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Research Summary

1. Introduction ‘

This final report summarizes the research activities performed at both Lockheed and
at the University of Colorado on the development of advanced finite element modeling
techniques for structural mechanics under ONR Contract N00014-86-C-0082. The ob-
jectives of this research were two-fold. The first was the development of a-prior: and
a-postersors error estimation techniques based upon symbolic Fourier analysis techniques.
The second objective was to improve the accuracy of current finite elements being used in
the analysis of shell and solid structures. Significant progress was made in both research

areas. A brief summary is provided below with accompanying details in the appendices.

2. Symbolic Fourier Error Estimation Techniques

In this task, an alternative to the more traditional “normed-space” approaches to
finite element solution error estimation was pursued. The underlying basis of this ap-
proach is the limit differential equilibrium equations governing intrinsic element behavior
which are symbolically derived from a representative element patch. In their own right,
these limit differential equilibrium equations are used to explicitly identify intrinsic ele-
ment pathologies, such as locking and spurious mechanisms, without the need to resort
to numerical experimentation. Depending upon the application, both a-priors and a-
posteriori local error estimates can be directly derived from these equations based upon

a knowledge of the spectral content of the loading and the solution.

As a demonstration of the ability of this symbolic technique to capture complex
finite element behavior, the case of the axisymmetric buckling of a cylindrical shell dis-
cretized with 4-node Ul Mindlin plate elements, as is shown in Fig. 1, was chosen.
The symbolically-derived buckling load predictions, along with finite element results,
are shown in Fig. 2. The continuous curves represent the symbolic results, while the
symbols are used to represent actual finite element calculations. From a strictly fi-
nite element analysis standpoint, this plot graphically demonstrates the mode-switching
phenomena typically encountered when modeling thin shell structures. These results
also clearly show that the symbolically-derived predictions precisely capture this com-

plex mode switching behavior. It is also significant to note that this present analysis
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Fig. 1 - Axisymmetric buckling mode for m = 11 for quarter-cylinder (R = 36in., L =
50.26in., A = .12in., E = 107psi and v = .3) finite element model discretized
with ng) = 40.
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Fig. 2 - Critical buckling stress vs. ne|, for the axisymmetric buckling of the cylindrical

shell shown in Fig. 1 for m = 9, 11 and 13 axial half-waves.
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embodies not ouly the physical modeling errors associated with the different field ap-

proximations, but also the geometric errors engendered by a faceted shell approximation
to the cylindrical shell.

This research effort culminated in a Stanford Ph. D. dissertation entitled Symbolic
Analysis of the Finste Element Method in Structural Mechanics which appears as Ap-
pendix A in this report.

3. Assumed Natural Strain (ANS) Shell Elements

The theoretical formulation and implementation aspects of the ANS (Assumed Nat-
ural Strain) family of shell elements were reexamined in light of our extensive numerical
experience with them over the past several years. A greatly simplified and more rig-
orously derived formulation resulted from this effort. This resulted in a more natural
element implementation and ultimately, a more robust one. Preliminary numerical eval-
uation has show significant improvement in the performance of the 4-node 4-ANS shell
element. In Fig. 3, results for the pinched hemisphere problem are shown where pre-
vious results for the 4-ANS and 9-ANS are directly compared with those of the new
reformulated elements, 4-rANS and 9-rANS. The improved performance of the 4-rANS
is remarkable. This element maintains its accuracy for mesh distortions and performs
well without the need of employing reduced spatial integration. Overall, the 9-rANS
appears to perform at the same level as its predecessor. It is anticipated that when
their implementation is complete, the ANS family of elements will pass the patch test -
a capability which has thus far eluded them in spite of their excellent performance on
many problems. The details of the new ANS formulation and element implementation
are found in Appendix B, The ANS Shell Elements: Formulation, and in Appendix C,
The ANS Shell Elements: Element Construction.

4. Parameterized Variational Principles for Finite Element Applications

The third task of this research effort has been to develop a parameterized variational
basis for comparing different finite element formulations. An important result of this
study is the establishment of the interrelationships between the different variational prin-
ciples which result in hybrid, mixed and free finite element formulations. This approach
has permitted a reinterpretation of the classical Hu-Washizu Variational Principal and
Freaeijs de Veubeke’s Limitation Principle in light of parameterized variational principles.

With the anticipation that future finite element development will require a simultane-
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Fig. 3 - Pinched Hemisphere Element Convergence Study: Normalized Center Displace-
ment vs. Grid Density.

ous approximation of the different field variables, the unifying approach to variational
principles proposed here may prove beneficial to the finite element developer. The com-
plete work entitled Parametrized Multifield Variational Prinesples in Elasticity: I. Mized
Functionals, II. Hybrid Functionals and the Free Formulation appears in Appendix D.
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Abstract

A symbolic analysis technique is presented for determining the intrinsic be-
havior of a wide range of different finite element formulations. This element-
independent generality stems from the fact that the analysis conceptually starts
with the discrete finite element equations for an element patch, cast in symbolic
form employing computer algebra. From them, the discrete formulation is re-
cast directly back to the limit differential equilibrium equations (or strong form)
governing element behavior, employing both Taylor series and discrete Fourier
techniques. Comparing these equilibrium equations with the governing contin-
uum equations establishes how well the discrete model represents the physical
one, without recourse to numerical experimentation. The theoretical details of
the underlying element formulation are, in essence, immaterial to the symbolic
analysis since all discretization information is uniquely embodied in the discrete
equations themselves. The use of nonconforming elements, special interpolation
rules, reduced spatial integration rules or other numerical techniques therefore
pose no obstacle to this method. As a result, this local symbolic analysis tech-
nique provides a unified approach to element evaluation presently lacking in the
more mathematically precise functional analysis approach to element evaluation.

The emphasis in this work is on “structural” finite elements - bars, beams,
plates and shells — whose use pose a myriad of challenges arising from working with
degenerate problem domains and approximate physical geometry. Wave propaga-
tion, static loading and bifurcation buckling problems will be addressed for these
different classes of elements. In particular, the causes of transverse shear element
locking and spurious element mechanisms are investigated in addition to several
proposed cures, such as reduced spatial integration and hourglass control tech-
niques. For the case of curved structures, the faceted element approximation is
analyzed. Local error estimates — ultimately needed for adaptive mesh refine-
ment techniques — are determined using both Taylor series and discrete Fourier
techniques. The accuracy of the discrete Fourier error predictions is numerically
verified employing test cases with regular domains and periodic boundary condi-
tions for which the error prediction is shown to be essentially exact.
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Chapter 1

Introduction

§1.1 Background

As with any approximate analysis technique, the question remaining after
completing a finite element structural analysis is “How close is the finite element
solution to the correct physical one?” More likely than not, confidence in the accu-
racy of the finite element solution is not based upon a fundamental understanding
of the intrinsic behavior of the finite elements themselves, but rather upon the
correctness of previous finite element solutions to problems where the continuum
solution had been known. This solution confidence issue becomes especially severe
when dealing with thin plate and shell structures whose myriad pathologies have

always plagued the finite element developer and user alike.

In 1965, Irons introduced the idea of inferring intrinsic finite element behavior
from the solution through the introduction of his patch test [1]. For the practicing
engineer, the most natural extension of this idea is embodied in the sets of different
structural test problems that have been proposed over the years (see e.g. MacNeal
and Harder [2] and Mair [3]) as a phenomenological way of verifying element
accuracy and convergence. This also facilitated a way of directly comparing one

element formulation with another. These different test problems are chosen so as
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to exercise both constant strain and higher-order element deformation patterns in
an analogous manner to that described by Taylor et al. [4]. With this approach,
two lingering difficulties remain. The first concerns defining the numerical test
cases which are comprehensive enough to constiﬁute a “complete” element patch
test.! ’i‘he second entails how a finite element develo:er employs the results of

these tests to explicitly pinpoint potential problem areas in the underlying element

formulation.

In the past, an alternative to this “solution-based” approach, favored by the
engineer, has been the functional analysis-based approach employed by the applied
mathematician. Excellent descriptions of research in this area may be found in
the work of Strang and Fix (6], Ciarlet (7] and Oden and Reddy (8], just to name a
few. As has traditionally been the caée, however, progress in this area lags behind
the problem-driven development of new element formulations for a number of rea-
sons. Each new twist in formulation or numerical trick may result in mathematical
complications requiring new proofs of convergence with accompanying error esti-
mates. For this reason, the contribution in many cases is one of establishing the
mathematical foundation of an existing method. As was pointed out recently by
Bernadou [9)], there are discretization techniques, like the faceted plate discretiza-
tion of a shell, which has been used succ&sfully'for more than twenty years, for
which strict proofs cannot as yet be completed. From an engineering perspective,
one underlying difficulty with this approach is in relating the fidelity in which an
element formulation repra.ents physical behavior in a point-wise manner to the

results of a global convergence proof.

Alternatively, this task of element evaluation may be addressed by building
upon a technique that has been used for evaluating finite difference algorithms

for initial-value problems employing either Taylor series or discrete Fourier anal-

1 Unfortunately, “completeness” in the above sense may not provide the necessary
and sufficient conditions for element convergence as has been discussed by Stummel
[5] and recently refuted by Taylor et al. [4].
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ysis (see e.g., (10]). This approach deals directly with the discrete finite element
equations themselves instead of the solutions to them, as is the case with the
different patch tests, or with the weak form from which they were derived, as is
the case with the functional analysis-based approach. In a computational fluid
dynamics context, the Taylor series analysis technique has been used by Hirt [11]
and Warming and Hyett [12] to determine both the consistency and stability of
initial value finite difference problems. Their primary interest was in characteriz-
ing the behavior of th_e discrete equations. This goal was accomplished by working
with what Warming and Hyett referred to as the “modified equations”. These
equations were comprised of the zeroth-order and leading truncation error terms
recovered from the difference equations using Taylor series expansions. From these
modified equations, they were able to address the question of stability in linear
problems and show the equivalence between their results and discrete Fourier
(i.e., von Neumann) techniques. Going one step further, Hirt demonstrated f:or
a two-dimensional flow problem, the general applicability of this technique even
to nonlinear PDE’s with variable coefficients. This approach was a fundamental

departure from the restrictive local truncation error concept of consistency.

In (13], by formally viewing the finite element equations as difference equa-
tions, Walz, Fulton and Cyrus were able to apply traditional Taylor series-based
finite difference techniques to evaluate the element discretization. A similar ap-
proach in the Fourier domain was investigated by Strang and Fix [14]. These
pioneering investigations in the field of element evaluation were essentially limited
to assessing the consistency of the resulting limit differential equilibrium equations

which represent element behavior in a local manner.

In this approach to element evaluation, one works directly with the finite
element difference equations which uniquely embody each step of the element
formulation process. As a result, this technique shares the element-independent
generality of the patch test as an element evaluation technique. Essentially all of

the mathematical complications inherent in the functional analysis approach to el-
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ement evaluation are thereby avoided. These complications result from variational
crimes [6] resulting from employing nonconforming elements, reduced spatial in-
tegration, special interpolation rules and other numerical schemes (a.k.a. tricks).
Recognizing the power of this element evaluation technique, Park and Flaggs ex-
plored l;he use of both Taylor series and discrete Fourier analysis techniques to

evaluate the performance of different finite element discretizations [15,16,17,18].

§1.2 Objective

The objective of this dissertation is twofold. The first is to formalize the
element-independent symbolic analysis procedures needed to evaluate general
multi-degree-of-freedom finite element discretizations. The second is to apply
these symbolic element evaluation techniques to explicitly determine the nature
of several outstanding problems in the application of the finite element method 4o

structural analysis problems.

§1.3 Approach

In order to achieve these objectives, computer aigebra software (19,20] is ex-
tensively employed to recover symbolically the limit differential equilibrium equa-
tions. Starting from the finite element equations, cast in symbolic form, limit
differential equations governing element behavior are obtained both in the physi-
cal and frequency domain. With them, a direct comparison with the strong form
of the governing continuum equations is possible from which it is shown that one is
able to 1) explicity identify element deficiencies, 2) infer expected element behav-
ior and lastly, 3) compute component-wise error estimates. With this information,
both the question of consistency and stability is easily verified for the case of a
regular element mesh. With this information, the convergence of a particular finite
element discretization can be determined without recourse to extensive numeri-
cal experimentation. By working with the matrix operator form of the discrete
equations, this approach is also immediately applicable to bifurcation buckling

problems. An additional benefit is the added insight into the expected behavior of
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Fig. 1.1 Symbolic Analysis of Finite Element Discretization of BVP
a discrete method gained through working directly with the discrete counterpart
to the continuum equilibrium equations. In essence, as a result of its generality,
an element evaluation technique is being proposed which could be employed as a
tool during the actual element formulation process in much the same manner as

the patch test is presently used.

This symbolic approach to assessing the intrinsic behavior of a particular finite
element discretization is graphically portrayed in Fig. 1.1. The symbolic analysis
procedures developed here. close the loop2 in order to determine how faithfully
the discrete equations represent the strong (or differential) form of the governing
continuum equilibrium equations. In essence, this results in what Wilkinson [21]
refers to as a backward error analysis. Representative element patches for the dif-
ferent discrete model geometries investigated in this study are shown in Fig. 1.2.

The emphasis is in the use of the different symbolic analysis techniques employed

L actuality, each step shown in Fig. 1.1 is performed symbolically 8o that at the
conceptual starting point of the symbolic analysis, one will have the ezact discrete
finite element equations with which to work from.
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Fig. 1.2 Representative Element Patches

here to determine the effect of such aspects of element formulation as interpo-
lation order, spatial integration rules and model geometry. In this respect, the
interpretation of the symbolic analysis results differ radically from those of the
underlying traditional finite difference techniques. Primary interest is directed
at identifying intrinsic element behavior engendered by the finite element formula-
tion and secondarily at the formal order-of-accuracy of the finite element difference
equations. Using these tecl;niques, it is possible to explicitly identify a one-to-one
correspondence between element problems and deficiencies in the limit differential
equilibrium equations. In particular, existing problems with present structural

finite elements which are easily identified using these symbolic techniques are:

e Accuracy

e Locking

¢ Spurious mechanisms, i.e., stability
o Geometrical modeling errors

e Consistency with respect to particular continuum equations
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This last point comes into play when dealing with finite element discretizations

of thin shell structures.

§1.4 Overview

The remainder of this introduction focuses upon the technical highlights of

each chapter - and of the contributions made therein.

The goal of Chapter 2 is two-fold. The first is to establish the mathematical
basis for working with linear matrix differential operators in terms of fundamental
matrix/vector operations suitable for computer algebra manipulation. Donnell’s
decoupled eighth-order cylindrical shell equilibrium equation is derived as a sim-
ple way of demonstrating the symbolic procedures to be employed using computer
algebra software. This is a precursor to the primary goal of this chapter, which is
the introduction of computer-aided Taylor series-based element evaluation tech-
niques. The linear isoparametric Timoshenko beam element, with its transverse
shear element locking pathology, served as the example problem. Both linear
static and bifurcation buckling problems are examined. For the linear static case,
the governing limit differential equilibrium equations derived from both exact and
reduced spatial integration are presented. The decoupling of the w and ¢ limit
differential equilibrium equations is found to be the key step in explicitly identi-
fying the parasitic differential operators responsible for transverse shear locking
in the exactly integrated element. For the reduced integrated element, this sym-
bolic element analysis showed that a locking-free discretization results. Relative
error estimates are then derived using the modified limit differential equilibrium
equation, comprising the continuum and leading truncation terms, employing a
Fourier series expansion of the distributed loading and lateral displacement. As
a preliminary step, an error analysis is first performed for the one-dimensional
bar element. This is to validate the element evaluation procedure for a discrete
problem in which the solution is known to be nodally exact. Lastly, relative error
estimates are derived for the bifurcation buckling of the linear Timoshenko beam

element.
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A fundamental limitation of the Taylor series technique was, however, found
to be its inability to identify spurious element mechanisms. In Chapter 3, a discrete
Fourier analysis technique is introduced to complement the Taylor series approach
introduced in Chapter 2. Although now working in the frequency rather than the
physicai. (or spatial) domain, the advantage of the discrete Fourier technique is in
its complete representation of the discrete solution and in the resulting compact
symbolic expressions. The complete representation of the discrete solution in the
frequency domain permits this element evaluation technique to be used to identify
spurious element mechanisms as well as to verify element consistency. Together,
these two conditions constitute both the necessary and sufficient conditions for
convergence of a discrete method. The example problem used to demonstrate the
ability of this discrete Fourier technique to detect spurious element mechanisms
is that of a linear mixed bar element. The cause of the spurious mechanism-is
pinpointed in a component-wise manner so that for this one-dimensional example,
a remedy could be immediately identified. The linear Timoshenko beam, investi-
gated in Chapter 2, is considered next. The same parasitic operator is identified
in the frequency domain for the exactly integrated beam elen..nt. Inverse Fourier
transformation is shown to yield the identical limit differential equilibrium equa-
tion in the physical domain as was derived earlier using the Taylor series technique.
Error estimates for both static loading and bifurcation buckling are determined
and compared to those obtained in Chapter 2 from the modified equilibrium equa-
tions. For the static solution, error estimates based upon the modified equilibrium
equations proved to be reasonably close to the discrete Fourier predictions for the
lower wavenumbers. For the case of bifurcation buckling, however, the Taylor
series results were seen to slowly diverge from the discrete Fourier predictions,
which exactly agree with finite element results. Lastly, the nonconforming ele-
ment Stummel used to illustrate potential shortcomings in Irons’ patch test was
shown not to be a convergent approximation since it satisfied neither consistency

nor stability requirements.
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In Chapter 4, both the Taylor series and discrete Fourier techniques are
used in a complementary manner to analyze different formulations of the bilin-
ear Reissner-Mindlin plate element. Due to the ease of working with the physical
variables, the Taylor series technique is employed for those problems where the
question of element consistency is the sole concern. The effect of different element
integration rules - exact, selectively reduced (S1), uniformly reduced (U1l) and
directional transverse shear — along with two alternative transverse shear interpo-
lation techniques, are the first problems considered here. As with the case of the
Timoshenko beam, the presence or absence of transverse shear element locking is
explicitly identified using this symbolic element evaluation technique. Next, the
way in which different spurious mode (or hourglass) control techniques manifest
their effect on the governing limit differential equilibrium equations is investigated
for the S1 and U1l elements. For both elements, it is observed that these hourglaés
control techniques reintroduce element locking, albeit in a potentially different
bending deformation mode, for any nonzero w-hourglass control parameter. The

results from these symbolic analyses are then verified numerically.

In the second half of Chapter 4, the discrete Fourier analysis technique is em-
ployed in a component-wise manner to construct the transformed limit differential
equilibrium equations of the bilinear Reissner-Mindlin plate, as would be the case
if element synthesis were the true objective. These results are then used to verify
the existence of spurious mechanisms in the S1 and U1 elements, and of transverse
shear locking for the exactly integrated element. Error estimates are derived for
both the case of static loading and uniaxial bifurcation buckling. Comparison with
numerical results for the predicted error in buckling load again demonstrates the

accuracy of the present symbolic element evaluation technique.

Lastly, in Chapter 5, the symbolic analysis techniques developed thus far were
employed to analyze the faceted finite element approximation of a circular arch
with straight Hermitian (C!) and Timoshenko (C) beams, and of the cylindri-

cal shell with flat bilinear Reissner-Mindlin plates. Working now strictly in the
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Fourier domain to take advantage of the compact symbolic notation, the straight

Hermitian beam discretization of a circular arch is found to be consistent with
Sanders’ cylindrical shell theory specialized to the arch. For elements with a fi-
nite length, however, the geometrical modeling error resulting from the polygonal
arch discretization is responsible for nonvanishing errors in displacement for the
limiting case where the wave number goes to zero. In spite of the fact that this
discretization is asymptotically consistent for a circular arch, the long wavelength
solution components converge to the faceted arch model. For the linear Timo-
shenko beam discretization of the arch, the limit differential equilibrium equations
were found not to be consistent with either Naghdi-Cooper or Mirsky-Herrman
CO shell theory although in the thin-shell limit, they were shown to be consistent
with Sanders’ theory.

The faceted Reissner-Mindlin plate discretization of a cylindrical shell was
next analyzed and compared to Naghdi-Cooper’s CO shell theory. As was the case
in the arch problem, the limit differential equilibrium equations were not found
to be strictly consistent with the reference theory. Omitted terms were, however,
of the order h%2/R? which for thin shells (/R > 100) would result in a very
small contribution to affected terms. By analogy with Koiter’s work [22] on first
approximation shell theory, expressions which differ only by such terms may in fact
be equivalent with respect to the underlying C° assumptions. The axisymmetric

buckling of cylindrical shells was used to verify the accuracy of the discrete Fourier

. material and buckling operators. The predicted bifurcation buckling loads derived

from the symbolic analysis were found to be virtually identical with the finite
element results. As a result, mode switching, which is often observed in the
finite element modeling of shell buckling problems, was accurately modeled by

the symbolic element analysis, even for extremely coarse finite element meshes.
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Chapter 2

Development of Symbolic Analysis Techniques:
Taylor Series Approach

-

In this chapter, the basic symbolic analysis techniques used to perform a
computer-aided symbolic evaluation of a finite element discretization are intro-
duced. These techniques are comprised of two essential parts. The first encom-
passes the fundamental operational procedures used to manipulate symbolically
matrix differential operators. The second part entails defining the functional re-
lationship between adjacent nodal degrees-of-freedom (d-o-f) needed to recover
the limit differential equilibrium equations governing element behavior from the
discrete equations. Two different methods are used in this regard; Taylor series

expansions of the nodal d-o-f in this chapter and a discrete Fourier method in

Chapter 3.

The present Taylor series analysis of boundary value problems addresses the
question of finite element consistency. The emphasis and interpretation of the re-
sults from the symbolic analysis are directed toward identifying sntrinsic element
behavior from the limit differential equilibrium equations obtained from the dis-
crete finite element equations. Of only secondary interest is the order-of-accuracy

of a finite element discretization as would be the case in a formal local truncation
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error analysis of a set of finite difference equations.

A new aspect of the present analysis is the need to symbolically manipulate the
differential equations representing the coupled discrete finite element equations.
With the possibility that the finite element d-o-f represent both physical and purely
computational d-o-f depending upon the particular discretization, elimination of
the computational d-o-f in a consistent manner is a prerequisite to recovering the
governing limit differential equilibrium equations. In addition, as was found to
be the case in element locking problems, decoupled limit differential equilibrium

equations appear to represent the canonical form in which to identify the parasitic

differential operators responsible for element locking.

The appearance of parasitic differential operators in the truncation error
terms of the decoupled limit differential equilibrium equations is shown to I_Se
responsible for transverse shear element locking. These terms are found to pl;y
the dominant role in the limit differential equilibrium equations of a given finite
element formulation thereby totally masking the contribution of the continuum op-
erators. This ability to explicitly identify parasitic differential operators enables

one to determine the “operational consistency” of a finite element discretization.

As a result of the generality of these symbolic analysis techniques, the sym-
bolic analysis procedures developed for the linear static problem are immediately
applicable to bifurcation buckling by the inclusion of the geometric stiffness in
the symbolic analysis. Lastly, a priori error estimates for both linear static and
bifurcation buckling problems are determined based upon the so-called modified
equilibrium equations, which retain only leading truncation error terms, for a

particular element discretization.

§2.1 Operational Procedures with Matrix Differential Operators

As was alluded to in Chapter 1, one of the key aspects of the present work will
be the symbolic manipulation of linear matrix differential operators. This is nec-

essary in order to both obtain decoupled differential expressions and to eliminate
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purely computational degrees-of-freedom during recovery of the limit differential

equilibrium equations derived from the discrete finite element equations.

In this section, the basic operational procedures used in working with matrix
differential operators are described in terms of basic matrix/vector operations. An
illustrative example of their application is to the derivation of Donnell’s decoupled
cylindrical shell equations which are succintly derived employing these procedures

implemented using the computer algebra program SMP [20].

§2.1.1 Linear Matrix Differential Operators

In this investigation, attention will be focused on systems of linear partial
differential operators with constant coefficients. Within this basic framework, the
essential underlying theorem for dealing with linear differential matrix operators,
as stated by Courant and Hilbert [23], is .

from any system of linear differential equations sn m unknowns with con-

stant coefficients, a single linear differential equation with constant coef-

ficients can be obtasned for any of the unknown functions.

Hence, for example, if uy, u3,...,um are the unknown functions of the independent
variables z{,z9,...,zn and if L,-J- are polynomials in the differential operators,
vz.,

d d ¥ tH+
Lij(é;;’ a—z;,) = ZQ‘JW (2.1)

with constant coefficients ay;, then the coupled system of m independent equations

in m unknown functions may be written in terms of the matrix operator notation

iu 212 ilm u] ?
u
n o 2m il P S S M (2.2)
Lml Lmz «o. Lmm Um Im
where f; = f;(zy,23, :+,2Zn). Formal algebraic elimination of Eq. (2.2) using
13
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Cramer’s rule yields decoupled differential equations for each u; given by
|L| - ug = |Gy (2.3)

where |- | is used to denote the determinant of a matrix and G, is simply L with
the it column replaced by f. The order of the system is equal to the order of
the characteristic linear operator |L|. |G,]| is likewise a linear differential operator
in functions f,, each of whose individual operators is the minor determinant of
L corresponding to f;. The determinant operations indicated by Eq. (2.3) make
use of the fact that the individual operators in L are commutative resulting from
their linearity, i.e., L1 Lou = LaLju. Also, since the symbolic calculation of |G|
is usually not performed with respect to the ith column, it will be necessary to
always interpret the product of an operator, L, and f in the subsequent computer

-

algebra runstreams as Lf, i.e., fL = Lf.

One further aspect of Eq. (2.3) which deserves comment is the case where

common differential operators appear in both |L| and |G|. An example of this

would be

LzLiju=L3Laf = L3z(Lju—Lqaf)=0 (2.4)
N—— —
“h
where L; are linear operators and uj represents the homogeneous solution. If the
eigenvalues associated with L3 are non-zero, then L3 can be eliminated resulting
in Lyu = La f; otherwise, Lyu = L3 f + uj. From a computer algebra standpoint,
care must be used in solving Eq. (2.2) if a direct elimination technique is used

rather than Cramer’s rule since L3 would in all likelihood be lost in the solution

process.

§2.1.2 Symbolic Derivation of Donnell’s Cylindrical Shell Equation

Before proceeding to the discrete problems which follow, an illustrative exam-
ple of some aspects of the symbolic procedures to be used will first be described

here. The example problem will be the symbolic derivation of Donnell’s decou-
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pled eighth-order transverse equilibrium equation for the cylindrical shell. From
this simpie example, two important observations will emerge. The first is the
straightforward way in which coupled systems of linear differential equations can
be symbolically manipulated as a consequence of Eq. (2.3). The second is merely
one of récognizing the ease in which symbolic algebra software ~ SMP in this case

- can be employed to perform complex (and tedious) symbolic operations.

Donnell’s “shallow” cylindrical shell equilibrium equations written in shell

coordinates in terms of the displacement triad (u,v,w) are [24]

ﬁu+1—uﬁu+1+ua%‘+uéﬂ__P
az? 2 3s? 2 9z8s Rdz  °

1-vd®v 8% 1+v 8% 1w
+ ==+ +==—=-P,
2 9z2 ' 9s? 2 9z3s R 3s

h? 4 1w OJv Ju
1—2-V w+-§(-ﬁ+5;+l/-a—z =P

where v is the Poisson’s ratio, R is the cylinder radius, & is the cylindrical shell’s

2 2
thickness, and V4 = (-a%f + -8%-2-)2 with z being the axial and s the circumferential

coordinates. Rewriting Eq. (2.5) in matrix differential operator form resuits in

Lu={ (2.6)

where the linear matrix differential operator L is given by

.Luu Lyv Luw
L= Lvu Lw va
| Lwy Lwv Luwyw

';afﬂ_ —u_%zi I_-Ega_%;? pi ] (2.7)
=l $ddm Sk b
L b BV
15

DO o OO L

bt fal 4% @ 4 pat
‘l‘c
W
\)

Lo
!0‘:

¥ AN R R



MG 2 & ok o @G m

-
.

W (B @2 PP S 2R G 9 e o=

*

with
u -P; 2 Pz
1-v
u= v ) f= —Ps = -(-—ET)" —Ds . (2.8)
w P P

By ‘making use of Eq. (2.3), Donnell’s decoupled w equilibrium equation is

given in operator form by

Luu Luv "Pz

|IL|-w=|G3| = | Lyy Lyw —Ps|, (2.9)
Lyy Lyy P
or alternatively, by
2 — 1,2 74

12 RY ozt (2.10)

1,.8%P a3P. 3P 3P "

v4P = 3 z 2 s _ T -

+ R[ 9s3 Ty dz3 +(2+v) 9sdz? 8::832]

as will now be shown results from Eq. (2.9) using the computer algebra program

SMP to perform the indicated determinant operations.

The sample SMP runstream, whose objective is the explicit symbolic solution

of Eq. (2.9), is shown in the following program listing. The differential symbol

notation
) 3 % a2 5
£=>dx, 5;=>dl, 5.2-+3.s—2—v = del2 (2.11)

is used to simplify operatof notation and help reduce the intermediate problem
swell typical of symbolic computations. I[+]:: is used by SMP to represent an
input statement while 0] : represents the corresponding output, if any. Many of
the input statements which either do not require that they be echoed as output or
represent intermediate calculations which in the present context are of no interest

are ended with a “;” indicating that no output is desired.

16
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SMP 1.5.0

#I[1]::
#I(2])::

#I[3)::

#1(4]::
#1(8]::
#1[6]::
#I1(7]::

#0[7]:

#I(8]::

#1[9]::

#I1[10)::

#I[11])::

/* Donnell’'s cylindrical shell equations

£

/

ueqn : dx"2 u + (1-nu)/2 ds"2 u + (1+nu)/2 dx ds v + nu/r dx v;

veqa : (1-zu)/2 d&x"2 v + ds"2 v + (1+nu)/2 dx ds u + ds w/r;

weqn : h"2/12 del2"2 w + (w/r + da v + nu dx u)/r;

/* Form differential operator matrix

eqn : {ueqn,veqn,weqn};

4 : {u,v.v};

coefmatrix : Ar[ (3,3}, Coet[ a($2], Ex[ eqni$1]]] 1;

Praoat [coefmatrix]

dx nu

ds dx ds dx nu

2 2
2 2
- dx nu 2 dx
-------- > d' > m—ow
2 2
ds
r

/* Determine characteristic operator

Ex[ 2/(1-au) Det[coefmatrix] ];

lhs : Cb{ Col{ Ex[ Fac[ S[ %, b -> 0 ]1]
Ex[ b~2 S[ Ex{ Fac[ Coef[ 1-2, % ]
dx“4 -> del2"2 - 484 - 2 dx"2 4

Sd b

i

/* Form differential loading matrix

"2

dx
\
]

4] +\
1:

*

/

coefmatrix[1,3] :-px; coefmatrix[2,3):-ps; coefmatrix(3,3].p;

/* Deternine loading operator

Ex[ 2/(1-nu) Det{coefmatrix] J];

17
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=0
#1(12]):: rhs : Co( S[ p Ex[ Fac[ Coet( p. % 11]. \ X
dx*4 -> del2"2 - ds"4 - 2dx"2ds~2 ], 1/r ] + \ ‘ﬂ
¥
Fac[ S[ % . p->01]]; !
L
I /* Donnell’'s trangverse equilibrium equation */ ' .'i
)
l #I[138):: 1lhs w = rhs s:::
" . ' ‘
4 2 4 2 5
dx (1 -nu) del2 & )
g #0[13]: W (m=--msmeomno- TR ) =
iy
2 12 ‘:\: ,
a 8 2 2 3 2 £
(ds ps + 2ds dx ps - ds dx px + dx nu px + ds dx nu ps) °®
"""""""""" iuinteieiiekndieiie *.'!;:
|
r c.:,(
,l':
eR)
2 N}
! + del2 p : Y
- { ‘Q;l
s i
L5 t
)
SMP statements I{1]-I[3] are seen to correspond to the left-hand porticn ::l
' of Eq. (2.5) from which I{41-I[6] form the continuum operator L subsequently
X}
printed in matrix format by I[7). This result should be compared to Eq. (2.7). '.:‘:",
o LN
2 With L now in hand, the characteristic linear operator, |L|, needed in Eq. (2.9), N
' G
is symbolically calculated by I[8] and then simplified in I[9]. One step of this ’!
- . . . ceas 2 2 . 5
l simplification process is the symbolic substitution of (V2)? for (aa—zz-+ ?%7) 2 which, ‘.::33
as shown in I[9], is actually accomplished by the purely syntactic substitution "‘q
g0
' of dx"4 by del2°2 —2dx"2dy"2 —ds"4. Next, G3 is formed by I[10] followed ::'::
by I[11] which symbolically calculates |G3|. I[12] simplifies that result in a .
« t
I similar manner to that already described for |L|. Donnell’s decoupled eighth-order (_
’ transverse equilibrium equation is then constructed and displayed by I[13]. 5::3
It should also be pointed out that completely decoupled equilibrium equations g_’
Ry,
@ for both u and v could have also been obtained using this technique. In the form y
a originally presented by Donnell, the equilibrium equations for either u or v can be
— viewed simply as partial operator factorizations of Eq. (2.6). If, for example, one

18
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o
o
considers Donnell’s equilibrium equation for v, 2
Rk
Gy 2ty O 10% PP 2 3P 1+v0Py o
R 09z29s R9s®  9s? 1-v 9z2 1-v9zds’ :'S:':
this result could be easily obtained from Eq. (2.6) after performing the first step §§§§
of a symbolic Gaussian elimination, viz, '
et
Lyy Luy Lyw © -P; :~
0 LuuLuw — Louluw LusLvw — LuuLuw | { v ¢ ={ —LuuPs + LouPz 5
0 LuuLww — LwuLus LusLww — LwuLuwd (w LuuP + qup(,z.ls) ':::..
b
on the way to obtaining the completely decoupled w equation. Here, Eq. (2.12) ?:::E;
would correspond to the second row of Eq. (2.13). With the next step of the ’,',-‘
elimination resulting in Eq. (2.10), L is now effectively triangularized. In this form, N
a very simple second-order expression for u is seen to result in lieu of Donnell’s \
V4u expression. ..'of
9
§2.2 Taylor Series Technique - The Timoshenko Beam '.’,'? :
With the basic symbolic techniques used to decoupie iinear matrix differen- ':.;
tial operators now in hand, the next step entails recovering the limit differential T
equilibrium equations corresponding to the discrete finite element equations at an ':::E
interior node. These discrete finite element equations result from the assembly of "'::
an element patch as was portrayed in Fig. 1.1 for several different element geome- :;:w :
tries. Once an element patch has been assembled, the finite element origin of the L 3
discrete equations becomes immaterial and techniques used to examine finite dif- "
ference equations may be used. The approach presented here of employing Taylor :}' ]
series expansions of the dependent variables is an extension of the work of Hirt [11] \‘;
and Warming and Hyett [12]. The key departure from the local truncation error :E‘
procedure is that the continuum solution is never formally substituted into the .i
discrete equations in order to determine the “local truncation error.” Instead, one o
works with the solution of the limit differential equilibrium equations correspond- \"
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ing to the discrete equations. As a result, primary interest can now be directed
toward identifying intrinsic element behavior such as spurious mechanisms and ele-
ment locking which may be engendered by a particular finite element formulation.
The formal order-of-accuracy of the discrete finite element equations is no longer
the prin:cipal reason for performing this type of analysis. In fact, since certain
element pathologies are shown to elevate the role of truncation error terms to that
of playing the dominant role in the limit differential (or modified) equilibrium
equations, asserting consistency based solely on local truncation error information
may actually prove misleading. The limit differential equilibrium equations in this

case provide the information needed to assess what one might call “operational”

consistency.

The operational procedure for decoupling a set of coupled differential equilib-
rium equations in terms of a single dependent nodal variable, w, will be used here
to first derive the decoupled continuum equilibrium equation of the Timoshenko
beam for the linear dynamic, static and bifurcation buckling problems. The limit
differential equations corresponding to the discrete finite element equations for
the linear Timoshenko beam are then derived and compared to the continuum
equilibrium equation for the cases of both exact and uniformly reduced spatial
integration. For the present case, the resulting limit differential equilibrium equa-
tions expressed in a decoupled form are shown to result in a canonical represen-
tation from which one can explicitly identify the parasitic differential operator

responsible for transverse shear element locking.

§2.2.1 Continuum Timoshenko Beam

The governing linearized equations of motion for the shear-deformable Tim-
oshenko beam theory including the effects of both an inplane pre-siress and a

lateral loading are derived from Hamilton’s Principle,

ty
§ | Tdt=o0 (2.14)
ty
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where the Lagrangian L = T — IT is composed of T, the kinetic energy and
IT, the total potential energy which in turn is the sum of the strain energy, U,
and the potential energy of the applied loads, V. The Euler-Lagrange equations
resulting from Eq. (2.14) yield the strong form of the equations of motion which
are of immediate interest here (while application of the Ritz procedure yields the

corresponding discrete equations).

The assumed displacement field for Timoshenko beam theory is

u(z, z,t) = —20(z, 1)
(2.15)
w(z,z,t) = w(z,t)

where u and w are the inplane and transverse displacements with 8 representing
the counter-clockwise rotation of the beam normal. Using Eq. (2.15), the kinetic

energy is given by

1 (b k2 1 [t Bw.g EI
T—EA /_h/gu,-u,-dzdx=§/; [pA(E-) +pI(8t) ]dz (2.16)

where A, I and p are the cross-sectional area, moment of inertia and density,

respectively. The strain energy, U = Um + Uy, is partitioned into its separate

material and stress-dependent contributions,
I +h/2
1 1 a4
Um = - 2 2 = / 2, —
m=3 /0 /_ h/z[Eez + Gzzldzdz = 3 [EI(=—= 32) GA( 8)%) dz

h/2 1 38,4 dw. g
= L - =
Us _/ /h/zaez dzdz = 2/0 [aI(az) +o A(az) ]dx

(2.17)

where E and G are the extensional and shear modulus and ¢ is an initial axial

21

Bl

<

.l

2R OIS

O R

PELLS
HRELE

'lll
:’l’i’(q

"NI-‘-

A
o =

g
Ze

.
4

-
O NS R

@ 2L

cl
-
-

LIS

230

x
)

-

LY@

‘2



.
o E

stress with the nonlinear part of the total Lagrangian strain, €z, given by! ‘

&= 2((34?+ (327 (2.18) 4

H UAF )
Lastly, the potential energy of the applied lateral load, ¢, is simply R

l St

V = ‘Wezt = - /qw dz. (2.19) "
0

Distributed moments are neglected here in keeping with the classical derivation of ¥

these equations.

R R wE o
22

The Euler-Lagrange equations corresponding to the present functional form

of£=£(:z:,t,w,0,w',0',tiz,é) are -

aL o

-2

du; Oz

Rt
FEXEZAEEAL Bs5
Yoo . %

L&

ac) 6(82

=) -5 %;)=o i=1,2 (2.20)
%

A

$ 3P4
v&.

where u; = (w,§). With £ determined, Eq. (2.20) is used to derive the governing

linearized equations of motion for the Timoshenko beam written in the matrix

e

differential operator form

2T

(E S R = ox Ol 55 @R

" Lu=(Lm+Ls)u=f (2.21) .
®
N
otk
W)
1 If the beam equivalent of von Kirmdn'’s nonlinear plate theory [25] is desired, \‘:
o
NL _ l dw,2 o
2 = 2 ( dz ) ..:
P
: . . 802 E"' .
would instead be used in which case, the o J(5Z)“ or so-called curvature term [26] iy
would be absent from Eq. (2.17). The effect on the buckling operator of including
this -rm will be seen in Eq. (2.28). \3
>
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where ":"i,

(2.22) .;:

Lo'=

and bt
u=|w 0T f=|q 0]T. (2.23) °

The notation |-.-| is used to denote a row vector. The three different classes

‘HE 2R MR 4 SRR R @R
L
o b
-

of problems which can be addressed based upon Eq. (2.21) are 1) free/forced "::_'.

vibration, 2) static beam bending, and 3) bifurcation buckling. e
= )

The governing equations for the first two classes of problems emanate from o

the material operator, Lm. By employing Eq. (2.3), the decoupled Timoshenko ey

beam equation in terms of w is found from 2

q GAaa-;
0 —p12% s E19% G4
Plag t 5157 ~

o
m
v ]

2

to be A

o~
."
."',

tw dw E, d*w p*Id3%  pI 3% EI 3% it

Bl pA—e— —pI(1 + = = - 2.25
323 TP P0G ot e o — 9t GA e Gaaz 2%

s

<
: I;‘
"> <S4

which agrees with Timoshenko’s derivation of his CO beam theory [27]. For the
static case (i.e., %%‘ = 0), Eq. (2.25) becomes

M@ LSS
2

5 S}

4 2
prdte _ _ Eld%

dz* ~ 1T GAdz? (2.26)

5’5 'i;‘r h]

which will serve as the reference continuum equation used for the identification of

(B e e
2

“transverse shear” element locking in the next section.
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For the case of bifurcation buckling where %%’ = 0 and ¢ = 0, the reference

continuum equation to be employed later in §2.2.3 is found from

L + Lo| - w = |Gy |4=g (2.27)
to be
Idtw , E _dw  dw d*w
—— = F1)—-A— — =0. 2.
G A’ +[I(G+1)dz4 Ad32]U+EIdz4 (2.28)

Unlike the familiar Euler-Lagrange beam equation, a quadratic eigenproblem re-
sults by including the curvature effect in conjunction with transverse shear defor-
mation. In practice, one finds that the coefficient of the o2 term, é% < 1 with
the result that Eq. (2.28) should be considered to represent a singular perturba-
tion problem - if not formally, certainly from a numerical conditioning standpoint

when solving for the flexural buckling mode. =

§2.2.2 Discrete Linear Timoshenko Beam

It has been recognized for some time (see eg., [28,29]) that C elements such
as the exact spatially integrated linear Timoshenko beam element exhibit trans-
verse shear locking when the element is thin, se., /A 3> 1 where | and h are the
element length and thickness, respectively. Thus, the corresponding coupled limit
differential equations should also embody this locking phenomenon in some way.
As will be shown shortly, the decoupled limit differential equation obtained by
the present procedure plays the key role in identifying the parasitic differential

operator responsible for transverse shear element locking.

The element material stiffness matrix for the linear Timoshenko beam element
is determined from the second variation of the strain energy expression given by

Eq. (2.17) in the usual way (see e.g. [30]) resulting in

l
k=ky+ks= / (EIBB, +GABTB,)dz. (2.29)
0

Here, By and B, are the strain-displacement matrices representing bending and
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transverse shear components determined from

aN AN
_ €z _ _ 0 -2 z 0 -Z—a—zz _ Bb
Y22 T M T M B,
: | (2.30)

with the element shape functions defined by Ny = |1 - %, § | and the element
degree-of-freedom vector by d = |w; 8; wq 63)7T.

Evaluation of BEBb and B}B,, making use of Eq. (2.30), shows that the
nonzero terms in the first integrand in Eq. (2.29) are constant so that the use of a
1-point Gauss-Legendre quadrature rule would exactly integrate them. Quadratic
order terms are however found in the second integrand which would require a 2-
point quadrature rule for an exact term-by-term spatial integration. The use of
a 1-point (or reduced) quadrature rule results in the loss of these quadratic ordfr

contributions to the “4181”, “4182” and “8209" terms of k.

§2.2.2.1 Exact Spatial Integration — Transverse Shear Locking

For the case of static loading with no prestress, the finite element difference
equations at an interior node “;” for an assembled element patch of exactly inte-

grated Timoshenko beam elements, as portrayed in Fig. 2.1, are

w1 —2w; +w, -0, _1+6,

12 2] =9
(2.31)
BI(-L—=———1=) - GA(- L1 + GA(— =) =0,

Written in this form, these equations are viewed simply as the set of finite difference
equations used to approximate Eq. (2.21). The fact that they originated from
a finite element discretization rather than a direct differencing of Eq. (2.21) is
immaterial for the analysis to follow. The nodal load, g¢;, in Eq. (2.31) can be
represented in the functional form §(z)! where §(z) is the discrete counterpart of

the distributed continuum load, ¢(z). The present emphasis is to determine the
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Fig. 2.1 - Timoshenko beam discretization

effect of the discretization on the homogeneous part of the continuum operator, so
for now, it is convenient to assume that ¢(z) = §(z). In §2.3, when the important
question of discrete error estimation is introduced, the exact form of §(z) and its

role in the error estima.fe will be discussed.

The first, and conceptually most important step in determining the limit dif-

ferential equilibrium equations corresponding to the discrete equations, Eq. (2.31),

is the substitution of
(w,0) € Su = {u:u € C®(z),u(z;) = u,} (2.32)
for the nodal displacements, (wj,ﬂj). Next, Taylor series expansions,

du(z;) 120%(z;) 1883u(z,;)
) = . LA LA ...

(2.33)

are used to relate the displacements at Zj41 to the interior node, z;, which when

substituted into Eq. (2.31) results in the following coupled limit differential equi-

librium equations,

d?w do 12 d4w _d% 4
~GA(GT ~ &) ~ AR G ) o) =«
(2.34)
%0 dw 12 a6 12w d% 4
af aw _ A —(— - —)+0(%Y =0,
EId:t:2 + GA( dz 6) + EI 12 dz4 +GA 6 (dz3 dzz) )
26
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or in matrix operator form

LPu=7. (2.35)

These equations are representative of any interior nodal point in a uniform mesh.
It is immediately apparent from these equations that this discretization is a consis-
tent one since in the limit as [ — 0, the coupled continuum equilibrum equations,

Eq. (2.22), are recovered, uiz.,

lliz% I°=1r. (2.36)

It is very important to note that these equations represent the system for which the
solution to the discrete model actually corresponds, if we ignore for the time being
any discretization errors associated with ¢g. As such, one is able to infer intrinsic
element behavior by a direct term-by-term comparison with the governing strofig

form of the problem.

Following the symbolic procedure used for the continuum problem in the
previous section, the decoupled transverse equilibrium equation is determined from
Eq. (2.34) to be 2
2G4, dtw 12 dw 12 EI.d%q 1% EI d4

B+ g (Gt e 8 =9 -Gl 7 " 2cAist

(2.37)
ﬁdzq)_ EI(dzq 1_2_d4q)
6 dz2’ GA'dz? 12dz4

=(¢+

where only truncation terms of order /2 have been retained. An equation of this
form, where only leading truncation-order terms are retained, is often referred to

as a modified equilibrium equation (see e.g., Ref. [12]).

Comparing Eq. (2.37) with its continuum counterpart, Eq. (2.26), one finds

that the dominant effect of the finite element discretization manifests itself as a

2 The MACSYMA runstream with associated output from which these results where
obtained may be found in Appendix A.1
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modification to the bending stiffness resulting from the appearance of a parasitic
differential term of the same order as the primary differential operator, i.e., d“/ 2zt

The modified bending stiffness resulting from this parasitic differential operator,
EI , defined as

P 12Ga |
ElI= [1 + EE] ErI (2.38)

is the discrete counterpart of the continuum bending stiffness, EI. MacNeal [31]
and Prathap and Bhashyam [32] have also identified this modified bending stiff-
ness term working from an energy standpoint. Note that if one had prematurely
stopped with Eq. (2.34), a modified bending stiffness might have mistakenly been
2 ) ] 2
- t
assumed to be (1 3-%?)EI by collecting the coefficients of g:g— from the second

equation.

In order to assess the relative magnitude of ET with respect to EI, the case
of an isotropic rectangular beam of unit width and thickness h is considered. For

this simple case,

=~ 1 (1\?
EI= [1 + m (z) ] EI. (2.39)

For even a moderately thin beam with I{/k = 10 (and v = .3), one finds that
ET=395EI (2.40)

with the immediate implication that a finite element solution of a “thin” beam
problem using a linear Timoshenko beam element of this aspect ratio would result
in a transverse displacement w equal to only about 2.5% of the correct solution.
This problem is of éourse the well known transverse shear element locking phe-
nomenon exhibited by C° beam and plate finite elements which is shown to be
linked directly to deficiencies in the limit differential equilibrium equations ob-

tained from the discrete finite element equations.

REMARK 2.1

It is important to emphasize here that element locking has been identified as
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an intrinsic element property and as such does not require knowledge of bound-
ary conditions nor any specific numerical solution. This fundamental approach
to aseesving intrinsic eiement behavior should be contrasted with the alternative
technique of identifying element locking based upon the art of constraint counting
(see e.g., [33,34]). Since locking was viewed as the result of how a particular dis-
cretization represented the thin plate limit of zero transverse shear strain, the idea
of shear’constraints was introduced to reflect the manner in which this cordition
was satisfied on the element level. If this number was larger than the number
of free d-o-f per element in the global model, then mesh locking was anticipated.
Tsach [34] states that locking is not solely an element property; it is a character-
istic of both the element and the boundary conditions. Based upon the symbolic
results presented here (and in the following chapters), one cannot help but con-
clude that this statement is misleading since the question of element locking is
answered independently of any imposed boundary conditions.

§2.2.2.2 Reduced Spatial Integration — Element Unlocking

One numerical technique used to rectify the problem of transverse shear ele-
ment locking is to underintegrate the transverse shear stiffness (see e.g., [28,29,35]).
Doing so raises the question of element consistency since employing reduced spatial
integration violates the strict variational basis of the discretization. This results in
what Strang and Fix [6] refer to as a variational crime, from a Minimum Potential
Energy standpoint. Malkus and Hughes [36] have, however, shown the equivalence
between this technique and that of mixed finite element methods. This permits one
to apply convergence proofs and error estimates to those cases where equivalence
can be established. For the present problem of interest, Arnold [37] has shown
the equivalence between reduced spatial integration and a mixed finite element
implementation. In this section, the use of reduced spatial integration is shown to
result in a discretization whose decoupled limit differential equilibrium equation
does not contain the parasitic differential term responsible for the transverse shear

element locking.

Recovery of the limit differential equilibrium equations will again begin by
writing the discrete finite element equations of the linear Timoshenko beam, now

derived employing one point Gaussian quadrature for the transverse shear stiffness,
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at an interior node as

£

j=L*
2l

§ 2w+ -8

12

w,_ w. 8,
-GA(-L LE2) + GA( 1) = g;

l (2.41)
0, —29;+0; 0;_1+20,+0; -wi_1 +w;
EI(LI 121 J+1)_GA( j—-1 4L J+1)+GA( ] 121 ;+1) =0

Comparing Eq. (2.41) with Eq. (2.31), which was obtained using exact spatial

' integration, one finds that they differ only in the averaging of # in the second of
I these equations. Exact spatial integration resulted in a %(1-4-1) nodal averaging
scheme versus the %(1—2—1) scheme seen here. By again employing Eq. (2.33), the
limit differential equilibrium equations corresponding to Eq. (2.41) are found to
be

dw do 12 dtw d3 4 =
~GAlGT ~ )~ CAR e 2 H o) =a
(2.42)
d%9 dw 12 &40 12 d%w 342 4
Bl +OAG — 0 + Bl g + 045 (gm ~agm) T ol =0
In this form, the only difference between the two sets of coupled limit differential ‘t"v':‘wf

equilibrium equations obtained from the two different integration rules is in the -

truncation error terms associated with approximating § which are seen to be

12 429 .”'
e — ey
0 =0+ 7

2 ;2 by
0'=0+l——-—d 8 .“
4 432 LAY ﬁ

where the superscripts e and r designate whether the exact or reduced spatial in-

- tegration rule was used. From the traditional formal order-of-accuracy viewpoint, .:’:
| one may prematurely conclude at this point that the approximation engendered E:“
by the exact integration rule should result in a more accurate discrete solution Gt
which is not the case as will now be shown. X

)
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The decoupled limit differential equilibrium equation obtained from Eq. (2.42)

is found to be

dtw 12 dbw 12 EI d%q (2 EI d%q
—_— ——— = _—— —_— . 2.
El g+ Bl e =9+ (T~ G1) 2z " 3Ca A (244)

It is immediately apparent that the parasitic 4tB_order differential term responsible
for locking has been eliminated by the reduced integration of the transverse shear
stiffness. Hence, what appears to be a less accurate averaging scheme for the 4
term, as shown in Eq. (2.45), plays the key role in eliminating transverse shear
element locking. Examination of Eq. (2.42) shows that like Eq. (2.34), a truncation

error term has a differential operator of the same order as that of the continuum

~ operator. However, in this case, Eq. (2.44) shows that now, this effect does not

propagate to the decoupled equation. Hence, it is the decoupling process which
manifests the true behavior of the Timoshenko beam discretization. The results
from this and the preceding sub-section show that this decoupling process results
in a canonical form of the modified equilibrium equations from which intrinsic

element behavior is determined.

REMARK 2.2

MacNeal’s residual bending flezibility modification [31] of the material transverse
shear stiffness is obtained from the reduced spatial integration analysis as a conse-
quence of eliminating the second-order truncation term associated with d%q/dz?
in Eq. ;2.44). This is accomplished by matching the coefficient associated with
d?q /dz* with the correct continuum coefficient. With G A4 only explicitly appear-

ing here in the continuum equation, one is free to define a modified GA* which
satisfies

.. LI LI (2.46)

This results in

-1
gar = | L+ 2 (2.47)
T |GA ' 12EI '

which is seen to be identical to MacNeal’s “GA*”. Replacing GA with GA* in the
discrete finite element equations results in the following decoupled limit differential
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equilibrium equation

4 12 12 EI d*q % EI d*
EIii+EI—@-=q+(-—— )22 _ g, (2.48)
dzt 6 dzb 6 GA'dz? 12GAdzrt
Substitution of the continuum solution, W, results in
4wr EI 2 2 4
ert % _ _Elde I Eldy (2.49)
dzt GAdz?  12GAdzt

where the twice differentiated continuum equilibrium equation has been used to
simplify the results. As before, only the leading truncation error terms are re-

tained. Note that the coefficient of the last term in Eq. (2.49) can be rewritten
as

B EI _(1+v) 1252 = 1+ ) 2.4

12GA~ 12 72 (2.50)

where ¢ = h/l « 1 for thin beam applications. Hence, the resulting finite elemept
approximation of the Timoshenko beam by the linear element achieves a fourth-
order interior accuracy for a uniform element mesh - the same order of accuracy
as for the C! Hermitian beam.

REMARK 2.3

Penalty function techniques have been used as a method for deriving “C!” bending
elements employing C° displacement interpolation fields (see e.g., [30,38]). For the
case of the Euler-Bernoulli beam, the constrained variational expression,

! ! ]
o* = %/0(%)34,4-0,/0(%—0)2@—/0 wqdz , (2.51)

is identical to that used for the Timoshenko beam except for the interpretation
of a. For the shear-flexible Timoshenko beam, the second integral represents the
transverse shear energy with a = GA/2. For the above case, however, a is the
penalty parameter associated with enforcing the constraint that § = dw/dz. For
the linear beam derived from Eq. (2.51) employing reduced spatial integration on
the penalty term, the decoupled transverse limit differential equilibrium equation
is found to be

4 2 2 d2 12E1d4
gl g bde (M _ELdlg DEId g
dz4 6 dzf 4 2a’dz? 122adzt

In the context of the present penalty formulation, the expected Euler-Bernoulli
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beam theory,

4
EI‘;TT =q+0(i?) (2.53)

results in the limit as the constraint that § = dw/dz is enforced, i.e., a — oo.
This “Cl” beam element is seen, however, to be only second-order accurate as
compared to the Hermitian beam element discussed in Remark 2.2 which achieved
fourth-order accuracy by explicitly enforcing C! displacement continuity.

r §2.2.2.3 Limit Differential Equilibrium Equations versus
% Local Truncation Error

In light of the two examples presented thus far where limit differential equi-
librium equations have been employed to explicity identify element behavior, the
oy differences between the type of information they provide and that of a local tradi-

tional truncation error analysis (see e.g., §1.4 of [6]) can now be easily contrasted.

Returning to the results from §2.2.2.1, the modified equilibrium equation (i.e.,
limit differential equilibrium equation with oniy leading truncation-order terms
j retained) for the exactly integrated Timoshenko beam element was found in to be

s 12GA, d%w 1248w 12d%q.  EI d%q 1% d4

L Bt el (@ tes @ Ut @) s t o

), (2.54)

or in differential operator form,
IP.w=¢.q. (2.55)

Here, w(z), as was defined by Eq. (2.32), is the solution of the modified equilibrium

equation. The exact continuum solution, W(z), does not satisfy Eq. (2.54), nor

T does the discrete solution, w, satisfy the continuum equilibrium equation,
Il W=r.g (2.56)

representing Timoshenko beam theory. For this very reason, Eq. (2.56) cannot be

used to further simplify the limit differential equilibrium equation, Eq. (2.54).
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In spite of the fact that the term “truncation error” has been applied to
characterize any term in which the element length, I, explicitly appears in the
limit differential equilibrium equations, they do not represent the local truncation
error of the discretization from a classical finite difference standpoint. The concept
of local truncation error does not arise until one formally substitutes the exact
continuum solution, W, in place of the discrete solution, w, in Eq. (2.54). The
differential terms remaining after the continuum equation and its differentiated
forms have been employed to simplify it represent the local truncation error, rl,

of the discretization. For the present case, the local truncation error for the

Timoshenko beam discretization is found from the error equation,

12 GA. d*wW 12 W 12 dzq EI dzq 12 d"q |
1+ = ==). = e+ 2 a4, _ '
B+ g Grts e " esmtaaGtnge) = 357)
to be
2 4 4
113 9'W  EIdY .
= 12(GA o4 GAaz4)+0(z ) (2.58)

Here, differentiated forms of the continuum equilibrium equation, Eq. (2.54), were
employed to simplify the results. Eq. (2.58) shows that a uniform mesh of ex-
actly integrated Timoshenko beam elements achieves a second-order interior accu-
racy. However, unlike the limit differential equation approach which automatically
manifests element pathologies caused by parasitic differential operators, the local

truncation error, per se, gives no indication of potential element trouble.

Consistency is represented in different, but equivalent, ways by these two

techniques. From a limit differential equilibrium equation standpoint,
RP.w=L.qg - lw=rgq as | —0 (2.59)

which implies that

w=W asl—0. (2.60)
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From the local truncation error standpoint,
=0 as [ —0 (2.61)

with the proviso that the continuum equation was subtracted from the error equa-
tion. If the discretization is not consistent with the anticipated differential equa-
tion, the limit differential equilibrium equation reduces to the differential equation

for which it is consistent (as will be seen to be important in Chapter 5).

REMARK 2.4

These results differ from the earlier work of Walz, Fulton and Cyrus [13] in several
key respects. When faced with decoupling systems of coupled partial differen-
tial equations with several dependent variables, as was the case for the Hermitian
beam discretization, they employed a term-by-term elimination procedure. This
entailed successively substituting differentiated forms of the equations represent-
ing the displacement variables to be eliminated to cancel specific coupling terms
in the retained equations. This should be contrasted with the present operational
procedure whereby the decoupled w limit differential equilibrium equation is im-
mediately obtained from |LP|-w = |G| for the Hermitian beam problem where

o |tk vhrwG bk
GO O L R L g2 gt 8 4O
EERL = A U ‘l'vm"nm“ngg

with
s=|w 0|T; s=1g¢? oT.

The second point is more fundamental in that the distinction in [13] between

w and W was overlooked. The w limit differential equilibrium equation determined
from Eq. (2.62) is

diw 1248w 1448w 12 d2q 14 d4q
+—= +—=——F)=q+ -+
dz* 6 dzf 80 dz8 6 dz2 T2EI dz*4

EI( +0(1%,  (2.63)

where it is again stressed that w is the solution to this equation, representing the
discrete problem, and not the continuum one.

The continuum equation was then mistakenly employed in [13] to simplify
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Eq. (2.83) resulting in

d4w_ﬁ_d8w _q
dzt 720 d28 ~ EI

(2.64)

which is not the modified equilibrium equation for this discretization nor does it
properly represent the local truncation error which is in reality,

4 8
l * W
__ L daw 2.65
T 720 dz® (2:65)

REMARK 2.5

The symbolic decoupling procedure used in Remark 2.4 has performed two impor-
tant functions. The first is the obvious one of determining a decoupled equilibrium
equation in terms of a single displacement variable. The second one, namely that
of eliminating a purely computational d-o-f, leads us to the next comment. Strang
and Fix [6] made the comment that we can rewrite our finite element system as a
set of difference equations having a very special form: one equation of the system™is
an accurate analogue of the original differential equation, and the other M — 1 are
completely inconsistent3. In the context of the present symbolic analysis, we have
shown that there are no inconsistent equations. This is a result of the decoupling
process which automatically, and in a consistent manner, accounts for the coupling
effects of equations corresponding to computational d-o-f on the decoupled limit
differential equilibrium equation(s) corresponding to physical d-o-f.

§2.2.3 Discrete Approximation of the Buckling Operator

From a displacement-based finite element standpoint, derivation of the dis-
crete counterpart to the continuum buckling operator, Ly, has traditionally come
about in two different ways depending upon the spectrum of problems to be ad-
dressed by the finite element developer, i.e., linear + bifurcation buckling or intrin-
sically nonlinear. In the first case, derivation of the so-called geometric stiffness
matrix, ks, has either been based upon a simple extension of linear theory whereby
nonlinear strain-displacement terms are selectively introduced into the strain en-
ergy, U, (or V when the inextensional membrane hypothesis is employed) as was

done in Eq. (2.17) and then appropriately discretized (see e.g., {39,40,41}). In the

3 see p. 170-171 of [6]
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second case, an incrementally nonlinear formulation is employed from the outset

3

where ks naturally evolves as one component of the tangent stiffness matrix (see
e.g., [30,42,43). gy

From a computational standpoint, once the global material and geometric '.::l
stiffness matrices have veen assembled, the structural bifurcation buckling load is

determined by solving the eigenproblem A

(K +AKo)d =0 (2.66) R

where A is the load multiplier or eigenvalue at which point an adjacent equilibrium W,

state is possible, represented by the eigenvector d. For the present symbolic analy- "'*":‘

sis where one is interested in recovering the linearized limit differential equilibrium !

equations governing the discrete bifurcation problem, the alternative matrix equa- i
- Y
tion v

(K+Ks)d=0 (2.67) s

is instead employed which leads directly to the limit differential equilibrium equa- Ay

%
tions "\; s

(Im+Ls)u=0 (2.68) X

In this section, ks for the Timoshenko beam is determined by the direct Nage!
discretization of the o terms in U (see Eq. (2.17)). In a thickness-preintegrated N
form, the resulting ks is given by

l e
ks = / B}’[": :I]B,,dz (2.69) N
0

o

with ’;”

dNy dN. Gh

.'Z BO’ = [ z d}?f 7;2 dl(\Jf ] (2.70) e
0 dz 0 752

" where the shape functions and nodal d-o-f ordering are the same as previously O

defined in §2.2.2. For the present case of a linear element, there is no freedom with B
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regard to spatial integration order since the individual components of the integrand K
are constant so that a l-point quadrature rule exactly integrates Eq. {(69). The st

resulting ks obtained employing this rule is )

0 -4 0 !

_olo0o I o -I : e
ks = T o A4 o |- (2.711) .o.o.
-I 0 I R

4
After the assembly of Ko at the jth node, the now homogeneous difference iy ‘:’,‘:

equations for the reduced-integrated Timoshenko beam are?, °®

12

)+ ga(int +"j+1) O = S Rk 23 O i

wj_l
—GA( 21 2

o

(2.72) .
~w_y +wj o
71— 1 J+1 "| by
2l J ey

0,1 —28,;+8; 0;,_1+20,+4,
EI( 7—1 2_1 J+1)_GA( -1 4] 1+1

7 ) + GA(

0,_y-—20,+80,
+oI(-L=L 121 Ity g °

- 4
Employing the present symbolic element evaluation procedure, the discrete coun- ::«k:

(%
terpart of the reference continuum buckling equation, Eq. (2.28), is found to be e

I dlw Udw

dtw 12 dtw 12dbw dw 12w o
G'dzt = 6 dzb

)02+[1(§+1)(m+gm)— Gz t337)e o
4 2 o

+EI(%+%ZGT':) =0 o

(2.73) 'é.:"n

which is the modified equilibrium equation governing the bifurcation buckling of qj
the reduced-integrated linear Timoshenko beam element. In the next section, a ™
priori error estimates for the bifurcation buckling load will be determined based ToAR)

upon this modified equilibrium equation.

4 The exactly integrated Timoshenko beam will not be considered due to the locking
problem.
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§2.3 Error Estimates Based Upon Modified Equilibrium Equations

In the usual finite difference context, local truncation error results give no
real info:rma.tion regarding the magnitude of the error resulting from the discrete
approximation, but rather only some indication of how quickly the discrete so-
lution approaches the exact one as the mesh is refined. This does not have to
be the case, as was shown by Walz, Fulton and Cyrus (13| in their work on de-
termining the accuracy and consistency of different finite element discretizations.
They obtained a priori error estimates in the interior problem domain of a given
discretization by seeking harmonic solutions of the so-called modified differen-
tial equilibrium equations comprised of the continuum operator (or zeroth-order)
and leading truncation order terms. A fundamental error was, however, made §y
overlooking the effect that the discretization had on the loading operator which
resulted in physically incorrect error predictions. In the present analysis, the dis-
crete counterparts of both the homogeneous operator and the loading operator are

consistenly treated. As will be shown, this consistent treatment results in a more

realistic error estimate.

In this section, error estimates will be determined for the different discrete
models considered thus far based upon the theoretical results obtained in the
previous sections for both linear and bifurcation buckling problems. The present
error estimates are based upbn the particular solutions of the governing equilibrium
equations. As such, they are valid, in general, only for the interior problem domain
away from the influence of boundary conditions which would be satisfied by the
homogeneous solution. For the case of periodic boundary conditions which are
satisfied by the harmonic solutions, however, the error estimates will be valid for

each interior nodal point in the mesh.
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§2.3.1 Consistent Determination of Discretization Effect on Loading
Operator

The case of the one-dimensional linear displacement-based bar element is a
challenging way of introducing this topic since the discrete solution is nodally exact
for any loading function [44,30]. The first step will be to examine the approach
taken in [13] in order to see why an incorrect result was derived there. Next, the
consistent way of determining the discretization effect on the loading operator will

be presented which correctly results in the prediction of a nodally exact solution.

The discrete difference equation at the jth interior node, based upon a Min-

imum Potential Energy-based linear finite element discretization, is

EA y

where Py is the nodal load. Expanding in a Taylor series about the interior node,
the modified equilibrium equation corresponding to Eq. (2.74) was determined in
[13] to be

3%u 12 5%u

BAGE Y maA T

Y+p=0 (2.75)

where the p; in Eq. (2.74) was assumed to be of the functional form

Fourier solutions of the form
u(z) = umsing—%—{ i m=1,2,... (2.77)
were then determined for
. m7z
p(z) = pmsin ——, (2.78)
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where the loading for the discrete problem was assumed to be identical to the

continuum one as is reflected in Eq. (2.76). With the continuum solution given by

_m (L2 mre
U= EA(mw) sin ——, (2.79)

the solution to the modified equilibrium equation was written as

u=1-er(1+e) (2.80)
where
12 mr 2
€= E(T) . (2.81)

Since ¢ is always positive, it is obvious from Eq. (2.80) that 4 > U for all ma
result which is of course inconsistent with the underlying MPE-based finite element
formulation employed for this discretization. The problem with this approach
results from the assumed form of Eq. (2.76) which neglects any discretization

effects on the loading operator.

The consistent way to handle harmonic loading entails going back to the basic
element load calculation which requires that harmonic loading be assumed from
the outset. If in the following equation, £ is used to denote the local element
coordinate system and z, the global system, then the nodal load at an interior

node, j, resulting from a harmonic bar loading would be

l mn(z;
Py =/ %PmSin 2
0

-1+ ¢ i+
- d d¢ + /0 (1-%)pmsmﬂ(“’i———ld5 (2.82)

where z; is the position of the interior node. Performing the indicated integration,

the discrete nodal load is

4sin? ﬂ’il) MR mnrz;
= ; 1 _; ; J
Pj =Pm ESY sin ——= = Ppmlsin T (2.83)
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where pm is determined to be

)= )pm, (2.84)

S
3
|
—
Pt
|
1N
1
[ -]
’%

when sin(%) is expanded in its power series representation. Using this result, 'c"’::

the solution to the modified equilibrium equation, Eq. (2.75), is now found to be

&
..-
-
-
g g
o
K-

)

2 2 in

mn. o I mr o 1 mr 4 o

—_— — e — =(1 = —(— . 2.85 Hh

l o
Noting that the discretization of the continuum and loading terms has resulted in W

UL

' identical power series expansions, the discrete nodal solution is, after simplifica- :::::;
\ '5.‘ i
tion, :'::'.:;;.

: KM

! Pm L 2 mnz., . .

= pm L —d_y, 2.86

EA (m1r ) s L ( :) r.::
N
E which is in fact the continuum solution; or in other words, the discrete solution is .:'.::?:
ehalt
predicted to be nodally exact. This interesting result is easily verified numerically, !:::! ’
as illustrated by a plot of both U and u vs. z for a 4 element bar model with .'
<5

ot
l . xz ., 27z :22::'
P(:l:) = Po(sm -—L— -+ sin —L—) ’ (2.87) '353132
- o
as shown in Fig. 2.2. ok
c‘:ﬁsf
s'"\";
l REMARK 2.6 oY
.7 ‘. A
It should be noted that in order to obtain the nodally exact discrete solution, "'
exact spatial integration of Eq. (2.82) had to be employed to determine the nodal TR,
loads. This is, of course, a consequence of satisfying the requirements of the weak :‘f\".;
form of the problem which requires that the loading term, ¢
hel
0}
.4t

E §V = —/ péudV, (2.88)

| 4 ey

be exactly integrated. If the same one-point spatial integration rule that was
used to integrate the element stiffness had been used to evaluate the element load
vector, a nodally exact discrete solution would not have been obtained as is also
shown in Fig. 2.2. A more detailed discussion of the discretization errors which

j, 42
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Fig. 2.2 - Exact vs. discrete results for 4 element bar discretization with L =
1000, EA = 1 and p, = 10~4.

can be introduced in the loading term through numerical quadrature can be found
in Strang and Fix [6].

One might comment in passing that the common practice of integrating the
loading term with the same integration rule as used for the element stiffness calcu-
lation may unintentionally introduce additional discretization errors into the finite
element analysis depending upon the frequency content of the distributed load.

§2.3.2 Error Estimate for Transversely Loaded Timoshenko Beam

The bar example just examined in the previous section was rather unusual in
that the discrete solution was nodally exact for any distributed loading. For the
case of the linear Timoshenko beam discretization, however, this is not the case so
that the solution of the modified equilibrium equation can be used to derive nodal

displacement error estimates as was done in [13].
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For this problem, harmonic solutions of the general form

w = wmsinkz (2.89)
will be sought corresponding to
¢ = gdmsinkz (2.90)

where the Fourier coefficients, gm and wm, represent the frequency spectrum of the
applied loading and transverse displacement. Depending upon ones perspective, k
can either be viewed as the spatial frequency or in a dynamical context, the wave
number. Employing the finite-length beam analogy with its discretely varying

solution components, k is defined by

k=%; m=1,2.... (2.91)

The exact solution for the mtP Fourier mode is determined from Eq. (2.26)

to be

1+ Fhk?
W = ( Eg’?k‘ Jam sinkz = Wy sinkz. (2.92)

Next, using the modified equilibrium equation for the reduced integrated Timo-

shenko beam, Eq. (2.44), the solution to the discrete problem is

2.3y EL2_ 124y
1 - Lk?) + #5(k® - 1k
w=[( L+ FL? - & )]qmsmkzj=wmsinkzj

. (2.93)
EI(k* - L 45)
where the effective distributed transverse load,
. 4sin(4)

is identical to Eq. (2.83) since the same element shape functions are used in both

cases.
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As will be discussed in more detail in the next chapter dealing with discrete
Fourier analysis techniques, Eq. (2.93) is not vaiid for all £’s, or alternatively, for
all solution wavelengths, A, where A = 2r/k. For the present discrete problem,

solution components may only be accounted for within the bounds

) oo rigid body mode
Amin £ A < {2L first deformation mode; m =1 (2.95)
or alternatively,
_x 0 rigid body mode
kmax = 7 2k2 { n/L first deformation mode; m = 1. (2.96)

Here, Apjp is the minimum solution wavelength which the discrete mesh can rep-
resent (without aliasing) while co represents the other limiting case of pure rigid
body motion. The maximum m is determined from kmax = § = T to be
Mmax = L/l = nel where nel is the number of elements. Based upon these

results, the total displacement at the jth node would be

Mmax
w(z,;) = Z Wy sinkz; (2.97)
m=1
while for the continuum solution,
00 Mmax
W(z) = Z W, sinkz = Z W, sinkz. (2.98)
m=1 m=1

It should be noted that the discrete model actually represents a truncated series
approximation of the physical one. For now, it is convenient to assume that

{Wm =0: m > mp,,} as is indicated in Eq. (2.98).

With closed form expressions for both the continuum and discrete displace-
ments in hand, the possibility of performing an a priori error analysis becomes
a reality once the loading spectrum has been specified. From a frequency stand-

point, the relative error in the magnitude of a specific Fourier solution component
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can be simply obtained from

_Wm—wm

em = (2.99)

A plot of €, vs. m is shown in Fig. 2.3 for a finite length beam discretized with
10 and 50 elements. As a result of the assumed periodicity of the solution, results
are plotted only for integer m values. In spite of the fact that reduced spatial
integration was employed, the displacements are seen to converge from below as
I — 0 since ¢m > 0 V m. The “long” wavelength representation of the continuum
problem by the discrete finite element solution is also quite apparent since for
any number of elements, €k(m) — 0 as k — O (if for a second, one views k in a
continuous sense). For the case where the distributed loading is represented by
a single harmonic frequency, Eq. (2.99) would represent the relative displacement

error at any node where sin sz- # 0, i.e., points where the continuum solution is

not zero.

The relative error in the total displacement at a particular node point in the

mesh would be

(z;) = z;ggf_t(wm — Wp,) sinkz; (2.100)
7= max : .
2 23X W, sin kz;

where the frequency content of the solution and hence of the error estimate is

determined by the spectral density, gm, of the loading spectrum.

REMARK 2.7

There are two poesible ways in which the results from these a priori error estimates
could be used by a structural engineer. The first would answer the question of
what is the expected relative error for a given mesh discretization, i.e., element
type and number. The second would answer the question of how many elements
of a certain type are required to achieve a specified solution accuracy.

§2.3.3 Error Estimate for the Discrete Buckling Problem
Determination of the spectral error content for the discrete hifur~ation buck-

ling problem proceeds in much the same way as was done for the laterally loaded
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Fig. 2.3 - Relative error in Fourier solution coefficients for Timoshenko beam

wherem=5;rL;L=1000,u=.3a.ndh=1.

Timoshenko beam. For the case of external loading, error estimates were based on
harmonic solutions of Lu = f where the solution could be formally represented as
u = L°1f. In the present case, dealing with the homogeneous bifurcation buckling
problem where Lu = 0, u now plays the role of eigenfunction with the buckling

load determined by setting.the characteristic polynomial of L equal to zero.

From Eqgs. (2.28) and (2.73), a relative error estimate of the bifurcation buck-
ling load for the Timoshenko beam may be obtained by plotting for a given buck-

ling mode the relative error, €m, defined by

_ om—al,%

€m = (2.101)

om

vs. m, the number of half waves where w = wy sinkz and W = Wy, sinkz. This

has been done in Fig. 2.4 for the case of a Timoshenko beam discretized using 10,

47

% ’. '!‘

. R
c. ‘I,, K

o
ASAOICYLY

X272 @
,-".-'-{?'. =

L,
5y

S



m

P

(X =0

)] o8

U UNENEY VYN WL WY LU PR W R AR PN N T AN LA UNL Y VNN U AR B e A" Ae" §'0 %2 SVA0 D¢

Relative error in buciding load, &£ (%)
B
{ ]
=

-30.0
a
Q
-40.0 Legend
*= (ng=1) )
-50.0 o= (n.1=20)
’ . o= = 50) b

12345678 90No13KMSBT BN .
m
Fig. 2.4 - Relative error in Buckling Load for Timoshenko beam; L = 1000,

E=10",v=3and h=1.

20 and 59 clements. While by no means a general result, the buckling loads for
the discrete Timoshenko beam discretization are seen to converge monotonically
from above even though reduced quadrature has been employed on the material
stiffness. This behavior is consistent with the results of the static analysis where
displacements were seen to converge from below. A well known, but nevertheless
interesting point to note is that the relative error in buckling load for a given
number of elements per half-wave (= A/2l) is in fact the same irrespective of
element length. If we take for instance the case of 5 elements/half-wave, we see
that em is identical for m = 2 with n,; = 10, m = 4 with n,; = 20 and m =10

with n, = 50.

§2.4 Summary
In this chapter, the general symbolic operational procedures are developed
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which serve as the foundation for the symbolic element evaluation techniques under
investigation here. Taylor series expansions of the nodal variables in the discrete
finite element equations about an interior node of an element patch are shown to
result in the limit differential equilibrium equations governing intrinsic element
behavior over the interior problem domain. One of the key aspects of this ap-
proach is the view that once the finite element discretization has produced a set of
discrete equations (or from the finite difference standpoint, difference equations),
the mathematical details of their origin are immaterial to the analysis to follow.
Instead of relying upon specific numerical problems designed to exercise specific
element deformation modes, the basis for determining sntrinsic element behav-
jor is to compare the decoupled limit differential equilibrium equations resulting
from the finite element discretization directly with the corresponding continuum

equations.

For the case of the linear Timoshenko beam element, this comparison suc-
cinctly revealed the existence of a parasitic operator in the limit differential equi-
librium equation which resulted in a modified bending stiffness whose excessive
stiffness effectively locked the solution. In essence, this symbolic element evalua-
tion technique has identified a fundamental element characteristic which results
in locking irrespective of imposed boundary conditions or loading. As such, it
provides an alternative method for characterizing this type of element pathology
in lieu of the heuristic notion of constraint counting. Furthermore, this example
illustrates the usefulness of' employing this symbolic Taylor series analysis tech-
nique to establish the consistency (i.e., legitimacy) of a particular finite element
discretization resulting from employing a numerical technique such as reduced

spatial integration.

With the limit differential equilibrium equations in hand, a priori interior
error estimates were determined using a Fourier series approach for both the case
of static and bifurcation buckling problems. For the static loading problem, a key

step in the error analysis was the determination of the consistent discrete loading
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operator. A preliminary error analysis of the one-dimensional bar problem, whose

solution is nodally exact, verified the accuracy of this procedure.
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Chapter 3

Discrete Fourier Analysis Techniques

In this chapter, the symbolic analysis procedures developed in Chapter 2
using Taylor series methods will be employed in conjunction with discrete Fouri;r
analysis techniques. The need to employ this complementary technique becomes
necessary in order to address the question of solution stability for the boundary

value problems of interest here.

The key aspect of the work presented in Chapter 2 was the symbolic determi-
nation of the limit differential equilibrium equations corresponding to a particular
finite element discretization. From these equations, the question of the consis-
tency of a finite element formulation can be answered. In order to ensure solution
convergence, however, the .question of stability also needs to be addressed. For
boundary value problems, stability is not determined in the typical von Neumann
sense, which is only applicable to inital value problems. Instead, one has to con-
sider the possibility of spurious element mechanisms in a finite element formulation

- a task for which the discrete Fourier technique is well suited.

The crucial difference between the Taylor series technique and the discrete
Fourier technique is in the complete representation of all truncation error infor-

mation resulting from working in the frequency domain. It is this characteristic
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of the discrete Fourier analysis technique which is exploited here for the deter-

mination of spurious element mechanisms. In addition, as a consequence of the
complete representation of truncation error information, a more accurate interior
error estimate will result. This is in contrast to the earlier error estimates derived
using thé modified differential equilibrium equations which retained only the dom-
inant truncation error terms. Lastly, by viewing the discrete Fourier equations as
resulting from a Fourier transformation operation, limit differential equilibrium

equations in the physical domain are shown to result from the inverse transforma-

tion process.

The discrete Fourier analysis procedure is presented here by way of two simple
examples ~ wave propagation in a bar for the analysis of spurious mechanisms

and wave propagation in a Timoshenko beam for the analysis of transverse shear

locking.

§3.1 Identification of Spurious Element Mechanisms

In the discrete problem, spurious element mechanisms are the eigenvectors
corresponding to nonphysical zero eigenvalues. The physical zero eigenvalues, of
course, correspond to rigid body modes. However, an alternative definition of
spurious mechanism needs to be used when approaching this problem from a dif-
ferential equilibrium equation standpoint. One interesting approach (16| is that
of viewing the problem from a dynamical standpoint where the needed analogies
with rigid body motion occur naturally. After the symbolic recovery of the Fourier
transformed limit differential equilibrium equations, examination of the character-
istic differential operator will explicitly reveal the presence of non-physical “zero
energy modes,” if there exists admissible nonzero wave numbers corresponding to
zero frequencies. It is the presence of these nonzero wave numbers which indicate

the existence of spurious element mechanisms in the discrete model.

The example problem considered in this section employs one of the simplest

discrete models which is known to exhibit spurious element mechanisms, namely
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that of a linear bar element whose governing continuum equations are cast in their

mixed form in terms of both axial displacement and stress.

§3.1.1 Continuum Fourier Analysis of Bar

The equation of motion in a mixed form for a uniform elastic bar is

9%y do
P = 3z (3.1)

with the corresponding linear elastic constitutive relation given by

o= Ea‘ . (3.2)
In Egs. (3.1) and (3.2), u is the axial displacement, o is the axial stress, E is the
extensional modulus and p is the density. In terms of differential matrix opera.tdr

notation, Eqs. (3.1) and (3.2) may be rewritten in a symmetric form as
Lu=0 (3.3)

where

, 3 _ 9
L= 'a'g;f 13? ; u=|u o7
~9z F
The Fourier analysis begins by transforming the problem domain from the
physical (z,t) domain to the (k,w) or so-cailed frequency domain by seeking a
general harmonic wave solution of Eq. (3.3) of the form!
kz—wt)

u = dell (3.4)

1 As a result of linearity, either component of the general solution

u=1i ei(kz-ut) + G o i(kz+wt)

could be employed equally well.
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where & represents the generalized Fourier coefficients with w being the circular
frequency; k the wave number and ¢ = /=1. Using this general harmonic wave
solution also gives us the ability to interpret the spatial contribution to Eq. (3.4) as
either one component in a complex Fourier series representation or as the integrand
of the Fourier transformation in which case k would represent the continuous

spatial frequency. Substitution of Eq. (3.4) into Eq. (3.3) yields
Lik,w)-4=0 (3.5)
where the Fourier transformed matrix operator, fJ(k,w), is given explicitly by

2 .
P _ | —pw® —ik
L(k,w) = [ —ik b ] . (3.6)
The desired relationship between frequency and wave number is obtained from tbe
characteristic equation by setting the determinant of the Fourier matrix operator

to zero, unz.,

w2
(:) -k?=0 (3.7)
or in the nondimemsional form,
wl.2
(£)? - (e)? =0, (5.9)

where | is a problem-dependent characteristic length and ¢ is the wave speed
defined as ¢ = /E/p, which is a constant,

The characteristic equation, Eq. (3.7), indicates that for the continuum so-
lution, the wave number is linearly proportional to the frequency, i.e., k = w/c.
With ¢ constant, each Fourier component will propagate without dispersion with
the same phase velocity. For the case of pure rigid body motion, i.e., w = 0, the
corresponding wave number must also be zero as is apparent from Eq. (3.7). Since

this is a key result from the continuum analysis, it will be formally written as

w=0 = k=0. (3.9)
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In the following section, a discrete counterpart of Eq. (3.8) will be derived
for each numerical scheme used to approximate the governing continuum equation,
Eq. (3.3). A comparison of the characteristic equation for the continuum case with
that of the discrete cases will succinctly pinpoint spurious element mechanisms if

present in the corresponding finite element discretization.

§3.1.2 Discrete Fourier Analysis — Mixed Linear Bar Element

In a mixed finite element formulation, for an assumed linear displacement
field, the stresses must be constant in order to achieve a consistent discretization
[46]. For this investigation, however, linear shape functions are purposely adopted
for both displacement and stress fields since this choice introduces a spurious
mechanism in the bar element. The Hellinger-Reissner mixed variational principle

provides the starting point for the element derivation which for an axial bar may

be written as [47] )
t2 1 -o? u p,Ou.g
Oygr = /;1 /V(-EE_ +UE:- - 5(-:9? )dth. (3.10)

By using linear shape functions to approximate both the stress and axial
displacement, one obtains the following semi-discrete equations at an interior node

“7” after assembly of two elements of an equal length, !, based upon a lumped (or

diagonal) mass matrix:

. 1
puj+ (051 ~0541) =0
(3.11)

1 E

E(Uj_l + 40’1' + 0j+1) + ﬁ(uj—l - uJ'+1) =0
where ( "' ) denotes 32/8t2. Converting the spatial part of Eq. (3.4) to its polar
form,

u=de W coskz + isinkz), (3.12)
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and substituting into Eq. (3.11) yields the discrete Fourier matrix operator,

2 % o
. -pw —5sinkl
Pkw)y=1 ! PN (3.13)
—}sinkl H(1- FF?)
The cha.;'acterist ic (or frequency) equation corresponding to the semi-discrete finite

element equations obtained from Eq. (3.13) is

_ 22
IEP(k,w) =0 = (2)2_&.1"_)_7‘____0 (3.14)
¢ (1—%—%2)

or in a nondimensional form,

wl iy (1= GEBE)? .

( 2 : (3.15)
¢ (1- Lk2) -
The discrete wave number, k, defined as
- ki
E=—L, (3.16)
e 2

2
arises naturally as a result of the discrete Fourier a.pproxima;tion2 of f—f
z

Comparison of Eqs. (3.13) with (3.6) and Eqgs. (3.14) with (3.7) reveals two
iy important discrete operator approximations which will be seen over and over again

in the work to follow, namely, the discrete unity operators

12, 12,
-2k and - k%,

s
L

Since spurious mechanisms emanate from non-physical rigid body motions,

i:‘.f the possibility of introducing spurious mechanisms by the preceding finite element
w: > N 3 2 k‘
. 2 2 ikz _ 2 —ski _ 1kl _ k-2 _ ®in _ 12
f;fe lp=g = —% gg___ﬂz_ts___ug%y_z___‘%l_ k
o
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e
| discretization can be determined from the solution of Eq. (3.14), with w = 0. This “ﬁ‘
' leads to the following condition: :
() t'cf
12 - ) Y
(1- Zl'cz)k2 =0 (3.17) ':g".:st
!
il
since .
2 ol
(1- E1‘:2) £0V {k; 0<k < kmax}- (3.18) ::,.3’.:"
g .o".:f‘
4
The roots of Eq. (3.17) are determined from both A
l.“;.;‘:
B 2 O
B=0 = k= —? . n=0,1,2,... (3.19) ‘.;:;:E-
et
AR an . I
- : L J
2 2 -
) (1-7k2)_o > k-("j’l)", n=0,1,2,... (3.20) T.-_
R
. . ‘h’:"o’:
Not all the wave components given by Egs. (3.19) and (3.20) are admissible A0
under the linear shape function approximation that has been used to discretize ‘ ;.
i
- the wave equation. As opposed to the continuum case where all wave numbers are :gf.
) ity
) admissible, there is a limit in the discrete representations of admissible wave num- o::ﬁ;
o8 8,
bers within an element. Such a limit is determined by the order of the polynomial ,
B | ’ ‘
approximations adopted in the discretization process. Fig. 3.1 represents the high- gé 's
e est admissible deformation mode shape permitted by the linear shape functions t‘*
=
X on a uniform mesh without aliasing, namely, NN
L d
" A
S T u
o kmax = 1 (3.21) :::::s'
: o
W
In digital filtering, this is the Nyquist or folding frequency for the transformed “
problem (see e.x.. [48]). The nodal spacing in essence determines the spatial .-
K sampling rate. The admissible, band-limited frequency spectrum for this linear '
’ element is therefore
‘ 0< k< kmax - (3.22)
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Sampling of any frequency greater than kmax would result in it being aliased into

one of the lower admissible frequencies.

Fig. 3.1 -~ Piecewise linear interpolation of highest admissible Fourier component

(kmax = "})

Qe =, )

With the band-width of admissible spatial frequencies now defined for the bar
discretization, inspection of Eqs. (3.19) and (3.20) reveals that the discrete charac-

d teristic equation, Eq. (3.14), possesses two admissible wave numbers corresponding

to w = 0, namely,

k={0,2} (3.23)

As was described in §3.1.1, £ = O represents physically correct rigid body
motion. k = {-, however, corresponds to an element deformation state with the
condition of w = 0 implying that no energy is required to excite it. It therefore

represents a spurious element deformation state, or a so-called spurious element

mechanism.
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§3.1.3 Component-wise Elimination of Spurious Mechanisms

There are, of course, ways to eliminate the spurious mechanism in the bar ele-
ment. The cause of the spurious mechanism in this particular mixed discretization
emanates from the “(1 —I2k2/4)” term of Eq. (3.14), which can in turn be traced
to the “sin kl” term in the discrete Fourier matrix operator, Eq. (3.13). This term
originated from the whole-station (or central) differencing of the first derivatives
appearing in the wave equation. This term results from the linear interpolation
fields employed in the finite element discretization. After assembly of adjacent

elements, one finds that

du 1
Elj = g7 (85+1 —45-1) (3.24)

1
|J. = 57(95+1 = 05-1)- (3.25)

If this problem is recast from a finite difference standpoint, one way to elimi-
nate the spurious mechanism is to adopt the so-called half-station finite difference

scheme which would yield the following set of difference equations:

. 1
U= 7("1'+1/2 —j-1/2)
| E
l

oi1f2 = T (U441 —uj)
where a lumped mass matrix has again been used.

The discrete Fourier characteristic equation for these difference equations,

cast in nondimensional form, is

(i"c_’)2 - (k)2 =0. (3.27)

The half-station scheme will therefore exhibit no spurious oscillation since for
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w = 0 we have

=0 = k==, n=0,1,2,. (3.28)

where k = 0 is the only admissible wave number. Eq. (3.27) may also be obtained
from the discretization of the displacement-based equations with its strong form

derived by substituting Eq. (3.2) into (3.1).

Fig. 3.2 shows nondimensional frequency curves for the continuum solution
and the corresponding mixed beam finite element and half-station finite difference
discretizations. Note that for the mixed beam finite element discretization, the
discrete frequency curve is plotted for all admissible wavenumbers even though
negative discrete group velocities, i.e., dw/dk < 0, which are an artifact of the dis-
cretization process, are seen to result within the range of admissible wave numbers.
The zero root at kl = =7 is vividly portrayed in the figure. Lastly, wave propa-
gation in the continuum solution is non-dispersive in contrast to both discrete

approximations which are dispersive, i.e., w/k #constant.

The poor performance of the mixed finite element discretization, is apparent

as manifested in the relative mode-by-mode frequency error,

w—wD A

e(kl) = (3.29)
plotted in Fig. 3.3 where wp denotes the discrete approximation. At the Nyquist
frequency (corresponding to the maximum admissible wave number), the finite
element discretization performs at its worst, admitting non-physical rigid-body
motion (i.e., a spurious element mechanism). On the other hand, the half-station
finite difference scheme is not only more accurate, but also exhibits its maximum
frequency at the maximum admissible discrete wave number (k = 7/!), thus indi-

cating the absence of spurious mechanisms for this discretization.

One particularly illuminating numerical example of the effect of spurious el-

ement mechanisms on a computed solution was presented by Underwood {49].
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Fig. 3.4 shows his results for the case of wave propagation in a fixed bar for both
a whole-station (equivalent to the mixed finite element beam discretization) and
half-station finite difference discretization. The initial displacement conditions are

shown at the bottom for ¢ = 0. The initial displacements should theoretically reap-

pear shifted by two stations at ¢t = 20At and at ¢t = 40At where At is the critical

7L LA LA
R

Eo
o

time step for the explicit time integration. The whole-station results are seen to

wildly distort the inital pulse at each time step while the half-station differencing

results in a physically correct solution.

§3.2 Transverse Shear Locking in the Timoshenko Beam Element

In the preceding section, a technique of identifying spurious element mech-
anisms using a discrete Fourier analysis technique was described. The discrete
Fourier matrix operator and its characteristic equation were shown to possess the

necessary information needed to detect the existence of spurious element mech-
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anisms engendered by a finite element discretization. In this section, this same
Fourier analysis technique is used to identify transverse shear element locking.
In the frequency domain, locking is viewed as an unrealistically high frequency
state (analogous to the over-stiffening already shown in static problems) for all
wavenumbers. By transforming back to the physical domain, the results of the
discrete Fourier analysis in the frequency domain are shown to be identical to that

presented earlier for the Taylor series techniques.

§3.2.1 Dynamic Behavior of the Continuum Timoshenko Beam

As before, the first step in the Fourier analysis involves substituting the har-

monic wave solution

i(kz—wt)

u = die (3.30)
into Eq. (2.21) which results in -
Likw) - 6=0 (3.31)
where
" _ [-pAw? + GAK? iGAk . [
L{k,w) = iGAk plw? — EIk? — GA] 6= { é } (3:32)

The reference continuum frequency equation derived from Eq. (3.32), nondimen-

sionalized with respect to the beam’s thickness, h, is then

4 - [('r +1)(kh)? +12]02 + r(kh)* = 0 (3.33)
where
wh E

Observe once again from Eq. (3.33) that the condition for rigid-body motion,

i.e., w = 0, corresponds to

------

k=0 (3.35)
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% for the continuum Timoshenko beam. 2:;:
u §3.2.2 Dynamic Behavior of the Discrete Timoshenko Beam r:_
ady
~
- The semi-discrete finite element equations for a uniform mesh of linear Tim- ",":_
o,
% oshenko-beam elements at an interior node, “;7, are for exact (two-point) spatial j::j
‘a L]
integration, o
@ 8., -8 o
w. — 2w S W . —_ : s
. J+1 ) J—=1, 7+l -1,
§ pA; = GA( 7z ) GA(——~—21 ) +4;
(3.36)
e 9, “—20'+0'_ Wii) —Woy 0, 1+40'+9‘_1
@ plfj = BN~ 371y 4 g Il _unly gLt 7
2 21 6
@ and for reduced (one-point) spatial integration, :
@ Wy, — 2w, +w,_ 0,.,—0,_
o 1+l J J=1, 7+1 7—1 '
pAW; = GA( 72 ) - GA( T ) + gy
lﬁ (3.37)
; I§; = EI(-Z I GA(L=——1=0) — gA(< S,
g oIy = EN(FE— 2l o gamit o Binly g HL T 0 T,
'!
- where for simplizity, a lumped mass matrix has again been used.
ulr
, As was noted in Chapter 2, the only difference between Eqs. (3.36) and (3.37)
};.
v is in the way the 0-terms are averaged in these two equations. Both sets of coupled
- discrete finite element equations recover the continuum differential equations in .‘.r
Al ".-.":1
5! the limit as [ — O and therefore are formally consistent. However, as was shown .;::.:_-,
AL,
o in {15}, using a decoupled limit differential equation approach, the two sets of R
L discrete equations display a radically different solution behavior as illustrated by .'
. . . o -
< numerical experiments [35]. The transverse shear locking phenomenon exhibited NN
oo . . Mty
W by the exactly integrated Timoshenko beam equations will now be analyzed in the :::':
o\
& frequency domain. To this end, the following discrete Fourier matrix operators 'C:'f:
. ®
2 corresponding to the above cases are obtained by substitution of Eq. (3.30) into AT
:_\'\i
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Egs. (3.36) and (3.3, resulting in

r__ A 2 L2 £ :
-D pAw® + GAk gAsmkl
L (w,k) = [ iGA

_ 3.38
sin k! plw? < EIR? — GA 1(re) (3.38)
iGA

where the superscripts (r,e) designate the reduced or exactly integrated cases,

respectively. The discrete unity operators 1(re) are given explicitly by

2
1r=1-Lp2
142 (3.39)
€ -1 - k2
1=1-=

where the discrete wave number, k, is as defined by Eq. (3.16). In this context, the
unity operators 1" and 1° can also be viewed as averaging operators since these
quantities embody the different discrete nodal averaging schemes for 8 engendered
by the two different spatial integration rules. It is the difference between these

two averaging operators that is shown to play the pivotal role in the transverse

shear element locking phenomenon.

The frequency equations derived from Eq. (3.38) are written in the form
0t — [(r + 1)(kh)? + 1200002 4 r(RR)* + 12(RR)22M) — ) =0 (3.40)

where the appropriate interpretation of the unity operator y, defined by

2
x=1- %—/-cz, (3.41)

is determined based upon the role it plays in the discretization with respect to its
interaction with 1("¢), By writing Eq. (3.40) in this general form, the interrela-
tionships between these operators, which dictate in the present case whether there

will be element locking in this finite element discretization, is succintly shown.

The first step in identifying the source of transverse shear element locking is to

compare the discrete frequency equation, Eq. (3.40), to its continuum counterpart,
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| Eq. (3.33). From this comparison it is immediately apparent that Eq. (3.40)

contains the parasitic term
0 12(kh)2(1{re) — y) (3.42)
which is now shown to be responsible for element locking.

0 §3.2.2.1 Exact Spatial Integration

For the case of exact spatial integration, one finds that

X (ll-c)2
i le — T —— 3.43
X =" 7 (3.43)
B
which when substituted into Eq. (3.40) results in
i !
i 0 - [(r + 1)(kR)? + 121°]0% + [r + (z)z](kh)‘ =0. (3.44)
"
For thin beam applications where (I/h) 3> 1, the coefficient of the (kh)* term
- becomes, after substituting the appropriate definitions from Eq. (3.34),
e
W
! 2 1 l 2
- => —— 1. 3.45
r+(3)">r 1+2(1+U)(h) > (3.45)
18
: This term was previously identified in the earlier Taylor series analysis of transverse
0
Iy shear element locking in the exactly integrated Timoshenko beam (see Eq. (2.39)).
From these results, x is seen to play the role of a locking operator. It is present
rr ' <
K irrespective of the § averaging scheme used and if not eliminated, results in a
parasitic term responsible for element locking.
.8
. §3.2.2.2 Reduced Spatial Integration N
v AN
0 For the case where reduced spatial integration is employed, the parasitic term ’:
vanishes identically since N
@
r _ . i
| 1"-x =0. (3.46) -Q.E ,
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Fig. 3.5 - Frequency spectrum curves for the Timoshenko Beam

From a discrete operator standpoint, Eq. {(3.46) therefore represents the correct
element “unlocking” condition. In the present discretization, 1" plays both the
role of an unlocking as well as an unity operator. It should also be noted that
substitution of w = 0 into Eq. (3.40) results in the correct rigid body cbndition,

k =0 = k = 0. Hence, no spurious element mechanism is present in the reduced

integrated beam element.

Frequency spectrum curves are shown in Fig. 3.5 for a Timoshenko beam with
aspect ratio //h = 10, h = 1 and v = .3 for both the continuum and discrete cases.
The two different families of curves correspond to the flexural and thickness-shear
wave branches exhibited by the Timoshenko beam. The frequency of the exactly
integrated element is more than an order of magnitude higher than that for the
continuum solution as well as that of the reduced integrated element at low wave
numbers. This unrealistically high frequency state continues up to k57 = 7/l for
the exact integration case. The frequency of the reduced integration case follows

faithfully that of the continuum case for wave numbers up to about 1.5.
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§3.2.3 Recovery of Limit Differential Equilibrium Equations

In §2.2, the transverse shear element locking phenomenon exhibited by exactly
integrated linear Timoshenko beam elements was identified by comparison of the
decoupled limit differential equilibrium equation of the discrete Timoshenko beam
to that of the continuum Timoshenko beam. The operational procedure used to
obtain the decoupled limit differential equations first entailed converting the dis-
crete finite element equations to their differential form by expanding the nodal
degrees-of-freedom, w and 8, in Taylor series about the interior node. The decou-
pled limit differential equation in terms of w was then solved by application of
Cramer’s rule to the resulting differential operator matrix. This same procedure
can also be applied to the discrete Fourier matrix operator to obtain the decoupled
equations in the frequency domain, which can then be transformed back to the

physical domain.

This ability to formally view the discrete Fourier analysis technique employed
thus far as a Fourier transformation operation is due to the form of the harmonic
solution chosen in Eq. (3.30). The differentiation of Eq. (3.30) results in

d’l

2o (8e%*) ;o0 = (4)"8, (3.47)

with z formally being evaluated at zero corresponding to the interior node in
the discrete problem. This yields the same result as the Fourier transform of a

differential operator,

7 [::—ﬁ] = (iw)"§ (3.48)

where the form of the Fourier transform pair used is (see e.g., [10])

! d(w) = 51-;; _0:0 g(z)e™W3dz; ¢(z) = /_O; §(w)e“3duw . (3.49)

As a result of this analogy, recovery of the limit differential equilibrium equa-
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tion in the physical domain proceeds by first determining the decoupled trans-

formed equilibrium equation for 1 which is given in operator form as

. . iGA .
det(E°C)) . & = det [q L Kl ] (3.50)
0 —-ETk*-GA1¢

=D . . . .
where L (e) denotes the discrete Fourier matrix operator corresponding to the

D exactly integrated case obtained from Eq. (3.38). The solution to Eq. (3.50) is
found to be
12GA, 4. 12 o . EI._,.

EI(1+-1?E_I-)E w—(l—'a'k )q+a-zk g. (3.51)

By next expanding the discrete wave number, k, in the power series

2 . ki 12
‘ k=sin— k- —k3+-.. 3.5
S 24" T (3:52)
¥
2 and substituting the result into Eq. (3.51) followed by applying the inverse Fourier
» transform
. —1 g o n~1_ dnw - e
F7H(k) 0] = an (3.53) ;;...
. "
. to the resulting equation, one recovers the decoupled w equation in its more fa- :'E"
miliar differential form V‘f‘
LN “- X | ‘
» 12 GA, d4w 13 dBw 12 EI.d%q 1% EI d%q N,
EIl+— +~ =q+(=- - o@4) (3.54 PGS
. e T o5 = (-G i T maa g TOVY (65 N4
8, : ‘!_‘5- %
i S
As one would expect, this equation is ideatical to that previously obtained using °
i: the Taylor series technique (see Eq. (2.37)). ‘tﬁ:
. . . el
.;. The results seen in this section lead us to a very important observation re- "
“a :""-;‘l' ,‘
\‘j‘ o

garding the superiority of the discrete Fourier analysis techniques over the Taylor

o

[Nl
. series techniques presented initially in Chapter 2. All truncation information is \,-:
. automatically embodied in the compact Fourier-transformed expressions which ';::
NS
results in extremely efficient symbolic computation, as has been described, for N2y

example, in [10].
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§3.3 Bifurcation Buckling of the Timoshenko Beam

In this section, the discrete Fourier analysis is used to evaluate the ability of
the one-point spatially integrated linear Timoshenko beam element to accurately
represent continuum bifurcation buckling behavior. The continuum equations gov-

erning Timoshenko beam buckling were presented in §2.2.1.

§3.3.1 Continuum Buckling Operator

The Fourier-transformed continuum matrix operator is obtained by substi-

tuting
o = Ge'*? (3.55)
into Eq. (2.21) resulting in
- [(G+0)Ak? iGAk
L= [ swym  —(E+a)k?-Gal’ (3.56)
From this, the characteristic or buckling operator
det L = (kh)2a? + [(r + 1)(kh)2 + 12]& + r(kh)? =0 (3.57)

is determined where the nondimensional stress, &, is defined by @ = ¢/G and

r = E/G. The two roots to this equation are given by

[(r + 1) (kh)2 + 12] £ \/[(r + 1)(kh)? + 12]% — 4r(kh)*
2(kh)? (3.58)

= —-;—(b; Vb2 —4r)

...................
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The smaller root cofresponds to the classical “flexural” buckling stress [26] while
the larger one corresponds to a thickness-shear mode in an analogous manner to

that seen in the wave propagation problem discussed earlier in §2.3.2.2.

If the von Kérman'’s strain-displacement approximation had instead heen em-

ployed, the critical buckling load would be calculated from

(3.60)

For the case of a relatively thin beam (I/h > 50), there is essentially no difference

in predicted flesural buckling load between Egs. (3.58) and (3.60).

§3.3.2 Discrete Buckling Operator

The discrete counterpart to Eq. (3.56), obtained from Eq. (2.72), is found to

be
. 2 iGA _;
bp= [ ] (361
sym —(E + o)1k — GAL'
from which the discrete buckling operator,
(kh)22% + [(r + 1)(kh)2 + 1217]2 + r(kh)? = 0 (3.62)

is obtained. The flexural bifurcation buckling stress corresponding to the smallest
root of Eq. (3.62) is

3P = —%(bD ~\/60? ~ 4r) (3.63)
where
12 i

0 =(r+1)+ ——1". 3.64 X
o
"
The critical buckling load would then simply be PR = 2PGA. : o

[ ]
Employing von K4rm4n's strain-dispiacement approximation in the element ; 3
Y
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formulation results in the discrete counterpart to Eq. (3.60),

_ EIkt
5:{{24 +17k2°

In either case, the entire effect of the discretization process is embodied in the

P2 =oP4= (3.65)

discrete wave number, k, and the unity operator, 17.

o R o

§3.4 Spectral Error Estimation

In §2.3, using Taylor series techniques, a priori error estimates were calculated
based upon solving the so-called modified limit differential equilibrium equations
which retained only the leading truncation error terms. In this section, a priori

interior error estimates will be obtained for the discrete Timoshenko beam using

the discrete Fourier analysis in the frequency domain which by its very natuzx;e
@ automatically retains all truncation information. By employing the more general
Fourier transform approach, one obtains an a priori interior error estimate in the
physical problem domain by inverse Fourier transformation of the results from the

spectral error analysis, as will be described now.

! : §3.4.1 Spectral Distribution of Loading Operator

& As was discussed in §2.3.1, determination of the discretization effect on the

loading operator requires that the harmonic loading, which now takes the general

& form g(z) = §(k)e’*Z, be used in the calculation of the nodal load from the outset.

¥ .

" Using € to denote the local element coordinate system and z, the global system,

@ as before, the nodal load corresponding to a Fourier component would be

@ 5= l sk(z -1+ )de+/ 1-5 F(E5 18 4e (3.66)

i where z; is the position of the interior node. Performing the symbolic integration,

o the discrete nodal load is found to be

! i PY ‘hz -y

| gj = (5 )2 le (3.67)
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so that the discrete Fourier transformed counterpart to the continuum distributed

! load, §, is simply
: A -

@ =()%. (3.68)
The spectral load density itself is determined from

1 [ o]

4(k) = 5= q(z)e " 24k . (3.69)
TJ-x
.%’;’
" §3.4.2 Determination of Spectral Error Distribution
«‘, The Fourier transformed continuum and discrete differential operators, L(k)
K and iD(k), for the Timoshenko beam are given by
oy .
- 5 GAk t1GAk '
L{k) = [iGAk ~EIk? - GA] (3.70)
> and
. GAk? 1GA sin ki
PR = e . (3.71)
CAginki -EIk? - GA1(ne)
:;" These are obtained from Egs. (3.32) and (3.38) with w = 0. Fourier-transformed
Ay
solutions are determined for the ith solution component by employing Eq. (2.3),
x rewritten as -
¥"4, d t - . -1 ;'.h
= — Gi L p=-%C1 (3.72) w2
P detL detL "t
b ' '7':.
The relative error in a particular Fourier component is then simply 'Y
AL
% W — wP ;1:27".
‘ ék) = — (3.73) »’1{: ‘
[ !
. For the present discrete problem, the relative error is explicitly given by . J 3
:‘1-'
ik " \4
oy =9, . ‘-:—t\.
a+Fhehe b BIEhP X
EIk4 k4+cak(1(ne) - W
(k) = EIZ+GARS (107 —x) (3.74) B
'S (1+7A5 k)4 ®
Elk e
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Fig. 3.6 shows a plot of é(k) vs. k for both exact and reduced integrated Tim-
oshenko beam elements. As was discussed earlier in £2.2.2.1, only about 2.5%
of the continuum solution would be expected for the exactly integrated case for
an element aspect ratio of //h = 10. For the present case where {/h = 100,
El= 3547.15E I with the result that the discrete solution is essentially zero, as is

reflected here in the error for each Fourier mode, i.e., é(k) = 100%.

The question of consistency is graphically portrayed for the reduced integrated
element since é — 0 as k — O for a finite l. For the exactly integrated case, however,
one must rely upon the equations themselves to verify that element consistency
is satisfied since é — O only as I — 0 V k. This is a result of the modified
bending stiffness which, for a specified element ! and k, remains constant thus

over-stiffening (i.e., locking) all modes for k > 0.

The results from Fig. 2.3 for the case of n,; = 10 are also plotted on this
figure in order to compare the earlier Taylor series results with those from the
present discrete Fourier analysis. The relationship between m and & was given
by Eq. (2.90). For low wave numbers, results from the two different analyses are
essentially identical. It is not until m > 4 that the predicted errors start to differ
appreciably resulting from the use of the modified equilibrium equations which
represent a truncated series approximation to the true discrete approximation. In

essence, the result of this is the loss of higher frequency information as is seen

here.

§3.4.3 Error Estimate in the Physical Domain

If one defines the absolute error in the frequency domain to be
ék)=w-w", (3.75)

an a priori error estimate in the physical domain can be obtained directly frcm

é(k) once the spectral load density, §, is known. Based upon the observation that
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Fig. 3.6 -~ Relative displacement error for exactly and reduced integrated Timo-
shenko beam as a function of spatial frequency, k, for ! = 100, k = 1,
v=.3and E=10".

the spatial frequency for the discrete problem is band limited since

| k |< kmaz, (3.76)

the total error in displacement at the j"h node is

kmaz tkz
e(z;) = / a(k)e %5 dk . (3.77)
—kmaz

§3.4.4 Error Estimation for the Discrete Buckling Problem

From Egs. (3.58) and (3.63), an a priori error estimate of the bifurcation

buckling load may be obtained by plotting the relative error,

(3.78)
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Fig. 3.7 - Relative error in buckling load for { =100, h =1, E = 107 and v = .3.

versus the nondimensional wavenumber, kh, for a given element geometry. This
has been done in Fig. 3.7. For comparison purposes, results from both finite
element analyses, and earlier Taylor series results, extracted from Fig. 2.4 for
nei = 10, are also shown. These results correspond to 1, 2, 3 and 4 axial half-waves.
The domain of kh plotted is 0 < kh < .5k ,ch Where the maximum wavenumber
represented by the discrete problem is k. = 1,"-, as was described earlier in §3.1.2.
While the finite element analysis employed the von K4drman'’s strain-displacement
approximation, the difference between resuits where the curvature effect is included
was insignificant for this case. Examination of Fig. 3.7 clearly shows that the

discrete Fourier analysis exactly represents finite element behavior.

An interesting thing to notice is that eventhough reduced spatial integration is
employed in the calculation of the material stiffness matrix, the buckling loads for
the discrete problem are seen to monotonically converge from above. This behavior

would be expected if reduced quadrature had not been employed and the discrete
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equations were rigorously derived from Minimum Potential Energy. It is quite
apparent that the use of the modified equilibrium equations also over-estimates
the relative error in bifurcation buckling load. Unlike the results seen in Fig. 3.6
where the Taylor series predictions were resonably accurate for long wavelength
beha.viox-', the Taylor series predictions for the bifurcation buckling loads are not
very accurate for any wavelength. This is perhaps no: too surprising since the
eigenfunctions for the Timoshenko beam buckling problem with simply-supported
boundary conditions are in fact sinusoidal. This means that the truncated Taylor
series expansions would not be expected to be very accurate for this case as is
vividly portrayed in Fig. 3.7. This is also the reason why the discrete Fourier
technique predicts the exact error in bifurcation buckling load for the discrete

model, as is verified by .umerical experiment, as shown in Fig. 3.8

§3.5 Stummel’s Problem Revisited

In 1980, Stummel [5] presented a nonconforming element discretization of

d2
——:' +pu=f (3.79)

dz
which passed Irons’ patch test (1], as recast in its functional form by Strang and
Fix [6], yet failed to converge in the limiting case. Recently, Taylor et al. [4]
presented their interpretation of the patch test in terms of three separate tests
for which Stummei’s element passed the first two, but not the third. Stummel’s
element failed this third test as a result of a singular stiffness matrix. One might
therefore conclude that the question of element convergence was answered from
a stability standpoint and not from one of consistency3. To fulfill this need for
determining intrinsic element behavior, Stummel proposed a generalized patch test

(50] which would be applicable to a large class of nonconforming finite elements. In

3 This is an importart question to answer since in the Chapter 4, we will see that
some of our “best® elements - Ul and S1 - are themselves rank deficient, hence the
need for stabilization.
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light of the failure of the patch test to determine element consistency for Stummel’s
element, the question needs to be answered as to how the present symbolic element
evaluation technique would fare. As will be shown in the remainder of this section,
the question of both element consistency and stability will be easily addressed with

the syrx;bolic methods proposed here.

The starting point of this analysis is the finite element equations for Stummel’s

element which for a single element was given in explicit symbolic form in [4] to be

1|1 -1 0 pl 213 Ug 95
7 -1 1 0f+ ry 1 2 3 Uipy ¢ = Ti+1 ) - (3.80)
0 o0 o 3 3 6 W, Tw,

Here, W; is the incompatible mode which will be condensed out prior to element
assembly. As was noted earlier, these equations uniquely embody all discret.iza.tigh

details, and as such are sufficient to completely characterize the proposed finite

element formulation.

From an assembly of two equal length elements, one obtains the following

transformed limit differential equilibrium equation,

(1+ i k26 = f (3.81)
2= '
using the Fourier displacement field
u = de'kZ, (3.82)

Even without transforming Eq. (3.81) back to the physical domain, one can im-
mediately see that the discretization embodied in these finite element equations is
not consistent with the strong form of the problem represented by Eq. (3.79) since
the “pu” term is lost as | — 0. In the limit, these finite element equations will in
fact represent

—% =f (3.83)
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irrespective of the value of p. o

The question of stability is next answered by determining if there are any ®
zeros of the homogeneous equation,

12 "

(1+ 1-2-;:)122 =0, (3.84) 0

for k < kmax = 7/¢. Since there is one corresponding to k = 0, which in this 4

e el

C ol

problem does not correspond to a rigid-body mode due to the presence of the pu 0

ok
term in Eq. (3.79), one concludes that this discretization possesses one spurious :
mode. This is not a surprising result in light of the form of Eq. (3.83) for which :“::é"
N one would normally expect one rigid-body mode to be present. .%:':j
! In summary, the convergence characteristics of Stummel’s element were de- :‘5
termined in a straightforward manner employing the present symbolic analysis "‘l:'

l technique. Further, as a result of working directly with the limit differential equi- ::::',E
librium equations governing intrinsic element behavior, one is able to explicitly "‘g:

' identify the cause of the rank deficient element stiffness as resulting from the loss t.;
of the “pu” term in Eq. (3.79). ‘,'2

o

§3.6 Summary ',

0 Discrete Fourier analysis techniques were employed in this chapter in conjunc- E::‘,‘:;
tion with the symbolic operational procedures developed in Chapter 2. As a result :;:‘::'

O3 of their ability to capture complete truncation error information, this technique A !
was used to identify spurious element mechanisms in the frequency domain. For y:
boundary value problems, the absence of spurious mechanisms constitutes solu- _:

x tion stability, which along with consistency guarantees convergence of a discrete

technique. By transforming results in the frequency domain back to the physi- ‘,

a cal domain, the question of consistency is also addressed. Transformed discrete “;E
Fourier equations were shown to result in identical limit differential equilibrium ? 1:::
equations to those determined earlier using a Taylor series approach in Chapter K

B 2. As a result, the present discrete Fourier technique is considered to complement ,
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the Taylor series approach. The specific objective of a symbolic element evaluation

will determine which technique is more appropriate to the problem at hand.

An approach for obtaining a priori spectral error estimates was then described
and applied to both static and bifurcation buckling problems. Error estimates ob-
tained using the modified equilibrium equations in Chapter 2 Awere compared to
the discrete Fourier analysis results obtained in this chapter. For static prob-
lems within the accuracy regime in which one would normally be satisfied with
the discrete solution, either technique works well. However, for the case of bi-
furcation buckling, the discrete Fourier technique exactly predicts the buckling
load obtained from the finite element analysis whereas results for the modified

equilibrium equations are not very accurate.

Lastly, using the discrete Fourier element evaluation technique developed here,
the nonconforming element Stummel used to illustrate potential shortcomings in
Irons’ patch test was successfully analyzed. It was shown not to be a convergent

approximation since it satisfied neither consistency nor stability requirements.
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Chapter 4

Symbolic Analysis of the

Bilinear Reissner-Mindlin Plate

In the two previous chapters, the different symbolic analysis techniques used
to perform an evaluation of a finite element discretization have been described.
In this chapter, these techniques will be employed to assess the performance of
the bilinear Reissner-Mindlin plate elements for static and bifurcation buckling
problems. While the symbolic procedures are identical to those employed for the
earlier one-dimensional discretizations, a two-dimensional representation of the

nodal d-o-f using either the Taylor series or discrete Fourier techniques is now

required.

Among the different families of finite elements suitable for plate bend-
ing problems, four-noded C° elements appear to be extremely popular due to
their simplicity and computational efficiency. This popularity has been re-
flected in recent activity directed at improving their performance (see e.g.,
(35,51,31,17,33,52,53,54,55,56,57]). Techniques to do so seem to be loosely grouped
into two different schools of thought. The first one employs different reduced spa-
tial integration rules to both eliminate transverse shear element locking and to

further improve their computational efficiency. The problem of controlling the
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inevitable spurious mechanisms engendered by reduced spatial integration is the

subject of current research (58,59,60,61,62,63]. The second general class of tech-
niques employs alternative interpolation schemes in order to circumvent transverse
shear element locking. (see e.g., [53,52]). These elements usually employ full (2x2)

spatial integration to ensure full rank.
Specific areas to be addressed are:

1) Effect of spatial integration rule on alleviating transverse shear element lock-

ing
2) Effect of different approaches for hourglass control on element performance
3) Identification of spurious element mechanisms

4) A priori assessment of interior solution accuracy for distributed static loading

and bifurcation buckling load

§4.1 Continuum Reissner-Mindlin Plate Equations

In this section, the linearized coupled equilibrium equations of Reissner-
Mindlin plate theory [64,65] are presented. The derivation of the decoupled trans-
verse equilibrium equation for both the material and buckling operators follows.
These equations are then Fourier-transformed to the frequency domain. In the
subsequent symbolic analyses, both sets of equations will serve as the reference
equations with which the properties of their corresponding discrete counterparts

will be compared.

The Lagrangian for Reissner-Mindlin (or CO) plate theory is comprised of the

kinetic energy,

2, ph3 29, ~_oh3 38, o
—-// at (at T 12 (atj) Ja4, (4.1)

the strain energy, U = U + Uy, which has been partitioned here into its separate
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material and stress-dependent contributions, given by ,‘n‘!j
' 1 ff 80z.4 80y, . 80380y 88z by 5 e
== == L oy2-Y bk it |
U= [[ ADUGD?+ (G + w5250 + Du(GE + 5) o
g e
ow ] ow ) .".l:
— - —- 4, N
+ Ds( 32 0z)° +( 3y 8y)°]}dA (4.2) .
| / 03
h/2 O
NL NL NL ey
Uo = //A /-h/z(aze” +Ooyey” + TzyVzy)dzdA (4.3) i
3
and lastly, the potential energy of external transverse loading, ,:q
ot
3 0
V=—// wqdA. (4.4) ‘..,:
g A !
S ' ®
N In these equations, :_’
o
(X3
LY, A
b ER3 1-v 1+v oo,
D= ————, Dy = D, Dy3= D, Ds=kGh 4.5 W
l 120-02) 11772 1277 s=F (4.5) T
with p, E, G, h, v and x representing the density, extensional modulus, shear C*“-_
\ ~
a modulus, plate thickness, Poisson’s ratio and the shear correction factor, respec- :“
)
tively. 8z and 8y are the rotations about the y and z axis and w is the transverse ot
g displacement. The in-plane displacement convention, u = —20z and v = —20y is .':;.
by
used. To complete the derivation of Uy, the assumed plate displacement fieid is :::;;
{) s
g substituted into the nonlinear part of the total Lagrangian strains given by ::::3
L
| NL  Lr g2 (Ovya | Owy2 Ty
i =G G G %
e
0
8 NL _ 17 0uy2  ,Ovy2  ,Ow,2 R
= o ov e 4.6
€y 2[(ay) +(ay) +(ay) ] ( ) .
of
a. Y :.'I
> NL Oudu Jvdv dJwiw
Tzy = a-a-tacas t 3050
0 dzdy Ozdy Oz dy o
. . L]
That result is then substituted into Eq. (4.3), and performing the indicated thick- '::.'::
X
i 83 a0
2
N
¥




ness integration, the following expression for Uy,

_ dw 4 dw . 4 dwdw, hd 807, 00y ,
Uo = 3 [[ {lox(G)? + oG + 22y 3 3l + lo=(F2) + (5%

08 o0 00, 80 360, 00
+ay((7;i)2+(5;!)2)+2rzy( 8: a;‘*‘ ﬁ‘a—y‘!)]}d-“’

(4.7)
is obtained. Those terms associated with the rotational d-o-f are the plate equiv-
alent of the so-called curvature term identified by Sun [26] for the Timoshenko

beam.

The Euler-Lagrange equations determined from T, U, and V are expressed in

differential matrix form as

Lu=(Lpm+ Lo)u={ (4.8)
where
(D2 + D2y Dipg Dyl |
h 2
0.~ 45 83
= a2 a2 3
Ly (D-a;z + Dsum D"a—y (4.9)
h 2
D, ‘g?f) .
i sym. -D,V? + ph:%n
3
be 0 0
L (0.0 82 a2 13

c= (O'z-a?' + Uyé? + 2sza—za-§) 0 1z 0 (4.10)
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with the Laplacian operator, V2, defined by

3t 8

vi= .
3z * oz dy?

(4.12)

If the nonlinear terms from the von Karman strain-displacement relations (25]

were employed in place of Eq. (4.6), Lo would take on the much simpler form,

a° a2 32) 000 (4.13)
Ly = —(0z— +0y—s + 2rzy=——) |0 0 0}, 4.13
7= onE e T a0 o

employed in C1 plate theory.

§4.1.1 Linearized Transverse Equation of Motion

The first set of decoupled equations of interest here are those corresponding
to the material operator, Lm. The decoupled linear equilibrium equation for the

transverse displacement, w, is obtained from

Lozo; Lgzey O
|Lm| - w = | Loz4y Loysy © (4.14)
Logw Loyw ¢
where the L;; are the appropriate entries in Eq. (4.9). Performing the indicated
symbolic operations, one obtains

l-w=r-gq (4.15)

where the decoupled characteristic continuum operator, {, can be written as

l=[( - Dugy, st az] [(sz-ﬁa—z)(vz—i’f——‘ﬁn hﬁ]

Ds 12D, 3:2 12 at2 Dsot2’ " P52
(4.16)
with the corresponding right-hand (or loading) operator, r, given by
Dy 2, , ph3 82 ] D i,  ph% 28t
= - ===V 1-—V — | . 4.17
[(1 Dy )+ 12D, 12D, aﬂj ( D, )+ 12D, 312 (4.17)
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As is apparent from I, the Reissner-Mindlin plate equations are sixth-order, which
accounts for the three families of wave motion; flexural and z- and y-direction
thickness-shear. It is, however, also apparent that ! and r share a common dif-
ferential operator so that Eq. (4.15) may actually be written in its more familiar

form (see [65]) as

3 a2 2 2 3 2
2_ph° 3%, 2 ph O° 4 _ i _ D2y, PR 0"
[(DV 252V " D5 toha| v = 5,° )t 12p, 52| O

(4.18)

It should be noted that this simplification would not have been possible if dis-
tributed moments, typically neglected, were present in the distributed loading
vector, f. In addition, when working with the limit differential equilibrium equa-
tions in the next section, this simplification will, in general, not be possible due

to the presence of truncation terms.

The Fourier-transformed matrix operator, IZ, is obtained by substituting the

two-dimensional harmonic wave solution
u(z, y,t) = et (kzZThyy—wt) (4.19)

where k; and ky are the wave numbers in the z and y directions, into Eq. (4.9)

yielding
" (~Dk% — D11k —Dygkzky iDskz ]
3
—Ds + 21}"2'(.02)
Lon(kg, ky,w) = (—DkZ - 2111:?, iDsky
L sym. —DsV?2 - phwz_
(4.20)

The corresponding characteristic Fourier operators are

3 . 3, .
=11 g2 - -’i-wz] : [(sz + "T’;-uﬂ)(v2 - "D—hwz) - phw?| (4.21)
3

Rt
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and
Dg 12D, Dg 12D3

where V2 = —(k2 + k,z,)

As was discussed in Chapter 3, spurious mechanisms in the finite element
method result from the presence of non-physical rigid body motion. For the present
two-dimensional problems, the correct rigid body condition, which is obtained from

Eq. (4.21) by setting w =0, is

(1- %11.{72)64 =0 = V4=0 (4.23)
s
since
Dyq & D
1- .Bl;l.vz) =1+31:]=(k§+k3) #0V kg, ky €R. (4.24)

The correct rigid body conditions in the Fourier-transformed state are therefore

determined from Eq. (4.23) to be
kg =ky=0. (4.25)
This condition implies that if for a given finite element discretization,
iP(kz,ky,0) =0 ¥ {k:0 <k < kpmaz}, (4.26)

then the resulting element will exhibit the corresponding spurious mechanism(s).

§4.1.2 Linearized Buckling Equation

The linearized decoupled buckling equation in the physical domain is deter-

mined from
det(Lm + Lo) - w = det G3[, g (4.27)
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with 82 / At = 0. Due to the length of the resulting symbolic expression, how- ~:§'}_ ]
ever, only the case of uniaxial compression will be explicitly presented here. By EN . ¥
assuming oz is the only nonzero prestress, Eq. (4.27) yields :é" oy
e
S
D11 o2\ ok ahI?3% 4 v-3D 12 _,  2hI 3%w !
1- =22V9Y)DV*w ~0s——= ————hl - =)V + —]— b
( DS )D w az D’ 626 +az[( 2 DS D’) + DS 614 A !‘
[ ]
2 '.j-.:.: »
v-3D s DDy v-3D 40w S
—-ozlh+ —h-1)V*+ h - — NV — = S
U:I:[ ( Da ) ( Dg 2 Ds ) ] 31:2 :}:-‘_\
(4.28) NIt
where ] = H 3/ 12. This expression is considerably different than that for the e
classical C! plate. The solution of this equation in terms of o yields three roots &::-::‘,.g
of which the lowest corresponds to a “flexural” buckling load. When the von Kar- ;:\\
NSNS
man strain-displacement relations are instead used, a greatly simplified Eq. (4.28) - ':
results, viz. ,'& .:,
-5:;;5;:
Dy o2y po4 3—v D _y DDy 4 8% g
- === - - — = ht
(1-F,v )DV4w — ozh(1 - —— -V + D2 V57 =0. (429) o
L
;‘n.
7 In the thin-plate limit, formally represented here by Dy — oo, the familiar C 1 "é‘_}:&
s _“."-
a equation governing uniaxial buckling results, given by %«. W
’ ',
2 ®
4, 9w _ ¢
; DV*w —ozh 322 =0. (4.30) t':'?"‘
X'
: ;_.‘ J“
R In the Fourier domain, one writes Ly as j_ e
; . I 0o o0 ]
: La = —(O'zkg + O'ykg + 2szkzky) 0o 7 0 (431) Eﬂ\ )
0 0 -h

so that transformed counterparts of Eqs. (4.28) and (4.29) can easily be obtained

from
det(Lm + Lg) - 0 = det G3[ 4 (4.32)

as required.
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§4.2 Discretization of the Reissner-Mindlin Plate Equations

If one employs the bilinear isoparametric shape functions, the element ma-
terial stiffness matrix for the 4-node Reissner-Mindlin plate bending element is
derived from Eq. (4.2) by first substituting the element displacement interpola-

tions

u = N"d“ ) 1= 1,4 (4.33)

w;|T, Ny = NJI3 and

1 fg = (-10 1, ls_l)
i = 7 (1+ &1 +nyn); (4.34)
n; = (-1,-1,1,1)

followed by setting éUy, = 0, from which the element material stiffness,

A
(4.35)
1 1 T T
- /_1 /_ (BYDyB, + BID,B,)\J|dcdn.

is obtained. In this expression, B; and B are the isoparametric strain-displacement
matrices representing bending and transverse shear contributions with D and D,

representing the corresponding isotropic material matrices

0

0 and Da = Da [1 0] . (4.36)

1
Db=D IOJ 1oy 0 1

O = X

The surface Jacobian, J, which represents the differential transformation between

the physical (z,y) and isoparametric (£, n) coordinates, is determined from

3 3 9z 8
{?}:J{?} - J= f 7t . (4.37)

an dy
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B; and B are determined from the strain-displacement relations Ll 4

3N. .

( EX
€z By =
| e
€= Yzy ={Bb}d = J -
¥ -N; O ' o
yz Bsi ) ;5;,; Y .
t S T oy

-3

Q

0
N; AN;
z

-

(4.38) (RO

Discretization of Eq. (4.7) results in the following geometric stiffness matrix, g

Is 0 O \

ka=// B7|0 Is 0|B,dA » ::1:}
A 0 0 hs ' )

(4.39) R

I R

1 41 s 0 0 BN,

=/ / Bg 0 Is 0| Bs IJldfd'l ":‘
-1/-1 " |0 o0 ks Rk

where .:\
8 = Oz Tzy : :
sz ay ~

®
and Y.

oooo?lmf,ﬂ;a

o o§’|m,‘3:|c»o o

[Ny Nz N3 N4 r

Ho¥o © © © ©
L

with Ny = N; I3 and the Jacobian, J, as previously defined. t:-

Functional evaluation of B'erbBb and BTD,B, shows that unlike the Timo-

shenko beam, both integrands contain terms of the same bi-quadratic polynomial
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order. A 2x2 point quadrature rule would be required for an exact term-by-term
spatial integration for the case of a rectangular (or parallelogram) element with its
constant Jacobian determinant. The use of a (1x1) point (or reduced) quadrature
rule would result in the loss of quadratic order contributions to both integrals
introduc-ing rank deficient stiffness matrices with the accompanying possibility of
spurious oscillations appearing in the discrete solution. Thus, one of the impor-
tant question to be answered in this chapter is “What is the effect of employing

different spatial integration rules on Egs. (4.35) and (4.39)?”

§4.3 Taylor Series Element Evaluation

It was noted in Chapter 3 that the Taylor series approach can not be used to
detect spurious element mechanisms. Nevertheless, it is ideally suited for detecting
parasitic differential operators responsible for element pathologies such as locking.
In the present section, the effect of employing different spatial integration rules
for the bilinear Reissner-Mindlin plate element is evaluated using the Taylor series
approach outlined in Chapter 2. In the later section dealing with discrete Fourier
analysis techniques, the question of spurious element mechanisms engendered by

reduced spatial integration of element stiffness matrices will be addressed.

§4.3.1 Transverse Shear Locking — Exact (2x2) Spatial Integration

The most obvious place to start is to consider the exact spatial integration
of Eq. (4.35) achieved by employing a (2x2) quadrature rule on both bending and
transverse shear terms. Numerical convergence studies by Hughes et al. [35] have
shown that the resulting element exhibits the same type of transverse shear element
locking as encountered earlier for the Timoshenko beam. By using the operational
procedures developed in Chapter 2, the effect of the exact spatial integration on

element behavior is succinctly determined by recovering the element’s governing
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[DV* + £—D,(d4 +d§) + (—(4D Dyy) -
—(5D + Dy;)V2didi|w =

2 Du

- TG+ vt

12 D Dy

2 2
+5(5; t T, )dadvle

(4.40)
for a patch of square (! x I) elements as shown in Fig. 4.1. Here, the compact
symbolic notation dz = 33— and dy = aa— is used. Also, only truncation error
terms that possess the same differential order as that of the continuum operators
have been retained. As in the analysis of the Timoshenko beam in Chapter 2,
these truncation error terms are considered to be parasstic differential operators.
With the presence of these truncation error terms, the full sixth-order equilibrium
equation must be dealt with so that Eqs. (4.16) and (4.17) with 82/8t% = 0 will

serve as the reference equations.

The possibility of transverse shear element locking is apparent due to the
form of the parasitic differential operator associated with the primary differential
bending term, V4. By looking at these two isolated terms, one finds that

12

DV* + =D, (¢4 +df) = D[(1+ £D,

12D

l D, ]
12D

—=)d} + 24242 + (4.41)
which means that the z- and y-direction bending modes will lock for essentially
any finite length plate since the bending stiffness in those directions is amplified

by the factor

12D, k(1-v), 13
1+ 5D “H'__z_(E) > 1. (4.42)

1 The MACSYMA runstream from which the results of this analysis were obtained is
shown in Appendix A.2.
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Fig. 4.1 - Element geometry for 4-node plate discretizations

Thus, in order to obtain a physically realistic solution employing this element, one

must have I <« h. The pure zy-twist or torsion bending mode is not effected by

locking as is demonstrated by numerical example in §4.3.3.2.

The effect of truncation error terms on the secondary “thick” plate differential
operator, Ve, are of a much less benign nature. If the parasitic transverse shear
element locking terms could be eliminated, one could return to the traditional

order-of-accuracy notions to evaluate this discretization.

§4.3.2 Element Unlocking — Other Spatial Integration Schemes

As far back as the early 1970’s, it was independently recognized by Pawsey
(28] and Zienkiewicz et al. [29] that exactly integrated thin C° plate (and shell)
elements could be cured of their transverse shear element locking by selectively
employing reduced spatial integration for the transverse shear element stiffnesses
while exactly integrating the bending stiffness. The rationale for this being that,
in the thin plate limit, the last two terms in the potential energy expression for
the C plate given by Eq. (4.2) can be considered as penalty constraint conditions
enforcing the Kirchhoff constraints. With this being the case, the rank of the

transverse shear stiffness, ks, must be reduced, a condition easily achieved by
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using reduced spatial integration. In this section, the effect of using different

spatial integration rules to derive the element’s material stiffness, as embodied in °

TR
55
o
»

the governing limit differential equilibrium equations, is investigated. P ,I"o‘.l"

§4.3.2.i Selectively-Reduced Integrated S1 Element |:"0"'

The first Reissner-Mindlin plate element to be examined here is the S1 element oA

n‘ K 4
[35] which employs exact (2x2) spatial integration on the bending stiffness and a SN}
reduced (1x1) integration on the transverse shear stiffness. The decoupled limit ;:

differential equilibrium equation for this element is found to be °

_DDy

12
D )ve + (1D - Dy)V¥didllw =

2
4. 5
[DV +(—12D
DDy; 12 D Dyjios
—_t e —(— + —=2))V @
D? 3(Ds D, ) s
12 D Dy

~%'D, T D,

1+(5 -5 - 22+

dzdy?lq. ey
(4.43) e

The above equation reveals that the parasitic locking term associated with the A

V4 operator has been eliminated through the use of reduced integration on k. itk

As a result, one obtains a locking-free element discretization. Unfortunately, this d ":".':‘

reduced spatial integration of k4 results in a rank deficient element stiffness matrix ,

¥ which exhibits two spurious element mechanisms (see [35]). The first one, an :".::::"
) inplane-twist mode does not propagate in an assembled mesh and hence is of little
practical importance. TheA second one is the so-called w-hourglass mode which Q

can be responsible for singular or near singular assembled global stiffness matrices Iy

with resulting wild solution oscillations if not controlled. The effect of employing

different hourglass control techniques to stabilize this element is discussed in detail

in §4.3.4.2. e

§4.3.2.2 Uniformly-Reduced Integrated Ul Element “t.:'

The next element to be examined is the uniformly-reduced integrated Ul el- Yoty

ement (see Refs. (33] and [56]) which employs a (1x1) spatial integration rule on KRN
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both the bending and transverse shear stiffnesses. This type of element is poten- ’\'c::i;.

L

tially quite computationally attractive since the generation of the element stiffness :::";f
can essentially be “hard wired” to take advantage of the single Gauss integration . ‘
e e
point. This is provided, of course that the attendant spurious mechanisms are .:::::‘:
N
controlled. The decoupled limit differential equilibrium equation for this element s::::::t
s R
; s
(DV* + (512D DDyyygs . 212DV2d2d2]w - e
12 Dy 3 Lt L i o
. g

2 D Dy,..s ,DDy; 12, D Dy, 4 Y
1+ (= - —-=2)V —_—= - = (= +==))V -

1+ -5,V + 1 ~3(5,* 3, ) o
2 D D W

11 24,2 W

—_ —— 4+ =21\ dz*d o)
3(p, T D, =Wl R
(4.44) s
AR

- Since the same (1x1) spatial integration rule is used for k4 as for the S1 element, Py
one would again expect that this element is locking-free. This is in fact the case :’Yéii
3% 0%,
due to the absence of any parasitic operators associated with the primary bending 32:.%
. .‘L
operator, v4, Unfortunately, as was the case for the S1 element, reduced spatial ‘;‘0‘:
integration also results in the presence of spurious element mechanisms; four to TR
AN
be exact. The two additional zero eigenvalues correspond to a #z-hourglass and a c::;%:;

)

f0y-hourglass mode as a result of the under-integration of k;. The stabilization of ‘:::.::::‘
h Lt

this element will also be symbolically analyzed in the next section. Q
o
oy
§4.3.2.3 Directionally Integrated Transverse Shear Element c:.::::sfc
. e
The last plate bending element to be considered here is the directionally D)

o
integrated transverse shear element. This element employs the (2x2) quadrature iy
Why
rule for ky while further partitioning kg into its 7zz and vy, contributions and :::@E
Lt
i employing a (1x2) rule for the zz stiffness and a (2x1) rule for the yz stiffness. ,‘:‘.,".’
(]

This spatial integration technique is employed by MacNeal’'s QUAD4 element (31]
and was the focal point of the recent work by Prathap and Viswanath [54].

The rationale for the selection of these spatial integration rules lies in the

inconsistent polynomial approximation inherent in using the same bilinear inter-
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polation functions for both w, 8z and 8y. This point can be clarified if one considers
the transverse shear strain

7]
Y2z = -—aw ~0z. (4.45)
X

In terms of the generalized displacements,

w =ag+ a1Z + agy + agzy
(4.46)
0z = bg + byz + boy + b3zy

where (z,y) represents a centroidal-based cartesian coordinate system, one finds

that
vzz = (a1 — bo) + (a3 — ba)y — b1z - byzy. (4.47)

The last two terms are extraneous since they only represent ; contributions to
~vzz which are not balanced by w contributions. The easiest way to see their
deleterious effect is to consider what happens in the thin plate limit where %’7“’- =
0z => ~zz = 0. Here, these terms represent nonphysical constraints on vzz which

will ultimately result in element locking since &; # 0 and b3 # 0.

If one now considers the calculation of the transverse shear stiffness associated
with the 4zz contribution, ks, ,, only even polynomial functions will survive the
spatial integration so that it will be sufficient to only consider the integration of
the (a; — bg)? + (a3 — bg)2y? — b%zz - bgzzyz. To eliminate the inconsistent
contribution of the b; and b3 terms to k,,,, @ one-point quadrature rule in the
z direction may be employed while to exactly integrate the y dependence, a two-
point rule is required, hence the rationale for invoking the (1x2) rule. Here, it is

assumed that the Jacobian is a constant.

Similarly, it can be shown that a (2x1) quadrature rule is appropriate for k yz"
It is important to note that this element discretization is conceptually different
from that for either the S1 or Ul elements in that this modified spatial integration

rule is not invoked within the penalty function context of reducing the rank of k.
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By selectively eliminating only the “spurious” 6z and 8y constraints, an element
stiffness of full rank is maintained. It is this observation which has motivated
research in redefining the way in which the transverse shears are handled at the

element level via alternative interpolation procedures.

As expected, this spatial integration technique results in a locking-free plate

bending eiement as is reflected in its limit differential equilibrium equation,

12 DD 2
DV +(3D - =5 )V + (1D - D1y)V2dldflw =

12D
))V4 - E-B;dzzdyz]q.

(2Du 2D 1Dy
D? 4D, 3 D,

(4.48)

The success of this element rests solely on taking advantage of the fact that
the local (z,y) and (&, n) coordinate systems are aligned for a rectangular element.
If, however, one begins to distort the element into a parallelogram as portrayed in
Fig. 4.2, the locking-free property of the discretization is lost. For this particular
distortion, one finds that the (2x1) integration rule for k,yz still works since ¢ || z
but with n }f y, the (1x2) integration of ks, no longer eliminates the spurious
constraints on vz, resulting in the reappearance of element locking. The dominant
bending operator appearing in the decoupled limit differential equilibrium equation

for this particular parallelogram discretization is found to be

12 ta.nzﬂ

V4
D + 12

D,di (4.49)
where 3 is the angle between the y and n axes as is portrayed in Fig. 4.2. The
second term in this expression is the parasitic operator responsible for locking the
z-direction bending mode of the parallelogram mesh. If the local (z,y) and (&, 1)
coordinate systems were not aligned at all, one would expect to see the return of
element locking with the appearance of parasitic terms associated with both the

d% and d¢ continuum operators as was the case for the exactly integrated element.
z y
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Fig. 4.2 - Element geometry for parallelogram discretization .‘.c"'i
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§4.3.2.4 Alternative Transverse Shear Interpolations Schemes

In order to overcome the problem of element locking engendered through the ¥
application of the “standard” bilinear isoparametric shape functions, the technique ‘
of employing alternative interpolation schemes based upon assumed strain fields o)
has proved quite successful (see e.g., Hughes and Tezduyar’s T1 element{53] and ::%:
the Bathe and Dvorkin element [52]). For a rectangular element, these alterna-
tive transverse shear interpolation schemes result in limit differential equilibrium ) ,t:'
equations identical to that determined for the directionally integrated transverse
shear element discussed in the last section. This results from explicitly embedding
into the element’s transverse shear interpolation scheme the functional equivalent \ ':'o:
of 310-

Yzz = a1 + b1y .
(4.50)
Yyz = ag + bz
for the present cartesian element geometry which is identical to that achieved by "‘ W

employing the (1x2) and (2x1) spatial integration rules. ]
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§4.4 Symbolic Evaluation of Hourglass Control Techniques

Over the years various element discretization schemes have been proposed
based wholly or in part upon using reduced spatial integration techniques to al-
leviate different element pathologies or simply to obtain a computationally more
efficient element. The inevitable spurious mechanisms engendered by such an ap-
proach can render an assembled stiffness matrix singular. Different stablization or
hourglass control techniques have been proposed to eliminate these singularities.
Except for brief excursions into functional analysis techniques (see e.g. [61,62]), the
developers of hourglass control strategies have, by and large, resorted to physical
considerations whereby generalized stresses and strains (or other conjugate quan-
tities) are appropriately introduced into the analysis {58,59,60]. This physically-
based approach to hourglass control, unfortunately, unnecessarily hides the intrin-

sic linear algebra problem of dealing with rank deficient stiffness matrices.

The present approach to understanding hourglass control is based entirely
upon first viewing the problem from a linear algebraic standpoint. Once the
fundamental problem is understood, the proper physical interpretation follows
in a natural manner. From this starting point, the key to hourgiass control or
alternatively, consistent spurious element mechanism suppression, is based upon
selectively shifting part of k’s spectrum to remove the rank deficiency associated
with the spurious mechanism(s). This entails moving eigenvectors from the null
space of k to the range of an augmented element stiffness matrix, k. All a priori?
hourglass control techniques presented in the literature are based upon this basic

idea.

From a physical standpoint there are two important aspects of this problem.

2 Jacquotte and Oden [61] use a priori to refer to hourglass control techniques invoked
prior to the global sclution while a posteriori implies filtering out hourglass modes
after a global solution has somehow been obtained.

99




4]

i m - -

e

St K sd e 08 i Ble Aedraly, ot Al » Palh gt 3 v IOV WL R Y MW e N + ‘g a 4 [N AU - ’ voh ¥

The first being the obvious one of removing the spurious mechanism(s) by this
shifting procedure while the second is concerned with preserving the consistency
of the resulting discretization which at a minimum entails preserving the vectors
spanning the rigid body and constant strain modes of k (see Ref. [58]). As will be
shown here, however, there is a potential pitfall in using these techniques, namely,
the reintroduction of element locking. After first briefly describing some of the
underlying linear algebra details of hourglass-control in order to motivate their

use, element evaluation of the “stabilized” S1 and Ul elements will be presented.

§4.4.1 Selected Spectral Shifting

The concept of selective spectral shifting, based upon the spectral theorem
(see e.g., [66]), provides the theoretical foundation for hourglass control techniques.
With the spectral theorem, the positive semi-definite element stiffness, k may be

decomposed as

dim(k)
k= Y Axxr (4.51)

=1

where the A;’s are the eigenvalues and x;’s are the corresponding normalized eigen-

vectors determined from the standard eigenproblem
kx; = Ajx;; 1=1,...,dim(k). (4.52)

The present form of k ensures that all \;’s are real and that the corresponding
x;’s form an orthonormal basis such that x;.rxj = §;;. Selectively shifting one of
h

k’s eigenvalues, e.g., the jt eigenvalue, can now be accomplished by forming the

augmented matrix

k=k+¢xxT (4.53)

e y " A AL, ] Ly - LR L
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where x .xT is a rank one matrix update and ¢J- is a (positive) scalar. Now, :‘" o

77

Ex. = Tig. = Txx. o

J 2 i o
m— o
J 1l
: 4.54 iyt
= (AJ +¢J) xj . ( ) .’:‘... 0
—ﬂ

ot =X Wty
! A 3 ) .::e
From this, it is obvious that x § is also an eigenvector of the augmented problem
with its associated eigenvalue being A 4o OF in other words, A j has been shifted by -
< an amount ¢ Iz If one considers the remaining eigenpairs from k, they will remain e

unchanged since bty

ZF
>

» x}'x,- =0Vi#; = (k+ ¢jxjx})xi =kx; = \x;. (4.55) ®
These results also hold true for shifting multiple eigenvalues employing rank W

two and higher updates where the augmented matrix takes the form

v
]-!. =k+ z: ¢kxkx'£ (456) ‘ ‘l:‘ '
k=1 5 %

with v denoting the number of eigenvalues to be shifted.

§4.4.2 Rank Deficient Element Matrices :-_ '

When the element stiffness matrix is constructed using reduced spatial in- gy
" tegration, the element stiffness, k, possesses one or more zero eigenvalues whose T
associated eigenvectors do not correspond to physical rigid-body modes. These Rl
spurious hourglass modes, along with the physical rigid body modes, span the S
null space of k, N(k), all of whose vectors satisfy the identity kx = 0. The re- s
maining eigenvectors, which (should) represent the physical deformation modes, E‘
form the range of k, R(k). Since rank deficient element matrices can result in ::Q\a
a singular assembled global stiffness, techniques for reducing the rank deficiency Ha

of k are of current research interest. The technique of selected spectral shifting Yty
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provides the needed tool for understanding exactly how the different hourglass

: ey
control techniques work. .'!z",!
o

Based upon the discussion thus far, an augmented element stiffness, E, would BNty
be defined by e

kK=k+¢vvT (4.57)

where v represents the hourglass control vector and ¢ is a positive scalar. Since Vo

the x;’s form an orthonormal basis, v can be written as o

1§,
%
n
v= Z X (4.58) l"

=1 b

Py

where n = dim(k). We are now in a position to precisely define the (minimum)

ol
e

requirements for the successful suppression of spurious element mechanisms. First,

,
A
[ ] .

a component of the hourglass control vector, v, must be in the direction of the
eigenvector, x, corresponding to the non-physical zero eigenvalue, to ensure that
this eigenvalue is shifted to a positive non-zero value. Secondly, v must be orthog-
onal to the rigid body and constant strain modes to ensure element consistency?3.
The one vector which automatically satisfies these conditions is the eigenvector
itself corresponding to the nonphysical zero eigenvalue. It should be noted that
the potential always exists to alter eigenpairs representing physical deformation

and rigid body modes through an improper choice of v.

§4.4.3 Hourglass Control for the S1 Element

Hughes et al. [35] have shown that the S1 element possesses the following two

3 This guarantees that the element will still pass the patch test. For higher-order ele-
ments, orthogonality with respect to higher-order strain modes would be necessary
to maintain their accuracy.
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spurious element mechanisms, ::ﬁ‘
J

mOde w (/] z 4 y :'-»
1 h 0 0 2
2 0| -y | x ?; ]

where the first mode is the w-hourglass mode and the second is the in-plane twist A

mode. Here, the hourglass d-o-f displacement pattern, h, is given by Ny
h=|z1y1 22y; z3ys z4v4]” (4.59)

for the general quadrilateral, and by ‘ gt
h=[1 -1 1 -1JT (4.60) S

for a rectangular element. x and y are used to denote nodal position with respect
to a local cartesian coordinate system. As was noted in [35] and symbolicaily
verified to be the case in §4.4.3.2, the in-plane twist mode* is not communicable e

)
when the element is assembled in 2 mesh and so has typically been ignored. st

In their first paper dealing with the control of hourglass modes in plate ele- R

ments, Belytschko et al. [59] proposed two quite different hourglass control proce- E}\"’f
dures for dealing with the w-hourglass mode of the S1 element. In the remainder Rk

of this sub-section, these two techniques will be examined in detail. -

s o8
1t .
iy

§4.4.3.1 Method 1 — Weighted Stiffness Averaging TN

T3
" The proposed element stiffness for method 1 was ‘@

)
» P
;O. k — k(bZXZ] + (1 - E)kLIXI] + fk_I’ZX2] (461) :?‘0.'.\

4 Note: This mode is the same for both the S1 and Ul elements Sl
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' which was assumed to be comprised of the fully integrated bending stiffness (exact
for rectangular elements) and a linear combination of the fully-integrated and
nl under-integrated transverse shear stiffnesses. This expression was subsequently
y rewritten as
[2x2] [1x1]
k=k "% +ky " +eky (4.62)
. . ,
5 kgy
i
o where
»
5 kg = k(%3 [ (4.63)
h represents the so-called hourglass stabilization matrix.
N
o By making use of the spectral theorem, one can rewrite Eq. (4.62) as
_ 12 12
k=kg; + e[z ¢,~y‘-y'f - Z <p,~z,-z;-r] . (4.64)
7 = = N
k.[,2x2] kLIXI]
r’:
Written in this form, it is obvious that only terms whose eigenvectors are in their
i respective ranges of k, contribute nonzero matrix updates to kg;. The shifting

of the spurious zero eigenvalues of kg; is therefore being accomplished solely by
k[,zle whose eigenvectors in R(k!,zxz]) have components in the direction of kgy's
w-hourglass mode - and also in that of the inplane twist mode. From a strictly
L hourglass control standpoint, kLIXI] plays no role since information from its null

space is never used for spectral shifting.

A

' From Eq. (4.61), it would be expected that this stabilized S1 element would g
.l

oo perform somewhere in between the parent S1 element and the fully integrated o
Reissner-Mindlin plate element. The limit differential equilibrium equation corre- ,_ R
A
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sponding to this hourglass control procedure was found to be

)
I 12 512 d? DD vt
V‘ f__ 4 »r . n_ S - 11 v6 W
[DV* + — Da(dz+d§)+(129 730 +Du) D, ) ':":.'.‘
i 12 612 Dll 2,9 '!":‘,
R ) +i-2'(7D - D1 + ?(Du - D) + —DT))Vzdzdy]w = ::::::!l:i:
A7 ‘ "{
2 d2 D D DDy; 8. D D @2 D D S
L+ (3 -5 5. - IV +H (G -+ P+ S5+ OV 3
2 6 D,g D,g Ds 3 Ds Da 12 Ds D3 ; ‘Q:“
2 D Dy, 2,9 ol
- —(= + =%)dzdy“]q. L
6(D3+D3)dz y]q
(4.65) X
:.:\:I
From examining this equation, it is apparent that transverse shear element locking ‘!’.::1'.
is an intrinsic element attribute of this stabilized element for any ¢ > O since the -?”
dominant thin plate operator for this discretization is A ’
o
el? ‘:::':f
DV* + —Dy(d} +dy). (4.66) e
12 0y
. Pty
@
The potential locking deformation patterns would be the z- and y-directional bend- ';.:E:
‘ A
ing modes as was found to be the case for the exactly integrated element. Thus, ::::‘:::
e L L . .
the best one can do is to introduce enough locking into the element formulation to ':‘.:::
& suppress the spurious element mechanism. For the limiting cases when ¢ = 0 or ...
{0
€ = 1, Eq. (4.65) is seen to properly degenerate to the S1 element, Eq. (4.43), or 2 '::
a the exactly integrated element, Eq. (4.40), respectively. :E:'f
W]
@
@ §4.4.3.2 Method 2 — General Rank Update e
| The second method proposed in [59] reduces to that of selected spectral shift- ;,.P)‘ ,
o
a ing if applied to a rectangular mesh. Their augmented element stiffness was given P
)
by e
S
% Ds 02, 2y T
k = kgy + e~ (12 +Iy)asay (4.67) _,. .:.‘
ﬁ sy
where q4 = h is the w-hourglass mode defined by Eq. (4.60). Eq. (4.67) can hd
a 105
g .
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immediately be rewritten in the form of Eq. (4.57), namely,

k =kg + pvvT (4.68)
where v represents q4 and
Ds 2. 12
¢ = em-(lz + ly) . (4.69)

Comparison of Eq. (4.68) with Eq. (4.64) clearly shows the differences between
the two allegedly similar hourglass control schemes of Ref. [59]. For the present
case, only the spurious zero eigenvalue associated with v is shifted while for the
first scheme, essentially all the eigenpairs of kg are affected. Before proceeding,
however, it is important to note that this choice of v is not an eigenvector of
an arbitrarily distorted quadrilateral and therefore should not be used blindly for

other than rectangular elements.

The limit differential equilibrium equation corresponding to Eq. (4.68) is

2

4, 4222 S DDy

[DV4 + i%d3dg + (5D D
2 D D

+ 1310 - Du - 126( 5 + 1)) V2dldjlw =

)ve

2 D Dy,os. DDy 12, D  Dyj.cg
14+ (— - =< -y =i = A1
i+ (z-5,-5,V + 51 ~ 35, + B, 07
12 D Dy, 2,2
~slp, *p, )=l

(4.70)
From the limit differential equilibrium equation point-of-view, it is also quite obvi-
ous that these two element stabilization techniques are entirely different. The most
obvious difference is in the form of the parasitic differential operator responsible
for transverse shear locking. Instead of locking the z- and y-directional bending

modes, one now finds that only the torsiona! bending mode is effected with the
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Method 1 Method 2
Mesh 7‘; S1 Element r=1 r=10 r=1 r=10
2x2 500 .2385 1780 0546 2324 .2164
4x4 250 2563 1925 0592 .2505 .2340
8x8 125 .2608 1962 0604 .2550 .2385
16x16 62.5 2619 1971 .0665 .2561 2397
Analytical .2636

Table 4.1 Displacement of center edge of a laterally loaded S-S-F-F plate for
a = 200in., t = .lin., ¢ = 10~ 5psi, E = 107psi and v = .3.

appearance of the parasitic differential operator
$i12d242 | (4.71)

in the discrete thin plate operator, which in retrospect is not too surprising con-
sidering the alternating +1 w displacement pattern. This result leads directly to
the observation that if the R(k) is changed by this shifting procedure, the poten-

tial exists of reintroducing an element pathology which the reduced integration

eliminated.

One interesting additional aspect is that the loading operator, P, is seen
to remain unchanged from that of the parent S1 element in contrast to the first

technique which introduces changes there also.

§4.4.3.3 Numerical Verification

The symbolic analysis of methods 1 and 2 predicts that method 2 shifts locking
from the z- and y-directional bending modes to the zy mode. In Table 4.1, the
simple numerical example of a laterally loaded S-S-F-F square plate which exhibits
predominatly pure cylindrical bending in the z direction is used to verify this

observation.
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Using the same definition as in [59] for ¢,

[!! oy
!

i o 7 :
€= rl—2 . (4.72) :‘:;
’ ¢ is found to be :"::f'
¥, '0

hz Ds a 4%

=2 Ds 4.73 .

¢ 612 ( ) g
where r is used to parameterize the results. Since the present boundary conditions L«
! appear sufficient to stabilize the S1 element, results for it are also presented for :;E-
the different mesh discretizations. No more than a quick perusal of the results in :i‘
y )
Table 4.1 is required to see that the first stabilization technique locks the solution i{ﬁ%
Q'l t

while the second does not. If one considers that ¢ = 1 corresponds to the exactly g::‘,

e

ﬁ integrated case, an r = 10 only results in an ¢ = 2.56 x 105 for the (16x16) mesh. PY
)3
With the effective flexural stiffness for the z-directional bending mode given by ::t
S
..0 *
- 1-— (2
l D=(1+ rLEi))D =4.5D, (4.74) ::'.:'.*
®

!“;‘

one would expect a computed center edge displacement of only about 22% of the :::f

LR
E analytical value based upon the stiffness modification to the thin plate operator :::"
) o A

- Table 4.1 shows that the computed finite element solution is in fact 25% of the ‘

' analytical value. :'v:';
0:‘,;

";‘3

l §4.4.4 Hourglass Control for the Ul Element ::.:E
NG

The next element to be considered is the uniformly reduced integrated Ul ®
) =
element which has been shown [33] to possess four spurious element mechanisms .‘
: : e
defined by A
: mode | w 03 0y kida
1 |h|o|o B
gg 2 of{hi|o o
3 {00 |h ey

M 4 0} -y | x .
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Since the fourth mode does not communicate in an assembled mesh, as is subse-
quently symbolically verified in §4.4.3.2, Belytschko and Tsay {60] did not correct

for it. For a rectangular element, hourglass control is achieved using the augmented

stiffness

3
k=ky; + z ¢,'V,'V3“ (4.75)

=1

where the v;’s correspond to the first three spurious mechanisms, or hourglass
modes, given above. For an assembled element mesh, the decoupled limit differ-

ential equilibrium equation is

512 DD
[DV* + ¢y12d2d3 + (ED——E;IA)V6 — (¢gdz? + p3dy?)i12dzldy?
12 D  Di1\wo2,2,2. _
+ E'(ZD - 3¢1(D_s + D—S))V dzdy]w =
2 D Dyjo2 ,DDyy 13,D  Dy1o4
1+ (= — — — v (=L (= Ay
12
— ——(D + Dq1 - (83 + ¢3))dzdy?q.
3D,

(4.76)

Examination of this equation shows that locking is only associated with stabilizing
the w-hourglass mode. This interesting fact was discovered by numerical exper-
imentation in Ref. [60] when they found that (transverse shear) element locking
could be reintroduced into the stabilized Ul element by what they termed as
“overstabilizing the w-hourglass mode.” Essentially, one again finds one’s self in
a Catch-22 situation: If ¢; is too small, the spurious w-hourglass mode returns,
while if ¢; is too large, locking reappears. As they verified numerically, over-
stabilizing the 8-hourglass modes does not result in any form of element locking
since neither mode has any components associated with V4. The appropriate

choice of values for ¢9 and ¢3 can therefore be made based solely upon accuracy

considerations.
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§4.5 Discrete Fourier Element Evaluation

The basic procedures used for performing a symbolic Fourier analysis of a
finite element discretation were presented in Chapter 3. It was shown there that
the finite element approximations of various terms in the governing differential
equations can be transformed into simple Fourier operators whose effect on ele-
ment behavior could then easily be identified. From them, the effects of different
component-wise finite element approximations on intrinsic element behavior could
be assessed a priori without resorting to time consuming numerical experiments.
In particular, problems such as transverse shear locking, spurious mechanisms and
ultimately, point-wise interior accuraéy could be addressed. In this section, these
techniques will be applied to the analysis of the exactly, selectively-reduced, and

uniformly-reduced integrated 4-node Reissner-Mindlin plate elements.

§4.5.1 Component-Wise Analysis — Directional Participation
Operators

The important question concerning how different differential operators are ap-
proximated within the Fourier domain is addressed in this section. Before looking
at the different plate discretizations in their entirety, as was done for the Taylor
series technique, the effect of the different spatial integration rules on individual
differential operator components wil’ first be examined in detail. This is an im-
portant step in pinpointing the cause of element deficiencies and at the same time

prepares us for the eventual task of element synthesis[17].

As a precusor to looking at the two-dimensional finite element approxima-
tion of a differential operator at an interior node, its finite difference counter-
part provides an important point-of-reference. The second-order accurate central-

2
difference approximation of the differential operator :9@;2_ is given by the following
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stencil,
a2 1 .
az? | fi 12 | | (+.77)

, 2 .
where the differencing has been performed directly on f—z,, or from the finite
element viewpoint, the strong form of the operator. Discrete Fourier transforming

the above expression using e**2Z results in

9%

1 —ikgly ikgl 2
— == -2 z'z) = —k 4.78
ol s =ate +etbalz) = i (478)

where k; is the discrete wave number in the z-direction defined as

s rkal .
E, = m0HY) (4.79)

z l

*

2
The finite element discretization of 53:2- at an interior point in the problem

domain is obtained from the corresponding weak form,

1 2]

2244 " 4.80
7. (4.80)
2
For the element mesh shown in Fig. 4.1, the finite element representation of aa—zf
at the interior node is determined from the assembled equa‘ions where the contri-

bution from a single element stiffness is given by

ONONT

4 N dA (4.81)

where N are the bilinear element shape functions. Employing exact (2 x 2) spatial

integration to evaluate k, the following finite element “stencil,”

2 1 -2 1
ﬁﬂ = |4 -8 4 (4.82)
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is obtained for the interior node where each entry represents the nodal value
corresponding to stencil position. The expected central-difference approximation
embodied in the finite element equations resulting from using the bilinear element
shape functions is apparent by summing the columns of Eq. (4.82). The discrete

Fourier-transformed operator for this stencil is found to be

32

dz? |2 2} y ( )

where e'(¥22+ky¥) ig ysed in the now two-dimensional transformation process.
The unity operator, 1;, which is engendered by the finite element discretization,

is given by
15=1- —122 (4.84)

with Ey being the discrete wave number in the y-direction, obtained by substituting
y and ly for z and [, in Eq. (4.79). The superscript e denotes exact (2 x 2) spatial
integration. If the reduced (1 x 1) spatial integration rule is used instead of the

(2 x 2) rule to integrate Eq. (4.81), one obtains

—2| =— 2 —4 2 (4.85)
oz (1)(1) 413 1 =2 1

with its resulting discrete Fourier-transformed operator

32

=—-1Tk%. 4.86
2I(lxl } ve (4.86)

As one might expect, a different unity operator,
15 2
r _ -_— —-
1y=1 y ky (4.87)

now appears, with the superscript r used to denote the use of reduced integration.
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Comparing the finite difference results with those of the finite element, one ex-

plicitly sees that the interaction between adjacent nodes in the finite element equa-
tions results in the appearance of an additional operator term. At a first glance, it
would seem to play only the role of a unity operator such as first encountered for
the one-dimensional problems. Closer inspection, however, shows that this unity
operator is also responsible for the interaction between adjacent element nodes.
Because of this inherent participation from adjacent nodes, Fourier-transformed
operators will appear as multiplicative combinations of the transformed funda-
mental operator with other partiespation operators. For the bilinear finite element
representation of the differential operator 5@;22-, 1y plays both the role of unity op-
erator and of what will be called a directional participation operator. It embodies
the degree to which cross coupling occurs between adjacent nodes in the direction

orthogonal to that in which the derivative is being calculated.

Making use of results such as this, one can easily construct any of the different
differential operators needed to characterize a particular finite element discretiza-
tion. If, for example, the Laplacian was of interest as will be the case when
considering the transverse shear term, or Ly term, from the Reissner-Mindlin

2
plate equilibrium equations, one would also need the results for :—yz- which are

identical to those just discussed for 5‘?;22-, with z and y appropriately interchanged.
The Fourier transformed Laplacians for the different discrete methods are shown
in Table 4.2. As was described above, the only difference between the Fourier
transformed operators resulting from the finite difference and the finite element
approximations is in the presence of a directional participation operator in the

finite element discretization.

§4.5.2 Directional Participation Operators and Spurious Mechanisms

In §3.1.2, Fig. 3.1 illustrated the saw-tooth oscillation which represents the
most rapid spatial variation which linear shape functions could possibly resolve

without aliasing. The corresponding Fourier wave number, kmgz, or the mazimum
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Table 4.2 -Discrete approximation of V2
N . @
Type of Discretization Vi=—(k2+ k;) ol
Central-Difference F.D. — (k% + I-cg) N
(1x1) F.E. —(15k2 + 13k2) -
b
] (2x2) F.E. ~(15k2 + 15k2) INV¢
admissible wave number corresponding to this saw-tooth displacement pattern is 'FI'.‘
Jihy
T AN
kmaz = T . (4.88) ) l:
- - sqe . - .
For the present two-dimensional problem where bilinear shape functions are used, ‘
. the maximum admissible wave number in each coordinate direction is
! kz _ =
| maz I, ®
(4.89)
Vs
k.'lmaz = 1y
y
Wave numbers beyond these maximum admissible wave numbers can not be rep- ot
resented by a piecewise linear displacement interpolation approximation.
To examine how the directional participation operators affect V2, their be-
havior is shown in Fig. 4.3 for the admissible nondimensional wave number range ®
0< k(z,y)(lz,ly) <. (4.90) w
The key observation is that the directional participation operator for the (1x1) X
integrated case, 1’('== y)’ becomes zero at the maximum admissible wave number of R
kzly = kyly = 7. Since k(z,y) >0 for 0 < k(z’y)(l,,ly) < m, the state at which ) N\
= the discrete approximations of V2, denoted here by V2, become zero is dictated °
solely by the directional participation operators. The important consequence of .::Xv
114 .
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Fig. 4.3 — Behavior of directional participation operator as a function of nondi-

mensional wave number

lzz,y) = 0 at kzlz; = kyly = = is therefore the admission of a non-physical
rigid body motion (i.e., spurious mechanism) resulting from the (1x1) integrated

approximation of V2.

§4.5.3 Symbolic Evaluation of Bilinear Reissner-Mindlin Plate
Elements '

In this section, a discrete Fourier analysis of both the exactly integrated and
selectively /reduced integrated (or S1) plate bending elements is performed for a
rectangular (I; x ly) element domain for the case of static loading only. These
two elements succinctly embody both pathologies usually associated with 4-node
Reissner-Mindlin plate elements; namely, transverse shear locking in the exactly
integrated element and spurious element mechanisms for the selectively/reduced
integrated S1 element. The approach taken here in deriving the discrete counter-

part to Egs. (4.9) and (4.20) is different to that employed earlier for the Taylor
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‘ ‘, ‘t'::v
.' series results. Each differential component will be constructed in a component- M{ :1
Ll 0.
wise manner which could potentially serve as the starting point for synthesizirg a "
general plate bending element (see e.g., {17]). ::.‘.:%‘
I" "'!
Inspection of Eq. (4.9) shows that in order to construct the discrete Fourier- ..:-::'..;:ﬁ
. . OLPON)
transformed material plate operator, Lg,, a total of six operator components cor- whed
responding to ey
2 a2 a2 o
a 9 9o ] 0 iy
ly b—za 5!;’ axzy azaya 3 ) (4.91) :::;!:
: Y N
need to be obtained for the different spatial integration rules. 'o':‘
~ R
When dealing with the off-diagonal terms, 3‘% and -aa?, special care needs to .::"%;1
be exercised in order to obtain the correct algebraic sign. Depending upon which w0 "5
Euler equation one considers at the interior node, _68; may, for example, result % e
) from either R,
: T k\.. :s
1 N 0 i
- | N dA = — 4.92
A / A Oz oz (4.92) ! :'hf
@
or T
s )
1 N ;
= | ==NTd4a = -—-—. (4.93) oo
A Jyq 0z oz ¢ _
N . . . . SR
The finite element stencil and resulting Fourier transformed operator correspond-

ﬁ
=

ing to Eq. (4.92) is

\)

; —_ = ——l~4 0 4| = — =141%/xzk 4.94
52| (3x2) = Tai2 FGalony = HyvXaka (494 o
z _1 0 1 G *
e
for exact spatial integration and ;,'_ti )
\_\. A
RN
3 L ]-1 01 3 v
el ==—1-2 0 2| = —_— =417 /xzk 4.95 3
! gy
R
2 _ AN
L for reduced integration where xz =1 - %’-kg is the same irrespective of the inte- @Q‘
@
gration rule used. o
4 ¢
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For the case of the mixed derivative,

1 [ 8N SNT 3%
- | —— , 4.96
A Jq 0z dy = dzdy (4.96)

the finite element stencil and resulting Fourier transformed operator,

9% 1 1 0 -1 52 o
=—[0 0 0| = ¥ = /Xz\/Xykzky (4.97
6::6y|(2x2) daly | 1 o0 1 {azay} Xz+/Xykzky (4.97)

are found to be identical for either integration rule.

Lastly, the finite element approximation of unity is determined from
1
= / NTNdA = 1 (4.98)
AJa

to be for the case of (2 x 2) integration

L4
=—14 16 4| = F{1 }=151¢ (4.99)
|(2x2) |1 4 I(zxz) y
and for (1 x 1) case,
Ll 21
1 =—|2 8 2| => F{1 }=1717 . (4.100)
|(1x1) 20, 5 I(lxl) v

The discrete Fourier transform of these two unity operators is seen to be just the

product of the two directional participation operators.

With the discrete Fourier transformation for each differential component now
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in hand, one can construct the following general discrete counterpart to Eq. (4.20),

(—Dlyl.éi —D111z7c§ -D12\/Xz\/Xy7¢z’-Cy iDs\/leykz'
—Dslzly
aD ,= e - . -
—Dslzlg
L sym. —Dﬁz .

(4.101)
where the direction participation operators, 1z and 1y, in the different terms
above will assume the appropriate form depending upon which spatial integration
rile is employed for each term. Examination of Eq. (4.101) reveals the interesting
fact that the entire effect of spatial integration is embodied solely in the directional
participation operators. If (1x1) spatial integration is employed for the different
terms used to construct Eq. (4.101), then the directional participation operators
will become l'z,y), while for the case where (2x2) integration is used, they will be

z,y¥
lzz 9) while the remaining bending terms will use lf

1¢ ) For selective/reduced spatial integration, terms associated with D, will be

z,y)’

The decoupled Fourier-transformed equation for % derived from Eq. (4.101)

is
i®.5=+.g (4.102)

. L. D .,
where the characteristic operator, ! , is

D Dn

S V3DV + Dsf1513(12 — xz)k2 + 121y (1y — xy)EE]

s
+ Dyy1y(1z - Xz)ks + 2(1z1y - Xsz)fcil'C?, +1g(1y ~ Xy)lz';]

+ D(2xzxy — xzly - 1sz)’23k321
(D - Dyy)?

+ D,

[2(Xsz1y - 1213)’:‘?:1232{ + 2(19:Xsz - 13131)’2:%/_‘3
(4.103)

with V2 = — (k2 +k2), and k2 = 1,k2 and k2 = 1;k2. The characteristic loading
z y z yrez y y
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operator, #D , is found to be

Dy, D

(lzly—D—Vz)( ly___lxez) (D Dll)z - -

(k2 x,xyk%?) (4.104)
3

§4.5.3.1 Transverse Shear Element Locking

Locking in the four-noded Reissner-Mindlin plate element occurs if the para-

sitic differential term,
ek = Ds[1z123(1z — x2)k2 + 1214 (1y — xy) k2 (4.105)
lock 3[zy(z Xz)kz + 1z1y(1ly — xy y] .
in Eq. (4.103) does not vanish. Hence, the locking-free condition is simply

lioex = 0. (4.106)

If (1x1) spatial integration is employed for the element stiffness, the locking-
free condition is automatically satisfied since the 1(z,y) in Eq. (4.105) become

lzz,y) = X(z,y) with the result that the terms in the parentheses vanish so that
liock = 0.

On the other hand, if (2x2) integration is instead performed, one finds that

l -
lfz)y) - x(zay) = l’zy) k%z’y) . (4.107)

Substitution of Eq. (4.107) into Eq. (4.105) provides the measure of the amount

by which the locking-free condition is violated, vtz.,

2

1 l
Hock = Dslzly(Z k‘* + lgk;) (4.108)

Since practical considerations on element size generally requires Iz, ly > h, the
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magnitude of the coefficient in the above equation is seen to be o

Ha) <{1-v)
z,¥ -
. D, 12 >D =» 3

l

( (’h”‘))2 > 1. (4.109) A
The dominant 4*B.order part of the spatial operator, iD, which represents the

5 limiting thin plate behavior, is therefore modified by the amount of the locking-

free violation resulting in . 4::.":

. 12D . o lzD - -
ii P = a1y + 22 + 23R + (1 + LR (4.110) o

1 2D l“o.('

Except for the rectangular element geometry, this term is identical to its counter- ta

7]

part in Eq. (4.41) derived using Ta.ylbr series techniques.

§4.5.3.2 Spurious Mechanisms in the U1l Element

As described in §3.3, an element will exhibit spurious mechanisms if there are
non-physical rigid body motions engendered by the finite element discretization.
In the context of the present symbolic element evaluation analysis, this condition
corresponds to the existence of non-zero admissible wave numbers which satisfy
the homogeneous characteristic equation. For the uniformly-reduced integrated
Ul element, the homogeneous characteristic operator is given by
Dy

192)pV4 =o0. (4.111)

D rgr
{ —(lzly— D,

Potential zeros for the admissible wave number range 0 < k(z,y) < (tleyi are in
)

turn determined from the zeros of its multiplicative components

Dy ¢
1715 - —Evz =0 (4.112)
and
vi=o. (4.113)
120 ‘
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Frcm them, the following admissible solutions are found,

kz=ky=0 = kz=ky=0 (4.114)
and
15=1"=0 = k= (4.115)
z =1y (z,9) (Iz,ly) :

Clearly, Eq (4.114) represents the correct rigid body motion while Eq. (4.115)
corresponds to non-physical rigid body motions, i.e., spurious mechanisms. Sim-
ilarly, there are two additional spurious mechanisms corresponding to the 8z and
0y degrees of freedom. The Ul element would therefore possess a total of three

communsicable spurious mechanisms.

REMARK 4.1

Unlike the Ul element, the S1 element employs exact (2x2) integration on the
bending stiffness. As a result, it only exhibits a single communicable spurious
mechanism resulting from the reduced (1x1) integration of the transverse shear
stiffness. The homogeneous Fourier-transformed characteristic operator for the S1
element is

D Dy 2 v
° =(1515 - ﬁ}vg)pvgv?ﬁu
.o~ D—-Di)% ., . U
(D - D) (aagay - 1505 - 1Rl i, - 2= Pub g g i)
' (4.116)
REMARK 4.2

The present analysis technique manifests only those spurious mechanisms which
propagate across element boundaries since the analysis is performed on the as-
sembled difference equations for an interior node. The question of whether a
mechanism will communicate is therefore automatically resolved as a by-product
of the present analysis. In addition, as the analysis requires no knowledge of
boundary conditions, the results manifest intrinsic element behavior. In other
words, suppression of spurious mechanisms by certain boundary conditions or by
spurious mechanism control techniques can be viewed as a case-by-case fix rather
than eradicating inherent spurious mechanisms.
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§4.5.4 A priori Prediction of Interior Solution Accuracy

In §3.4, the subject of spectral error estimation was addressed for the Timo-
shenko beam. Those results will now be employed to provide an a priori prediction
of interior accuracy for the transverse loading and bifurcation buckling of the Ul

and S1 discretizations of the Reissner-Mindlin plate.

The first step in the error analysis for the transversely loaded discrete plate
entails determining the nodal load at an interior node corresponding to the Fourier

component
q(z,y) = Get(kazt+hyy) (4.117)

which is determined from

_ [ [ En dlka(zi-la+€)+hy(yj~ly-+n)]
e [ i

lz ly

+ (1 _ if_)li-ei[kz(.'lj-i'f)'f'ky(yj—ly-{-n)]
3 i , (4.118)
§ +(1- _6..)(1 - k(25 +€)+ky(y;+n)]

A
+ i(l - _ﬂ_) ei[kz(zj—lz'l'f)-i'ky(yj+'l)]]dedn
Iz
¢ to be
_ kzl;y 2. i(kzzj+kyy )

g = (kzky) glzlye J (4.119)

employing exact analytic integration. The resulting discrete Fourier transformed

distributed load is then simply

gP = k"ky)zq.
kzky

(4.120)

g Alternatively, if one commits the variational crime of employing reduced (1x1)

spatial integration to calculate nodal loads, §° would have instead been found to
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§g = lzlyq. (4.121) DU

Now, from Eqs. (4.16) and (4.17) for the continuum equations, and Eqs. (4.103) 9 ::l;'::f
and (4.104) for the discrete ones, the decoupled transformed w equations are given .
by W |.l‘.'l

(4.122) T

and e
o o
0P = —5 (4.123) il

so that the relative spectral displacement error is ' ®

{
-D et :.’.l‘

é(kz, ky) = —— (4.124) !

where it is the directional partieipation operators which solely determine the form @

of I° and #P in these equations. .:'o

In Figs. 4.4 and 4.5, the relative error in  is plotted for both the case where "’: :
kz = ky and kg # ky for a patch of square S1 and Ul elements with E = 107,
v =.3,1=100and h = 1. In Fig. 4.4, one finds the surprising result that "::"t.:f
when exact integration is used to evaluate nodal loads for the Ul element, ©P? is g
seen to be essentially exact V k. When (1x1) spatial integration is instead used
for element loads, both elements perform much worse than when exact analytic ,..:t}(
integration is used. Since there are no geometric modeling errors, all error curves ¢:.‘o e
in Fig. 4.4 will exhibit the same limiting behavior of ¢ — 0 as k — 0 confirming the :P" 3
consistency of the different discretization schemes investigated for both continuum W
and loading operators. The effect of cross-coupling intrinsically engendered by the
finite element formulation is dramatically portrayed in Fig. 4.5 where ¢ is plotted )
as a function of kz for two different fixed values of ky, namely, .3kmax and .6kmax

with kmax = 11'1 As was discussed earlier in §4.4.1, each differential operator :::..:
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in Eq. (4.101) has associated with it a directional participation operator which :!';:‘.:
intrinsically couples differential information in one direction with each orthogonal -'.
direction. The minimum spectral error in @ for the Ul element occurs at kz = ky :{‘
U
while for the S1 element, the minimum is shifted slightly to the left of where :::::::f
. "y ":
kz = ky. The determination of the displacement error in the physical domain c:":':,
would proceed as outlined in §3.4.3. 2
PR
)
§4.5.5 Buckling of Bilinear Reissner-Mindlin Plate Elements bt
o
}ﬁ The symbolic analysis of the bifurcation buckling of bilinear Reissner-Mindlin ot
plate elements proceeds in the same component-wise manner as was described :;;m
m earlier for the material operator. Using those results, L? can immediately be :‘::::}
hi
3 4
written as s!::::
5 10 o0 | .
Ly = —(0z1yk2 + oy k2 + 210y /Xz\/Xykaky) |0 T O (4.125) oo
0 0 —h . |l.::|
b
2
where the directional participation operators are again determined by choice of ’ "-
spatial integration rule. In the next section, results for both (2x2) and (1x1) inte- ;{i:{:;;
a ¢ 0'5’1
gration rules will be investigated. With Lg defined by Eq. (4.101), the decoupled ':’l'u}
Dol
w equation governing the bifurcation buckling of the discrete model is determined ;.a':':;
from ®
i
Il 2D D ":::51
det(Lyy + Ly) 0 =0 (4.126) e
JU RS
| S
LA N
where the flexural buckling load is the smallest root corresponding to a prescribed ' ’
a kz and ky. i
™ "tg
Based upon the discrete results represented by Eq. (4.126), a relative error ‘ ::':.:
(R Y
a estimate of the predicted bifurcation buckling load of the different possible ele- Il
ment discretizations may be obtained by comparison with the continuum solution, '\‘“::
)
@ Eq. (4.32). The stress field for the Reissner-Mindlin plate is comprised of three \\.‘; \
a components, 0z, gy and 7zy. The calculated critical buckling loads presuppose L8
' proportional loading so that in reality, one is solving for the load multiplier of the \:
P NN

125

T =
®




40 e iia o 3is 472 02 AT, £%s 8¥a iy d¥ N N N N T P T O O O O RO R YO O Y POU RO O O PO TR ™

initial stress state, A
Oz Oz [ ]
oy =aq oy (4.127) :‘1’; ;
TzyY ) or Tzy ) instial :‘0’*:

where a represents the load multiplier at which point instability occurs. The

relative error in buckling load for a given kz and ky and initial stress field is

)
4
;¥

therefore defined in terms of a by

(4.128)

9 The example problem to be considered is that of uniaxial oz compression e
with kz = ky for a patch of square S1 and Ul elements where £ = 107, = .3, o
_ | =100 and h = 1. Fig. 4.6 shows the results for both (2x2) and (1x1) integrated °
geometric stiffnesses where the fully integrated kg is seen to be superior to the y
(1x1) integration for both elements. Neither the Ul nor the S1 elements are
variationally consistent. Nevertheless, the buckling loads are seen to uniformly e
converge from above for this problem. Also shown in Fig. 4.6 are the results of "
finite element analyses portrayed by the plotted symbols for four different wave ' ‘::
numbers corresponding to (5x5), (4x4), (3x3) and (2x2) mesh discretizations of
a quarter-model of a simply-supported (SSZS) Reissner-Mindlin plate for each d
of the discrete models. With the constant element length, !/, the wavenumber
(- for each (n,xn,) mesh is given by k = x/2In,. The predicted error in the i
B finite element analysis results are essentially identical to the predicted errors in S

i bifurcation buckling load obtained from the discrete Fourier analysis results. Gy

For the same element geometry, Fig. 4.7 shows how the relative error in buck-

ling load changes for fixed values of ky with k5 allowed to vary continuously. I

0|' !
§4.6 Summary n.é

v
Both Taylor series and discrete Fourier analysis techniques were employed . I
&
@

5 see Hughes (67] W
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in this chapter for the symbolic evaluation of the bilinear Reissner-Mindlin plate &;ﬁ-
T X MY
element. °
.'l‘::l':
. . "y . DO
The first aspect considered was the effect of different spatial integration rules .:.;’:::a"
. o . . aloy
on element behavior. The cause of transverse shear locking in the exactly in- ‘::::a.:
L"li“
tegrated element was explicitly identified as resulting from parasitic differential
o . N
operators associated with the z- and y-directional bending modes. The use of :"::%
alternative selectively /reduced rules was shown to result in locking-free discretiza- %::‘:.‘
tions. Next, the effect of using different hourglass control techniques to stabilize R
@
the S1 and Ul elements was addressed. The exact effect on the governing limit X ’i?v:
5 )
differential equilibrium equations of using these techniques was then determined. a.':.:::::
) Wy
y It was found that w-hourglass control reintroduced element locking in all cases. "{
N ) Wk
- In addition, it was found that it was possible to switch the locking mode from the » _‘,
o . i . 0
z- and y-directional bending modes to the zy-twist mode depending upon control y::f:::::
* ¢ N!.
scheme. .::::,.::;
hits
Employing the discrete Fourier technique, the individual differential operators &
comprising the transformed limit differential equilibrium equations were next de- '\.‘k:
termined. Unlike typical transformed finite difference stencils, transformed finite %\‘S
, A k]
element “difference” stencils were found to be characterized by the presence of e
5 directional participation operators. These directional participation operators were X 3':
RS \
' found to couple the effect of adjacent nodal d-o-f in the orthogonal direction to 5
1 Wi
4 that in which the differencing is taking place. Perhaps more importantly, however, o
. these operators are found to be responsible for the spurious element mechanisms : ‘:}i
i . iy : . : ol
’ engenderad by selective/reduced spatial integration. Using these results, a pri- 0 o:':
' ori interior error estimates were determined for the case of distributed transverse &
g b
‘ pressure loading. N -"“.‘ '
: ity
) Lastly, the discrete respresentation of Reissner-Mindlin plate buckling was b.::g.:::
3 . oy ‘l‘
determined for the S1 and Ul elements employing (2x2) and (1x1) spatial inte- "‘0.5
SO
. . . . . e
gration rules on the geometric stiffness. A priori error estimates of the predicted X ° ‘
bifurcation buckling loads for simply supported boundary conditions showed the %.«‘.:‘.:
g
o
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surprising result that the Ul element with (2x2) integration on the geometric stiff-

ness performed by far the best. This was verified numerically to be the case. It
was also shown that if the eigenfunctions of the continuum problem are harmonic,
the discrete Fourier element evaluation technique exactly captures the behavior of

the discrete model resulting in exact error predictions.
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Chapter 5

Lo o, G o
e
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Symbolic Analysis of the Circular Arch
and Cylindrical Shell

=
T

40

r::xT'J LA
x ;: ;I 5 ]
ol

3
)

-l
-

The analysis of a curved structure by the finite element method engenders sleg
both kinematic and physical modeling errors. The former stems from the usual .
polynomial approximations of the curved geometries whereas the latter are due o]
to the discrete representations of the different field quantities. In this chapter, {0
discrete Fourier analysis techniques are used to examine the errors from these two v
sources which arise due to the discretization of both the circular arch and the Sty
cylindrical shell by flat elements. It is shown that the sources of these errors can !‘:0::
be identified from the symbolically generated discrete Fourier operators that cor-
respond to the reference continuum equilibrium equations. From this information, LI
both a priori estimates of the interior solution error are obtained as well as the E?}E

limit differential equilibrium equations of the discrete problem. ey

For the case of the circular arch, discretizations using both C! Hermitian Bih
beam and C© Timoshenko beam elements will be examined. The reference equilib- ':::E'
rium equations for the Hermitian beam discretization will be derived from Sanders Pt
cylindrical shell theory. For the Timoshenko beam discretization, however, there PS

does not appear to be any generally agreed upon set of thick shell equations from " .@
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which to derive the corresponding arch equations. As a result, two different sets
of reference equations will initially be employed, namely those of Naghdi-Cooper
and Mirsky-Herrmann. As will be seen, the Timoshenko beam discretization is
: consistent with neither theory. It is, however, shown to be consistent in the thin

shell limit with Sanders theory.

The flat Reissner-Mindlin plate discretization of the cylindrical shell is next

% analyzed. Naghdi-Cooper CO shell theory is employed as the reference theory for
the material operator. For the case of bifurcation buckling, however, a buckling

operator consistent with this linear theory has not been identified. As a result,

buckling loads derived from the symbolic analysis results are compared directly

to those from the finite element analyses for the example problem dealing with

the axisymmetric bifurcation buckling of a cylindrical shell. The mode switching

4 characteristics of finite element shell bifurcation analyses is seen to be captured
by the present analysis which is able to almost exactly predict the axisymmetric

bifurcation buckling load of a cylindrical shell.

N §5.1 Circular Arch

With the introduction of initial curvature into the symbolic analysis, this
first section serves as the fundamental starting point for the analysis of cylindrical
shells to follow. The first problem to be considered is that of the thin C! arch.
. This appears to be the ideal place to start since one can make use of Sanders

shell theory as the reference theory. For the case of the CO arch, however, the
) question of which shell theory to compare to becomes an important issue. Two
candidate theories will be considered. Since C? elements are more often than not
used to model relatively thin shell structures, the important question of whether
the discrete CO model correctly models C1 behavior in the thin-shell limit will

R also be discussed.

§5.1.1 Straight Hermitian (C!) Beam Discretization

The most severe geometrical approximation encountered in a discrete analysis
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Fig. 5.1 - Arch Geometry A
st

L
is the polygonal one resulting from modeling a curved structure with straight (or ;';
flat) finite elements. The simplest example of this is the 2-node C! (or C’o) beam ?.
discretization of an arch as portrayed in Fig. 5.1 whose analysis will serve as the ;:f"‘lf'
precursor to the cylindrical shell problem. F':.\

L3
e

Strang and Fix [6] have remarked about employing Hermitian beam bend-

2N
W
ing elements with linear membrane displacement fields that “Obviously such trial m‘;‘(
functions are snadmissible in the arch problem, but since the strain energy is also ;.
modified by the removal of R, the convergence question remains open”. As will be &:“.\
shown, the results of the present analysis can be used to establish the convergence ety
of the Hermitian beam with linear membrane displacement field to the correct :9_\
N <
governing equations. ‘Q:E"‘
) 2
W
i
§5.1.2 Continuum C! Arch i
o
vhe equilibrium equations for the C! circular arch, cast in terms of the ar- "t

2%

clength, s, are given in the following general matrix operator form as

T2 %5

[
]

AT AT AT AR AT R Sy
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) (EA+27)37 F 3~ E33
L(s) = 4
@ sym %é+EI‘—%T J
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where v and w are the tangential and normal displacements with ¢t and p represent-
ing the conjugate forces. These equations were derived by Graff[68] and are iden-
tical to Sanders [69] shell equations specialized to the arch (i.e., u = 3‘3; =v=0).
The negative tangential surface traction is a result of writing L in a symmetric

form.

B 2B &5

The corresponding Fourier transformed equations result from assuming a har-

monic solution of the form
u=daeks, (5.3)

Substitution of Eq. (5.3) into Eq. (5.2) results in

2 , 2
—(1+ #ﬁ)kz i(fk + gk

1

L(k)y=EA
sun . h% 4
v R T 1Z

(5.4)

which will serve as the reference Fourier transformed matrix operator for the

discrete analysis to follow.

§5.1.3 Discrete C! Arch

In previous examples (dealing with the Timoshenko beam), the goal of the
decoupling procedure was the recovery of the limit differential equilibrium bending
equation in terms of the lateral displacement, w. Since the structure was initially
straight, no coupling existed between in-plane and bending deformation for the
case of linear problems. For the case of a structure with initial curvature such

as an arch, there exists an intrinsic coupling between membrane and bending
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behavior. The operational procedure previously used for the Timoshenko beam
will therefore have to be slightly modified in order to “condense” out the rotational
degree-of-freedom from the discrete v and w equations which represent the discrete

counterparts of the coupled membrane and bending equilibrium equations of the
arch.

§5.1.3.1 Geometrical Relations for Discrete Problem

As a prelude to recovering the limit differential equations corresponding to the
discrete finite element difference equations, it is necessary to first determine the
transformations from the element reference frame to the local shell reference frame
in which the equilibrium equations are derived with respect to. This step begins
by noting that the position of any point on the arc (see Fig. 5.1) is determined by
r = [Rcosd, Rsind|T, so that the unit tangent vector at any point and hence
the direction of the tangential displacement, v, in the shell reference frame is

determined from

(5.5)

where s = R8. If for example, one considers element (2), its unit orientation vector

is given by

= (r3 - r2) (5.6)

e
D7

so that the angle between e(q) and t at global node 3 is determined from

e) -t =cosf = -?—sin(03 —89)

= if- sin Af (5.7)
Al

= cOo8 —
C32

to be § = A8/2 where Af is the angle subtended by the element. This result will
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be true for each node in the mesh.

The appropriate element transformation relations from element to shell coor-

dinate systems are given by

u
oy

u="Tu, f=Tf, k=Tk.TT (5.8)

where u. and f, represent the element displacement and force vectors and k¢,

the element stiffness matrix in the local element coordinate system with u, f and

k representing the same quantities in the shell reference frame. The 2-D nodal

transformation matrix for a | u; w; ;| nodal d-o-f ordering at the i*h node is

costp; sing; O A, 0
A;= | —siny; cosy; O => T= [ 01 A ] (5.9)
0 0 1 2

where t; is the nodal transformation angle for element nodes 1 and 2. For the

present case, ¢; = 8 and ¥ = —f for both elements (1) and (2).

§5.1.3.2 Discrete Fourier Analysis

The element stiffness matrix for the present case is [41]

: (44 o o -
gl o3t

e e

i

o >
.

(13

O
© o w

kg = (5.10)

f
i |
o Cx O(\T%QNN (@]
(o2}
wfg o
i

e o o

sym

where EA, EI and l, represent the beam element’s extensional stiffness, bending

%
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stiffness and “computational” length!. The d-o-f ordering corresponding to ke is
u= [ul wy 07 ug wy 2 JT (5.11)

where 0; = %l ;+ Since k. results from the superposition of a linear membrane
st.finess with the Hermitian beam stiffness, no membrane/bending coupling exists
on the element level. Membrane/bending coupling, however, does occurs as a

consequence of element assembly on the global level.

With element transformation relations now defined by Eq. (5.8), an element
patch. as portrayed in Fig. 5.1, is assembled with nodal degrees-of-freedom ex-
pressed in the shell reference frame, s. With all nodal degrees-of-freedom now
expressed with respect to this common basis, Eq. (5.3) is used in its discrete form,

viz.,

up = ﬁe’k(’j—a) ; ug= de'r ug = ﬁe'k("j'“) ) (5.12)

to relate nodal degrees-of-freedom at nodes 1 and 3, back to the center (or jth)
node, 2, where s jis the position of the center node and in the present context, s is
now used to represent the a.rclengfh spanned by a single element. The fact that this
analysis reflects a facet approximation is embodied in the discrete equations via
the transformed element stiffness matrices. The discrete Fourier matrix operator

at the center node is given in the symbolic form

Ly Low Ly ] {D
oo low oo J D

where § and W are the transformed displacements in the arch (or shell) reference
frame tangent and normal to the arch with é representing the nodal rotation;

{0, pP and mPD represent the conjugate nodal forces. Relating Eq. (5.13) to its

! In light of the work by Cook and Zhao-hua [70], the question of whether le should
be chosen as the chord or arc length will be addressed shortly.
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continuum counterpart entails eliminating the computational d-o-f, #, which has
no physical significance in thin C 1 shell theory, from the v and w equilibrium
equations. This step is essentially equivalent to one of static condensation with

the result symbolically expressed as

£44i0 — Lyg®
= (5.14)
5ao¢wv - ew@‘ﬁv eaa‘ww - ZthOw o faoﬁD - eweﬁ"D

<

Lgglow — Lyplyy  Loglvw — Lyglyy

where again the assumption that the individual differential operators are commu-
tative has been invoked resulting from their linearity. Note that Eq. (5.14) is not

as yet written in its symmetric form.
Substitution of the polar form of etiks

e*'ks = cosks + isin ks, (5.15)

into Eq. (5.14) followed by employing the geometric relations

ks ks -/ s2_
inks = in — — = gk -2
sinks = 2sin > cos 2 K} 1 41’»:

2. 5.16
coa;k.s'=1—25:'1:12-152:‘1=1—%k2 (5.16)

sinﬂ = Eﬁ

with the discrete wave number,

o k
sin
k=— (5.17)
2
now being defined with respect to the arc length, results in the discrete counterpart
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::'h\
to Eq. (5.4), namely?2, wEAL)
@
b 2 1 b _h% 13 N
<D .- -(15% + 1""'12_R2-)k i(1yy gk + lowi3RK") s W
L (k) =EA (5.18) s
] e ]
sym 1%07%2‘ + 1;,,,,!1*71# oo
with :
2 2,2 I
m - 2 -az-coszﬂ 1b = 22! cay ¥
vy Tg' vy '?;_ ::.:.:::
m - t . . . b = . . .
1% -l*g- Vai-ag-cosf 15, -‘EL Jaq - cos .;0;:52
2 4 .\'“l
1%, =k .a-a 13, = & - cos? e
ww ;Z' ay - ag ww E’ B ::::é:z:
{
and : ®
0
8 2 82 2 >
=1-—k*; =1-—k*. \
ay ik 17 6 _L |"
A
s
For the loading term, one finds that
—2..tD ~D _&2: D l s D y
?D Lgat™ + L g Tcz't + p—éalm :".ﬂ.g.:
= = Qa .D - 8 I-c‘ € - D (5.19) R f‘:’
B
For these equations, ! and /., have purposely been kept separate since ! represents ,:'.,.:i
O |‘| ']
the true geometric chord length while /. is used to denote the element length which ::::::
E O '.0
may be chosen so as to maximize solution accuracy (see {70}). :
In an analogous manner to the beam discretizations addressed in Chapter {:&
. . . . bt
3, the maximum wavenumber which the present model is capable of representing ‘Q::
without aliasing is kmax = £. At k = kmax, the point corresponding to a single half ‘\:“
wave spanning a beam element, the terms in Eq. (5.18) representing membrane- \
bending coupling effects vanish since a; = 0. If Eq. (5.18) is rewritten symbolically fS,f(}
(if { ]
2 _ ®
The symbolic analysis runstream used to obtain these resuits is found in Appendix b
A3.
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.D —(L7+ Lby) (LT + LEw)
L (k) = ) . , (5.20)
sym L3+ Ly

L 0o
) = X , (5.21)
o i,

where only the pure membrane and bending operators L% and f,?,,w remain re-
sulting in a degenerate uncoupled membrane-bending arch behavior. For a closed
ring, however, kpmax = % may not in fact be the maximum wave number due to
the requirement for a periodic displacement field. For this case, k = n/R, where
n represents an integer value, so that one now has

n
kmax = r;xaax <

® |3

: (5.22)

§5.1.3.3 Calculation of Element Loads

The calculation of element loads for the straight element approximation of a

curved structure usually proceeds in two general ways:

1) Calculate element loads as if they were directly applied to the facet approxi-

mation of the curved structure, or

2) Project physical loading onto discrete model based upon known physical ge-

ometry.

With the first technique being the one most commonly employed in production
finite element codes, it will also be used here. The element load vector correspond-

ing to 1) for the case of pure pressure loading on the physical structure,

— a otks -
p=7pe", (5.23)
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would then simply be
l .
£, =5 | Ne*HE~+8) e (5.24) i
(1) =Pk |
for element 1 (see Fig. 5.1) and
l . ,
. k(z; it oty
f(2) =% /0 N e+ g (5.25) ey

for element 2 where the element’s Hermitian beam shape functions are o

‘
o
.’.
.ﬂ
-
A

[
[

[
(1)
&

o™
|
o
*©
+
&
).b'&"'

N = J - (5.26)

2 3
3 _ﬁr'*'% y

o
i

Once f; has been calculated for each element, element contributions are then :;;‘,::
rotated into the shell reference frame and assembled into the global force vector. (8
As a result of the spatially varying pressure loading and the w-8 shape function

coupling, contributions in all three nodal load components,

‘-ainé(z + %k l (1 + coskl) — —%3-1: ‘t sin ki) ; :0::1
N 1
—k-é‘:“ (—3—3:‘: (1 —coskl) — ;12%2'5“1 ki) Py ek (5.27) ~

1 _ 12 o ot
;z(ﬁ(2+coskl) p—lfsmkl) ;

o
i

WL
B are seen to result. The finite element approximation corresponding to method 1, ®

which results from letting s; = z;, is employed here. ]

i o
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§5.1.3.4 Spectral Error Estimates }?"

From the results of the previous sections, relative error estimates in the fre- Y
quency domain for each Fourier component of v and w may be determined essen- WY

tially as outlined in Chapter 3. There is, however, one important new aspect of the

procedure, namely that of now having to consider the @ in Eq. (5.3) as complex,
. i.e., @ = lig + #d;. This change arises due to the necessity of accounting for cou-
pling effects in the solution which are present in modelling curved structures due to
. the intrinsic bending-extensional coupling. In the past, this would have also been
a problem if one had not restricted loading to that conjugate to the displacement
E variable for which the solution was sought. If, for example, distributed moments

had been included in the load vector for the different beam and plate problems

considered earlier, this complex interpretation would have also been needed there.
The emphasis on solution should be noted since this complex intrepretation of
G need only be employed when numerical solution evaluation is required as is
presently the case. No changes in the earlier symbolic analysis procedures are

required when addressing the question of consistency.

From Eq. (5.4), the transformed decoupled continuum equation for the lateral
displacement, w, is found to be
2 h2

EI L1 R? g,
k4 + sz)us =i(gk+ oEki- 1+ —=)k%.  (5.28)

251

6
~(EI® - =3

Rewriting the Fourier coefficients, w, £ and $, in complex form as3

W = (dg — i)
t = (tq —it)) (5.29)
0.
p = (Pg — th)

3 From the analogy with f(s) = Y e ol cosks+bsinks) =32 __ cpet®* where
g = %(ak —tby) for k > 0.

me R
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and substituting back into Eq. (5.28) results in

2EI EI . o
—(EI’C6 - -Fk4 + Ezkz)(wn hd :wl) =
(5.30)
1 X 3v/ep 2 h? 24 o
(gk+ gk ) Gtr +t) — (1+ 525)k"(Pr — iP1)

where it suffices to only consider the real part?,

R 3. RY 5.
—k3)E - (1+ m)ksz (5.31)

_EI(kS - 24ty L = (1
EIEk Rzk +}24/~:)le;R (Rk+12R

kz(kz_El,z)z

for error estimation purposes. A quick inspection of the continuum operator shows
that in addition to k = 0, the solution will also have a singularity at k = 1/R
corresponding to a rigid body mode. Using these exact procedures, the decoupled

in-plane equilibrium equation for v would also be obtained in a similiar manner.

For the Hermitian beam discretization, the decoupled %P equilibrium equa-

tion is determined from Eqgs. (5.18) and (5.19) to be

4 8212 14

8% 4,76 l 2,2 74 2 1 79,.p

..EI —_ COS k — ——1 COS _k + — _k w —
(1‘2 ﬂ lg 1 ﬂRz 12 1R4 )

. l ’ 1. 31 h2 73\2D

z(;,/alazcosﬁik+ E\/al cosﬂﬁk )

(5.32)
2 2
24,4 h® z2.D
—(agcos“ g + Eal-—lsz)k

2
—i(i— ¥ay cos ﬁLl_c - i,/al cos® k3)mP
813 Iz2 le

4 In terms of the usual Fourier series representation, this is equivalent to the assumed
solution w = wcos ks with distributed loading ¢t = fsin ks and p = pcosks [71]
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in terms of the nodal loads. For the present problem of interest, namely, that of a '; ]
distributed pressure loading as described in the previous section, Eq. (5.27) gives ‘ n
,
the corresponding nodal loading which when substituted into Eq. (5.32) resuits in "::f-
9
’ 2 2 I',.l
s l aj ~D ae.l‘
“EIEZ(‘—z COS2 ﬂkz - l—z-EE)sz = .
¢ ¢ Wt
o
[—(-{-\/a a cosﬂE + s—l,/a cos 3 AZ E3) Sinﬂ(2 + 2 (1+coskl) — -24—sinlcl) :E
s VO R T VLT R R, VT e k313 o
o
R
2 2 (
_ 9 ° h gcosB 24 _ 12 Bty
(g cos® B + ¥ a 12R2)E P (k3l3(1 cos ki) PET sin kl) :;; .
N
_ DM
12 5 E s T I 12 . o :
+(;-[—e- Vo cosﬂﬁ - l—e-,/al cos” Bk )lee.(E(z + cos kl) — T sin kl)] pg

(5.33)

With decoupled Fourier transformed expressions for both the continuum and
discrete problems now available, relative spectral error estimates for both v and

w would be expressed as

&y = P fy = —— . (5.34)

Before deriving any spectral error estimates for &, however, it is first instruc-
tive to plot the continuum solution of a circular arch with R/h = 2000, h = 1
and E = 107. This is done in Eig. 5.2 where, due to the singularity in the middle
of the spectrum, 1/w is plotted, rather than w versus ks where the arc length, s,
was chosen corresponding to = 1° as will be the case in the first spectral error
plot to follow. It should be noted that ks values in the domain 0 < ks < ?lés are
possible since the question of a closed ring versus an open arch is not an impor-
tant consideration. From Egs. (x120) and (x125), é,, vs. ks plots are determined
as shown in Figs. 5.3 and 5.4 for a 3 = 1° and 22.5° for both the case where

le =1 and I, = s. In order to avoid the singular behavior at k = 1/R, plotting is
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Fig. 5.2 -~ Continuum solution for pgp =1
- started at k = 1.5/R in both cases. The mathematical consistency of the straight
"y Hermitian beam discretization of the circular arch with Sanders arch equations is
graphically portrayed in these two figures since €, — 0 as § — 0. For the first
b time, however, the effect of a geometrical approximation on the finite element so-
i lution is encountered. The operational form of consistency observed for problems
o with exact geometry, namely, é — 0 as k — O for finite [ is unfortunately not At
= a property of a discretization where geometrical model approximations are also , 3".‘
£ . .
i employed. In the present case, one is lead to conclude that for a given k, the finite :g,':g:
)
3 element solution corresponds to that of the faceted arch. SRR
."' * '
e
) Cook and Zhao-Hua (70| showed by numerical experimentation that for a e
b ¥
ol number of different problems, a more accurate solution resulted if the element . n'v

b

%

length was defined as the arc length, s, rather than the chord length, {. Figs. 5.3

?

and 5.4 verify this result showing that for all wave lengths, a more accurate finite

element solution will be obtained if the element length is chosen to be the arc
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length, i.e., l¢ = s. Lastly, one cannot help but comment on the similiarity between
the results in Figs. 5.3 and 5.4 and those from comparisons between Donnell’s
shallow shell theory and the shell theory of Flugge-Lur’e-Byrne [24]. In both cases,
the accuracy of the approximations improved for shorter wave lengths indicating
that the effect of the initial curvature becomes less severe as the structure becomes

flatter with respect to the higher frequency solution components.

§5.1.3.5 Recovery of Limit Differential Equilibrium Equations

The inverse transformation procedure described in §3.2.3 can also be employed
in the present case to recover the governing limit differential equilibrium equations.

In addition to the expansion of k as

>~k — —k34... (5.35)

one also needs to use

(5.36)
13

l
—R9—2R' -1 ~l Y tTt .
S sin +24 2+

ﬁ'_

For the case when {, = [, the limit differential equilibrium equations are found to
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EI 3% EA 3 (5.37) Oy

where only truncation order terms through O(l 2) have been retained. The first 2
, key point to note is that the present facet approximation to the circular arch is )
"; a consistent one since the correct continuum operator, L, is exactly recovered in ot
~ the limit as [ — 0. Examination of Eq. (5.37), however, reveals the existence of
N parasitic operator term corresponding to L7y, sts Tw and quw. Fortunately,
these terms have leading coefficients equal to e-gz- (= desin? B), with ¢ = 1/6 A
> for LY, and 1/12 for the other terms, which have a relatively benign effect on o

the solution as compared to the parasitic terms responsible for the transverse ﬁ -
: shear locking phenomena encountered earlier with the Timoshenko beam. The 'E
% magnitude of the largest coefficient, namely that corresponding to LI}, is shown l‘.‘_-f‘ :

v
in the following table, R

90 333

45 .098 Al
30 045

o 10 .005 % 3
) N
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where A# is the angle subtended by a single element. Even for the rather severe
case where only 2 elements are used to discretize 90° of an arch, the change in

apparent stiffness due to the parasitic term for L}}, is but 9.8%.

§5.1.4 Linear C° Beam Discretization — Continuum C° Arch

For the C! arch, Sander’s shell theory seemed to truly represent what Bu-
diansky and Sander’s referred to as the “best” first-order linear shell theory [72].
When it, however, comes time to consider the C? circular arch, the question of
which C© shell theory to accept as the reference theory is not at all clear. For
now, C9 arch equilibrium equations derived from two different shell theories -
Naghdi-Cooper and Mirsky-Herrmann - will be presented. The reduction from
the cylindrical shell equations to those of the arch was accomplished in the same
manner as was described earlier for Sander’s shell theory. Since C? elements a.x;e
often used to model thin shell structures, the limiting case of no transverse shear

deformation will also be examined.

The CO arch equilibrium equations derived from Naghdi-Cooper CO shell
theory [73] are

[, 8% G EA | 5GA\Q3 EI 3° GA ]
Pagg -5t (R+*80% Han "%
_ . 4 32 I 3
L= Ed - sGaly (Zf +xGA)L (5.38)
2
sym - EI:—J —xkGA

f=¢ p ;. (5.39)

For the case of Mirsky-Herrmann C9 shell theory [74], the corresponding arch

equations are

L= LNaghdi-Cooper + Lmod (5.40)
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where the modifying matrix differential operator is .".;::?‘.f

~ XN
o
n‘*

A

Y
Yo

82 _xGI (EI . xGI _kGI ] o
awr~m (REE R R

Lmod = EI cGI

)
B =gl xGI 3 (5.41) N

A
:ol" 241

L sym
with f remaining the same. W

(3 i
§5.1.4.1 Discrete C% Arch :::w::n*

The element stiffness matrix for the present case is o‘

;ltlj
o

_ - Fo?

) E;A 0 0 _EA . 0".:,
: £GA £GA
: EEd £GA

“ EI _ xGAl
) k, = T to

}
&
)
kN
P
NIOo
'

:
a"
W
xy
Niw
+
Bl
A{c‘)
>
T
22Z

(5.42)

oo
1aou|
N

where EA, EI, kGA and l. represent the beam element’s extensional stiffness, ;:3;:5:
. . . . h

bending stiffness, transverse shear stiffness and length. This k, results from the .":'::o‘gi

superposition of a linear membrane stiffness with the one-point spatially integrated

Timoshenko beam stiffness.

Following the same symbolic procedures as described in §5.1.3.2 for the C! .\3‘. 3

Hermitian beam, one finds the discrete Fourier material operator to be

: CIRPAR -1 G R LB 1t R
D _ - . _ \
== 17, E8 + 131G AR? 112 kG AK o

sym —I‘I;QEIE2 - 15,cGA | T :
(5.43) R

149 B

PRI R TN Y L % § », i oo™ ™ A P T TR A TR T T Tt T e e S i
R R S R A T T DR T S X S G O L S D S L B R T it M L P, o A e D N )



A USEA AW P EUWAM PR PN UL YT FOP AL T R PO R TN TCI PO YO TOR YO PO PO TR RO POR TR AT N R U P U R TR TR T Ty

where

2 2
1,',':,:%2--cos2ﬂ 1,,,,—-%2--&1

¢ ¢
17y =13, = ?’21- -/ay -cos 8

€

!

2 2
10y = %2- ay 1}y = %2- cos

e e
155 =1-/@1 cosp

2

b 3

o9 =17 1gg = @1

and as before,

§5.1.4.2 Recovery of Limit Differential Equilibriumm Equations

For the usual case where element nodes are assumed to lie on the arch, i.e.,

le =1, one finds that

1™ =12. a5 cos?3 13, =1%.

1%, =1- /a7 - ag-cosf 12w=13-vﬁ-cosﬂ

10, = aj - ag 12, =14 cos?f

with
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Using these results, inverse transforming Eq. (5.x168) results in

[ 2
saf-op Gpeph -
D_ E 2
L’ = 24 -xGAZy  KGAF;
a2
] sym EIE,T —nGA‘
- 2 -
GA\ 2
ALy (B AE o
12 2
_— GA 3 GA D
+ 72 Bt -5 3
EI 3%
| sym 125, |
" EA 3% _ xGA 3° (EA 4 5G4 A _kGA 3% 1
125487 4RY 32 \6R T 6R /33 4R 352
2 4 3
12 EA 3% _xkGA QD xGA 3
" R197 T T o AT o
A 3% . EI 2% ey
L RE AT S
(5.45) Q‘:{; W

where as before, only truncation order terms through 0(12) have been retained.
Comparison of Eq. (5.45) with Eqs. (5.38) and (5.41) shows that for the first
time, the recovered limit differential equilibrium equations do not correspond to
the reference continuum Oprera,tor. The L,y and L4 terms of the recovered limit
differential equations do not correspond to either reference CO shell theory. As
in dealing with comparisons between any shell theories, the question as to what

terms constitute a consistent theory is not an easy one to answer. For the case of

C!, or first approximation shell theory, Koiter [22] showed that a wide variation

T

Ay
P

'&
P

in shell equations are possibly consistent with the intrinsic errors introduced by

e e
4

P

employing the basic Kirchhoff-Love assumptions. In the present case, it is not at all

"‘"ll
® =

clear whether the omission of the above mentioned terms implies a fundamentally

-
x
9%

inconsistent C9 discretization.

C
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§5.1.4.3 Limiting Thin Shell Behavior
Since more often than not, CO discretizations are used to model thin shell
structures, an important question which needs to be addressed is whether in the
thin shell limit, this approximation is a valid one. The answer to this question can
be found by employing the static condensation procedure described in §5.2.2.2 to
eliminate the 8 d-o-f from Eq. (5.43). After performing this decoupling operation,
the resulting Fourier transformed matrix operator equation is found to be
D =D <D
L~ = Lsanders T LTransverse Shear - (5.46)
As one might have anticipated, a valid thin shell operator is recovered, along with

a “transverse shear” modifying operator. The thin shell operator turns out to be

a discrete approximation to Sanders arch equations and is given by

2 2 .
h .
- ~(1%%s + Lo ig )R i(AT, RE + 10 k%)
Lsangers = EA

X (5.47)
m _1 b h%z4
. sym low 7T lywizk

where for this case,

2 2,2
lvm,,—iﬁ--al-coszﬂ 1, =2 .4
12 i
3
1%, = T’é— Jar-cosf 18, = 111 - /@i - cos
[
2 4
17 = -5-2- -a% 1, = s cos? g
e [

Except for minor differences in several of the unity operators which only effect
accuracy, Eq. (5.47) is seen to be identical to Eq. (5.18). The “transverse shear”
modifying matrix differential operator is found to be

—175k% 15 kk

<D
LTransverse Shear = € EA Ts 1 (5'48)
sym lwwEZ
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where the unity operators are

s _ st 2 s _ 1s® s _ {282
lyv = 78 o8 B 1lyy = 1—4,/a1 cos § lyw = T ay
e e e

and

EI .5 _ (1 +v)h2k2 o 2(1+v)n? ' ﬁz_
kGA 6k - 3k A2

(5.49)

Here, we have made use of ¥ & k = %\E where A is the wavelength of a solution

component.

In the “thin shell limit”, if one adopts what Fliigge calls the theory of struc-
tures approach [71], Eq. (5.46) becomes

. 2D 2D 2D
lim (LSanden + Lvansverse Shear) = LSanders - (5.50)
v3z2—0 => G—o0

Alternatively, by examining ¢, one can interpret the “thin shell limit” in terms of
%;— — 0 so that the two parameters governing this limiting behavior are the shell’s
thickness, h, and the wavelength of a solution component, A. One can therefore
conclude that in the thin shell limit, this faceted C© arch discretization is in fact
consistent with Sanders C! arch equations. | . N

R

Wt
§5.2 Cylindrical Shell !:'EE:;
W
A

In this section, the faceted Reissner-Mindlin plate approximation of the cylin- °

: drical shell, as portrayed in Fig. 5.5, will be examined. One intrinsic problem with I"'. :
: “
S

G

this geometric approximation, or for that matter, any finite element discretization
which does not employ exact physical geometry, is in dealing with rotations about
the shell normal, 8y, engendered by the element nodal transformations employed
; during the assembly process. This rotational d-o-f corresponds to the “sixth” equi-
librium equation representing moment equilibrium about the shell normal - which
has been a continual source of trouble, even from a classical shell standpoint (see

e.g., [75]). Since the usual shell (or plate) element has no stiffness associated with
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Fig. 5.5 — Faceted plate discretization of cylindrical shell
this d-o-f2, numerical ill-conditioning may be introduced into the finite element e
analysis, depending upon the juncture angle, if this rotational d-o-f is retained .
in the global system. Common practice has therefore been to suppress 8y in the d \
assembled equations. In the present case of the cylindrical shell discretization, the E‘}‘L
4
effect of suppressing 8n would be an overstiffening of the 8z d-o-f due to the nodal
transformation which links 8, with dy.
The reference C° equilibrium equations to be employed here are from Naghi- K
o
Cooper’s work on cylindrical shells [73] with the material operator, Lm, written R
)
in the following symmetric form, : A
%
Ly L ,,] Y
Ly = m 5.51

where Lmm, L, and Ly, are used to denote the following membrane, mem-

5 Recent work by Bergan and Felippa [76] addresses this problem by linking 8» to the
membrane strain energy.
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brane/bending and bending matrix differential operators ol

Kd + (Kyy + 24 )d3 Ky3dzd, e
Lmm = GA
sym Ky1d} + Kdf - 55 it

)
K4d,  —Bdl+24ta 0 g

D B0
L(F+ofhe 0 Rdi- - S

- - €
-xGAV? + & kG Ad, (- + =G A)d,s R

)
Ly = Dd} + Dy1d? - xGA D13dzds e

I sym Dudg + Dd% —kGA| oy
(5.52) :oe.:.

with ':'0'.%

— 1 X
1 VK K12= +UK "y

2
3 - 1
p=_EA D11=12VD Dyg = —%

D

2 “.:.‘..!

®
and V¥ = d2 + d%. The shell displacement field and distributed load vector are ‘\o‘:gg
o
$

I

X
defined by | &v

"
¢

(9]
[<]]

| w=dwl, f= IS (5.33) ':.:%"

)
8
oo

Transforming Eq. (5.51) using :“\aj“
™

&
'{
o

u(z,5) = kg, ky) ei(kazTks?) (5.54) I
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.
}

results in

i D
. —KkE — (K11 + k3 —Kygkzks 9
Lmm = A
i sym —Ky k2~ Kk3 - —-g-“g
; Kik,  Br2— ZpLe? 0
mb =
, D
(& + 58A4)ik, 0 - B+ Zpip? - 5G4
[ —kGAY? + EI% kG Ak (2{-77 + kG A)iks
Ly = ~Dk2 - Dy 1k ~ xGA —~Dygkzks
i sym ~Dy1k2 - Dk? - xGA
(5.55)
with V = —(k2 + k2). These equations are the transformed reference equations

for the material operator which will be compared to the discrete equations derived

in §5.2.2.

§5.2.1 Derivation of Flat Reissner-Mindlin Plate Shell Element

In §4.2, derivation of the 12 d-o-f Reissner-Mindlin plate bending element
was described. In this section, a bi-linear membrane stiffness will be added to this
element to form a 20 d-o-f general plate bending element which will be used to
discretize the cylindrical shell as portrayed in Fig. 5.5. As was the case for the arch
analysis employing straight elements, there is no membrane/bending coupling at

the element level.

By including inplane deformation effects, the plate displacement field becomes

where z,

addition of the in-plane displacements, u and v, the element displacement vector

u(z!yv Z) = u(z) y) - Zoz(zvy)
v(z,y,2) = v(z,y) — 20y(z,v) (5.56)
w(z,y,2) = w(z,y)

y and z refer to a local plate-oriented coordinate system. With the
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is rewritten as

u=N,d;; i=1,4 (5.57) .9

. withd; =|u; v; wy; 0z,

; Oy |T and N; = N,;I5 where 'a:'.'o‘

§&=(-1,1,1,-1)

Ni==(1+4££)(1+n); (5.58)

o

n; =(-1,-1,1,1).

Based upon an isoparametric element derivation, the element’s material stiffness

is comprised of the following components,

—

ki

(5.59)

where kyj; is the uniformly-reduced integrated plate bending stiffness® from §4.2,
except for the d-o-f reordering due to the changes noted above in d. The membrane
stiffness contribution is broken into two parts, ky,, which may be either fully (2x2)

or uniformly-reduced integrated (1x1), and kms, which is usually integrated with

5 a (1x1) rule in order to alleviate membrane shear locking [77]. The isoparametric
o
o strain-displacement matrices, By and By, are derived from
‘ €z m; = aN;

€= ey o= Bm lg o | 0 3y 00 9] (5.60)
:, Tzy Bms
X _[8N; ON; *

Bms'- =1 —53" —a;‘- 0 0O

Y

Note that on the element level, there is no strain energy associated with a normal

rotation and hence no 9, d-o-f need appear at the element level. The isotropic

membrane material matrices are

Dm=K[1 ”] and Dy =KxGA.

v 1

(5.61)

6 The subsequent symbolic analysis is identical srrespective of which 4-node c® plate

bending element i3 used here.
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For the case of the element’s geometric stiffness, two obvious formulation pos-
sibilities exist. The first is simply to use the plate’s ks, Eq. (4.p220), neglecting
any contributions from the membrane displacements, u and v. The second possibil-
ity is to include the nonlinear terms in ks associated with u and v. An interesting
note by Koiter {78] discussing the buckling of short cylinders (L?/Rr < 1) in-

dicates that contrary to earlier work, all terms must be included, which is the

approach taken here. With this approach, the geometric stiffness becomes

ko = / / BY
o A [ 4
where B, now represents an expanded {10x20| form of B, found in §4.2 with

8= gz fgy
Tzy Oy

remaining the same.

The element transformation matrix used to transform this planar element

with 5 d-o-f per node to the cylindrical shell geometry shown in Fig. 5.5 with 6

d-o-f per node is given by

10 0 0
0 cosy; sintgy 0
0 -—sinty; cosyy 0
0 0 0 cos ¥y
0 0 0 0
lo o 0 siny;

where ¢; = (3 for element nodes 1 and 2, and t; = —f for nodes 3 and 4 for
each of the four elements in the patch. With this transformation operation, the
20 d-o-f plate element has now been transformed into a 24 d-o-f flat shell element,
including the 8y d-o-f which can now be eliminated at the global level, if required

for numerical stability.
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|
Q §5.2.2 Discrete Fourier Results for Iviaterial Operator . '
The transformed limit differential equilibrium equations for this faceted, flat :‘}'\‘“
a plate discretization of the cylindrical shell were determined from the symbolic :.(‘;‘
@ analysis’ to be 3
» [z’:.m ii%b] Emn o
g Ly, = sym Ly flb)" , (5.65) :\X
sym Ly, Ls.- ]
g for the case of a selective-reduced integrated membrane stiffness used in conjunc- :4'::‘:':
tion with the Ul plate bending element. In addition to the discrete approximation :::ﬁ
a of the membrane, membrane/bending and bending operators, we also find our- :‘:",:
* selves with operators associated with 8 which are included here for completenesé. pw.

The individual matrix differential operators were found to be .

L
X

-lmxa - 11(120).1(11;'3 ‘1uvK12EzEa

o
|
o
S

~
3
E
|
" sl

1 T 2 3
sym —lt(m)Kllkg - 15)0)1{7‘2 - 1uu) —TR}?A

® T33s
S

luwK §ikz 0 0

w2
=]
T e s Y 2

* 4
L 4

Loy =

k)

Rall g 49

S +10554)E 0,5, -1,,5G4

<7
:

[ _lu}z)ﬁaAez + 1&?2}% lwoz ICGA‘IE: lwg‘ KGAiEa

P

et
4

K

A8, 5713, Dkt B
~1{%), xGA
aym —1(Y), Dy k2
—1522)02 Dk?
_ -1, G

b~
SU
Il

Pyt ¢
%

%

e
‘l

5's
X

-

7 The symbolic analysis for this faceted discretization of the cylindrical sheil is shown i
in Appendix A.4 o
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0

=D
Lmn =

IcGA \/Ez_{lkzka

xGA codi\/a_z_\/rkzka
-Dip cosﬁ\/auil_ca(%z iﬁ!lzkz) + rcGA co8f\/Azqzqtks
- B vazicosfiks (3% - 1322k7)

D 12 2 -2
R121 az4a‘4 + NGA R2 az4k3

where the different unity operators are defined as
1
lt(m). = Q48 ( ) =

lyy = %Cosﬁ\/a—z?\/a_;{
Luw = /az4(1 - 3L 2E3)

1,(,,,) = coszﬁa“ (2) =

"2' Oz4

—2- cos2ﬁa36
lvo) = (1 = o
1,&3 = § cosf\fazq(1 - 33 lzkz) 1,(,33 = § cosfaza\/Azq
0,0, = £GA1scosp, /a7 y/Trakzke |
Logy = = Voz4\/@ag
1,&,12, = cos2f - %E% + %gﬁszzzkng)
1,6, = coszﬂa“\/ﬁ

1w0y = fCOSﬁazwau

1(1) 2 (2) _ 2 2 (3)  _ .2
3202 cos‘fa,y 16:0: = {7 cos Bazy 10:02: =cos“fapqa,q

1926, = 1 co8f\/az4\/Tsq
MO 12

(3)
Lo 6, = a4 1

2
— 2 =
b0y = T %z4 bya, = Xz4%s4

with

: 2,8 o
V= —(kz + 1—20‘221‘3)

P4
Y

[ A NN
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and

(¢

- 32)_
a(zr’)" =1-= .h—k(zzv’) '

For the case when uniform-reduced integration is also employed for the mem-
brane stiffness, the following changes in the above unity operators are found to

take place,
1
ISHL) = (g4
D) 2
15)0) = %ycoszﬂau

1Y) = $ cospy/aza(1 - 234I%K2)

2 2 -
13), = (1- LR — LR + 3¢ s22E2EY).

Comparing Eq. (5.65) with Eq. (5.51), one observes that this discrete approx-
imation is not consistent with Naghdi-Cooper’s shell equations, which is perhaps
not too surprising in light of the results from the earlier arch analysis in §5.1.4.2.
Neglected terms may be insignificant if the assumption that

h2

<!

and

h3

—_ 0

AR

holds, which would be the case in most practical applications. In the spirit of
Koiter’s work [22] on first approximation shell theory, these missing terms may not
render this discretization inconsistent in terms of the higher-order approximation

to Leve's first approximation theory represented by relaxing the C 1 continuity

constraint permitting transverse shear deformation to occur.
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Integration Rule
Membrane Bending Spurious Modes
f f no
f sr no
f ur yes
sr f no
sr sr no
sr ur yes
ur f yes
ur sr yes
ur ur yes

Table 5.1 Effect of spatial integration rule on the presence of spurious modes: f
= full (2x2) integration; sr = full (2x2) integration of direct strains,

reduced (1x1) on shear terms; ur = uniform reduced (1x1) integration.

An interesting aspect of the membrane/bending coupling engendered by ele-

‘ment asssembly is the possible suppression of spurious element mechanisms. By

simply determining whether |Lmy| # O for kz = 7/l and ks = 7/s, one can deter-
mine whether communicable spurious element mechanisms will exist for a partic-
ular choice of integration rules irrespective of the choice of boundary conditions.
In the present case, nine possibilities exist if one considers full, selectively/reduced
and uniformly reduced rules for the membrane and bending stiffnesses, as is shown
in Table 5.1. The S1 plate bending element used in conjunction with the selec-
tively /reduced integrated membrane stiffness is seen to become a viable analysis
option for this particular physical geometry with the disappearance of the w-

hourglass mode discussed in Chapter 4.

§5.2.3 Discrete Fourier Results for Buckling Operator
Employing the geometric stiffness symbolically obtained from Eq. (5.62) re-
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sults in the following discrete Fourier transformed buckling operator i
Lyw O 0 0 0 b o
0 Lvy ;vw 0 0 “::'
i; ir= Lyw _O 0 (5.66) i
A . iy
Logoz O B
sym Lgsga
"
where
A
W
{ 2
a - S - S - -
. Luu = —ayehogkl - l—zazshoykf — 27V/54y/Ezhozykzks
o
2 2
R A l 84 . -
B Lyy = —[005216036 + m(l + ?kz)]hdzkg
- 1 82 =9 12 >
0 = [Eau + ﬁ'cmzﬁazd‘a - '6'?0‘34"3]’"’!]
E) ls S
- [27‘/a,4,/a24 cos28 — ,/a,4,/az4ﬁ§]hawkzks
5 . Vaggcosfls o 2s - 2049 /0 4c0883 -
,x: Lyyw = —"‘;'—Rzkgk,haz+m\/a,4aze cosfBtkshoy+ 32 R“ szzhazy
" G
Ay - 12 82 - _ ~
Lww = |aygcos?s + S+ k) hosk} o
B f”
,b'. 1 82 9 79 [2 =9 f'.':..-
+ [Efau + 12 °%8 Bageks — é’ﬁ'z‘as:tkz]h”y N
o
) 8 ls .. S R
;: + [27\/%4«/%4 cos?8 — /asqr/azg 2R |nozykzks -@;
o
e :‘_f;
) NN
b ) NN
= Fo . = 21052 — 5 cos? £2 95 o5 PR "o
928z = —ggcosBlozks — 7z 08 Bageloyks — 27 cosB/ayq\/Czqlozykzks -
A
4 oo
¥
. A —2 82 —2 S = > ::;\‘?-\
. Loyey = —ayelozky - ﬁazGIayka - ZTvanaﬁIUzykzkg ";"
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Fig. 5.6 ~ Axisymmetric buckling mode for m = 11 for quarter-cylinder (R =
36in., L = 50.26in., h = .12in., E = 107psi and v = .3) finite element
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§5.2.4 Axisymmetric Buckling — Finite Element Validation C\-‘;:‘

’: fl."'}\ *

Y Having found the discrete material and buckling operators for this faceted E’;:}\
: cylindrical shell discretization, a direct comparison of predicted buckling loads @

¥ " S WY
X derived from the symbolic analysis with finite element results can now be made. T

Tl

The axisymmetric buckling of a thin, axially-compressed cylinder, as is portrayed ;-S‘C:,r

[) N ". 3
\ in Fig. 5.6, will be used to evaluate the ability of these discrete Fourier techniques '\"';"‘

‘ to succintly capture finite element behavior. Unlike earlier comparisons where the o
A IN* "

_ continuum equations were employed to derive error estimates, the present com- '_-.t-,.'*

-.‘ > ]

x parisons will be directly between symbolic predictions and finite element results. n:'\&
For the case of a finite length cylinder, the displacement field for a buckling :‘\'
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Fig. 5.7 — Critical buckling stress vs. ng|, for the axisymmetric buckling of the

cylindrical shell shown in Fig. 5.6 for m = 9, 11 and 13 axial half-waves.

mode is represented by
. T
u = (@i — ity) e’ (k2 Es) = (ap —ag) ' UL 2+") (5.67)

where a complex representation of % agains becomes a necessity in order to de-
rive numerical results. For axisymmetric buckling, the following simplifications to

Egs. (5.65) and (5.66),
are made prior to computing the critical buckling stresses. This same simplification

was also employed for the finite element analysis.

The results of this comparison of symbolic vs. finite element calculated bi-
furcation buckling loads is shown in Fig. 5.7 where the critical buckling stess is

plotted vs. ng,j, the number of elements in the axial direction, for three different
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integer wave numbers, m = 9, 11 and 13. The continuous curves represent the
symbolic results for the different ngj, while symbols are used to represent finite el-
ement calculations. The finite element results were calculated employing a 2 x ny
finite element mesh which exactly represents the axisymmetric buckling of the
cylindrical shell. From a strictly finite element standpoint, this plot graphically
demonstrates the mode-switching phenomena exhibited by finite element analyses
employing successively refined mesh discretizations. The symbolically-derived pre-
dictions are seen to exactly represent this complex mode switching behavior. The
fidelity to which this symbolic technique is able to capture finite element behavior

is remarkable if one considers the “non-smoothness” of the discrete eigenvectors

such as is shown in Fig. 5.8 for m = 11 and ne| = 20.

Y—| x

Fig. 5.8 — Axisymmetric buckling mode for m = 11 for finite element model with
ne = 20.

§5.3 Summary

Unlike earlier results where one had to contend only with physical modeling
errors, results presented in this chapter show that the additional complexity of
approximate element geometry encountered in shell analysis provides no barrier

to the application of these symbolic element evaluation techniques to regular mesh
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discretizations. Discretization errors originating from both sources are seen to be
explicitly captured by the discrete Fourier element evaluation techniques employed
here. This accuracy is particularly amazing in light of the extremely “rough” finite

element solutions which in some cases, the symbolic analysis is seen to model.
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Chapter 6

Conclusions

This chapter concludes this dissertation with a summary of the technical
highlights presented in this investigation, a brief synopsis of the key technical
contributions made to this area of research, and lastly, describes areas of future

research.

§6.1 General Comments (Technical Highlights)

The objective of this dissertation was the development of the symbolic anal-
ysis methodology and associated computer algebra procedures which would be
employed to determine the intrinsie behavior of general multi-degree-of-freedom
finite element discretizations in the interior problem domain. The scope of the
present work was necessarily limited for the most part to linear, displacement-
based “structural” finite elements - bars, beams, plates and shells - in order to
both develop the methodology and demonstrate the symbolic analysis techniques

for representative one, two and three dimensional element formulations.

This objective was accomplished by systematically extending finite difference-
based analysis evaluation methods based upon both Taylor series and discrete
Fourier analysis to the multi-degree-of-freedom finite element discretization prob-

lem. By adopting the finite difference view of the finite element method as simply
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another way of deriving discrete difference equations, formulation details become
immaterial since all aspects of the discretization process which contribute to the
accuracy of the finite element solution are uniquely embodied in the resulting dif-
ference equations. Thus, the inability often times to derive global mathematical
proofs of convergence for different nonconforming elements, modified interpola-
: tion schemes, spatial integration rules, numerical techniques (a.k.a. “tricks”), and
miscellaneous variational crimes as they arise in practice, is thereby completely
i% bypassed. As a result, this symbolic approach to element evaluation shares to

same element-independent generality as does the patch test, albeit, it has thus far

By only been applied to regular mesh discretizations.

S

Pl
.(,‘ﬂ

o The results of these computer-aided symbolic analyses of “structural” finite
?"h'

-

elements are the limit differential equilibrium equations governing element behav-

o
ELal

- ior for the associated boundary-value problems from which it is shown that one is

able to 1) verify formulation consistency and stability and thus solution conver-

kS

S
-
o

-
-

-

gence, 2) derive component-wise error estimates for the primary solution variables,

and 3) open the way for improved element performance by the proper synthesis

._:‘1{.,

2=

of element operators.

-,
.-
-

B

§6.2 Summary of Contributions

2205 e

® ﬁ{t

Specific technical contributions made in this dissertation were:

-

h }

:: 1) Element-independent symbolic analysis procedures developed - The

symbolic elemnent evaluation techniques presented herein are generally appli-

S0

@ cable to any finite element formulation ~ displacement-based, mixed, hybrid, NN
A

solids, fluids, heat transfer, etc. S,

@ R

2) Application of computer algebra to symbolic finite element evalua-

YXp
LA
0%

T Nt el

tion procedures - Symbolic analysis procedures were implemented for the

different classes of element evaluation problems evaluated in this investiga-

oA
st

tion. Both MACSYMA and SMP were used with sample runstreams shown

® =

"

in Appendix A.
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3) A priori error estimates developed using consistently derived load- i
ing operator ~ The present analysis correctly handies the loading operator .'9'
permitting physically correct a priori error predictions to be determined em- T
ploying both Taylor series and discrete Fourier symbolic analysis techniques. ' .::
4) Stummel’s Problem - The evaluation of Stummel’s problem, which has - .
been the source of much controversy in the finite element community, proved i}:
to be an almost trival application of the present element evaluation techniques. ;:_-;-
Stummel’s nonconforming element, which passed Strang’s version of the patch i .
test yet did not converge, was shown not to be a convergent approximation e
since it satisfied neither consistency nor stability requirements. 6" '
ity
5) Symbolic analysis used to evaluate different hourglass control tech- '\:;
niques — The precise effect of hourglass control techniques on the limit differ- 2%
ential equilibrium equations and hence on the discrete solution was explicitly ?_ﬁl‘
identified without recourse to numerical experimentation. E&
6) Symbolic analysis procedures extended to bifurcation buckling o
problems — The present symbolic analysis procedures are shown to be di- by
rectly applicable to the bifurcation buckling problem. For the case of peri- :
odic boundary conditions, a priori error estimates resulting from the discrete 5{
Fourier technique are shown to exactly predict finite element behavior. .:
7) Faceted beam element approximation of arch - Consistency of the :“' _,‘
straight beam approximation to the circular arch with Sanders’ shell equations . : o
was demonstrated for both Hermitian and Timoshenko beam discretizations. ’:E';
The advantage of using the arc length in the element formulation vs. the }t:
element’s actual chord length was shown to result in a more accurate finite R
element solution. :'e:
3
8) Faceted Reissner-Mindlin plate approximation of cylindrical shell ~ '

— The transformed limit differential equilibrium equations governing this ap-

proximation were derived including the effect of the normal rotation degree-

170




3-'.
%
of-freedom. It was shown that this approximation was not consistent with ‘:& "
I Naghi-Cooper cylindrical shell theory. Bifurcation buckling loads derived \
from the discrete Fourier results for axisymmetric buckling were found to : '::E(
nearly exactly reproduce finite element results including the complex mode ':::E:
swiiching phenomena encountered when using nonconverged meshes. !:::5
§6.3 Future Research ss':(
@ Due to the complexity of developing this element-independent analysis method- .;Qi:
i ology encompassing both symbolic analysis procedures and interpretation, only a b'o
':, very limited subset of potential applications could be investigated in any detail. Z’::'?:'i
N

As a result, further research in a number of different areas remains to be pursued:

W%
ﬁ 1) Convergence of secondary element quantities — The present analysis ‘,
ﬂ only addressed the convergence of the primary analysis variables, namely, )“
= translational and rotational displacements for the displacement-based ele- ; ::
ﬁ ments investigated. Convergence of secondary variable fields, such as stress :::
and strain fields, needs to be addressed. : :R

NN

@ 2) Higher-order element interpolation flelds — Only 2-node one dimensional .,"V:.,
elements and 4-node two dimensional element discretizations were employed '::'
g in the present analysis. While these represent extremely popular element : '
families due to their computational efficiency, higher-order elements also need :}: X
& to be examined for two primary reasons: a) higher-order elements offer a :E}:,
more exact geometric model description, and b) in some applications with ' "

rapid spatial loading variations or geometric discontinuities, increased solution .j :
accuracy may be realized by employing higher-order element interpolation :i

fields. :

Effect of mesh distortion - Employing distorted meshes is an unfortunate
modeling necessity in many problems. Eventhough k-type adaptive mesh
refinement schemes presently under development will mesh a model to the

greatest extent possible with regular element geometries, there will always be
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regions where distorted elements will be used. As a result, the effect of element
distortion on the interpretation of the present symbolic analysis results needs

to be investigated.

Application to other fields — This last item represents the ideal note on
which to conclude this investigation. As a result of the generality of the
present symbolic element evaluation techniques, there would appear to be no
reason why they could not be employed in other fields where finite elements
are being used. One extremely important area in which finite elements are just
beginning to make an inroad is that of Computational Fluid Dynamics (CFD).
Many of the problems encountered in Structures have their counterparts in
Fluids, e.g., spurious mechanisms and incompressibility, so that extensions
of the present techniques to CFD problems would appear to be a nature

progression of this research.
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Appendiz A

MACSYMA and SMP Runstreams

The different MACSYMA and SMP runstreams referenced in this investigation
are found in this Appendix. Initial work was performed using MACSYMA (actually,
UC Berkeley’s VAXIMA version of MACSYMA). During the latter stages of work,
SMP also became available. While not as user friendly or mature as MACSYMA,
SMP was in general able to run similar problems faster using less virtual memory
than MACSYMA would. Initial work was done on a VAX 11/780 and 11/785.
Limited process virtual paging resources on the multi-user VAXes eventually forced

the migration of all work to a SUN 3/160 with a 40MB swap partition allocation.

While syntax of the different commands used by MACSYMA and SMP are
different (see [19] and [20]), there is in general a 1 : 1 correspondence between
them. Hopefully, the inline comments will be sufficient to indicate what operation(s)
is being performed at each step of the symbolic analysis. If not, the reader is refered

to the appropriate user’s manual for a complete description.
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§A.1 Exactly Integrated Timoshenko Beam Discretization N

;J
Vaxims 2.00 -:3‘
. (c8) /% . o

03¢ 3¢ o 2 ok 3k ok oK o 3 o0 3K 2k kel ok o o ok ke ke ok ok o Ak k3K ok e ok ok ke ok ok Xk 3k s o o ok e ke Kk e X e ke ok ke ke -dlb
* *

* 2-Node Timoshenko Beam * ', .: J
* ® ’,f\.l

A 3 3 86 30 3k e ke 3k i ok ok 3K ok 5 6 ok ok ok ok ok ok o oK ok ok 3k ok ok sk s ok ek o ke ke ke ok ok K ok ke ok ok ok ke ok ke ok sk kK ok K K K K ok ok ok kR R

Define global dof numbering */ !29.'
NEL  : 28 i,
(c9) NDOF  : 4% oo
(c10) NEQ : 6% | b0
(c11) DOF[1] : [1.2,3.4]8 P, 0
(c12) DOF{2] : [3.4.5.6]% 0
(e13) /* . . . . Input element lengths x/ ‘::"."
LNGTH : (1,1]$ AR

(c14) /+ . . . . Determine whether reduced integration is to be used on td 'tzs"
trangverse shear stiffness */ "'0:'

REDINT : READ(“Use reduced integration for shear stiffness (Y/N)?%);

)
Use reduced integration for shear stiffness (Y/N)? "‘:.'"t

| (d14) . a B

(c1B) /* o

e e sfc ok o e ke ok 3k ok o o ke ok o e ok ok e e e e ke o o K o e ok ok oK ok o e ok o e ok ok ok oKk o R K ok ok ko ok R K K ok ok K ok K KK K ok kR K R R iyt

3 * * . a\‘
* Calculate element stiffness matrices * . tf
; * * .'hﬁz

4 ol ke e oK ke 2k 3 A ok K ok ke ok K A s e ol Ak i ok e sk ki ok ek sk ke ok ok i ok o ke e K e kK ok ok ke ak A ok ok Sk ke ok ok ok ke 3 ok ok ok ok kK Ok :a\H;

Loop over each element x/ ot
FOR IEL:1 STEP 1 THRU NEL DO ( y
/+* . . . . Define gshape functions *f

N1 : 1-X/LNGTH[IEL], Rt
N2 : X/LNGTH[IEL], et
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/* . . . . Calculate B matrix ~/

B : MATRIX([ 0, -DIFF(N1,X), 0, -DIFF(N2,X)],
{(DIFF(N1.X), -N1, DIFF(N2,X), -N2]),
/* . . . . Form B transpose */

BT : TRANSPOSE(B),
/* . . . . Calculate extensional stiffness matrix =/
KX : EI=COL(BT.1) .ROW(B,1),
/* . . . . Calculate transverse shear stiffness */
KS : GAxCOL(BT,2) .ROW(B,2),.
/* . . . . Perform volume integration */
KE[IEL] : DIAGMATRIX(NDOF,0),
FOR I:1 STEP { THRU 4 DO (
FOR J:1 STEP 1 THRU 4 DO (
IF REDINT#Y THEN (
KE[IEL][1.J]) : KX[1.,J]1+KS[I1,J],
KE(IEL] (1,J] : INTEGRATE(KE[IEL] (I,J].X,0,.LNGTH[IEL]) )

/* . . . . Reduced integration on shear terms «/

ELSE (
KX[1,J] : INTEGRATE(RX[I.J].X,0,LNGTH[IEL]).
KS[1,J] : (LNGTH[IEL)/2) * 2 * EV(XS[1,J].X:LNGTH[IEL]/2),

KE(IEL] (I,J] : RX(I,J]+&S(I.J] ))) )8
(c18) /=
{‘ s ok € ok 2 d K K ek ke ok ok ok ka3 o ok ok A 3 le ok o ke ok ok ok ke ok o o ok ok ok ke sk ok ok sk ok oK K e sk ok ok ok e ko K K K ok ke ok ok ok K Xk Kk
* . *
* Perforn element assembly based upon prescribed global *
R * degree-of-freedon (dof) number *
. « -

o ok K ok ok 3 Kk e sk ko ok e ke e e sk ok ke o ke K ik Sk ok S ok e sl ok ke i ok ok ke ok i oK Ak i ok e ok e ok sk okl ok i ok ik e ko ok ok ok X ok ok
Loop over each element x/
K : DIAGMATRIX(NEQ,O)$
(c17) FOR IEL:1 STEP { THRU NEL DO (
/* . . . . Assemble into globel stiffness matrix 74
FOR I:1 STEP { THRU NDOF DO (
FOR J:1 STEP 1 THRU NDOF DO (
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]
}‘ b

II : DOF[IEL]([I]), JJ : DOF[IEL]{J],
K[{1I1,J33]:K{11,JJ]+KE(IEL] (1,J])) )s

(c18) K;
[ g g g g ]
[ - -- - -- -- 0 0 ]
(1 2 1 2 )
{ ]
( 2 2 ]
( g2 gal +3ai ga gal -6ai ]
R - e e 0 0 ]
g ( 2 31 2 61 ]
[ ]
[ ge ga 2 ga ga g ]
[--- == - 0 - -- -]
{ 1l 2 1l 1 2 ]
(a18) [ ]
) [ 2 2 2 ]
=z [ ga gal -6ai 2{(gal + 8 ei) Ba gal -6 ei]
[ == —cemeccce-- 0 eemeeme-cesenees e ]
{ 2 61l 31 2 81 ]
( ]
[ g g g ge ]
[ o 0 - -- - - -- - -- ]
( 1 2 1 2 )
( ]
( 2 2 ]
- ( ge gal -6ei ga gal + 3 ei]
2 ro 0 = =emmcecece-- - =e meeeecococe- ]
o [ 2 61l 2 31 ]
(c19) /+
6k e e 36 e ok ke sk ok ke ok ok ok o e sk ok k ok Dk ok s sk 3k sk ke ok ok ok ok ok ok 3K 3k 3K K i ok ok ok ok ok ok K A oK ok ok ok ok sk ok ke ok A K Kk ok ok ok ok ok K K K K
* *
* EXPAND nodal dof about ceater node *
*x &

‘N e ok s A ok ok s R o sl o e e ke ok e e ok ke ok o ok e ok ok ak ok 2 ok ok sk ok ok ok ok ok okl ok ke ok ok ok K ke o i ok A ok K R sk ok ok ok ok ke koK ok

Construct 1-D Taylor Series expansion function */

TiD(F,DX,N,XL) := SUM(XL~I*(DX+*I)*F/I!,I,0,N);

i i
x1 dx ¢
(d19) t1d(2, dx, n, xl1) := gum(~~=-==---- , i, 0, n)
; i
) (c20) /+ . . . . EXPAND Wi,Ri,¥3,R3 about center node W.R «/

Wi : TiD(W,DX,8,-LNGTH[1])$

(c21) Rt : TiD(R,DX,8,-LNGTH(1])$
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(e22) W3 : TiD(W,DX,8, LNGTH[2])$

(¢28) R3 : TID(R,DX,8., LNGTH[2])$

(e24) /= . . . . Create symbolic displacement vector

D:[w1,R1,¥,R,¥3,R3]8$

(c26) /* . . . . Obtain "discrete* Euler equations

AREA : (LNGTH[1]+LNGTH([2])/2$

(c26) WEQ : RATEXPAND( SUM(K([3,I]«D[I],I,1,NEQ)/AREA=Q );

8 8 6 4 4 2
dx gel v dx gal w dx gal w

20160

(e27) REQ : RATEXPAND( SUM(K([4,I]*D(I],I,1,NEQ)/AREA=O );

7 -] 6 4 3 2
dx gal v dx gal w dx gal w
(d27) ~ ====ec--- - = eee- creeees = cocccse--e- -dcx ga w +
120 L]

8 8 4 4 ] 4
dx eil r dx gal r dx eil r

- ememeeccaa- +gar-dx eir=0
12

(c28) /*
e 3 e K s o ok o ole sk ke ke 3K ok ok e ol ok ol ok i ok ok ok ok ok sk ko ke A ok ok ok ke i ok e K ke i ok ok K ok K i ok Kk K ok ke KKK R K ok K ke sk K
»* =

* Solve for limit differential equations *

* *

3 e e 3 3k s e ke e e ke ok o Sk ok s s s ok ok sk ok ok ok i oK Sk K sk ok o ok ok ok ok K ok ok ok ok ok K sk ok ok K o ok sk ok ok ok dke s sk e 3k ok ok ok ke ok kK ok

Determine coefficient matrix and determinant operator */

. COEFMATRIX( {WEQ,.REQ], [W.R1)$

MM MR
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(¢29) DETCM : RATEXPAND( DETERMINANT(CM) )$

(e30) /« . . . . Continuum operator

RATEXPAND( EV(DETCN,L:0) );

4
(430) dx ei ga
(e31) /* . . . . Truncation terms
RATEXPAND( COEFF(DETCM,L.1) );
(431) 0
(e32) RATEXPAKND( COEFF(DETCM,.L.2) );
4 2 é
dx ga dx ei ga
(¢32) = ee-esa- $ mmm=-mee-
12 é
(c33) RATEXPAND( COEFF(DETCM,L,3) );
(d33) 0
~ (c34) RATEXPAND( COEFF(DETCM,L,4) );
6 2 8
dx ga dx ei ga
(@34  meeeee- 4 weeevoccs
72 80
(c35) /*x . . . . Continuum loading operator

cM{1,1] : Q8
(c36) CM[2,1] : o%

(c37) DETCM  : RATEXPAND(DETERMINANT(CM))$

(c38) /+* . . . . Continuum operator
RATEXPAND(EV(DETCM,L:0));

2
(d38) ga q - dx ei g
(e39) /* . . . . Truncation terms

RATEXPAND( COEFF(DETCM,L,1) );

(d39) 0
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(c40) RATEXPAND( COEFF(DETCM,L,2) ).

n 2 Th Ue ¥
ot o
e ®
- e

(a40) = eemceces v seceene-

A,
s 12 I
(c41) RATEXPAND( COEFF(DETCM,L.3) ); 2y
-".‘p
(d41) 0 jb;"
(c42) RATEXPAND( COEFF(DETCM,L.4) ): o~
4 6
dx gaq dx ei g
(@42)  emmemeses o eseceeeo
72 360
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§A.2 Exactly Integratéd Reissner-Mindlin Plate Discretization

/* . . . . SMP macros </
#1(2]:: col($matrix,$colnun]: :Ar(Dim($matrix] (1], $matrix($1,$coloum]];

#1(8]:: ;ddcol[3m1trix.ttddcolll::Ar(Din[tnntrix][i].Cat[tmatrix[tl].\
$addcols[$1]1]];

#1[4] :: coefmatrix[$eqns,$vars]::(%rows:Dimn($eqns] (1] ;%cols:Dim{$vars] [1]:\
Ar{{%rovs ,%cols},Coaf [$vara($2] ,Ex[Seqns[$1]1]]]);

#1(6] :: ratsubst($o0ld,$nev,$expr,$base] :: (%ans:Pqr($expr,$old,$base] ;\
Ex( $new %ana(i] + Xans(2] ]):

'R R T X = e &= TR

/%

KA A o % 6k K ok ok oK s K ok ok ok oK e K e ok ok ok s ok ol ok ok sk ok e sk ok ok ok ok sk ok s ek ok ok ok Ok e ok ol ok Kok ok ok ok K KK K R ok x
*® ]
* 4-Node CO Plate x
* »
* 8 *
* - ®
* | *
* e LR b DL 3 x
* | [ [ x
« | mmmeee l==> R .
* I | x
* T 2 =
* *
* =
* Degree-of-freedom ordering: (u,v,w) -> (ri,r2,w) =
* x

¢ 3 3 sk K K ok ok o ok e Ak ok ok ke st ok oK sk e A K ok ok sk 3k A ok ok ok ok ok o K ok ok ok ok K ok Sk sk K e ok I A i ok e ok koK ke ke ok ok Kk ok x ok kK

Define global equation numbers */
#1(6]:: eqnum : {13,14,18};
/* . . . . Define element global DOF numbering =/
#I[7]:: dot : { {1,2,3.4,56,6,13,14,15,16,11,12},\
{4.5,6,7,8,9,16,17,18,13,14,15},\

{10,11,12,13.14,15,22,23,24,19,20,21},\
{13,14,15,16,17,18,26,26,27,22,23,24} }.

/* . . . . Define shape functions in local R,S coordinates =/
#1[8):: »1 : (1-r)*(1-8)/4;
#1(9]:: n2 : (1+r)+(1-8)/4; :

#1[10]:: 03 : (1+r)=(1+8)/4; R
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#I[11]:: nd : (1-r)»(1+8)/4;
#1(12):: n : { a1, n2, n3, nd }
oy (A-r)(Q-8)(+r)(1-8)(1+r)(1+3)(1-1)(1+3s)
: #0[12):  {-------m----e-- yommmmmm e aae R RCEECTEERYREER PP
/* . . . . Determine shape function derivatives
#1[13]:: nderiv : { D(a,r], D[n,s] }

* -1+81-81+8-L-~-38 -{+r-~{-21+rrtit-r1r

3 #0(18]:  {{------ ymm—=- Jome—- ymmmm-- Fol-mmn-- ymmeaa- yom--- Jom--- }}
i 4 4 4 4 4 4 4 4
; /* Define nodal coordinates
3 #1{14):: xy : { {0, 0 },\
g {1, 0}
{1, 1}\
! {0,1});
ﬁ /# . . . . Define 2x2 Gauss integration points

#1[16]1:: ar3 : Sqrt(3];
#1(16]:: rint : { -1/8r8, 1/sr3, 1/sr8, -1/sr3 };
) #I(17]):: sint : { -1/ar8, -1/ar8, 1/sx3, 1/ar8 };
/* . . . . Define “pre-integrated" DB and DS material matrices
’ #I1(18]:: avb : { { qi1, q12, O }.\

{ q12, q11, 0 },\
{ o, 0, g3 }};

i #1[19):: ds : { { q44, O },\
{ 0, q4d }};
3 /¥ . . . . Determine integration rule to be used
£ - full spatial integration

i ar - reduced integration on shear

dsr - directional shear integration
ur - uniformly reduced integration
&
o #I1[20]:: integrate : RA["Integration option [f/sr/dsr/ur] ? “,%/dev/tty"]

Integration option (f/sr/dsr/ur] ?

#0[20]: ¢
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/*

3 2k ¢ e 2 3k ok 36 e ok K ok ok ok ok ok ok e ok ke o ok ok sk ok ok K R K K ok K ok ok ok i o ak ok ok 0 ok ok Ak R oK K K Kk K K A K A K K Xk K K K X

* =
* Calculate element stiffness matrices and *
* sasenble into global stiffness *
B * x

. Ao ok e ok ok a3 3 ok o ok ok ko ol ke e ok sk ok ke ak ok Ak ke A Ae ok i ke e e dc e ke e Ak e e e e ok Stk ko ol e 8k e kK ke e ¥k ok ox K
Initialize rows of global stiffness =/
#1[21]:: x : Ar({3,27},0];
/* . . . . Calculate element stiffness
Calculate ianverse Jacobian and Jacobian determinant */
i - #I[22):: jac : Ex[nderiv.xy];
#1[28]:: detj : Ex[ jac[i.1]*jac(2,2]-jac(1,2]*jac([2.1] ];
~ #1[24]:: jinv : (1/det))*{{jac[2.2],-jac(1,2]},{-juc(2,1]),jmc(1,1]1}};

/* . . . . . Loop over each nodal group to calculate element
B matrix */

#1[26):: Dol inode, start:1, 4,\
nix : jinv[1].col[nderiv,inode];\
niy : jinv[2].col[nderiv,inode];\
bbi : {{-2ix,0,0},{0,-niy,0}.{-niy,-nix,0}};\
B bei : {{-n{inode],0,nix},{0,-n[inode] ,niy}};\
K If£[ Match([inode,1}, bb:bbi; bs:bsi,\
: bb:addcol [bb,bbi] ;bs:addecol[bs,bsgi] ]\

/¥ . . . . . Calculate BT+*D*B */
#1[26]:: ke : detj+*Trans[bb].db.bb;
#1(27]:: 1£( Match[intogrtﬁo.dar].\

ks : detj*qdd~bs[1]*++bs (1] ;ksy:detj*qdd+bs[2] ++ba[2] ,\
ks : detj*Trans(bs] .ds.bs ];

Lo

/* . . . . . Perform volume integration of element stiffness =/

#1(28]:: If[ Match[integrate,?],\

ke : Ar{ {12,12},\
i Ex{ Sum[ S[ ke($1.82]+ks[$1,82] ,r->rint[%i],s->sint [%i] J].\
5 : {%i.1.4» 11\

K #I1[29):: If[ Match[integrate,sr].\
ke : Ar[ {12,12}.\ .
Ex([ Sum( S[ xe($1,82],r->rint (%i],s->sint(%i] 1. (%i.1.47 ] «\ Mo
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4 « S[ ka($1,$2],r->0,8->0 ]]]\
1;

#1[30]:: If[ Match[integrate,dsr],\
ke : Ar[ {12,12},\
Ex[ Sun{ S[ke[$1,82] ,r->rint[%i).s->sint[%1]], {%i.1.4} ] +\
2 « Sum[ S(ks[8$1,.8$2],r->0,8->rint [%i]],.{%i.1.2} 1 + \
2 * Sum[ S{ksy($1,$2],r~>rint(%i],s->0],{%i.1.2} 111\
1;

#I[31):: If[ Match[integrate,ur],\
xe : Ar[ {12,12}.\
Ex{ 4 * S[ xe[$1,8$2] +ks[81,8$2].x->0, 8->0 ]]1]\

1;
/* . ... Update element stiffness with hourglasa mode
hgt : {1,0,0,-1,0,0,1,0,0,-1,0,0} /* T1 mode */
Ex[ke.hgi]
hg2 : {0,1,0,0,-1,0,0,1,0,0,-1,0} /* T2 mode */
Ex[ke.hg2]
hg3 : {0,0,1,0,0,-1,0,0,1,0,0,-1} /* w mode %/
Ex [ke.hg3]
ke : ke + glihgl++hgi+ g2+hg2++hg2+ g3+hg3+*hg3; =/
/< . . ... Perform element assembly based upon prescribed

global degree-of-freedom (dof) number */

#I1{32]:: Do [ iel, start:1, 4,\
Do [ i, start:1, 12,\
Do [ j, start:1, 12,\
ii:dof(iel,1]; jj:dof[iel,j];\
I [ Match(ii,eqoum([1]], X[1,3j]:x[1,.jj]+ke(i,j] 1:\
If [ Match(ii,equum({2]], k[2,3j]:x[2,jjl+ke(i.j] 1:\
It { Match(ii,eqoum{3]], Xx([8,jj]:k[3.jj1+keli.j] ]:\

111;
/*
o s 3 3k 2k ok ok e ok sk e ok ok ae i 3k oK ke ok ¢ ok e ke ok ak e ok 3 ke s ok ok ok e ok ok ok ok ok ok ok ok ok ok ke ok K ok ok ok koK ke ok oK ki R i R K X
* *®
* Expand nodal dof about ceanter node =
* *

e e e sk ok 3k ol S e e sk ke ok ek ok ok ke ok e ok ok e e ke e s K e sk kgl ok e ke Kk ok ik K ok ke ok ok A ok ok e ok ke ok ok o R R Kok ook ok KR
Construct 2-D Taylor Series expansion function */
#I(33]:: t24($2,8dx,$dy,$n,$x1,8y1]::\

Sum([ Sum[ ($x1-1)*($yl=j)*($dx"~1)*(8dy~j)*8$2/(i1*j1),\
{3.0,8n-1} ], {i,0,82} ];
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/* . . . . Construct 1-D Taylor Series expansion function =/
#1[34]:: t1d[$2,8dx,8n,8x1])::Sum( ($x1~1)*($dx"1)*$£/11, {i,0.$n} ];
/* . . . . Comstruct generalized expansion function =/

#1[35]:: ‘expn[$f,8dx,8dy,.$n,8x1,8y1] ::\
If[ Match($x1,0], t1d(#f.8dy,$n, 8y1],\
If[ Match[$yl,0], t1d(#f,8dx,$n,$x1],\
t2d($2,8dx,8dy,.#n,$x1,8y1] ] ];

/* . . . . Expand element dof‘'s about rl,r2,w at global node 6 =/

#I[36]:: xnode : { -1, O, 1, \
-1' o' l' \
-1, 0,1 };

#1(37]:: ynode : { -1, -1, -1, \
o, 0, 0,\
1. 1. 1 )

#1(38]:: Do [ inode, start:1, 9,\
' It [ Match[inode,1],\
; d : { expn[ri,dx,dy,8,.xnode(inode] ,ynode[inode]],\
expn(r2,dx,dy,8,xnode[inode] ,ynode [inode]],\
expa[ v,dx,dy,6,xnode{inode] ,ynode[inode]] },\
d : Catl 4,\
{ expn(ri,dx,dy,6,xnode[inode] ,ynode[inode]],\
expn[r2,dx,dy,8,xmode[inode] ,ynode[inode]],\
expn[ v,dx,dy,8,mode(inode] ,ynode(inode]] } 1 ] 1;

/* . . . . Obtain “discrete® Euler equations */
#I[39]:: area : dxdet]

2
#0(39]: 1

#I1[40]:: rieq : _Ex[ k[1] .d/uu ]

2 2
#0{40]: q4d r1 - dx qdd w - dx qil ri - dy ¢33 r1 - dx dy q12 r2
2 2 3 2
dx 1 q44ri dx 1 qdd v
- dx dy @33 rQ + ~-c-s-c-soesme - cccceccoooo
L. 6
4 2 4 4 b 4
dx 1 qiiri dx 1 qdd4rt dx 1 qdd w
- ecccccccwecee b CeEmcercceccns - sccceceewme=a
12 72 120
190
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6 4 6 6 2 2
dx 1 qitrl dx 1 qd4rl dy 1 q4d ri
- oeessscecsoosee P ceocsmsaccacocen * ETErccaccamoee-
360 2160 8
4 2 4 4 6 4
dy 1 q383rf1 dy 1 q44ri dy 1 q33 ri
- BEecesccsesoes ¢ cecccvcccsvesss @ cceccccemccecee
12 72 360
8 6 2 2 3 2
dy 1 qd4d4rt dxdy 1 q4dw dxdy 1 qi2 r2
> cvom= e scssee ® CcofCscvEsemTeceEen T CECCETECCEmEmeoweeo
2180 ] 6
8 2 4 4 6 4
dx dy 1 @33 r2 dxdy 1 qdd v dxdy 1 qi2 r2
] T2 120
B 4 2 2 2 2 2 2 :
dedy 1 q33r2 dx dy 1 qiirt dx dy 1 qg33 rt
120 -] -]
2 2 4 2 4 4 2 4 4
dx dy 1 q44rl dx dy 1 qilri dx dy 1 q33 ri
* soecee RRCPRRCALRRCCT R PN N TGN BB BN @ S W .- - .
36 72 72
2 4 8 3 2 3 2
dx dy 1 q4d4rl dx dyl qi2r2 dx dy 1 q33 r2
* wreccaaw ChcnTETRr P CCCCC e CEEECR SRR @e o S o .- - -
432 8 -]
8 2 4 3 8 4 3 3 4
dx dy 1 q4dw dx dy 1 qi2r2 dx dy 1 q33 r2
36 36 36
4 2 4 4 2 4 4 2 8
dx dy 1 qilr!i dx dy 1 q33r1 dx dy 1 q44 ri
R NN CREAEREEPPEEBCEERE @ - - - W - - -- * cTemceweccncccsccean
72 72 432
6 4 B 4

#1(41]:: r2eq : Ex[ k(2] .d/area ]

2 2
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#0[41]: qd4d4 r2 - dy qdd v - dx q38 r2 - dy qil r2 - dx dy qi2 r!

2 2 4 2 )
dx 1 qdd4r2 dx 1 q33r2 t:
-dx dy @83 rl + --=s==--c-e-- - s-cccccaccae- ,z,:'

4 4 6 4 6 6
dx 1 qd4r2 dr 1 ga8r2 dx 1 q4

G 55 SE 3 A SE 25 SN B O e @ m .
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dx dy 1 qiir2 dx dy 1 33 r2 dx dy 1 q44 r2

#1[42]:: weq : Ex[ k[8].d/area ]

3 2
- 2 2 dx 1 q44 ri
#0[42]: dx qdd r1 +dy qd4 r2 - dx qdd w - dy qd44 ¥ + ~--=----ce---
)
4 2 6 4 6 4
dx 1 q4d v dx 1 qddrl dx 1 qid w
- eeoecceceeeoaee ¢ meerccceraeen ® cecoomccaose=
12 120 360
3 2 4 2 8 4
dy 1 qd4r2 dy 1 qd4w dy 1 q44 r2
L L wece * ccvemesccccc=e ¢ wemcccccccceea
-] 12 120
6 4 2 2 4 4
dy 1 q44v dxdy 1 qd4ri dxdy 1 qd4 r!
- eeccccecamee ¢ eecvcacccccccccwes  eocccccccccecccae
360 8 72
2 2 2 2 2 2 3 4
dx dy 1 q44r2 dx dy 1 q44dw dx dy 1 qd4 r2
b mecemcccccacccnn - cmceccrcmcccceee ¢ mecmmcaccaccca~a-
-] 3 36
2 4 4 3 2 4 4 4
dx dy 1 qd4w dx dy 1 q44dri dx dy 1 qd44 r2
- eececvesccvsccces $ cevcmccswvecccoees ¢ meccemmcccccccee
36 a8 72
4 2 4
dx dy 1 qdd4 v
36
/*
20 e A A e o0 e 00 A e e e sie e i e e ok e e i ol ol dle sk Sl e i ek ek S e e 3 3k e e o ol K e ek Kk e kA ko ok i ok ok ok ok ok ok ok x ok ok ok
* *
* Solve for limit differential equations *
* *

ok R 3k e o ok sk ok K o ok ok e K ke K ok sk ok ke ok ke ook ol ok ok ook sk oK ok o 6k R ok ok sk ok iR K Aok K R ok Kok ook kK Kok Rk xR
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Extract continuum diffaerential operator matrix 74
#1{43]:: continuum : coefmatrix({Ex[ S[ rieq, 1->0 ]1].,\
Ex[ 8[ r2eq, 1->0 ]],\
Ex[ S[ weq, 1->0 ]]}.\
{r1.,r2,v});
/* . . . . Determine continuum operator */
#I1[44):: zerolhs : Ex[ Det[continuum] / q44 ];
#1(46]:: Ex[ 8[ %, q12 -> numod, q83 -> (1 - pu ) mod / 2, qi1 -> mod ]];
#I1[46]:: ratsubst[ 1-nu, 2 q33 / mod, %, mu ];
#1(47]:: continuumlhg : Ex{ 8[ %, mod -> q11 1]
4 8 4 é
#0(47]: dx qif q44 - dx qi1 q33 + dy qi1 q44 - dy qi1 q33
2 2 2 4 4 2
+2dx dy qi1 q44 - 3 dx dy qi1 q33 - 3 dx dy qiil g¢33
/* . . . . Determine loading operator */
#I[48]:: continuum(1,8] : O;
#I1[49]:: comtinuum[2,3] : O;
#I1(50]:: continuum(8,8] : §;
#I(61]:: zerorhs : Ex{ Det(continuum] / q44 ];
#1(62]:: Ex{ S( %, q12 -> numod, ¢33 -> (1 - nu ) mod / 2, qil -> mod ]];
#I[53]:: ratsubst( i-nu, 2 q33 / mod, %, nu ];
#1[64):: continuumrhs : Ex[ S[ %, mod -> q11 ]]
4 4 2 2
dr qi1 q33 dy q1i1 g38 2 d&x dy qii q33 2
#0(64]: Q44 + ~-~--cceee- A + mmeemmemeceeceooan - dx qit
Q44 q44d q44
2 2 2
- dx q33 - dy qii - dy q83
/* . . . . Extract truncation information (2nd order terms only):
Differential operator first ~/
#I1[66]:: discrete : coefmatrix{ {rieq,r2eq,weq}, {ri,r2,w} ];
194
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#I1[66]::

#I[67)::
#I1(68]::

#1[69]::

#1[60]::

#0([60] :

#1(61]::
#1[62]::
#1(63]::
#1(64]::

#I{65]::

—— . o N ar . . - g
RO A O DRSS S DB OB O OO DAL BCA 0 AN A ’tll»l, AN OO K P X ." > Ll A " X

‘ratsubst[1-nu, 2 933 / mod,\

S{ Ex[ Det[{discrete] / q44 ], 1~ ($n_=$u>=4)->0 ];
S{ Ex[ % - zerolhs ], 1->1 ];

Ex[ S[ %, q12 -> oumod, 938 -> ( 1 - nu ) mod / 2, qi1 -> mod ]];

ratsubst{ 1-nu, 2 q33 / mod, %, nu ], nu J;
Ex( S{ %, mod -> q11 ]]

4 2 4 2 2 6 2 2 6 2 4 4 2
dx qd4 dy q44 dx dy qii dx dy q33 dx dy qii

-------- ¢ mmeccwwss $ mcccccacmcns $ cecccccccvrene $ feeccecemceeee
12 12 12 12 6
4 4 2 6 ] 6 2 2
dx dy qS33 dx qii1 q44 dx q33 q44 dx dy qit
¢ crccccaceccas ¢ meccccecccce o ervccscomee ¢ cwcccncccans
8 3 12 12
e 2 2 8 8 8
dx dy 4q33 dx qi11 q33 dy qil q44 dy q33 q44
4 mremcceserere = cecdcccwe== ¢ mecccccwese = ccceccmcmee=
12 4 3 12
8 2 4 2 4
dy qi1 q88 17 dx dy qii q44 dx dy q33 q4d4
- cTeccccccees $ Crcccacccecccameene ® cwceEeEmcmneen-
4 12 6
2 6 4 2 4 2
8dx dy ql1 @33 17 dx dy qil q44 dx dy q33 qd44
- G ) ) D D R G ek G + ----------------------------------
3 12 8
4 4 6 2
17 dx dy q11 ¢33 & dx dy qil g33
6 3
/* . . . . Loading operstor */

discrete(1,3] : 0;
discrete(2,3] : O;
discretae(3,3] : 1;
S[ Ex( Det[discrete] / q44 ], 1~($n_=$n>=4)->0 ];

S[ Ex[ % - zerorhs ], 1->1 ];
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#1(66):: Ex[ S[ %, q12 -> numod, @33 -> (1 -~ nu ) mod / 2, qi1 -> mod ]];

#1[67):: ratsubst[i-nu, 2 q388 / mod,\
ratsubst 1-nu, 2 q33 / mod, %. nu ], ou J;

tI[es]::.E‘x[ S[ %, mod -> q11 ]]

2 4 2 2 4 2 4 2 2 4 2 2
- dx dy qiil dx dy q33 dx dy qit dx dy q33

#0(68]: ~~e-msmecccccee o cmceconee. “= ¢ sesmemmscomes o meemeecee-as
12q44 12q44 12q44 12q44
] 8 2 4
dx qi1 q83 dy qi1 ¢33 dx dy qii g38
¢ mmcccccce=- ¢ cmcccccnces ¢ mecmccccccccca=
6q44d 6q4d4 q44
4 2 2 4 4 2
dx dy q11 933 dx q44 dx qi1 dx @33 dy q44
4 veecccccccecccew ¢ =wmecne - cecemecee o ceececa-- + mommee=-
q44 3 4 4 3
4 4 2 2 2 2
dy qii dy @33 2dx dy qii 2dx dy q33
4 4 3 3
' #I1{69]:: Exit[]
N
5 oA o
hatd
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§A.3 Faceted Hermitian Beam Discretization of the Arch n_;'.':‘

SMP 1.6.0 (Jun 24 1987) .
Ky
/* b.'
- ks ok e ok ok ok ok ok ok ok e 3k ke ol ok ok ok ok 3k gk ke ok oKk ok 3k s ok s e ek sk ok ok ok sk ki e kA ok Rk ok koK koK Kok ok Kok K K ko X X X
* * at e
* Static analysis of 2-Node ci Beam discretization of arch *

‘“t".:g * * ‘2

3 e de e 06 ¢ i e 30 3k A6 e sde e e e s i K de e ke A b ok e i e e i ek ke Sl ok e 3k K i sk K o 2k K kK K I kK ok K A oK %ok koK kK Xk X i .
w3
Global element/nodal numbering counter clock-wise =/ : ‘
£
#1(6]:: dof : {{ 1, 2,3, 4,5, 6},\ ®

{4,6,6,7,8, 9}

#1[7):: equum : { 4, 6, 6 }; O

/* . . . . Ioput appropriate element length */ ;:.tf:

‘IR G
o

#I(8]:: le : RA[“Effective element length ? *,*/dev/tty"] S
- o
Effective element length ? '.:'.
- w0
#0(8]: 1le 3‘!
| I =
1 e ke 2 e sk e ke ke e e ok o ok o e ok o e ok ok e ok o ok 3K ok ok ok ok ok ok 3 ke ok K ok ok K ke s ke ok oK ok o R A ok K s ok K ok koK K R ok ko R ads
* * )
l * Assemble global stiffness matrix and load vector * ..'(
* “ * b, l..-
¢ e 2 e e e s e e ke e s e e e 3 e e e 3k e o e e e e Ak ok e sk e sk ok 3 ok ok sk Sk o ok o ok ok ok ok ok A Ak e Ak e ok ok A K ok ok K kK K K K K X X “‘
@
' Element stiffness matrix and loed vector im local .::i:",
beam coordinates - dof ordering = {ui,wi,ri,u2,w2,r2} =/ X
““
' #I[9):: ke : {\ » M
{ en/le, 0, 0, -ea/ls, 0. 0\ 2
{ 0, 12+ei/le~38, 6+ei/le"2, 0, -12+ei/le~3, 6*ei/le~2 },\ o
l { 0, 6xei/le~2, 4*ei/le, 0, -6+ei/le"2, 2%ei/le },\ (‘;\
{-ea/1le, 0, 0, ea/le, 0, 0\ Ky
{ 0, ~12«ei/le"3, -6+ei/le"2, 0, 12*ei/le~3, -6*ei/le~2 },\ .l\
! { 0, 6+ei/le"2, 2+ei/le, 0, -6+ei/le"2, 4*9i/le }}; oty
LY%,
/* . . . . . Rotate to global (shell) system =/ ®
[
I #1(10]:: t : {{ cab, smb, 0, O, 0, 0 },\ &
{ -snb, esb, 0, O, 0, 0}\ o
{ ol ol 1. °I o. o}n\ ‘q
{ 0, O, 0, cab, ~snb, 0 },\ Fad:
E { 0, O, 0, snb, csb, 0 },\ ®
{ 0, 0,0, O, 0, 4 }}; ey
l 197
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#1(111:: ke : Ex{ t.ke.Trans(t] ]

2 2

12ei sndb csb ea -csb ea sndb 12¢csb el snb Gei snb
#0([11]: {{-=~==en-- + ceveo=- Rl + memcmecccee- ymmm————

e eBEete- @ St LN aTCaemeeEeEY T CEoCCCESTEo e

2 2
-c8b ea sab 12cadb ei szb ea snb 12 csb ei 6¢csb ei
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Pl sl

le 3 le 3 ﬁ_: :
le le e
6csb ol )
------- },
2 A
le :‘*‘;
_ : "v
" 6ei snb 6cab ei 4ei Gei snb -6csb ei 2ei . |\
. { ------- pEmm———= § STy T l---}l .ﬂ "
2 2 le 2 2 le .‘
G
ﬁ le le le le o'::$
(0
2 2 'o't
. 12ei snb csb ea csb ea snd 12¢8b e¢i anb Gei sndb WY ¢
“r { ----------------- Paiatatindianai + wemsesccsce- p o= ’ ! N
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8ei snd
....... }I
2
le
2 2
-csb ea sndb 12csb ei snb ea snd 12 cab ei -8cab ei
{ ------------------------ pUEETSES T Sesssssse- pmmEm=== ’
1le 3 le 3 2
le 1le le
2 2
csb ea anb {2csb ei snb ea snb 12 csb ei
----------------------- ,mmemeee $ meececese-
le 3 le 3
le le
-8csb ei
-------- }.
2
le
6ei snb Bcsb ei 2ei Gei snb -8csb ei 4ei
{ ------- g P UTT,mmmmn— pruTEmm—— n---}}
2 2 1le 2 2 le
le le le le
/* . . . . Perform stiffness assembly for both elements
1 and 2 based upon prescribed globel degree-of-freedom
{(dof) number </

#I1(12]:: k : Ar[ (3,9}, 0]
#0[12] : {{0,0,0,0,0,0,0,0,0%},{0,0,0,0,0.0,0,0,0},{0,0,0,0,0,0,0,0,0}}

#I[13]:: Do [ iel, start:i, 2,\

Do [ i, start:1, 6,\

Do [ j. start:i, 6,\
ii:dot(iel,1i]; jj:dof([iel,j];\

If [ Match[ii,eqmum{1]]}, X[1,jj] :k[1,jjl+kel[i,j] 1:\

If [ Match(ii,eqmnum(2]], k[2,jj):k([2,jj]+keli.j] ]:\

Iz [ Match(ii,eqnum(3]], k[3,jj]:k[3,jj1+keli.j] 1:\

»

1115
/*
e s sk e e ok ke ok K K 2 e i ok K i i i sk e K ok i ke sk ok ke ke e ok ok ok sk ok ok K R A i ok i e ok ok ok i ok R K KR R K K R KR R R K
* x
* Determine “discrete® Euler equations =
- =

e e e oK ke e R R ok Kok ok Kk K ok kK K sk i ok ko ok ok ko e ok ok ok Ak ok s ok ok ok R i ok ke kK ok ko R R Rk R K K KKK K K X X R XK

Create transformed aymbolic displacement vector </
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#I014]:: sat[ L ]; 412 : -1; i~4 : 1; /* Use “i% for imaginary unit =/
#1(18):: d : { u*(csks-i*snks), w+(csks-i*snks), r>(csks-i*snks),\
u*(clkn+i*lnkl?: w*(clk|+i*|nk|;: r*(Clkl*i*lnkl§.;;

/+« . . . . Obtain “discrete* Euler equations : =/

#1016]:: ueq : Ex[ k[1].4 ]

2 2
12e¢i r snb 24ei smb u 2 csb ea u 12csks @i r sndb
#0[16]: ---cc----- + ececcceece- * semreccea-- 4 meeeecmceee—o-w
2 3 le 2
le le le
2 2
24csks ei smb u 2 csb csks ea u
¢ Cemcnccrcccncrcmcwer o wececccoccecmsesen
3 le
le

2csb en i snb snks v 24csb ei i snb snks w

le 3
le
#I(17]:: weq : Ex[ k[2].4 ]
2 2 2 2
29a snb w 24 csb ei w 2csks ea snb w 24 cgb csks ei w
#0(17]): —-=-eemea- + mmmmeccecao- + emmscemcceno- - meeececceccaccaea
le 3 le 3
le le
12csb ei i r snka 2csb ea i snb snks u
P Tmeecccccccccnne—— 4 memcecscccacccccccccas
2 le
le
24csh ei i snb snks u
¢ emeccccceccccccctacae
3
le

#I[18):: req : Ex[ k[3].4 ]

Bei r 4ceks oi r 12¢i sndb u 12¢sks @i anb u 12¢8b @i i snks w
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0 6 ke o ok 3 ok o 3k ok 3 ke ok o A ke ol ok ok ok ok ok ok ok ok ok ok A ok sk ok ok ok ok R i 3k oK o ok ook ok kK ok ok koK K K K R R OK R )R Xk X
* =

[
* Solve for transformed limit differential equations * ':
* * )
o ok ke 3k o 3k ok o o6 2R A ok 3 o e sk ok ok ok ok ok ok 2k ke sk ok o ok e A ok ok ke ok ok ak ok e ok ok oKk ok ok 2 ok K ok e ok ok ¢ ok ok K k ok oK kK K ok kK K kK b

Create coefficient matrix */ M,

#I[19]):: em : coefmatrix[ {ueq, weq, req}, {u,w,r} ] o
£t

2 2 2 2 ol

24ei sndb 2 csb ea 24csks ei sndb 2 csb csks ea ."
#0[19):  {{e--smocom & comomeee # mmmmmmeeemsees o escecscceaooon 4!

N
-2csb ea 1 snb snks  24csb ei i snb snks iy

B8
H
®
(7]

-~
T
rr

12ei snb 12csks ei snd '.l‘.i
-------- + ------‘------}l ".’
2 Y I:g
le le o

»

2csb ea i snb snks 24csb ei i snb snks N
e R LT DL # memmcmacccccuccaaas . '::

le 3 WK

=
22

Y -

Py
N

-

-

-

o

[

[
x

=
+
+
(]
[}
]
[}
1
1
§
[}
]
]
]
1]
]
2

12e¢i snb 12csks ei snb -12cgb ei i snks Sei 4csks ei "'

#1020) :: Ex[ {{ cm[3.3]*em(1,1]-ca[1,3]*ea(3,1].\ o)
en(3.3]*em(1,2] ~cn[1.3]*ca[3.2] }.\ iy

{ cm(3,3]*em(2,1]-cm[2.3] *em(3.1],\ @
cn(3,3]*em([2,2] -en[2,3] *em(3,2] }} ] W'
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#0[20]:

R AA TR IR RN ARRURUN N FURY YOUNLWAL AN AR AR T O M M TN e

2 2 2 2 2 2
48 oi ssndb 16 csb ea o2 48 csks ei sandb
{({<=cmvmecea- ¢ wsecaccecccves = cecccscsssacccces
4 2 4
le le le
2 2 2
8 csb caks ea ei 8 csb csks ea ei
2 2
le le
2 2
-48csb ei 1 snb snks 48csb csks ei i snb snks
..................... b enmcvscveccccccccctcc e,
4 4
le le

2
le
8csb csks ea @i i snb snks
i },
2
le
2 2
48csb ei i snb snks 48cab csks ei i snb snks
rmmmem e ¢ dtccerccecccceccce—ae-
4 4
le le
18csb ea ei i snb snks
$ mamoa cCecewescceomcenn e
2
le
8cgb csks ea ei i snb snks
+ mmessccsecccscccvcccccccaa .
2
le
2 2 2 2 2
192 csb eai 16ea @i snd 98 csb csks ei
............ b mEmemcmemree * cECeEmeRe"e -
4 2 4
le le le
2 2 2

.-5~. \
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4
le
a 2 2
144 csb ei snks
4
le
2 2 2
24csks ea ei snb 8 csks ea ei snb
¢ cmmcemcmcccccecen 4 ceemcccccccceccccna }}
2 2
le le
#I021):: em : Ex[ S{ % / (12%ei), csks -> 1-g~2+«kbar~2/2,\
soks -> sxkbar*Sqrt(alphai],\
sob -> 1/(2+red) ]]
2 2 2 4 2 4 2 2 2
el kbar 1 s el kbar 1 s cab ea kbar s
#0[21] {{===mem=- meecs = ccccecae ————e- + cemcccccanceeca-
4 2 4 2 2
le rad 4 le rad le
2 4 4
csb ea kbar s
2
8 le
1/2
- alphai cab ea i kbar 1 s
2
le rad
1/2 3 3
alphal c¢sb ez i kbar 1 3
L L L T TR P e
2
6 le rad
/2 3 3
alphal csb ei i kbar 1 s q
X )
. Swmese= bl i }n '
4 Nt
le rad -‘,("*
L] .‘
1/2 :.'.Q‘
alphai cgb ea i kbar 1 s L
{smmmmmmmmemeeec e enaneanen o
l‘::l
Myt
o
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1/2 3 3 2t

le rad 12 le rad 2 le rad il

2 2 2 .
12 cab ei xbar s i

12alphal cab ei kbar s ‘:;::::

- mmmmmmmmmeeemooeooeeeoe- } nhn
4 5:!‘ :
'I.'::‘-

i

le
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Faceted Reissner-Mindlin Plate Discretization of the
Cylindrical Shell

SMP 1.6.0 (Jun 24 1987)
Sat Feb 13 16:16:20 19838

#I[1)::

#1[2]::

#1[3]

#1[4]::

#1([6]::

#1(6]:

J* . . . . SMP macros */
col[$matrix,$colnum)] : :Ar[Din[$matrix] [1],$matrix[$1,8colnun]];

addcol ($matrix.$addcols] : :Ar[Dim($matrix] (1] ,Cat [$matrix[$1],\
$addcols[$1]1];

:: coefmatrix[$eqns,$vars]::(%rows:Dim[$eqns] [1]:%cols:Din[$vars] [1];\

Ar [{%rova,%cols)} ,Coef [$vars [$2] ,.Ex[$eqns[$1]]]]);

ratsubst [$0ld, $nav, $expr,$base] : : (Yans :Pqr[$expr, $old,$base] ;\
Ex[ $new %ans[1] + %ans[2] ]);

submatrixadd [$matrix, $submatrix,$iloc,$jloc] ::\

(%nrowsub:Dim[$submatzix] [1];\

¥ncolsub:Dim([$submatrix] [2];\

%mat : $matrix;\

Do[ %i. 0, Xarowsub-i,\

Dol %j. 0. %ncolsub-1,\
Ymat [$iloc+¥%i,$jloc+%j] :Amat [$iloc+%i, $jloc+%i] +\
$submatrix([%i+l, %i+1]:\

Degree-of -freedom ordering: (u,v,w,rx,ry,rz)

1] ;%nat) ;
/*
8¢ e e 26 3¢ ¢ k¢ e e 3 e e 3¢ e sic 2 e e s o e ode e e e e e e 248 e 2 Ak e sk e e A 36 2k s e o6 e e e e e s i e e e e e e e e ok e ek K ek kK x
* x
* Static analysis of cO cylindrical shell *
* x
* 8 *x
* - *
* | x
* e 3 *
* | I | *
* l bocccn—- !--) r x
* | | =
* lecccvecccccnce- 2 ‘
* =
* ®
* x
* =
-

3 ¢ i e ok 3¢ K oK ok K sk e ok ik ok 3K ke ok ok ok ok sk ok ok ok ok ok e ok ok K ok ok ke e e ke ok o ok K o ok ok ok K Ak ok R ok ko xR R koK R

Global element/nodal numbering =/

:dof : {{ 1, 2, 8 4, 6, 6, 7, 8, 9,10, 11, 12, \

26, 26, 27, 28, 29, 30, 19, 20, 21, 22, 23, 24 },\
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{ 7. 8, 9,10, 11, 12, 13, 14, 15, 16, 17, 18, \
31, 32, 38, 34, 35, 38, 26, 26, 27, 28, 29, 30 },\
{19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 20, 30, \
43, 44, 45, 46, 47, 48, 37, 38, 39, 40, 41, 42 }.\
{ 26, 26, 27, 28, 29, 30, 31, 32, 83, 34, 35, 36, \
49, 80, 61, 52, 63, b4, 43, 44, 45, 46, 47, 48 }};

#I(7]:: eqonum : { 25, 26, 27, 28, 29, 30 };

#1(8]::
#1{9]::
#1[10]::
#I(11]::

#I1[12]::

#1[18]::

#1(14]::

#1{18])::

#I1(16]::

#1(17]::

#1[18]::

#I(19]::

#I(20]::

#1(21]::

/* . . . . Define shape functions in local r,s coordinates

al : (1-v)*(1-8)/4;

n2 : (1+r)*(1-8)/4;

B3 : (1+r)*(1+8)/4; .

zd : (1-r)*(1+8)/4;

a : { =i, n2, n3, nd };

/* . . . . Determine shape function derivatives
nderiv : { D[n,r], D[n,s] };

/* . . . . Define parent element nodal coordinates

xy : {{ o0, 0}\
{1, 01},\
{1 112\
{0 11X
/* . . . . Define 2x2 Gauss integration points

sr3 : Sqrt(38];

rint : { -1/sr8, 1/sr8, 1/sr3, -1/s3r3 };

sint : { -1/sr8, ;1/|r3. 1/8r3, 1/sr38 };

/* . . . . Define “pre-integrated" material matrices

dn : { { m11, mi2 },\
{ m12, mi1 } };

dms : m33;
db : { { qi1, q12,

0
{qi2, qit, 0
{ o0, o0, q33

206
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/* . . . . Determine integration rules to be used:

t full spatial integration

sr - reduced integration on shear

dsr - directional shear integration

ur - uniformly reduced integration J

#I[22]:: membranerule : Rd["Integration option [f/sr/ur] ? “,*/dev/tty"]
Integration option [f/sr/ur] ?

#0[22]: sr

#1[23]:: vendingrule : Rd[“Integretion option [f/sr/dsr/ur] ? “,"/dev/tty"]

Integration option [f/sr/dsr/ur] ?

#0(28]: ur
/*
e e 2 ak e e e e s4e e s e o A e e e ole e e e e e A Ae e Ak e e s e e ke e o she 3k e e e Akl e e ok e e e sk e e A6 ke e Sde A6 ek e ok ok ke ok kA
* *
* Calculate element stiffness matrices and *
* assemble into global stiffness *
* *

e 2 2 o o e e o e A ok 3k e 2 e A 3k ok A 2k 2k 2k A e Ae o e 2k 2k s e A 2k A o A A 2 e e K A e A s e 2 e e e e ke e He e e Ao e e e M e K F¢ e X K

Calculate inverse Jacobian and Jacobian determinent =/
#1[24):: jac : Ex[nderiv.xy];

#1(26):: detj : Ex[ jac[1,1]l*jnc([2,2]-jac(1,2]%jac(2.1] ]:

#1(26]:: jinv : (1/detj)*{{jac(2,2],-jac(1,2]1},{~juc(2,1], ,jac1,1]}};

/* . . . . . Loop over esch nodal group to calculate differant
parts of element B matrix with 6 dof/node xf

#1(27]:: Do[ inode, start:1, 4,\
nix : jinv[1].col([nderiv,inoda];\
niy : jinv([2] .col[nderiv,inode];\

bmi {{nix, 0,0,0,0, 03} \
{ o0, niy, 0, 0,0, 0} }:\
bmsi : { niy, Bix, 0, 0, 0, O };\
bbi {{o0, 0, 0, -nix, 0,01} \
{0,0,0, 0, -niy, 0}, \
{0, 0, 0, -niy, -nix, 0 } };\
bsi : { {0, 0, nix, -n[inode], 0, 03} \
{ 0, 0, niy, 0, ~n(inodae], O } }:\
I2[ Match{inode,1], bm:bmi; bma:bmsi; bb:bbi; bs:bsi,\
ba :addcol[bm,bmi] ; \
bms :Cat [bms ,bmsi] ; \
207
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#I[28]::
#1[20]::
#1(30]::

#I[31]::

#I1(32]:

#I1(338]::

#I1[34)::

#1(36]::

#1(36]::

#I1(37]::

PRy g
RN
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bb :addecol(bb,bbi]; \
bs :addcol[bs,bsi] ] \

[ . . . .. Calculate BT+*D+B */

‘Xe : detj*Trans[bb] .db.bb;

m : detj*Trans(bm].dm.bm;

kms : detj*dms*bms**bms;

I2 [ Match[bendingrule,dsr],\
ks : detj*qd4d*ba[1]*+bs[1] ;kay:detj*qdd+ba [2]**bs[2],\
ks : detj*Trans(bs].ds.bs ];

[ . . . .. Perform volume integration of membrane stiffness */

: I [ Match(membranerule,f],\

m : Ar[ {24,24}.\
Ex[ Sum{ S[ loa[$1,$2] +kns ($1,82],\
r->riant (1] .s->sint(%1i] ], (%i.1.4} J1]\
1;

If{ Match[membranerule,sr],\
xm : Ar[ {24,24}.\
Ex[ Sum{ 8( xm{8$1,82] ,r->rint [%i].s->sint[%i] ].\
{%1,1,4} 1 + 4 * S{ xna[$1,$2],r->0,8->0 ]]1\

I2[ Match[membranerule,ur),\
m : Ar[ {24,24},\
] Ex[ 4 *» S[ km[$1,82] +kns [$1,8$2] ,r->0,8->0 ]]]\

/= . . ... Perform volunme integration of plate stiffness */

12 [ Match(bendingrule,f],\
ke : Ar[ {24,24},\
Ex( Sum[ S[ ke($1,$2]+ka[8$1,82] .r->rint(%i],s->sint(%i] 1.\
, {%i,1.4} 110\

Iz { Match(bendingrule,sr],\
ke : Ar{ {24,24}.\
Ex[ Sum({ S[ ke($1.82].r->rint{%i].s->sint[%i] 1.\
{%1,1,4} ] + 4 » S[ ks({$1,82] ,r->0,3->0 ]1]\
1;

If [ Match(bendingrule,dsr],\
ke : Ar[ {24.24}.\
Ex[ Sum( S(ke{$1,$2].r->rint(%i].s->sint (%117, {%i.1,4} ]+\
2 = Sum{ S(ks($1,$2),r->0,8->rint {%i]],{%i.1,2} 1+\
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n

< \

]

4

2 :
-

‘1

' !'i::
2 » Sun[ S(ksy($1,$2] .r->rint(Xi],s->0]. (ki 1,2} 111\ )

' 1 :
#I1(38]:: Iz[ Match[bendingrule,ur],\ G

ke : Ar[ {24,24}\ W,

I Ex[ 4 » S[ ke[$1,$2] +ks[$1,$2] ,7->0, 3->0 ]]]\ hy
]; ‘,.,

,a.l

/* . . . . . Complete element stiffnesa calculation by combining -

! membrane and bending contributions */ !
O

#1[39]:: ke : ke + knm; N

I oot
k4

#I[40]:: Set[{ bm,bms,bb,bs km, ks, ksy, kns }]; W

i /* . . . . . Rotate to global (shell) system ;::
A

Nodal transformation for nodes 1 & 2 */ :

i

! #I[41):: t : Ar({24,24}.,0]; , n
/s N

csb : 1 ¥

snb : O 0:;

*/ et

QI

a /* . . . . . . Translational dof =/

c}:‘t

#I[42):: lambda : {{ 1, 0, 0 .\ el

{0, csb, snb},\ :::5

{ 0, -szb, csd }}; :':

ey

#I[43]:: t : submatrixadd[ t, lambda, i, I ]; .

-

! #I[44]):: t . subnmatrixadd( ¢, lambda, 7, 7 ]; .::‘:
ey

U

g /*+ . ..... Rotational dof </ w
L'

#I(45):: lambda : {{ csb, O, -smb },\ Hn

{ o0, 1, 0\ b

g { smb, 0, cab }}; -2
3
#1(46):: t : submatrixadd( t, lambda, 4, 4 ]; ,-:
&
]

ﬁ #1[47]1:: t : submatrixadd[ t, lambda, 10, 10 ]; -
»
/* . . . . . . Nodal transformation for nodes 3 & 4 'i“\

s Translational dof =/ -\.‘
A

N
H #1[48) :: lambda : {{ 1, 0, 0 }.\ ~0
- { 0, csab, -snb },\ »
{0, snb, cab}}; 0
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#1(49]:: t : submatrixadd[ t, lambda, 13, 13 ]; :
S,
#1(50]:: t : submatrixadd( t, lambda, 19, 19 ]; '2':
"t
/* . . . . . . Rotational dof / ::::::
. .|.;
#I(61]:: lambda : {{ cab, O, smb },\ i
{ ol 1' o }l\ “F
{ -sab, O, cab }}; S
» » ’ J;’\
Y.
#I[62]:: t : submatrixadd[ t, lambda, 16, 16 ]; 3y
g
#I[63]):: t : submatrixadd[ ¢, lambda, 22, 22 ]; '
#I(B4):: ker : Ex[ t.ke.Trans(t] 1; ;::::t
l"iz
/* . . . . . Perform element assembly based upon prescribed ‘!:i
global degree-of-freedom (dotf) number */ i
8.8%.
#I(6B):: k : Ar({6,64},0]; o
0
#I(66]:: Do [ iel, start:i, 4,\ }::j?
Do [ i, start:1, 24,\ .::‘
Do [ j. start:1, 24,\ '.c::._
ii:dof[iel,i]; jj:dof[iel,j];\ noN
I2 [ Match[ii,eqmum[1]], Xx[1,jj]:k[t,ijl+xer[i,j] 1:\ ®
12 ([ Match{ii,eqoum{2]], k(2,j3]:x[2,jjl+ker[i,j] 1;\ '.‘.si
I2 [ Match[ii,eqmum[3]], k[3,jj]:k[3,jj)+ker[i,j] 1:\ :”o:
If [ Match{ii,eqnum[d4]], X[4,jj]:k[4,jjl+kexr(i,j] 1:\ :".s:t
I2 [ Match[ii,equum(6]], k[5,jj] :k(6,jj)+ker[1,j] 1:\ AN
12 [ Match[ii,equum(6]], k[6,]j]:k(6,jj1+kerli,]] 1;\ o
111
)
/% fo
3k e e e e ke e ok e sk ok o s sk ke ok oK ok sk i ki kK sk sk ok e ak ke ok ok ok sk ok sk o A K 3 ok ok ok o sk ok e ok ok ok K A dk ok ok ok ok sk ok K K ok R K X ':::':
* x 'g.l'a
* Expand nodal dof about center node in terms of = :"::
* shell coordinates/displacements * °
* x
3¢ ok ok o sl i o4 3k oK ke e e ok ke ok e ke e Ak ok s ok ok ok ok ak ak ok sk ok K ok 3K gk ok ok ok K i S Sk e ok ke e o ol ok K K ok ke Sk Kk K oK R K KX X X (*
GO
Construct generalized expansion function (assuming -.,.
rectangular element geometry) =/ ;0-:
#1(67):: Set[ 1 ]; i~2: -1; i-4 : }; /* Use “i% for imeginary unit ~/ .,A
AN
#1(58) :: expn(8?.8x.88]::\ o
I2 [ Match($s,0] &Match($x,0], $t,\ Q“‘
12( Match($s,0), 82 ( cskx + Nc[$x] i snkx ),\ o
I£( Match($x,0], 8¢ ( csks + Nc($a] i snks ),\ .
$2 ( cakx + Ne[$x] i snkx )( coks + Ne($s] i snks ) 11]; S
oy
{0
o,
0‘..;
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/* . . . . Expand dof’s about global node b =/ ¥
#1(59]:: Set[{ r, s }1: ,E
%
#1[60]:: xnode : { -1, 0, 1,\ '.:*f
-1, 0, 1.\ e
-1, 0,1} :}lﬁ‘t
#1[(61):: ynode : { -3, -3, -3,\ o
oc or O:\ .'
s, 8, s} .

#1(62]):: Do [ inode, start:i, 9,\
If [ Match[inode,1],\ A
d : { expn[ u,xnode[inode] ,ynode(inode]],\
expa{ v,xnode(inode],ynode[inode]l],\
expa( w,mode([inode],ynode{inode]],\ W
expa[rx,xnode[inode] ,ynode[inode]],\
expn[ry,xmode[inode] ,ynode[inode]],\ .’a,l'q
expn(rz,xnodeinode] ,ynode [inode]l] },\ o0
d : Cat{ 4,\

{ expa[ u,xnode(inode] ,ynode(inocde]],\ X
expn{ v,xnode[inode] ,ynode[inode]],\ st
expun[ v,xnode([inode] ,ynode(inode]],\ by ::.{'
expn [rx,xnode [(inode] ,yrode[inode]],\ ;’,:gi
oxpn [ry,xnode [inode] ,ynode[inode]],\ &’uf

expu [rz,xnode[inode] ,ynode[inode]] } 1 ] 1;

)
/* ""‘0
e e 3k 2k o ok sk e ok s e sk e ok Ak 3k ke ok ok ok ok e ok A ol i o ol sk ok e ke ok ok ok 3k K ok koK ko ke K ok ke Sk ok ke kK K K A ok e % ok 3 ok koK X K oK K '\i
) . N
* Obtain “discrete* Euler equations and differential * ::::
* operator matrix *
* * r .ﬂ;
K ok ok 3 o e e ok ke ke e e o ok s ke ke Ak ok ok s ok ok e ole sk k6 ok sk sk sk ok 3k i A ok oK e S o e Ak A e ke 3k ok ok ok K Kk sk K oK ok ok A ok K K Kk F 3
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#I(66]:: cskx : 1 - 172 kbarx"2/2; "'_t' "
%
#1(66]:: snks : s kbars Sqrt[ asd ]; :f{
K

#1[67]:: snkx : 1 Xxbarx Sqrt{ ax4 ]; ®

#I1{68]:: snb : 1 / (2*r);

#I(69]:: ueq : Ex[ k(1].d/ares ];
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#I[71])::

#I1{72]::
#I([73)::

#1[74] ::

#1(76] ::

#0(78] :

......

veq Ex[ k[3].4/area ];
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ABSTRACT

A formulation for the equations of motion for shells is presented, which is intended to
provide a theoretical foundation for shell elements based on the assumed natural-coordinate
strain (ANS-) interpolations. The present formulation can be hierarchically specialized to
shells that admit normal loads and changes in the normal thickness, to shells exhibiting
transverse shear deformations and to thin shells. In order to facilitate coordinate-invariant
interpolations of variables, the formulation adopts an inertially fixed coordinate system
for translational displacements and a shell coordinate system for changes in the normal
vecter. The central aspect of the present formulation is a general set of incremental strain-
displacement relations that are valid for large strain and finite rotations. Hence, the present
strain-displacement relations effectively replace the prevalent usage of the linear plate
strain-displacement relations for constructing C°-shell elements. An attractive feature of
the present thin shell equations is that the in-plane bending strain (x¢,) is akin to Sanders’
correction term, hence alleviating slow convergence difficulty in doubly curved shell cases.
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1. INTRODUCTION

A major motivation in the pioneering work on the finite element method (Turner, Clough,
Martin and Topp, 1956) was to provide a shell analysis capability. During the ensuing three
decades, several noteworthy developments have taken place in order to provide reliable and
general shell analysis procedures in many of the existing general finite element analysis
programs. Broadly speaking, these developments may be grouped into four schools of shell
analysis approaches. In the early days of finite element applications to shell analysis, a
patch of a plane stress and a plate bending element was formed and used to discretize
the shell surface. While such elements are still in use today (Taig, 1961; Argyris, 1965;
Klein, 1967; Albasiny and Martin, 1967; Connor and Brebbia, 1967; Greene, Strome and
Weikel, 1971; Cowper, Lindberg and Olson, 1970), it is generally agreed that they can
suffer from non-convergence, especially when membrane-bending coupling dominates the
shell behavior.

The second approach has been to discretize the equations of motion based on classical
shell theories (Kraus, 1967). This approach was extensively studied prior to the age of
isoparametric shape functions (Zienkiewicz and Cheung, 1964, 1965; Haisler and Stricklin,
1967; Strickland and Loden, 1968; Cantin and Clough, 1968; Clough and Johnson, 1968;
Fonder and Clough, 1973; Morris, 1976; Ashwell, 1976). A common difficulty with this
approach is that the resulting discrete shell equations suffer from artificial strain states
when the element undergoes arbitrarily large rigid motions (Cantin, 1970; Darve, 1972).

With the introduction of isoparametric shape functions (Irons, 1966; Ergatoudis, Irons and
Zienkiewicz, 1968), many element developers adopted the isoparametric mapping in the
transformation of the natural-coordinate basis into the inertially fixed orthogonal basis.
An important consequence of this adoption in the context of shell elements was to implic-
itly abandon the metric of the shell curvature-i.e., a scalar-invariant quadratic form—in the
strain-displacement representations. Instead, the second-order covariant tensor transfor-
mations that are needed in the formulation of shell elements were accomplished through
the repeated use of the isoparametric Jacobian matrix which relates the parameterized
natural-coordinate derivatives to the inertially fixed spatial derivatives. To a great ex-
tent, from a theoretical point of view, deficiencies in some of the existing shell elements
can be traced to the inadequacy of the isoparametric Jacobian matrix to approximate the

“scalar-invariant metric of the space for representing the differential element of arc length

for shell surfaces. This inadequacy, coupled with a set of inconsistent strain interpolations
(Freeijs de Veubeke, 1965), has been shown to cause element locking (Ahmad, Irons and
Zienkiewicz, 1970). Reduced integration (Zienkiewicz, Taylor and Too, 1971; Pawsey and
Clough, 1971) to alleviate such locking phenomena has in turn led to spurious mechanisms
(Kosloff and Frazer, 1978; Flanagan and Belytschko, 1981). Details in the preceding three
approaches can be found in the text of Zienkiewicz (1971), Ashwell and Gallagher (1976),
Irons (1980) and Hughes (1986).

The fourth approach has been to combine two salient features into element ¢onstruction:
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isoparametric interpolations of strain flelds and second-order tensor transformations to
transform the natural-coordinate strains into the strains in an inertially fixed orthogonal
coordinate system, and vice versa. Shell elements (Dvorkin and Bathe, 1984; Park and
Stanley, 1986; Pinsky and Jang, 1986) based on this approach have shown potential for
more reliable shell analysis. A common variational framework employed in the impiemen-
tation of these shell elements may be viewed as the one that bypasses classical shell theories
and resorts to the basic equations of state and motion of continuum mechanics (Hughes and
Liu, 1981). However, the strain-displacement relations used in the element formulations
have been limited to those of plate theories due to Reissner (1945) and Mindlin (1951)
that are generally considered to be valid for linear small strains only. Consequently, in
order to properly capture shell behavior such as inextensional bending, membrane-bending
coupling for thin shells and in-plane shear deformations within the context of continuum
mechanics-based variational equations, the resulting elements have to be considerably em-
bellished. In other words, many of the shell assumptions—i.e., Kirchhoff-Love’s postulates
(Love, 1927)~must be invoked in an element-level strain interpolation. It should be noted
that, except in Park and Stanley (1986), element developers adopting this approach have
not incorporated the two fundamental differential lengths of arc along the element edges
in the strain-displacement relations.

In essence, the present paper is a first revised series of our effort on shell elements based
on the assumed natural-coordinate strain (or ANS-) formulation. The basic philosophy
we advocate here can be summarized as follows. First, we incorporate as much shell be-
havior as possible into the variational equations of motion while, in principle, we maintain
some of the advantageous features in the continuum-based formulation-particularly the
constitutive relations and large rotation algorithms. For this reason, we employ stresses
as the conjugate variables to strain increments in our formulation rather than the resul-
tant forces and moments that are used in most classical theories. In this way we hope
to minimize the element embellishments referred to in the preceding paragraph. Second,
we adhere to a set of physical covariant strains as our basis of strain interpolations along
the natural-coordinate lines. It will be shown that these two aspects, together with an
objective set of strain increments and nonlinear constitutive relations, effectively provide a
general shell analysis capability that replaces the presently prevalent usage of the strains
that were originally developed for linear plate bending theories. Third, we propose to
employ the isoparametric shape functions both for shell surface geometries and displace-
ments. However, we will abandon the isoparametric Jacobian matrix in the derivation of
strains. Instead, we will employ appropriate second-order tensor transformations to ob-
tain the orthogonal shell-surface strains from the natural-coordinate strains. It has been
found that the resulting element strain states become invariant with respect to an arbi-
trary choice of the shell-coordinate system (Park and Stanley, 1986). Fourth, the present
formulation starts with D’Alembert’s principle from which the variational equations of mo-
tion are derived, which are valid for shell dynamics. This is in contrast with most existing
shell formulations wherein the inertia force terms are retrofitted into the quasi-static shell
equations, thus often leading to an inconsistent set of dynamical equations.
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Hence, Part 1 of the present paper can be viewed as a theoretical foundation on the shell
elements based on assumed natural-coordinate strain (ANS-) elements that began with
the linear interpolation of membrane strains in Park (1985), the 9~ANS shell element by
Park and Stauley (1985), DPark, Stanley and Cabiness (1986), Stanley (1985), and Stanley,
Park and Hughes (1986). We now summarize the present Part.

Section 2 describes the kinematics of the shell element for which a set of triad coordinate
systems are chosen: an inertially fixed coordinate system for translational motions, an
orthogonal shell-surface coordinate system for rotational motions and a natural-coordinate
system for strains. The present choice of such triad coordinate systems has been shown
to play a fundamental role in mitigating several element deficiencies heretofore present
in many of the existing shell elements. Specifically, the translational displacements and
the rotations become uncoupled in the resulting inertia force expression. Shell surface
geometries are characterized in terms of the parameterized natural coordinates for general
shells in Section 3. The natural covariant unit basis vectors and the two fundamental
differential magnitudes along the natural coordinates are derived. These two are then
used to obtain natural-coordinate derivatives that are to be employed in the derivation of
the present variational strain-displacement relations.

The variational equations of motion for general shells are derived in Section 4, starting
with D’Alembert’s principle. The acceleration vector that was obtained in Section 2 in
terms of the inertial displacements and the corotational pseudo-vectors and a contravariant
stress dyadic tensor, are introduced to express Cauchy’s equations of motion. The product
of the variational position vector and Cauchy’s equations of motion yields the )’Alembert
equation. A variational manipulation of the D’Alembert equation leads us to identify the
present form of virtual strain-displacement relations. The resulting variational equations of
motion, if discretized properly, should yield a consistent set of their discrete counterparts
for general shells.

In order to derive the desired incremental strain-displacement relations from the virtual
strain-displacement relations, we offer the essential difference between the infinitesimal vir-
tual variation (6-process) and the finite incremental changes (A-process). This is discussed
in Section 5. Recognition of this difference enables us to obtain the incremental strain-
displacement relations from the virtual strain-displacement relations. It is shown that the
resulting incremental strain-displacement relations remain objective for arbitrarily large
rigid motions and accurate for up to moderate strain increments. Computations of the
shell-coordinate strain increments are then covered in Section 6. This is accomplished by
the pointwise second-order tensor transformation. These strain increments are then used
to compute the corresponding stress increments. With a suitable stress update algorithm,
one can compute internal force.

Thin shell approximations of the present formulation are discussed in Section 7 and the
present Part concludes with a discussion on classical shell theories. It is shown that, when
the transverse shear strains are negligible, the present equations appear to yield an incre-
mental form of the nonlinear shell equations given by Sanders (1963). A major difference
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for this special case of the present shell equations is that they are presented in terms of
the inertial displacements and the finite pseudo-rotations instead of the covariant shell-
surface displacements and the infinitesimal rotations. Thus, the present shell equations
may implicitly have incorporated the finite rotation effects discussed in Reissner(1963,
1969, 1972), and Simmonds and Danielson (1972).

2. Kinematics of Shell

We consider here a shell element undergoing large motions and deformations as shown in
Fig. 1. The position vector of the particle point P from the initial time ¢ to a later time

t can be expressed as
r=(X+u)e,+ (Y +v)ea + (2 + w)ey + &3bs (2-1)

where (u v w) are displacements measured in the inertial system e = (s; ez e3), the unit
triads b = (by by bg) are attached on the deformed cross-section of the shell, and ¢; is
the distance of the material point P on the deformed cross section from the shell neutral
surface. Therefore, we have the following unique transformation from the inertially fixed

frame, e, to the body-fixed frame, b:
b =Re (2-2)

where R is a (3 x 3) transformation matrix.

The angular velocity of a particle point, P, on the shell cross section is thus obtained from
(2.2) as

b=3a"b, &=-RR? (2-3)
where
0 —w3 wa
W= Wa 0 - (2 4)
—W23 Wy 0

The velocity of the particle point P can be obtained from (2.1)

()
Ot
—

f=0e+Tb+Tb=ule+Tb+TaThb (2-

in which the relations of (2.2) and (2.3) have been used and
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. Time differentiation of r then yields the acceleration of the particle point P: :: .
L 4

o e : » AL

= 1iTe+ by +26Tbs + £7&Tb + FGTSTD 2-7) f-w:\-

o

. Finally, the variation of the position vector r can be obtained from (2.5) \'f. ':.

w3

E §r = 6uTe + 6£5bs + 5aTib (2-8) puRG!
oy

_*i: where da is a pseudo-vector that is conjugate with w such that y , é
A0 O

23 Wil
§aT = 6RRT, w=|w ws ws]T, ba=|6a; Sa; bas|T (2-9) °

X
- &R
‘-.{
-
A4

o™,

and £ is given by

-
-

(] i 0 -4 O Bty
l = +‘£3 0 0 (2 ‘ 10) ','
o 0 o e
N : |:-
| Mot
i Remark 2.1: In most shell theories the following approximations are widely accepted: oy ::
. | : o
g =0, 6% = (2-11) Ay
G
o hgllty
o These approximations, however, preclude applications of the resulting equations of motion ::'f:
7% W

to large membrane deformations such as balloons and rubber materials under extensive
< stretching.

Vd -
-

It should be noted that éa should not be confused with the variation of angles in classi-

" cal mechanics. Only for the variation of infinitesimal angles, their components approach :
f infinitesimal variations of angles. o !
o
)
b 3. Shell Geometries :)\, o
iy
L;: To describe the shell geometries, we employ two coordinate systems: an orthogonal shell- V N :’
S surface coordinate system ( the s-system) and a natural coordinate system, (¢ n ¢), !
that is not in general orthogonal as shown in Fig. 1. In order to streamline our subsequent - J
g derivations of shell geometries, we need to express the position vector (r) to the particle 0y
L point, P, on the deformed shell cross section given by (2.1) in the shell-coordinate system. ‘
To this end, we observe that there exists a unique relation between the b-system and o "
s-system: RN
/ L d
] b= St,8, 8 = Toges = Sba\‘ (3 ' 1) " :
“1 )
7 b
b ‘
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where , ‘
T = =_ S -

& =100 ¢], ¢=z(h(&n) +q(&n) (3-2) |

”
in which h(¢, n) is the initial shell thickness and ¢(&, ) is the change in the shell thickness. L:j

Using the above relations we have for the second term in (2.1) as '
b = 757,84, T,ge = €7T, e (3-3) =
Substituting (3.3) into (2.1), the position vector, r, of an arbitrary point in the deformed _’,-E
shell is then given by -
r=r°+ &t(¢),ze, r’ = ze; + ye, + zey (3-4) ;5.'
~t

where (z, y, z) refer to a current position in the neutral line of the parameterized shell ,
surface: &
Lz{&n) w(&m) 2(6m)]=[(X+u) (Y +v) (Z+w)] (3-5) -
and t(¢).q is the third row of T,, given by o
t(c)eg = [tar taz tas] (3-6) %
o'y
If the shell is sufficiently thin, a natural coordinate system whose basis vectors are attached ¢
along the neutral shell surface is adequate for the derivation of the governing equations of R
motion and the associated incremental strain-displacement relations. However, for general ﬁ};
shells the natural-coordinate basis vectors and/or the differential lengths of arc may vary ~
across the shell cross sections. Hence, we re-express r as ,!
r=[2 § z]=[(z(6&n) +ta1) (y(&n) +Gtaa) (2(&n) + $tag) | (3-7) &
-
The two fundamental magnitudes along the parameterized curves, (£, 7, ¢), away from i
the neutral shell surface (¢ = 0) are obtained (e.g., Kraus, 1967) as .
3
2 _dr Or 2 _ Or Or 3.3) -

9ee = a¢ 85’ Ioan = on on (‘) )
and the covariant natural-coordinate unit vectors, a = 1d; a, a, J'T, are defined as b
1 or 1 -

=——=7—i,e+_, es + Zce 3-9 >
Gee O€ g“( cel+ e ce3) (3-9) 3

1 or 1 _
dn = ———o— = —(Ze( + ez + Z,,e5) (3-10) N
Jnn O Gng 1

. i, xa ) o o .
A = :afxiz: = (2 @1 + Jicez = 2, 0g) (3-11) i
8
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or in a compact form

a=T,e (3-12)

where ( ),¢ denotes parametric differentiation with respect to £.

Note that the positicn vector for the neutral shell surface, r°(¢,n), is expressed in an
inertial coordinate system, (e, e2 e3), whereas the shell thickness vector away from the
neutral surface is given in the natural-coordinate system. This is consistent with our choice
of dual coordinate systems, viz, the e-system for translational motions and the &-system
for rotational motions.

Remark 3.1: If, however, the shell is sufficiently thin, the preceding relations can be
considerably simplified by replacing r by r° in the preceding fundamental magnitudes and
covariant unit vectors.

The differential lengths of the edges along the natural-coordinate lines, dS¢ and dS,;, are
thus given by

- - da, _,0a. Oda
dSe = geedé,  gie = AT+ (Ce)® +2¢Aca- ag +¢? ag . ag (3-13)
- - da ,0a, 0da
dSp = gnadn, g3, = A2+ (Sq)? + 2 Ana, - an‘ + 2 an‘ : an‘ (3-14)
da, Oda
— 2 _
dS, = g“dg, 9o = A? + fz(—a—;- . —a—gi) (3 . 15)
in which we used the following definitions:
ar® or° ar® or° 1
2 - 2 = . 2 = - 2 .
Equations (3.12) - (3.14) imply
a 1 2
—— TS — — 3 * 17
355 gee 6& ( )
a
88y gnn 9
9S; ¢ B¢

Equations (3.8)-(3.11) and (3.16)-(3.18) will be extensively utilized in the subsequent
description of the present formulation.
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i 4. Variational Equations of Motion for General Shells &~
.i.
& As stated in the Introduction, we begin the derivation of the present incremental strain- {:‘;
; displacement relations from the D’Alembert principle (Lanczos, 1970). We then cast it »
Ry into a variational form in the inertial reference frame, which is then subsequently trans- \-_3‘
i .
2 formed via the necessary tensor transformations into another variational equation of mo-
n
:‘ tion expressed in a non-orthogonal natural-coordinate system. From this equation, we f.‘.‘_-
k.

then identify vartational strain-displacement relations. The physical incremental strain-

(=24

displacement relations are then obtained directly from the variational strain-displacement

K relations simply by changing the infinitesimal variation, §, by the finite increment, A,

<2

provided certain consistency requirements are observed.

51 In order to effect the derivation of the variational equations of motion, we begin with the ;‘y
c. -.’
B well-known Cauchy equations of motion written in vector form in the inertial coordinate @
o frame: -t
4

o]

fsf 3
A pt=V, o, +f (4-1) s

A

S
-

in which p is the density, the gradient vector operator V is given by

L
e w s

o e
e s

;] a 5} N
v = —=—e) + ——eq + -—e; 4:-2
€7 9z a7 8z >’ (4-2)
o the Cauchy stress tensor in dyadic form, ¢., is given by
"'
3 -
;:f Oz2€1€] + Trg€1€3 + Tz:€83
\ - _ i .
-;?;. T.= TOgzeze| + Oygeze2 + 0 :@2e3 | (4- 3) >
2 +0:2e3@) + 0gze3es + 0sz€5e3 o
o
y . .
" and f is an applied force vector. -
W

,,..«
- "
0
.
'S %

)
-:p.. The variational equations of motion is given by

(]

< "X
W <
¥ -

2 /5r-(px"-V,,- 7. ~f)dV =0 (4-4) .
i v 3
i 10
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Equation (4.4) is re-expressed as

in which §F7, 6Fs, 6FT and 6§FF are referred to as the inertia force, the stiffness force,
the traction boundary force and the external force operators, respectively, and are given

by

E §F! + 6F° — 6FT = 6FF (4-5)

§F = / pér - £dV (4-6)
¥ 6F3+6FT=—/6r-Ve-3,dV (4-7)

i 6FE=/6r-de (4-8)
We will now treat the above three variational operators separately.

4.1 The Inertia Force Operator, §F'

E" The dot product of ér - F from (2.7) and (2.8) yields

I suT (@ +e-bIfs + 2e - by by + RTETw + RTGT w)

| br-F=1( +603(bs-eTii+ &3 +bs-bTTw+ by - bT kT w) (4-9)
B +6aTE(RE +bT - by +2b by by + (7w + BT w)

If we choose the origin of the (&, n, ¢)-coordinate system to be the center of the cross-

sectional area of the shell element, we have

i)

/ZdV:/ {TdvV =0 (4-10)
v v
11
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Substituting (4.9) into (4.6) and making use of (4.10), we obtain for the inertia force
operator: '

Sy (60T 8 + 6323 + 5aT LT & + §aT lalT w)dV 1
4-11

+f, p(6uTe - BTy + 5tsby - €T + 26ue - by £s)dV

Note that the second row of (4.11) gives rise to off-block diagonal contributions to the mass
matrix. In other words, they represent the cross coupling between the i-components and
3. We will assume that the inertia force due to the through-the-thickness relative motion
is small compared to the inertial motions. However, in order to prevent rank-deficiency in

the resulting mass matrix, we will retain §¢5Z5. We thus simplify (4.11) to

§F! = / p(6uTh + 68385 + 6T 8T & + §aT LoETw)dV (4-12)-
v

Remark 4.1: 1t is noted that the translational displacements u are measured in e, whereas

the pseudo-rotations §a are measured in b. It is the dual choices that result in the simple

decoupled inertia expressions as given in (4.12).

Remark 4.2: Although the preceding inertia force operator has been derived for a gen-
eral three-dimensional continuum, there exists no contribution due to ws-term. In other
words, the inertia force due to the normal rotation is assumed to be negligible, as a direct
consequence of the admissible displacement adopted in (2.1). This is somewhat akin to

Naghdi’s adaptation (1972) of a director vector concept of the Cosserat brothers (1509).

4.2 The Stiffness Force Operator, 6F°

Computations of the stiffness force operator terms as given by (4.7) are not convenient
since the stresses are measured in the inertial coordinate systems. A convenient coordinate

system to facilitate computations of the stiffness force is an orthogonal corotational system
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(or the shell coordinate system). However, as the element meshes are in general irregular,
a more suitable system is the non-orthogonal natural-coordinate system defined on the
deformed shell element, i.e., the a-system, as introduced in Section 3. This is particularly

attractive when the element is based on the assumed strain states.

Of several possible approaches, the one we will employ is based on the invariance property
of the variational form of the stiffness force operator under an arbitrary choica of coordinate
system. Note that (4.7) contains terms expressed in both the e and a-coordinate systems.
Instead, it can be expressed in the d-system only. To this end, first we re-express ér in the
e-system:

ér, = (6uT + 647 + 250 )e (4-13)

where

t=Re, &0=RT.6a-R (4-14)
It should be noted that the presence of §£, admits normal loads on the shell surface.

Since our objective here is to obtain the variational expression for §F° in the natural-
coordinate system, &, we first observe that the spatial derivatives in the e-system are

related to the corresponding ones in the a-system according to

: 2
az 85¢
—fF~1) _2_
7%7' - Tng 3S, (4 . 15)
2 2_
a3z as,

Second, the contravariant stress tensor in the i-system is related to that in the e-system

by the following tensorial transformation:

Ozz Ozyg Ozz - O¢e Ogq Og¢
029 Ogy Ogz| =T, | 0cn Onng One | Tng (4-16)
Ozz Ogz O:zz O¢e Ong Og
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Finally, by substituting (4.15) and (4.16) into the the expression, ér -V, 7., in (4.7) and
performing spatial integration by parts, we obtain the desired stiffness force operator:

s _ T L T66 V7 Tee
23 65‘5{&1 +68; +£8;,60 }T { geq pdV
Tec
On¢
+ 35, {5u + 605 + (565" YT { 0y S dV (4-17)
Tn¢
F. ] ~T. - f1]
+ / ﬁ{uﬁ' +6258 Y17 opn paV
v do; o
¢
and the traction force operator:
-T T o1
T=/(suf+5e§'+z§‘50 )T* { 0g ; dS (4-18)
s s

where (07 o2 o3) are the surface tractions along the (§ 7 ¢)-coordinates around the

shell element boundaries.

It should be noted that, in the above relation, we have made use of the following intrinsic

shell assumption:
s 4 -
3 S,( uf) = (4-19)

which means that the translational displacements, u, are independent of the corotational

axis, ¢.

4.3 The External Force Operator, §FZ

The external force can be expressed in the inertial system as

f=fTe, fT=|fi fo fa] (4-20)

so that from (4.8) we have
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§FE = / {6uT + 66T + (68" }f.dv (4-21)

It should be noted that the gravitational force and the thermal loads may be effectively

accounted for by (4.21) if appropriate accommodations are made into f,.

5. Natural-Coordinate Strain—Displacement Relations

In conventional derivations of various strain-displacement relations, a specific form of
stresses is first adopted. Then, one employs either the Green strain for the Piola-Kirchhoff
second stress tensor or the Euler strain when the Cauchy stress tensor is adopted. In
the present formulation, we will first express the stiffness force operator, §F°, derived in
the preceding section in a variational form. From the resulting variational form we will
then identify the variational strains. Finally, by simply exchanging the infinitesimal varia-
tional process, 8, with the finite incremental process, A, we obtain the present incremental
strain-displacement relations. It has been shown that the incremental strain-displacement
relations derived for flexible beams by a similar approach remain objective under arbitrarily
large rigid motions and large transverse shear deformations (Park, 1987). '

We rewrite the variational stiffness operator, §F%, from (4.17) in the following form:

§FS = / (b€eeoee + S€enoen + b€ec0s; + E€nnOnn + b€ o0y + e 0. )dV (5-1)

v
In order to obtain the natural-coordinate strain-displacement relations expressed in the
natural-coordinate system, we recall from (4.13)
60 = {6a 60 6w}T = bu+ 64, + 66¢, (5-2)
where the subscript z denotes that the quantities are expressed in the inertial coordinate

system. Eventually, we would like to compute the strains and stresses in an orthogonal
shell coordinate system. To this end we recall (3.1) to express ¢, by

b =RTt=TT SIS, e=TT¢ € =|0 0 ¢ (5-3)

Therefore, £, can be expressed as
68y = ¢8qtT (5-4)

where tf is the same as the third row vector of T,,.
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Similarly, for the third term in (5.2) we obtain

§6¢, = gt. 60 (5-5) g
in which 0 ¢ ?: 132
i=| e ~ (5-6) ﬁ
¢ tn 0 ’

o

Finally, by substituting 64, and § 5&, into 411 we obtain for the virtual displacements

sa={6a 69 60}T = fu+¢6qtT, + ¢t,,00 (57

=

We will now derive the desired, natural-coordinate strain-displacement relations in the
next section.

l@

S
e o W

5.1 Virtual Strain-Displacement Relations

Equation (5.1) suggests that, by rearranging (4.17), comparing term by term between the
two equations and making use of (5.7), one can identify the variational natural-coordinate
strain-displacement relations as:

[} ]
&>
L Fla B2 laF g

iT. 35ﬁ
5555 -~ 6 ase ( *
rdéd _rdéd -
565,,-1'.585 + "33, (5-9)
=T 85ﬁ -
begn =t, BS,, (3-10)

i —

X _grdsa  _raéa 3 ;

bees =t 55, T35 (5-11)

. ,‘q
3 e, - grosa déd _roda - ot
S ¢ aS tn BS¢ (D 12)

N -~

bt
06l - iy}
in which A
=T I _ _ - -
te = ;:(.’C,s Ys¢ 2’5) (5-14) E
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-T ~ '
t, = —(Z Z,) (5-15) .Oa"

t( = ;—(z’f Use za() (5 ) 16) 4::::
- .‘ .‘gi
fn _1 %1 80 Odr (5-17) o
9Se gee 06 0E O AN

and similarly for other expressions.

Remark 5.1: t,,%, and f; are the directional cosines that project the derivatives or the
changes in the normals onto the naturalcoordinate lines. It is this feature that makes
the ANS shell elements simple, robust, easy-to-incorporate, while being able to preserve
physically-relevant shell behavior.

It is critical to note that the pseudo-rotation vector, 8, are expressed in the e-system;
hence, they are inertially-based quantities and linearly dependent. This linear dependency
can be observed as follows. First, we note that §0£, can be expressed from (3.1) and (4.14)

as
§0¢, = RT6aRL, = TT ST,6&S,, T, TT,¢ = T1,68¢ (5-18)
where the skew symmetric matrix fi consists of the pseudo-rotation vector components in
the shell-coordinate svstem: ; ,
‘ 68 = ST,6aSs, (5-19)
Multiplying out 636, we obtain
. 562
5[36 = f —-6ﬁ1 (5 . 20)

0

In other words, both §& and 60 are related to 63 by

4
i
. 0 Y 6p2 _ l:.:!;q:l‘;
8= o 0 =68, | = T, ,60TT =S, 6aS], (5-21) °
~662 861 0 N

so that we have the following linear dependency for §6:

(5-22)

(t1at22 — t12t23)601 + (t11t23 — tyatey)802 + (ti2t2y — t11t22)603 =0

Notice that the purpose of introducing 60 is only for strain interpolations. As they are not
independent variables, one must transform them at each node into 63 and then perform {:‘\%’.«g
the necessary variations. This is accomplished by the following explicit relation: 1(\5\,‘“\.
0

f

86, . 8, (tastaz — taataz) (trataz — tasti2) 5a
= Tog{ } = | (tastar —t21tas) (ti1tas — tiatar) {6‘6: }

(taztay —taatay) (ti2tas — tastin)

(5-1

[
[5V]
—_—
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Alternatively, one may wish to eliminate one of them (say, §03), and then perform varia-
tions with (60,, &0;) only.

Remark 5.2: When the element nodal points are placed on a skewed plane as is often
the case for distorted elements on a shell surface, the present AN S formulation effectively
overcomes locking difficulty as the normal vector components, t, , can properly project the
displacement derivatives on the parametrically determined skewed surface. This capability
plays a key role for the modeling of the transverse shear strains, e¢. and ¢,, as derived in
(5.11) and (5.12). Hence, the present formulation faithfully adopts the shell geometry and
the corresponding strain-displacement relations.

5.2 Derivation of Incremental Strain-Displacement Relations

As stated in Introduction, we do not rely on any predefined strain-displacement formula to
derive the present incremental strain-displacement relations. Instead, we derive the desired
incremental strain-displacement relations from the virtual strain-displacement relations in
Section 5.1. It is emphasized that those relations are derived solely from a variational
transformation of the D’Alembert principle starting from the Cauchy equations of motion.

A prerequisite for deriving the incremental strain-displacement relations from the virtual
strain-displacement relations is to observe the difference between the infinitesimal vari-
ation process, J, and the finite increment process, A. This is dealt with first. Second,
except thetrain-displacement relations, (5.8)~(5.13), involve the spatial derivatives of §3.
A computationally tractable approximation of these derivatives is discussed in detail in
Section 5.2.2. Finally, the desired incremental strain-displacement relations are derived in
Section 5.2.3.

5.2.1 The é- and A-Processes

In order to delineate the difference between the 6 and A processes, let us consider the
two-dimensional rotational matrix:

cosd sind)
= 2.9
R [—-sinﬁ cosﬁJ (5-24)

The variational pseudo-vector operator, § &T, for this case is obtained by

-T _ T _ 0 baz| _ | 6cosd ésind cosfd —sind
fa" =4fRR" = [—-6a3 0 ] - [—6sin€ écosﬂ] {sino cos § ] (5 - 25)
from which one obtains
Saz = 6(sin6) - cosd — §(cos d) - sind (5-26)
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If one performs the required infinitesimal variation of the above expression, the resulting
expression becomes

(5-27)

bas = (60 - cosf) cos§ — (—40 -sind) -sinf = 64

On the other hand, for the finite incremental process we have

Aas = A(sin8) - cos 8 — A(cos8) - sin ¥, Asing =sin§(**1) —sing" (5-28)

for the incremental step from n to (n + 1)-step. Clearly, one observes

Say # Aas (5 - 29)

We will now extensively use the A-process in order to derive the desired incremental
strain-displacement relations from the virtual strain-displacement relations, (5.8)-(5.13).

5.2.2 Approximation of Incremental Pseudo-Vector, A3

The incremental counterpart of the virtual pseudo-vector employed in (5.3b) is not com-
putationally tractable in that form. First, we note from Remark 4.3 that the matrix, S,
' is associated with the point transformation; it is a constant matrix. Hence, we have from

(4.14) and (5.19)

369" _p 06T
——=R].
35, EX

08" _ r 08a"

as, %735, Ste (5-30)

. qu,

The A-transformation of the above equation, provided one meticulously observes the il-
lustration given in Section 5.2.1, yields:

~T ~T
Y r 0aaT A8 p 0A&T
S % T3S, “Reg, s, = Sts as, St (5-31)

Note that the matrix, Sp,, relates from the s-system to the b-system solely due to trans-
verse shear deformations. This means that, when the incremental transverse shear defor-
mations become large, one must adhere to the above equations to update AS3. However, if
the incremental transverse deformations are small, a reasonable approximation would be

LY

Vi
e
"

'ﬂ
u..{

LS

dAB _dA&  JAB _ dAa

~ ' 5-32 N
655 355 BS,, 35,, ( ) NS 'g’ﬂ-
N
Physically, the above approximation corresponds to remeshing of the deformed element tf’;

cross sections to be normal with respect to the two natural coordinates, (&, 7n) at the end R
of each increment.
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5.2.3 Incremental Strain-Displacement Relations -
We now derive the incremental strain-displacement relations from (5.8)-(5.13), (5.23), - ',
(5.28) and (5.31) with the A-process delineated in Section 5.2.1. The resulting relations _%
are as follows:
2
-T aAﬂ ‘,_ut 1
=t ¢ — 5-33 AR
Aege =t¢ - Fo- (5-33) ‘
sfii '
| Al | .rdAd ot
= 5-34
n ﬁ .
: r0A% _rdAl ‘
) — * 36
_sréA0 T AN =
Aeqe =1, 35, T35, (5-37)
N
~r0A0 ' -
Beg =t 55~ (- 38) 5 |
1
in which -, )
At = {Az AT Ad}T = Au+¢AqtT + ¢t A0 (5 - 39) {ﬂ :

Remark 5.3: When one can ignore the changes in the shell thickness, one can set
Ag=0 - 40)

K which reduces to a classical shell assumption.

o
wed  MRER

)

8. Computations of Incremental Stresses

The variational stiffness operator expressed in the natural-coordinate system (5.1), even
though it is natural for constructing the assumed strain fields that are aligned along the
shell element mesh shapes, presents difficulties when faced with computing the natural-

ey

coordinate stresses. This is because most constitutive relations are defined in an orthogonal “
coordinate system. Since a constitutive matrix is a fourth-order tensor, one must perform |
a fourth order point-by-point tensor transformation of each orthogonally-based constitu-

tive matrix to obtain its counterpart in the natural coordinate-based constitutive matrix. ) |
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This conversion procedure can not only be cumbersome but also can destroy in effect the
assumed constant or linear strain fields to non-uniform strain fields.

In the present formulation, we transform the natural-coordinate strain increments into a
shell surface-based orthogonal system. In this way one not only performs a second-order
tensor transformation but also obtains the stress increments for widely preferred shell-
coordinate quantities. To compute the stresses in terms of the orthogonal shell-surface
coordinate system, s, one needs to transform the natural-coordinate strain increments
into the shell-coordinate strain increments. The required transformation is realized from:

a=T,,- T;’;,s = Tn,s, or s=T,,a (6-1)

where 8 is defined as
8 = (s, 8: 8,), 8, = &, (6-2)

so that not only (s, 8;) are chosen to form an orthogonal system that is tangent to the shell
surface, but also the third unit vector, s,, coincides with the natural-coordinate vector,

a,.

The variational stiffness force operator (5.1) in the shell-surface coordinate system, i.e.,
s-system, can be written as
§F° = / (0€4000s + 06,000t + 6€4nOyn + E€2:0et + 8€4nO¢n + 6€4 00y )dV (6-3)
v

in which the shell-surface strain increments are obtained by the following tensor transfor-
mation of the natural-coordinate strain increments:

A€, 306y 1Ac,, ) Aece  3Aeq 3Degc|
E‘;Ai,g Aégt EAE", = T,n %AEE" Ae,,,, EAG"" T_:I;L (6 . 4)
386, 306, Aénn 30¢€e; 1Ae, Qe

These strains are then used to compute the shell-coordinate stress increments

Ao, = | Ao,, Ao, Ac,, Aoy Aoy, AUMJT (6-3)

by adopting a suitable constitutive relation (e.g., see [Stanley, 1985])

Ao, =C Ag, (6-6)

where
Ae, = | Ae,y A€y Aéun Deu Dén Aenn” (6-7)

Once the stress increments are calculated, the total stresses are updated by
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An D) = oln) 4 Ag{ntY) (6-8)

Finally, the virtual shell-surface strain-displacement relations are obtained from the virtual
natural-coordinate strain-displacement relations by replacing A by é. Specifically, for the
present choice of the normal vector (6.2b), we have

_ t..g {,,, 0 1 8¢ - &, -8+ 3, 0
Tn = t-gg ‘g" 0l = E—X—;—l —8,-3, 8,-3;¢ 0 (6 . 9)
6 0 1 ¢S 0 0 |ae x 4,

Expanding (6.9) while employing (6.10), we obtain the following explicit relations:

86“ t?e t-?" E,gt.,,, 0 0 5545
663 t-ft t?" Eggt-g,' 0 0 65,,,,
55“ = 25,(&‘ 2{,"{1" t-‘gfg,, + t_.,,t.gg 0 0 555,, (6 . 10)
6c4n 0 0 0 te ton dee
\ 8€in 0 0 0 e Ein §ecn

Substitutions of (6.8) and (6.11) into (6.3) and evaluation of the resulting variational oper-
ator then yield the desired internal force vector in terms of the shell-coordinate quantities.

Remark 6.1:  The strains, A¢,, are equivalent to classical strain-displacement relations
for an orthogonal shell-surface coordinate system, with one major difference. In classical
shell theories, the unknowns are the covariant displacements (a- Au and 43), and their
covariant derivatives. In the present formulation, the unknowns are the inertially-based
displacements (Au and A ), and their covariant derivatives. This difference plays a crucial
role in the finite element discretization of the resulting variational equations.

7. Thin Shell Approximations

As in classical shell theories, care must be exercised in approximating (5.7) —(53.13) in order
to obtain a consistent set of virtual (or incremental, for that matter) strain-displacement
relations for thin shells. The most widely accepted approximation starts with (see Sanders
(1959) and Budiansky and Sanders (1963)):

-1

gee = Ag,  Gnn = Ay (7-1)

which leads to the following approximations for the covariant derivatives defined in (3.18)
- (3.20):
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The second approximation is to employ s
t
o5 _ . o
ity
which means that the shell normals remain straight after deformations, and the changes '.:::.::
in the shell thickness are negligible. We now simplify the virtual and incremental strain- st
displacement relations for thin shells. 2
R
With the preceding approximations, we can specialize the virtual strain-displacements for ;:E'
general shells, (5.8) - (5.13), to thin shells as follows: ;""..- '
]
bepn ¢ = { beq, + S6Kgy (7-4) ‘5
begg begg By
b€y, bene i okl
o
where 9 N
e, = tT 0 7.5) g
€ee 3 655 ( % .
i
déu déu ""'-'
beg, = t7 zo + T — 7 "o
€35, Tt 35, (7-6) -2
déu : AN
62 =1tT 7.7 W
=3g U
iy,
dbéu o
beg, = tT —— + tT6a 7-8 R
" T 55, 79 8o
l\.llN .
A
déu i
Toou T 4 ot
*w.f
asa  [oatT a7 sul ]
bree =t F g —tT = T | o 7
e t‘ 855 T [855 b 65’5 S| dSe ( 10) ":~::.‘
) S
dén déi SO
~ (yTE%8 ;T
bren = (¢ ¢35, H"ass) g
atT N o ry2su’ § %
+(as {fas "as 750 )as,, (7-11) R
\‘- ¢
atT otT o T d5u’ ®
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ot
asa [otT  _atT ] asut
=T 4T 5 . ¢T 712
Skan =t 35, + [as,, te3s, "t | 35, (7-12) ?
In the above equations we have used §i for )
sa=%.6-0 (7-13) ‘
o
together with the following definitions: g‘:‘
¢T = & 7-14) ‘
¢ = Z(zse Ve Ze) ( g
T _ .
i = Z‘;(zm Yin  Zm) (7-15) g
tf = (t31 t31 A t33_) = (zw Yse 2,;) (7 : 16) P
du 1 ,0u Ov Odw.p 8
— T e | c— — —— 7 . 17 =
9S: A. (af 3¢ d¢ ) ( )
¥i
and similarly for other expressions. B
The strain-displacement relations that are valid for finite displacement and finite rotations o
can be obtained simply by substituting A in place of § in the preceding equations with -3
the understanding delineated in Sections 5.2.2 and 5.2.3.
Remark 7.1: Note the modification of the in-plane bending term in (7.11) denoted by ?".
( )§ . This modification in the in-plane bending is equivalent to retaining the ¢-dependent >
term in tny(&) and tay(n) in (3.12), and is akin to Sanders’ modification (1959) to improve
the in-plane bending behavior for normal torsional rigid rotations. Specifically, its first ﬁ

expression represents the vector cross-product of the rate of change of the normal vector

(a,) along the &-line and the membrane strain component along n-line. Similarly, the

second term represents the vector product of the change of the normal vector along the g:g
n-line and the membrane strain component along the £-line. Hence, taken together the
modification represents a torsional behavior. It can be shown, though not elaborated §
here, that the present strain-displacement relations satisfy the small rigid motion relations
delineated in Appendix A of Sanders (1959).

Remark 7.2: It is noteworthy to point out the consistent rotational kinematics in the S
present trnasverse shear strains given by (7.9) and (7.10). To appreciate this important
feature, we substitute (3.23) into (7.13) to obtain O
1 :
. _ T ] ABy T T A3, " !
I ey R ETU ORI IR ol S CIC I

¥
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. where t(i),y are the i-th row of T,, that is defined by (3.1b). This relation constitutes
| one of the key results of the present formulation. For moderate transverse shear one needs
to update first Aa from

A& = ARRT (7-19)
and update g by (5.31b).

Lt 8. Discussion

In this Part, we have derived the variational equations of motion for general shells based
» on the natural-coordinate system that is in general not orthogonal. Several features of the
. present formulation are worth mentioning:

x e The present formulation has been motivated by the desire to incorporate as much "
:f: . shell behavior as possible into the basic variational equations of motion, which will be 5: .
' discretized subsequently by the finite element procedures. )
Py e The translational motions are fixed on an inertial orthogonal coordinate system, -,‘:._’_
X whereas the rotational motions are fixed on a corotational coordinate system. This :‘f}ﬂ‘
choice is in contrast with classical shell theories wherein the covariant displacements ;¢§ ]
are the primary variables. Hence, many difficulties associated with the finite element fk‘u":
discretization of the classical shell equations—i.e., preservation of rigid motions, finite
X rotations, etc.—are circumvented.
:‘ e The virtual strain-displacement relations have been derived from a variational trans-
formation of the D’Alembert principle in which the Cauchy contravariant stress tensor
is used in the equilibrium equations for continuum. A pointwise tensor transformation
X is then employed to obtain the virtual strain-displacement relations from the varia-
tional equations of motion. The incremental strain-displacement relations that are
5 needed to compute the incremental stresses are obtained by exchanging the infinites-
K imal variational process (§) with the finite incremental process (A). The resulting
incremental strains remain valid for arbitrarily large rigid translational and rotational
;: motions.
N e In the present formulation, the strain increments are interpolated first on the natural
¥ coordinates. The shell-coordinate strain increments are then obtained by pointwise
k tensor tranformation. These shell-coordinate strain increments are used to compute
stress increments in the shell-surface coordinates. On the other hand, the inertia ®
+ terms are computed in terms of the fixed coordinate system for translations and the ‘\
corotational system for rotations. E .:‘(
- e  After completing the present formulation for general shells, the strain-displacement "-I ]
< relations are specialized to thin shells. The resulting equations of motion for thin A0
shells will be subject to finite element discretizations in Part II. A more concrete form ®
A of the equations of motion for thick shells will then be discretized. :-;E_-:
s ~
’ 25 S’:‘:,.{t',
y ™ ,\"
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Fig. 1 Deformed Shell Geometries in Terms of Inertial (e), Shell Surface (s),
Natural-Coordinate (a) and Deformed Normal (bj) Vectors.
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ABSTRACT 5!

Thin shell elements whose formulation is based on the assumed natural-coordinate
strain(ANS) fields derived in Part I are presented. The present shell element construc-
tion offers several improvements over the ANS elements previously presented, particularly
regarding the inplane shear strain, twist and transverse shear due to changes in the shell
normals. These improvements have been made possible by adopting the new formulation
presented in Part I and by introducing new ways of interpolating assumed strain fields.

S B

‘ The elements thus constructed correctly preserve rigid motions, exhibiting no locking for ‘
‘, skewed element shapes such as hemispherical geometries. In particular, the new 9-ANS el- '—C‘i
e ement resulting from the present construction possesses a significantly improved modeling &
of transverse shear strains, which may be important for composite analysis. @
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1. INTRODUCTION

The present paper is to serve as a definitive exposition on the construction of the shell
elements based on assumed natural-coordinate strains (ANS) that began with the linear
interpolation of membrane strains in Park (1985), the 9-ANS shell element by Park and
Stanley (1986), Park, Stanley and Cabiness (1986), Stanley (1985), and Stanley, Park and
Hughes (1986). In doing so, we rely on several important corrections brought on by the
theoretical formulation presented in Part I (Park and Stanley, 1987). The corrections were
motivated by our desire to base our element construction on the formulation that incorpo-
rates as much shell behavior as possible from the outset into the variational equations of
motion to be discretized, to improve the curvature effects, and to directly incorporate into
) the assumed strain-displacement relations a thick-shell capability. The present exposition
P may therefore be regarded as our earnest effort to effect a “marriage a la mode” between
‘ the finite element method and shell theories.

The impetus for developing the previous ANS shell elements was to improve the element
performance when the elements become progressively distorted. This was in essence ac-
complished by abandoning the standard isoparametric mapping that is used to transform
the natural-coordinate derivatives into their inertially fixed Cartesian counterparts. In
addition, concepts such as the Hrennikoff grid (1941), a series of consistent interpolations
on the natural-coordinate strain terms (Park, 1985), a tensorial transformation of the
natural-coordinate strains into the corresponding Cartesian strains and directionally selec-
tive reduced-integration were blended to avoid element locking and spurious mechanisms.
R The resulting elements thus have acquired one important theoretical property: the strains
remain invariant for an arbitrary choice of the local coordinate system, hence improving
the element performance for distorted grids. Subsequent numerical evaluations of the ANS
elements indicated that the 9-noded ANS element (or -ANS element) manifested no os-
tensible deficiency for production-level applications. The 9-ANS element then was used
to analyze the post-buckling problem of a curved composite panel with a cutout (Stanley,
1983), which increased our confidence in the element.

As we turned our attention to more rigorous theoretical aspects of both the 9-ANS and
AT 4-ANS elements, there emerged two hard evidences. First, the 4-ANS element almost locks
the solution for a pinched hemispherical problem unless the reduced one-point integration
is invoked instead of the full four-point integration. Second, the 9-ANS element, when put

’: to the patch test, exhibited an oscillation on the constant strain state with an amplitude of e
about one-tenth of a percent of the constant strains. While the first pathology is avoidable r’;‘

” and the second is harmless in practice, these two pathologies motivated us to reconstruct ok

> the ANS elements to eradicate such isolated pathologies (Salmon, 1987), thus making the ":-f:.j"

] ANS shell elements free from “exceptions” in performance. In what follows we will refer to ':s::‘ |
the original ANS element construction as “the old construction” and to the present ANS -:3-';
element construction as the “the new construction.” ) °

- In the old construction of the ANS shell elements, the Hrennikoff lattice lines were chosen. 'V't.- :

. )
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In the 4-ANS element, the four grid edges were chosen to be the Hrennikoff lines. In the

: 9-ANS element, the four edge lines and the two natural-coordinate lines, { = 0and n =0, P

g were chosen to be the Hrennikoff lines. Then the derivatives of the covariant displacements
1 along the Hrennikoff lines were interpolated, which were termed as the covariant strains ;‘3
I

along the Hrennikoff lines. The natural-coordinate strains in the element interior were
then obtained by interpolating the appropriate covariant displacement derivatives along

‘ the Hrennikoff lines according to the isoparametric interpolation weights. The orthogonal f'?;
i shell-coordinate or inertial-coordinate strains at any point in the element were finally
obtained by tensorial transformation of the natural-coordinate strains. This meant two g

>

consequences. First, there must be a congruency between the directions of the natural-
coordinate strains and those of the natural-coordinate basis vectors. Second, we had to
§ abandon the isoparametric transformation of the natural-coordinate derivatives (Irons, o
1 1966) into the Cartesian ones. }.‘S

A closer examination of the interpolated natural-coordinate strains has revealed that the 5

9y above congruency requirements are met only “in the large,” even though the level of the f:‘

" incongruency quickly diminished as the grids were refined. A pathology of the 4-ANS

N element manifested for skewed grids, because the errors committed in interpolating the v
l:: normal vectors become significant enough to lock the solution. Of several avenues we have :'5 )
X explored to mitigate this incongruency, we have chosen the following as the basis for the ‘

new ANS element construction.

The most fundamental aspect of the new formulation presented in Part I (Park and Stanley,

e 1987) is in the choice of its coordinate system: an inertially fixed coordinate system for N

. translational motions, an orthogonal shell-surface coordinate system for rotational motions A
! and a natural-coordinate system for strains. The proper use of such triad coordinate ,

systems has led to the mitigation of several element deficiencies heretofore present in Ei‘

5

many of the existing shell elements.

The incremental strain-displacement relations we will employ are expressed on the de- o
Y formed shell geometries. However, they remain valid for finite-strain and finite-rotation >3
J increments, and hence they can be used both for linearized and nonlinear analyses. In
R particular, the present element construction based on the strain increments can be easily E '
. interfaced with an element-independent corotational procedure (Rankin and Brogan, 1984) W
%: to effect an efficient nonlinear analysis procedure. " ]
" \\‘ ]
Y In the construction of the new ANS shell elements, we preserve the two essential ingre- '\'j :
-: dients in the old ones: the natural-coordinate strains and the tensorial transformation of 7
:: the natural-coordinate strains into any desirable orthogonal components. However, in con- :::: f
b structing the natural-coordinate strains, we have abandoned the old way of interpolating ES
b the covariant displacements that vary their directions along the natural-coordinate lines. »
‘ Instead, we have chosen to interpolate tie inertial Cartesian displacement components to "“ |
5 obtain the natural-coordinate covariant strains, since the displacements expressed in the ~ 1

inertial coordinate system do not vary their directions along the natural-coordinate lines.

4

DTN N O ‘ . A A - , 4
N I A e O R R L 4 T D T D T D e e Mo D e D T D0 Do €0 T S 2T D SO T M O T NN




i oa¥e i, at i‘i“l"i"l'.l""".i' 1o §20 3vs ¢%0 %5 4% 8% 8 R R T R R I W T T LYy T Bt e ol Bt B Mt Sl

In other words, the covariant strains are expressed directly in terms of the inertial dis-
placement components and their derivatives along the natural-coordinate lines. Finally,
the locking-free and mechanism-free measures adopted in the old construction are carried
over almost intact into the new construction. We will now describe the new construction
of ANS-shell elements in full detail.

~

! 2. Theoretical Preliminaries for Thin Shells
We summarize the equations of motion for thin shells derived in Part I (Park and Stanley,
¢ 1987) and the associated strain-displacement relations.
' 2.1 Kinematics and Shell Geometries

The position vector of the particle point P (see Fig. 1) on the deformed shell is given by
: r=1° + {3bg (2-1)

where
: r’=ze;t+yestzes, (zy 2)={(X+u) (Y +v) (Z+w)} (2-2)

in which (z y 2) are the deformed neutral shell surface position coordinates, (v v w) are the
displacements measured in the inertial e-system, 3 is the distance of the material point P
from the shell neutral surface measured in the b-system that is attached on the deformed

S N
cross-section of the shell, and the vector b is related to the vector e by :::; !
“ \
. NENEN
b =Re . (2-3) oYt
VAL
i The angular velocity of a particle point, P, on the shell cross section is thus given as o 3;_
A
SN e
\ 0 —Ww3 ("0] ‘n "
5 . - SN
. w=-~-RR* = w3 0 —Ww (2 . 4) ALY
’ —Ww W 0 "':-\: :
2 1 J ‘-."N"
I The variational pseudo-vector, § a, that is conjugate with w, is given by A.
o
§a7 = 6RRT, w=l|w; w2 ws|T, Sa=|ba; bas bas)T (2-3) S
- X
The displacement variational quantities have been derived in Part I in the form: S
®
' = fuTe + 6
' ér = bu’ e + {60 (2-6) :\.;“_
. N 'f\.-\.
where the pseudo-rotation vector, 61, is related to the shell-surface pseudo-rotation quan- AN
) tities, 63 according to J':::
X T /a T | 631 y T c~ - v_—-.: "
- 6a = L _tag(“) tng(l) p 63 . 68 = T,,‘éaT;,, (2 ’ ’) A
2 i v
D A
L ) \:_\:_\
5 e
; )
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in which tT (1)

s =T,e

:presents the i-th row of the transformation matrix, T,g, deflued by

(2-8)

that are attached to the deformed shell surface; and, T, relates the sheil-surface basis

vectors, 8, to the inertial basis vectors according to

b = Tb.S

The covariant natural-coordinate unit vectors are then obtained by

_16r°_1(ze+ e+ zees) =tle

1 ar° 1 T

3y = ——— = —(z,p@1+Yy,ne2+2583) =t e

n A" an A"( n %l y" 2+ n 3) n

as X ay T

a¢=la€x¢I=(z,¢e1+y,¢ez+z,¢e3)=tce
n

where the two fundamental shell surface quantities, A¢ and A,,, are given by

ar° ar° dr® ar°
2 =~ v —— 2 .
Ag= 3¢ 3¢’ An dn In

For subsequent applications, we express the above relation in a compact form:

a=T,e=(tT
Z

®

Finally, the covariant partial derivatives are given by

a 19 a 13 g 14 4. = A ) o
3S. A 9¢ 85, 4,91 85, A d; T MmMLe
where h(S, n) i3 the shell thickness.
6
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2.2 Variational Equations of Motion for Thin Shells

The variational equations of motion derived in Section 4 of Part I are recalled for conve-

" nience: .
K 6F +675 = 67T + 67F (2-16)
X in which 677, 675, 67T and 6FF are referred to as the inertia force, the stiffness force,

the traction boundary force and the external force operators, respectively, given by

& 571 = / p(5uT i + 6T I & + ST iniTw)dV (2-17)
v

s
0 6F° = /V(&e“a“ + 6€eqTen + 8€nqOny + b€c0e; + b€q.0.)dV (2-18)
5 T .o
» 57T = / (6uTT” + 6aTiS) { o5 § dS (2-19)
s s
0 §7E = / (5uT f, + 6uTRT f, + 6qTRT f, + 6qT fo + 6aTERf, + 6aTif)dV  (2-20)
R
f=fTe+ fTa (2-21)
i’ where (0, 02 03) are the surface tractions along the (¢ n ¢)-coordinates around the shell
element boundaries, and f. are the inertially applied load and f, are the follow-on force,
3 respectively.
)
2.3 Variational Natural-Coordinate Strains '
& N
': « g . . .« ye . . b \
. The variational natural-coordinate strains specialized for thin shells from Section 7 of Part AN N
I are recalled: P
W o
4 N
~ 5655 5625 +§-5K$€ 5{.\
: begn begy +$bKen e
e Seng ¢ =% 665, + 6Kan (2-22) O,
begg 6ve ::::‘:. -
B€ne §4n RS,
-\J'.
where °®
351] e r)
b5 = tT — 2.23 "
N €ee ~98S. ( ) '\:\'_

oy, ‘);.AI‘ .’.b‘\ ‘l‘ .'.' ,..‘.. ‘. J "' 1 ‘FJ" jf , » "1 . ‘: '. )
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: -
2
3 »
R Y
X géu _ rdbu
! =tTZ = T ol .
| §
déu \
T 225
Sepn =th 75 33, ( ) ]
o Al
5 736u o
i bve =t 55~ 5t t7 04 (2-26)
! ;33
59 = T — g6u + tT 64 (2-27)
“ 4
i #0658 [0t  Lat, o] osul
- - -t . 2-28 ®,
K bree = 3 55, [asg ¢35, '¢| 35, (2-28) 3
;::; r 36t 61 ‘
i u T u ~.
¥
i N _ -t rot a6u§
" - {tT—% —& 2.29 g
- (ase {tegg; ttgs, )" ) 2-29) 9
,,I e,
e atT at Bt 66u§
-s’ ) T f T ¢ T 2 . !.‘;
i ( ~ {te35, 35 Tt 33, 35,0 " ) 230 &
2
.‘ asa  [otT .ot g6ut K
I =tT ¢ _¢T228 4T 2.
A Sran =t 55, F [as,, tegs, "t | 75, (2-31) &
iy
he
Ky in which ;
?
X bu _ ..1_(_3_2 ad .a_”.’.)T (2-32) &
3Se A 36 0& 9¢
I, oy
s" . - .I‘_:
:‘ a=(2 9 o)* (2-33) -
" )
y 63, z
“ 4 =T,, ¢ —63¢ (2-34)
:&‘ 4] o
[ A
. ‘
o It should be noted that the incremental strain-displacement relations are obtained by "
o replacing 6 simply by A in the preceding equations. The terms designated by () and ( )+ K
" in the bending strains of 6x¢¢ and 6x,, usually remain small for thin shells. and they may
: be neglected in most applications. However, as noted in Part I, the term designated by N
v: ‘:‘,'
' 8
X ,_Q
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( )§ in the in-plane bending term, 6x¢,, must be retained to satisfy rigid-body motions
as discussed in Sanders (1959).

2.4 Shell-Coordinate Strains and Stress Increments
The shell-surface coordinate system, 8, is related to the inertial system, e, by
8 =T,ge ' (2-35)
Hence, the natural-coordinate system, a, is related to the shell-coordinate system, s, by
a =T,y -TEs =Tn,s, or s=T,,a (2 - 36)

where 8 is defined as
8 = (8, 8¢ 8,), Sp = a, (2-37)

so that not only (s, 8;) are chosen to form an orthogonal system that is tangent to the
shell surface but also the normal shell-surface vector, s,,, coincides with that of the natural-
coordinate vector, a..

The variational stiffness force operator (2.16) in the shell-surface coordinate system-i.e.,
s-system—can be written as

5§75 = / (65.;0.. + 0€,t0,¢ + 0€,n04n + 664401t + G€2n0tn)dV (2-38)
v

in which the variational shell-surface strains are obtained by the following tensor transfor-
mation of the variational natural-coordinate strains:

0€,s b€qr be4p Seee begn beg,
Sese Oepr bepn | =Ton | begq b€py benc | T, (2 -39)
b€y b€y O beee beqe O
These strains are then used to compute the shell-coordinate stress increments
Ag, = | Ad,, AGy A0, Aoy Ady, T (2 - 40)
by adopting a suitable constitutive relation (e.g., see [Stanley, 1985])
Ac,=C Ae, (- 41)
where
Ae, = Ac,, A€y Aeyn D A )T (2-42)

Once the stress increments are calculated, the total stresses are updated by

9
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0"+ = o{") 4 Agintl) (2-43) !
K X

The incremental shell-surface strain-displacement relations are obtained from the incre- M

mental natural-coordinate strain-displacement relations by the same tensor transforma-

tion.

x5

Specifically, for the present choice of the normal vector (2.34), we have

=X

teg ten O 1 8¢ -an —S¢-ag 0
Tin=|te tey 0| = —— -8, -2, 8,-a; 0 (2-44) ,
', m n s . ]
5 o o 1] Rexal| 0 lagxa,] N
ay A )
0 : : : : . ,
A, Expanding (2.42) while employing (2.36), we obtain the following explicit relation: >
3 be,, t2, t3, toeten 0 07 [beee ;
s t2¢ t2, testen 0 o 6€nn @ §
; 63,‘ = 2t.¢t¢g 2t",tg,-, t.etg" + t",tgg 0] 4] 65(,, (2 . 45) o
) 6€in 0 0 0 tie tu 6€sn A
:5 ~— ]
of Substitutions of (2.43) and (2.45) into (2.38) and evaluation of the resulting variational op- ] 3
vy erator then yield the desired internal force vector in terms of the shell-coordinate quantities. Dy
b It should be noted that the strains, Ae¢,, are equivalent to classical strain-displacement
, relations for an orthogonal shell-surface coordinate system, with one major difference. In K
}: classical shell theories, the unknowns are the covariant displacements ( a-Au and A3), and PN
!:: their covariant derivatives. In the present formulation, the unknowns are the inertially- '
2 based displacements (Au and Ad ), and their covariant derivatives. This difference plays % ;
¥ a crucial role in the finite element discretization of the resuiting variational equations. Lo
f: 2.5 Resultant Form of Stiffness Force Operator 7.:-"5‘ J
8 LV
:: Using the above strain-displaceraent relations, the thin-shell counterpart to the stiffness d
¢ force operator (2.38) can be expressed in a resultant-force form: -:";
)
R
3 6§75 = /5e§} fy dS (2 46) Lo N
:; s \1-.; !
;; Q:
N and the strain and stress resultant “vectors”*, ey and f},, expressed in the natural o~ 5
- -
N * We will continue to use the term “vector” for one-dimensional arrays, but note that the o
K components of vectors such as ey and f§ actually transform as 2zd rank temsors. :3 .
: ¢
L i
10 . :;
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(curvilinear) coordinate system, N, are defined as:

( 6656 3 ( n“ 3
B 66,,,, n"n
: 555,, nén
¢
dey = ¢ g::: > ffv = 4 :,,: f (2-47)
6&5,, me"
6ve ¢
i L 6% | . q" )

While the covariant strain measures in fey were defined in (2.46), the corresponding
v membrane, bending and transverse-shear contravariant stress resultants, in ff,, are defined
. by pre-integration of (2.38) through the thickness, as follows:

_': n*? = [a“ﬁdg , m*f = /a"pgdg , g = /a“'dg (2-48)
¢ 3 ¢
¢ where again a and  range from 1-2.

The last quantity to be explained in (2.46) is the differential reference surface area, dS. It
arises by employing the thin-shell hypothesis to the volume integral in (2.38), i.e.,

y V/(W - [/S({)()dsmdg ~ S/[()dsds (2-49)

3. Strain Interpolations

. In Park and Stanley (1986) and Stanley(1985), a procedure for constructing shell elements
whose strains were approximated along the natural-coordinate strain lines were presented. "o
:: We shall refer to it as the old construction procedure. Our motivation for developing the 3
i old shell element procedure was to render the locking-free and mechanism-free features § :
" into the resulting shell elements. = .:::E
. In the old procedure, first, we projected the displacements and unit normals onto the JR ‘
: natural-coordinate lines to obtain their covariant natural-coordinate quantities. Second, we RV
B interpolated the resulting covariant displacements and covariant unit normals. Third, we ety
' obtained the natural-coordinate derivatives of these covariant quantities along the element .t:'-\
X edges and the two natural-coordinate lines (or along the Hrennikoff lines). Finally, the :".:':Q
“ strains in the interior of the element were obtained by interpolating the quantities along N
the Hrennikoff lines. It is important to note that the nodal displacements in the old : ,“
P construction were expressed in the covariant system, whereas they are expressed in the :::.h" ‘
, S
11 N
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inertial system in the new element construction. This difference plays a key role in the
subsequent element construction.

The first key feature of the present construction is the way in which we obtain the product
form of the strain-displacement relations, viz, €3, along any {-line from (2.23)

ou

35 (3-1)

o __ 4T,
€ee =ty

in which the variational operator, §, and the finite incremental operator, A, are omitted
for presentation clarity, and t§ and F3 are recalled from (2.10) and (2.32):

: 1
tr=2-€'(z’e Ve  Ze) (3-2)

P S e

t

du 1 0du dv a‘w)r

55 = A3 3@ o€ (-9

LA |

Hence, in the new construction, first we interpolate the displacements that are fixed in the

inertial coordinate system and the unit normals, tf, that vary along the £ and n-lines.

We then obtain their derivatives along the natural-coordinate lines. Third, we project the
. interpolated quantities and the derivatives onto the appropriate natural-coordinate lines
\ to yield the necessary covariant derivatives. By combining them, we obtain the desired
covariant natural-coordinate strains.

} The second key feature is the way in which we represent the natural-coordinate strains

at any interior point of the element. In the old construction, we obtained the natural-
0 coordinate strains along the Hrennikoff reference lines. The natural-coordinate strains at
an interior of the element were then obtained by interpolating these reference-line strains.
d In the new construction, we do not make use of the Hrennikoff reference-line strains.
Instead, at each integration point the necessary interpolations are performed along the
two natural-coordinate lines that pass through the integration point.

The third key feature — perhaps the most significant of all - of the present procedure is
the way the natural-coordinate inplane strain and twist, €z, and x¢,, are interpolated.
We have abandoned the directionally reduced integration approach that was adopted in
the old procedure. Instead, we sample these strains at the Barlow points, which are then
tensorially transformed and interpolated at each integration point. We believe that this
enhanced interpolations of ¢¢, and ¢, are largely responsible for overcoming pathological
4-ANS element behavior for doubly curved shell surfaces. We now describe the present
! construction of the assumed natural-coordinate strains for both 4-node and 9-node ANS
shell elements.

LSRR

3.1. Natural-Coordinate Strains for 4-ANS Element

12
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The incremental forms of the natural-coordinate strains derived in (2.23)-(2.31) are to i)
be implemented with care if the resulting element is to be free from locking and mecha- A
nisms. For 4-node elements (see Fig. 2 for its nodal designations), we have the following ..:::',;
interpolation function: ::::E:.
i'g'l Q:
b
NEN = 4 SR
2 2 - #
Na(&n) = D) Ne(§)Nu(n) it
r=1s=1 / "£
@ 1 @ l""’
Ni(€%) = 5(1"6 ) e
.
1 bo
Na(€%) = (1 + ¢ 3-4 .
a(€%) = 1+ 5-4) .5.‘.,
a =2-1) +r ":,':::
Y
WY
NB =1 7""‘ ‘
6? = 0. ‘
I‘;

Full integration for this element corresponds to a 2x2 Gauss quadrature rule.

° P

We now describe the interpolation procedures for the natural-coordinate strains, (2.23)- ‘fﬁ:
(2.31) for 4-ANS shell elements. R,
X
3.1.1 Interpolations of €s, €5y Knng, and xge.  Let us recall from (2.23) the s
membrane strain 5 .:;';
° T u !
€ee = b 35, (3-5) 2
Voo
%)
‘. Observe that, along an n-constant line, u,¢ and z,¢ remain constant whereas, along a ¢- PY
constant line, u,, and z,, remain constant. Therefore, A; and t, remain constant along :,\'n
any n-constant line whereas A4,, and t, remain constant along any £-constant line. These \“:\
2 simple observations provide basic properties of the product form of the natural-coordinate :’_:.u-
& strains (2.23)-(2.31). o
Hence, the axial membrane strain, ege, remains constant along any ¢-line, since t¢, A; ‘:5_
)

and u,s, are constant along any ¢-line. Similarly, ¢, remains constant along any n-line.
Hence, the two membrane strains maintain a constant strain state along the two natural-
coordinate lines, thereby satisfying the patch test requirement.

Interpolations of x,, and x¢¢ are thus constructed in the same way as in the case of ¢« X
and ¢,,.
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In other words, these four strains are obtained in a straightforward manner by substi-
tuting into (2.23), (2.25), (2.28) and (2.31) the standard isoparametric coordinates and
displacements, and their derivatives via the shape functions given in (3.4).

3.1.2 Interpolation of Transverse Shear Strains, ¢s; and ¢,

Since there are several important features associated with the present interpolations of
these two strains, we recall the two strains from (2.26) and (2.27):

Ju
T T ] :
e =t3 _asg’*'t‘u (2.26)
Ju
_ T T
= +t 2.27
=t 35 s, (2.27)

In the above equations, the variational operator, §, or the finite incremental operator, 4,
has been omitted for presentation clarity.

First, let us address the well-known transverse shear locking problem (Zienkiewicz, Taylor
and Too, 1971; Pawsey and Clough, 1971; MacNeal, 1978): that is, the interpolation of
the second terms, t7d and t7 @, that appear in the above two transverse shear strains. In

the context of the prment constructxon, in order for the term, t; T34, to be constant along
the £-line, we must have § constant since tf remains constant along the £-line. This can
be accomplished by adopting the following interpolation for 11:

2 2
=Y Y N(O)N,(n) G4 (3-6)

Similarly, we adopt for interpolation of tf;ﬁ:

~1
~—

2 2

L=

-

.,
i\

so that it remains constant along the n-line.

The net effect of the above two modifications is the same as the widely adopted reduced
integration procedure used to avoid the transverse shear locking phenonenon which is dis-
cussed in (Hughes, Taylor and Kanoknukulchai, 1977; MacNeal, 1978; Lee and Pian, 1978;
Pugh, Hinton and Zienkiewicz, 1978; Hughes and Tedzduyar, 1981; Wempner, Talasiidis
and Huang, 1982; Crisfield, 1983; Park and Flaggs, 1985; Park, Stanley and Flaggs, 1985;
Park, 1984), among others. However, no rank deficiency is introduced as a consequence
of the present modifications in @ for both 4¢ and <,. This is because the n-dependency
in Q for v¢ and and the ¢ dependency in 14 for v, are not compromised as a result of the

14
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foregoing modifications. Further discussions on rank deficiency vs (£, n)-dependency may
be found in Park (1984).

Second, we will address the first term in v, viz, tT -g%. Since we must have, for consistency,
a constant value for this term along the &-line, the unit normal, t'f, must remain constant
along the &-line.

Observe that, if tf is to remain constant along the ¢-line, {z,, ¥y, 2.} and A, must
be evaluated at & = O for each integration point while still substituting the appropriate
value for n. To be specific, we evaluate

d
t(6=0, ms) " 55-(&: 1) (3-8)

where the coordinates, (&;, i7;), denote spatial (2 x 2)-integration points.

For «,, we evaluate in the opposite way, viz,

tT (&, n=0)- g—;;(&, n;) (3-9)

3.1.3 Interpolations of ¢, and x¢,

The derivatives in the inplane bending strain, eg,,, and the twist, x¢,, must be evaluated

to preserve constant strain states along each of the natural-coordinate lines. It is noted
that eg, consists of two product terms: t'g . F"% and t?; . -g:%. The first term implies that
the parameteric derivative, 5"%, is projected on the vector component, t¢, that is parallel

to the &-line. In the first term, -a‘%-‘; remains a constant along n-line. Hence, if the first
term is to maintain a constant strain state, so must t¢.

To maintain such constant strain states with minimum mesh sensitivity, we introduce
the following approximations. We sample €¢ ¢ , €¢ n, and €, n  at the element centroid
(€0, mo). At each integration point (£, n), we introduce a rotation vector, n, such that

n= (afo X ac)/lafo X a(l (3 : 10)

which rotates the normal vector a,, at the centroid to coincide with the normal vector a,
at the integration point. The projection of (ae0 , a,,o) at the centroid onto the shell surface
at the integration point is thus obtained by (Gibbs, 1960):

ag = (ag, a5)ag, + (1 —ag, -a)(n-ag)n - (as - ag,)a, (3-11)

a, = (ag, -ag)a,, + (1-ag -ac)(n-a,)n—(a;-a, )a (3-12)

where (ag, a,) represent the projection of (a¢,, an,) on the shell surface at the integra-
tion point (£, n).
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Hence, from (3.10)- (3.12) and (2.14) one obtains

{ag } - [tu tu] {ae:, } (3-13)
-9 t21 tz2] (A

The inplane bending strain at the integration point is obtained via the following tensorial
transformation:

€ep = 2tutgle¢°¢° + 2t12t22€,,°,,° + (tutgg + t12t21)efoﬂo (3 . 14)

The projected inplane strain, €¢, given by (3.14), thus maintains a constant strain state
at each integration point.

Remark 8.1: When the shell surface is flat, the preceding treatment of the inplane strain
interpolation appears to be akin to the Pian and Sumihara transformation (1984) of the
tensor stress r’f to the physical stress component ¢*/ for which they used the isoparametric
Jacobian matrix evaluated at the element centroid. For the finite element discretization
based on the natural-coordinate system, the present interpolation of €¢, as given by (3.14)
and the assumed stress interpolation of 0¢? as given by Eq. (34) of Pian and Sumihara
(1984) are different. The present interpolation replaces the inplane bending strain at each
integration point with the one at the centroid via the centroid-to-integration point shell
surface coordinate transformation. On the other hand, a straightforward application of
the Pian and Sumihara transformation would require that the strains at each integration
point are first transformed to the corresponding ones in terms of the centroid natural-
coordinate system. The transformed inplane bending component at the integration point
is then replaced by the centroidal one. Both approaches are easily implementable for 4-
node elements. However, for 9-node elements, extension of the present interpolation for
9-node becomes easier than the Pian and Sumihara approach as we will discuss in Section
3.2.3.

3.2 Strain Interpolation for Nine-Noded ANS Element

When the shell surfaces are approximated by the isoparametric curved shape functions
(see, e.g., Zienkiewicz, 1971 or Irons and Ahmad, 1980), the limitation principle (Frajis
de Veubeke, 1963) states that the strains should vary linearly for 3-node elements. From
the theoretical viewpoints, the mitigation of element locking and spurious mechanisms
resulting from reduced integration can be considered as efforts to adhere to Frajis de
Veubeke's limitation principle. Efforts to mitigate both locking and spurious mechanisms
for 9-node elements can be found in Wempner, Oden and Kross (1968), Ergatoudis, Irons
and Zienkiewicz (1968), Ahmad, Irons and Zienkiewicz (1970), Irons (1976), MacNeal
(1982), Parisch (1979), Park (1985), Park and Stanley (1986), Bathe (1987), Salmon(1987)
and Juang (1987).

In essence, the new 9-ANS shell element is based on the independent approximations of
the two fields in terms of the nodal variables: the displacement and the strain feld within
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an element interior. The choice of the nodal displacements and rotations as the nodal
variables for the present 9-ANS shell element presents only a special case; they can be
stresses or strains, as well. Thus, it is this philosophy that is adopted in the discrete (finite
element) version of the thin shell equations (2.23)-(2.31) for a 9-node shell element.

However, while those two fields are interdependent (through the strain-displacement re-
lations), the assumed strain approach takes the liberty of selecting the approximations
independently — each in terms of the nodal displacement variables. This is similar to
what is done for “hybrid” elements via a mixed variational principle, except that there an
element-level matrix inversion is required to achieve the linkage between strains and nodal
displacements, while in the assumed-strain approach this linkage is made explicit.

This allows most of the usual element requirements (e.g., continuity of the displacement
field, completeness of the strain field, convergence, locking-free behavior, etc.) to be met
a priori. However, in particular, the assumed natural-coordinate strain (ANS) approach
focuses on the physical covariant components of the strain field to reduce element sensitivity
to mesh distortion. We will now describe the construction of a new 9-ANS shell element

in detail.

3.2.1 Interpolation of ¢;,

In the old construction, the curvilinear membrane strain along the £-line for a fixed n-line
employed the formula

due 1 OJue

w0 _ O _ 1=
“¢¢ = 35, T A O¢ (3-13)
wherein u, is the covariant displacement defined by:
_¢ . e o & .
ue—-z-(E—l)u1+(1—£ )u2+§-($+1)u3 (3-16)

in which #; are the covariant components at the nodal points, i, that are tangent along
the ¢-line. Substituting (3.16) into (3.14) and making use of the relations (2.13), one
can derive an explicit form for &;,. It was shown in Park and Stanley (1986) that the
strain &g, thus derived, introduces inconsistencies. The complicated interpolations oftered
therein can thus be viewed as corrective measures to improve 625.

To illustrate the the present membrane-strain construction, let us consider a 9-node shell
surface as shown in Fig. 3. Both the coordinates and the displacements are interpolated
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by the bi-quadratic Lagrange shape functions as given by

NEN =9

Na(é,n) = Z Z N.(€) Nc(”)

r=lai=1
Ni(€) = Fe(e* 1)
Na(€%) = (1-(€%)?)
No(€7) = 3€%(€7 +1)
a =3s-1) +r (3-17)

NB
wi(€?) = 3(1-VEeT)

2

wi(€?) = 3(1+V3e%)
& = -1V3
£ = +1/V3

It is noted that the most one can realize for the covariant natural-coordinate strain, egf,
when interpolated by (3.1), is a linearly varying field along the £-line. It was shown in
Park (1985) that the strains based on the quadratic polynomials yields an equivalent of
the desired linearly varying field only if sampled at the two Barlow points, & = =1/v/3.
Hence, a linearly varying strain field along the £-coordinate line can be constructed by the
following strain interpolation:

Q
€ce
-

((6) + Gel-6)} + ge{ee(@) —qel-8), &=1vE (@19

N

which was extensively used in Park and Stanley (1986).

We now come to the second key aspect of the present construction: that is, the way we
obtain the natural-coordinate strains at any point in the element interior. Notice that
the covariant membrane strain, €¢¢, given by (3.18) can directly represent the natural-
coordinate strain at any point in the element since the directional derivatives with respect
to &, i.e., z¢ and u¢, represent its values at any n-line. This is an important improvement
over the old construction wherein the strains in the element interior were obtained by
interpolating the strains along the six Hrennikoff lines.

For computer implementation ease, we reexpress (3.18) in the following form:
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NEN
€oe = Z bty (3-19)
a=1
where
NB
bett = Ews(f) [Na‘dse tzg(f)] oo . (3 - 20)

=1
where w;(€) are the weighting functions as give in (3.17).

Remark 3.2: The above explicit form for €3, given in (3.19) constitutes a key contribution
of the present 9-ANS construction as it is valid everywhere in the element; it is linearly
varying along the {-line. Hence, we have circumvented the strain interpolation of €;, by
utilizing the strains along the three Hrennikoff lines, viz, n = (-1, 0, +1), as previously
employed in Park and Stanley (1986).

Remark 3.3: The strain interpolation along the £-line for €¢¢, as derived in (3.18), does not
require reduced integration as it exactly satisfies the constant and linearly varying strain
states, thus causing no element locking. A similar approach was adopted in Crisfield
(1984), Stolarski and Belytschko (1982, 1983) and Huang and Hinton (1986). It is this
locking-free property of the present element construction that is distinct from the family
of curved shell elements based on the standard isoparametric construction. In addition, as
long as one invokes 9-point integration, the resulting element possesses its full rank, thus
no spurious mechanism occurs. A symbolic analysis that illuminates this characteristic is
given in Park (1984).

Reamrk 8.4: In the assumed covariant strain approach (Juang and Pinsky, 1987), one
interpolate a nonphysical strain
aue

3 (3-21)

&7 =7
Hence, the difference between the present physical-component strain (3.1) and the covari-
ant strain is the absence of A¢ in its denominator. If 53" is interpolated to vary linearly
along the £-line, then the two formulations coinside only if A¢ is constant along the £-line.
This happens only for a constant curvature, viz, when the £-lines lie on a circle. For dis-
torted meshcs, even though the elements may lie on a cylinder or sphere, the £-line does
not necessarily lie on a constant curvature trajectory. This difference may play a crucial
role on element performance for distorted meshes.

Interpolations of ¢,,, x¢¢ and x,, follow a similar procedure for interpolating ¢¢c as
described above.

3.2.2 Interpolation of Transverse Shear Strains, ¢, and ¢,

19
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We recall again the two strains from (2.26) and (2.27): ;
o= t‘;"g-;: +tla (2.26) ;1

A

Tn = t{;;% +tla (2.27) 5

In order to avoid locking due to inconsistent interpolations of the transverse shear strains,
one must employ the same interpolation procedure adopted for €¢¢ in the preceding section.
The resuiting expression for the two interpolated transverse shear strains become:

(== SN S

e = ';'{‘74(&) +7e(~6)} + ‘2%{‘7%(&) ~ve(=&)} &=1/V3 (3-22)

R

. &

1 3 1

Tn = 5{70(&) + (-6} + 2—'&'{'7'!(&) ~ Ta(=&)}, & = 1/\/5 (3-23) o

(3.

For computer implementation ease, we reexpress the above equations in the following form: -

NEN NEN Q;

ve= Y bitut+ Y biac (3-24) X

a=l a=1
where NB E &
b =D wi(€) [N,,,,,s! tf] . (3-25) )
=1 a : "
NB R
byt =3 wi(8) [Natf] (3-26) >
i=1 wt @ :."
LK
Similarly, an explicit implementable expression for <, can be obtained by interchanging - :‘::;
(&, n) with (£, n,) into the preceding equation. - 'i::
]
u .‘
3.2.3 Interpolations of ¢¢, and ¢, "
Essentially, we extend the procedure outlined for the 4-ANS case to the -ANS element as % o
follows. We sample ¢¢¢, €¢, and ¢,, at the four Barlow points, (£ = =1/v/3,n = =1/\/3). ) ::tf
At each integration point (&, 1), we transform the four inplane bending strains evaluated K )
at the four Barlow points via the same tensorial transformation as was done for the 4-ANS »

case (3.14): o

b gb b — b b (e b b b -
€en = 2iitag€e,q, T 2ota0€n T (81830 F {intay) g q, (3-27) @ ooy




where the superscript and the subscript, b, refers to one of the four Barlow points and
the matrtix components, t{-’j, have the same geometrical meaning as the one derived in

(3.13) except they relate the projection on the shell surface from a Barlow point to the
integration point.

The inplane strain, ¢¢,, at the integration point is then obtained by interpolating €, as
follows:

4
€n = ZWB(€9 ’7) : G'E,, (3- 28)
b=1

where

2 2
Wc(f: n) = Z Ewr(E) wn(ﬂ)

r=1e=1

wi(€) = 3(1-V3E?) (3-29)

wi(€%) = 301+ V3%
e =2s~1) +r

Similarly, the twist, K¢y, are obtained by interchaning €%, .

4. Preliminary Evaluation of Present ANS Shell Elements

We present a theoretical analysis of 9-ANS element for an inextensional bending case, for
a cylinder subjected to uniform pressure, and a comparison of the present 9-ANS element
with the so-called covariant-strain elements (Dvorkin and Bathe, 1984; Pinsky and Jang,
1986). We will then give a priliminary performance of both the present 4-ANS and 9-ANS
elements for two simple shell problems: a pinched cylinder and a pinched sphere.

4.1. Inextensional Bending of Arch

The linearly varying strains derived in the preceding section should yield a locking-free
and mechanism-free curved shell element for most applications. For thin shells, however,
accurate solution of inextensional bending problems remains an important part of shell
analysis for many applications such as sheet metal forming. For an arch in Fig. 3, the
present strain-displacement interpolations for the membrane strain (3.19), the bending
strain that is obtained by replacing (v v w) in (3.19) with (&, &, @), and the transverse
shear strain (3.24), respectively, yield the following results:

1
€ee = F{—Rsin¢ ug + 4§R(1 —~ cos §) wo} (4-1)
1




o Heme-(H3CSRAYN 11
Ree = {1+ (Asge82)2) . (1 + 4(doee2)3}d 'R R

sin ¢ sin ¢

(4-2)

1e= 220 - 9118) (4-3)

where

%
_ 4 (1—cos¢\?|” 2(1 - cos §) 1
f(¢)—1‘[1+§( sin ¢ )] ¢sing 1+ 3(1~cosg) -4

The theoretical solutions for the above inextensional bending case are

1 1 )

€ee =0 , "ec=('k-,-§ y 7e=0 (4-3)

It is easily verified that the membrane strain (4.1) remains zero due to the small strain-
increment assumption invoked in the present formulation. Hence, the two remaining mea-
sures of accuracy for the present strain approximations for this inextensional bending case
are: the error in the curvature itself, €ending, and the error in the transverse shear relative

to the curvature change, ¢,5car:

¢/ sin g - {1 + §(155262)2}

. =] - sin @ .
oding =1 T UGS (1 (DT o
,.h..,,~o[ f(w)zdg] =21 40

Figure 4 shows the errors in the present approximation of the bending strain in terms of
the element size, ¢. For ¢ = 60° which corresponds to the element arc length of 2Rd, the
error remains within one percent. In Fig. 5, the errors in the relative transverse shear as
defined in (4.7) are plotted against the shell parameter R/h for one-tenth of a percent and
one percent error. Only for extremely thin shells-for example, R/h ~ 1000, which is not
shown in the figure—one needs ¢ < 20° if the ratio in the two energy components, €shear:
is tc remain less than one percent. Hence, we conclude that the present formulation can
capture inextensional bending deformations with adequate accuracy, provided the element
size is not too large.

4.2 Cylinder under Uniform Internal Pressure

For the case of a cylinder subjected to uniform internal pressure, we obtain from (3.19)

and (3.24)
Wo

Q
e“ =
L34

= D

<
v

e

1k % BN &
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which is exact. Hence, the present formulation yields the exact solution for this classical o't
problem. °

o
. 6:::i:
0 |'l
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4.3 Comparison with Covariant-Strain Formulations

As an additional error analysis, it is noteworthy to compare the present formulation with "

the so-called covariant-strain formulation (Dvorkin and Bathe, 1984; Pinsky and Jang,

1986). For this purpose we recall the phystcal membrane strain by the present formulation a0}

from (3.23): o
ansé __ 1

€ee = jq(z,e Uyg HYig Vig +2rg Wie) (4-9) X

The membrane stress is then computed by X

ote = By (410 5

which varies linearly along the arch. PY

In contrast, in the covariant-strain formulation one must obtain the following non-physical 2]
quantity s
€er = (Tt Ve v +2 e we) (4-11)

Notice that the above interpolated covariant strain is nothing but the denominator of the e
present interpolated form of the assumed natural-coordinate strain (4.9). The computation i
of stress based on the covariant strains for the arch, however, must adopt the following '.A.
non-physical constitutive matrix: ::::::

IO
LTl .

Oge = Ecme‘é‘z", OF Oap = C;‘;,".,&eﬁ‘;" (4-12) PEN

where 2
cov _ 95a d9Sp c 35S, 355 o

= ;. 4.13 ey
*878 = “3z; 3z; ™ 3z) oz (4-13) R

in which CJ7 ; is the non-physical material tensor that corresponds to the covariant strain
€7 and

{351 382 653} = {65’5 35,, 85,}, {.‘4‘.‘1 L2 .’123} = {:z: y Z} (4 . 14) !

The expression for C7., ; shows that it is a complex function of the appropriate components ®
of the Jacobian matrix: 1'451
T)¢ T Iy ‘] ) 'z
J=1ve ya Yy (4-15) '
2,6 2y 2y J oy

Hence, even though the covariant strains €5 are interpolated to vary linearly, the cor- St
responding non-physical contravariant stresses for the covariant-strain formulation will in ity
\
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general not be the case. For example, the covariant membrane stress for the arch case
is seen to destroy the linearly varying stress field unless E°°¥ is forced to be a constant
(see (4.13)). For general applications, such arbitrary adjustments of the covariant material
tensor so that its components become constant, present themseives as a task.

4.4 Preliminary Numerical Results

The present four and nine-node ANS-shell elements have been implemented and tested for
two simple shell cases, viz., cylinder under a concentrated load and a pinched hemisphere.
Figure 6 shows the performance of both 4-ANS and 9-ANS elements for the pinched cylin-
der problem which was also studied in Park and Stanley (1986). The present 4-ANS and
9-ANS elements are designated as 4-ANS™ and 9-ANS™. We note that the new 9-ANS
element (9 — ANS™) element overshoots the solution. For the 4-ANS element, both the
old and new 4-ANS manifest about the same convergence rate. This, however, is not the
case for the hemisphere problem. As shown in Fig. 7, the new 9-ANS shell element (des-
ignated as 9 — ANS™) converges at the second grid (9 x 9) whereas the old 9-ANS element
converges at the refined grid (17 x 17). As for the new 4-ANS element, the new element
maintains the performance as the one obtained by the old 4-ANS element in conjunction
with a rigid-mode projection designated as 4 — ANS/P. This is a signigicant improvement
over the old 4-ANS element and over the 4-STG/P element that is also compared in Park
and Stanley (1986) and Stanley (1985).

It should be noted that a significant change in the construction of the new family ANS
elements has been in the way the inplane bending strain and twist (e¢,,%¢,) are interpo-
lated even though interpolations of the rest of the strain compoments have been somewhat
improved from the old construction. We will report in the coming months on the improved
performance of the new 4-ANS and 9-ANS elements via production-level sheli analysis.

S. Discussion

In this Part, we have presented in detail the construction of both 4~-ANS and 9-ANS shell
elements based upon the formulation presented in Part I (Park and Stanley, 1987) that is
suitable for assumed-strain shell elements. Major emphasis of that formulation has been to
incorporate as much shell behavior as possible into the basic formulation. One important
consequence of this emphasis is the modification of the in-plane bending strain in the spirit
of Sanders (1959). Other possibilities exist in the basic formulation, which may be further
improved to better capture shell behavior, as a complete hierarchical approximation of the
basic formulation has not yet been carried out.

It should be noted that, while we have endeavored to preserve the well-known first-order
thin shell theory with transverse shear effects, the present element construction has avoided
two related difficulties that stem from a direct application of the classical thin shell equa-
tions: rigid-body motions and the derivatives of the two fundamental surface coefficients,
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A¢ and A,. Avoidance of these two deleterious effects by the present element construction
has been accomplished by the use of the inertially fixed translational displacements and of
the corotationally based two-rotational variables.

Even though we construct the basic element attributes-the strain-displacement matrix
(known in the literature as B-matrix)-based on the natural-coordinate system, we pro-
ceed the evaluation of the internal stiffness force based on the orthogonal shell-surface
coordinates. Hence, the present element can be easily plugged into any existing shell an-
alyzer for both geometrical and material nonlinear problems. This is in contrast with
the so-called covariant shell elements (Dvorkin and Bathe, 1984; Pinsky and Jang, 1986)
wherein one works with a set of non-physical strains, which amounts to embedding the
fundamental shell-surface coefficients into their corresponding constitutive matrix. For
example, years of experience in the solution procedures for plasticity analysis based essen-
tially on the amount of physical strain increments may not be of use in the solution of
plasticity problems based on the covaraint strain elements, since the amount of covariant
strain increments is dependent on the element size.

Although not elaborated in this Part, the strain increments need not be infinitesimal. In
particular, the displacement and rotation increments for large rigid motions can be arbi-
trarily large. This will be corroborated in Part III, which will report on the performance
of the present elements. Specifically, for nonlinear elasticity problems without bifurcation
possibility, the present element together with an element-independent corotational algo-
rithm need not accumulate stresses, since the displacement and rotation increments can
be measured from the initial state to the current state.

An error analysis of the present element fur uniform membrane strain state and inexten-
sional bending state (Fig. 5) illustrates that the present 9-ANS element possesses improved
transverse shear modeling and membrane modeling compared with the old 3-ANS element.
For example, in no case does the error in the computed inextensional bending exceed one
percent, for up to a 90°-span. This is reported in Fig. 6. The mean square error in the
transverse shear energy, though, restricts the allowable element size as the shell becomes
thinner as illustrated in Fig. 7. A preliminary numerical test of the new 4-ANS and 9-ANS
shell elements on the pinched cylinder and pinched hemisphere indicates that the new el-
ements improve significantly for shell surfaces with double curvature. We will examine in
more detail their potential improvements through production-level computations.

As for improving the accuracy of the transverse shear strains, this is where a rigorous three-
dimensional analysis should shed light on the reliability of C%-type thin shell elements.
We intend to follow up this aspect in Part IIL It should be noted, however, that such errors
are consistent with the bounds of errors in most thin shell theories.
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PARAMETRIZED MULTIFIELD VARIATIONAL PRINCIPLES IN ELASTICITY:
I. MIXED FUNCTIONALS

CARLOS A. FELIPPA

Department of Aerospace Engineering Sciences
and Center for Space Structures and Controls
University of Colorado
Boulder, Colorado 80309-0429, USA

SUMMARY
A one-parameter family of mixed variational principles for linear elasticity is constructed. This

. family includes the generalized Hellinger-Reissner and total potential energy principles as special

cases. The presence of the free parameter offers an opporturity for the systematic derivation of
energy-balanced finite elements that combine displacement and stress assumptions. It is shown
that Fraeijs de Veubeke’s stress-assumption limitation principle takes a particularly elegant ex-
pression in terms of the parametrized discrete form. Other possible parametrizations are briefly
discussed.

GOVERNING EQUATIONS

Consider a linearly elastic body under static loading that occupies the volume V. The body
is bounded by the surface S, which is decomposed into S : S3 U S;. Displacements are
prescribed on S; while surface tractions are prescribed on S;. The outward unit normal
on S is denoted by n = n;. The presence of internal natural or artificial interfaces is not
treated in this paper.

The three unknown volume fields are displacements u = u;, infinitesimal strains e = e¢;;,
and stresses ¢ = o;;. The problem data include: the body force field b = &; in V,
prescribed displacements d on S, and prescribed surface tractions t = ; on S,.

The relations between the volume fields are the strain-displacement equations
e=3(Vu+VTu)=Du or e&;=3(u;+u;:) inV, (1)
the constitutive equations
c=Ee or 0y = Eijrierr inV, (2)
and the equilibrium (balance) equations
—dive=D‘¢=b or o0y;+b=0 inV, (3)

in which D* = —div denotes the adjoint operator of D = 3(V + V7).
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The stress vector with respect to a direction defined by the unit vector v is denoted as
Oy = 0.V, OF 0gi = 0;;v;. On S the surface-traction stress vector is defined as

o, =o.n, OF Opi = O;;n;. (4)
With this definition the traction boundary conditions may be stated as
o=t or oiing = t; on S;, (5)

and the displacement boundary conditions as

-

u=d or u; = d; on Sy. (6)

NOTATION

Field Dependency. In variational methods of approximation we do not work of course
with the exact fields that satisfy the governing equations (1-3,5-6), but with independent
(primary) fields, which are subject to variations, and dependent (secondary, associated,
derived) fields, which are not. The approximation is determined by taking variations with
respect to the independent fields.
An independently varied field will be identified by a superposed tilde, for example 4. A
dependent field is identified by writing the independent field symbol as superscript. For
example, if the displacements are independently varied, the derived strain and stress fields
are

e*=4(V+VT)i=Did, o*=Ee"=EDsi. (7)
An advantage of this convention is that u, e and o may be reserved for the ezact fields.

Integral Abbreviations. Volume and surface integrals will be abbreviated by placing
domain-subscripted parentheses and square brackets, respectively, around the integrand.
For example:

(¥ [rav, (f1s ¥ /s ras, (s [ ras. 10 ¥ [ a5 @

If f and g are vector functions, and p and q tensor functions, their inner product over V
is denoted in the usual manner

gy /V fgdv = /V fgdV,  (pav & /V p.qdV = / pijais AV, (9)
\"4

and similarly for surface integrals, in which case square brackets are used.

Domain Assertions. Finally, the notation

(a =b)v, [a = bls, [a = b]s,, [a = bls,, (10)

is used to assert that the relation a = b is valid at each point of V', S, S4 and S;, respectively.




THE HU-WASHIZU PRINCIPLE

There are several essentially equivalent statements of the Hu-Washizu functional of linear
elasticity. The starting form used in this paper is the four-field functional presented in
Washizu!

% (4,8,,t) = (0%, 8)v + (3, — &)y ~ P* (11)

where Pt is the “forcing” potential
Pi(i, t) = (b, @)y +[t,d - d]g, + [£, 1], (12)

The functional (11) will be called t-generalized (traction-generalized) in the sense that the
volume fields i@, &, & and the surface field t are subject to independent variations, whereas
in the conventional form of the principle the relation [t = &,]s, is enforced a priori. The
superscript ¢ is used to distinguish it from the d-generalized variant

ng (a,é,s,d) (13)

in which the surface displacements d are varied independently from the volume displace-
ment field u. Functionals of the form (13) require the introduction of internal interfaces
and are studied more extensively in a sequel paper.2

Application of the divergence theorem
(0,e%)y = —(dive,ujy + [0a,u]s (14)
to transform the (&,5e") term yields the first variation of (11)

§TIE, = (0° — ,68)y + (e® — &,68)y — (diva + b, 8d)y

s . e . s s . . (15)
- [t = @,,61]s, — [@ —d, t]s, — [t — 7n,61]s,.

Setting 6§11, = 0 yields the Buler field equations and boundary conditions satisfied by the
ezact solution:

(¢ = Ee)y, (e=e®*)y, (dive+b=0)y, [a,,=1':]s‘, (o0 = t]s,, [u=a]5¢.

A PARAMETRIZED MIXED VARIATIONAL PRINCIPLE

Constraining the Hu-Washizu functional by selectively enforcing field equations and
boundary conditions a priori yields six functionals listed in Ch. 4 of Oden and Reddy’s
monograph3. Of particular interest for the present study are the t-generalized Hellinger-
Reissner functional

% (d,d,t) = —3(3,e%)yv + (3,e*)v —~ P, (17)

the t-generalized potential energy functional
N5 (d,t) = 1(0*,e*)y — P, (18)
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In addition, Oden and Reddy? list an “unnamed” functional whose t-generalized version
is
I, (d,,t) = (o, e%)y — %(&, e’)y — (a,e%)y — Pt (19)
These three functionals are special cases of the following parametrized form
I (@, 5,t) = 3(1 — 1) (0", e")v - 17(3,¢%)v +7(3,e*)v - P*, (20)

where v is a scalar. If ¥ = 1,0, —1 we obtain the functionals IT%, IT% and IT%,, respectively.
The first variation of (20) is

STI¢ = 4 (e® — e%,65), — (div o” + b, 8id),,

s - - - a o - (21)
- [t - o, 86] g, - [t~ o7,60)] 5, ~ [u -4, Gt] o
in which ¢7 and o] denote the y-weighted stresses
o7 45+ (1-7)0%, 7 & 45, + (1 -)ok. (22)

If 4 # 0, the Euler equations and natural boundary conditions are

(e*=e%)y, (dive"+b=0)y, [o] = f]s,, (0] =t|s,, [u=d]s,. (23)

The constitutive equations do not appear since they are enforced a priors in IT}. If v = 0,
the first Euler equation drops out.

ENERGY BALANCING
Distances. Let U(¢) = 4(E¢,¢)v denote the strain energy associated with field e. We may
rewrite (20) as a potential-energy deviator

I =15 - yU(e* - e%), (24)

because

m-ms
= g’e"_e“ - 5‘-6",e" =
(6" - 7,e* —e%)y = (Ee" — Ee?,e" — e%)y.

If E is positive definite, U(e* — e?) > 0 and consequently
of{ <M% if y>o0. (26)

If 4 is kinematically admissible, ITL, exceeds the exact potential energy as shown below.
It follows that to improve solutions in energy we expect to take 4 > 0. Thus principles
associated with v < 0 have limited practical interest.
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Let IT(u) denote the exact potential energy

(u) = 4(,e}v - (b,u)v — [, uls, (27)
where ¢ and e denotes the exact stress and strain field, respectively. If @1 is kinematically
admissible and thus satisfies [u = d|g,, then the energy distance from IT} (1) to the exact
functional (27) is (see e.g. §34 of Gurtint)

M ~ M= 3(0" - 0,e* —e)y =Ule* -e) (28)

Optimal Approzimation. To derive an “energy balanced” approximation we impose the
condition IT}, = I, which yields

_ Ufe*—e) (0% —-o0,e" —e)
Topt = Ule* —e®) ~ (o% —a", e —e?)’

(29)

For example, if we assume that the exact stresses and strains lie halfway between the
approximate fields,
o=4(o"+3), e=4(e"+e), (30)

then Yope = 4.
THREE-FIELD FINITE ELEMENT DISCRETIZATION
To construct a 3-field finite element approximation based on IT, globally assume*
(ﬁ = NQ)Va (5‘ = Aa)\h [E = SS]S¢ (31)

Here matrices N, A and S collect generalized displacement shape functions, internal stress
modes and boundary traction modes, respectively, whereas column vectors g, a and s col-
lect generalized displacementst, stress mode amplitudes, and surface traction amplitudes,
respectively. The derived fields are

(e* =DNq=Bq)y, (¢*=EBq)y, (e°=E"'d=E"'Aa)y. (32)
Inserting these expressions into IT} we obtain the algebraic form

It (a,q,s) = %(1 - 1)qTK.,q - -%'yaTCa +vq7Qa - q"f4 —sTRq - s7f,. (33)

* Following usual practice in finite element work, the components of & and e will be arranged
as column vectors whereas the moduli in E will be arranged as a square symmetric matrix.

t I q are nodal displacements, N contains conventional shape functions. But for the present
study we need not specialize to that level.
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The matrices K,,, C, Q and R that appear in (31) are called displacement-stiffness, com-
pliance, leverage and boundary-dislocation matrices, respectively, and are given by

K, =(BTEB)y, C=(ATE"'A)y, Q=(BTA)y, R=[STNjs, (34)
Both K, and C are symmetric. The forcing vectors are
f,= (NTb)y + [NTils,, f,=-[STds, (35)

Vector f, contains generalized forces (conjugate to q) whereas f, contains generalized
displacements. Making (33) stationary yields the linear system

—4C ’7QT 0 a 0
[1‘2 (1-7K, —RT] {q}={fq} (38)
0 -R 0 ] f,

The first matrix equation is the discrete analog of (e* = e”)y in (23) and expresses
internal compatibility. The second one is the discrete analog of the next three relations,
and expresses equilibrium. The last relation is the discrete analog of [u = 1], and enforces
boundary compatibility.

Since there is no force term on the first matrix equation, the stress amplitude vector a can
be readily condensed out if C is nonsingular, and we get

= - &

K=(1-7K,+7QC7!'QT = (1 -9)K, + 1K, (38)

is the effective stiffness matriz. This is a y-weighted combination of the displacement-
assumed stiffness matrix K, and the stress-assumed stiffness matrix K, = QC '1QT. If
the assumed displacements satisfy [d = &]s‘, the contribution from (t, — a) drops out
and we simply have the conventional stiffness equations

where

Kq=f 39
]

LIMITATION PRINCIPLE

The famous limitation principle of Fraeijs de Veubeke® takes on a particularly striking
algebraic representation in terms of the parametrized matrix system {(36). This principle
applies when the derived stress field ¢® is contained in the assumed stress field a:

730" =EDi (40)

This inclusion can be expressed in matrix form as

d=Aa=EBa,+ A;a,=[EB A,]{:"} (41)




3
"
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®
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Vo
Here a, contains the same number of entries as q whereas A, contains “excess” stress -‘?‘;
modes. Inserting (41) into (36) and calling Q, = (BTA,)y and C,, = (ATE"!A,)y we D
get N
-vK, -1Q, 1K¥ 0 a, 0 s;::
-1QY -4C.. QT 0 a., | _)o (42) b
K. Q. (1-vK., -RT|)q f, o
0 ] -R 0 8 f, -
The first two matrix equations give a, = q and a, = 0. Droping the equations associated r"
with the extra stress modes reduces (42) to o
v
-1K. 1K 0 1(a 0 i
7K. (1-7Ks -RT|[{qp=(1, (43)
I 0 -R 0 s f, R
which obviously condenses to (37) with K = K, for any v. The solution (q, a, s) becomes ﬁr ;{i
independent of 4. In other words, it is useless to inject additional degrees of freedom in the g ‘
i stresses beyond o® if the three-field variational principle is used. Furthermore, if % = o 1o
there is no point in using anything else than the potential energy principle v = 0. 2 ;
In fact the limitation principle expresses nothing more than the algebraic identity, valid ::::v,
‘o for any 4, '.l::::
-4X 1Y X x 0 ::::::
i YT -4z 4T 0p=40 (44) oy
X Y a-9x]| [x Xx ..
)
where X is symmetric and Y, Z arbitrary. :.:::.:_
U
Constant Stress Assumption. If the derived field ¢* varies over V, assuming a constant ‘.:q::',’
stress field & for & is a safe way to get around the limitation principle. In this case it is s ¥
l convenient to take a = & and A =1 (the identity matrix) in (31) so that (¢ = &)y. Then ..‘
the stress-assumed stiffness matrix is Nt
: —_— —T—— ' g'l::f
K,=vB EB (45) "ﬁ%
where v denotes the total volume v = (1)v, and B and E are the over-th»-volume averages . f
= —_1 _ o
@ B = (B)y /v, E =(E Yy/v (46) ‘.~§
The effective stiffness matrix (38) is a weighted average of K, and K,. Since K, is N :
8 typically rank deficient, v = 1 is excluded. )
ﬁ TWO-FIELD FINITE ELEMENT DISCRETIZATION B 1
.,'\ i
If the relation [t = @,]s is imposed a priors as an essential boundary condition, t is no ",3
: longer an independently varied field, and ITY, becomes a two-field functional. The last finite . ’} 3
E element assumption of (31) is replaced by ®
ﬂ [t" =0, = A,,a]s‘, (47) :::::..';
']
7 ‘
E e
‘ ]
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where A, denotes the normal projection of A on Sy, and the finite element equations

become o Q4 p)'—" . .
[’7(Q’Y+ P) (1-v)K, ] { q} = { f: } , (48)
P=[NTA,|s, f.=[NTdls,. (49)

A range analysis such as performed in the previous subsection reveals that the limitation
principle does not generally apply if [u # &]5‘. The effect of the additional stress modes
is to improve somewhat the satisfaction of boundary compatibility. But if the assumed
displacements satisfy [u # &]5‘, P and f, drop out and the limitation principle again
holds.

with

TRACTION-CONNECTED ELEMENTS

The preceding results are relevant to the construction of conventional mixed elements,
simply by treating each element as a body of volume V, and the element boundary
as S. Continuity of displacements across interfaces is still required and results in trac-
tion/displacement element connectors s and gbold. If this continuity is relaxed by adding
an additional boundary term, traction-connected mixed-hybrid elements result, for which
displacement connectors (or simply generalized displacement amplitudes) q can be elim-
inated at the element level. As this type of hybrid elements is not so interesting as the
displacement-connected ones, the topic is not pursued here.

OTHER PARAMETRIZATIONS

A one-parameter family of strain-displacement mixed variational principles derived from
the Hu-Washizu functional (11) by eliminating the stress field can be represented as

I5(8,8,8) = }(1 - B)(e",e") — 38(c",&)v + B(o™,e%)v - P, (50)

where 3 is a scalar. For f = O we recover again II% whereas if 3 = 1 we obtain the
Reissner-type strain-displacement principle listed in Oden and Reddy?® generalized with
an independent t:

% (d,8,E) = —1(0%,8)v + (0%,e)v — P (51)

Continuing along this path, a two-parameter, four-field family that embeds both IT? and
M is easily constructed as

15, (8,8,5,8) = 4(1 - B~ )(e% ")y + (1 - Alr{(3e*)v = 3(@,e%)v}
+ (1 =7)B{(0°,e*)y — £(0°,8)v} - P*.
This functional yields stress-displacement principles for 3 = 0 and strain-displacement

principles for v+ = 0. Finally, the Hu-Washizu principle itself may be embedded in a
three-parameter form

(52)

s, = (1 - )y + all}, (33)
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which obviously reduces to I3, for a = 1 and to IT§, for a = 0.

The superiority of one parametrized form variational principle over another as regards the
construction of energy-balanced finite elements is not clear at this time.

CONCLUDING REMARKS

The parametrization (20) of the stress-displacement variational principles provide a uni-
fying framework for the development of finite elements. This framework embodies the po-
tential energy and Hellinger-Reissner principles. and encompasses displacement-assumed
elements, conventional mixed elements and traction-connected hybrid elements. But it
does not cover developments such as displacement-connected hybrid finite elements, in-
compatible elements and the free formulation® To accomplish that one has to continue
the process by introducing a d-generalized version of (20), internal boundaries, internal-
field energy-orthogonal splitting, and selective kinematic constraints. These extensions are
covered in a sequel paper.?
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SUMMARY Ao
e
A one-parameter family of d-generalized hybrid/mixed variational principles for linear elasticity Py
is constructed following a domain subdivisicn. The family includes the d-generalized Hellinger- R ‘ﬂ;‘,
Reissner and potential energy as special cases. The parametrized principle is discretized by in- AN
dependently varied internal displacements, stresses, and boundary displacements. The resulting ‘3.:‘:
finite element equations are studied following a physically motivated decomposition of the stress A:q'-:c
and internal displacement fields. The free formulation of Bergan and Nygird is shown to te a . ey
special case of this element type, and is obtained by assuming a constant internal stress field. The ®
parameter appears as a scale factor of the higher order stiffness. N,
-
INTRODUCTION '.is'E;
variational principles in linear elastostatics. The boundary value problem is as follows. :_,*
We consider an elastic body of volume V' ‘_a.nd surface S : S; U S;. Surface tractions t are f‘ ,.:
prescribed on S; whereas displacements d are prescribed on S;. The internal (volume) ::‘:,:
9.

fields are displacements u, stresses ¢, strains e and given body forces b. The internal field ks
equat’ns aree=Du, e =Eeand D*¢ =b in V, where D = -;—(V +9T), D* = —div, ’

and 5 the elastic modulus operator. The boundary conditions are u = d on Sg and ':::‘.;
g,=tons ::;::::
(U]
The reader is referred to Part I! for additional notational conventions. Therein the follow- '::::i:
ing parametrized functional was introduced: ity
[ J
- - -~ - - " B
nf,(u, o,t) = %(1 -7) (", &%)y - é'Y(”’ e?)y +~(d,e")vy — P, (1) ."§‘::
) P4t
where v is a scalar, and P* is the forcing potential ' .::‘
A ]
rd -~ a a . % 1
P(id,t) = (b,d)v + [t,d — d]s, + [t,1]s,. (2) o
» ‘;i":
- L
In this functional the volume fields 4, &, #, and the surface field t are subject to independent " ::.':.t
variations. ";ﬁ::
This functional “interpolates” the t-generalized Hellinger-Reissner and total potential en- Vi
ergy functionals I1% and I1%, which are obtained for v = 1 and 4 = 0, respectively. The
qualifier “t-generalized” means that the surface traction field t is varied independently u:"o:,:f
e
II-1 o

' This paper continues a study, initiated in Part I!, of parametrized stress-displacement
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whereas in the conventional form of those principles, the constraint [t = ¢,]s is enforced
a priors.
INTERNAL INTERFACES

In the following subsection an alternative version of (1) is constructed, in which boundary
displacements d can be varied independently rather than boundary tractions t.. These dis-
placement play the role of Lagrange muitipliers that relax internal displacement continuity.
Variational principles of this form will be called d-generalized.
The choice of d as independent field is not variationally admissible on Sz or S,. We
must therefore extend the definition of boundary to include internal interfaces collectively
designated as S;. Thus

S:S53US US; (3)

On S; neither displacements nor tractions are prescribed. A simple case is illustrated in
Figure 1, in which the interface S; divides V into two subvolumes: V+ and V~.

S: U Sy

Figure 1. Internal interface example.

An interface such as S; on Figure 1 has two “sides” called S;" and S, which identify S;
viewed as boundary of V* and V ~, respectively. At smooth points of S; the unit normals
n* and n~ point in opposite directions.

The integral abbreviations of Part I generalize as follows, using Figure 1 for definiteness.
A volume integral is the sum of integrals over the subvolumes:

i [ gave [ gav (4

An integral over S; includes two contributions:

def -
l9]s, = / gtds +/ g~ dSs, (5)
s} ST
where g* and ¢~ denotes the value of the integrand g on S,.'*' and S, respectively. These
two values may be different if g is discontinuous or involves a projection on the normals.

I1-2
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PARAMETRIZED d-GENERALIZED MIXED PRINCIPLE
Variational Principle. The d-generalized counterpart of IT?, is

M4(,5,) = 4(1 ~ 7)(0*, &%)y ~ $7(3,e%)y +1(3,")v — P°. ©
This agrees with (1) except for the forcing potential, which is
' PY(i1,5,d) = (b,d)v + [#a, 8 — d]s, + [t,d]s, + [Fn,1 — d]s,. (7)

Defining the v-weighted stresses

0" €45+ (1-1e* nV, ol ¥ s +(1-7)0% ons. (8)

the first variation can be written
JH: = v (e" — e?,50), — (dive” + b, i), — [f: - a,",,b'ﬁ] 56

= [8n = 5,505, — [u - 8,65, .

(9

- (¢, — 7], 61]g, — [ﬁ -4, 55’"] s [&’” 6&] S

Since d is unique on S; whereas @ and & are generally discontinuous on it, the interface
integrals in (9) split as follows:

ST

(6 — 57, 68]5, = (o7 — 337, 66%] 54 + [67 - 577,647
[a-4,68] =[a*-d,657] ot (6~ - 4,657] .- (10)
5 st N [&;,6&] s = [&,": - &;’6;1] Si

Setting the first variation to zero and taking (10) into account, the Euler equations and
natural boundary conditions for 4 # 0 are found to be

(e“ = ea)V, (div a7 + b= O)V, [Ul = i]su [a'n = a;y;]Su [u = a]SJ.’

11
[dl+ + ”: = 0]36’ [6:’;- +o, = O]Si’ [u+ =u" = d]Si’ [6: +o, = O]Si‘ ( )
If 4+ = 0 the first equation, (e* = e?)y, drops out.
Modified Forcing Potential. Substituting d in lieu of u in the potential (7)
P%(#,5,d) = (b,d)v + [#,d — ds, + [t,d]s, + [Gn, 1 — d]s,. (12)

is not variationally admissible because incorrect Euler equations result. This form has
appeared, however, in publications dealing with mixed-hybrid methods. A correct potential
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that resembles (12) can be obtained in two stages. First, surface terms {7, 1 - d|s, and
(0n,@ — d}s, are added and subtracted to produce

P4(d,5,d) = (b,8)v + [on,d — d]s, + [6a — L, 8]s, + [, d]s, + 60,0 —d]s.  (13)
Second, £ is assumed to be in the range of &, and the condition [&, = t]s, satisfied a
priors, reducing (13) to

P3(#1,5,d) = (b,d)y + [60,d —d]s, + [£,d]s, + [, —d]s. (14)
This expression differs from (12) in that the all-important surface dislocation integral is
taken over S rather than S;. Further simplification results if the displacement boundary
conditions [d = d|s, are exactly satisfied:

PY(i,5,d) = (b,d)v + [t,d]s, + [, 8 — d]s. (15)
This expression of P9 is used in the sequel, as modifications required to account for the
case [d # d|g, are of minor importance.
FINITE ELEMENT APPROXIMATIONS

In this section the finite element discretization of l'I,‘;l is studied. Assume formally

(i =Nq)y, (6=Aa), [d=Vv]s. (16)
Here matrices N, A and V collect generalized-displacement shape functions, internal stress
modes and interface displacement modes, respectively, whereas column vectors q, a and v
collect generalized internal displacements, stress mode amplitudes, and generalized inter-
face displacements, respectively. The assumed volume fields need not be continuous across
S. The derived fields are
(e* = DNq =Bq)y, (¢*=EBq)y, (e’=E"'5=E"'Aa)y. (17)
Inserting these expressions into ]'If with the forcing potential (15), we obtain the algebraic
form
N4(a,q,8) = £(1-1)q"K.q - iva"Ca+ vqTQa - qTPa+vTLa-qTf, - v7f,. (18)
where
K,=(BTEB)y =KI, C=(ATE™'A)y=CT, Q=(BTA),
L=(VTA,ls, P=[NTA.ls, f,=(NTb)y, f, =[NTis,.
The matrices K,,, C, Q, L and P are called internal-displacement-stiffness, compliance,

leverage, force-lumping, and boundary dislocation matrices, respectively. Making (18)
stationary yields the linear system

-~C 'yQT -PT LT a 0
Q-P (1-7)K., 0 {q}={fq} (20)
L 0 0 v f,

(19)

U]
0‘-,
W

*

9’:‘»"
@
"R
'\'q"
Y

N




: e T
L e

@ R CE N B O 35

PR U U R TN UN PEUY U LT G S A O R O A Ty O X O YO O YOO O O OOy

The first matrix equation is the discrete analog of the first, fifth and eight relations in (11),
and expresses internal and boundary compatibility. The third equation is the discrete ana-
log of the last relation, and expresses equilibrium across S;. The second one is the discrete
analog of the remaining relations, and expresses internal and boundary equilibrium.

Stress Condensatson. If C is nonsingular, the stress amplitude vector a can be statically

[1?.,1 15%,] {v1=1%} (21)

K, = (1-19)K,+1QC!QT - (PC~'QT + QC~'PT) + 4y~ 'PC~'PT
K, =LC™!(Q7 - v'PT), K,=LC7'LT.

‘condensed from (20), giving

in which
(22)

The coefficient submatrices will be identified as follows: K, is the internal stiffness matrix,
K, is the boundary stiffness matrix, and K, is a internal-boundary coupling stiffness. The
internal stiffness is similar but not identical to the effective stiffness matrix of t-generalized
mixed principles!. We now proceed to reinterpret these results in terms of hybrid elements.

HYBRID ELEMENTS

Approach. The preceding treatment is relevant to the construction of displacement-
connected hybrid elements. Hybrid elements based on more restricted assumptions were
originally constructed by Pian and coworkers?~—4. The principal features of the hybrid
approach are:

(I) The domain is subdivided into elements before the variational principle is established.

(II) Continuity requirements across element boundaries are relaxed by introducing bound-
ary tractions or boundary displacements as Lagrange multiplier fields.

(III) All stress and internal-displacement degrees of freedom are eliminated (by either static
condensation or kinematic constraints) at the element level.

Feature (I) says that hybrid functionals are effectively mesh-dependent, since the domain
subdivision process introduces element boundaries which must be treated as snternal in-
terfaces, and therefore become part of the boundary portion S;. Previous developments
remain valid if we reinterpret “body” as “individual element,” “volume” as “element vol-

ume,” and “surface” as “interelement boundary.”

Continuity and Connectors. The internal fields # and G may be discontinuous across
elements. The boundary displacement field d, however, must be continuous on S;, s.e. it
must have the same value on adjacent elements. This conditions may be satisfied if d on an
interface separating two elements s uniquely interpolated by nodal values on that interface.
It is natural to take such nodal values as entries of v, which automaticaily becomes the
vector of connected node displacements or connectors.

II-5
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FIELD DECOMPOSITION

In this and subsequent sections we work with an individual element unless otherwise noted.
The element volume is V' and the element surface is S : Sq U S U S;. The v subvector
contains the element-connector degrees of freedom, whereas q and a contain internal free-
doms. To gain further insight into the structure of the element equations and to link up
eventually with the free formulation, we proceed to decompose both internal element fields
as follows.

Stress Decomposition. The assumed stress field, &, is decomposed into a mean value, &,
and a deviator:

G=08+0,=0+Aa, (23)
oy in which

2=3)v/v, (Awv=0, (24)
‘;‘ where v = (1)y denotes the element volume. The second relation in (24) is obtained by

integrating (23) over V and noting that a, is arbitrary.

i Internal Displacement Decomposition. Next, the U1 assumption is decomposed into rigid
body, constant strain, and higher order displacements:

1 = N,.q, + N.q, + N»q,. (25)
ﬁ Applying the strain operator D = %(V + VT) to ii we get the associated strain field:
| e* = DN,q, + DN.q, + DN4gq, = B,q, + B.q, + Bxgy. (26)
‘i‘“’ But B, = DN, vanishes because N, contains only rigid-body modes. We are also free to

select B, = DN, to be the identity matrix I if the generalized coordinates q, are identified
S with the mean (volume-averaged) strain values &*. Then (26) simplifies to

e" =a" + ep = 8" + B,q,, (27)

t

in which .:
p G, == (/v (B =0. (29) i3

i Equation Partitioning. Assume that all elastic moduli in E are constant over the element.
The degree of freedom partition o

T T K T O O O S 0 D BN RYGOA DG R SN O



induces the following partition of the element equations

[ —yvE~! 0 —l_’f '7vI-l_’f -l_"": i (7 ) (0 )
0 -1Cn  -PL,  -Pi, Qi -Pix Li||a, 0
-P, ) S 0 0 0 0 fJa | _ for |
wIl-P, Pho 0 (1-9)vE ] 0 & ﬁ fae
-Pn  1Q,—-Pwm O 0 (1-7Kqs O s fan
. -T -L, 0 0 0 o \V/) L&)
(30)

where S r -
Ch=(ALE  Ay)v, Qn = (BrAn)v, K = (BLEB4)v,

Pe= [Nf"]s’ z=nch,  Pup= [N:Ahn]s, z=rch (31)
-I: = [vzls’ Ly = [VTAhn.]Sa fqz = (sz)V, z=r,c,h

Integral transformations. Application of the divergence theorem to the work of the mean
stress on e® yields
(2,e%)y = (,8* + Baq,)v = vaT&" + 27 (Bn)vq, = vaTe* (32)

Hence,

P,=0, P,=vl, P,=0. (33)

A similar analysis of the stress-deviator work (o5,e")y does not yield simple forms for the
P, matrices unless o, is divergence-free, in which case

P =0, Pu. =0, Prrn=Q,. (34)

Assuming (34) to hold, the element equations (30) simplify to

[ —’V‘UE_" 0 0 —'(1—‘7)01 0 ET- (& ) ( 0 )
0 -4C, O 0 -1-7QFf Li| |a, 0
0 0 0 0 0 ol Ja | _)%
—(1—-~)vl 0 0 (1-+4)vE 0 0 & fae
0 ~-(1-7Q, © 0 (1-7)K,; 0| |9 fan
| -T ~Lx 0 0 0 o V) &
(35)

The stress freedoms & and a, may be eliminated by static condensation as before. To
eliminate q,, a kinematic transformation that uniquely determines the rigid body motion
from the element interface motion is constructed:

q,=H,v (36)

II-7
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where H, is a rectangular matrix derived in Appendix 1. Elimination of @, aj and q,
gives

L30E 0 ~123BT7 (e fo i

Y (1 - '7)th +1Kon Kg:,h A ¢ = fqh (37) {::::E

~iz1TE Koon ik, ] v f, + HI T, B

where L _ .'n?ti:
Kah = QhC; Qh.’ vah = LhC;1Q£a Kv = Kv + Kuln (38) ‘ﬂ:"'?

K, =v-'TEL", K. =L,C;'LT ' N

Mean Strasn Elimination. Subvector 8% may be eliminated in two ways. Static condensa-
tion produces QO]

thyt
(@Kt Ko ] ) ST S i
! Koon K, +7 'Kon] L v fo +HI for + v 1L £, o

On the other hand, if & is eliminated through the kinematic constraint 8* = H v derived !
in Appendix 1, "'0::;

N - R A L
Keon K, +97'Kon) L v f, + HIf, + HI . R
5 where Qt'f

“ K' = 41K, + —2 (vHZ'EHc ~HTEL" - IEH.) (41) i

The two methods produce identical results if

15T
H,=v" L

(42)

As discussed in Appendix 1, this relation may be obtained from the first matrix equation

"»f,i in (35) if either 4y = 0, or e* = &% = E~'5. The last condition is obtained in the i "

. limit of a converged solution as the patch test analysis of Appendix 2 shows. In practice "j
any difference between (39) and (40) for 4 # O is not practically significant, and (39) is ‘;}
preferable on grounds of simplicity. P

THE FREE FORMULATION

The free formulation of Bergan and Nygird® was originally constructed as an incompati- Kgahge,
ble displacement model that passes a cancelling-tractions version of the patch test which
E Bergan and Hanssen called the individval patch test®. Here the formulation is reinterpreted

: in the context of a displacement-connected hybrid variational principle. "
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First, assume that the internal stress field is constant, so there are no a, parameters. Then

(39) reduces to
[(1 ~NKa O { O } - L } (43)
0 Kyl LV f, + HIf,, + v=1Lf,,

The equations for q, uncouple. Consequently static condensation of q, will not change the
solution. We have run into a displacement limitation principle. This leads to the second
assumption: the higher order internal displacement modes are eliminated by kinematic
constraints that link q; to the boundary displacements:

q, = Hpv (44)

Matrix Hj is derived in Appendix 1. Application of this constraint to {43) produces the
final stiffness equations
Kv= [Kb + (1 - ‘1)Kh] v="f (45)

where

Ko=X,, X,=HIK,H, f=f +8Hf, +v Lf,+Huf, (46)

In the free formulation, K; and K, receive the name basic and higher order stiffness

matrices, respectively. A -é scaling derived from energy-balancing studies of K, was rec-

ommended by Bergan and Felippa’ for a plane stress element This corresponds to taking
=1
T= 2°

CONCLUDING REMARKS

It has been known? that the basic-stiffness part of the free formulation can be interpreted
as a constant-stress hybrid element. But the interpretation of the higher order stiffness
within a variational framework has been difficult. A key result of this paper is that this
can be accomplished by a parametrized mixed-hybrid variational principle. Note that the
free formulation cannot be obtained within the conventional Hellinger-Reissner principle
(v = 1), since then the higher-order stiffness vanishes and K = K, is generally rank-
deficient. And taking v = 0 does not account for the fact that the higher order stiffness
can be scaled by a nonzero coefficient.

The variational framework is important because it allows consistent extensions of the
free formuiation that are not obvious from a physical standpoint. For example: al-
lowing more internal displacement degrees of freedom than boundary freedoms, i.e.
m = dim(q) — dim(v) > 0. A glance at (39) shows that m additional higher-order
divergence-free stress fields have to be retained so that the coupling stiffness K,,5 does not
vanish. The reduction of q; can be then performed by a combination of static condensation

and kinematic constraints. g
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APPENDIX 1: KINEMATIC CONSTRAINTS

One of the principal assumptions invoked in the free formulation is that the dimension of q is the
| same as that of v and that the latter are physical node displacements. If so, evaluation of the
expansion @ = Nq on the element boundary S establishes the transformation
E v=Gq (47)

where matrix G is square. Furthermore, suppose that G is nonstngular and can be inverted:
pf‘f q=G 'v =Hyv, (48)
or, in partitioned form
:;5’ q, H'
fi! q=¢{q, ¢ =|H,|v. (49)
q, H,
R The first matrix equation (the discrete compatibility equation) in (20) can be presented as
1(e* — ", A)y =L7v - Qq = (L7 - Q"H)v = (L7G - Q7)a. (50)
Setting v = O forces the constraint
LT=Q™H o LTG=QT (51)
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to be satisfied. The same constraint emerges if v # 0 and the finite element solution has converged
in the sense that e* = e” is constant over the element. Now carrying out the freedom partition

(29) and assuming divergence-free higher order stresses so that (34) holds, the constraint (51)
partitions as

i”'_ouloﬂ'_ 7 0 vI 0
El=[s v & [3:] o (Bt o ai=[s T g e

from which follow the relations

I’G, =0, IL'G,=ul, L =vH, L Gi=0, (53)
LTG, =0, LIG.,=0, Li=vH,, LiGyi=L
The first four were obtained through other means by Bergan® and Bergan and Nygird®, who

called them the force orthogonality conditions on account of the physical interpretation of L as a
“boundary nodal force lumping® matrix.

APPENDIX 2: THE CANCELLING-TRACTIONS PATCH TEST

It is not apparent whether this element class passes the patch test for an arbitrary 7. To investigate
this question we use the sketch of Figure 1 and view the subvolumes V¥ and V = as two elements
connected along S; with an external traction boundary S:. Both elements are in a state of constant
stress do. The prescribed surface tractions are [t = don]s, and the body forces b vanish. We
take (35) to be the governing equations for the two-element assembly. The only nonzero forces
are f, = [VT|s,. The key observation is that

i = [VZ]S = [V:{']Sn (54)

because the integral over S; vanishes because V i: identical for both elements on account of
interface compatibility conditions, and n* = —n~. Similarly for Lx. One may verify that for any
7 the solution of (35) is

F=0,=0", ay =0, e =v L v, q, =0. (55)

The connector node displacement vector v satisfies
vLEL v =T, (56)

and consistency with the third of (55) is easily verified fi .1 (54). If the rigid body modes are
eliminated, v = G.&". Since the constant stress solution is _ecovered, the patch test is passed for
any value of 7.

The physical meaning of this form of the patch test is that the inferface virtual work is zero when
the element patch is in a constant stress state®.
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