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CHAPTER I

INTRODUCTION

1.1 Constant False Alarm - Rate (CFAR) Processors

1.1-1 Background and Literature Review

In practical radar signal detection systems, the A

problem is to automatically detect a target in a nonstation-

ary noise and clutter background while maintaining a constant .

probability of false-alarm. "Clutter" is the term applied

to any unwanted radar signal from scatterers that are not of

interest to the radar user. Examples of unwanted echoes, or

clutter, in radar signal detection are reflections from

terrain, sea, rain, birds, insects, chaff, etc. Classical

detection using a matched filter receiver and a fixed

threshold is not applicable due to the nonstationary nature

of the background noise. In fact, a small increase in the

total noise power results in a corresponding increase of

several orders of magnitude in the probability of false ..*%%

alarm. As shown in Figure 1-1, for a design probability of S

false-alarm of 10, an increase of only 3 dB in signal-to-

noise ratio causes the actual false-alarm probability to

increase by almost 104  This undesirable increase in the

number of false alarms causes the data processing equipment,

either a human operator or a digital computer, to saturate. %,%
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Therefore, adaptive threshold techniques are needed to main- -'p

tain a constant false-alarm rate (CFAR).

One approach to adaptive detection in nonstationary

noise and clutter background is to compare the processea

target signal from the test cell to an adaptive threshold

obtained from the mean level of clutter plus noise over ad-

jacent range and/or Doppler Cells [1-3]. The conventional _..

cell-averaging constant false-alarm rate detector is shown

in Figure 1-2. In the cell-averaging constant false-alarm -

rate detector, CA-CFAR, the adaptive threshold is obtained

from the arithmetic mean of the reference cells [4]. Finn [2]

showed that in a homogeneous Gaussian noise background, where

the noise samples obtained from the range cells are identically

distributed, the CA-CFAR detector performs well and its per-

formance approaches that of the Neyman-Pearson detector as

the number of range cells is increased to infinity. In

nonhomogeneous background, which may be caused by clutter

edges and chaff, the adaptive threshold setting is seriously

affected resulting in a degradation of the performance. In

the situation where the transition from a clear to a clutter

environment is not relatively smooth, it is assumed that

the total noise power density as a function of range can be ./..

represented by the step function as shown in Figure 1-3.

Two cases may be encountered in this severe clutter environ- "

ment [1,2]. In the first case, the cell under test is in

the clear region but a group of the reference cells are

immersed in the clutter. This results in a higher adaptive

3%
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threshold and the probabilities of detection and false-alarm

are reduced. This is also known as the masking effect. In 4.j

the second case, if the cell under test is immersed in the ,R

clutter but some of the reference cells are in the clear S

region, the threshold is relatively low and the probability

of false-alarm is increased [1,2,5,61. Jamming and the

clutter edges mentioned above significantly affect the power

level as a function of range which results in an intelerable

increase in the probability of false-alarm. This situation

is frequently encountered in search radar design. To control

this intolerable increase in the probability of false-alarm,

Hansen and Sawyers [5,6] proposed the greatest-of-selection

logic in cell-averaging constant false-alarm rate detector,

GO-CFAR. A comparison between the two CFAR detectors, CA-CFAR

and GO-CFAR, using square law detection of Swerling I targets

was treated by Moore and Lawrence [7]. The clutter map CFAR

approach can also be used for nonhomogeneous background. In

this technique proposed by O'Donnell, Muehe, and Labitt [8],

the detector output of each resolution cell is averaged over -

several scans. An analysis of the clutter map CFAR technique

has been performed by Nitzberg [9], to obtain the probability

of detection. 0

Trunk [10], while studying the target range resolu-

tion of some adaptive threshold detectors, showed that targets

cannot be resolved by a CA-CFAR detector if another target lies

within the reference cells of the other. He proposed the smal-

lest-of-selection logic in cell-averaging constant false-alarm C

6 5
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rate detector, SO-CFAR. The SO-CFAR detector is less sensi-

tive to the detection loss than the CA-CFAR unless the number

of resolution cells is relatively large. In other words, for

a small number of reference cells, the detection loss of the

SO-CFAR is relatively large as compared to the ideal detector.

Closely separated targets may be encountered in dense civilian

or military target environments. In such situations, capture

effect may occur where the probability of detection rises

slowly and reaches one asymptotically. Finn and Johnson [1],

and Rickard and Dillard [11] studied this problem of two

closely separated targets and showed the existence of the

capture effect for all single-pulse Swerling target models

(cases 1,2, and 4). The SO-CFAR detector proposed in [10]

eliminates the capture effect that exists in the CA-CFAR and

GO-CFAR detectors.

Additional work on CFAR processors in situations 1

where one or more targets lie in the set of reference cells,

i.e., in multiple target situations, is reported in the

literature [12-16]. In this situation, the interfering •

targets raise the threshold, thereby drastically reducing the

probability of detection. The noise samples of the reference

cells are not identically distributed in this case. There-

fore, a mathematical representation of the system model ,

is more complicated which makes the performance analy-

sis of the systems more involved. McLane et al. [12] proposed

a threshold control technique for the CA-CFAR detector based

on a priori information about location that could be supplied

7
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by the radar's tracking system. Al Hussaini and Ibrahim [13] S

presented a generalization and extension of the technique in

[12] for the CA-CFAR, GO-CFAR, and SO-CFAR detectors. When

the interfering target is in one of the reference cells, 0

Weiss [14] showed that the detection for a GO-CFAR detector

is extremely poor. To alleviate this problem, he suggested

the use of the SO-CFAR technique. Rohling [15] introduced an

order statistic based estimation technique to obtain CFAR in

multiple target situations. Finally, Ritcey [16] presented

the performance analysis of the censored mean-level detector S

(CMLD), which is an alternative to the mean-level detector

(MLD) considered previously [1-15]. He obtained the expres-

sions for the probability of detection of the CMLD in a

multiple-target environment when a fixed number of Swerling II

targets are present. The CMLD achieves robust detection per-

formance in a multiple-target environment by censoring

several of the largest samples of the maximum likelihood

estimate of the background noise level.

1.1-2. System Description, Notation, and

Terminology

In this subsection, we describe the operation of the

cell-averaging CFAR detector, we define some notation, and

present some mathematical background that will be used

throughout the report. S

The conventional cell-averaging CFAR processor is

shown in Figure 1-2. As shown, the output from the square

too
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law detector is fed into a tapped delay line torming the

reference cells. The delay, T, between the taps is approxi-

mately equal to the transmitted pulsewidth. To avoid any

signal energy spill from the test cell into the directly

adjacent range cells, which may affect the clutter power

estimation, the adjacent cells, called guard cells (usually

one or two on each side of the cell under test), are com-

pletely ignored. The statistics of the reference windows U *

and V are obtained from the sum of the ! leading cells and
2

the lagging reference cells respectively. Thus, a total
20

of N noise samples are used to estimate the background en-

vironment. The noise samples are assumed to be statistically

independent. The reference windows U and V are combined

according to some selection logic to obtain the estimate of

the clutter power level Q. To maintain the probability of

false-alarm, PF' at the desired value, the adaptive thresh-

old is multiplied by a scaling factor called the threshold

multiplier TN. It should be noted that for the same value

of PF' the threshold multiplier is not the same for different

selection logics. The product TNQ is the resulting adaptive

threshold. The output, q0 , from the center tap is then com-

pared with the threshold in order to make a decision.

We assume that the target at the test cell (center 0

tap), called the primary target, is a slowly fluctuating

target model of Swerling type I. The signal-to-noise ratio,

SNR, of the primary target is denoted by S. We further

assume that the total background noise is white Gaussian.

9 :*:"



Since both the noise and Rayleigh targets have Gaussian

quadrature components, the output of the square-law detector

has an exponential probability density function [17]. If

the noise variance is a2 , then the conditional probability

density function of the output of the detection cell, qo, is

given by

1 - qo/2a 2 (1+S)

2a2 (1+S)

PQo (qoHi)  for hypothesis H1
01 e -qo/2a 2  (1-1)

2a2 e for hypothesis H0

The hypothesis H represents the case of noise alone, while

hypothesis H1 represents the noise plus target signal case.

The probability of detection, PN'

GO, or SO, is given by

IDf(. > T,,ql Q, H, Q(q) dq (1-2) _

0

PN(q) denotes the probability density function of the adap-

tive threshold and

Pr(Q o > TNqQ,HI )  = PQo I  1lqo1 Hl)dqo  = exp[- 2T]('+q.
T~q 'o'" 12o (l+S)

TNq

(1-3)

We easily see that PF is directly obtained from PD by just

setting the target SNR, S, to zero, i.e.

PF N Pr(Qo > TNq Q, H ) P (q) dq

0 o T q/22 (1-4)

= e pQ(q) dq

0

10
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For simplicity, we normalize the noise power and the output

from the test cell and divide by 2a2. Then, equations (1-1)

and (1-3) become

e- q -- e , for hypothesis Hl

PQj H(q°lHi) =  -q (1-5)
0 1 e , for hypothesis H0

and TN q

Pr(Q ° > TNqI Q , HI) = e 1+S (1-6)

When there is no interference in the reference cells, then

all the noise samples are identically distributed. Since these

noise samples are statistically independent, the reference

windows U and V have a chi-square, X , distribution of 2(2)-

degrees of freedom (see Appendix A for details), i.e.,

N
r 1 U) e u > 0 (1-7)

and 1 N- 1 v
Pv(v) - 1 v e , v > 0 (1-8)r( )- .

The corresponding cumulative distributions are li

F u U 1 - e u ( N / 2 ) -I I u j X

Fj(u) -e / 1 U > 0 (1-9)

and :
Fv(V)= 1 - ev (N/)-1 31 v > 0 (1-10)

, _ . -.,.

The above results will be used throughout this dissertation.

Next, we discuss distributed detection and data fusion.

11
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1.2. Detection with Distributed Sensors and Data Fusion

The use of multiple sensors with data fusion is widely

increasing in surveillance systems. One of the main goals

of using multiple sensors is to improve system performance

such as reliability and speed. For surveillance systems

requiring a large area of coverage and/or a large number of

targets under consideration, multiple sensors are used. In

such systems, complete observations can be transmitted by the

sensors to a central processor for data processing as shown

in Figure 1-4. This requires a large communication bandwidth

which may not be available. Thus, due to the constraints on

the bandwidths of the communication channels, distributed

signal processing with a data fusion center is preferred in •

many situations. In such distributed detection systems, some

processing of the signal is done at each sensor which then

sends partial results to the data fusion center, as shown 0

in Figure 1-5. These partial results are combined according

to a suitable data fusion rule to yield the desired global

result. In our case, the partial results are the decisions _

from the individual detectors, Di, i=1,2,...,n, where

D. E {0,1}. The D i's are combined to yield a final decision,

Do which may again be a zero or a one.--

Some work on distributed detection has been reported

in the literature [18-31]. Tenney and Sandell [18], extended

the classical Bayesian theory to the case of distributed

sensors for the binary hypothesis testing problem. Sadjadi

[19] generalized the results of [18] to the case of multiple

12
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hypotheses. Ekchian and Tenney [20] considered various

distributed sensor network topologies and solved some associ-

ated Bayesian hypothesis testing problems. Teneketzis [21,

22] has solved the decentralized quickest detection problem S

and the decentralized Wald problem. Srinivasan [23] has

presented some results on distributed radar detection.

Kushner and Pacut [24] conducted a simulation study on the

effects of specific prior probabilities and parametric de-

pendencies on the decision rule. Chao and Lee [25] presented -

a distributed detection scheme based on soft local decisions. S

Conte, D'Addio, Farina and Longo [261 studied the design and

performance evaluation of optimum and suboptimum multistatic

radar receivers. Chair and Varshney [27] derived the optimum

fusion rule at the data fusion center for a Bayesian detec- 4.
tion problem with distributed sensors. Hoballah and Varshney

[281 solved the problem of Neyman-Pearson detection with dis- .

tributed radars. In [29], they devised an information theo-

retic formulation to the distributed detection problem. More

work on distributed detection and data fusion has been done .

by Varshney and his coworkers [30,31].

1.3. Report Organization

In this report, two major topics are considered.

The first part deals with CFAR detection in multiple target

situations. In Chapter two, we present a weighted cell- 0

averaging CFAR detector for multiple target situations. The

leading reference window and the lagging reference window are

.,.,-~ . ... w ,..... -,. - . .-. '...- . ' ,



weighted and added to yield the adaptive threshold. The

relative weights assigned to the reference windows depend

upon the level of interference. These weights are selected

such that the desired probability of false-alarm is maintained
V

while the probability of detection is maximized. The per-

formance of the weighted cell-averaging CFAR detector is

analyzed and compared to the performance of the conventional

cell-averaging, the greatest-of-selection cell-averaging and

the smallest-of-selection cell-averaging CFAR detectors.

In Chapter three, we present a cell-censored CFAR de-

tector. Each range cell is first compared to a predetermined

fixed threshold, where a decision about the presence or absence

of an interfering target is made. The cells, where the presence

of an interfering target is decided, are not used while forming

the adaptive threshold. This censoring scheme eliminates the

cells with interfering targets which may otherwise raise the

threshold and therefore, lower the probability of detection. I0

The performance of the cell-censored CFAR detectc is also e

studied.

The second part of this report deals with cell-

averaging CFAR detection using multiple sensors and data fusion.

In Chapter four, we study a system consisting of n CA-CFAR

detectors and a data fusion center. Given the fusion rule,

first we obtain the optimum threshold multipliers at the indi-

vidual CFAR detectors by maximizing the overall probability of

detection at the data fusion center, while the overall proba- . . ,

bility of false-alarm is maintained at the desired value.

16 Iw



Next, we consider the optimization of the overall system, i.e., •

we derive both the optimum fusion rule as well as the optimum .

threshold multipliers at individual CA-CFAR detectors.

In Chapter five, we consider a system where multiple S

background estimators are used for the estimation of the back-

ground noise. These estimates are transmitted to the CFAR

detector. This CFAR detector computes its own estimate of the e

background noise and combines it with the received estimates

to yield the adaptive threshold. The performance of this

system is studied and an extension is also proposed. 0

In Chapter six, we consider adaptive CFAR detection

for two distributed sensor network topologies. Specifically,

we consider the parallel and the tandem network topologies. S

In this chapter, the compressed data transmitted amongst the

detectors is assumed to be in the form of decisions instead

of estimates. The overall systems are optimized to yield

the maximum probability of detection for a fixed probability

of false-alarm. The performance of the systems is also

analyzed.

Finally, in Chapter seven, we present a summary along

with a discussion. Some suggestions for future research work

are also presented.

.r .
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CHAPTER II

A WEIGHTED ADAPTIVE CELL-AVERAGING CFAR S

DETECTOR FOR MULTIPLE TARGET SITUATIONS

2.1 Introduction

In radar signal detection, the problem is to auto-

matically detect a target in a nonstationary noise and

clutter background while maintaining a constant probability 0

of false-alarm. Classical detection using a matched filter

receiver and a fixed threshold is not applicable due

to the nonstationary nature of the background noise. -A

small increase in the total noise power results in a cor- .i'

responding increase of several orders of magnitude in the

probability of false-alarm. Therefore, adaptive threshold

techniques are needed to maintain CFAR.

In this chapter,we propose and analyze a" modified

cell-averaging detector for multiple target situations.

The leading and the lagging windows are weighted in

accordance with the level of interference. Optimum

weights, which maintain a constant probability of false-

alarm and maximize the probability of detection, are obtained.

For the Swerling fluctuating target model I, we obtain the

expression for the probability of detection for our weighted

cell-averaging CFAR detector. In Section 2.2, we present

some background material and assumptions. In Section 2.3,

-,---1



we derive the expression for the probability of detection

for the CA-CFAR, GO-CFAR, and SO-CFAR detectors. In Section

2.4, we evaluate the performance of the weighted cell-

averaging CFAR detector, WCA-CFAR. Numerical results show- S

ing the performance of the WCA-CFAR detector are also pre-

sented. In Section 2.5, we provide a summary along with a

discussion of the results.

2.2 Preliminaries

The conventional cell-averaging CFAR processor, shown

in Figure 1-2, has been described in Section 1.1-2. There,its

performance in the presence of interference was not discussed.

In this chapter, we consider cell-averaging CFAR processors,

in the presence of interference, i.e., in multiple target

situations. We assume that the target at the test cell

(center tap), called the primary target is a slowly fluctu-

ating target model of Swerling type I. The signal-to-noise

ratio, SNR, of the primary target is denoted by S. Without

loss of generality, we assume only one interfering tar-

get, the secondary target, in one of the taps of the window U.

We assume that this interfering target is also fluctuating in

accordance with Swerling target model I with an SNR I. We

further assume that the total background noise is white Gaus-

sian. Since the noise samples of the reference window V are ',.

identically distributed, the probability density function and

the cumulative distribution function are as defined in (1-8)

and (1-10). Due to interference, the noise samples of U are

19
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not identically distributed and the probability density

function and the cumulative distribution function of U are

given as follows (see Appendix A for details).

N u (]:u=1 + z 21te -eu (N/2)-2 I j u ,-
T j -+ _

u > 0 (2-1)

N u

N+ u~-1 11 1- (N/2)-2 (N/2)-2-j U= - e + e 1 [ ]J[ ,'.N- -.
j = 0 k=0

u > 0 (2-2)

2.3 Cell-Averaging CFAR Processors

In this section, we derive the expressions of the

probability of detection for the CA-CFAR, GO-CFAR, and SO-

CFAR detectors. These expressions will be used to compare

the performance of these cell-averaging detectors with

that of the proposed cell-averaging detector.

2.3-1 CA-CFAR Detector

In the cell-averaging CFAR detector, the adaptive -

threshold, Q, is obtained from the sum of the reference cells

U and V, that is,

Q= U + V (2-3)

Since the random variables U and V are statistically inde-

pendent, the cumulative distribution function of the adaptive

20
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CAthreshold, F Q (q), is just

FQ (q) = Pr {Q < q) = Pr {U + V < q}

00q-v

= J PV(V) j Pu(u) dudv (2-4)

CO .-o

Using Leibniz's rule, we differentiate equation (2-4) to

obtain the probability density function of the adaptive

threshold which is just the convolution of the random vari-

ables U and V. That is,

pCA(q) = PU ( u ) * Pu(u) Pv(q-u ) du (2-5)

where * denotes convolution and Leibniz's rule is defined

as follows. If

b(u)

G(u) = f H(x, u) dx (2-6.a)

a(u)

then,

b(u)
dG(u) H[b(u) u db(u) H[a(u) u] da(u) aH(xu) dx

- b -du H , u f au,
a (u) ( 6

(2-6.b) .

Using the fact that U,V > 0 and U+V = Q, equation (2-5) becomes

CA q •
PQ (q) = u(u) Pv(q-u) du . (2-7)

0
Substituting equations (2-1) and (1-8) into equation (2-7),

21
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we have

N .q u N'I " [ I]T . { =e -e - •(q u du
~CA (q) 1 1 ii- {Je *e *(q-u)

2 -  d
Q r

(N12) -2 1q N
I j f e -u - (q-u) .-- I

j=O - [T - (q-u uj du}, q >_ 0

0 (2-8)

If we integrate the right hand side of equation (2-8), we
obtain a hypergeometric function for PCA (q). In order to

solve for the probability of detection, PD using equation

(1-2), we need to integrate this hypergeometric function

from zero to infinity which may not lead to a closed-form

solution. To avoid this difficulty, we use an alternate

approach and make the following change of variables.

00 t f 2  dd

~f(t) f f1 (T)f 2 (t-T) d~t= J f 1(-r)~ 2(--)dt
0 0 ( (2-9)

Using the change of variables and substituting equa-

tions (2-8) and (1-6) into equation (1-2), p can then be

rewritten as,

N 00 1+S+T C- q I
NCA 7q_( I) N

pCA 1e e (q-u) dudq
D 2 = * T

00

[l+S+T q(N/2)-2 1 q[ + (' ,
- 1 1 i I "°* '

O-.e1-"' (q- u uj dudq}
o 0 0 (2-10)

Solving the double integrals, the probability of detection

becomes,

22
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CA C c ______ (N/2)-2 C.--D N/2" l+S (I+I)Tc I ]]

(+S+TcA) C j=0 (+S+TcA)J+

(2-11)

where, N N

C (1+S)

C'

and

C = I- -rj (+S)

2. 3-2 GO-CFAR Detector

In this case, the adaptive threshold, Q, is the maximum

of the reference windows U and V, i.e.,

Q = MAX(U,V) (2-12)
. .z

The distribution function of the random variable Q is *'

FGO (q) = Pr {Q < q} = Pr {U < q, V < q} (2-13)

Since the random variables U and V are statistically inde-

pendent, we can write

GO (q) = Pr {U < q} • Pr {V < q} 
*?...

(2-14) 
5

= FU(q) Fv(q)

The probability density function is, therefore, the derivative

I % I
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of FGO(q) with respect to q, i.e.,

PGO (q) = Pu(q) Fv(q) + Fu(q) Pv(q) (2-15)

Substituting equations (1-8), (1-10), (2-1) and (2-2) into 6

equation (2-15), we obtain the probability density function

of the adaptive threshold, which is given by

N 2 (N/2)-1 q+
2O -+ 1 +

P 0 (q) i1 -q q) i fj 0o j- -

N

(N/2)-2 1 I 1 N_e -  XN/ j-- [T+- qe-q

N - 1 q (N/2)-2 (N/2)-2-j k }
- 1+ 2 e1+1 1~ Pqill))-

J-0 k=0

q > 0 (2-16)

Now, substituting equations (1-3) and (2-16) into equation

(1-2) and rearranging terms, the probability of detection

for the GO-CFAR detector is obtained from

T Oq0 GO
GO 1+-s GO

p e P (q) dq (2-17)
.. 1 Q7 !

0

This results in S

S
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N
PGO 1[,+I]-, 2 (1+S) (1+1)

D T I ~ (1+S) + (1+I) T GO

(NI2) -1 [2I+ jj1 (N/2) -2 [is+-r+0 1j +

j =0 GO j=0 1O

(N/2)-2 (N/2)-1 (j+k)! [1 1 I S 1+ 1 +k+1

j O k=0 j! k! 1+1 2 .+S+TG

N N1 N
1[ +5 IL - +1 7 1- (1+s)(1+I) -

T++GO I(I)lS+l )TGO

+ 1* 1 (N/2)-2 (N/2 -2-j r N .k)]J

(l+ST]

2.3-3 SO-CFAR Detector

In this case, the adaptive threshold, Qis the miminum

of the reference windows U and V, i.e.,

Q=MIN(U,V) (2-19)

The distribution function of Qis

FQ (q) Pr{Min(U,V) < q}

=Pr {U< q or V < q) (2-20)

Using the complementary function, we can write

2SS



1 - F O(q) = Pr {min(U,V) > q}
Q

= Pr {U > q and V > q}

= Pr {U > q} * Pr{V > q}

= [1 Fu(q)][l - Fv(q)] (2-21)

Therefore, the cumulative distribution of the adaptive *

threshold is

F (q) = FU(q) + FV(q) - Fu(q)Fv(q) (2-22)

Taking the derivative of equation (2-22) with respect to q,

we obtain the first order probability density function of the

adaptive threshold Q, i.e.,

P s(q) = Pu(q) + Pv(q) - Pu(q)F (q) - Fu(q)Pv(q)

- Pu(q) [1 - Fv(q)] + Pv(q) [1 - Fu(q)] (2-23)

Substituting equations (1-8), (1-10), (2-1), and (2-2) into

equation (2-23), the density of the adaptive threshold becomes

so 1 1 [ ]N 2 TI (N/2)-2 Iso = 'I! {e e [ q [-.Lj j,
j =0 j-!.+

N Nq (N/2)-1 1 j + 1 - 1 ----
{e q e - q { -- e j=O P(.) 0

1 -q (N/2)-2 1 (N/2)-2-j k 0(T e [ 1T) q 2 0 (2-24) :
Tj=0 -o
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Now, substituting equations (2-24) and (1-6) into equa-

tion (1-2), the probability of detection for the SO-CFAR

detector is obtained from

l+S SO
PQD(q) q (2-25)

0 0

This results in

N
so I T[ ]--2 (N/2)-l (2+I(+S)(+I)To +1

PD T X- - [ 2 iS+) ( + )
j =0 so

(N/2)-2 (N/2)-I

.1 1 (1+k) +S j+k+l

J=0 k=O jlk! 1+1II " [(I+S)+TSO V +NN
+I(I*S) (i+I)]""

[I1_l-1 .(2+I)(l+S) + (I+I)T so

(N/2)-2 (N/2)-2-j N( + N
1 2( .k) [l+I] 1 +S 7  k
2-) j=0 k=0 -[ ]J [2(I+S)+T so

(2-26)

2.3-4 Threshold Multipliers

The threshold multipliers for the three schemes, TCA,

TGO, and TSO, are all different since they depend on the

selection logic. To solve for these threshold multipliers,

we obtain the expression for the probability of false-alarm

of each detector. Then, we set the probability of false- S

alarm to the desired value v, and obtain TCA, TGO and Tso ,

from equations (2-27), (2-28) and (2-29), respectively, by
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an iterative procedure. The probabilities of false-alarm of

the three cell-averaging detectors are as follows.

N

C D D 1 (N/2)-2 1
F N/2 " +(I+I)TcA I IN0 2

(1+T A) C j=O DJ(l+TC)j 1
CN(2-27)

PGO D 1+I (N/2)-I 1= - -Go j (2+T
p~. - _________j~O (Z+GO

~... . . -

(N/2)-2 -- 1
j=0 DJ (I+TGO)J

(N/2)-2 (N12)-l 1 1NI I! j+k+l }  N7

j=0 k=0 Dj(2+TGO) (1+TGO) 0

D (1+I)N2 1 1 (N/2)2 (N/2)-2-j T( k) D"

[2+I+(l+I)TGO f(r. 0 k=o r~k

GO 2 N )(2+T )

(2-28)

N

(NSO D (N/2)-l +jl-

FL P k![2+T+k 1 21 ,,TON2

(/)2 (N/2)- 2 1N2-- N 1  N2kPTO k =0 k' +) k(N2- N2) -2 DN"-2jFZ.k

=0j D D (2+TO+ )

+-
D=

. . • ,., ., ,-. . _

Next, we present the weighted CA-CFAR detector.
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2.4 Weighted Cell-Averaging CFAR Detector __

The proposed weighted cell-averaging constant false- %

alarm rate detector, WCA-CFAR, for multiple target situ-

ations is shown in Figure 2-1. The output from the square

law detector is fed into a tapped delay line forming the

reference cells. The set of the leading reference cells

form the reference window U, while the set of the lagging \S

reference cells form the reference window V. The reference

window U is multiplied by the weighting coefficient a, while

the lagging reference window V is multiplied by another

weighting coefficient, 8. These weighted means of the

leading cells and the lagging cells are added to yield the

00adaptive threshold, Q. The output, qo' of the test cell 7!

from the center tap is compared with the adaptive threshold

where a detection decision is made.

An intuitive justification for using a weighted cell-

averaging approach is the following. While computing an

estimate of the background noise from the reference cells,

we should assign more weight to those cells that do not con-

tain interference. Thus, if interference is present in the .A

leading cells, then the weight a assigned to the reference

window U should be smaller than the weight assigned to the

reference window V. The relative values of a and depend

upon the level of interference in the reference cells. It

should be mentioned that a and should be such that the

desired probability of false-alarm is maintained.

,.
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We assume that the primary target at the test cell 0

has a signal-to-noise ratio, S, and the secondary target,

or interference has an SNR, I. Without loss of generality,

we assume that the interference is in the leading cells

only. The primary target and the interfering target are XL

assumed to be fluctuating in accordance with the Swerling

target model I. The total noise power in the background

is assumed to be white Gaussian. The reference windows U

and V are statistically independent random variables. Re-

scaling U and V by the constants a and 3, respectively, we 0

obtain two new independent random variables X and Y, where,

Px (x) )  cx 0 (2-30)

and

PY(Y) - [ P (Y-) 0 (2-31)
Y -17 V

Substituting equations (1-8) and (2-1) into equations

(2-30) and (2-31), we obtain the probability density func-

tions of X and Y to be •

N x
I 1+1 1 { x(l+I)Px(x) = "-T-1 *-,{e

X(N/2)-2 (-2
-e a I +T >

ex0 j [+ x > 0 (2-32)j =0 •! Od-
a 0 %.

N
p1 1 1 "2 -3y/

Y"yi -s N - Y e y L_ 0 (2-33)
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The adaptive threshold, Q, of the weighted cell-averaging

detector is the sum of X and Y, i.e.,

Q= X+ Y (2-34)

Since the adaptive threshold Q is the sum of the two inde-

pendent random variables X and Y, the probability density

function, PQ(q) is the convolution of X and Y, i.e.,

PQ(q) = Px(x) * Py(y) = py(y) Px(q-y) dy (2-35)
-

•

Using the constraints (X,Y, > 0), the probability density

function of the adaptive threshold becomes

q
PW(q) = P(y) Px(q-y)dy (2-36)

Qq Y

The probability of detection for this WCA-CFAR detector

is defined as %

PD f Pr(Qo > q IQ, Hl) PW(q) dq (2-37)D J o1 Q
0

where

Pr(Q >q I Q, H I) f PQoI ( q ° IH l )dq °  exp q- ]+

q

(2-38)

Now, substituting equations (2-36) and (2-38) into (2-37), : %

pW becomes %

DS
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W I+S

P = e Py(Y) P (q-y)dy (2-39.a)

0 0

This results in S

00 q fq N 1W l+S -y/
= y e y eY/

0 0

{e aC~l - e a I i)-2I _ I "-y j dydq

(2-39.b) S
where,

N

y. - - 2

Using the identity (2-9), the probability of detection can

be rewritten as

w-PD Y Y e e 1 + dqdy -

( 2)-2 ' - y  [ q - ]  q  l-  +  INJ ''

(N/21- 1 I e e + ct (q-y)j dqdy '4.'j0 y

(2-40)

Solving the double integrals, the probability of detection

is given by r

P W C C 1 N/2) -2 C.

P1 (l+S+ S -  j=0 (l+S+a)j+

(2-41)

S
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where C, C', and C. are as defined in (2-11).

The goal of our WCA-CFAR detector is to obtain the

w
weights a and 8 so as to obtain the best PD while keeping

the false-alarm probability, PF to be a constant v. ThisF'

can be achieved by using the calculus of extrema, for which

we form the following objective function.

J(ct,8) - (a,8 ) + UP [P(O,8) - v] (2-42)

where v is the desired false-alarm probability and E is the

Lagrange multiplier. To obtain the optimum values of a and

, we maximize the objective function J(a,O), i.e., we take

the derivatives of J(a,8) with respect to a and $, set them

equal to zero, and solve for a and 8. The derivatives are

C -C'(1+1) + 1 (N/2)-2 (j+l) C.

____ __ -C __ ____ ____ _ _ .I.j+2

3a 8)- N " [  2 T [+

( +S+ ) { l+S+a (l+I) } j=0 ( +S+ 2)

T [ DI+I) + 1 (N/2)-2 j(l

(1+0N {l+a(l+I)} T j=0 D ( l +  ) j +7 = 0 (2-43)

and

CC' -1(N/2)-2 C

a8 N+l [l+S+T(l+I)(l+S+ a) ::; >

N_

D i1 =0 (2-44)N + 1+ iI T Z= relp)'~

(l +S)7

where, D- 1+1
I •
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We obtain from equation (2-43), substitute for it in

equation (2-44), and solve for a in terms of at. We obtain

S H- 2  1(2-4S.a)

where

H [ CI (N/2)-2 C.
1 l+s+adl+TT T j+0

{lctl+) 2 I 1~ -7 (2-45.b)

and

2 I-C'(1+I) 2 1 (N/2)-2 (j+l)C.P
{l+S+ca(1+I)} jO= (l+S+ct) +

4i.

D -i(N/2)-2 1(-5c

Knowing the fact that the probability of false-alarm is

N 2
D D-D (N/2)-2 1

F a Wci s (1+ ) I =0 DI) I _

(2-46)

we substitute for S from equation (2-45) into equation
(2-46), and obtain a nonlinear equation in terms of at only.

Using an iterative procedure, we solve for a- and 6. Since J

the equations are nonlinear, more than one solution may

be obtained. only those solutions which satisfy the

given constraints of the problem are kept. .~.

3SS
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We obtain some numerical results to illustrate the perfor-

mance of the WCA-CFAR detector. The desired P is assumedFN
to be 10-4 . In Figures 2-2, 2-3, 2-4, we compare the per-

formance of the WCA-CFAR with the CA-CFAR, GO-CFAR, SO-LFAk

Ndetectors in terms of PD versus SNR curves for different

interference levels. We notice that the WCA-CFAR detector

performs better than the other three. In Figure 2-5, we show

the performance of the WCA-CFAR detector as a function of the

interference level. In Figures 2-6, 2-7, and 2-8 we also ob-

interference level. As expected, in Figures 2-6, 2-7, and

2-8 we observe that the performance of the WCA-CFAR improves

when the number of reference cells is increased.

2.5 Summary and Conclusions

In this chapter, we proposed a weighted cell-averaging

CFAR detector for multiple target situations. In this de-

tector, the weighted leading and lagging reference windows

are added to obtain the adaptive threshold. The weights are

selected so that CFAR is achieved while maximizing the proba-

bility of detection. It results in a smaller weight being

assigned to the window where interference occurs and more

weight is assigned to the window without interference. This

weighting procedure prevents the adaptive threshold from be-

coming too high and resulting in a severe degradation of the

probability of detection. For Swerling target model I embedded

in a white Gaussian noise of unknown level, we showed that

the WCA-CFAR detector performs better than the CA-CFAR,

GO-CFAR and SO-CFAR detectors.
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CHAPTER III S

A CELL-CENSORED CFAR DETECTOR FOR

MULTIPLE TARGET SITUATIONS

3.1. Introduction

In the previous chapter, we proposed and analyzed the

WCA-CFAR detector, which was shown to perform better than the

CA-CFAR, GO-CFAR and SO-CFAR detectors for multiple target

situations. In this chapter, we propose another scheme for .

adaptive cell-averaging CFAR detection for multiple target S.

situations, where we censor those cells which may contain

interference or noise spikes in them. In Section 3.2, we

formulate the problem and study the performance of the pro-

posed CFAR detector. In Section 3.3, we present a summary

along with a discussion.

3.2. Cell-Censored CFAR Detection 'k'

The cell-censored mean-level detector considered in this

chapter is shown in Figure 3-1. In this detector, the idea is

to delete those cells, which may contain interference,

while estimating the background noise. The output of each

range cell is compared to a predetermined fixed threshold, X, e

to determine the presence or absence of interference in that
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range cell. The desired probability of false-alarm at the

range cells determines the fixed threshold X. The comparison

of each range cell to X yields a decision, Di , i=l,2,...,N,

where Di e {0,1}. When Di, i=I,2,...,N, is one, it indicates

the presence of interference in the ith cell. This cell is

then censored and is not used while computing the estimate of

the background noise. However, when Di, i=1,2,...,N, is zero,

it indicates the absence of interference in the ith cell and

this cell is used in the estimation of the background. The

estimate of the background noise is used to set the adaptive

threshold, Q. As before, Q is scaled by a threshold multi-

plier, T, prior to comparison with the output of the center

tap to yield the desired overall probability of false-alarm

at the output. As seen in the previous chapters, presence of

interference in the range cells raises the threshold unneces-

sarily and consequently, it reduces the probability of

detection and the probability of false-alarm drastically.

The proposed cell-censoring scheme prevents the adaptive

threshold from becoming too high by eliminating the cells

which may contain interference and thereby improves the

system performance.

The leading range cells, for which an absence of

interference is decided, form the leading reference win-

dow U, while the lagging range cells, for which an absence

of interference is decided, form the lagging reference

window V, i.e.,
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N/
U = i-- (1- Di) q (3-1)

andN

N
V = i (1 - Di) qi (3-2)

Clearly, when D. is one, the corresponding qi drops out of

the summation. As in the conventional cell-averaging CFAR

detector, the adaptive threshold, Q, is obtained by summing

the reference windows U and V. Q is then scaled by the

threshold multiplier, T, in order to achieve CFAR at the de-

sired value. The output, q0, from the cell under test (center

tap) is compared to the threshold, TQ, to yield the final

decision D0 3 D s {0,i}.

We assume that the target to be detected, or the primary

target at the test cell, is slowly fluctuating in accordance

with Swerling target model I. We also assume that the inter-

fering targets are of Swerling type I. Then, the probability

density function of the normalized output of a range cell

without interference is

"qi
P (qi) = e (I > 0, (3-3)

Qi

i=l,2 . . .,N...

and the probability density function of the normalized output

of a range cell with interference is given by
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I1 . / l 11 l n n n , , -- . _ .__ '

PI (qi) I e 1 0 (34)Qi i + ji  - I 
_

1=1,2, ...,N

where II, i-1,2,...,N, denotes the SRN of the interference S

(if present) in the ith range cell and the superscript I in

PIi(qi) indicates the presence of interference in the ith

range cell.

Next, we evaluate the performance of the proposed

system when there might be only one interfering target with

an SNR I in one of the taps of the leading reference window U.

Without loss of generality, we assume that it is in the first

cell. Then U and V are expressed as A
el. '%

N/ 2
U qi~ (3-5)

=2

and

N
V 6 (3-6)

i=(N2)+l

where Z corresponds to the output of the first cell which

may contain interference, i.e.,

Z = (1 - D1 ) ql (3-7)

The discrete probability density function of the random

variable D is given by

l (dl) P - + (- 1 P ) 6(dl ) (3-8)
D
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where, 6(x) is theKronecker delta function such that, %

1 if x =x

- x ) x (3-9)
0 0, if x x S

Pc is the probability that the decision D is one, and

(1 - P1 ) the probability that D1 is zero. The superscript c

in Plc indicates that it is the probability associated with an
c

individual cell. We may express P as

P1 = Pr(D 11H I ) P(HI) + Pr(D 1 = Il ) P(H )

= pC I c pI (3-10)
D1  I F1  0

where HI is the hypothesis that no interference is present
I

in the first cell while the hypothesis H1 indicates that in-
terference is present in the first cell. PC is the pre-

F1
specified probability of false-alarm at the first cell which

determines the fixed threshold X. P0 and PI are the prior

probabilities indicating the absence and presence of the 0

interfering target of SNR I at the first cell, respectively.

The random variable Z of equation (3-7) is defined as

Z = GQI (3-i)

where

G = 1 - Di, G E {0,1} (3-12) 9

If D1 is one, G is zero and thereby implying that Z is zero.
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Since PC represents the probability that D1 is one, the proba-

bility that Z is zero is also pC. When D is zero, then due

to the independence of the random variables G and Q1 , the

probability density function of Z is 0

Pz(z) J (1-P 1 ) 6(g-l) e z/g 1 dg (3-13)
Z f -00 119

Solving the integral, we can write the probability density

function of Z as

Pz = 0

Pz(z) = e(3-14)

C

From equation (3-10), we know that PC is a function of PC1D 1 - .- , .

andP c where pC and c are .
F1' F1 D1

p = Pr(decide interference in the first cellino

interference present)

= e dqI  e (3-15)

and

C.
P = Pr(decide interference in the first cell~in-

terference present)

00 ql

e dq I  (3-16) .

Let

so

N- N OF -
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N/2
U I-- qi (3-17)

then from Appendix A,

1 N.-I -u
1

Pu(U) u e , u > 0 (3-18)
U1 1 2 - 11

The probability density function of V is as defined in equa-

tion (1-8). The adaptive threshold Q is the sum of U, V N

and Z, i.e., .- A

Q = U1 + V + Z (3-19)

Then, the probability density function of the adaptive

threshold, Q, is the convolution of the probability density ?.

functions of U1 , V and Z, i.e.,

PQ(q) PU (ul) * Pv(v) * Pz(Z) (3-20)
1

where * denotes convolution as before. If we define R as 0
R = U1 + V, (3-21)

then the probability density function of R is (see Appendix A)

1 N-2 -rPR(r) = r e , r > 0 (3-22)

The probability density function of the adaptive threshold, Q,

becomes
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PI

PQ(q) PR(r) * P(z)
Q R Z

000

=J P R(r) Pz(q-r) dr (3-23)

Substituting equations (3-14) and (3-22) into equation (3-23)

and solving the integral, we obtain

Pc lPlc
1P N-2 -q + 1N-1 e- q  ( 4

PQ(q) e 1--(7 N- (3-24)Q (N-1) q r N q

q >_0

To obtain the expression for the probability of detection,

we substitute equation (3-24) into equation (1-4) and solve

the integral to obtain the probability of detection, PD' to

be

C r 1I+S N-1 c l+S N
PD PI TJ + ( - Pl -T (3-25)

The probability of false-alarm is

c C

P 1  + 1  (3-26)
(I+T)N-1 (1+T)N

To evaluate the performance of the proposed cell-

censored CFAR detector, we obtain some numerical results.

We assume that the desired overall probability of false-alarm,

P' 1is 10 ; the number of range cells, N, is 4; while the

SNR of the interfering target is one tenth of the SNR of the

primary target. From Figure 3-2, we observe that as X is
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increased (PF is reduced), the probability of detection, PD'1
improves. We also notice from Figures 3-3, 3-4 and 3-5 that

the performance of the conventional cell-averaging CFAR de-

tector is better than the performance of the cell-censored

CFAR detector for small values of the target SNR. As the SNR

of the interfering target increases, at a certain point the

cell with the interfering target is censored and the perform-

ance of the cell-censored CFAR detector becomes better than

that of the CA-CFAR detector. The point at which this cross-

cover takes place depends upon the value of P F It should be

noted that if we make PC smaller, the crossover point wouldF1

nrrdir it a 'nqller value of the SNR of the interfering target.

3.3. Summary and Conclusions

In this chapter, we have proposed a CFAR detector using

a cell-censoring scheme for multiple target situations. We

analyzed the system for the case when no more than one inter-

fering target may be present. The analysis for situations

when more than one interfering targets are present can be

carried out in a similar manner. Numerical results indicate

that the proposed scheme is effective in a multiple target

environment.
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CHAPTER IV

CA-CFAR DETECTION WITH DISTRIBUTED RADARS

AND DATA FUSION

4.1. Introduction

As indicated in Chapter One, a lot of work on distri- -.$

buted detection has been reported in the literature [18-30].

Also, an extensive amount of research has been performed on

cell-averaging CFAR detection using a single sensor [1-17].

To our knowledge, no work is reported on CFAR detection

using multiple sensors and data fusion. The goal of this

chapter is to develop the theory of cell-averaging CFAR

detection using multiple sensors and data fusion. In Sec-

tion 4.2, we formulate the problem of distributed CFAR

detection with data fusion. In Section 4.3, we shall assume

that the fusion rules at the fusion center are known. Spe-

cifically, we consider the "AND" and the "OR" fusion rules

at the data fusion center. We obtain the optimum threshold

multipliers of the individual detectors and derive an expres-

sion for the probability of detection at the data fusion

center for the given fusion rules. As an illustration, we

study the performance of a distributed CFAR detection system

with two detectors and data fusion. Numerical results show-

ing the improvement of the performance for the distributed
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multiple sensor system with data fusion over a single sensor .

system are also presented. In Section 4.4, we consider the

optimum design of the overall system, i.e., we obtain the

optimum threshold multipliers at the individual detectors as 0

well as the optimum fusion rule at the data fusion center. An

example is also presented for illustration. In Section 4.5,

we present a summary along with a discussion.

4.2. Distributed CFAR Detection with Data Fusion

We consider n distributed CA-CFAR detectors with a

data fusion center as shown in Figure 4-1. It is assumed that

the number of range cells at the ith detector is Ni, i=1,2,

...,n. The target to be detected is a slowly fluctuating

target model of Swerling type I. The target is embedded

in a white Gaussian noise of unknown level. Let the
•0

probability of false-alarm and the probability of detection

at the individual detectors be denoted by PFi and PD.'

i=1,2,...,n, respectively. If the average noise power is a ,

then the conditional probability density function of the test

statistic q' from the test cell of detector i,i=l,2,.. .,n,

is given by

-qi/2a2 (1+S)
z 1 e 12 e

Zo (l+Si) !

P iH(qi1Hj  = for hypothesis H10o j (4-1)

1 ,/2 for hypothesis H 0

2a

S9S
5I9V
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where Si, i-1,2,...,n, is the target SNR at each CA-CFAR

detector. The hypothesis H represents the case of noise

alone, while hypothesis H1 represents the noise plus target 1

signal case. To simplify the mathematical derivations, we 0-

assume S1 = S2 = = Sn = S, where S is the target SNR.

Results for the case of unequal target SNR's can be obtained

in a straightforward manner. The probability of detection,

P for detetor i, i=l,2,...,n, is given by

P = Pr(Q' > TiqIQ1, HI) p i(ql) dq' (4-2)
0 Q

where T. is the scaling factor at the CA-CFAR detector "

i, i=l,2,...,n, and P i(qi ) denotes the probability density
Qi

function of the adaptive threshold at the ith CA-CFAR de-

tector. Also,

CO Ti

Pr(Q > Tiq 1 IQ1 , H) = (qiH dqo exp

T. qi Qo Hp

(4-3) 0

Since the noise samples, for each CA-CFAR detector, are

identically distributed, the probability of detection of the

individual detectors can be written as (see Appendix A for

details)

N.

PD. - (l+S) i=l,2,...,n (4-4) " ..'. 4.".

t <Jr+S+r T "'>+
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Each CA-CFAR detector transmits its decision to the data 0

fusion center. These local decisions of individual detectors

are denoted by Di, i=1,2,...,n, where

0 if detector i decides H

D. = (4-5)1 if detector i decides H

In order to be able to express the overall probability of

detection, PD' the overall probability of false-alarm, PF'

and the overall probability of a miss, PM, at the data

fusion center, in terms of the probabilities of false-alarm

and miss at the local detectors, i.e., P F.'s and PM. 's, we

define the following quantities:

D - (D1, D2,..., D (4-6.a)

M = 1 P . (1 - ) = P(DIHI) (4-6.b)D S j S1  k

FD = S° (1 - P) H P = P(DIH ) (4-6.c)

- ~0 S 1 Fk0

PkD Pr(Do kID), k=0,l (4-6.d)

D Global decision at the data fusion
0

center (4-6.e)

S °  :Set of all j, (j $ 0), such that D.

is an element of D and D. = 0 (4-6.f)
J S

S1 Set of all k, (k $ 0), such that D

is an element of D and Dk 1 1 (4 -6.g)
k~
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Id- W

Then, we may express P PM, and P as follows vi.

PM POD MD (4-7)
D

-P (4-8)

F D ID FD

and, .

P= 1 P (4-9)

where,

summation over all possible values of D.
D

The transition probabilities POD and P1D are determined by

the given fusion rule. Since D can take 2n possible values,

n d~there are 2 possibilities for POD and Pi The goal is to

maximize the overall probability of detection while keeping

the overall probability of false-alarm constant. To do this,

we use the calculus of extrema and form the objective function

J(T 1,T 2,... ,T) = P D(S,T1. Tn ) + [PF(T1 T2,... Tn)-V]

(4-10)

where v is the desired false-alarm probability at the data

fusion center, E is the Lagrange multiplier, and Ti,

i=l,2,...,n, are the threshold multipliers at each detector.

To maximize PD(S,Tl,...,Tn), subject to the constraint that

PF(TlI,T2 ,. .T) is a constant, we must maximize the objec- ,

tive function J(TI,T 2,. ..,Tn). We set the derivative of

J(TI,T2 . ..,Tn) with respect to Ti, i=1,2,...,n, equal to
21n
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zero and solve the following system of n nonlinear equations

in n unknowns.

3J(TI,T 2,. ..,Tn )
= 0 , j=l,2,...,n (4-11)3Tj

Once the threshold multipliers, Ti, i=l,2,...,n, are obtained,

11all the P F's are fixed and the optimum PD results. Now, we

give specific results for the "AND" and the "OR" fusion rules.

We also find the optimum threshold multipliers so as to maxi-

mize PD while PF is maintained at the desired value.

4.2-1 "AND" Fusion Rule

In Table 4-1, we present the "AND" fusion rule. From

this table, we see that the global decision at the data

fusion center is one only if all of the detectors decide a S

one. The transition probabilities are

0 , if D =

POD (-2a
1 otherwise ,4 .a

and

1 if D T [ 1 ]T

PI (4-12.b) , 7
1lD

0 , otherwise ( b

Substituting equations (4-12.a), (4-12.b), and (4-9) into

equations (4-7) and (4-8) and rearranging terms, PD and PF'
.-. ' J%.

can be written as .

'64

%"



Dni

D1  D 2  D 3  . . . D n 1  D n  DO0

0 0 0 . . . 0 0 0

0 0 0 . . . 0 1 0

0 0 0 . . . 1 0 0 •

0 0 0 . . . 1 1 0

1 1 0 0 0 •

1 1 • • • 0 1 0

1 1 0 0

Table 4-1. "AND" Fusion Rule

65

* ' .



n
PD =  P (4-13) 0

n

PF =  I P F (4-14)

That is,

n1

P = I + N. (4-15)
(I+S+Ti) i

=n

nT 1p _ 1 (4-16)
(1+Ti) i

Substituting equations (4-15) and (4-16) into equation

(4-10), the objective function is,

n N.

J(TI9T2 ... Tn) i (1+S) 1
n n N.

(1+S+Tj)1

n~f 1 -
N V] (4-17)

(1+Ti)

N
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Taking the derivative of J(T1 ,T2,...,Tn) with respect to

Ti, j=l,2,...,n, and setting it equal to zero, we get

J(TT2..,Tn= n I N.+N. j

~J(T1,T21- n~T) IT ____________

nn N.1 N 0, j=1, 2,.. .,n (4-18) -

N.+I- N. ' N.
iil(i ) 1 ("S+. l++T)

ij 1+T (1+T i)

i~j

The threshold multipliers, Ti s, can be obtained by

solving the above set of coupled nonlinear equations

along with the constraint

n 1
Pp TI N.=v (4-19)

i=l (l+Ti) 1

Numerical results will be obtained in Subsection 4.2-3.

.'z.. 9-

4.2-2 "OR" Fusion Rule

In Table 4-2, we present the "OR" fusion rule. The

global decision is zero only when all the detectors decide
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* 0

D D 2  D3  . .. Dn 1  Dn  D O

0 0 0 . . . 0 0 0

0 0 0 . . . 0 1 1

0 0 0 . . . 1 0 1

o 0 0 1 1 1

1 1 1 • 0 0 1

1 1 1 • • • 0 1 1

1 1 1 • • • 1 0 1
1 1 1 •. 1 1 1 0 :

Table 4-2. "OR" Fusion Rule.
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a zero. The transition probabilities are:

1, if D =[0,0,...,0] 1T

P OD (4-20.a)

0, otherwise

and

TS

0, if D =[0,0,... 0 1T '

~lD =(4-20-b)

1, otherwise

Substituting equations (4-20.a) and (4-20.b) into equations

(4-7) and (4-8) and rearranging terms, PM and P~ can be *..~

M F,

written as

n

PM IT P N (4-21)

and
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F (4-22.a)D -

D#O 0

= (1 -P F I (4-22.b)

D S " S k

The objective function then becomes

n
= 2 T PM. + fj F D (4-23)rJ(TI'T2,. " Tn) =i=l 1 D - v 4-3

DO
D70

Note that in this case we have to minimize J(T1,T2,. .T.,n

since we are minimizing the overall probability of a miss,

which is equivalent to maximizing PD at the data fusion

center as defined by equation (4-9). Taking the deriva-

tive of the objective function with respect to T.
J

j=l,2,... ,n, and setting it equal to zero, we obtain

N. N.
J(T 1 ,T 2 ,... ,Tn) n Nn = l[1 nIA+S) 1 • I+S).• N N. + l, ,

i (+S+TiJ) (I+S+Tj

DS 1 1 Nk 0 (4-24)
D#.O j #k +jkAj +W i . .,'

j=l,2, . ,n *

Hence, we obtain a system of n coupled nonlinear equations

in (n+l) unknowns. Then, we use the following constraint

70
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rI (1 P IT ~ lp V (4-25)
S' 0 F 1F

D O

to solve for the (n+l) unknowns.

In the next subsection, as an illustration, we derive

specific results for a system consisting of two detectors

and a data fusion center as shown in Figure 4-2. The per-

formance of the system is also investigated.

4.2-3 Example

The system under consideration is shown in Figure 4-2.

For ease of understanding, we will use a more explicit nota- N

tion. Let us denote the transition probabilities by ,~ , .

P =Pr(D =kID =i,D~j (4-26)kij 1 2

for i,j,k=O,l. Then the overall probability of a miss,

i s 
S 

i

p p p + P0lM~~ 00 1 ~

M 00M, I 2 1 2 %"

+ P~llP 1- (4-27) ",V

and the overall probability of false-alarm, PF is .

4%,
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PF P100 1-PF 1(P F + P101(1 P F )P F + 110P F (1-PF
121 2 1 2 'A.

+ Pl F PF 2 A I) 

1 2

"AND" Fusion Rule

From the "AND" fusion rule at the data fusion center,

the transition probabilities are

P011l= P100 = Pl01= P1 1 0 = 0 (4 -29.a)

P0 0 0 = P0 0 1 = P0 10 - P111 = 1 (4-29.b)

Thus, the overall probability of detection, PD' and the

overall false-alarm probability, PF' become

PD PD PD (4-30)
1 2

PF PF PF (4-31)
1 2

The objective function is 0

J(T1,T (I+S)+ 2 + _1_ _ _ _

2N N N N v]
(lS+ 1 l~~+ 2 1 2

( S+T 1 )  (I+S+T 2)  (1+T1 ) (1+T2)
(4-32)

where, N1 and N 2 are the number of reference cells for de- '.,....

tector one and detector two respectively. We maximize

J(T I,T2) with respect to T and TI"2 by setting the derivatives

7 *.- -_-*,*.- .*., 
=

2*. S ."... -



equal to zero, i.e., V "0

- - 0 (4-33)

1T T2 0

The resulting equations are

N1 +2N 1
(1+S) + __0__(4-34)____

N +1 NN+I N : 0 (4-34)
(I+S+T 1) (1+S+T 2) (1+T 1 ) (l+T 2 ) 2 -.

and
N +N

(1+S) 1 20 (4-3)

N NI N2 + N 1  N'2 +1

(I+S+T (1+S+T 2) (I+TI) (1+T 2 )

Solving for T1 and T 2 subject to the constraint

P 1 N 2 v (4-36)

N1  2
(I+T 1 ) (1+T 2 )

2 0

we obtain,

2

T1 I T 2 ;1 + IN (4-37)

The performance of the system in terms of PD versus the

target SNR for N1  4, N2  6, and PF = 0 4 is plotted in

Figure 4-3.

"OR" Fusion Rule

In this case, the transition probabilities are %

% ..% %.
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Po 1 = Po10 = P1 oo-- Po11 = 0 (4 -38 .a)

Po 1 lOl = Pi11 = 1 (4-38.b) i,.

Thus, PD and PF become

P = P + P - PDP (4-39)DPlF2 DlPF2 •

PF PF 1  F - P F (4-40)

The objective function is then

J(TIT ) _ (I S) N I+ (+S) N2 (1+S)NI +N 2

T, 2 ) IT- 2 N1  N2

(l+S+T 1 ) 1 (I+S+T 2 ) 2 (l+S+T 1 ) (I+S+T 2 )

+ { + 1 1 v} (4-41)
1 2NN N2  J

(1+T 1 ) (l+T 2 ) (I+T 1 ) (l+T 2 ) 2

We maximize J(TI,T 2 ) with respect to TI and T 2 by setting

the derivatives equal to zero. After some manipulation, we

obtain the following nonlinear equation.

N2  N N N
(1+S) [(I+S) - (I+S+TI) 1 (I+S+TI) 1 [(l+T2 ) 1](1+T2 ) =

N1  N 2  N 2N I
(IS +) (l+S+T) I [(1+T1  1(1+T ) (l+S+T)

(4-42)

-~~ %. %- %~-
%, . . . - , - . . ... I. .. .-. - .,- . - - - *, ., . -, . ,.- - _ .
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Using the constraint that

N N N2 = (4-43) "4

(1+T1 ) 1 (1+T2) (1+T1 ) (1+T2) 2

we obtain T, in terms of T2 as

N2  1

T=- + (+T 2 ) N 1 (4-44)

(1+T2 ) - 1

Substituting equation (4-44) into equation (4-43) and using

an iterative procedure, we obtain a value for T2 and then TI .

For N = 4, N2 = 6, and P = 10 -, the values of T1 and T2

are 11.597 and 4.050, respectively. The numerical results

showing the performance are plotted in Figure 4-4. In the

next subsection, we comment on the performance of the "AND" 0

and the "OR" fusion rules. 
NC

4.2-4. A Comment on the Performance of the

"AND and "OR" Fusion Rules

In Figure 4- ; we plot the system performance for the

"AND" and the "OR" fusion rules. As evident from the figure,

when the target SNR exceeds 14.5 dB (approximately), the

performance of the "OR" fusion rule becomes better than the

performance of the "AND" fusion rule. This is easily demon-

strated analytically. Let the overall probabilities of

detection at the data fusion center for the "AND" and the ' "...

"OR" fusion rules be denoted by P and P respectively

Then, 
'

V .
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0 > A (4-45)

D -

if and only if,

N1  N2  NI+N 2'(l+S) + (l+S) 2 -(1+S) N N

N N2  NI  N 2 -
(l+S+T I) (l+S+T 2 ) (l+S+T ) (I+S+T 2)

21+2Nl+S +N 2

N.1  N (4-46)

(I+S+T I) (I+S+T 2 ) 2.-

Solving this nonlinear equation, we obtain S=14.57 which

agrees with the graphical result.

4.3. Optimization of the Overall System

In the previous section, we studied the problem of

CA-CFAR detection with multiple sensors and data fusion.

Given the fusion rule at the data fusion center, we maximized

the overall probability of detection by obtaining the opti-

mum threshold multipliers at the individual CA-CFAR detectors,

while the overall probability of false-alarm was maintained

at the desired value. In this section, we will also consider

the design of the optimum fusion rule. Again, the goal will

be to maximize the overall probability of detection while the

overall probability of false-alarm is kept at a desired value.

While maximizing the overall probability of detection, we

will derive the optimum fusion rule at the data fusion center

as well as the optimum threshold multipliers at the indivi-

dual CA-CFAR detectors. We will use an approach similar to

the one in [35].

The decision output, Do, at the data fusion center is a %

00function of the incoming decisions D., i=1,2, ... ,n, i.e.,

SO)

% % % % % N %

8 0 .\ €,,
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D= f(D1,D 2,...,D )(4-47.a)n

. ... . =-', W~ : -';' w 
u IK  

i~ if..i ..

and 
J

D E {0, 1} (4-47.b)

For ease in handling, we use the following notation for - ,0

quantities defined in equations (4-6.b), (4-6.c) and

(4-6.d), ,0.A
P =Pr(D (448a

PDI MD (4-48.b) , \

P = FD (4-48.c)

Then, the overall probability of detection, PD' and the

overall probability of false-alarm, PF' at the output of the

data fusion center can be written as

P= PID Dl (4-49)
D --D --D

PF DPlD PDO (4-50)

The optimization process for the overall system will

be carried out in two steps. First, we optimize the fusion

rule at the data fusion center assuming that the threshold

multipliers are known. This yields a set of equations. Then,

we obtain the optimum threshold multipliers assuming that

the optimum fusion rule is known, which gives another set of

equations to be solved. These two sets of nonlinear equa-

tions are then solved simultaneously to yield the optimum

threshold multipliers and the optimum fusion rule.
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Again, using the calculus c2 extrema, we form the

objective function,

J = P + E (PF V) (4-51)

where, E is the Lagrange multiplier and v is the desired •

probability of false-alarm at the data fusion center. Sub-

stituting equations (4-49) and (4-50) into equation (4-51),

we obtain

D* DJ = D DlD + { lD m~o- - } (4-52)

The vector D whose elements are the decisions Di,

i=l,2,...,n, can take 2n values. For a specific value

of D given by -. -

* * * * T"' "
D = (D1, D2,. Dn (4-53)

equation (4-52) can be rewritten as
v*}

J PlD* PD*l + {PlD* PD*O -v

+ K(D*) (4-54)-®r,%

where,

DD* 1D PDO

K(D*) = P P
- DD* 1D Dl

and

= Summation over all possible
DD* 0
-- values of D except D*

82
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Our goal is to maximize J. This maximization is equivalent

to maximizing PlD* PD*l subject to the constraint PlD.PD*o=v *

Dividing equation (4-54) by PD*l we obtain - -

J*= PID* + {PID* - vv*} + KK(D*) (4-55)

where Ve

J* J

T_ ____
PD*0

PD*O

and

K(D*)
KK(D*)=

Since KK(D*) does not depend on PlD* equation (4-55) repre-

sents the equation of a straight line in terms of PID*" Thus, " 4.

as in [35], we obtain the conditions which the transition

probabilities must satisfy to yield the optimum fusion rule.

PID* = min {v, 1}

1 (4-S6) %~

PID* = 0 -

The next step is to find the optimum threshold multi-

pliers, Ti, i=l,2,...,n. The probabilities of detection, S

PD and the probabilities of false-alarm, PF' i=,2,...,n, .%,% *<.

at each CA-CFAR detector are functions of the threshold
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multipliers, Ti, i=1,2,...,n. Therefore, maximizing PD'

while PF is fixed at the desired value v, is equivalent

to maximizing J with respect to the threshold multipliers

Ti's. We take the derivative of J with respect to Ti ,

i=1,2,... ,n, and set them equal to zero to yield the follow-

ing set of equations which the optimum Ti s must satisfy.

= 0, i=1,2 ,...,n (4-57)

It should be emphasized that the set of equations (4-56) .

and '4-57) are to be solved simultaneously in order to ob-

tain the optimum threshold multipliers as well as the best

fusion rule. The computations involved are overwhelming and

it will require an extensive computer iterative procedure.

This point will become evident in the simple example we

consider next.
Example

We consider the system of two CA-CFAR detectors with

data fusion. For thie sake of simplicity, let the transition

probabilities of equation (4-26) be denoted by ai, i=1,2,3,4.

i.e.,

* = Pl00 (4-58.a)

* 2 
= P101 (4-58.b) •

a3 : P1 lo (4-58.c) -

a 4 =Plll (4-58.d)

Using the same notation as in the example presented in

Section 4.?, we can write the overall probability of detec-
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tion, PD' and the overall probability of false-alarm, PF'

as 
?

D 1(1 D (1 ) + a2 (lPD i  +a 3 D (1 D a4PD PD1 2 1 2 1 2 1D2

(4-59)( 4- 59 ) .,,- , .

PF = l(1-PF1)('PF2)  + 2(1-PFt)PF2 + 3PF (1 )F + 4PFPF2
1 P *2 1F2

(4-60)

Assuming that the target SNR is the same at each CA-CFAR

detector, denoted by S, the probabilities of detection and

the probabilities of false-alarm at each CA-CFAR detector 0

are (see Appendix A),

PD 1 =1 + S + T1  (4-61)

1+5 N2
1 + S N2 ;'

D= 1 + S + T2 ] (4-6.,
2 2

P1 ( T 1  (4-63)
(1 + TI) " ,

- (4-64) 4
2  (1 + T2 

)

As discussed earlier, to optimize the entire system we need

to maximize the objective function defined in equation (4-51).

Substituting equations (4-59) and (4-60) into equation (4-52), Awl

we obtain .,

1-= PD2 +D1 D2) +2(1 PD.1 2 3 PD 1 (-PD 2 +c'4PDPD2 .

!+ ;1(1PF-PF F ) + a2(1P )pF FZ~ 1-F2)+ct4PFIPF2},,. "-v1 2 1P2 1 2 1 2 2

(4-65)
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Dividing equation (4-65) by 1 -PD1 -PD2 +PD1 D2 ), we get a new

objective function J1, i.e.,

J1 =  + 1 -V + K1  (4-66)

where
AD1 = 1 - + P DPD1 "D 2  DPD2

AF 1 = 1 - P F-p + P Fp

2F 1- F+ 1 F2 
} + 4P 1 F -

J
1 AD1

f a 2 ( l e q u a t i o n F + 3 hP o o a s t+i ht4P D ,
K1 1 2 1 2 1 2

KAD 1

Notice that equation (4-66) is the equation of a straight

line in a1. In this case, the extrema are at the end points

depending on whether the slope is positive or negative. Thus,

at the data fusion center, the value of a1 is given by

a = min {vi,i}

1 1(4-67)

0

In an analogous manner, we obtain

.5 ..

0 X



a 2 min {v 2 11

K2 1 (4-68)

CL2 =0

a 3  min {v 3 "}

3 1 (4-69)

a3  0

a4 min {v4i}

E 4 1 (4-70)

a4 =0

where, v V 3 and v have a definition similar to v 0
2 341

The next step is to find the optimum threshold multi-

pliers. The optimum threshold multipliers are related to

the transition probabilities through the objective func-

tion J. This relation is easily seen by rewriting the ob-

jective function as

PDlfa 3 -cl ' PD2 (al-a 2 -OL3 + a4 )] ,

+ E f{PF[a 3-al + PF2(l-a2 -a +4 + -v PF2(a2 -a,))

+ a 1 + PD2 (a2-'I)} = 0 (4-71)

Dividing equation (4-71) by [a3-al + PD2(al-a2-a3 + a4)] and

rearranging terms, we obtain the objective function J to

be
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ill = D + Ii {PF I  - V11} + K (4-72)

where,

a3-a1 + PF2 ( 1-a2 -a3 + a 4 )
iI = a3 -a I + (D 'l-a 2 - 3 +a c4) ,)

2 P

a 1 -v F P(a2-al)
vii a 3 -al + PD (a 1-a 2 -a 3 + a 4 )

a1 + PD2 (a 2 a I )K V- + P (a - a )

3D2  2  + 4V 2

In a similar manner, we can define J 2 2 ' 22' '22 and K22 for

the second threshold multiplier. Taking the derivatives of

J 11and J22 with respect to T1 and T2, respectively, and

rearranging terms, we obtain

1 = - Ell 
(4-73)

T P -_ -11PD2
P 2 .2 (4-74)

F2

Substituting equations (4-61) to (4-64) into equations

(4-73) and (4-74), we get
• N 1  NI+l

-'(l+S) 1 I+T 1
-1 - " N+1) (4-75)

N N2+I,
(i+S) (I+T 2 ) 2,.

'22 = -N (4-76) ., ..(1 + S + T2 )

Solving equations (4-59) to (4-64), (4-67) to (4-70),

N

88

~Z



(4-73) and (4-74) by an extensive iterative procedure, for

N1 = 6, N2 = 4, we obtain the optimum PD versus PF curves

shown in Figures 4-6 and 4-7, for S = 5 dB and S = 10 dB,

respectively. To obtain the overall probability of detec-

tion, PD' for a specific probability of false-alarm at the

data fusion center, we read it directly from the graphs.
-4

From Figure 4-6, we read that for PF = 10 - PD is .451,

which is equal to the PD obtained from the "AND" fusion

rule.

4.4 Summary and Discussion

In this chapter, we have developed the concept of dis-

tributed CA-CFAR detection with data fusion, where detec- 0

tion decisions are transmitted from each CA-CFAR detector

to the data fusion center. The overall decision is obtained

at the data fusion center based on some "k out of n" fusion

rule. In the first part of the chapter, we obtaind the

optimum threshold multipliers at each CA-CFAR detector,

given the fusion rule at the data fusion center. In the

latter part of the chapter, we optimized the entire system.

That is, we obtained the optimum threshold multipliers at

each CA-CFAR detector, as well as the optimum fusion rule at

the data fusion center. Although the computations involved

required an extensive iterative procedure, numerical re-

sults were obtained to show the performance of the systems

proposed.
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CHAPTER V

ADAPTIVE CFAR DETECTION WITH MULTIPLE

BACKGROUND ESTIMATORS I le

5.1 Introduction

In the last chapter, we studied the use of multiple

sensors with data fusion for adaptive CFAR detection. De-

cisions of the individual CFAR detectors were transmitted to

a data fusion center where they were combined according to

some fusion rule to yield a final decision. In this chapter,

we will still use multiple sensors as shown in Figure 5-1.

However, rather than the detector decisions, the individual

sensors compute and transmit estimates of the level of the

background noise to the CFAR detector. These estimates are

used to set the adaptive threshold required for the desired

probability of false-alarm at the CFAR detector. In Section

5.2, we formulate the problem, discuss the operation of the

system and derive expressions of the probability of detection

for CA-CFAR, GO-CFAR, and SO-CFAR detection. An example is

presented in Section 5.3. In Section 5.4, we suggest a

hybrid system which combines the concept developed in Chapter".

four and the concept used here in Section 5.2.
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5.2 Adaptive CFAR Detection with Multiple Background

Estimators

A more detailed block diagram of the system under

consideration is shown in Figure 5-2. It consists of (n+l)

sensors, n of which are used solely for the estimation of

the unknown level of the white Gaussian background noise.

These sensors are denoted by EE 2,...,E n . The sensor El,

i=1,2,...,n, obtains the maximum likelihood estimate (MLE),

Wi, i=l,2,...,n, of the unknown level of noise (we refer to

W. as the MLE even though strictly speaking it is Ni times

the maximum likelihood estimate, where Ni is the number of

range cells at the ith estimator). As indicated in Figure

5-2, the center tap and the guard cells are not used during

the computation of W. at the sensor E.. After this data:'.-.

compression, the MLE Wi , i=l,2,...,n, is transmitted to the

CFAR detector CD. CD computes its own ML estimate of the

background noise and obtains the reference windows U and V.

The MLE's WIW2 , . . . , Wn are combined with the reference win-

dows U and V at sensor CD where a decision about the target

is to be made. The MLE's U,V and Wi , i=l,2,...,n, are com-

bined according to the desired selection logic CA, GO or SO

to yield the adaptive threshold Q. Q is then scaled by the

threshold multiplier, TN, so that the probability of false-

alarm at the output of the CFAR detector at CD is maintained

at the desired value. The test statistic, q0 , from the cell 0

under test at the CFAR detector is compared to the threshold

TNQ in order to make a decision. -I %
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The target to be detected is assumed to be of Swerling

type I with an SNR S embedded in a white Gaussian noise. The

noise samples of the reference cells of the sensors are

assumed to be independent, identically distributed with the I

probability density function defined as in equation (1-5). %

The probability density function and the cumulative distribu-

tion function of the estimates Wi, i=l,2,...,n, are (see

Appendix A for details).

N.- -w.
P (W W e , w. >0, (5-)PW w) F(N.) 111 1= 2,. .,

-w.i (N.i/2)-l
Fw) = 1 - e 1 w , w. > 0, (5-2)

1 j=0 i=1,2, ,n.. •

where Ni,=I,2,...,n, denotes the number of reference cells

at the sensor Ei. i=l,2,...,n. The reference windows U andV

at CD are assumed to have the same number of range cells

equal to For ease of notation in deriving the adaptive2

threshold, we let

N: N (5-3)

Now, we obtain the probability of detection for the

CFAR processor with multiple background estimators shown in - S

Figure 5-2. The cell-averaging selection logics considered

are the CA, GO and SO.

5.2-1 CA-CFAR Detection

In this case, the statistic Q is the sum of the MLE's -'-.'

i.e., - .
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Q=u + V + W + W 2 + ... + wn  (5-4)

where U, V, and Wi, i = 1,2,...,n, are statistically inde-

pendent random variables. Let us define S

Wo = U + V (S-S)

Then, the probability density function of W is the convolu- 4
tion of the probability density functions of U and V. Using

equations (1-7) and (1-8), and rewriting the convolution to

obtain the probability density function of W we have
w N N".

-w -1w*-
PW (Wo) e u u ) 2 du

0 " du.0.F C 0)

(5-6)

Solving the integral and rearranging terms, we obtain

-Wo N 0 -l1
PWo (w0) = > e w0  w0  s 0 (S-7)

The probability density function of Q, P q), is given by,

the following n-fold convolution. : .

CA(q) = P(W) * P (wl) * * PW (Wn) (5-8)

PQ (q P (n

For the sake of clarity, we define the following random

variables.

Qi Q,_l + Wi i=2,3,...,n-1

Q = n- + W ("9)

n0

IN -n- In *" 'e * . %V
9 7 r"V5  b .-.i



The probability density function of Qis given by the

following convolution
q

PI(ql) P (w0 ) pW (ql-wo) dwo (5-10)

0 A.

Substituting equations (5-1) and (5-7) into equation (5-10), Q

we obtain -

-q 1 efl-N -1 N1-1 w
(ql) = r(NI) r(N°) 0 (5-1)).dw0

Solving the integral, we get

e No+N 1-PQ e o1 BN
Q(q 1 ) F(NI) F(N) ql oN 1 ) (5-12)

where B(x,y) is the incomplete Beta function. B(xy) can be -

defined in terms of the Gamma function, i.e.,
r(x) r(y) -1 ,' ,

B(x,y) = (5-13) -

Substituting equation (5-13) into equation (5-12), the -,

probability density function of Q, becomes Sf

p (ql )  e q(No+NI) + N 1 1 ql > 0 (5-14)

~Similarly, we can derive the probability density function of '

|Q2 PQ (q2). Since

Q2 = QI + W2(-1)'

and Q, and W2 are statistically independent,

2 2 N - No+N -1
2)  F(N2  (No+N f  q (q2-ql) dql

pQ2 ( 2J o( I f
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Solving the integral and using equation (5-13), PQ(q 2 ) be-

comes

-q2  N +N + -I
PQ (q 2)  e q2

°  (5-17)
Q 2  r(N+NI+N2 ) 

Continuing in this manner, the probability density function

of the adaptive threshold, PCA (q), can be seen to be

CA -q 4- I(-8
P (q) e q

where,

n
I N

i= 0

Substituting equations (5-18) and (1-3) into equation (1-2),

the probability of detection, P CA is

Ti-qT0 CA q  %'"

PCA f e 1+S I e -q q4-l dq (5-19)

0

This results in

PCA [+S (5-20)
D CA

+ CA
The probability of false-alarm, P FCA is obtained by just

setting the target SNR S to be zero, i.e.,

1 (5-21)
F (1 + C "

5. 2-2 GO-CFAR Detection

In this case, the adaptive threshold Q is

Q = MAX(U,VW I W Wn
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Since the random variables U,V, and Wi, i=l,2,...,n, are .

independent of each other, the cumulative distribution func-

tion of Q is

F(0 (q) = Pr {Max(UVWIW',...,Wn) < q} "

= Pr {U < q, V < q, W1 < q, W2 < q,..',Wn < q}

= Pr {U<q}.Pr{V.q}.Pr{Wl<_q} - Pr{W2<q}... Pr{Wn<_q.

= Fu(q) Fv(q) F (q) F (q)... FW (q) (5-22)
UW1 W2 Wn

The probability density function and the cumulative distri-

bution function of U and V are as defined in equations (1-7)

to (1-10). We define the notation

U = W and T No (5-23)

V = Wn+ and N =N (5-24)
n+1 n+l

Using equations (5-23) and (5-24) in equation (5-22), the

cumulative distribution function becomes

F' (q); Fw (q) F (q) FW (q) .. F n (q) F n  (q) (5-25)
0 1 2 n n+l

Then, the probability density function of the adaptive thresh-

old is obtained by taking the derivative of equation (5-25)

with respect to q, i.e.,
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PGO (q) = Po (q) FW (q) Fw (q) .. Fw (q) FW (q)

"FW 0(q) PW1(q) FW2(q)"'". F W n(q) FWnl(q) ''

+ FW (q) FW (q) PW (q) ... FW n (q) FWn (q)

o 1 2 n n+ 1

+ F (q) FW (q) F (q) ... (q) F (q)
o 1 2 n Wn+I

o 1 q q 2 ()..FWn ()PW n+i (q) (5-26)

Now, we substitute equations (1-7) to (1-10), (5-1), and

(5-2) into equation (5-26) to obtain

1 N -1 n+l N1

PQO(q) r(N q e Tq I (1 e-q i=0 -- l qi)

0 j e 0  i-

N -1 e n+l -1  -q

+ 1 q n e q I (1-e -  1q ','

1 j=0 i=O
j~1

+

+ 1 nl -q n11 -e -qN 1 1
+ N n)q e j =0 i=0 q

jin

I N -1 I- N.- 1  1
+ 1 q n e1 q r, (1 - e- q I fTql) (5-27)

F~(N n+i) j =0 L-O

Regrouping common terms, P O(q) becomes

Q1
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N+ 1 N -1 N. °.
n+l k e q n+1 j-1 i

GO I q(e -e -q  _)}-
(q) r k=N k - =o (1 -e = ~i~ (5-28)k=0 J Nk j = 0 =0 "-'V') -

This can be substituted in equation (1-2) to obtain the

probability of detection.

5.2-3 SO-CFAR Detection

In this case, the adaptive threshold Q is

Q = MIN(Wo,W1,W2,.. . ,Wn Wn+l)  (5-29)

where W and Wn+ are as defined in equations (5-23) and

(5-24). The cumulative distribution, F so(q), is

F o(q) = Pr {min(W o ,W1 .,nWn+l) < q}

= - Pr {min(W ,W i,W2,...Wn,Wn ) > q}

= 1 - Pr {W0 >q, W1 >q, W 2>q,...,Wn>q,Wn+l>q}

= 1 - [1-F w (q)] '[I-F (q)] .. [I-F W (q)]. [i-F (q)]

o n n+l )

(S-30)

Taking the derivative with respect to q, the probability

density function, Ps (q), is QN
102
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P 5 (q) P= W (q)[1 - F (q)].[1 F (q)]...[1 FW (q)][1 - F (q)]
Q o I ) 2 n Wn+I

[1 0 (q)] P1(q) [1 - 2 (q)]. [1 n (q)].[1 - FW (q)]

[1 - FW (q)][1 - FW (q)] (q)...[l - FW (q)].[1 - FWn+l (q)]

[1 - w (q)][1 - FWl(q)].[l - Fw2(q)... P wn (q)[1 - FWn+ (q)]

[I - Fwo (q)l - FwI(q) [I- Fw2(q)]...[l - Fwn (q)] +1(q)

(S-31)

Substituting from equations (1-7), (1-8), (1-9), (1-10),

(5-1) and (5-2) into equation (5-31), the probability

density function is obtained to be

pOq = k -11 e - q n+l N 3 i2so() * T (e - q  q__ ) } (5-32)

k=O r(Nk) j=0 i=O
ilk S

Again, we can use equation (5-32) in equation (1-2) to obtain

the probability of detection. In the next section, we present

an example for illustration. 
0

5.3 Example

The two-sensor system under consideration is shown in

Figure 5-3. The probability density functions of U and V
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Estimtor FARDetection

(a)

U Z~qi V Eq. > Detection

Decision

~;qw

(b)

Q=IJ+V+W, CA-CFAR; TN TCA

Q=MAX(U,V,W), GO-CFAR; T -TN -GO

Q=MIN(U,V,W), SO-CFAR; T N TS

Fig. 5-3. A Two-Sensor CFAR Processor with

One Background Estimator. 0

%
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SYW

are defined in equations (1-7) and (1-8), and the probability

density function of W is

-w1 N+l -w
PW(w) r(N+2) W, w > 0 (5-33)

Using these probability density functions, we derive expres-

sions of the probability of detection for the three schemes,

-A, GO and SO, discussed above.

CA- CFAR

The adaptive threshold Q is the sum of U,V, and W, i.e.,

Q = U + V + W (5-34)

Thus,

pCA(q) = PuU) * Pv*) * Pw )  (5-35)
PQ (q PVu ~v W~w

Using the results derived in the previous section, pCA(q) is

CA 1 2N+l e-qP (q) r(2N+2) q e q > 0 (5-36)

Substituting equations (5-36) and (1-3) into equation (1-2),

we obtain the probability of detection PCA to be ,.

CA 1 + S 2N+2 (537) . 0

PD + S + TCA (-7

while the probability of false-alarm is

CA 1 (5-38)
F + T ZN+Z

-4
For a probability of false-alarm of 10 and N=4, we plot S

105

los



PCA versus the target SNR to study the improvement in the
D

performance. In Figure 5-4, we plot the probability of

detection of the two-sensor system of Figure 5-3, and the

probability of detection of a single sensor system. The

improvement in the performance is clearly noticeable.

In this case, the adaptive threshold is eq al to the

maximum of U,V, and W, i.e.,

Q = MAX(U,V,W) (5-39)

The cumulative distribution of Q is

FGO (q) = F (q) Fv(q) Fw(q) (5-40)

while the probability density is

PGO(q) = Pu(q)F(q)Fw(q) + Fu(q)Pv(q)Fw(q) + Fu(q)Fv(q)Pw(q)

(5-41)

Substituting equations (1-7) to (1-10), and (5-33) into

equation (5-41), the probability density function of the

adaptive threshold becomes ,

N N 1

PGoq 2 7-1 7-1 L2 1 i -¢

PQO (q) 2 {q I- e q  2q e 2q

N 1 (N/2)-l N+I
e 3q 1 qj+k

j u;O k=0 j "}+
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1 {qN+l e - 2qN+l e- (N/2)- qj

+1N+ 1 1 jj=0 -q

N+l e 3 q (N/2)-1 (N/2)-I j!k qj*k} (5-42)

j =0 k=O

The probability of detection is obtained from equation (1-2)

by using the results of equations (5-42) and (1-3). Solving

the integral and rearranging terms, PGO can be written as

N r + N
G 1+S 7- 2 N+1 F+j 1+S 2 Jp D 2 [ I+S+T~o - I 1 [2 ]+)+

=GO rP-,) j=T GO

N N
2 (N/2)-l r( + j) 1+S +

r 4) j' [ 2(l+S)+TGOP(~- 5=0 GO
N +N.J k

2 N/2}-l N+Il r(g N + j + k) N+ +j +.k

+ 2 yN2) N1 2 1+S
N j 1k! 13(1+S) +T

+ (--. j=0 k=0 '" [ ( + ) GO...

+ I+S N+2 2 (N/2)-I r(N+j) 1+S ]N+j+2
I+S+T r(N+2) J! 2 (I+S)+TGo 0

1 (N/2)-1 (N/2)-1 I 1+S N+j+k+2 o .
1 _ (N+ ______ %r(N+2) j=O kk 3(+S)+T

(5-43) •

The performance in terms of P 0 versus target SNR is .D

shown in Figure 5-S. Again, the performance of the two-

sensor system is compared to that of the single sensor

system..
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Fig. 5-5. Performance of the GO-CFAR Detectors for PF = i0

and N=4. v2
DS -CFAR Processor with a Background Estimator. i-,V-
SS S-single sensor CF AR Detector..
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SO- CFAR -

The threshold in this case, is the minimum of U,V, %

and W, i.e.,
IN

Q = MIN(U,V,W) (5-44)

The cumulative distribution of Q is given by

F Q(q) = Fu(q) + Fv(q) + FW(q) - Fuv(qq) - Fuw(qq) Fvw(q'q) --5")-

+ F UVW(q,q q) (5-45)

The probability density function is, therefore,

F (q) = 2Pu(q) [I - FV(q) - Fw(q)] + 2Pu(q) Fv(q) Fw(q)

+ P j(q)[l - 2Fu(q)] + P (q) Fu(q) Fv(q) (5-46)

Substituting equations (5-46), (1-3), (1-7), (1-8), (i-9),

(1-10) and (5-33) into equation (1-2), and rearranging terms,

the probability of detection is obtained to be

N N
PSO 2 (N/2)-l N+l r + j + k) [ I+S 2 j+k- 1,,-.
PD NT !k! 3(lU+S)+TI

rj= k=O so

(N/2)-i (N/2)-1 ,,N-
+ (N++k+)!I I+S I N+j+k+2

j=0 k=0 so

(5-47) •

In Figure 5-6, we compare the performance of all of the

N".lOoN.
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three schemes for the two-sensor system considered in this

example.

5.4. An Extension

In this section, the concept of using multiple back-

ground estimators is employed in conjunction with the con-

cept of distributed detection with data fusion developed in

Chapter four. The hybrid system that we consider is shown

in Figure 5-7. The system consists of n background estimators

E1 ,E 2... ,En and a CFAR processor. Each background estimator

E., i=l,2,...,n, transmits the output qoi from its test cell

(center tap) as well as the MLE of the level of the background

noise, Wi, to the CFAR processor. The MLE's are combined to
1 .,

obtain the adaptive threshold which is scaled by the threshold

multiplier, TN, to achieve the desired value of the probability _

of the false-alarm at the system output. At the CFAR processor,
NO

each test cell qoi i=l,2,...,n, is compared to the above :

adaptive threshold to yield a decision Di, i=l,2,...,n, where

D. E( {O, }. In a manner analogous to Chapter four, the de-

cisions D. are combined according to a"k out of n"fusion rule

to yield the final decision D. The performance of the
0

system proposed in this section is expected to be better than

the system discussed in Chapter four. This is due to the

additional information about the background noise available

at the CFAR processor while computing the adaptive threshold

Q. To illustrate the above concepts, an example is presented.

1 t 2 ',,, , ,.
%
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Example

In this example, we consider the system consisting of

two background estimators and a CFAR processor as shown in

Figure 5-8. At the CFAR processor, we use the CA-CFAR scheme

and combine the individual decisions according to the "AND"

fusion rule. The result is compared to the corresponding

system discussed in Chapter four, i.e., CA-CFAR detection PrN *

with the "AND" fusion rule. Let Ph and Ph denote the• 1 an 2 ,r ,

probabilities of detection corresponding to the decisions

D and D2, respectively, in the hybrid system. Let PDd and
be 1

D2 be the probabilities of detection corresponding to the
D2

decisions D1 and D2 for the system shown in Figure 4-2. Let

an d
PD and PD represent the overall probabilities of detection

for the hybrid system and the system of Figure 4-2, respec-

tively. Then, as shown in Chapter four, the detection proba-

bilities can be written as

1 +Sh N+N
h 1 1 2 (5-48)

D 1 l+S h + T

1 + S h NI+N
p h z  2 1 2 ] 5-49)1 + S + T•

l2 T

d N

d + S N 2

D ] (5-51)

2 1 + S2 + T
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Fig. 5-8. Hybrid System with Two Background

Estimators and a Data Fusion Center
Using the "AND" Fusion Rule.
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where Sand are the target SNR's at the two sensors of1 2

the hybrid system; Sd and Sd are the target SNR's at the

system of Figure 4-2; T1 and T2 are the threshold multi-

pliers of the system shown in Figure 4-2; and T is the

threshold multiplier of the hybrid system. Substituting

equations (5-48), (5-49), (5-SO) and (5-51) into equation

(4-13), the overall probabilities of detection Ph and Pd canD D
be written as

h 1 + Sh 1 + Sh NI+N
Ph = {  h 2 1 2  (5-52)

1 + S + T 1 + S2 + T

1 1  2 +~

D +" (5- 53)

S1 + S d+1 1 + S2 + T

In order to compare the two systems under the same conditions,

h _h _d _d _h ndd
we let S1 - S D 2  S. Then, P and P become

h1 + S 2(N 1 +N 2 ) i1 = S T] (5-54)

D I + S +

N + N

=(+)N 1  N2  ( 5- 55 ) r ,V

(I + S + Tl I (1 + S+T 2 1

The probabilities of false-alarm are _

F 1 (5-56)PF 2 (NI+N2J(5 6 .:..:.

(1 + T) ( 1+N 2 )

dI
P = N1  N2  (5-57)

(1 + T1 ) (1 + T 2 )
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Using N1  6, N2  4, and P h Pd - 4 we
2F F F

plot P and P versus the target SNR S in Figure 5-9. As

expected, the hybrid system performs better.

5.5. Summary and Discussion

In this chapter, we have developed the concept of using

multiple background estimators for CFAR processing. Since /

the multiple background estimators provide more information

about the level of noise in the background, the performance

improved as expected. The model considered in this

chapter is applicable to systems using frequency

diversity. The model is also applicable to space

diversity systems if we make idealized assumptions,

i.e., perfect synchronization etc. We also discussed

an extension of the work in Chapter four using multiple

background extimators.
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Fig. S-9. Performance of the Hybrid System with Two Background '

Estimators (DS). and the Two-Sensor System of Figure

4-2 (DS) PF 10-4, N 6, N 2  4.
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CHAPTER VI

ADAPTIVE CFAR DETECTION WITH DIFFERENT

NETWORK TOPOLOGIES

6.1. Introduction

In the last two chapters, we have considered the problem

of multisensor CFAR detection with data fusion. In Chapter 0

four, the decisions from distributed CFAR processors were com-

bined at the data fusion center according to a "k out of n"

fusion rule to yield the overall decision. In Chapter five, --.-

multiple sensors transmitted the estimates of the background

noise to the CFAR processor where an adaptive threshold based

on these estimates was used to yield the final decision. In

this chapter, we still consider the problem of multisensor

CFAR detection with data fusion. However, the compressed

data transmitted between sensors are decisions instead of

estimates. In Section 6.2, we formulate the general problem ' A4

of adaptive CFAR detection for two different network topolo-

gies. These systems are optimized and their performance is

studied. In Section 6.3, we illustrate the performance by

an example. In Section 6.4, we provide a summary along with

a discussion.
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6.2. System Optimization and Performance Analysis

The network topologies to be considered in this chapter

are shown in Figures 6-1 and 6-2. In the first, decisions from

individual CA-CFAR processors are transmitted in parallel to

the CFAR processor where a final decision is to be made. In

the second, the CFAR processors are connected in tandem. De-

cisions are transmitted from one CFAR processor to the next.

At the last CFAR processor, the final decision is made.

The target to be detected is assumed to be of Swerling

type I embedded in a white Gaussian noise of unknown level.

At each CA-CFAR detector, CDi, i = 1,2,...,n, we denote

the target SNR by Si, i=l,2,...,n. The target SNR at the

final CA-CFAR detector, CD0 , is denoted by S. For simplicity

and without loss of generality, we let S I=S 2=...=Sn=S. The

number of range cells used by each CA-CFAR detector, CD. is

denoted by Ni., i=l,2,...,n, and N denotes the number of "

range cells for detector CD . Next, we consider the two

networks topologies.

6,2-1. Adaptive CFAR Detection with Parallel

Network Topology

The system under consideration is shown in Figure 6-1.
It consists of (n+l) CA-CFAR processors. Based on its ob-

servation, each CA-CFAR detector, CDi, i=l,2,...,n, makes a

decision Di, i=l,2,...,n, where D. E {0,1}. The adaptive

threshold Qi of CD. is scaled by the threshold multiplier

Ti, i=l,2,...,n. As will be shown later, these T.'s are
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CA- CFAR D 0

Fig. 6-1. Parallel Network Topology for Adaptive

CFAR Detection.
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Fig. 6-2. Tandem Network Topology for Adaptive CFAR

Detection.
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obtained so as to maximize the overall probability of detec-

tion while maintaining the overall probability of false-alarm

at the desired value. The CA-CFAR detector, CDo, combines

the decisions Di, i=l,2,...,n, with its own estimate of the

level of the background noise to obtain the adaptive threshold

Q. The threshold Q is scaled by a threshold multiplier, which

is also obtained so as to maximize the overall probability of -

detection while CFAR is achieved. The threshold multiplier

depends on the decisions Di, i=1,2,...,n. We define the

vector, DV,, consisting of decisions arriving at CD0 as 0

DV,, =(DI,D 2 ,... ,Dn)T , 9 = 1,2,..., 2n (6-1)

Since each Di, i = 1,2,...,n, takes the value zero or one,

nDV can take 2 possible values. For each value of DV

arriving at CD0 , there is a corresponding threshold multiplier

T oz, z = 1 , 2 ,..., 2 n at CD 0 These threshold multipliers,

nT Z = 1,2,...,2 are obtained by optimizing the overall S,

system, i.e., by maximizing the overall probability of detec-

tion, while the overall probability of false-alarm is kept

constant. Thus, the threshold at CD adapts to two types of

information, its own estimate of the level of the background

noise and the incoming decision vector DV .  Let PD' P~ i and
1 1

P be the probability of detection, the probability of false- ..

alarm, and the probability of a miss at each CA-CFAR detector,

CD., i=l-,...,n, respectively. The overall probability of detec-

tion, the overall probability of a miss, and the overall probability

, .. 5 ,v:
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of false-alarm at the output of the CA-CFAR detector, CDo,

are denoted by PD' PM' and PF' respectively. Then, PD and PF

can be written as

2n £ 
L•~A

PD P Z PD 1 PM (6-2) 0

91= M S k

and 2n

PFF 1o (1 P ) SII P (6-3)F Z~l F Sj 0F s1 Fk

where from Appendix A,

P Pr(D ° = lIDVk, HI) (6-4.a)

1+S ]N
[+S+T (6-4.b)

and 
?

Pk Pr(D °  IIDV, H0 ) (6-5.a)
F 0

N 1 (6-5.b)

(1 + T)

The superscript, £, in PD and P indicates the correspondence 0

between the probabilities of detection and false-alarm and

the specific threshold multiplier, To£, obtained from the

optimized system.

To optimize the overall system, we form the following

objective function.

J P P + [P F (6-6) -F
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Substituting equations (6-2), (6-3), (6-4.b) and (6-5.b)

into equation (6-6), we get 4.

Nn N. N.
( 1+) [1 .(+S) 1 (1+S)

=1 (+S+T N 0S° 1
9=1 (l+S+T0 ) S (I+S+TMi) N. 'U W

2 
n

1{ 1 Nl 1
N • 1N. " I .]v}

.Q:l (1+To£) S°  (1+TMo ) 1 (I+TM 1 )

(6-7)

where TM.'s are the threshold multipliers of CDI's,

i=l,2,...,n. The superscript zero in TM. indicates that the

decision of the corresponding CDi is zero, and the super-
11

script one in TM. indicates that the decision of the cor- •
1

responding CD. is a one. In order to maximize P while P
1D F

is fixed, for each value of DV9, we must find the best
0

threshold multiplier, To at CD and the best set of thresh-
op" 0

old multipliers at the CDi s, i=l,2,...,n. Maximizing PD

for a fixed PF is equivalent to maximizing the objective
FS

function J. Thus, we take the derivatives of J with respect

to TM° and TM., 9, 1,2,...,2 i=,2,...,n (the number of
11,

TM.'s and TMI's add to n), and set them equal to zero. The1 1'

resulting equations are

2n N. N.
J- (1+S) (1+5) ,.(1+,)

N+ 0 N
09 Z =l (l+S+T 9.  S (l+S+TM0) 1 $ (l+S+TM )1

1 1

0 N. 1 ,

o9 (I+TMo ) I S (I+TM ) i (6-8)

12 S
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Zn N. N.2 (1+S) N  (1+S) 1 (1+S) 1 .
0N o N.+1 1 __

aTM 9,=l (1+S+T ) S , oi S 1)i
1 Soz N  s l+S+TM.) (1+S+TM)

2 
1

2 "  N 1i 1N =  0  A
Z=1 (1+T N9. S (+TM 0?)+T 1)

(6-9)
and

2n N. N. -
(+S) n [1 (I+S) 1 (1+S) 1

1 N { I1 • I 1[i 1

S 1 01S)r
N ] 0 f N .+}1

TM Zl (l+S+T o s (1+S+TM) s (l+S+I1) 1

0 1 719=1 (14T 0 d) (l+TM.) 1 S 1 N.+11I

(6-10) "

For each incoming DV9,, we have to solve (n+l) equations to

obtain the multipliers at CD.'s, i=, 2,... ,n, and the thresh-
In

old multiplier at CD0  Since DV Z can take 2n possible values,
n n

there are (n+l)2 equations in (n+l)2 unknowns to be solved.

It should be noted that in using this procedure, we have

* optimized the entire system and therefore, the resulting

nonlinear equations are coupled. The solutions to the non-

linear equations are the optimum threshold multipliers at

all CD. 's, i=1,2, ... ,n, which maximizes PD while CFAR is

achieved.

12) 6i

%j. * ,
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6.2-2. Adaptive CFAR Detection with Tandem

Network Topology

In this case, the system considered is shown in

Figure 6-2. The CA-CFAR detector, CDI, makes a decision,

Dl, and transmits it to the CA-CFAR detector CD2 . Based

on the decision D1 and on its own estimate of the background

noise, CA-CFAR detector CD2 makes another decision, D2. The

decision D2 is transmitted to the next CA-CFAR detector CD 3,

and the process continues. At the last CA-CFAR detector,

CDo, the final decision, Do , is made.

Let the threshold multipliers of detectors CDo, CD1, $

CD 2 ,...,CDn, be denoted by T, T1 , T2 ,...,Tn, respectively.

We define P P and P i=l,2,...,n, to be the proba-

bility of detection, the probability of false-alarm, and

the probability of a miss at the individual CA-CFAR detectors .

CDi, i=1,2,...,n. At CD.i, i=2,3,...,n, the threshold multiplier

is represented by Tu(Tl) if the decision received from CDii

is zero (one). Let N, NN 2,**,Nn be the number of range

cells used by CA-CFAR detectors CD0 , CD1, CD 2...,CD , respec-

tively. As before, we assume that the target to be detected

is of Swerling type I and has an SNR S for all of the detec-

tors. Then, the probability of detection and the probability

of false-alarm of CA-CFAR detector CD1 are

PD (1+) N (6-11)
| (I+S+T

1 )

%%

~PF (6-12) . "%,.
F I N
1 +T 1)1. 4N' 1  . .

1 -7
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The probability of detection and the probability of false-

alarm at CA-CFAR detector CD2 are

Pn = Pr(D 2 = 1DI=I, Hl) Pr(DI=I1H I ) +

Pr(D2=1IDI=0, H1 ) Pr(DI=01H1 ) (6-13.a)

= Pr(D 2=11D 1 =1, HI)PD + Pr(D 2 =11DI=0, H)(-PD)

(6-13.b) -

F2  Pr(D 2 11D I =I, H0) Pr(DI11H 0 ) +

Pr(D 2=1IDI=0, H0 ) Pr(D 1=01H 0 ) (6-14.a)

Pr(D 2 =11D 1 =I, Ho)PF + Pr(D 2 =ID 1 =0, Ho)(1-PF

(6-14.b)

The resulting expressions for P and P are

= (I+S) 1 2  + 'LI+.N[ l+S) N1

2 (N+S+T 2 (N+S+T 1  (+S+T) 2(+S) N1
2D 2 ]lS+l

(6-15)

P F 2  (T)N N + N [I N1 (6- 16)
2 1 2 1 2(1+T (1+TI) 1 (I+To) 2 (I+TI) -

For CA-CFAR detector CD we have
3,

P = Pr(D 3 = I D 2 I , HI ) Pr(D2=I H 1

PrCD3=11D2=0, H1) Pr(D2=OJH ) (6-17.a)
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N N 3

(1+S) 3  1 (1+S) ) (6-17.b)
7N3  D N  (I-PD2

(1+S+T3 ) 2 o+S 2

P ~ 3 3 2 lH
P F3  Pr(D 3=lD 2=1, H ) Pr(D2=l1Ho) +

Pr(D 3 =11D 2 0, H0 ) Pr(D 2 OJH o) (6 -18.a)

1 1 1 0p

N P + N (IT) (6-18.b)
(1+T 3 2  (1+T3) 3 2

where, D Pr(D 2 = Di  HI ), P 0 Pr(D 01D 1 H
D = lID 1 H ) 1 D = 2 2=0 1

2 1P F 2 = Pr(D 2  and PF2 Pr(D 2 = O[D 1  H). pD

and P are equal to equations (6-15) and (6-16) respectively,
F 2 0

D2 F can be expressed as

N 2  N 2222
(l+S) (1+S)p2 =[1 N2 ] PD + [i N2] (I-PDI

(1+S+T (1+S+To)
(6-19)

P 0  [l 1 1 (-F2  1 2 F N 1-T ~ 1 F2 (I+T1N 2 1 (I+T 0 ) 2 1 (6-20)

1 o d1 o
The superscript one (zero) in PD ) and (PF ) '

D2 D2 F2 F2
indicates that the decision made by detector two is one (zero).

Recall that the superscript one (zero) in T2 (T) indicates

that the received decision from D is one (zero). Continuing

in this manner, we can write the expressions of the probability

of detection and the probability of false-alarm at the ith 
:-.-;0

detector as, . p

P D.= Pr(Di=lD i-I=1, t1 ) Pr(Di-=lH) + 11H

Pr(Di=lIDi.- =0, H1 ) Pr(D. i=0H l1 ) (6-21.a)

(1+S) N 1 (+S) (
1 o

(I+S+T) i-I (I+S+T o) 1 i-i
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P Pr(D=1Di l21, H o) Pr(D =1Ho) +=11H

Pr(Di=lD il=0, Ho) Pr(Di l0 )  (6-22.a) 1

1 pl + 1 (i-P0  (6-22.b)

(1+T Fi 1 (l+T0 ) i i-1

where

NPJ (1+S) i-i
i N. , j=0,l. (6-22.c)

(1+S+T i-iA

pj 1 j=0,1 (6-22.d)

(I+T i)

The superscript j in PJ and PJ indicates whether the
D spr i Ji-i

previous decision is zero or one. The general expressions

for the overall probability of detection, PD' and the overall

probability of false-alarm, P., at the CA-CFAR detector CD0

can then be written as 0

P. (I+S) p + S)N  (1-P ) (6-23)

(I+S+TI) Dn (I+S+TO) Dn

S

PFN p1 + i (1-P0  (6-24)
(1+T ) Fn (l+T ) n

where, PJ and PJ , j=O,1, are defined recursively in equa-
n n -

tion (6722.c) and (6-22.d) and T (TO) is the threshold at

detector CD if the received decision D is one (zero).
0 n
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We wish to maximize the probability of detection, PD' at

the output of CA-CFAR detector CD0 , while the probability of

false-alarm, PF' is fixed at the desired value v. Since the

CA-CFAR detectors CDo, CDI, CD2,...,CD n are coupled, the en-

tire system is optimized. To achieve this, we form the

objective function

SPD + [P (6-25)

We take the derivatives of J with respect to Tj and TJWd
j=0,1, and k=l,2,...,n, and set them equal to zero. This

results in a system of 2(n+l) nonlinear equations in 2(n+l)

unknowns to be solved. In the next section, we present an

example to illustrate the effectiveness of the system under

consideration.

6.3. Exampie.

The system under consideration is shown in Figure 6-3.

In order to avoid any ambiguity with the notation 
defined ,

in the subsections 6.2-1 and 6.2-2, we define a more explicit 0

notation that is used in this example.

.%

D,D 1 = detection decisions at detectors CD and

CD1, respectively.

T= threshold multiplier at CA-CFAR detector CD1

00
T°  threshold multiplier at CA-CFAR detector CD° 0

if the decision D1 is zero.
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CA FAR D1CA- CFAR 
N7

Fig. 6-3. A Two Sensor Network Topologyfor Adaptive 
CFAR Detection.
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T = threshold multiplier at CA-CFAR detector

CD if the decision D1 is one.

P probabilities of detection at CA-CFAR

detectors CD0 and CD1, respectively.

PFPF probabilities of false-alarm at CA-CFAR

detectors CD and CDI, respectively.

S = target SNR at CA-CFAR detectors CD°

and CD1

N,N 1  = number of reference cells at CA-CFAR

detectors CD0 and CD1 , respectively.

PD and PF can then be expressed as

P = Pr(Do=I1DI= 1, HI) Pr(DI=11HI) + 0

Pr(Do=IID 1 =0, H1 ) Pr(DI= 01H 1 ) (6-26)

PF Pr(Do=ljDl= I Ho) Pr(D=11H 0 +

Pr(Do=11D 1 =0, Ho) Pr(D 1=01Ho) (6-27)

Substituting the expressions of Pr(Do=lD 1 =l, H1 ),

Pr(Do=11D 1=1, H ), Pr(Do=11D1 = 0 , H1 ), Pr(Do=ljD1
= 0, H0 ),

PDI, PFI , PF and PD2 into equations (6-26) and (6-27), IN
1 F2

PD and P F become

N+N 1  N1
P= (1+S) (I+S) N [1 I

1I [I II+S) N' 1

(I+S+TI)N (l+S+T1 ) (I+S+T°) (I+S+TI) 1

(67 28)
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PN . [1 - (6-29)

(1+T 1) N (1+T 1 ) 1 (1+T) (1+T1 ) 1

Substituting equations .(6-28) and (6-29), and P= into

equation (6-25), the objective function is

N+N1  N1

J(TO,TlTI) = (+) + (+s)N [- (1+) 1

''1S+T 1 N (1 N1 (l+S+T°) (1+S+T(l 1 I N(+S+T I) (I+S+TI) ....

NN N NI oN-- N (6-30)

(I+T )N(I T 1 ) (l+T°) (1+Ti)

Maximizing PD is equivalent to maximizing J. That is, we

o 10
take the derivatives of J(T , T 1  T1) with respect to T

° , T 1

and T1 , respectively, and set them equal to zero to obtain

N N
)J (1+S)N N

3T° - (1+S+T 0 (+S+T N 1 (+T ) N+I (i T 1) NI

(6-31)

= (1+S) 1 1=
1 N-N 1 1 N+ N

T (I+S+T )N+I (1+S+TI) (1+T )N+ (l+T) (6-32)

and

N+N N+N I  '.6

1 - 1 jl.DJ -(i+s) (i+s). .. -
3 (T5 N +1 +(+JN 1+

N 1 oNN1 +
(1+S+T ) (I+S+T 1 ) (I+S+TO) (1+S+T 1 )

IS

N +1 + N +1 0 (6-33)

(I+T1) (IT 1 ) (I+TO) N(I+T1 )
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The equations (6-31), (6-32), (6-33) and P = v form a set

of four nonlinear equations in four unknowns to be solved.
We first obtain the Lagrange multiplier, , from equation V

(6-32), i.e., ,

N+N1  N 1 N+l(l+S) (l+T1) 1 (l+T ) "

N -(6-34)
1 N+lN 1(l+S+T ) (+S+T 1)

Substituting equation (6-34) into equations (6-31), (6-33) -7
and P = V, and solving for T in terms of T1 and T we

get the following system of three equations in three unknowns

(T0, T1, TI) to be solved.

lNN1 - 1

(1+T1 )N [(+T 1 ) 1] 1
T = 1 + N } (6-35)

,v(l+T1 ) (I+T ) - 1

nN 1 N

[(1+S+T 1) (l+s)N1](I+S+T1 ) N+(+T )N+

N+T1 - 1 N+l,,1]1 (I+S+T°)N+I (I+S) N (1+T1)+ 0 .

1  (6-36)

and

1lN o N 1 oN[(l+S+TI)- (I+S+T°)N ] (I+S+T I) (+T 1)(l+T°) -
I1

- [(l+T1)N  (1+T° ) N(I+S+T1)(I+T 1 )(l+S+T ) = 0

(6-37) P

-5
For N=6, N =4, and P F=10 , we obtain the results shown

in Table 6-1. Note that the probability of detection, PDS

of the two sensor system is much better than the probability
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of detection, P SS of the single sensor system, for the same

probability of false-alarm and the same target SNR.

SNR S T To T p PSS
(DB) D D

5 10.569 6.103 0.713 .00687 .00156

10 2.554 7.683 2.057 .179 .025

15 3.711 7.029 1.620 .594 .190

Table 6-1. Performance of Adaptive CFAR Detection

with Two-Sensor System and a Single

Sensor System.

PF = 0-5 , N=6, N =4.

6.4. A Comparison

In this section, we present an example where we com-

pare the performance of the three systems that we have de-

veloped and analyzed in Chapters four, five and six. We use

two CA-CFAR detectors with a number of range cells equal to 0

N1 and N2 for detectors one and two, respectively. The systems

under consideration are shown in Figure 6-4. In Figure 6-4 (a),

we have two CA-CFAR detectors with a data fusion center. We 0

assume that the fusion rule at the data fusion center is the

"AND" rule. In Figure 6-4(b), we have a two-sensor system

composed of a background estimator and a CA-CFAR detector as •

proposed in Chapter five, while in Figure 6-4(c), we have two
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CA-CFAR CA-CFAR
CD1  CD2

1 2

(a) AND

D
0 0

stimator CA-CFAR D
0

E CDo

(b)

DS

D1  i. .- ..

CA-CFAR 1  CA-CFAR D * S....

00

CDI1 CD° O.

(c)

Fig. 6-4. Different Network Topologies for

Two-Sensor CFAR Detection Systems.
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CA-CFAR detectors whose operation is as described in this J'

chapter. For the same cross sectional target SNR S, for an

overall probability of false-alarm PF = 1 0- , for Nl=6 and

N2=4 , we compare the performance of the three networks in

Table 6-2.

S pa Pb Pc
D D D

5 0.01S2 0.01S2 0.0687

10 0.166 0. 166 0.179

15 0.526 0.526 0.594

Table 6-2. CA-CFAR Performance of

the Two-Sensor Systems

of Figure 6.4.

The superscripts a, b and c on the probabilities of detection

of the entries in Table 6-2, represent the systems a, b,

and c as shown in Figure 6-4, respectively. It should be

noted that if we had used the "OR" fusion rule instead of 0

the "AND" fusion rule in the system shown in Figure 6-4(a),

the performance in terms of PD would have been worse for the
Dp.

values of S considered here. 0

6.5. Summary and Conclusions

In this chapter, we have derived expressions for the S

probability of detection using n CA-CFAR detectors in parallel

%S

0 0
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and in tandem. In the parallel topology, n decisions from

n CA-CFAR detectors arrived at the (n+l)th CA-CFAR where the

final decision was obtained. The entire system was optimized

and the best threshold multipliers at the CA-CFAR detectors

were obtained so that the overall probability of detection

was maximum while the overall probability of false-alarm was

maintained at the desired value. In the tandem topology, the

detection decisions were transmitted from one CA-CFAR detector

to the next in series and the entire system was optimized.

The improvement in the performance was shown by an example.

This p-ocedure, in which the threshold is adaptive to two

types of compressed data, the received decision and its own

estimate of the level of the background noise, turned out to

be very effective.
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CHAPTER VII %' V

SUMMARY AND SUGGESTIONS FOR FUTURE -

RESEARCH WORK r

.

' ~7.1. Summary [.

New adaptive threshold techniques for CFAR processing

I were proposed and analyzed. In the first half of the .

report, we studied CFAR processors for multiple target situ-

ations. We proposed a weighted cell-averaging CFAR detector

for multiple target situations. We obtained the optimum --

weights for the leading and the lagging reference windows so .-[-

that the prob ability of detection was maximum while the :,%

probability of false-alarm was kept at the desired value. '-

The performance of the WCA-CFAR detector was shown to be ..

superior to that of the CA-CFAR, GO-CFAR and S0-CFAR de- ,.

tectors. The WCA-CFAR detector was shown to be especially -

effective when the interference is large.,

The second CFAR detector proposed for a multiple .'

target environment was a cell-censored CFAR detector. A '

predetermined fixed threshold at the level of each range -,

cell was used to determine the presence or absence of inter- .

ference in each range cell. The cells, for which inter- 4

ference was decided, were censored while others (cells .

without interference) were used in the estimation of the --.

% % %
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background noise. The sum of the leading cells without

interference, and the sum of the lagging cells without inter-

ference were added to yield the adaptive threshold, 
which in

turn was scaled to achieve CFAR. The performance was studied

and it was shown that the cell-censored CFAR detector was

effective in a multiple target environment.

In the second part of the report, we developed

the theory of distributed adaptive CFAR detection. CFAR de- .

tection with distributed detectors and data fusion was

studied. Given a "k out of n" fusion rule at the data fusion

center, the optimum threshold multipliers at the CFAR detec-

tors were obtained so that the overall probability of detec-

tion at the output of the data fusion center was maximum,

while the overall probability of false-alarm was fixed. Then,

the entire system was optimized, i.e., the optimum threshold

multipliers at the individual detectors were obtained as well

as the optimum fusion rule at the data fusion center. In the '4

optimization of the entire system, the overall probability of

false-alarm was maintained at the desired value while the .

overall probability of detection was maximized at the data

fusion center.

Due to the fact that more knowledge about the back-

ground noise improves the detection, adaptive CFAR detection

with multiple background estimators was studied. Estimates "%
t

of the background noise were transmitted from the estimators

to the CFAR detector. The CFAR detector computed its own

Z
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estimate of the background noise and combined it with the

received estimates to yield the adaptive threshold. The

adaptive threshold was then scaled and was compared with the

statistic of the output of the cell under test to make a de- S

cision. As expected, the performance improved. An exten-

sion using a hybrid system consisting of background esti-

mators and a data fusion center was also considered. The

performance of the hybrid system was also studied by means

of an example.

Finally, adaptive CFAR detection for two different 0

network topologies was considered. The two topologies con-

sidered were the parallel and the tandem topologies. In

these cases, the compressed data that were transmitted from -

one CFAR detector to the next were decisions instead of esti-

mates. The final decision at the last CFAR detector was

based on two types of compressed data; namely, its own esti-

mate of the background noise and the received decisions. In

both cases, the entire system was optimized so that the ,v,\

probability of detection was maximum, while the probability

of false-alarm was maintained at the desired values. In

maximizing the probability of detection, optimum threshold

multipliers were derived. Again, as expected the perfor-. .

mance improved. In the next section, we provide some sug-

gestions for future research work.

ON k

1426



7.2. Suggestions for Future Research Work

As indicated earlier, no work has been reported in the

literature on CFAR detection using distributed sensors. In

this report, we make the first contribution in this area

by developing the theory of distributed adaptive CFAR detec-

tion. We did not consider multiple target situations in our

work. One obvious direction for future research is to extend

the theory developed here for multiple target situations.

Also, different network topologies, structures and implementa- ".

tions can be considered and analyzed for distributed adaptive

CFAR detection.

Also, as shown in Chapters four and six, solving the

nonlinear equations, to obtain the optimum threshold multi-

pliers at the individual CFAR detectors and/or the optimum

fusion rule at the data fusion center, required extensive

computer iterative steps. These values may be computed and S

compiled in tables so that a table look-up procedure may be

implemented. Development of more efficient numerical tech-

niques for solving the above nonlinear equations is desir-

able.

• ... .
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APPENDIX A

A-I. Swerling Cross Section Models [12,36]

Case 1. In this case, the returned signal power per pulse

on any one scan is assumed to be constant, but these echo

pulses are independent (uncorrelated) from scan to scan.

This assumption ignores factors such as the effect of the

antenna beam shape on the amplitude of the returned signal.

A returned signal of this type is referred to as scan-to-

scan fluctuation. The probability density function for the

cross section (input signal-to-noise power ratio, a, is 

assumed to be

P(_ 1 exp c > 0 (A-1
1v aP(a a av) -a ex -- , a > 0 (A-i)

av av

where a av is the average cross section (average of a) over

all target fluctuations.

Case 2. In this case, the fluctuations are more rapid than

in case 1 and are assumed to be independent from pulse to

pulse instead of from scan to scan. This type of fluctu-

ation is referred to as pulse-to-pulse fluctuation. The

probability density function for the target cross section is

the same as given in equation (A-I).

"P
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Case 3. In this case, the fluctuation is as in Case 1,

i.e. scan-to-scan fluctuation, but the probability density

function is given by

P( ,av) = --- e av a > 0 (A-2)

aav

Case 4. In this case, the fluctuation is pulse-to-pulse as

in case 2, but the probability density function is given by

equation (A-2).

Only Case 1 is considered in this dissertation.

A-2. Reference Window Statistic [37]

When the background noise is white Gaussian of un- 4&.

known level, the probability density function of the out-

put at each range cell is

PQ>~ e -qi/2o2  > (A3

22

where a is the average noise power. In cell-averaging, the

outputs of these range cells are assumed to be statistically

independent. A reference window U of N range cells is the

sum of all these cells, i.e.,
--

N 4

U = qj (A-4)

where PQi(qi), i=1,2,...,N is as defined in equation (A-3).

To find Pu(u) we use the following theorem from [37].
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rheorem. If ql,q 2,...,qN are mutually independent random

variables with the exponential distribution function as in

equation (A-3), then the sum U = q, + q 2 +'''+ qN has a proba-

bility density function Pu(u) and a distribution function

Fu(u) given by

Pu(u) = 1 1 N-i -u/2a2  u > (A-S)Puu  -z " F C -N) 2 'a u2>0 A

2o I'N

u/o2 u u N- 1 I
Fu(u) = -ie (1 + 2 + -2*o .±+**..+ (N-i)!'

U2a 2.1! 2a T_ 2a

u > 0 (A-6)

Proof. We prove this theorem by induction. For N=l, the

theorem holds because equation (A-5) simply reduces to equa-

tion (A-4). Now, assuming that the theorem is true for N,

we will show that it is also true for N+l. The density

Pu(u) for U defined in equation (A-4) is given by the follow-

ing convolution

u ,®R

PN+l(t) =1 PN(t-q) Pl(u) du (A-7)

0

which reduces to

t

PI(t) N+l -I t/2o2 f uN-1 du

0

1 (t/ 2 2)N -t/2 2  (A-8)

2 NI e
2 (

quation (A-8) is of the form of equation (A-5) which means

iat equation (A-5) holds by induction for all N. Taking

1.0
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the derivative of equation (A-6), we obtain equation (A-5) %

which justifies that equation (A-6) holds.

A-3. Detection Probability Without Interference in
the Range Cells

In the conventional CA-CFAR with N reference cells and

reference windows U, V, the normalized probability density

functions of U and V are

N
Pu (u) e - 1 -u > 0

N

P (V) e v v > 0 (A-10)V N

The threshold Q is the sum of U and V, and therefore, the

probability density function of Q is given by the convolu- L 0

tion

PQ(q) f J pU(u) Pv(q-u) du

-q q N N_ eu, d[r( r) ! u 7 (qu) 1 duS

N 2

1 -q N-1 (N N ',: '

- N 2 2 2Ni

_j e-q qN-i (A-11)
1 (N)
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The probability of detection for a target SNR S of Swerling 0

Case 1 is
00 Tq_

PD e PQ(q) dq (A-12)

From [38], we obtain

[1 T]N (A-13)
D [I+ S

A-4. A Reference Window Statistic With One

Interfering Target [14] 0

If the reference window is U with one interfering

target, having an SNR I, of Swerling type I and N range

cells, U can be written as .

N-I
U qi + qN (A-14)

where,

P >(q)=e 0 q >O

10

i=1,2,.. ,N-1 (A-14.a)

and

P (q e q q% > 0 (A-14.b) .

Note that we have assumed that the interference is in the

Nth cell, but it could be in anyone of the N range cells.

Let,
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N-I
x q. (A-1S)

i1 1

and

Y q N (A-16)

then, from equation (A-2)

PX (x ) = 1 2 N-2 e x> 0 (A-17)
Px~x) (N-2)!x_

Since U is the sum of X and Y, the probability density func-

tion of U is

u0

Pu(U) I Px(X) Py(u-x) dx (A-18)

0

Substituting equations (A-14.b), (A-16) and (A-17) into S

equation (A-18), we obtain

1 1 xN-2e-x e(u-x)/l+I xPu(u) =(N-1) -+ e eJ dx K.

0 "'

1 1 u/l+ I N-2 x (-I)
-+-I " - e x e dx

0 (A-19)

From [38], we have

u n k
x e n+ ek

n~~lLk!n -+1f k=00

[u > 0, Re L > 0] (A-20)
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Thus, using equation (A-20) in equation (A-19) and re-

arranging terms, the probability density function of U is

Pu(u) 1 [+IN-2 e 1+1 e- N= 1 -1. ]j 3

U T e j= ri+

u > 0 (A-21)

A-5. Some Values of a and B.

The values of a and 3 are obtained by solving the

nonlinear equations (2-43), (2-44) and (2-46). The values of

c and 6 for the cases considered are given below.

P= 0 -  I = S x 10, N=4

S cv.

5 1.4318 8.4275

10 .2711 15.738

15 .0680 19.412

20 .0207 20.233

25 .0065 20.451

30 .0021 20. 515
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PF 10 - ' = S 1 10, N=4

S

10 6.4312 9.2558

15 4.0062 9.9211 w.

20 1.8451 12.081

25 .6714 15.332

30 .2136 18.191

35 .06612 19.692

4
10 I = S, N=4

S ct v
5 4.5081 8.8527

10 2.2875 9.9921

15 .7479 14.176

20 .2179 17.975

25 .0663 19.666

30 .02068 20.26

35 .0065 20.454
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