroform layer was then evaporated under
reduced pressure to a yellow solid which was crystallized from o3

carbon tetrachloride, yield and melting point undetermined:lH NMR
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(cpcl,) & 7.50 (m, 10, Ph-H), 6.94 (s, 4, Ar-H), 1.07 (s, 36,
C(CH,y)3); MS, m/e 674 (M*, base peak), 675 (M*+1), 560
(M*-2 t-Bu), 446 (M*-4 t-Bu), 57 (t-Bu'); HRMS m/e 674.3253

(C,oHg00,51, requires 674.3248).

9,10-Dimethyl-11-cyanocethanoanthracene (27):

9,10-Dimethylanthracene (181.5 mg, 87.9 mmol) was placed in a
glass pressure tube with acrylonitrile (10 mL) and
2,6-di-t-butyl-4-methylphenol (2 crystals) to inhibit acrylonitrile
polymerization. The pressure tube was sealed, wrapped in aluminum
foil and warmed in an oil bath at 50°C for 21 h. The resulting
solution was evaporated to dryness, crystallized from ethanol and
dried to yield 206.3 mg (98.6%) of 27, mp 143-146°C as colorless
crystals: H NMR (CDCl,;) &6 7.3 (m, 8, Ar-H), 2.75 (dd, 1,

NC-C-H), 2.17 (s, 3, NC-C-C-CH,), 2.11 (dd, 1, NC-C-CH cis to
CN), 1.98 (s, 3, NC-C-C-C-CH,), 1.46 (dd, 1, NC-C-CH trans to

CN), 1.52 (s, H,0).

9,10-Dimethyl-2,3,6,7-tetramethoxy-11-cyanoethanoanthracene

(26):

9,10-Dimethyl-2,3,6,7-tetramethoxyanthracene (30.45 mg, .093
mmol) was added to a glass pressure tube along with acrylonitrile
(10 mL) and 2,6-di-t-butyl-4-methylphenol (2 crystals). The

pressure tube was sealed, wrapped in aluminum foil and placed in an

oil bath at 84°C for 21 h. The resulting solution was evaporated

-32-
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-33- )
to dryness under reduced pressure and crystallized from isopropanol :

to yield 29.4 mg (83%) of 26, mp 162-165°C as off white ;
granules: H NMR (CDC1,) & 6.88 (overlapping singlets, 4, ?
Ar-H), 3.88 (overlapping singlets, 12, OCH,;), 2.72 (44, 1, ‘§
NC-CH), 2.14 (s, 3, NC-C-C-CH,), 2.07 (dd, 1, NC-C-CH cis to CN), b
1.96 (s, 3, NC-C-C-C-CH,), 1.86 (dd, 1, NC-CH trans to CN); MS, ‘é
m/e 379 (M%), 380 (M*+1), 326 (M*-acrylonitrile), 311 "

(M*-acrylonitrile-CH3), 283 (M*- acrylonitrile - C,H,),

Mg

69 (base peak); HRMS m/e 379.1774 (C,;H,sNO, requires

W

379.1783). X
)

¢

U

Bis-(di-t-butylsiladioxy)[b,i]-9,10-dimethyl-11-cyanoethano- :Q

0

s

anthracene (10): Eh

)

Bis-(di-t-butylsiladioxy)[b,i]-9,10-dimethylanthracene (231 mg, ::é

%

.42 mmol) was added to a pressure tube with acrylonitrile (10 mL) .
)

and 2,6-di-t-butyl-4-methylphenol (2 crystals). The pressure tube A
I.Q'

was sealed and wrapped in aluminum foil and placed in an oil bath ,%
3

at 85°C for 44 h. The resulting orange solution was evaporated .ﬂ
)

under reduced pressure to an orange oil. The oil was taken up in a 5

minimal amount of hot carbon tetrachloride. Upon cooling, !

3

impurities precipitated out. The orange mixture was eluted through .
)

a Celite plug with carbon tetrachloride and the filtrate was 7
4'

evaporated to yield 213 mg (84.1%) of 10 which partially melts and §
0

resolidifies from 106-116°C as a pale orange solid: lH NMR y

N;
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(CDC1,) & 7.0-6.8 (overlapping singlets, 4, Ar-H), 2.65 (dd,
1, NC-CH), 2.05 (s, 3, Ar-CH, overlapping dd, 1, NC-C-CH cis to ]
1
CN), 1.80 (s, 3, Ar-CH; overlapping dd, 1, NC-C-CH trans to CN), :
1.15-1.0 overlapping singlets, 36, C(CH,),), MS, m/e 603 f
(M*), 604 (M*+1), 550 (M*- acrylonitrile, base peak), 436 .
)
(M*- acrylonitrile - 2 t-Bu), 322 (M*- acrylonitrile - 4 t-Bu), '
b
57 (t-Bu*); HRMS m/e 603.3200 (C,.H,(NO,Si, requires
603.3201). b
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CHAPTER 1I "
.I

DIELS-ALDER REACTIVITY ]
OF POLYSILOXYANTHRACENES AND RELATED COMPOUNDS ﬁ
::,
%
X

Introduction 4
|
v

In order to test for acceleration/deceleration of the '
"k
|l
Diels-Alder reaction by polysiloxy substituents, reaction rates for 3
. bt
the Diels-Alder reactions of 8, 13, and 17 (9,10-dimethyl- it
anthracene, Figure 16) were determined. g
N
D
l8,¢
Materials and Methods ﬁ

4)

)
.

(
Diels-Alder reactions of bis-(di-t-butylsiladioxy){b,i]- ;5
y
9,10-dimethylanthracene (8): ;

(A

'
' \
Kinetic runs for the Diels-Alder reaction of bis-(di-t-butyl- W

‘l
+
siladioxy)[b,1]-9,10-dimethylanthracene were conducted at room 5:
temperature. 9,10-Dimethyl-2,3,6,7-tetramethoxyanthracene and 9,10- s
dimethylanthracene were used as comparison compounds. The ;
{
dienophiles used were: acrylonitrile (18, Figure 17), maleimide Y,
(19), N-methylmaleimide (20), and N-phenylmaleimide (21). L
)
Since the parent anthracenes absorb radiation in the near é
() 0

ultraviolet (uv) region and the cycloadducts do not, reaction :
N

LY
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CHs :

C H3 &
17 X

FIGURE 16 : 9,10-dimethylanthracene (17). iy

CN . 7

0 0 !
’QN_H [ v—cw [ e
3 \
0

0 \J

-

18 19 20 21

— — — (‘(

FIGURE 17 : Dienophiles used in Diels-Alder kinetic studies. &
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kinetics were easily monitored spectrophotometrically. In 'f
3

accordance with Beer's law, uv absorption is directly proportional '
to the concentration of absorbing material. Thus, a logrithmic plot g
';

of absoption [1n (D )] versus time (t) is linear with slope equal z
to the negative of the rate constant k... All reactions were run s
.(

U

under psuedo-first order conditions, therefore the rate equation $
v

)

is: r = k. [diene] = k, [diene] [dienophile], where k, is Q
the true second order rate constant. Since the concentration of ;i
D.‘

dienophile is much greater than the concentration of diene, the bt
"b

) {

dienophile concentration remains virtually unchanged throughout the i
reaction. Thus, k, = k. / [dienophile]. A typical Diels-Alder b
U

kinetic plot is shown in Plate III. '?
)

y

Results and Discussion ’5

O

I

)

Diels-Alder reactivity of bis-(di-t-butylsiladioxy)[b,i]-9,10- e
dimethylanthracene: IG

]

i

¥

All three anthracene derivatives are quite reactive toward ,:
cycloaddition. Second order rate constants for the reaction of each 'Q
(R

“

anthracene with acrylonitrile are given in Table 1. Surprisingly, #
¢

\

electron donating groups in the 2,3,6,7 positions lessen the !f
reactivity of 9,10-dimethyanthracene toward cycloaddition. An even '1
!

more unexpected result is that the highly electron donating siloxy :
e

substituent does not slow the reaction as much as the lesser 3
donating methoxy function. '%
."

Kinetic data for the reaction of the anthracenes with the 3
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TABLE |

v, a¥%a"Ala" dV2 4%

IS

Second order rate constants for the Diele-Alder reaction of
compounds B, 13, and 17 wvith acrylonitrile at 25°C.

X of reaction # of data correlation k, l-’l.-l
compd used to calc. points coefficiant 10
cate constants
17 1-90 9 .999 16.67
1-90 16 .998 3.98
13 1-44 10 .999 1.06
TABLE 2

Second order rate constants for the Diels-Alder reaction of
compounds 8, 13, and 17 vwith maletmide at 25°C.

X of reaction § of data correlation k.,' .-’l.-l
to . ints ££4 t 10
el umlngtln, i coutficie
17 1-70 [ 999 24.83
[ ] 1-93 i3 999 3.0
13 1-60 ] 996 1.69
TABLE 3
Second order rate constants for the Dielsa-Aldar reaction of
compounds §, 1), and 17 vith N-methylaaleimide at 25°C.
X of resction # of data corvelation K, ,.-’l.-l
compd ::g to e&:& points coefficient 10
17 1-88 7 993 83.17
[ ] 1-90 10 990 .27
13 1-90 S 990 s.98
1 1-75 ¢ 999 124
” 1-50 s 998 1.6

* Reaction conducted in heptane solvent (mot chloroferm).
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TABLE 4

Second order rate constants for the Diels-Alder reaction of
compounds 8, 13, and 17 vith N-phenylmaleimide at 25°C.

2 of reaction f of data correlation ky -1.-1
L )

used to calc. points coefficlent 10
rate constants

TABLE 5

Relative Diels-Alder reactivities of compounds 8, 13, and
17 vs various dienophiles.

Dienophile

acrylonitrile
saleiaide
N-methylmaleinide

N-phenylmaleinide

o . s - ; v o X - e
ISEORADGOISEUNOGOOTOOCAMC RS XM 5 '».h, Yot entp by, ’Og.!ln‘,h Q%N S T,
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-41- Ly
maleimide series are given in Tables 2-4. Again, it was confirmed "

that 9,10-dimethylanthracenes with electron releasing groups in the
2,3,6,7 positions react slower than 9,10-dimethylanthracene itself, )

and the siloxy substituent slows the reaction less than the methoxy s

function. However, it was not surprising to find a decrease in the

relative reactivy of the siloxy compound as the bulkiness of the %
dienophile increased. The relative reactivity of the tetramethoxy ?
compound vs 9,10-dimethylanthracene remained virtually constant ;
throughout the series of dienophiles. Relative reactivities were ﬁ
determined for each series of reactions by dividing kz(x) by ?
k,(8), where k,(x) is the second order rate constant of ;:
reaction for compound x (8,13 or 17) and k,(8) is the rate ;i
constant for compound 8. These data are displayed in Table 5, and ﬁ
clearly indicate a steric factor in the Diels-Alder reaction for v
the bis-(di-t-butylsiladioxy) substituted compound. That is, the :§
t-butyl groups interfere with the approch of the dienophile, §{
thereby slowing the reaction. As the dienophile subtituents grow in ';
bulk, the relative reactivity of compound 8 decreases. However, the '%
steric factor (of the methoxy groups) cannot be responsible for the 'ﬁ
lesser reactivity of 13 compared to 17 since the relative x
reactivity of 13 compared to 16 remains constant. :
Two rationalizations were developed to account for the ?
reactivity order, the first of which is more plausible in the ;
author's estimation: :Q
1, Steric interactions between the methoxy methyls and ‘;
each other as well as the 1,4,5,8 protons do not allow the oo
methoxy oxygen to attain a conformation (at room temperature) ';
X
Q)

3 ~ Y & WL LW P AR
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in which it can con, e with the anthracene ring. Thus, the
methoxy groups are net electron withdrawers due to the
inductive effect of oxygen. The proposed steric interactions

are shown in Figure 18.
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In the siladioxy compound, the ring strain associated with

a five membered ring allows the siloxy oxygen lone pairs to
conjugate, but only partially. Thus, the siloxy functions
provide a net electron withdrawing effect, but to a lesser
extent than methoxy.

2. There are two possible mechanisms of reaction,
concerted and dipolar. 9,10-Dimethylanthracene reacts via one
mechanism, the related siloxy compound reacts via the other,
and the methoxy compound may be reacting via either. A dipolar
mechanism suggests a polar transition state which can be
stablized by polar solvents. This theory implies there should
be a significant change in the reactivity of 8 vs 17 when
shifting from a polar solvent to nonpolar. As Table 3
indicates, there is no significant change,thus, the

practicality of this theory is questionable.

Diels-Alder reactivity of bis-(di-t-butylsiladioxy)-9,10-

diphenylanthracene (9):

Bis-(di-t-butylsiladioxy)[b,i)-9,10-diphenylanthracene was

tested for its Diels-Alder reactivity. As expected, it showed no

signs of reacting with N-methylmaleimide after eight days a* room

temperature.
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FIGURE 18 : Potential steric interactions in 9,10-dimethyl-
2,3,6,7-tetramethoxyanthracene.
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Experimental

General:
All dilutions were made using volumetric gassware. All
reactions were run at room temperature (24.5°C). All plots were

made using LSTSQ least squares program.

Diels-Alder reactions of 8, 13, and 17 with acrylonitrile:

Each anthracene derivative was dissolved in deoxygenated
chloroform. The concentration of each solution was adjusted such
that a uv absorbance of approximately 1.7 was obtained for the most
prominent peak. Each anthracene solution (10.0 mL) was diluted with
acrylonitrile (10.0 mL) in a foil wrapped, glass stoppered flask.
Each solution was then well mixed, and an initial uv absorption
measurement was taken. UV measurements were taken periodically (vs
1:1 chloroform/arylonitrile reference) until the absorbance dropped

to 0. The observed rate constant k was determined by taking

-3
the negative of the slope of the plot
In (D,) vs t where D, is the absorption at time t. The second
order rate constant, k,, was calculated from the equation

k, = k. / [acrylonitrile], where [acrylonitrile] is the

initial concentration of acrylonitrile.
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Diels-Alder reaction of 8, 13, and 17 with maleimide:

A stock solution (1.008 x 10™®* M in chloroform) of each

anthracene derivative was prepared, as well as a stock solution of

N > - fy

maleimide (5.02 x 1073 M in chloroform). To each anthracene ;
't
solution (10.0 mL) was added maleimide solution (10.0 mL) in a foil 3
wrapped, glass stoppered flask. Reaction solutions were well mixed

and initial uv spectra immediately taken. UV spectra were

S

XX

periodically taken (vs 2.51 x 10°3 M maleimide in chloroform

reference) until the most prominent peak decreased to 0. The

observed and second order rate constants were determined in the

same manner as the acrylonitrile experiment above.

T e

-

Diels-Alder reaction of 8, 13, and 17 with N-methylmaleimide:

B AC AL S AN U

A stock solution (1.008 x 10°% M in chloroform) of each
anthracene derivative was prepared, as well as a stock solution of

N-methylmaleimide (5.02 x 10™3 M in chloroform). To each

LW e

anthracene solution (10.0 mlL) was added N-methylmaleimide solution

- W,

(10.0 mL) in a foil wrapped, glass stoppered flask. Reaction

solutions were well mixed and initial uv spectra immediately taken.

UV spectra were periodically taken (vs 2.51 x 1073 M

N-methylmaleimide in chloroform reference) until the most prominent
peak decreased to 0. The observed and second order rate constants )
were determined in the same manner as the acrylonitrile experiment o

above.
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Diels-Alder reaction of 8, 13, and 17 with N-phenylmaleimide:

A stock solution (1.008 x 10 M in chloroform) of each
anthracene derivative was prepared, as well as a stock solution of
N-phenylmaleimide (5.02 x 1073 M in chloroform). To each
anthracene solution (10.0 mL) was added N-phenylmaleimide solution
(10.0 mL) in a foil wrapped, glass stoppered flask. Reaction
solutions were well mixed and initial uv spectra immediately taken.
UV spectra were periodically taken (vs 2.51 x 1073 M
N-phenylmaleimide in chloroform reference) until the most prominent
peak decreased to 0. The observed and second order rate constants
were determined in the same manner as the acrylonitrile experiment

above.

Diels-Alder reaction of 8§ with N-methylmaleimide (heptane

solvent):

A stock solution (1.26 x 10°* M in n-heptane) of 8 was
prepared, as well as a stock solution of N-methylmaleimide (7.88 x
10 M in n-heptane). To the anthracene solution (3.0 mL) was
added N-methylmaleimide solution (20.0 mL) in a foil wrapped, glass
stoppered flask. The reaction solution was well mixed and an
initial uv spectrum immediately taken. UV spectra were
periodically taken (vs 20:3 N-methylmaleimide: n-heptane
reference) until the most prominent peak decreased to 0. The
observed and second order rate constants were determined in the

same manner as the acrylonitrile experiment above.
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Diels-Alder reaction of 17 with N-methylmaleimide (heptane

solvent):

A stock solution (1.72 x 10™* M in n-heptane) of 17 was
prepared, as well as a stock solution of N-methylmaleimide (7.88 x
10™* M in n-heptane). To the anthracene solution (3.0 mL) was
added N-methylmaleimide solution (20.0 mL) in a foil wrapped, glass
stoppered flask. The reaction solution was well mixed and an
initial uv spectrum immediately taken. UV spectra were
periodically taken (vs 20:3 N-methylmaleimide: n-heptane
reference) until the most prominent peak decreased to 0. The

observed and second order rate constants were determined in the

same manner as the acrylonitrile experiment above.
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CHAPTER III
RETRO DIELS-ALDER REACTIVITY OF

POLYSILOXYANTHRACENE CYCLOADDUCTS AND RELATED COMPOUNDS

Introduction

Reaction rates for the decomposition of the Diels-Alder adducts
of 8, 13, and 17 with acrylonitrile were determined. The effect of
electron donating groups in the 2,3,6,7 positions is acceleration

of the retro Diels-Alder reaction.

Materials and Methods

Retro Diels-Alder reactivity of bis-(di-t-butylsiladioxy)[b,i)-

9,10-dimethyl-11-cyanoethanocanthracene (10):

The cycloadducts of 8 (10), 13 (26, Figure 19), and 16 (27,
Figure 20) with acrylonitrile were decomposed in phenyl ether at
200°C, and the formation of the parent anthracene was monitored
spectrophotometrically. The unimolecular rate constant k, was
determined from the plot of 1ln (D,-Dt), where D, is the
absorption at t== and D, is the absorption at time t, versus
time. k, is the negative of the slope of the resulting line. A

typical plot is shown in Plate IV.
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HsCO

H3CO

FIGURE 19 : 9,10-dimethyl-2,3,6,7-tetramethoxy-11-
cyanoethanoanthracene (26).

O

CHs

chi H!
CN

27
FIGURR 20 : 9,10-dimethyl-11-cyanocethanoanthracene (27).
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Due to concurrent decomposition of the newly formed anthracene .
\,
under the reaction conditions, D, values were calculated. A y
,
control experiment, in which the parent anthracene was subjected to %
1 "
the reaction conditions, indicated no significant error would be X
introduced if the reaction were followed for the first half life.
b ]
In practice, only the first 20-40% of each reaction was used to {
¥,
calculate k1.27 Values for the rate constants and reaction s
. %
half lives (t,;,) are depicted in Table 6. Reaction half lives v
o
were determined by t,,,= 1n2/ k,. A significant rate {
)
acceleration due to substituents in the 2,3,6,7 positions was 4
noted. i
X3
Results and Discussion b
.
f;
Retro Diels-Alder reactivity of bis-(di-t-butylsiladioxy)[b,i]- ¢
W3
9,10-dimethyl-11-cyanoethanoanthracene (10):
3
e
The kinetic data in Table 6 show a very significant rate s
O
\
acceleration of the rDA reaction due to alkoxy and siloxy b{
substituents in the 2,3,6,7 positions. Compound 10 undergoes the ’
3
cycloreversion 19 times as fast as the adduct of o
9,10-dimethylanthracene; the adduct of 13 cycloreverts at 14 times ﬁ
the rate. The order of reactivity is exactly as expected based upon '&
electron donating capabilities. ‘é
\
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TABLE 6

First order rate constants of Retro-Diels-Alder Reactions of
- Cycloadducts 10, 26,and 27 in diphenyl ether at 200°C.

L LV S g8,

2 of reaction used # of data correlation k. sec™}
comp to calculate rate points coefficient 10*
constants

e )

27 1-23 12 .994 0.24
10 -3 16 .
26 1-39 23 999 b B 7}
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Experimental

General:

All retro Diels-Alder reactions were run at 200°C. Reaction
temperatures were maintained at 200 t .5°C by Therm-0O-Watch
LG-1000 SS temperature controller. All reactions were run in 100 mL
3 neck round bottom flasks fitted with capped distilling column,
thermometer and glass stopper. Transfers and dilutions were

accomplished using volumetric glassware.

Retro Diels-Alder reaction of bis-(di-t-butylsiladioxy)[b,i]-

9,10-dimethyl-11-cyanoethanoanthracene (10):

Bis-(di-t-butylsiladioxy)[b,i]}-9,10-dimethyl-11-cyanoethano-
anthracene (13.60 mg, 2.25 x 102 mmol) was dissolved in 4.0 mL
diphenyl ether. An aliquot (1.0 mL) of this solution was added to
diphenyl ether (74.0 mL) which had previously been equilibrated to
200 °C. The uv absorption at 378 nm, due to the formation of 8,
was followed spectrophotometrically for 16 min (36% reaction).
Based upon the absorption of bis-(di-t-butylsiladioxy)[b,1]-9,10-
dimethylanthracene in phenyl ether, the absorption at t =
(D,) was calculated to be 0.9711. For each measured
absorption (D,), the value 1ln (D,-D,) was determined and
plotted vs time t (min). k;, the unimolecular decomposition

constant was determined as the negative of the slope of the
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resulting straight line. The reaction half life, t,,, was

determined from t;,, = .693/ k.

Retro Diels-Alder reaction of 9,10-Dimethyl-2,3,6,7-tetra-

methoxy-11-cyanoethanoanthracene (26):

9,10-Dimethyl-2,3,6,7-tetramethoxy-11-cyanoethanoanthracene
(10.00 mg, 2.63 x 1072 mmol) was dissolved in 4.0 mL diphenyl
ether. An aliquot (1.0 mL) of this solution was added to diphenyl
ether (74.0 mL) which had previously been equilibrated to
200 °C. The uv absorption at 378 nm, due to the formation of 13,
was followed spectrophotometrically for 24 min (397 reaction).
Based upon the absorption of 9,10-dimethyl-2,3,6,7-tetramethoxy-
anthracene in phenyl ether, the absorption at t = « (D)
was calculated to be 0.8836. For each measured absorption (D),
the value In (D.-D.) was determined and plotted vs time t
(min). k,, the unimolecular decomposition constant was determined
as the negative of the slope of the resulting straight line. The

reaction half life, ty/ was determined from ty, = .693/ k;.

Retro Diels-Alder reaction of 9,10-Dimethyl-11-cyano-

ethanoanthracene (27):

9,10-Dimethyl-11-cyanocethanoanthracene (8.02 mg, 3.09 x 1072
mmol) was dissolved in 5.0 mL diphenyl ether. An aliquot (1.0 mL)

of this solution was added to diphenyl ether (74.0 mL) which had
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previously been equilibrated to 200 °C. The uv absorption at 378

nnm, due to the formation of 17, was followed spectrophotometrically
for 175 min (237 reaction). Based upon the absorption of
9,10-dimethylanthracene in phenyl ether, the absorption at t = =
(D.) was calculated to be 0.8474, For each measured

absorption (D,), the value ln (D,-D,) was determined and

plotted vs time t (min). k,, the unimolecular decomposition
constant was determined as the negative of the slope of the

resulting straight line. The reaction half life, t,,, was

determined from t;,, = .693/ k,.
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CHAPTER IV

CONCLUSIONS AND RECOMMENDATIONS

Introduction

The effact on the Diels-Alder reactivity of electron donating
groups in the 2,3,6,7 positions of 9,10-dimethylanthracene has been
investigated. The results were surprising initially, but can be
rationalized. Such a rationalization is provided below. A series of
experiments is required to conclude the rationalization is valid.
The recommendations section provides several alternatives which can
provide evidence for/against this rationalization. If the
rationalization appears to be valid, the recommended experiments
will also provide valuable information for the DA catalysis cycle.

The effect on the retro Diels-Alder reactivity of electron
donating groups in the 2,3,6,7 positions of 9,10-dimethyl-11-
cyanoethanoanthracene was investigated. The resulting acceleration
due to methoxy and siloxy substitution was expected. The
reactivity order is not necessarily inconsistent with results of
the forward Diels-Alder reaction. Again, several experiments could
be conducted to determine the nature of siloxy and alkoxy
substituents in the 2,3,6,7 positions, and there effect on DA/rDA

reactivity.
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The conclusions and recommendations are numbered sequentially

with respect to the particular chapter of this thesis from which

they were drawn.

Conclusions

I-1. Bis-(di-t-butylsiladioxy)[b,i]-9,10-dimethylanthracene

was synthesized.

I-2. Bis-(di-t-butylsiladioxy)[b,i]-9,10-dimethyl-11-

cyanoethanoanthracene was synthesized.

I-3. Bis-(di-t-butylsiladioxy)[b,i]-9,10-diphenylanthracene

was synthesized.

I1-1. The relative reactivity order for the Diels-Alder
reaction of 9,10-dimethyl-2,3,6,7-tetramethoxyanthracene
vs 9,10-dimethylanthracene is not consistent with the

methoxy groups acting as electron donating substituents.

! IT-2. The extreme decrease in reactivity due to methoxy
substitution can be rationalized as being due to
intramolecular steric interactions which preclude the
methoxy lone pairs from conjugating with the anthracene

ring. Thus, oxygen's inductive effect makes the methoxy

group electron withdrawing.

.J'..{‘ ---
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II-3. The relative reactivity order for the Diels-Alder
reaction of bis-~(di-t-butylsiladioxy)[b,i]-
9,10-dimethylanthracene vs 9,10-dimethylanthracene is
not consistent with the siladioxy substituents acting as

electron donating functions.

II-4. The moderate decrease in the reactivity of compound 8 vs
9,10-dimethylanthracene can be rationalized as being due
to siloxy oxygen lone pairs only partially conjugating
with the anthracene ring. The ring strain associated
with a planar five membered ring may not allow the
oxygens to fully don#te electrons by resonance. Thus,
inductive and resonance effects compete, making the

siloxy compound intermediate in its reactivity.

II-5. It does not appear the difference in reactivities is due

to a difference in mechanism of reaction.

I1I1-6. Bis-(di-t-butylsiladioxy)[b,1]-9,10-diphenylanthracene
may not be as useful as expected since the same

arguments made above may apply.

III-1. The relative reactivities of compounds 10 26, and 27
in the retro Diels-Alder reaction are consistent with
methoxy and siladioxy subtituents acting as electron

donating functions.

..
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III-2. Conclusion III-1 is not necessarily incompatible with

conclusion II-1.

III-3. The apparent dichotomy between conclusions III-1 and
II-1 can be rationalized as follows: At elevated
temperatures (i.e. 200°C) a significantly higher
proportion of higher energy conformations may exist.
Thus, both the methoxy and siladioxy groups may
conjugate and thereby give rise to significant rate

accelerations of the retro Diels-Alder reaction.

Recommendations

I-1. For silylations similar to the synthesis of 8, use di-t-
butyldichlorosilane preferentially over the

corresponding ditriflate.

I-2. Investigate the use of 3,3',4,4'-teiramethoxydiphenyl-
ethane (28, Figure 21) as a starting material over
veratrole if large scale syntheses of compound 13 or its

derivatives are desired.

II-1. Perform temperature dependency studies of the relative
reactivity of 9,10-dimethyl-2,3,6,7-tetramethoxy-

anthracene. If the rationalizations presented above

. g v ; ] P ™ o T WY %) P A ST NN T R A
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3,3',A,A'-tetramethoxydiphenylethane (28)

FIGURE 21
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hold, the relative rectivity should increase with an

increase in temperature.

Synthesize compound 29 (Figure 22) and investigate its
Diels-Alder reactivity with respect to
9,10-dimethylanthracene. This compound should not have
the steric or ring strain problems discussed earlier. A
relative reactivity greater than that of compound 17
would support the rationalization of steric
interactions. A relative reactivity greater than that of
compound 10 would support the ring strain

rationalization.

If recommendations II-1 and II-2 are carried out and
show promise in approaching or exceeding the Diels-Alder
reactivity of 9,10-dimethylanthracene, synthesize and

investigate the reactivity of compound 30, Figure 23.

If recommendations 1I-1 and II-2 show no promise in
approaching the reactivity of 9,10-dimethylanthracene,
conduct DA kinetic studies (compound 8 vs 17) in a
highly polar solvent such as dimethylformamide. Perhaps

a change in mechanism will be indicated.

If none of the above recommendations prove fruitful,

synthesize and investigate the D.A. reactivity of

= e J
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CHs
0 0
0 0
CHs
2_9
FIGURE 22 : Bis-(1,4-dioxacyclohexa)[b,i])-9,10-dimethyl-
anthracene (29).
CHa CHs Cha
[N @ @ N
| Nj
|
CH3 CH3 EH3
30
FIGURE 23 : Bis-(N,N-dimethyl-1,4-diazacyclohexa)[b,1]~
9,10-dimethylanthracene (30).
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II-6.

II-7.

III-1.

R I11-2.

compounds 31 (Figure 24) and 32 (figure 25) vs
anthracene. Any "unusual" effects due to 9,10-dimethyl

substitution would be eliminated.

If recommendations II-1 through II-3 show promise,
undertake a similar approach for the 9,10-diphenyl
derivative when investigating its ability to undergo

reversible 102 addition.

Compare the 13C NMR chemical shifts of the 9,10

carbons in compound 8 vs 17. Since the chemical shift is
directly related to electron density,2® the electron
donating vs withdrawing characteristics of the siladioxy

groups should be seen.

Convert 9,10-dimethyl-2,3,6,7-tetramethoxy-11-cyano-

ethanoanthracene to compound 33 (Figure 26).

Investigate the rDA reactivity of 33. Reactivity on the
order of, or significantly greater than that of the
siladioxy compound will support previous

rationalizations.
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H3CC OCH;

H3CC OCHs

FIGURE 24 : 2,3,6,7-tetramethoxyanthracene (31).

FIGURE 25 : Bis-(di-t-butylsiladioxy)[b,i]-anthracene (32).

FIGURE 26 : 2,3,6,7-tetrahydroxy-9,10-dimethyl-11-
cyanoethanoanthracene (33).
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III-3. If recommendations II-3 and III-2 show promise: "
a. continue with recommendation II-4.
b. Synthesize DA adducts of compounds 29 and 30. h
c. Investigate the rDA reactivities of the cycloadducts !
; of 29 and 30. .
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Substituted anthracenes are named based upon the numbering
system shown in Figure 27. Thus, structure 34 in Figure 28 would be
named 1,4-dichloro-5,8-dimethylanthracene. Anthracenes with fused
rings are named based upon the lettering system shown in Figure 29.
Benz[a]-anthracene would thus be the name for compound 35 in Figure
30.

Organosilicon compounds have no accepted IUPAC nomenclature
system29. A simple informal nomenclature system is in common use
and is quite practical?®. Ambiguities are minimized by naming
substituted organic fragments, then alkoxy fragments, then halogen
fragments followed by "silane" for tetravalent silicon atoms??,
"silyl" and "siloxy", for R,Si- and R,Si0O- respectively, are
used instead of "silane" when the silicon function is a substituent
of a more significant moiety. Thus, compound 8 (Figure 31) is

named: bis-(di-t-butylsiladioxy)(b,i]-9,10-dimethylanthracene

-3 - +ess 2 groups
(di-t-butylsiladioxy)......... "oxy ending"
[byi)eeeerecennes vesvssseees.. fused across b and i sides

9,10-dimethylanthracene....... more significant moiety
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L ar e

FIGURE 27 : Numerically labelled anthracene
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FIGURE 28 : 1,é~dichloro~5,8-dimethy1anthracene (34).
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FIGURE 29 : Alphabetically labelled anthracene. 4

35

-
o LA

FIGURE 30 : Benz[a)-anthracene (35).

oo

. - g -
B = -

CHy

t-Bu 0 t-su 3
si

t-8u”" \0 @@@ 0/s<t—BU *]

CHs )

8

FIGURE 31 : Bis-(di-t-butylsiladioxy)[b,1]-9.10-dimethy1- -
anthracene (8). !



APPENDIX B

2R ARFE.

DATA RELATIVE TO CHAPTER I

PP PRI A e B

-70-




R TR U W Fu N M ™ amunem=rnms =

- 7 1 -
|
CHCI,
e e .0 [Y) e 4 '=fo ) .. 2. P [\ )

PLATE V : 1§ NMR spectrum of compound 10.
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PLATE VII : H NMR spectrum of compound 9.
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PLATE VIII : Mass Spectrum of compound 9.
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PLATE IX : CPK space filling model of compound 8.
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PLATE X : CPK space filling model of compound 10.
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compound 13 with acrylonitrile.

LINEAR LEAST SCUARES CM.CULATION
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TABLE 7 : LSTSQ data for the Diels-Alder reaction of y,
compound 8 with acrylonitrile. !
)
LINEAR LEAST EOUARES CALCULATION ¥
¥
PY @ INPUT U INPUT v RESIDUAL 1IN INPUT v s
H . 000000E+00 -.293700€~-01 .133474KE+00 <
2 .892000€+03 -.380390E«00 ~,.206771E€-02
3 . 118400E¢04 - 1900E+00 -, 228033¢-01 %
Y . 129200E+04 - ST0E+00 - 273479E-01 3
L] . 145800E+04 -.518330€+00 -.129446E-01 g
s . 234200E+04 -.728690E+00 ~.242286E-01 :
y .280300€+04 ~.844710E+00 -.379433€-01 I,
s .373300E+04 ~.103030E+01 ~.7863179€-02 N
v .934700£+04 -. 138940E+01 -.391033E-02 :
10 +.371100E+04 =.149800E+01? -.340417E~01
11 .644200E¢04 ~. 1683%0E+0O1L -.110811E-01 h
12 .8Q6300E+04 -.202440E+0!¢ -.337727E-01 ]
13 .B74300E«0D4 -.221210E+01} -.616331E-01 ¢
14 <. 9¥32900E+04 -.230360E¢+0!} .1736%6E-01
13- + 100470E+03 -.243830E+01 +3626%2E-02 d
16 «109230E+03 -.253030E+01 . 1046390E+00 %
fntercept ® -.177044E+00 std. dev.! .240193€-01 .
Slope a -.229199£-03 std. dev.: .394438E-03 )
corr. cost. - ,997837 g
ﬁ
N
M
5
3
-
L4
TABLE 8 : LSTSQ data for the Diels-Alder reaction of <
d
4!
‘.

O

[ 22N ) INPUT o LHNPUT v RESIDUAL IM IMPUT v
1 +Q0000Q0E+Q0 « 134370€£+00 -, 167774E-02
2 .870000E+03 -, 492980E+00 -, 723893E-02 ]
3 +114100E+04 -, 943%80E+00 -,222827E-01 )
] « 126800E+04 -.108143€E+01 -.197733E-01 f
3 +143400£+04 -, 122139E+01 ~.313400E-02 (!
o «231000E+04 =, 204343¢E+01 +.979438E-02
k] . 204100E+04 -,.292829g+01 +380837&-01
[ ] +3731008+04 -, 332371E+01 . 684024E-01 Py
L +334300F¢04 -. 496087E+0) -, 381239 E-01 +
Intercept * . 134048E¢00 dev.t! .212372€~01 »
Ulope - -, 944342€-0) dav,! .810780E~0% g
corr. caatl. - ,999742 ?i
¢
W
TABLE 9 : LSTSQ data for thre Diels-Alder reaction of ;
A-
compound 17 with acrylonitrile.
N

LINEAR LEART SOUARES CALCULATION

rY 0 INPUT u INPUT v RESIDUAL 1IN INPUT v
) + 000000 +00 ~.7713008+00 -.979074E-02
2 +974000E+03 ~.0134808+00 .469%131€E-02
3 «114300E+048 .2184008~03
4 <1894600E+04 ~.160923€-02
g - 243000K+04 191E-03
[ - 27200E+04 ~.9154408+00 .619402E-02
24 - 292200E+04 ~.9640240Kk+00 ~.3447318+-02
» +«383200€+04 ~.9908308+00 . 1300978-02
e +476200E+04 ~. 0134218001 .12113%K-0)
10 «973000E+04 ~.133381k+01 -.992209€-02
Intarcept ® -.7417818¢00 otd. dev.: .3472948-02 »
Sleps . -.9902996-04 wtd. dav.: .0134938-04 .

corr. coet, = 999200
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TABLE 10 : LSTSQ data for the Diels-Alder reaction of

LINEAR LEAST SQUARES CALCULAYTION
rPT & INPUT u INPUT v
1 . 000000E+00 ~-.4356370E+00
2 +«300000E+02 -.498400E+00
3 - 620000E+02 ~.516790E«00
4 < 119000E+03 =.333930E+00
S . 202000E+03 -.34684640E+00
[ < 294000E+03 -.394340E+00
7 . 129700E+04 ~. 104%20E+0!
8 . 141100E+04 ~.112464E%01
* . 132400E+04 =< 117731E+01
10 «304%00E+04 ~.106710E+01
11 .419800E+04 -.242028BE+01
12 .440700E+04 ~.232114E+0!}
13 < S460700E+048 =.304478E+01}
Intarcept ® =, 473417E+00 std. dev.:
Slope = ~_ &8461033E-03 std. dav.:
corr, coef. = 999920
TABLE 11 :

compound 8 with maleimide.

RESIDUAL 1IN

.168472E~01
-.715122€-02
-.147873€E-01
-.76474%E-02
-.211009E-02

. 144268E-01L

«376093E-02
~-.6768%7E-03
-, 124790€E-02

.120481E-01
~.11381%9¢-01
-.158418£~01

-137419E-01
. 443186E-02
. 173324E-03

INPUT v

LSTSQ data for the Diels-Alder reaction of

compound 13 with maleimide.

LINEAR LEAST

SQUARES CALCULATION

,Y @ INPUT u INPUTY v

1 . 000000E+00 -.080%010€E+00

2 «320000E+02 =.%43130E¢00

3 . 630000€+02 =.100440E+01

4 «121000&+03 =.120370E+01

3 . 203C00E+03 =.197730E¢+01

3 . 298000E+03 ~.194440E+01
Intercept = ~.029394E+00 etd. dev.:
Slaope ® =.373379€-02 wtd. dev.!
corr. coef. = 997303

TABLE 12 :

RESIDUAL IN INPUT v

.203841E-01
-.141043E-0}
~.123447E-01
~.223133€-02

. 102997E-0}
~. 108130E-02
-930873€-02
. 988%28€-04

LSTSQ data for the Diels-Alder reaction of

compound 17 with maleimide.

LINEAR LEAST SQUARES CALCULATION

rY @ INPUT u INPUT v

) . 100000E+01 ~.742370£+00

2 « P8P000E+03 ~.102093£+01

3 +110200E+04 ~.103160E+01

4 «191200E+04 =, 114726E¢01

] +244400E+04 ~. 1401348+01

. + 260900E+04 ~. 144439201

? +2937008+04 -.19%¢82€+01

[ ] < $104008+04 =. 176333¢+018
Intercept ® =.7492078+00 wtd. dev.?
®lope ® ~.233203£-03 wtd. dev.!
corr. coel. = 99444t

. P : s - W
w0 0t S B Ly, 1, B e S S it

R A

RESIDUAL IN INPUT v

. 220920€-01
=.324404E-02

«133340E~-01
-.1604180€-01
~.117252¢~-01
-.149209€-08
-.39%84012-0)
A73480E-01
«199324E-01
. 8834338203
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TABLE 13 : LSTSQ data for the Diels-Alder reaction of

compound 8 with N-methylmaleimide.

LINEAR LEARST SQUARES CALCULATION

PT @ INPUT u INPUT v RESIDUAL IN INPUT v
1 - 00000Q0E+Q0 -.474090E+00 «262313E-01
2 . 260000E+02 ~+.320380E+0Q0 «160230E-01
3 «980000E+02 =.411770E+00 <233130E-01
L) + 142000E+03 =-.700360E+00 ~.207374E-02
3 . 194Q000E+03 ~.789470E+0Q0 -.184163E~01
[ . 248000E+03 -.872170E+00 =.257378€-01
7 +« 339000E+03 -, 1033J1€E+01 - JIPV42E~O1
[ ] +«134800E+04 ~.2376%4E+0) .433529%€-02
L) .138100E+04 ~.270378E+01 ~870940E-03

10 «186200E+04 ~.281244E+01 «724872%-02

lntercept = ~,300321E+00 std. dev.: .920634E-02

Slape - 1393393E-02 std. dev.! <107477E-04
corr, cowé. = 999743

LINEAR LEAST SQUARES CALCULATION

TABLE 14 : LSTSQ data for the Diels-Alder reaction of

compound 13 with N-methylmaleimide.

LINEAR LEAST SOUARES CALCULATION

T 8 INPUT u INPUT v RESIDUAL IN INPUT v
t <. Q000Q0QE+00 -.819000E+0Q0 +2863373E+00
2 . 200000E+02 -.124832E+01 -144319E+00
3 +«101000E+03 -.222904E+01 -.253938€E-01
4 . 145000€+03 -. 296383E+0¢ -. 271721 3E+00
-] -164000€+03 -.302837E+01 ~.125741E+00
. +197000E+03 -.3544345+01 ~.297426KE+00
? +« 2851 000E+03 -.391340E+01 -.4021342-01
] «342000E+03 ~.478122€+0} «387016E+00

Intercept ® ~,$00437E+01 std. dev.?: .19580372+00

Slape ® =, 110000E~01 std, dov.: .829294€£-03

carr. cost. = .98342¢

TABLE 15 : LSTSQ data for the Diels-Alder reaction of

compound 17 with N-methymaleimide.

LINEAR LEASY SQUARES CALCULATION

T @ INPUT u INPUT v RESIDUAL IN INPUT v
1 +«100000E+01 =.734080E+00 .202277€-01
2 . ¥92000£+03 -.161400E+01 . 933444E-01
3 «118200E+04 =-.179330E+01 ~452448E-01
4 . 13512008+04 -.233320€+01 “~. 197256E+00
] « 244600E+04 -.2089920£+01 +7R4171E-01
lntercept » -, 773407E¢00 std. dav.: .104928E+00
Slepe ™ -, 901149E-03 std. dav.l .732649E-04

corr. cosé. = .990230
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TABLE 16 : LSTSQ data for the Diels-Alder reaction of

compound 8 with N-phenylmaleimide.

LINEAR LEAST SOUARES CAMLCULATION

LA INPUT o INPUT v AESIDUAL N INPUT v
) . 0000008400 ~.941370€+00 .3031276-01
2 . 230000E+02 -.931000K+00 «2946703E-01
3 +«330000E+02 -.979000&+00 «133169E-01
4 +103000£+03 -. 996410E8¢00 +131844E-0)
3 . 1970008+03 ~. 104903E+01 -.384930E~02
s +« 270000E+03 ~. 109890€+01 -~.229186E£-01
7 + 3740008403 -. 113432£4+018 ~s174701E-01
[ 4 . 444000E+03 -.11630%E¢01 ~-.220227€-01
* - 440600K+04 -.26937%€+08 -.251494E-01

10 +433300E°04 = 276748E+01 -.471233E-01

11 +478700E204 ~-.283242E+01! -.351043E~01

12 +B573100£+04 -.312843E+01 .928297E-01

13 «379000E+04 -.324923E+01 .3514679E-01

Intercapt = -,971883£+00 oetd. dev.:! .118942€-01

Sloge - -.385851€-03 atd. dov.: .373083E-03

carr. coal. = .%9v4@3

; TABLE 17 : LSTSQ data for the Diels-Alder reaction of

; . compound 13 with N-phenylmaleimide.

LINEAR LEAST SQUARED CALCULATION

: rT @ INPUT o INPUYT v RESIDUAL IN INPUT v
X 1 .000000£+00 -.891630E+00 -.921221£-01
- 2 . 230000&+02 -.107920E+01 -.769827€-01
3 .3990000E+02 -~ 131470E&+01 -.300333E-01
a . 790000£+02 ~.1391730E¢01 -.371367E-02
: S . 940000£+02 -. 166640€+01 -.240004E-02
1 & « 103000E+03 -.174320€+01 <208233E-01
N b4 . 197000E4+03 -.219730E&+01 .&611972€-01
L} . 189000E+03 -.249710€+01 ~O69194E-O1
R * +«233000E€+03 ~.291240E+01 . 904080£-01
10 +272000E+03 =.3236408+01 « 100068E+00
i 11 .378000€+03 -.420080E+01 «1867711€+00
; 12 . 444000E+0) ~.331200€+01 -+, 293084E~00
| Intercept « -, 799320€¢00 wtd. dev.: .303830E-0!
Slopes - ~.994738E-02 wtd. deov.: .249999E-03

corr. cosé. = 994023

TABLE 18 : LSTSQ data for the Diels-Alder reaction of

compound 17 with N-phenylmaleimide.

LIMEAR LEAST SQUARES CALCULATION

PEPPRRE IR SR e

rT @ INPUT w INPUT v RESIDUAL IN INPUT v
1 . 100000801 -, 798040E+00 .110419E-02 by
2 . 994000E+03 -.133913K¢01 . 199794E-01 N
3 . 118400204 -. 140384E+01 -.179839E-01
4 <151400€+04 -, 163732€+01 ~.914 ~
. ] 24480004 -. 210481801 -.772942E-02 ~
! . «2690008+04 ~.23 .03k¢01 -.494192€-0)
' ? .293900E+04 . 2484118401 .9@A495E-02 ¢
N tntercept e ~.799982E¢00 std. dev.: .100132E-01
y Slope - ~.343931E-03 std. dev.: .5141448-0) D
corr. cost. = .¥99792
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TABLE 19 : LSTSQ data for the Diels-Alder reaction of

compound 8 with N-methylmaleimide (heptane solvent).

LINEAR LEAST SQUARES CALCULATION

PT O INPUT u INPUT v RESIDUAL IN INPUT v
1 . 000000E+00 ~.194780E+01 .342017E-02
2 . 490000E+02 -.154810E+01 . 181106E-01
3 . 196000€+03 -.144130E+01¢ -.143452€-01
4 .262000E+03 ~.149190E+01 ~.133013%€-01
L] .121000€+04 -.212770€+01 <418796E-02
Intercept = ~,138322E+01 wtd. dev.: .904132E-02
flope ® ~.A79238E-03 std. dev.: .161406€-04

corr. coef. = .99g92%4

TABLE 20 : LSTSQ data for the Diels-Alder reaction of

compound 17 with N-methylmaleimide (heptane solvent).

LIMEAR LEAST SQUARES CALCULATION

T @ INPUT u INPUT v REBIDUAL IN INPUT v
1 «000000E+00 =« 143490€+01 ~«174711E-0

2 «730000E+02 =. 182090E+01 .lé’é:b:-D;

3 «200000€+03 =+ 2473J0E+01 «147744E~03

4 +240000E+03 ~.267430E+01 +140472£-02

-] +266000E+03 ~.2B4630E+01 -«358393E~-01

4 «2820008+03% —. 2840902401 - 32207%¢-01
Intarcept ® ~.143308E+01 atd. deov.: «191743K-01
Slape = ~.510292€-02 std. dav.: < 933373E-0a

carr, coat. = _999332
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PLATE XI : CPK space filling model of compound 13 (view #1).
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PLATE XII : CPK space filling model of compound 13 (view #2).
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PLATE XIII : CPK space filling model of compound 13 (view # 3). ;
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DATA RELATIVE TO CHAPTER III
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TABLE 21 :

G

compound 10 in diphenylether at 200°C.

LSTSQ data for the retro Diels-Alder reaction of

LINEAR LEASY SOUARES CALCULATION

Y @ INPUT o INPUT v RESIDUAL [N INPUT v
1 . 100000£+01 -.842300E-01 9146272802
2 + 200000E+01 -.122780E¢+00 -.220731£-02
3 +«J00000£+01 ~. 149420E+00 «2135246E-02
4 - 400000€+01 -.176810E+00 -.219737€~-02
) . S00000E+01 -.202950E+00 -.122740E~-02
& +400000E+01 ~.232930E+00 -.411743E~-02
? . 700000€+0} ~.2%94010€E+00 . 188234E-02
e .800000E+01 ~.200730E+00 . 224231E-02
* .R00000QE+O1t -.313490E¢00 -.343731&-02

10 . 100000E+02 ~.339710E+00 -.237734E-02

11 . 110000E+02 -.367220E+00 -.300737&-02

12 . 120000€+02 -.393440E¢00 -, 414740E-02

13 . 130000E+02 -.423000E+00 -.462743E~-02

14 . 180000E+02 -.447670E+00 -.2217446E-02

13 . 1350000E+02 ~.4469300E+00Q «323231E-02

18 . 140000E+02 ~.400240E+00 «113323E-01

intercapt * -_ 643320€E-01 gtd. dev.! «2574392-02

Stape = -.270800E-01 oetd. de - 2464258€-03

corr. coet. = 999324

TABLE 22 : LSTSQ data for the retro Diels-Alder reaction of
compound 26 in diphenylether at 200°7.

LINEAR LEAST SOUARES TALCULAYION
rT INPUT o 1ePUY v RESIDUAL IN INPUT v

1 «100000E€+01 ~.184340E+00 .1800291E~03
2 . 2000008+01 -.178700&+00 .360780€-02
3 «JO0000E+0OL ~+201740E8+00 . 248731202
4 . 4000008+01 ~.221230E+00 .28%482E-02
s . 8300000E+01 ~.242900E+00 -106a33E-02
& . 800000E+01 ~.262370E+00 .143383g-02
7 . 700000E+0} ~.283080E+00 =-.13%464E-02
a .800000E+0O1 ~.30447T0E¢00 -.292313E-02
v . ®00000E+01 -.323830E+00 -.242344£-02
10 « 100000E+02 =.3446440€E+00 -.317413£-02
1 . 120000E+02 -.384480€¢00 -.349711E-02
12 «130000E«02 -.408710E+00 -.504740E-02
13 . 140000E+02 ~.427390E+00 -.460810€E-02
ta - 130000E+02 -.442170E+00 «3914312€-0)
13 . 160000E+02 -.443490€+00 -.304%08E-02
te < 170000E+02 ~.483030E+00 -.276957€-02
17 . 180000€+02 ~.302600€¢00 -.940082E-03
18 < 170000QE+02 ~.317290€+00 .470943E-02
19 .200000E+02 -.929420€+00 .124390€-01

20 .210000E+02 ~.364790E«00 ~.%07154€-02
24 +220000E+02 ~.380040E+00 .1317%7€-02
2 . 230000€+02 ~.3%74%0E¢00 «374748€-02
23 « 240000E¢02 ~.822340E+00 ~. 104301E-02
Intercept & =, 1444669E+00 atd. deov. .18t4208~02
Slope - =, 190393E-01} atd. dev.: «1230864€-03
corr. coef. . . 97937

TABLE 23 : LSTSQ data for the retro Diels-Alder reaction of

compound 27 in diphenylether at 200°C.

LINEAR LEAST SOQUARES CALCULATION

LA AN INFUY o 1urPuY v
1 . 100000€+02 -.201330€+00
2 . 2000008402 -.213240E+00
3 .300000K*02 ~.231720€+00
4 .400000E+02 -.239930£+00
3 .300000E£+02 -.262330E+00
] .400000E+02 ~.262030€+00
7 . 700000€402 ~-.283490E+00
[ ] + 90000002 -.321340E+00
* . 100000E+03 ~.341730E+00
10 . 110000E+03 -.330330E£+00
1 .+ $200000+03 ~.368430E+00
12 . 1400008 +03 =.306490€+00
tatercopt * - 1800173€¢«00 otd. dov.:!
Slepe - 440738~02 atd. dev.!
corr. coel. = .%9a313
» b n
AXXKANNR Y 2 X MO W W

RESIDUAL 1IN JRPUT v

.1430348-02
.2127038~02
. 2730938~03
~.123474E-01
-.112037€-~02
. 12%49%€-01
~A473417€-02
«190130E€-02
40403€E-02

+14%4746€~02
“.294949E-02
. 39835042-02
-392241K~02
< 4039192 -04
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In his review of this thesis, Dr. Plaiz voiced concern over the

accuracy of the k; values obtained. His primary concern was that
k, values will be extremely sensitive to an accurate D,
" value. He recommended two courses of action: 1. To obtain an {
estimate of the accuracy of k, values, systematically vary
D, and recalculate k; for each; and 2. Obtain the best fit

of k; and k, to the curve described by: \

N

L,

B=Ayk, (e™t - ekot)/ k, - k;

o . B

.' for the presumed A —p» B — P C system.
Unfortunately, the curve fitting suggestion could not be 5
; accomplished. As the parent anthracene decomposes, it gives rise to )
a compound which is uv absorbing in the same region as the parent
Y anthracene. Therefore, the time variable values for B could not be
t obtained over the required range.

However, for each cycloadduct (10, 26, and 27), the calculated
D, value was varied by +10, +25, -10, and -25Z%. For each new ]

D, value, k, was recalculated. The results are displayed in

“ 4 "_"w-‘"_ﬂ.‘:—_ll_.i R

Table 24. Please note that even if the error associated with

D, is 25Z, 10 cycloreverts ten times faster than 27 in the 3

e R
.

worst case. ;
N Over the range -25% to +25Z, the error associated with k; is

approximately equal to the error associated with D_,. A ¢

realistic error estimate for D, is + 10% with a maximum error ﬂ
- estimate of + 20%. Thus, I conclude that the error associated with

the rDA k;, values is + 207 and the rate acceleration by

polysiloxy substituents is a real phenomenon.
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TABLE 24: Dependence of k, for the retro Diels-Alder reactijon 4
of 10, 26 and __)_ on the calculated D_ value.

Compound k; (min-!) x 102

N 1.250,  1.10D; D, 50D, 75D :

. »
1

—
o
~
o
-~

2.39 2.71 3.12 4.03 '

Is
-
=
-]

1.76 1.99 2.29 2.97 it

o

~
—
[

.13 .15 .16 .20 "

W]
D; is the original D, value. ‘\

N
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