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jt Research Summary
1%

1. Introduction

3 This final report summarizes the research activities performed at both Lockheed and
at the University of Colorado on the development of advanced finite element M0delingif techniques for structural mechanics under ONR Contract N00014-86-C-0082. The ob-

jectives of this research were two-fold. The first was the development of a-priori and

a-poteriori error estimation techniques based upon symbolic Fourier analysis techniques.

The second objective was to improve the accuracy of current finite elements being used in
the analysis of shell and solid structures. Significant progress was made in both research

areas. A brief summary is provided below with accompanying details in the appendices.

2. Symbolic Fourier Error Estimation Techniques

In this task, an alternative to the more traditional "normed-space" approaches to
finite element solution error estimation was pursued. The underlying basis of this ap-
proach is the limit differential equilibrium equations governing intrinsic element behavior

which are symbolically derived from a representative element patch. In their own right,

these limit differential equilibrium equations are used to explicitly identify intrinsic ele-

ment pathologies, such as locking and spurious mechanisms, without the need to resort
to numerical experimentation. Depending upon the application, both a-priori and a-

posteriori local error estimates can be directly derived from these equations based upon
a knowledge of the spectral content of the loading and the solution.

As a demonstration of the ability of this symbolic technique to capture complex

finite element behavior, the case of the axisymmetric buckling of a cylindrical shell dis-5cretized with 4-node Ul Mindlin plate elements, as is shown in Fig. 1, was chosen.
The symbolically-derived buckling load predictions, along with finite element results,
are shown in Fig. 2. The continuous curves represent the symbolic results, while the
symbols are used to represent actual finite element calculations. From a strictly fi-3 nite element analysis standpoint, this plot graphically demonstrates the mode-switching

phenomena typically encountered when modeling thin shell structures. These results
also clearly show that the symbolically-derived predictions precisely capture this com-

plex mode switching behavior. It is also significant to note that this present analysis

, 1
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Fig. 1 - Axisymmetric buckling mode for m 11 for quarter-cylinder (R 36in., L

I 50.26in., h = .12in., E -- 107psi and v -. 3) finite element model discretized:.

i with nel -- 40.
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~Fig. 2 - Critical buckling stress vs. el, for the axisymmnetric buckling of the cylindrical
shell shown in Fig. 1 for m = 9, 11 and 13 axial half-waves. i3



I embodies not only the physical modeling errors associated with the different field ap-

proximations, but also the geometric errors engendered by a faceted shell approximation

3 to the cylindrical shell.

This research effort culminated in a Stanford Ph. D. dissertation entitled Symbolic

3Analysis of the Finite Element Method in Structural Mechanics which appears as Ap-

pendix A in this report.

1 3. Assumed Natural Strain (ANS) Shell Elements

5The theoretical formulation and implementation aspects of the ANS (Assumed Nat-

ural Strain) family of shell elements were reexamined in light of our extensive numerical

experience with them over the past several years. A greatly simplified and more rig-

orously derived formulation resulted from this effort. This resulted in a more natural

element implementation and ultimately, a more robust one. Preliminary numerical eval-

uation has show significant improvement in the performance of the 4-node 4-ANS shell

element. In Fig. 3, results for the pinched hemisphere problem are shown where pre-

vious results for the 4-ANS and 9-ANS are directly compared with those of the new

reformulated elements, 4-rANS and 9-rANS. The improved performance of the 4-rANS

is remarkable. This element maintains its accuracy for mesh distortions and performs

well without the need of employing reduced spatial integration. Overall, the 9-rANS

Sappears to perform at the same level as its predecessor. It is anticipated that when

their implementation is complete, the ANS family of elements will pass the patch test -

a capability which has thus far eluded them in spite of their excellent performance on

many problems. The details of the new ANS formulation and element implementation

are found in Appendix B, The ANS Shell Elements: Formulation, and in Appendix C,

The ANS Shell Elements: Element Construction.,S
4. Parameterized Variational Principles for Finite Element Applications

The third task of this research effort has been to develop a parameterized variational
basis for comparing different finite element formulations. An important result of this

study is the establishment of the interrelationships between the different variational prin-3 ciples which result in hybrid, mixed and free finite element formulations. This approach

has permitted a reinterpretation of the classical Hu-Washizu Variational Principal and

Fraijs de Veubeke's Limitation Principle in light of parameterized variational principles.

With the anticipation that future finite element development will require a simultane-

I3
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Fig. 3 - Pinched Hemisphere Element Convergence Study: Normalized Center Displace-

ment vs. Grid Density.

ous approximation of the different field variables, the unifying approach to variational

principles proposed here may prove beneficial to the finite element developer. The cor-

plete work entitled Parametrized Multifield Variational Principles in Elasticity: L Mixed

Functionals, II. Hybrid Functionals and the Free Formulation appears in Appendix D.
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Abstract

S

I%

A symbolic analysis technique is presented for determining the intrinsic be-

havior of a wide range of different finite element formulations. This element-
independent generality stems from the fact that the analysis conceptually starts

with the discrete finite element equations for an element patch, cast in symbolic

form employing computer algebra. From them, the discrete formulation is re-
cast directly back to the limit differential equilibrium equations (or strong form)

governing element behavior, employing both Taylor series and discrete Fourier •

techniques. Comparing these equilibrium equations with the governing contin-
uum equations establishes how well the discrete model represents the physical
one, without recourse to numerical experimentation. The theoretical details of

the underlying element formulation are, in essence, immaterial to the symbolic

analysis since all discretization information is uniquely embodied in the discrete
equations themselves. The use of nonconforming elements, special interpolation
rules, reduced spatial integration rules or other numerical techniques therefore

pose no obstacle to this method. As a result, this local symbolic analysis tech-
nique provides a unified approach to element evaluation presently lacking in the

more mathematically precise functional analysis approach to element evaluation.

The emphasis in this work is on "structural" finite elements - bars, beams,
plates and shells - whose use pose a myriad of challenges arising from working with
degenerate problem domains and approximate physical geometry. Wave propaga-
tion, static loading and bifurcation buckling problems will be addressed for these 0

different classes of elements. In particular, the causes of transverse shear element
locking and spurious element mechanism.s are investigated in addition to several ,k

proposed cures, such as reduced spatial integration and hourglass control tech-
niques. For the case of curved structures, the faceted element approximation is
analyzed. Local error estimates - ultimately needed for adaptive mesh refine-

ment techniques - are determined using both Taylor series and discrete Fourier ;.-

techniques. The accuracy of the discrete Fourier error predictions is numerically
verified employing test cases with regular domains and periodic boundary condi-

tions for which the error prediction is shown to be essentially exact.

v
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*Introduction

I
I
I

§1.1 Background

As with any approximate analysis technique, the question remaining after

completing a finite element structural analysis is "How close is the finite element

i solution to the correct physical one?" More likely than not, confidence in the accu-

racy of the finite element solution is not based upon a fundamental understanding

of the intrinsic behavior of the finite elements themselves, but rather upon the

correctness of previous finite element solutions to problems where the continuum

solution had been known. This solution confidence issue becomes especially severe

when dealing with thin plate and shell structures whose myriad pathologies have

always plagued the finite element developer and user alike.

In 1965, Irons introduced the idea of inferring intrinsic finite element behavior

from the solution through the introduction of his patch test [1]. For the practicing

engineer, the most natural extension of this idea is embodied in the sets of different

structural test problems that have been proposed over the years (see e.g. MacNeal

and Harder [2] and Mair [31) as a phenomenological way of verifying element

accuracy and convergence. This also facilitated a way of directly comparing one

element formulation with another. These different test problems are chosen so as

*I1



I to exercise both constant strain and higher-order element deformation patterns in

an analogous manner to that described by Taylor et al. [4]. With this approach,
two lingering difficulties remain. The first concerns defining the numerical test

cases which are comprehensive enough to constitute a "complete" element patch
test. 1 The second entails how a finite element develo'er employs the results of

these tests to explicitly pinpoint potential problem areas in the underlying element

formulation.

3 1In the past, an alternative to this "solution-based" approach, favored by the

engineer, has been the functional analysis-based approach employed by the applied

mathematician. Excellent descriptions of research in this area may be found in

the work of Strang and Fix [6], Ciarlet [7] and Oden and Reddy [8], just to name a

few. As has traditionally been the case, however, progress in this area lags behind

the problem-driven development of new element formulations for a number of re-a-

Isons. Each new twist in formulation or numerical trick may result in mathematical

complications requiring new proofs of convergence with accompanying error esti-

mates. For this reason, the contribution in many cases is one of establishing the

mathematical foundation of an existing method. As was pointed out recently by

Bernadou [9], there are discretization techniques, like the faceted plate discretiza-

tion of a shell, which has been used successfully for more than twenty years, for

which strict proofs cannot as yet be completed. From an engineering perspective,

3 one underlying difficulty with this approach is in relating the fidelity in which an

element formulation represents physical behavior in a point-wise manner to the

results of a global convergence proof.

Alternatively, this task of element evaluation may be addressed by building

upon a technique that has been used for evaluating finite difference algorithms

for initial-value problems employing either Taylor series or discrete Fourier anal-

l Unfortunately, "completeness" in the above sense may not provide the necessary
and sufficient conditions for element convergence as has been discussed by Stummel
[5] and recently refuted by Taylor et al. [4].

*2



ysis (see e.g., [10]). This approach deals directly with the discrete finite element

equations themselves instead of the solutions to them, as is the case with the

different patch tests, or with the weak form from which they were derived, as is

the case with the functional analysis-based approach. In a computational fluid

3 dynamics context, the Taylor series analysis technique has been used by Hirt [11]

and Warming and Hyett [12] to determine both the consistency and stability ofIinitial value finite difference problems. Their primary interest was in characteriz-

ing the behavior of the discrete equations. This goal was accomplished by working

with what Warming and Hyett referred to as the "modified equations". These

equations were comprised of the zeroth-order and leading truncation error terms

I recovered from the difference equations using Taylor series expansions. From these

modified equations, they were able to address the question of stability in linear

problems and show the equivalence between their results and discrete Fourier

(i.e., von Neumann) techniques. Going one step further, Hirt demonstrated for

a two-dimensional flow problem, the general applicability of this technique even

to nonlinear PDE's with variable coefficients. This approach was a fundamental

departure from the restrictive local truncation error zoncept of consistency.

3 In [13], by formally viewing the finite element equations as difference equa-

tions, Walz, Fulton and Cyrus were able to apply traditional Taylor series-based

finite difference techniques to evaluate the element discretization. A similar ap-

proach in the Fourier domain was investigated by Strang and Fix [14]. These

pioneering investigations in the field of element evaluation were essentially limited

to assessing the consistency of the resulting limit differential equilibrium equation-

which represent element behavior in a local manner.

I In this approach to element evaluation, one works directly with the finite

element difference equations which uniquely embody each step of the element

formulation process. As a result, this technique shares the element-independent

generality of the patch test as an element evaluation technique. Essentially all of

the mathematical complications inherent in the functional analysis approach to el-

I 3



ement evaluation are thereby avoided. These complications result from variational

crimes [6] resulting from employing nonconforming elements, reduced spatial in-

tegration, special interpolation rules and other numerical schemes (a.k.a. tricks).

3Recognizing the power of this element evaluation technique, Park and Flaggs ex-

plored the use of both Taylor series and discrete Fourier analysis techniques to

3 evaluate the performance of different finite element discretizations [15,16,17,18].

§1.2 Objective

The objective of this dissertation is twofold. The first is to formalize the

element-independent symbolic analysis procedures needed to evaluate general

multi-degree-of-freedom finite element discretizations. The second is to apply

these symbolic element evaluation techniques to explicitly determine the nature

of several outstanding problems in the application of the finite element method -to

Istructural analysis problems.

§1.3 Approach

In order to achieve these objectives, computer algebra software (19,20] is ex-

tensively employed to recover symbolically the limit differential equilibrium equa-

tions. Starting from the finite element equations, cast in symbolic form, limit

differential equations governing element behavior are obtained both in the physi-

cal and frequency domain. With them, a direct comparison with the strong form

of the governing continuum equations is possible from which it is shown that one is

able to 1) explicity identify element deficiencies, 2) infer expected element behav-

ior and lastly, 3) compute component-wise error estimates. With this information,

both the question of consistency and stability is easily verified for the case of a

regular element mesh. With this information, the convergence of a particular finite

I element discretization can be determined without recourse to extensive numeri-

cal experimentation. By working with the matrix operator form of the discrete

equations, this approach is also immediately applicable to bifurcation buckling

problems. An additional benefit is the added insight into the expected behavior of

1 4



* Weajk Form
StogFr nv(Lu - f)dn 0 Discretization Discrete Form

L f WR Ku fr~u=I " i 'Ritz K~
.Virtual Work

Variational

* Intrinsic element behavior
* Interior error estimate
* Element synthesis

Symbolic Analysis Procedures
Discrete Strong Form

Fig. 1.1 Symbolic Analysis of Finite Element Discretization of BVP

a discrete method gained through working directly with the discrete counterpart3 to the continuum equilibrium equations. In essence, as a result of its generality,

an element evaluation technique is being proposed which could be employed as a5 tool during the actual element formulation process in much the same manner as

the patch test is presently used.

I This symbolic approach to assessing the intrinsic behavior of a particular finite
element discretization is graphically portrayed in Fig. 1.1. The symbolic analysis

I procedures developed here: cloe the loop2 in order to determine how faithfully

the discrete equations represent the strong (or differential) form of the governing

Icontinuum equilibrium equations. In essence, this results in what Wilkinson [211

refers to as a backward error analysis. Representative element patches for the dif-

I ferent discrete model geometries investigated in this study are shown in Fig. 1.2.

The emphasis is in the use of the different symbolic analysis techniques employed

2 In actuality, each step shown in Fig. 1.1 is performed symbolically so that at the
conceptual starting point of the symbolic analysis, one will have the ezact discrete
finite element equations with which to work from.
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U here to determine the effect of such aspects of element formulation as interpo-

lation order, spatial integration rules and model geometry. In this respect, the

interpretation of the symbolic analysis results differ radically from those of the

underlying traditional finite difference techniques. Primary interest is directed

at identifying intrinsic element behator engendered by the finite element formula-

tion and secondarily at the formal order-of-accuracy of the finite element difference
equations. Using these techniques, it is possible to explicitly identify a one-to-one

correspondence between element problems and deficiencies in the limit differential

equilibrium equations. In particular, existing problems with present structural

finite elements which are easily identified using these symbolic techniques are:

e Accuracy

9 Locking

* Spurious mechanisms, i.e., stability
* Geometrical modeling errors
- Consistency with respect to particular continuum equations



(I This last point comes into play when dealing with finite element discretizations

3 of thin shell structures. S

§1.4 Overview

The remainder of this introduction focuses upon the technical highlights of

I each chapter - and of the contributions made therein.

The goal of Chapter 2 is two-fold. The first is to establish the mathematical j

basis for working with linear matrix differential operators in terms of fundamental

matrix/vector operations suitable for computer algebra manipulation. Donnell's •

decoupled eighth-order cylindrical shell equilibrium equation is derived as a sim-

ple way of demonstrating the symbolic procedures to be employed using computer

algebra software. This is a precursor to the primary goal of this chapter, which is

the introduction of computer-aided Taylor series-based element evaluation tech-

niques. The linear isoparametric Timoshenko beam element, with its transverse

shear element locking pathology, served as the example problem. Both linear V

static and bifurcation buckling problems are examined. For the linear static case,

the governing limit differential equilibrium equations derived from both exact and

reduced spatial integration are presented. The decoupling of the w and 8 limit

differential equilibrium equations is found to be the key step in explicitly identi-

fying the parasitic differential operators responsible for transverse shear locking

in the exactly integrated element. For the reduced integrated element, this sym-

bolic element analysis showed that a locking-free discretization results. Relative

error estimates are then derived using the modified limit differential equilibrium

equation, comprising the continuum and leading truncation terms, employing a

Fourier series expansion of the distributed loading and lateral displacement. As

a preliminary step, an error analysis is first performed for the one-dimensional

bar element. This is to validate the element evaluation procedure for a discrete

problem in which the solution is known to be nodally exact. Lastly, relative error

estimates are derived for the bifurcation buckling of the linear Timoshenko beam
element.
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A fundamental limitation of the Taylor series technique was, however, found j.

to be its inability to identify spurious element mechanisms. In Chapter 3, a discrete

Fourier analysis technique is introduced to complement the Taylor series approach3 introduced in Chapter 2. Although now working in the frequency rather than the

physical (or spatial) domain, the advantage of the discrete Fourier technique is in

its complete representation of the discrete solution and in the resulting compact

symbolic expressions. The complete representation of the discrete solution in the

frequency domain permits this element evaluation technique to be used to identify

spurious element mechanisms as well as to verify element consistency. Together,

these two conditions constitute both the necessary and sufficient conditions for

convergence of a discrete method. The example problem used to demonstrate the

ability of this discrete Fourier technique to detect spurious element mechanisms

is that of a linear mixed bar element. The cause of the spurious mechanism-is

pinpointed in a component-wise manner so that for this one-dimensional example,

a remedy could be immediately identified. The linear Timoshenko beam, investi-

gated in Chapter 2, is considered next. The same parasitic operator is identified

in the frequency domain for the exactly integrated beam elen,..t. Inverse Fourier

transformation is shown to yield the identical limit differential equilibrium equa-

tion in the physical domain as was derived earlier using the Taylor series technique.

Error estimates for both static loading and bifurcation buckling are determined

and compared to those obtained in Chapter 2 from the modified equilibrium equa-

tions. For the static solution, error estimates based upon the modified equilibrium

equations proved to be reasonably close to the discrete Fourier predictions for the

lower wavenumbers. For the case of bifurcation buckling, however, the Taylor

series results were seen to slowly diverge from the discrete Fourier predictions,

which exactly agree with finite element results. Lastly, the nonconforming ele-

ment Stummel used to illustrate potential shortcomings in Irons' patch test was

shown not to be a convergent approximation since it satisfied neither consistency

nor stability requirements.
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In Chapter 4, both the Taylor series and discrete Fourier techniques are

used in a complementary manner to analyze different formulations of the bilin-

ear Reissner-Mindlin plate element. Due to the ease of working with the physical

variables, the Taylor series technique is employed for those problems where the

question of element consistency is the sole concern. The effect of different element

integration rules - exact, selectively reduced (S1), uniformly reduced (Ul) and

directional transverse shear - along with two alternative transverse shear interpo-

5 lation techniques, are the first problems considered here. As with the case of the

Timoshenko beam, the presence or absence of transverse shear element locking is

explicitly identified using this symbolic element evaluation technique. Next, the

way in which different spurious mode (or hourglass) control techniques manifest

their effect on the governing limit differential equilibrium equations is investigated

for the S1 and U1 elements. For both elements, it is observed that these hourglass

control techniques reintroduce element locking, albeit in a potentially different

bending deformatioa mode, for any nonzero w-hourglass control parameter. The

1 results from these symbolic analyses are then verified numerically.

In the second half of Chapter 4, the discrete Fourier analysis technique is em-

ployed in a component-wise manner to construct the transformed limit differential

3equilibrium equations of the bilinear Reissner-Mindlin plate, as would be the case

if element synthesis were the true objective. These results are then used to verify

the existence of spurious mechanisms in the S1 and U1 elements, and of transverse

shear locking for the exactly integrated element. Error estimates are derived for

both the case of static loading and uniaxial bifurcation buckling. Comparison with

numerical results for the predicted error in buckling load again demonstrates the

accuracy of the present symbolic element evaluation technique.
0

Lastly, in Chapter 5, the symbolic analysis techniques developed thus far were

employed to analyze the faceted finite element approximation of a circular arch

with straight Hermitian (C1 ) and Timoshenko (C0 ) beams, and of the cylindri-

cal shell with fiat bilinear Reissner-Mindlin plates. Working now strictly in the

I g
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Fourier domain to take advantage of the compact symbolic notation, the straight

Hermitian beam discretization of a circular arch is found to be consistent with

Sanders' cylindrical shell theory specialized to the arch. For elements with a fi-

nite length, however, the geometrical modeling error resulting from the polygonal

I arch discretization is responsible for nonvanishing errors in displacement for the

limiting case where the wave number goes to zero. In spite of the fact that this

discretization is asymptotically consistent for a circular arch, the long wavelength

solution components converge to the faceted arch model. For the linear Timo-

shenko beam discretization of the arch, the limit differential equilibrium equations

were found not to be consistent with either Naghdi-Cooper or Mirsky-Herrman

C0 shell theory although in the thin-shell limit, they were shown to be consistent

with Sanders' theory.

The faceted Reissner-Mindlin plate discretization of a cylindrical shell was

3next analyzed and compared to Naghdi-Cooper's C0 shell theory. As was the case

in the arch problem, the limit differential equilibrium equations were not found

5 to be strictly consistent with the reference theory. Omitted terms were, however, S

of the order h2 /R 2 which for thin shells (h/R > 100) would result in a very

small contribution to affected terms. By analogy with Koiter's work [22) on first

approximation shell theory, expressions which differ only by such terms may in fact

I be equivalent with respect to the underlying C0 assumptions. The axisymmetric

buckling of cylindrical shells was used to verify the accuracy of the discrete Fourier

3material and buckling operators. The predicted bifurcation buckling loads derived

from the symbolic analysis were found to be virtually identical with the finite

element results. As a result, mode switching, which is often observed in the

finite element modeling of shell buckling problems, was accurately modeled by

the symbolic element analysis, even for extremely coarse finite element meshes.

,10
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U ChapteT 2

I Development of Symbolic Analysis Techniques:

iTaylor Series Approach

I

I In this chapter, the basic symbolic analysis techniques used to perform a

computer-aided symbolic evaluation of a finite element discretization are intro-

duced. These techniques are comprised of two essential parts. The first encom-

passes the fundamental operational procedures used to manipulate symbolically

matrix differential operators. The second part entails defining the functional re-u lationship between adjacent nodal degrees-of-freedom (d-o-f) needed to recover

the limit differential equilibrium equations governing element behavior from the

discrete equations. Two different methods are used in this regard; Taylor series

expansions of the nodal d-o-f in this chapter and a discrete Fourier method in

5 Chapter 3.

The present Taylor series analysis of boundary value problems addresses the

question of finite element consistency. The emphasis and interpretation of the re-

suits from the symbolic analysis are directed toward identifying intrinsic element

behavior from the limit differential equilibrium equations obtained from the dis-

crete finite element equations. Of only secondary interest is the order-of-accuracy

of a finite element discretization as would be the case in a formal local truncation

1 11



error analysis of a set of finite difference equations.

5A new aspect of the present analysis is the need to symbolically manipulate the

differential equations representing the coupled discrete finite element equations.

3 With the possibility that the finite element d-o-f represent both physical and purely

computational d-o-f depending upon the particular discretization, elimination of

I the computational d-o-f in a consistent manner is a prerequisite to recovering the

governing limit differential equilibrium equations. In addition, as was found to

3 be the case in element locking problems, decoupled limit differential equilibrium

equations appear to represent the canonical form in which to identify the parasitic

3differential operators responsible for element locking.

The appearance of parasitic differential operators in the truncation errorS terms of the decoupled limit differential equilibrium equations is shown to be

3 responsible for transverse shear element locking. These terms are found to play

the dominant role in the limit differential equilibrium equations of a given finite

3element formulation thereby totally masking the contribution of the continuum op-

erators. This ability to explicitly identify parasitic differential operators enables

3 one to determine the "operational consistency" of a finite element discretization.

As a result of the generality of these symbolic analysis techniques, the sym-

I bolic analysis procedures developed for the linear static problem are immediately

applicable to bifurcation buckling by the inclusion of the geometric stiffness in

the symbolic analysis. Lastly, a priori error estimates for both linear static and

bifurcation buckling problems are determined based upon the so-called modified

I equilibrium equations, which retain only leading truncation error terms, for a

particular element discretization.

§2.1 Operational Procedures with Matrix Differential Operators

As was alluded to in Chapter 1, one of the key aspects of the present work will

be the symbolic manipulation of linear matrix differential operators. This is nec-

essary in order to both obtain decoupled differential expressions and to eliminate

*12



purely computational degrees-of-freedom during recovery of the limit differential

equilibrium equations derived from the discrete finite element equations.

In this section, the basic operational procedures used in working with matrix

differential operators are described in terms of basic matrix/vector operations. An

illustrative example of their application is to the derivation of Donnell's decoupledII
cylindrical shell equations which are succintly derived employing these procedures

implemented using the computer algebra program SMP [20].

§2.1.1 Linear Matrix Differential Operators 0

In this investigation, attention will be focused on systems of linear partial

differential operators with constant coefficients. Within this basic framework, the

essential underlying theorem for dealing with linear differential matrix operators,

as stated by Courant and Hilbert [231, is

from any system of linear differential equations in m unknowns with con-

stant coefficients, a single linear differential equation with constant coef-

ficients can be obtained for any of the unknown functions.

3 Hence, for example, if ul, u 2 ,... , um are the unknown functions of the independent

variables z,Z 2,... ,z3 and if Lij are polynomials in the differential operators,

viz.,

L- 8P1aP2j (2.1)
* 2

5 with constant coefficients aiu, then the coupled system of m independent equations

in m unknown functions may be written in terms of the matrix operator notation

1L 11  L12  Llm 1 l Af
L21  L22  .. J u 2  = . = (2.2)

Lmi Lm2  ... Lmm um i m

where fj fi(xl, x2 ,. .. z). Formal algebraic elimination of Eq. (2.2) using

1 13



Cramer's rule yields decoupled differential equations for each ui given by

ILI. 1= IcI (2.3)

where I-- I is used to denote the determinant of a matrix and Gi is simply L with

the ith column replaced by f. The order of the system is equal to the order of

the characteristic linear operator ILI. 1Gi is likewise a linear differential operator

in functions fi, each of whose individual operators is the minor determinant of

L corresponding to fi. The determinant operations indicated by Eq. (2.3) make

use of the fact that the individual operators in L are commutative resulting from

their linearity, i.e., LIL 2u = L 2Lju. Also, since the symbolic calculation of tGjI

is usually not performed with respect to the ith column, it will be necessary to

always interpret the product of an operator, L, and f in the subsequent computer

algebra runstreams as Lf, i.e.,/n =*- Lf.

One further aspect of Eq. (2.3) which deserves comment is the case where

m common differential operators appear in both ILI and IGiI. An example of this

would be

dmmI L 3 Llu = L 3 L 2 f = L 3 (Llu - L2f) = 0 (2.4)

where L i are linear operators and uk represents the homogeneous solution. If the

3 eigenvalues associated with L 3 are non-zero, then L 3 can be eliminated resulting

in Llu = L 2f; otherwise, Llu = L 2f + uh . From a computer algebra standpoint,

Scare must be used in solving Eq. (2.2) if a direct elimination technique is used

rather than Cramer's rule since L 3 would in all likelihood be lost in the solution

3 process.

§2.1.2 Symbolic Derivation of Donnell's Cylindrical Shell Equation

I Before proceeding to the discrete problems which follow, an illustrative exam-

ple of some aspects of the symbolic procedures to be used will first be described

here. The example problem will be the symbolic derivation of Donnell's decou-

1 14 p
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I pled eighth-order transverse equilibrium equation for the cylindrical shell. From
this simple example, two important observations will emerge. The first is the

straightforward way in which coupled systems of linear differential equations can

be symbolically manipulated as a consequence of Eq. (2.3). The second is merely

one of recognizing the ease in which symbolic algebra software - SMP in this case

- can be employed to perform complex (and tedious) symbolic operations.

Donnell's "shallow" cylindrical shell equilibrium equations written in shell

3 coordinates in terms of the displacement triad (u, v, w) are [24]

92 u 1- v 12u + 1+v a2v v 9w
a2 2 8.s2 2 T8z8+, -5x Rz

I-8 2v 42v I + -a'2u 1 = -PS(.

2-'z " + ,32 + -RT-9 +  ( 2.5

h2A V 4 w 1.L( CIV -v a ) =

12 ~ R R+ 9 a x

where v is the Poisson's ratio, R is the cylinder radius, h is the cylindrical shell's

3thickness, and V4  2 ( + )2 with z being the axial and a the circumferential

coordinates. Rewriting Eq. (2.5) in matrix differential operator form results in

Lu f1 (2.6)

I where the linear matrix differential operator L is given by

L = L La, Lvw
[Lwu Lw Lww

a,, 2 yC 2L 27
S  82 l28 2  v 8 (2.7)

18 h V4*G '0

FS Y CIXT+ JOS f

a 1 a 0,0 -



U with

U {z; -PS = h -P:} (2.8)'.W P p

U By making use of Eq. (2.3), Donnell's decoupled w equilibrium equation is

given in operator form by

Luu Lu, -P-
ILI- w= IG3 1 = Lv Lv, -Ps , (2.9)

Lwu Lwv P

3 or alternatively, by

h 2
8 w + 1- V2a 4 w  _

74 1 R1 a3p +a3pz + (2+ vi) a 3p8  a 3 P (2.10)

as will now be shown results from Eq. (2.9) using the computer algebra program

5 SMP to perform the indicated determinant operations.

3 The sample SMP runstream, whose objective is the explicit symbolic solution

of Eq. (2.9), is shown in the following program listing. The differential symbol

notation a a a a

-:=dx; - ds; -- 2 =de12 (2.11)

is used to simplify operator notation and help reduce the intermediate problem
j swell typical of symbolic computations. I C: :: is used by SMP to represent an

input statement while 0 [] : represents the corresponding output, if any. Many of3the input statements which either do not require that they be echoed as output or

represent intermediate calculations which in the present context are of no interest -

are ended with a ";" indicating that no output is desired.

* 
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/* Donnell's cylindrical hell equations 
s/

1 #ICIl:: usqn dx^2 u + (1-nu)/2 ds^2 u + (+nu)/2 dx do v + nu/r dx w;

81[2]:: vaqn (i-nu)/2 dx^2 v + ds^2 v + (14fLu)/2 dx do u + do w/r;

*1[3]:: wequ : h2/12 de12"2 w + (w/r + do v + nu dx u)/r;

As Form differential operator matrix

* 81[4]:: eqn (ueqn.voqn,weqn};

*1[5):: d {u,v~w}.

*1[6]:: coofmatrix : Ar[ (3.3). Coet[ d[$2], Ex[ eqn[$I]]] ];

*1[7]:: Prmat [cofmatrix]

#0 [7: 2 2
- do nu do 2 do dx do dx nu dx nu
---------- - --- -dz -- ---- --

2 2 2 2 r

2 2
did do dx nu - dz nu 2 dx di
----- - ----- d + --- --3 2 2 2 2 r

2 2
dxnu d I d.d12 h 

r r 2 12
r

5 /* Determine characteristic operator

#1[8]:: Ez[ 2/(L-nu) Det[coefmatrix] ];

* #1[9]:: Ihs : Cb[ Col[ Ex[ Fac( S( %. h -> 0 ]]]], dx\4 +
Ex[ h^2 SC Ez[ Fac[ Coi[ h2, % ]]. \3 dx'4 -> de12-2 - ds'4 - 2 dx'2 ds'2 ]

/* Form differential loading matrix

#1(10]:: coetzatrix[I,3J:-pz; coeimatrx[2, 3]:-ps; coefmatrix[3,3].p;

/* Determine loading operator

*I(11]:: Ex[ 2/(1-nu) Det[coeimatrix] );

* 17
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#1[121:: rho : Cb S[ p Ex[ Fac[ Coei[ p. % f]. \

dx'4 -> de122 - du-4 - 2 dX^2 ds^2 , Ir
Fac[ S[ C. p -> 0 ]);

/* Donnell's transverse equilibrium equation */

3 #1[13]:: lhl v - rho

4 2 4 2
dx (1- nu) d12 h

#0 [13 1: w (------ -------- ) - - -
2 12 .'

r
3 2 2 3 2

(ds p. + 2ds dx ps - do dx px + dx nu px + do dx nu p)

2
+ de12 p

SMP statements I [1-I [3) are seen to correspond to the left-hand portion

5of Eq. (2.5) from which 1[4]-I[8] form the continuum operator L subsequently

printed in matrix format by 1 [7]. This result should be compared to Eq. (2.7).

3 With L now in hand, the characteristic linear operator, ILI, needed in Eq. (2.9),

is symbolically calculated by I [8] and then simplified in I (9]. One step of this

simplification process is the symbolic substitution of (V 2 ) 2 for (f-9 + - )2 which,

as shown in I (9), is actually accomplished by the purely syntactic substitution

3 of dx^4 by de12^2 - 2dx^2dy^2- ds^4. Next, G3 is formed by I10] followed

by I[111 which symbolically calculates IG3 1. 1[12] simplifies that result in a

I similar manner to that already described for ILI. Donnell's decoupled eighth-order

transverse equilibrium equation is then constructed and displayed by 1 [13].

It should also be pointed out that completely decoupled equilibrium equations

for both u and v could have also been obtained using this technique. In the form

originally presented by Donnell, the equilibrium equations for either u or v can be

viewed simply as partial operator factorizations of Eq. (2.6). If, for example, one -

18
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considers Donnell's equilibrium equation for v,

V4 v =  2+ -. 83 w - 8 3 w + a2 P8  2 12 P 1+ a 2Pz (2.12)
R 8z 28s R 8s 3  s2 + 1v- 8z 2  1 -v aza''Uh

this result could be easily obtained from Eq. (2.6) after performing the first step
of a symbolic Gaussian elimination, viz,

- Lu Luv Luw L -PZ

LtuuLju- L,,Luv Lu Lvw LLu = -LuuPs + LvuPz
o LuuLwu - L uLu t uuLww - L}uIw LuuP + L JuP.

on the way to obtaining the completely decoupled w equation. Here, Eq. (2.12)

would correspond to the second row of Eq. (2.13). With the next step of the

elimination resulting in Eq. (2.10), L is now effectively triangularized. In this form,

I a very simple second-order expression for u is seen to result in lieu of Donnell's

V4 u expression.

§2.2 Taylor Series Technique - The Tinoshenko Beam

With the basic symbolic techniques used to decoupie linear matrix differen-

tial operators now in hand, the next step entails recovering the limit differential

equilibrium equations corresponding to the discrete finite element equations at an

interior node. These discrete finite element equations result from the assembly of

an element patch as was portrayed in Fig. 1.1 for several different element geome-

tries. Once an element patch has been assembled, the finite element origin of the 0

I discrete equations becomes immaterial and techniques used to examine finite dif-

ference equations may be used. The approach presented here of employing Taylor

series expansions of the dependent variables is an extension of the work of Hirt [ill

and Warming and Hyett [12]. The key departure from the local truncation error

procedure is that the continuum solution is never formally substituted into the

discrete equations in order to determine the "local truncation error." Instead, one

works with the solution of the limit differential equilibrium equations correspond-
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ing to the discrete equations. As a result, primary interest can now be directed

toward identifying intrinsic element behamor such as spurious mechanisms and ele- S

ment locking which may be engendered by a particular finite element formulation.

The formal order-of-accuracy of the discrete finite element equations is no longer

the principal reason for performing this type of analysis. In fact, since certain

element pathologies are shown to elevate the role of truncation error terms to that

of playing the dominant role in the limit differential (or modified) equilibrium

equations, asserting consistency based solely on local truncation error information A.

may actually prove misleading. The limit differential equilibrium equations in this

case provide the information needed to assess what one might call "operational"

consistency.

The operational procedure for decoupling a set of coupled differential equilib-

rium equations in terms of a single dependent nodal variable, w, will be used here

to first derive the decoupled continuum equilibrium equation of the Timoshenko

beam for the linear dynamic, static and bifurcation buckling problems. The limit

differential equations corresponding to the discrete finite element equations for

the linear Timoshenko beam are then derived and compared to the continuum

equilibrium equation for the cases of both exact and uniformly reduced spatial

integration. For the present case, the resulting limit differential equilibrium equa-

tions expressed in a decoupled form are shown to result in a canonical represen-

tation from which one can explicitly identify the parasitic differential operator

responsible for transverse shear element locking.

§2.2.1 Continuum Timoshenko Beam

The governing linearized equations of motion for the shear-deformable Tim-

oshenko beam theory including the effects of both an inplane pre-stress and a

lateral loading are derived from Hamilton's Principle,

, j dt =0 (2.14)
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where the Lagrangian £ T - H is composed of T, the kinetic energy and

1T, the total potential energy which in turn is the sum of the strain energy, U,. 4q

and the potential energy of the applied loads, V. The Euler-Lagrange equations

resulting from Eq. (2.14) yield the strong form of the equations of motion which

are of immediate interest here (while application of the Ritz procedure yields the

corresponding discrete equations).

The assumed displacement field for Timoshenko beam theory is

ts(x,Z,t) =-zO(x't) N
Z(2.15)

where u and w are the inplane and transverse displacements with 0 representing

the counter-clockwise rotation of the beam normal. Using Eq. (2.15), the kinetic

energy is given by

T =pI(fh/O 0lti d x) 2a 1 dx (2.16)

where A, I and p are the cross-sectional area, moment of inertia and density,
respectively. The strain energy, U = Urn + U0 , is partitioned into its separate

material and stress-dependent contributions,

1 h/21 
V

V~M = _/[EE2 + G"/ 2z] dzdz 1 f [E1()2 + A0 )2 dx '

nd j he x a[EI( + GA(- ax

-a=fI h/2 2O
[EeL +Gdx =Ifd 12dx=- d

tjy j h/2 2.6N dzd a X JC,8 X

(2.17)
where E and G are the extensional and shear modulus and a is an initial axial
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stress with the nonlinear part of the total Lagrangian strain, ex, given by'

CN U~(.), + T- *(2.18)

Lastly, the potential energy of the applied lateral load, q, is simply

V = -Wezt f w x (2.19)
00

Distributed moments are neglected here in keeping with the classical derivation of

these equations.

The Euler-Lagrange equations corresponding to the present functional form

of ' = Z(z,t,w,9, w',',thO) are

aC a aI a ae
- )() - ( )= 0 i =1,2 (2.20)

where ui - (w, 0). With Z determined, Eq. (2.20) is used to derive the governing

linearized equations of motion for the Timoshenko beam written in the matrix

differential operator form

Lu =(Lm + La) u f (2.21)

I If the beam equivalent of von Kirmin's nonlinear plate theory [25] is desired,

eNL~~(w 2

would instead be used in which case, the 1('-0)2 or so-called :urvature term [261
would be absent from Eq. (2.17). The effect on the buckling operator of includingthis rm will be seen in Eq. (2.28).
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I where

3p Lm [P GA~ GA A
GAJ. _pIe* + EI %. -

](2.22)

and

dU= 
Lw OjT f= Lq oJ T .  

(2.23)

The notation L J is used to denote a row vector. The three different classes

of problems which can be addressed based upon Eq. (2.21) are 1) free/forced

vibration, 2) static beam bending, and 3) bifurcation buckling.

3 TIh governing equations for the first two classes of problems emanate from

the material operator, Lm. By employing Eq. (2.3), the decoupled Timoshenko

I beam equation in terms of w is found from

q GAj
Iml" -w 2 +E 2 (2.24)-pI-. +o-- - GA tb

to be 

2

E04w 8w E 04 p2 O4 w pI 92 q EI a 2 q

El +pA - pI(l +f) G + _ (2.25)ax4  at2 a2 t2  G at4  GA at2  GA a 2

I which agrees with Timoshenko's derivation of his CO beam theory [27]. For the

static case (i.e., 8W!$ = 0), Eq. (2.25) becomes

d4w = q - EI d 2 q (2.26)Ez4 q GA dz 2

which will serve as the reference continuum equation used for the identification of

"transverse shear" element locking in the next section.
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For the case of bifurcation buckling where Tr = 0 and q = 0, the reference

continuum equation to be employed later in §2.2.3 is found from

ILm + LaI • w = IGlqo (2.27)

to be
Id 4 w 2 E d4 w d2 w d4 w

[(-A EI-=0. (2.28)

3Unlike the familiar Euler-Lagrange beam equation, a quadratic eigenproblem re-

sults by including the curvature effect in conjunction with transverse shear defor- S

mation. In practice, one finds that the coefficient of the a2 term, - --2 1 with
the result that Eq. (2.28) should be considered to represent a singular perturba-

tion problem - if not formally, certainly from a numerical conditioning standpoint

when solving for the flexural buckling mode.

§2.2.2 Discrete Linear Timoshenko Beam

It has been recognized for some time (see eg., [28,29]) that C0 elements such •
as the exact spatially integrated linear Timoshenko beam element exhibit trans-

verse shear locking when the element is thin, ie., 1/h > 1 where I and h are the

element length and thickness, respectively. Thus, the corresponding coupled limit

differential equations should also embody this locking phenomenon in some way.

As will be shown shortly, the decoupled limit differential equation obtained by3 the present procedure plays the key role in identifying the parasitic differential

operator responsible for transverse shear element locking. 5

The element material stiffness matrix for the linear Tinoshenko beam element

is determined from the second variation of the strain energy expression given by

Eq. (2.17) in the usual way (see e.g. [301) resulting in

k = kb + ks = (E1BB +GABTB) dx. (2.29)

Here, Bb and B8 are the strain-displacement matrices representing bending and
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transverse shear components determined from

'E Bd B= [ 0 -z ,L 0 ziI ] fB,

* (2.30)
with the element shape functions defined by Ni = I 1 - and the element

S degree-of-freedom vector by d = wl 01 w 2  02 jT.

Evaluation of BTB b and BTB,, making use of Eq. (2.30), shows that the

nonzero terms in the first integrand in Eq. (2.29) are constant so that the use of a

1-point Gauss-Legendre quadrature rule would exactly integrate them. Quadratic

order terms are however found in the second integrand which would require a 2-

point quadrature rule for an exact term-by-term spatial integration. The use of

a 1-point (or reduced) quadrature rule results in the loss of these quadratic order

contributions to the "0101", "0102" and "0202" terms of k."

§2.2.2.1 Exact Spatial Integration - Transverse Shear Locking

For the case of static loading with no prestress, the finite element difference

3 equations at an interior node "j" for an assembled element patch of exactly inte-

grated Timoshenko beam elements, as portrayed in Fig. 2.1, are

-GA('' - 2wj + wj+l) + GA( -0 12 j+1 qj

" (2.31)
EI(Oj_1 - 22+ +3+1) GA(OiI + 4 + -+ Ojl ) + GA(-w-2 + wj+'1  = 0.

Written in this form, these equations are viewed simply as the set of finite difference

I equations used to approximate Eq. (2.21). The fact that they originated from

a finite element discretization rather than a direct differencing of Eq. (2.21) is

immaterial for the analysis to follow. The nodal load, q, in Eq. (2.31) can be

represented in the functional form t(z)l where 4(z) is the discrete counterpart of

the distributed continuum load, q(z). The present emphasis is to determine the
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~.N."



W 1  W 2  W

Fig. 2.1 - Timoshenko beam discretization

effect of the discretization on the homogeneous part of the continuum operator, so3for now, it is convenient to assume that q(z) = 4(z). In §2.3, when the important

question of discrete error estimation is introduced, the exact form of j(z) and its

role in the error estimate will be discussed.

The first, and conceptually most important step in determining the limit dif-

ferential equilibrium equations corresponding to the discrete equations, Eq. (2.31),

is the substitution of

(w, 0) E Su = {u:u E C'(z),u(zj) = uj} (2.32)

for the nodal displacements, (wj, 8j). Next, Taylor series expansions,

u(xj±8) = (z)) - + 12 z) 3 (2.33)

2I a._2  6 8 3  
* , (.)

are used to relate the displacements at zj±l to the interior node, zj, which when

substituted into Eq. (2.31) results in the following coupled limit differential equi-

3librium equations,

d2 w dO 12 d 38-GA(.. _ _ )-GA- (" - _2 d- ) + 0(1
4 ) = q

dz 7- 12 d1z 4  d ''

(2.34)
d2 a + GA(9 - 0) + EI2 + ) + 0 (14) -- 0

l- 12dz 4  6( z 3  dx2
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or in matrix operator form

LDU= f. (2.35)

These equations are representative of any interior nodal point in a uniform mesh.

It is immediately apparent from these equations that this discretization is a consis-

tent one since in the limit as I - 0, the coupled continuum equilibrum equations,

Eq. (2.22), are recovered, viz.,

lir LD = L. (2.36)L-.0

It is very important to note that these equations represent the system for which the

solution to the discrete model actually corresponds, if we ignore for the time being

any discretization errors associated With q. As such, one is able to infer intrinsic

element behavior by a direct term-by-term comparison with the governing strong

form of the problem.

Following the symbolic procedure used for the continuum problem in the

previous section, the decoupled transverse equilibrium equation is determined from

Eq. (2.34) to be 2

12 GA d4tv 12 d6 w 1 E d2 q 12 EI d4 qEI(I + 2-) +-- W -6 qz-- + ( L2 - E-1d2 G q
6l ) 6 GA dx2 12 GA dz4  (2.37)

L2 ±q) d2q 12 d4 q)

6 dz 2  GA +x 12 dS

where only truncation terms of order 12 have been retained. An equation of this

form, where only leading truncation-order terms are retained, is often referred to

as a modified equilibrium equation (see e.g., Ref. [121).

Comparing Eq. (2.37) with its continuum counterpart, Eq. (2.26), one finds

that the dominant effect of the finite element discretization manifests itself as a

2 The MACSYMA runstream with ausociated output from which these results where

obtained may be found in Appendix A.1
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modification to the bending stiffness resulting from the appearance of a parasitic

differential term of the same order as the primary differential operator, i.e., d4 ,' 4

The modified bending stiffness resulting from this parasitic differential operator,

~ EI, defined as

-" [ 2GA1EIEI= ~1~j El (2.38)

is the discrete counterpart of the continuum bending stiffness, EL. MacNeal [311

and Prathap and Bhashyam [32] have also identified this modified bending stiff-

ness term working from an energy standpoint. Note that if one had prematurely

I stopped with Eq. (2.34), a modified bending stiffness might have mistakenly been

assumed to be (1- 12_ )EI by collecting the coefficients of from the second

equation.

In order to assess the relative magnitude of EI with respect to EI, the case

of an isotropic rectangular beam of unit width and thickness h is considered. For

this simple case,
- 1 + v-) h EI. (2.39)

I For even a moderately thin beam with /h = 10 (and L, = .3), one finds that

I EI = 39.5EI (2.40)

with the immediate implication that a finite element solution of a "thin" beam

problem using a linear Timoshenko beam element of this aspect ratio would result •

in a transverse displacement w equal to only about 2.5% of the correct solution.

This problem is of course the well known transverse shear element locking phe-

nomenon exhibited by CO beam and plate finite elements which is shown to be

linked directly to deficiencies in the limit differential equilibrium equations ob-

tained from the discrete finite element equations.

REMARK 2.1

It is important to emphasize here that element locking has been identified as
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San intrinsic element property and as such does not require knowledge of bound-
ary conditions nor any specific numerical solution. This fundamental approach
to asesr.gY intrinsic eiement behavior should be contraqted with the alternative
technique of identifying element locking based upon the art of constraint counting
(see e.g., [33,34]). Since locking was viewed as the result of how a particular dis-
cretization represented the thin plate limit of zero transverse shear strain, the idea
of shear'constraints was introduced to reflect the manner in which this condition
was satisfied on the element level. If this number was larger than the number
of free d-o-f per element in the global model, then mesh locking was anticipated.
Tsach [34] states that locking is not solely an element property; it ia a character-
istic of both the element and the boundary conditions. Based upon the symbolic
results presented here (and in the following chapters), one cannot help but con-I clude that this statement is misleading since the question of element locking is
answered independently of any imposed boundary conditions. -

§2.2.2.2 Reduced Spatial Integration - Element Unlocking

One numerical technique used to rectify the problem of transverse shear ele-

5 ment locking is to underintegrate the transverse shear stiffness (see e.g., [28,29,35]).

Doing so raises the question of element consistency since employing reduced spatial

3integration violates the strict variational basis of the discretization. This results in

what Strang and Fix [6] refer to as a variational crime, from a Minimum Potential

BEnergy standpoint. Malkus and Hughes [36] have, however, shown the equivalence

between this technique and that of mixed finite element methods. This permits one

Ito apply convergence proofs and error estimates to those cases where equivalence

can be established. For the present problem of interest, Arnold [37] has shown

the equivalence between reduced spatial integration and a mixed finite element

implementation. In this section, the use of reduced spatial integration is shown to

result in a discretization whose decoupled limit differential equilibrium equation

does not contain the parasitic differential term responsible for the transverse shear

element locking.

IRecovery of the limit differential equilibrium equations will again begin by

writing the discrete finite element equations of the linear Timoshenko beam, now

derived employing one point Gaussian quadrature for the transverse shear stiffness,
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at an interior node as

w.A._ - 2wj + -j+,, 1-GA(;+ ) + GA( -I +- Oi

(2.41)

EI( j_*I - 28j + 1) AOj-I + 20j + 0j+1 -'1) + GA( Wj+
E(12 GA( 4+G( 210

Comparing Eq. (2.41) with Eq. (2.31), which was obtained using exact spatial

integration, one finds that they differ only in the averaging of 0 in the second of

these equations. Exact spatial integration resulted in a J(1-4-1) nodal averaging

scheme versus the 4(1-2-1) scheme seen here. By again employing Eq. (2.33), the

limit differential equilibrium equations corresponding to Eq. (2.41) are found to

be

CA"d2w dO G12 dw d39 +
dz 2  dz 12d4 x

(2.42)
dw 12 d4  12 d3w 3 d20.

E 0+GA(Lw -O)+EI 2" +dGz 3 - + 0(14) = 0 .

dX2 dz ~12 dx4  T , z

In this form, the only difference between the two sets of coupled limit differential

equilibrium equations obtained from the two different integration rules is in the

truncation error terms associated with approximating 0 which are seen to be

12 d29

(2.43)

12 d
2

"

where the superscripts e and r designate whether the exact or reduced spatial in-

tegration rule was used. From the traditional formal order-of-accuracy viewpoint,

one may prematurely conclude at this point that the approximation engendered

by the exact integration rule should result in a more accurate discrete solution

which is not the case as will now be shown.
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The decoupled limit differential equilibrium equation obtained from Eq. (2.42)

is found to be
d w EI2--w-+(L EL)d.q 12 El d q

EId- + EI'2 --w q + (2.44)
d dZ6  4 GA dz 2  12 GA dz 4

It is immediately apparent that the parasitic 4th-order differential term responsible

for locking has been eliminated by the reduced integration of the transverse shear

stiffness. Hence, what appears to be a less accurate averaging scheme for the a

term, as shown in Eq. (2.45), plays the key role in eliminating transverse shear

element locking. Examination of Eq. (2.42) shows that like Eq. (2.34), a truncation

error term has a differential operator of the same order as that of the continuum

operator. However, in this case, Eq. (2.44) shows that now, this effect does not

propagate to the decoupled equation. Hence, it is the decoupling process which S

manifests the true behavior of the Timoshenko beam discretization. The results

from this and the preceding sub-section show that this decoupling process results

in a canonical form of the modified equilibrium equations from which intrinsic

element behavior is determined.

REMARK 2.2

MacNeal's residual bending flexibility modification [31] of the material transverse
shear stiffness is obtained from the reduced spatial integration analysis as a conse-
quence of eliminating the second-order truncation term associated with d 2q/dz 2

in Eq. (2.44). This is accomplished by matching the coefficient associated with
d2 q/dz with the correct continuum coefficient. With GA only explicitly appear-
ing here in the continuum equation, one is free to define a modified GA* which
satisfies 0

12 EI _ 12 EI (2.46)
4 GA* 6 GA"

This results in

GA* + 1(2.47)

which is seen to be identical to MacNeal's "GA". Replacing GA with GA* in the
discrete finite element equations results in the following decoupled limit differential

31

;u'



equilibrium equation

id4w 12 d6 w 12 EI d2q 12 EI d4 q
El- A Idz 2 2G d( (2.48)

d 4  6 5"A d 2  12 GA d, 4

Substitution of the continuum solution, W, results in

d4W EI d 2q 12 EI d4 q (2.49)Ed-. = A z 2- ' 12 GA dz 4

where the twice differentiated continuum equilibrium equation has been used to
simplify the results. As before, only the leading truncation error terms are re-
tained. Note that the coefficient of the last term in Eq. (2.49) can be rewritten 0
as

12 E (1 + = 12h2  (1)+ ,1 (2.50)
12 GA 72 72

where c = h/i <tz 1 for thin beam applications. Hence, the resulting finite elemez t
approximation of the Timoshenko beam by the linear element achieves a fourth-
order interior accuracy for a uniform element mesh - the same order of accuracy
as for the C1 Hermitian beam.

REMARK 2.3 S

Penalty function techniques have been used as a method for deriving "C1 " bending
elements employing CO displacement interpolation fields (see e.g., [30,38]). For the
case of the Euler-Bernoulli beam, the constrained. variational expression,

= Ej df)2dx + a f( - 9) 2dz wqd, (2.51)

is identical to that used for the Timoshenko beam except for the interpretation
of a. For the shear-flexible Timoshvnko beam, the second integral represents the us
transverse shear energy with a = GA/2. For the above case, however, a is the
penalty parameter associated with enforcing the constraint that 9 = dw/dz. For
the linear beam derived from Eq. (2.51) employing reduced spatial integration on
the penalty term, the decoupled transverse limit differential equilibrium equation
is found to be

d4 w 12 d6 w 12 El d 2q 12 EI d4q
E Il-q + ((2.52)

d4 EI 6 d -4 x 2  12 2a dz 4

In the context of the present penalty formulation, the expected Euler-Bernoulli
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beam theory,

Ez-w = q+O(1) (2.53)
rihr

results in the limit as the constraint that 9 = dw/dx is enforced, i.e., a __+ 00.
This "C1 " beam element is seen, however, to be only second-order accurate as
compared to the Hermitian beam element discussed in Remark 2.2 which achieved
fourth-order accuracy by explicitly enforcing C 1 displacement continuity.

§2.2.2.3 Limit Differential Equilibrium Equations versus
Local Truncation Error

In light of the two examples presented thus far where limit differential equi-

librium equations have been employed to explicity identify element behavior, the

differences between the type of information they provide and that of a local tradi-

tional truncation error analysis (see e.g., §1.4 of [6]) can now be easily contrasted. 0

Returning to the results from §2.2.2.1, the modified equilibrium equation (i.e.,

limit differential equilibrium equation with oniy leading truncation-order terms

retained) for the exactly integrated Timoshenko beam element was found in to be

12 A 4). 12 ( 12 -l 
2 d4 q)

EI(l + 2E d 4 . = + Gl ( d q + Ld 4q, (2.54)EI'i;- .- 4- + 6 dZ6- = "(q WZ-2 GA dx2 12 dX4

or in differential operator form,

ID. w =r .q. (2.55)

Here, w(z), as was defined by Eq. (2.32), is the solution of the modified equilibrium

equation. The exact continuum solution, W(z), does not satisfy Eq. (2.54), nor ,

does the discrete solution, w, satisfy the continuum equilibrium equation,

EId4 W EI d 2q • (2.56)
dX4  GA dZ2

representing Timoshenko beam theory. For this very reason, Eq. (2.56) cannot be

used to further simplify the limit differential equilibrium equation, Eq. (2.54). 0
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In spite of the fact that the term "truncation error" has been applied to

characterize any term in which the element length, 1, explicitly appears in the

limit differential equilibrium equations, they do not represent the local truncation

error of the discretization from a classical finite difference standpoint. The concept

of local truncation error does not arise until one formally substitutes the exact

continuum solution, W, in place of the discrete solution, w, in Eq. (2.54). The

differential terms remaining after the continuum equation and its differentiated

forms have been employed to simplify it represent the local truncation error, r ,

of the discretization. For the present case, the local truncation error for the

Timoshenko beam discretization is found from the error equation,

12 GA d4W 12 d6W 12d2q EId2q 12 d4q (2.57)EI(I+ 1 ' - ' 6 (q -[+ T72) + - (Z21 +12 - '  (2. 7)

to be

r1 a4 ) ) 0 (14) (2.58)
12 Az 4  GA ax4

Here, differentiated forms of the continuum equilibrium equation, Eq. (2.54), were

employed to simplify the results. Eq. (2.58) shows that a uniform mesh of ex-

actly integrated Timoshenko beam elements achieves a second-order interior accu-

racy. However, unlike the limit differential equation approach which automatically

manifests element pathologies caused by parasitic differential operators, the local

truncation error, per se, gives no indication of potential element trouble.

Consistency is represented in different, but equivalent, ways by these two

techniques. From a limit differential equilibrium equation standpoint,

D.w=rD.q --. l.w=rq as 1--+ 0 (2.59)

which implies that %C

w=W asL- 0. (2.60) '_
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UFrom the local truncation error standpoint,

IT --+ 0 as I--0 (2.61)

with the proviso that the continuum equation was subtracted from the error equa-

tion. If the discretization is not consistent with the anticipated differential equa-

Ition, the limit differential equilibrium equation reduces to the differential equation

for which it is consistent (as will be seen to be important in Chapter 5).

REMARK 2.4 0

These results differ from the earlier work of Walz, Fulton and Cyrus [131 in several
key respects. When faced with decoupling systems of coupled partial differen-
tial equations with several dependent variables, as was the case for the Hermitian
beam discretization, they employed a term-by-term elimination procedure. This
entailed successively substituting differentiated forms of the equations represent-
ing the displacement variables to be eliminated to cancel specific coupling terms
in the retained equations. This should be contrasted with the present operational
procedure whereby the decoupled w limit differential equilibrium equation is im-
mediately obtained from ILDI • w = Gil for the Hermitian beam problem where

- 2 2 _4 ,4 ,6 6 1,4

d=Lw eJT; =Ld5 oJd"

The second point is more fundamental in that the distinction in [13] between
w and W was overlooked. The w limit differential equilibrium equation determined
from Eq. (2.62) is

d4 w 12 d6w 14 d8 w L2 d2q 14  + 0(16), (2.63)EI -"+ + j dz -' " "0 dz' -q + 6" T- 2 72EI -Z4+0(12.3

where it is again stressed that w is the solution to this equation, representing the
discrete problem, and not the continuum one.

The continuum equation was then mistakenly employed in [131 to simplify S
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U Eq. (2.63) resulting in

d4w 14 d8 w q (2.64)

dX4  720 8 El (2.64

which is not the modified equilibrium equation for this discretization nor does it
properly represent the local truncation error which is in reality,

1.. = 14 d8 W 2
720 dz 8  (2.65)

REMARK 2.5

The symbolic decoupling procedure used in Remark 2.4 has performed two impor-
tant functions. The first is the obvious one of determining a decoupled equilibrium
equation in terms of a single displacement variable. The second one, namely that
of eliminating a purely computational d-o-f, leads us to the next comment. Strang
and Fix [61 made the comment that we can rewrite our finite element system as a 0

set of difference equations having a very special form: one equation of the system-is
an accurate analogue of the original differential equation, and the other M - 1 are
completely inconsistent3 . In the context of the present symbolic analysis, we have
shown that there are no inconsistent equations. This is a result of the decoupling
process which automatically, and in a consistent manner, accounts for the coupling 0

effects of equations corresponding to computational d-o-f on the decoupled limit
differential equilibrium equation(s) corresponding to physical d-o-f.

§2.2.3 Discrete Approximation of the Buckling Operator

From a displacement-based finite element standpoint, derivation of the dis-

crete counterpart to the continuum buckling operator, La, has traditionally come

about in two different ways depending upon the spectrum of problems to be ad-

dressed by the finite element developer, i.e., linear + bifurcation buckling or intrin-

sically nonlinear. In the first case, derivation of the so-called geometric stiffness

matrix, ka, has either been based upon a simple extension of linear theory whereby

nonlinear strain-displacement terms are selectively introduced into the strain en-

ergy, U, (or V when the inextensional membrane hypothesis is employed) as was

done in Eq. (2.17) and then appropriately discretized (see e.g., [39,40,41]). In the

3 see p. 170-171 of (6]
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U second case, an incrementally nonlinear formulation is employed from the outset

where kq naturally evolves as one component of the tangent stiffness matrix (see

e.g., (30,42,43]).

3 From a computational standpoint, once the global material and geometric

stiffness matrices have been assembled, the structural bifurcation buckling load is

determined by solving the eigenproblem

3 (K + AKr)d = 0 (2.66)

where A is the load multiplier or eigenvalue at which point an adjacent equilibrium

U state is possible, represented by the eigenvector d. For the present symbolic analy-

sis where one is interested in recovering the linearized limit differential equilibrium

equations governing the discrete bifurcation problem, the alternative matrix equa-

tion

(K + Ka)d = 0 (2.67)

is instead employed which leads directly to the limit differential equilibrium equa-

tions

(Lm + Lo)u = 0 (2.68)

In this section, k,7 for the Timoshenko beam is determined by the direct

discretization of the a terms in U (see Eq. (2.17)). In a thickness-preintegrated

form, the resulting ko. is given by

ko.= IBT 0 Ba dz (2.69) 'V

withJ'v,

ddN

where the shape functions and nodal d-o-f ordering are the same as previously

defined in §2.2.2. For the present case of a linear element, there is no freedom with
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regard to spatial integration order since the individual components of the integrand

are constant so that a 1-point quadrature rule exactly integrates Eq. (69). The

resulting ko. obtained employing this rule is

ko. A[ 0 -A 01
ko a 0 1J.- (2.71)

k=T -A 0 A 0

0 - 1 0 1

After the assembly of K0 at the jth node, the now homogeneous difference

equations for the reduced-integrated Timoshenko beam are4,

-GA( 2 ) + GA( 6J-1 + O3+1 AP _1 - 2w3 + •j-1 0

(2.72)- ( ._ - 20j + O.+l 0 1+20, +O• •
124 21

+Oj0 1 - 20j + Oj+l 0
12 =

Employing the present symbolic element evaluation procedure, the discrete coun-
terpart of the reference continuum buckling equation, Eq. (2.28), is found to be

I(d4w + 12 d6w) 2 + [E + 1d 4 w 12 d6 w d2 w 12 d4 w
+ L 6) - A(±-2 - 4)Gd4 6 1G dX4 6 d 6  dx2  3 dx4

d4 w 12 d6w

+EI( + ;- -) 0 0

(2.73)
which is the modified equilibrium equation governing the bifurcation buckling of

the reduced-integrated linear Timoshenko beam element. In the next section, a

priori error estimates for the bifurcation buckling load will be determined based

upon this modified equilibrium equation.

4 The exactly integrated Timoshenko beam will not be considered due to the locking
problem.
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§2.3 Error Estimates Based Upon Modified Equilibrium Equations

In the usual finite difference context, local truncation error results give no

real information regarding the magnitude of the error resulting from the discrete

approximation, but rather only some indication of how quickly the discrete so-

lution approaches the exact one as the mesh is refined. This does not have to

3be the case, as was shown by Walz, Fulton and Cyrus [131 in their work on de-

termining the accuracy and consistency of different finite element discretizations.

They obtained a priori error estimates in the interior problem domain of a given

discretization by seeking harmonic solutions of the so-called modified differen-

tial equilibrium equations comprised of the continuum operator (or zeroth-order)

and leading truncation order terms. A fundamental error was, however, made 4y

Soverlooking the effect that the discretization had on the loading operator which

resulted in physically incorrect error predictions. In the present analysis, the dis-

3crete counterparts of both the homogeneous operator and the loading operator are

consistenly treated. As will be shown, this consistent treatment results in a more

5realistic error estimate.

In this section, error estimates will be determined for the different discrete

models considered thus far based upon the theoretical results obtained in the

previous sections for both linear and bifurcation buckling problems. The present

error estimates are based upon the particular solutions of the governing equilibrium

equations. As such, they are valid, in general, only for the interior problem domain

away from the influence of boundary conditions which would be satisfied by the

homogeneous solution. For the case of periodic boundary conditions which are

satisfied by the harmonic solutions, however, the error estimates will be valid for

each interior nodal point in the mesh.
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, a
§2.3.1 Consistent Determination of Discretization Effect on Loading

Operator

The case of the one-dimensional linear displacement-based bar element is a

challenging way of introducing this topic since the discrete solution is nodally exact

for any loading function [44,30]. The first step will be to examine the approach

taken in [13] in order to see why an incorrect result was derived there. Next, the

Iconsistent way of determining the discretization effect on the loading operator will

g be presented which correctly results in the prediction of a nodally exact solution.

The discrete difference equation at the jth interior node, based upon a Min-

imum Potential Energy-based linear finite element discretization, is

S+(-ujI 2uj - u1 1 ) = p1  (2.74)

where pj is the nodal load. Expanding in a Taylor series about the interior node, 9

the modified equilibrium equation corresponding to Eq. (2.74) was determined in

[13] to be

EA2 u 12 a 4 u

EA( +i2 i+ )+ p = 0 (2.75) 0

where the pj in Eq. (2.74) was assumed to be of the functional form

p1 = p(X)L. (2.76)

Fourier solutions of the form3
u(z) um sin - ; m =1,2,... (2.77)

were then determined for

p(z) - pMsin " (2.78)
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where the loading for the discrete problem was assumed to be identical to the

3 continuum one as is reflected in Eq. (2.76). With the continuum solution given by

U =Pm (_L)2 i*mir(27z
, EA mir (2.79)

the solution to the modified equilibrium equation was written as

U

U =- u (1 + ) (2.80)1-e1

where

= ~mr2. (2.81)

Since e is always positive, it is obvious from Eq. (2.80) that u > U for all in,- a

result which is of course inconsistent with the underlying MPE-based finite element

formulation employed for this discretization. The problem with this approach

results from the assumed form of Eq. (2.76) which neglects any discretization

effects on the loading operator.

The consistent way to handle harmonic loading entails going back to the basic

element load calculation which requires that harmonic loading be assumed from

the outset. If in the following equation, f is used to denote the local element

coordinate system and z, the global system, then the nodal load at an interior

node, j, resulting from a harmonic bar loading would be

ft____ IPM MrX + ) .Mr(x~~

P-i msr(Z -+ ) d +I(1-)pmsin L d (2.82)

where xj is the position of the interior node. Performing the indicated integration,

the discrete nodal load is

4 sin2 (m~d) mizmr
4Pin2L sin- ),l s rxj (2.83)m i%

P]=Pvn (rr)2 1  L L (
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where fim is determined to be

PL2mir)2 + 4 m"r 4  (284
?= ('- .--) + -- ) P, (2.84)

3 when sin(-L) is expanded in its power series representation. Using this result,

the solution to the modified equilibrium equation, Eq. (2.75), is now found to be

m E " 2(1 - 2 (21)2 2 mr.

EA()2(1) +.)um = ( - + )p. (2.85)
L 12 L 12L

Noting that the discretization of the continuum and loading terms has resulted in

identical power series expansions, the discrete nodal solution is, after simplifica-

tion,

Lm--(L 2 snmlz = ,(.0
EA m = (2.86) -

which is in fact the continuum solution; or in other words, the discrete solution is

predicted to be nodally exact. This interesting result is easily verified numerically,

as illustrated by a plot of both U and u vs. z for a 4 element bar model with

irz 2 rz.

p(z) = po(sin a + sin -f, (2.87)

as shown in Fig. 2.2.

REMARK 2.6

It should be noted that in order to obtain the nodally exact discrete solution,
exact spatial integration of Eq. (2.82) had to be employed to determine the nodal
loads. This is, of course, a consequence of satisfying the requirements of the weak
form of the problem which requires that the loading term,

6V = -JkPbUdV ,  (2.88)

be exactly integrated. If the same one-point spatial integration rule that was
used to integrate the element stiffness had been used to evaluate the element load
vector, a nodally exact discrete solution would not have been obtained as is also
shown in Fig. 2.2. A more detailed discussion of the discretization errors which
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Fig. 2.2 - Exact vs. discrete results for 4 element bar discretization with L

£ 1000, EA = 1 and Po = 10-4.

can be introduced in the loading term through numerical quadrature can be found
in Strang and Fix [6].

One might comment in passing that the common practice of integrating the
loading term with the same integration rule as used for the element stiffness calcu-
lation may unintentionally introduce additional discretization errors into the finite
element analysis depending upon the frequency content of the distributed load.

§2.3.2 Error Estimate for Transversely Loaded Timoshenko Beam

The bar example just examined in the previous section was rather unusual in

that the discrete solution was nodally exact for any distributed loading. For theI
case of the linear Timoshenko beam discretization, however, this is not the case so

that the solution of the modified equilibrium equation can be used to derive nodal

displacement error estimates as was done in [13].
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! For this problem, harmonic solutions of the general form

W = Wm sin kz (2.89)

I will be sought corresponding to

Iq = qmsinkz (2.90)

where the Fourier coefficients, qm and win, represent the frequency spectrum of the

applied loading and transverse displacement. Depending upon ones perspective, k

can either be viewed as the spatial frequency or in a dynamical context, the wave

number. Employing the finite-length beam analogy with its discretely varying

solution components, k is defined by

k=-; M (2.91)

I The exact solution for the mth Fourier mode is determined from Eq. (2.26)

to be

3( (+ #k 2 )qm
W = Elk 4  sin kz = Wm sin kz. (2.92) ]

Next, using the modified equilibrium equation for the reduced integrated Timo-

shenko beam, Eq. (2.44), the solution to the discrete problem is

((- 2 k2) + El(kj2 - 1 2 k4)14fvn0
W sin kz12 -,x wm sin kxj (2.93)I _EI~k4 - WO

where the effective distributed transverse load,

sain ( r)qi n2 (2.94)

i m k212 (.4

is identical to Eq. (2.83) since the same element shape functions are used in both

cases.
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As will be discussed in more detail in the next chapter dealing with discrete

3 Fourier analysis techniques, Eq. (2.93) is not valid for all k's, or alternatively, for

all solution wavelengths, A, where A = 27r/k. For the present discrete problem,3 solution components may only be accounted for within the bounds

A oc rigid body mode (295I Amn A<I 2L first deformation mode; rn = 1

3or alternatively,

kmaxi= >r k> 0 rigid body mode (296)
km ~ = - k I r/L first deformation mode; m = 1.

Here, Amin is the minimum solution wavelength which the discrete mesh can rep-

resent (without aliasing) while oo represents the other limiting case of pure rigid 0

body motion. The maximum m is determined from kmax = -r = "r to be
mmax = L11 =- nel where nd is the number of elements. Based upon theseg results, the total displacement at the jth node would be

W(z) = 1 wmsinkz, (2.97)

M=.

while for the continuum solution,

00 mmax
W (z) = Wm sin k 1- Wm sin kz. (2.98) 0

3 It should be noted that the discrete model actually represents a truncated series

approximation of the physical one. For now, it is convenient to assume that

{Wm = 0: rn > nmax} as is indicated in Eq. (2.98).

I With closed form expressions for both the continuum and discrete displace-

ments in hand, the possibility of performing an a priori error analysis becomes
a reality once the loading spectrum has been specified. From a frequency stand-

point, the relative error in the magnitude of a specific Fourier solution component
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can be simply obtained from

-WM (2.99)
EwM

A plot of Em vs. m is shown in Fig. 2.3 for a finite length beam discretized with

10 and 50 elements. As a result of the assumed periodicity of the solution, results

are plotted only for integer m values. In spite of the fact that reduced spatial

3 integration was employed, the displacements are seen to converge from below as

I -, 0 since em > 0 V m. The "long" wavelength representation of the continuum

Iproblem by the discrete finite element solution is also quite apparent since for

any number of elements, fk(m) -+ 0 as k -- 0 (if for a second, one views k in a

continuous sense). For the case where the distributed loading is represented by

a single harmonic frequency, Eq. (2.99) would represent the relative displacement

error at any node where sin kzj 6 0, i.e., points where the continuum solution is

not zero.

The relative error in the total displacement at a particular node point in the

mesh would be

(zj) = 7 Wm - win) sin kzj (2.100)
mmax Wmsinkxj

where the frequency content of the solution and hence of the error estimate is

3 determined by the spectral density, qm, of the loading spectrum.

REMARK 2.7 0

There are two possible ways in which the results from these a priori error estimates
could be used by a structural engineer. The first would answer the question of
what is the expected relative error for a given mesh discretization, i.e., element
type and number. The second would answer the question of how many elements
of a certain type are required to achieve a specified solution accuracy.

§2.3.3 Error Estimate for the Discrete Buckling Problem

Determination of the spectral error con+-_nt for t- dis'-te l;f%'ration buck-

ling problem proceeds in much the same way as was done for the laterally loaded
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i Fig. 2.3 - Relative error in Fourier solution coefficients for Timoshenko beam

where m W L = 1000, v = .3 and h = 1.

~Timoshenko beam. For the case of external loading, error estimates were based on

harmonic solutions of Lu = f where the solution could be formally represented as
g u = L-1f. In the present case, dealing with the homogeneous bifurcation buckling

problem where Lu = 0, u now plays the role of eigenfunction with the buckling

~load determined by setting. the characteristic polynomial of L equal to zero.

~From Eqs. (2.28) and (2.73), a relative error estimate of the bifurcation buck-

ling load for the Tinoshenko beam may be obtained by plotting for a given buck-

~ling mode the relative error, em, defined by

I~~rnE = omm D (2.101)

~~vs. m, the number of half waves where tv = wom sin kx and W = Wm sin kx. This "

has been done in Fig. 2.4 for the case of a Timoshenko beam discretized using 10,I47
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t E =i =i .3 and.h = 1.

~~20 and 50 elements. While by no means a general result, the buckling loads for .

the discrete Timoshenko beam discretization are seen to converge monotonically S°

U from above even though reduced quadrature has been employed on the material

stiffness. This behavior is consistent with the results of the static analysis whereI displacements were seen to converge from below. A well known, but nevertheless

interesting point to note is that the relative error in buckling load for a given

number of elements per half-wave (= A/21) is in fact the same irrespective of
Selement length. If we take for instance the case of 5 elements/haf-wave, we see Si

that em iidentical for m= 2withe= 10,mn= 4withnhe= 20andmr =10

~with hei = 50.

~§2.4 Summary

In this chapter, the general symbolic operational procedures are developed :...
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U which serve as the foundation for the symbolic element evaluation techniques under

investigation here. Taylor series expansions of the nodal variables in the discrete

finite element equations about an interior node of an element patch are shown to

result in the limit differential equilibrium equations governing intrinsic element

behavior over the interior problem domain. One of the key aspects of this ap-

proach is the view that once the finite element discretization has produced a set of

discrete equations (or from the finite difference standpoint, difference equations),

the mathematical details of their origin are immaterial to the analysis to follow.

Instead of relying upon specific numerical problems designed to exercise specific

element deformation modes, the basis for determining intrinsic element behav-

ior is to compare the decoupled limit differential equilibrium equations resulting

from the finite element discretization directly with the corresponding continuum

equation .

For the case of the linear Timoshenko beam element, this comparison suc-

cinctly revealed the existence of a parasitic operator in the limit differential equi-

librium equation which resulted in a modified bending stiffness whose excessive

stiffness effectively locked the solution. In essence, this symbolic element evalua-

tion technique has identified a fundamental element characteristic which results

in locking irrespective of imposed boundary conditions or loading. As such, it
provides an alternative method for characterizing this type of element pathology

in lieu of the lbeuristic notion of constraint counting. Furthermore, this example

illustrates the usefulness of employing this symbolic Taylor series analysis tech-

nique to establish the consistency (i.e., legitimacy) of a particular finite element

discretization resulting from employing a numerical technique such as reduced

spatial integration.

With the limit differential equilibrium equations in hand, a priori interior

error estimates were determined using a Fourier series approach for both the case

of static and bifurcation buckling problems. For the static loading problem, a key

step in the error analysis was the determination of the consistent discrete loading
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operator. A preliminary error analysis of the one-dimensional bar problem, whose i,' I

solution is nodally exact, verified the accuracy of this procedure. SII
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ChapteT 3

Discrete Fourier Analysis Techniques

.4

In this chapter, the symbolic analysis procedures developed in Chapter 2

using Taylor series methods will be employed in conjunction with discrete Fourier

analysis techniques. The need to employ this complementary technique becomes

necessary in order to address the question of solution stability for the boundary

value problems of interest here.

The key aspect of the work presented in Chapter 2 was the symbolic determi-

nation of the limit differential equilibrium equations corresponding to a particular

finite element discretization. From these equations, the question of the consis-

tency of a finite element formulation can be answered. In order to ensure solution

convergence, however, the question of stability also needs to be addressed. For

boundary value problems, stability is not determined in the typical von Neumann

sense, which is only applicable to inital value problems. Instead, one has to con-

sider the possibility of spurious element mechanisms in a finite element formulation

- a task for which the discrete Fourier technique is well suited. 0

The crucial difference between the Taylor series technique and the discrete

Fourier technique is in the complete representation of all truncation error infor-

mation resulting from working in the frequency domain. It is this characteristic

51



of the discrete Fourier analysis technique which is exploited here for the deter-

mination of spurious element mechanisms. In addition, as a consequence of the

complete representation of truncation error information, a more accurate interior

error estimate will result. This is in contrast to the earlier error estimates derived

using the modified differential equilibrium equations which retained only the dom-

inant truncation error terms. Lastly, by viewing the discrete Fourier equations as

resulting from a Fourier transformation operation, limit differential equilibrium

equations in the physical domain are shown to result from the inverse transforma-

tion process.

The discrete Fourier analysis procedure is presented here by way of two simple

examples - wave propagation in a bar for the analysis of spurious mechanisms

and wave propagation in a Timoshenko beam for the analysis of transverse shear

locking.

§3.1 Identification of Spurious Element Mechanisms

In the discrete problem, spurious element mechanisms are the eigenvectors

corresponding to nonphysical zero eigenvalues. The physical zero eigenvalues, of

course, correspond to rigid body modes. However, an alternative definition of

3 spurious mechanism needs to be used when approaching this problem from a dif-

ferential equilibrium equation standpoint. One interesting approach [161 is that

of viewing the problem from a dynamical standpoint where the needed analogies

with rigid body motion occur naturally. After the symbolic recovery of the Fourier

transformed limit differential equilibrium equations, examination of the character-

istic differential operator will explicitly reveal the presence of non-physical "zero

energy modes," if there exists admissible nonzero wave numbers corresponding to

zero frequencies. It is the presence of these nonzero wave numbers which indicate

the existence of spurious element mechanisms in the discrete model.

The example problem considered in this section employs one of the simplest •

discrete models which is known to exhibit spurious element mechanisms, namely
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that of a linear bar element whose governing continuum equations are cast in their

mixed form in terms of both axial displacement and stress.

§3.1.1 Continuum Fourier Analysis of Bar

5 The equation of motion in a mixed form for a uniform elastic bar is

~at2 - a

3 with the corresponding linear elastic constitutive relation given by

EC-. (3.2)

In Eqs. (3.1) and (3.2), u is the axial displacement, a is the axial stress, E is the

extensional modulus and p is the density. In terms of differential matrix operator

notation, Eqs. (3.1) and (3.2) may be rewritten in a symmetric form as

Lu =0 (3.3)

where
2 TI T-

The Fourier analysis begins by transforming the problem domain from the

physical (z, t) domain to the (k, w) or so-called frequency domain by seeking a

general harmonic wzve solution of Eq. (3.3) of the form I

u = fsei(kz - wt) (3.4)

As a result of linearity, either component of the general solution

u = i 1 ei(kz-wt) + - e - (k + wt)

could be employed equally well.

53

"N

rV



where u represents the generalized Fourier coefficients with w being the circular

frequency; k the wave number and i - v/ ". Using this general harmonic wave S

solution also gives us the ability to interpret the spatial contribution to Eq. (3.4) as

either one component in a complex Fourier series representation or as the integrand

of the Fourier transformation in which case k would represent the continuous

spatial frequency. Substitution of Eq. (3.4) into Eq. (3.3) yields

!(k,w) .f=O (3.5)

where the Fourier transformed matrix operator, _i(kw), is given explicitly by

.(k, W) = ... P W k (3.6)

The desired relationship between frequency and wave number is obtained from the

characteristic equation by setting the determinant of the Fourier matrix operator

to zero, viz.,

c 2=0(3.7)

or in the nondimemsional form,

(l) 2 (kI) 2 =0, (3.8)

where I is a problem-dependent characteristic length and c is the wave speed

defined as c = V'- 7l, which is a constant.

The characteristic equation, Eq. (3.7), indicates that for the continuum so-

lution, the wave number is linearly proportional to the frequency, i.e., k = w/c.

With c constant, each Fourier component will propagate without dispersion with

the same phase velocity. For the case of pure rigid body motion, i.e., W = 0, the

corresponding wave number must also be zero as is apparent from Eq. (3.7). Since

this is a key result from the continuum analysis, it will be formally written as

=0 k. k 0. (3.9)
54 '?' <
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In the following section, a discrete counterpart of Eq. (3.8) will be derived

for each numerical scheme used to approximate the governing continuum equation,

Eq. (3.3). A comparison of the characteristic equation for the continuum case with

that of the discrete cases will succinctly pinpoint spurious element mechanisms if

present in the corresponding finite element discretization.
a

§3.1.2 Discrete Fourier Analysis - Mixed Linear Bar Element

In a mixed finite element formulation, for an assumed linear displacement

field, the stresses must be constant in order to achieve a consistent discretization

[46]. For this investigation, however, linear shape functions are purposely adopted

for both displacement and stress fields since this choice introduces a spurious

mechanism in the bar element. The Hellinger-Reissner mixed variational principle

provides the starting point for the element derivation which for an axial bar may

be written as [47]

fR (- i- +'aT- i .9t Vdt (3.10) _

By using linear shape functions to approximate both the stress and axial

displacement, one obtains the following semi-discrete equations at an interior node -

"j" after assembly of two elements of an equal length, 1, based upon a lumped (or

diagonal) mass matrix:

p~+ -L(aj.I - aj+l) =0

(aj_ + 4ej + a.+1) + (u-1 - uj+i) = 0

where ( '") denotes 1 2/1t2. Converting the spatial part of Eq. (3.4) to its polar

form,

u =ie-t(cos kz + isin kz), (3.12)
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and substituting into Eq. (3.11) yields the discrete Fourier matrix operator, ,

L'o(k)) = ) (1 2 (3.13)

The characteristic (or frequency) equation corresponding to the semi-discrete finite

element equations obtained from Eq. (3.13) is

ILD (kW) I 0 ~. (W)2 -1-Tk
2 )k 2 =0(.4

or in a nondimensional form,

611 2 (1 12 k2 (i)(0 =2 .135

(1~ ~ 0.

The discrete wave number, k, defined as

k =(3.16)

arises naturally as a result of the discrete Fourier approximation 2 of 5'

Comparison of Eqs. (3.13) with (3.6) and Eqs. (3.14) with (3.7) reveals two

important discrete operator approximations which will be seen over and over again S,

in the work to follow, namely, the discrete unity operators

12k2) n 1 1
(1--) an (1 _k2 ).

4 6

Since spurious mechanisms emanate from non-physical rigid body motions,

the possibility of introducing spurious mechanisms by the preceding finite element

d2 ikz 2 ,e-W i2+ei 2cooskl-2 _si2  .2
-_'-" e I=o 2 12 --'M

dz2C Iz O777:
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I discretization can be determined from the solution of Eq. (3.14), with w = 0. Thisp leads to the foUowing condition:

(1- 12)2 = 0 (3.17)

since

(1 - 6 2) 0 O V {k; 0O<k <kma}. (3.18)

The roots of Eq. (3.17) are determined from both

k 2  0 k=- ,n = 0, 1,2,... (3.19)

and

7 ki ' n=o,1,2,.. (3.20)

Not all the wave components given by Eqs. (3.19) and (3.20) are admissible

under the linear shape function approximation that has been used to discretize

the wave equation. As opposed to the continuum case where all wave numbers are

admissible, there is a limit in the discrete representations of admissible wave num-

bers within an element. Such a limit is determined by the order of the polynomial

approximations adopted in the discretization process. Fig. 3.1 represents the high-

est admissible deformation mode shape permitted by the linear shape functions

on a uniform mesh without aliasing, namely,

kmax- = " i(3.21)

In digital filtering, this is the Nyquist or folding frequency for the transformed

problem (see e.g.. [481). The nodal spacing in essence determines the spatial

sampling rate. The admissible, band-limited frequency spectrum for this linear

element is therefore

0 < k < kmax. (3.22)
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Sampling of any frequency greater than kmax would result in it being aliased into

one of the lower admissible frequencies.

A 21

0

Fig. 3.1 - Piecewise linear interpolation of highest admissible Fourier component

(kmax= if)

With the band-width of admissible spatial frequencies now defined for the bar

discretization, inspection of Eqs. (3.19) and (3.20) reveals that the discrete charac-

teristic equation, Eq. (3.14), possesses two admissible wave numbers corresponding

tow = 0, namely, 0

k = {O, T(3.23)

As was described in §3.1.1, k = 0 represents physically correct rigid body

motion. k -- , however, corresponds to an element deformation state with the

condition of w = 0 implying that no energy is required to excite it. It therefore %

represents a spurious element deformation state, or a so-called spurious element

mechanism.
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§3.1.3 Component-wise Elimination of Spurious Mechanisms

There are, of course, ways to eliminate the spurious mechanism in the bar ele-

ment. The cause of the spurious mechanism in this particular mixed discretization

emanates from the "(1 - 12k2/4) " term of Eq. (3.14), which can in turn be traced 0

to the "sin ki" term in the discrete Fourier matrix operator, Eq. (3.13). This term

originated from the whole-station (or central) differencing of the first derivatives

appearing in the wave equation. This term results from the linear interpolation

fields employed in the finite element discretization. After assembly of adjacent

elements, one finds that
du -

d - (U j l  u-1) (3.24)

and
do" 1

= ° j+1 - J-)" (3.25)

If this problem is recast from a finite difference standpoint, one way to elimi-

nate the spurious mechanism is to adopt the so-called half-station finite difference

scheme which would yield the following set of difference equations:

Pui = 7 (aj+1/2 - O'j1/2) (3.26)
E

aj+1/2 = E( ,j+l - uj)

where a lumped mass matrix has again been used.

The discrete Fourier characteristic equation for these difference equations,

cast in nondimensional form, is

( )2 _ (ki) 2 = 0. (3.27)

The half-station scheme will therefore exhibit no spurious oscillation since for C-,
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= 0 we have 2 rn

0 k - -rn n 0,1,2,... (3.28)

where k = 0 is the only admissible wave number. Eq. (3.27) may also be obtained

from the discretization of the displacement-based equations with its strong form

derived by substituting Eq. (3.2) into (3.1).

Fig. 3.2 shows nondimensional frequency curves for the continuum solution

and the corresponding mixed beam finite element and half-station finite difference

discretizations. Note that for the mixed beam finite element discretization, the

discrete frequency curve is plotted for all admissible wavenumbers even though

negative discrete group velocities, i.e., dw/dk < 0, which are an artifact of the dis-

cretization process, are seen to result within the range of admissible wave numbers. •

The zero root at ki = 7r is vividly portrayed in the figure. Lastly, wave propa- "

gation in the continuum solution is non-dispersive in contrast to both discrete

approximations which are dispersive, i.e., w/k #constant.

The poor performance of the mixed finite element discretization, is apparent

as manifested in the relative mode-by-mode frequency error,

e(kl) = WD(3.29) S
w -- N

plotted in Fig. 3.3 where wD denotes the discrete approximation. At the Nyquist

frequency (corresponding to the maximum admissible wave number), the finite

element discretization performs at its worst, admitting non-physical rigid-body

motion (i.e., a spurious element mechanism). On the other hand, the half-station

finite difference scheme is not only more accurate, but also exhibits its maximum

frequency at the maximum admissible discrete wave number (k = 7r/), thus indi-

cating the absence of spurious mechanisms for this discretization.
.. - .N

One particularly illuminating numerical example of the effect of spurious el-

ement mechanisms on a computed solution was presented by Underwood [491. ,,
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Fig. 3.4 - Wave propagation in fixed bar. (a) Whole-station; (b) Half-station [49]

Fig. 3.4 shows his results for the case of wave propagation in a fixed bar for both , .

awhole-station (equivalent to the mixed finite element beam discretization) and '
aA

half-station finite difference discretization. The initial displacement conditions are S

shown at the bottom for t = 0. The initial displacements should theoretically reap- e

pear shifted by two stations at t = 20At and at t = 40At where At is the critical "

time step for the explicit time integration. The whole-station results are seen to

wildly distort the inital pulse at each time step while the half-station differencing-.."" ,

results in a physically correct solution. Ci~

§3.2 Transverue Shear Locking in the Timouhenko Beam Element

In the preceding section, a technique of identifying spurious element mech- .,.

anisms using a discrete Fourier analysis technique was described. The discrete ,,

Fourier matrix operator and its characteristic equation were shown to possess the

necessary information needed to detect the existence of spurious element mech-

6.AW20

-.

1- 12 A

AAAAAI A-**.~* f4 -1. 1*06~ AVAII



anisms engendered by a finite element discretization. In this section, this same

Fourier analysis technique is used to identify transverse shear element locking.

In the frequency domain, locking is viewed as an unrealistically high frequency

state (analogous to the over-stiffening already shown in static problems) for all

wavenumbers. By transforming back to the physical domain, .the results of the

discrete Fourier analysis in the frequency domain are shown to be identical to that

presented earlier for the Taylor series techniques.

§3.2.1 Dynamic Behavior of the Continuum Timoshenko Beam

As before, the first step in the Fourier analysis involves substituting the har-

monic wave solution

u = 6 ei(k=- wt) (3.30)

into Eq. (2.21) which results in

0(3.31)

where

~kw) [PAW2 + GAk 2  iGAk {JJ 32L) iGAk pIW2 -EIk 2 - GA f =  (3.32)

The reference continuum frequency equation derived from Eq. (3.32), nondimen-

sionalized with respect to the beam's thickness, h, is then

4 - [(r + 1)(kh) 2 + 12] 02 + r(kh) 4 -0 (3.33)

where

wh E .
0= ; r- . (3.34)

Observe once again from Eq. (3.33) that the condition for rigid-body motion,

i.e., w = 0, corresponds to

k=0 (3.35)
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for the continuum Timoshenko beam.

§3.2.2 Dynamic Behavior of the Discrete Timoshenko Beam B

The semi-discrete finite element equations for a uniform mesh of linear Tim-

oshenkor-beam elements at an interior node, "j", are for exact (two-point) spatial

integration, 0

p~ibj GA w j + 1- 2w3 + w-_ a.+ - j_jS-GA(l , + qj
12 

21 A+22

(3.36)An Oj.= :0+- - 20j + 0j_j + - oj-1 j + 40j + oj-1),.
Pi9 EI 12) + GA(w'+ 21 ) - GA( 6

and for reduced (one-point) spatial integration,

GA(j+l 2wi. + wi-._ o:.+I - ei_ q !I
pA1j +q

12 )-G ( 21 ...

(3.37) 0
pI'- E +I(j 1 - 20j + +) GA( +l - Wj A) ( + 20j + 8 j - j
Aj2 Iw; 1 + GA 21 - G(4

where for simplicity, a lumped mass matrix has again been used. •

As was noted in Chapter 2, the only difference between Eqs. (3.36) and (3.37) -

is in the way the 0-terms are averaged in these two equations. Both sets of coupled

discrete finite element equations recover the continuum differential equations in

the limit as 1 - 0 and therefore are formally consistent. However, as was shown

in [151, using a decoupled limit differential equation approach, the two sets of

discrete equations display a radically different solution behavior as illustrated by

numerical experiments [35]. The transverse shear locking phenomenon exhibited

by the exactly integrated Timoshenko beam equations will now be analyzed in the 'INA

frequency domain. To this end, the following discrete Fourier matrix operators

* corresponding to the above cases are obtained by substitution of Eq. (3.30) into
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S

Eqs. (3.36) and (3.3', resulting in

tD rpAw2 + GAk2 i£A sin ki= L A. -2(.
k) i-sin kl P1w 2 -Ek 2 - GA 1(r,a) (.8

where the superscripts (r, e) designate the reduced or exactly integrated cases,

respectively. The discrete unity operators I(r,e) are given explicitly by .5.

12.2

i - -k 2
42k (3.39)•

=1 i- 0

where the discrete wave number, k, is as defined by Eq. (3.16). In this context, the

unity operators I r and l e can also be viewed as averaging operators since these

quantities embody the different discrete nodal averaging schemes for e engendered

by the two different spatial integration rules. It is the difference between these

two averaging operators that is shown to play the pivotal role in the transverse

shear element locking phenomenon.

The frequency equations derived from Eq. (3.38) are written in the form

4 - + 1)(kh) 2 + 121(re)]fn2 + r(kh)4 + 12(h)2 (1(r,e) - X) = 0 (3.40)

where the appropriate interpretation of the unity operator X, defined by

122-
x k2-- ' (3.41)

4

is determined based upon the role it plays in the discretization with respect to its %

interaction with I(re) By writing Eq. (3.40) in this general form, the interrela-

tionships between these operators, which dictate in the present case whether there

will be element locking in this finite element discretization, is succintly shown.

The first step in identifying the source of transverse shear element locking is to

compare the discrete frequency equation, Eq. (3.40), to its continuum counterpart, %
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Eq. (3.33). From this comparison it is immediately apparent that Eq. (3.40)

contains the parasitic term 6

12(kh) 2 (1(r'e) -X) (3.42) I.

which is now shown to be responsible for element locking. 0

§3.2.2.1 Exact Spatial Integration

For the case of exact spatial integration, one finds that

-e w (3.43)

which when substituted into Eq. (3.40) results in

- r + i)(kh) 2 + 121e]0 2 + [r + ( )2](_h)4 0. (3.44)

For thin beam applications where (1/h) > 1, the coefficient of the (kh) 4 term

becomes, after substituting the appropriate definitions from Eq. (3.34),

+ ( ),> + 1 1)2 > (3.45)

This term was previously identified in the earlier Taylor series analysis of transverse

shear element locking in the exactly integrated Timoshenko beam (see Eq. (2.39)).

From these results, X is seen to play the role of a locking operator. It is present :

irrespective of the 9 averaging scheme used and if not eliminated, results in a

parasitic term responsible for element locking. ."

§3.2.2.2 Reduced Spatial Integration

For the case where reduced spatial integration is employed, the parasitic term

vanishes identically since[S
1r - X =0. (3.46)
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Fig. 3.5 - Frequency spectrum curves for the Timoshenko Beam

From a discrete operator standpoint, Eq. (3.46) therefore represents the correct

element "unlocking" condition. In the present discretization, 1' plays both the

role of an unlocking as well as an unity operator. It should also be noted that

substitution of w = 0 into Eq. (3.40) results in the correct rigid body condition,

= 0 =: k = 0. Hence, no spurious element mechanism is present in the reduced

integrated beam element.

Frequency spectrum curves are shown in Fig. 3.5 for a Timoshenko beam with

aspect ratio 1/h = 10, h = 1 and v, = .3 for both the continuum and discrete cases. 0

The two different families of curves correspond to the flexural and thickness-shear

wave branches exhibited by the Timoshenko beam. The frequency of the exactly

integrated element is more than an order of magnitude higher than that for the

continuum solution as well as that of the reduced integrated element at low wave

numbers. This unrealistically high frequency state continues up to kmaz = ir/1 for

the exact integration case. The frequency of the reduced integration case follows *

faithfully that of the continuum case for wave numbers up to about 1.5.
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§3.2.3 Recovery of Limit Differential Equilibrium Equations S

In §2.2, the transverse shear element locking phenomenon exhibited by exactly

integrated linear Timoshenko beam elements was identified by comparison of the

decoupled limit differential equilibrium equation of the discrete Timoshenko beam

3 to that of the continuum Timoehenko beam. The operational procedure used to

obtain the decoupled limit differential equations first entailed converting the dis-

I crete finite element equations to their differential form by expanding the nodal

degrees-of-freedom, w and 0, in Taylor series about the interior node. The decou- 0

pled limit differential equation in terms of w was then solved by application of

Cramer's rule to the resulting differential operator matrix. This same procedure

can also be applied to the discrete Fourier matrix operator to obtain the decoupled

equations in the frequency domain, which can then be transformed back to the

physical domain.

This ability to formally view the discrete Fourier analysis technique employed

thus far as a Fourier transformation operation is due to the form of the harmonic

solution chosen in Eq. (3.30). The differentiation of Eq. (3.30) results in

d -JIk
__-" (fie' A)Ix=0 = (ik)'16, (3.47) .

dI
with z formally being evaluated at zero corresponding to the interior node in

the discrete problem. This yields the same result as the Fourier transform of a

to differential operator,

[ dx1 =(iw) (3.48)

where the form of the Fourier transform pair used is (see e.g., [10]) 0

M oo g(z) e d ;g(z) = . (3.49)
2w f'0f,0

As a result of this analogy, recovery of the limit differential equilibrium equa-
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tion in the physical domain proceeds by first determining the decoupled trans-

formed equilibrium equation for tb which is given in operator form as

det(ID(e)) - D= det [Isiqk (3.50)

where L denotes the discrete Fourier matrix operator corresponding to the
exactly integrated case obtained from Eq. (3.38). The solution to Eq. (3.50) is

found to be

EI(1 + -2GA)k 4 b = (1- k2)4 + E- k . (3.51)

By next expanding the discrete wave number, k, in the power series

2 .ki 12 k

Ti 2- 4 (3.52)

and substituting the result into Eq. (3.51) followed by applying the inverse Fourier

transform

d- K  (3.53)

to the resulting equation, one recovers the decoupled w equation in its more fa-
miliar differential form

2 GA d4 w 12 dw) j2 El d2q 12 EI d4q

12 El dz 4 6 dz66 ( z 2  12GAdx4

As one would expect, this equation is ideatical to that previously obtained using

the Taylor series technique (see Eq. (2.37)).

The results seen in this section lead us to a very important observation re-

garding the superiority of the discrete Fourier analysis techniques over the Taylor

series techniques presented initially in Chapter 2. All truncation information is

automatically embodied in the compact Fourier-transformed expressions which

results in extremely efficient symbolic computation, as has been described, for

example, in [10]. S



§3.3 Bifurcation Buckling of the Timoshenko Beam

In this section, the discrete Fourier analysis is used to evaluate the ability of

the one-point spatially integrated linear Timoshenko beam element to accurately

represent continuum bifurcation buckling behavior. The continuum equations gov-

erning Timoshenko beam buckling were presented in §2.2.1.

§3.3.1 Continuum Buckling Operator

The Fourier-transformed continuum matrix operator is obtained by substi-

tuting

u = eik z  (355)

into Eq. (2.21) resulting in

r(G + a)Ak2  iGAk (3.56)LY -(E + a)Ik2 GA (.6

From this, the characteristic or buckling operator

det L = (kh)2a2 + [(r + 1)(kh) 2 + 12]a + r(kh)2 - 0 (3.57) 0

is determined where the nondimensional stress, a, is defined by a = a/G and

r = E/G. The two roots to this equation are given by

-[(r + 1)(kh)2 + 12] + [(r2 - 1)(kh) 2 + 1212 - 4r(kh)4

2(kh) 2  (3.58)
l = -l(b F vib_ - 4r)

with

12b (r + ) + (kh)2 (3.59)
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The smaller root corresponds to the classical "flexural" buckling stress [26] while

the larger one corresponds to a thickness-shear mode in an analogous manner to

that seen in the wave propagation problem discussed earlier in §2.3.2.2.

3 If the von Kirmiin's strain-displacement approximation had instead been em-

ployed, the critical buckling load would be calculated from

Pc = aA = EAk2+ (3.60)

For the case of a relatively thin beam (1/h > 50), there is essentially no difference

in predicted flesural buckling load between Eqs. (3.58) and (3.60).

§3.3.2 Discrete Buckling Operator

be The discrete counterpart to Eq. (3.56), obtained from Eq. (2.72), is found to

(G a)k2iGA sin ki 1£ M -(E + A)Ik2 - GA(r 3)

from which the discrete buckling operator,

(kh)2&2 + [(r + 1)(kh) 2 + 121r]. + r(kh)2 = 0 (3.62)

is obtained. The flexural bifurcation buckling stress corresponding to the smallest

root of Eq. (3.62) is

D - 4r) (3.63)
2

where

bD =(r+l)+ 12 r. (3.64)

The critical buckling load would then simply be Pr = aDGA.

Employing von Kixm~in's strain-displacement approximation in the element
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formulation results in the discrete counterpart to Eq. (3.60),

PD aDA= #j4+-T (3.65)

In either case, the entire effect of the discretization process is embodied in the

discrete wave number, k, and the unity operator, 1r.

§3.4 Spectral Error Estimation

In §2.3, using Taylor series techniques, a priori error estimates were calculated

based upon solving the so-called modified limit differential equilibrium equations

which retained only the leading truncation error terms. In this section, a priori

interior error estimates will be obtained for the discrete Timoshenko beam using

the discrete Fourier analysis in the frequency domain which by its very nature

automatically retains all truncation information. By employing the more general

Fourier transform approach, one obtains an a priori interior error estimate in the

physical problem domain by inverse Fourier transformation of the results from the

spectral error analysis, as will be described now.

§3.4.1 Spectral Distribution of Loading Operator

As was discussed in §2.3.1, determination of the discretization effect on the
loading operator requires that the harmonic loading, which now takes the general

form q(z) = 4(k)eik, be used in the calculation of the nodal load from the outset.

Using to denote the local element coordinate system and z, the global system,

as before, the nodal load corresponding to a Fourier component would be

+j (1e -z)4 eOtk(Z + 4 d (3.66)
1o 1o0T)

where xj is the position of the interior node. Performing the symbolic integration, ",4

the discrete nodal load is found to be

=j ()2 4 le ikx (3.67)
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so that the discrete Fourier transformed counterpart to the continuum distributed K
load, 4, is simply

4D = (k)24. (3.68)

The specitral load density itself is determined from

S(k) =1f_ q(x)eikzdk. (3.69)

§3.4.2 Determination of Spectral Error Distribution

The Fourier transformed continuum and discrete differential operators, t(k)

-Dand LD(k), for the Timoshenko beam are given by

(kr=GAk 2  iGAk (3701
and [iGAk -EIk 2 -GA(

tD( GA 2  iqA sin kL 1371is= inkI EIh2-GA1(d] "  (3.71) 

These are obtained from Eqs. (3.32) and (3.38) with w = 0. Fourier-transformed

solutions are determined for the ith solution component by employing Eq. (2.3),

rewritten as 0

det Gi det( G312 "
_____detG 1 (3.72)

' det L det L

The relative error in a particular Fourier component is then simply

- D
g(k) = (3.73)

For the present discrete problem, the relative error is explicitly given by

i(k) (E4  EIk4+GAkc(1 T'C -x) (3.74)

73 e
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Fig. 3.6 shows a plot of i(k) vs. k for both exact and reduced integrated Tim-

oshenko beam elements. As was discussed earlier in E2.2.2.1, only about 2.5%

of the continuum solution would be expected for the exactly integrated case for '.

an element aspect ratio of i/h = 10. For the present case where I/h = 100,

El = 3847.15EI with the result that the discrete solution is essentially zero, as is

reflected here in the error for each Fourier mode, i.e., i(k) 100%.

The question of consistency is graphically portrayed for the reduced integrated

element since i -+ 0 as k -- 0 for a finite 1. For the exactly integrated case, however,

one must rely upon the equations themselves to verify that element consistency

is satisfied since i --+ 0 only as I -- 0 V k. This is a result of the modified

bending stiffness which, for a specified element I and h, remains constant thus

over-stiffening (i.e., locking) all modes for k > 0. 0

The results from Fig. 2.3 for the case of ne = 10 are also plotted on this

figure in order to compare the earlier Taylor series results with those from the

present discrete Fourier analysis. The relationship between m and k was given 0

by Eq. (2.90). For low wave numbers, results from the two different analyses are e

essentially identical. It is not until m > 4 that the predicted errors start to differ

appreciably resulting from the use of the modified equilibrium equations which

represent a truncated series approximation to the true discrete approximation. In

essence, the result of this is the loss of higher frequency information as is seen

here. N

§3.4.3 Error Estimate in the Physical Domain

If one defines the absolute error in the frequency domain to be

=(k) = (3.75)

an a priori error estimate in the physical domain can be obtained directly frcm

-(k) once the spectral load density, 4, is known. Based upon the observation that
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Fig. 3.7 - Relative error in buckling load for 1 = 100, h = 1, E = 107 and u = .3.

versus the nondimensional wavenumber, kh, for a given element geometry. This
has been done in Fig. 3.7. For comparison purposes, results from both finite

element analyses, and earlier Taylor series results, extracted from Fig. 2.4 for

n.1 = 10, are also shown. These results correspond to 1, 2, 3 and 4 axial half-waves.
The domain of kh plotted is 0 < kh < .5kmxh where the maximum wavenumber

represented by the discrete problem is /mx = T, as was described earlier in §3.1.2.
While the finite element analysis employed the von Krm~in's strain-displacement

approximation, the difference between results where the curvature effect is included

was insignificant for this case. Examination of Fig. 3.7 clearly shows that the

discrete Fourier analysis exactly represents finite element behavior.

An interesting thing to notice is that eventhough reduced spatial integration is ,

employed in the calculation of the material stiffness matrix, the buckling loads for

the discrete problem are seen to monotonically converge from above. This behavior

would be expected if reduced quadrature had not been employed and the discrete .
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equations were rigorously derived from Minimum Potential Energy. It is quite

apparent that the use of the modified equilibrium equations also over-estimates

the relative error in bifurcation buckling load. Unlike the results seen in Fig. 3.6

where the Taylor series predictions were resonably accurate for long wavelength

behavior, the Taylor series predictions for the bifurcation buckling loads are not

very accurate for any wavelength. This is perhaps no'4 too surprising since the 0

eigenfunctions for the Timoshenko beam buckling problem with simply-supported

boundary conditions are in fact sinusoidal. This means that the truncated Taylor U
series expansions would not be expected to be very accurate for this case as is

3 vividly portrayed in Fig. 3.7. This is also the reason why the discrete Fourier

technique predicts the exact error in bifurcation buckling load for the discrete

model, as is verified by .-.americal experiment, as shown in Fig. 3.8

§3.5 Stummel's Problem Revisited

In 1980, Sturnmel [51 presented a nonconforming element discretization of

dX2 ,U f(3.79)

which passed Irons' patch test [1], as recast in its functional form by Strang and

Fix [6], yet failed to converge in the limiting case. Recently, Taylor et al. [41

presented their interpretation of the patch test in terms of three separate tests

for which Stummel's element passed the first two, but not the third. Stummel's

element failed this third test as a result of a singular stiffness matrix. One might •

therefore conclude that the question of element convergence was answered from

a stability standpoint and not from one of consistency 3. To fulfill this need for

determining intrinsic element behavior, Stummel proposed a generalized patch test

[501 which would be applicable to a large class of nonconforming finite elements. In

3 This is an important question to answer since in the Chapter 4, we will see that
some of our "best* elements - U1 and S1 - are themselves rank deficient, hence the _
need for stabilization.
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light of the failure of the patch test to determine element consistency for Stummel's

element, the question needs to be answered as to how the present symbolic element

evaluation technique would fare. As will be shown in the remainder of this section,

the question of both element consistency and stability will be easily addressed with

the symbolic methods proposed here.

The starting point of this analysis is the finite element equations for Stummel's

element which for a single element was given in explicit symbolic form in [4] to be

-1(#~4I 1 +i[ I ]) ui} - . (3.80)T 01 0 + 3e 3 Ui

Here, Wi is the incompatible mode which will be condensed out prior to element

assembly. As was noted earlier, these equations uniquely embody all discretization S

details, and as such are sufficient to completely characterize the proposed finite

element formulation.

From an assembly of two equal length elements, one obtains the following

transformed limit differential equilibrium equation,

(1 + Lp)k2 1 (3.81)

using the Fourier displacement field

I U= eO . (3.82)

Even without transforming Eq. (3.81) back to the physical domain, one can im-

mediately see that the discretization embodied in these finite element equations is

not consistent with the strong form of the problem represented by Eq. (3.79) since

the "pu" term is lost as 1 0. In the limit, these finite element equations will in

fact represent

-- d (3.83)
dx 2
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irrespective of the value of p.

The question of stability is next answered by determining if there are any

zeros of the homogeneous equation,

(1+ ,k2 0 (3.84)
12

for k _ kmax = 7r/,. Since there is one corresponding to k = 0, which in this

problem does not correspond to a rigid-body mode due to the presence of the pu

term in Eq. (3.79), one concludes that this discretization possesses one spurious

mode. This is not a surprising result in light of the form of Eq. (3.83) for which

one would normally expect one rigid-body mode to be present.

In summary, the convergence characteristics of Stummel's element were de-

termined in a straightforward manner employing the present symbolic analysis

technique. Further, as a result of working directly with the limit differential equi-

librium equations governing intrinsic element behavior, one is able to explicitly

identify the cause of the rank deficient element stiffness as resulting from the loss

of the "pu" term in Eq. (3.79).

§3.6 Summary

Discrete Fourier analysis techniques were employed in this chapter in conjunc-

tion with the symbolic operational procedures developed in Chapter 2. As a result

of their ability to capture complete truncation error information, this technique

was used to identify spurious element mechanisms in the frequency domain. For

boundary value problems, the absence of spurious mechanisms constitutes solu-

tion stability, which along with consistency guarantees convergence of a discrete

U technique. By transforming results in the frequency domain back to the physi-

cal domain, the question of consistency is also addressed. Transformed discrete

Fourier equations were shown to result in identical limit differential equilibrium

equations to those determined earlier using a Taylor series approach in Chapter

2. As a result, the present discrete Fourier technique is considered to complement
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the Taylor series approach. The specific objective of a symbolic element evaluation

will determine which technique is more appropriate to the problem at hand.

An approach for obtaining a priori spectral error estimates was then described

and applied to both static and bifurcation buckling problems. Error estimates ob-

tained using the modified equilibrium equations in Chapter 2 were compared to

the discrete Fourier analysis results obtained in this chapter. For static prob-

lems within the accuracy regime in which one would normally be satisfied with

the discrete solution, either technique works well. However, for the case of bi-

furcation buckling, the discrete Fourier technique exactly predicts the buckling

load obtained from the finite element analysis whereas results for the modified

equilibrium equations are not very accurate.

Lastly, using the discrete Fourier element evaluation technique developed here,

the nonconforming element Stunmel used to illustrate potential shortcomings in

Irons' patch test was successfully analyzed. It was shown not to be a convergent

approximation since it satisfied neither consistency nor stability requirements.

o



I ~Chcptu? 4 ,

i Symbolic Analysis of the

3I Bilinear Reissner-Mindlin Plate

I
!0

In the two previous chapters, the different symbolic analysis techniques used

to perform an evaluation of a finite element discretization have been described.

In this chapter, these techniques will be employed to assess the performance of

the bilinear Reissner-Mindlin plate elements for static and bifurcation buckling

problems. While the symbolic procedures are identical to those employed for the

earlier one-dimensional discretizations, a two-dimensional representation of the

nodal d-o-f using either the Taylor series or discrete Fourier techniques is now

required.

Among the different families of finite elements suitable for plate bend- -

ing problems, four-noded C0 elements appear to be extremely popular due to

their simplicity and computational efficiency. This popularity has been re-

flected in recent activity directed at improving their performance (see e.g.,

[35,51,31,17,33,52,53,54,55,56,57]). Techniques to do so seem to be loosely grouped

into two different schools of thought. The first one employs different reduced spa-

tial integration rules to both eliminate transverse shear element locking and to

further improve their computational efficiency. The problem of controlling the
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inevitable spurious mechanisms engendered by reduced spatial integration is the

3 subject of current research [58,59,60,61,62,63]. The second general class of tech- ,

niques employs alternative interpolation schemes in order to circumvent transverse

shear element locking. (see e.g., [53,52]). These elements usually employ full (2x2)

spatial integration to ensure full rank.

Specific areas to be addressed are:

5 1) Effect of spatial integration rule on alleviating transverse shear element lock-

ing

U 2) Effect of different approaches for hourglass control on element performance

1 3) Identification of spurious element mechanisms

4) A priori assessment of interior solution accuracy for distributed static loading

and bifurcation buckling load

§4.1 Continuum Reissner-Mindlin Plate Equations

In this section, the linearized coupled equilibrium equations of Reissner-

Mindlin plate theory [64,65] are presented. The derivation of the decoupled trans-

verse equilibrium equation for both the material and buckling operators follows.

These equations are then Fourier-transformed to the frequency domain. In the

subsequent symbolic analyses, both sets of equations will serve as the reference

equations with which the properties of their corresponding discrete counterparts

5 will be compared.

The Lagrangian for Reissner-Mindlin (or C0 ) plate theory is comprised of the

kinetic energy,

T , oh(- )' + - -( a 12 " "
T =IU () ++ U hc as (4.1) 

the strain energy, U =Urn + U0., which has been partitioned here into its separate
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material and stress-dependent contributions, given by

vM +6(22) + f22 +I+ DI ' +2-_)2
2JPA L49X '9Y 49X ay 9Y ax

+w -x5 y) 2 ]}dA (4.2)+ D[( - - 93)2 + (.

U - h/2
U cr' j (a 3 eNL+ ' Y + TZ-YIf NL dz dA (4.3)

and lastly, the potential energy of external transverse loading, 0

V X ~fwqdA. (4.4)

In these equations,
_ Eh3  1 -L 1 +L

D = 2)' D11 = - -D, D12 = -- D, Ds = cGh (4.5)

with p, E, G, h, v and x representing the density, extensional modulus, shear
modulus, plate thickness, Poisson's ratio and the shear correction factor, respec-

tively. Oz and Oy are the rotations about the y and z axis and w is the transverse

displacement. The in-plane displacement convention, u = -zO and v = -zOY is

used. To complete the derivation of UO., the assumed plate displacement fieid is

substituted into the nonlinear part of the total Lagrangian strains given by

1 L...!( 2 (8V 2 aNL 1 49( 2 + (,I) 2+ (w) 21

CN 1 ( )u 2 a6 2 aw
d"-= [(()T +) T + ( ) ](.I

NL au auu avv w awz XT + TXT + oj oX 5,-

That result is then substituted into Eq. (4.3), and performing the indicated thick-
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ness integration, the following expression for U, +)

!! uf w ho( )' + oy ( ) 2 + 2-r,y y 'w 'w"h[.LOz(( _= )2 + (20Y=)2
1 ff01W 2 2w ax 1 ax .

2 JJ~ l L2 (-!Z J + 2,-,y( +-

yt ' ay/ ax = Y ay

(4.7)

is obtained. Those terms associated with the rotational d-o-f are the plate equiv-

alent of the so-called curvature term identified by Sun [26] for the Timoshenko

beam.

The Euler-Lagrange equations determined from T, U, and V are expressed in

differential matrix form as

Lu (Lm + L,), = (4.8)

where

(D + DD 2 +d 1 f2 Ds 4-

-Ds - S- 2) ii -

andt

Lm (D 2 + D1 1 C12
.(4.9)

9-2

Ty 0 0
a 2 a2 _82 12 13+La- rz 1 -- (4.10)

an [Oz6 9Y W JT =[ 0 q*jT (4.11)
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with the Laplacian operator, V2 , defined by

7 2 2 a2= ' + a y2 '(4.12)

£ If the nonlinear terms from the von Karman strain-displacement relations [251

were employed in place of Eq. (4.6), Lo would take on the much simpler form,

a2 a282 10001

x2 + ay572Tz y~~ 100 0 , (4.13)

employed in C 1 plate theory.

§4.1.1 Linearized Transverse Equation of Motion

The first set of decoupled equations of interest here are those corresponding

to the material operator, Lm. The decoupled linear equilibrium equation for the

transverse displacement, w, is obtained from

Lg2 82  Lexey 0

ILmI-W = Lqey Leyay 0 (4.14)
Le2 w Loyw q

where the Lij are the appropriate entries in Eq. (4.9). Performing the indicated

symbolic operations, one obtains

-w =r.q (4.15)

where the decoupled characteristic continuum operator, 1, can be written as

D 11 2) + 3 (DV2 _h"2 )(V , a2 ) +  
2 

-. a2

Ds 12D It 12 57 T9t2 _ at2]
(4.16) %

with the corresponding right-hand (or loading) operator, r, given by

e= [(_LRaV2)+ h3  2 D72) +ph_LDsj .(1J (4.17)
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As is apparent from 1, the Reissner-Mindlin plate equations are sixth-order, which

accounts for the three families of wave motion; flexural and z- and y-direction

thickness-shear. It is, however, also apparent that I and r share a common dif-

ferential operator so that Eq. (4.15) may actually be written in its more familiar

form (see [65]) as

DV2 _Ph3 a2 _ h8(V2[l 2 ph a a a2]
(D _12 5t2)(V 2)+P - = D1- __ I q .

(4.18)

It should be noted that this simplification would not have been possible if dis-

tributed moments, typically neglected, were present in the distributed loading

vector, f. In addition, when working with the limit differential equilibrium equa-

tions in the next section, this simplification will, in general, not be possible due

to the presence of truncation terms.

The Fourier-transformed matrix operator, L, is obtained by substituting the

two-dimensional harmonic wave solution

u(z, y, t) = fi e i (kzz+kyy-wt) (4.19)

where k. and ky are the wave numbers in the z and y directions, into Eq. (4.9)

yielding

(-Dk2 - D11 ky -D 12 kxky Dk

-D3 + 12 )  "-Lm(kz, ky,~)= D+Pw) (-Dk2c- Dj4 iDsk~

SYM. -D 3 V 2 - phw2 j(4.20)

The corresponding characteristic Fourier operators are

h 2 (4.21)
Ds 12Ds 12 D

j 86

.... ..... ~~8



and

:" [(1 - W I" 1 8  12- ' (4.22)
~' Da 12Ds 12D

wheret 2  (k2 +k2).

As was discussed in Chapter 3, spurious mechanisms in the finite element

method result from the presence of non-physical rigid body motion. For the present

two-dimensional problems, the correct rigid body condition, which is obtained from

Eq. (4.21) by setting w = 0, is 0

(1 - D 11 2)t4 __0 t4 0 (4.23)

since

D11 3 )  1 + D" (k2 + k2) 0 V k., ky E R (4.24)
DsD

The correct rigid body conditions in the Fourier-transformed state are therefore

determined from Eq. (4.23) to be

k = ky =0. (4.25)

This condition implies that if for a given finite element discretization,

ID(kz, ,,0) =0 V {k:0 < k < kmaz}, (4.26) 0

"V

then the resulting element will exhibit the corresponding spurious mechanism(s).

§4.1.2 Linearized Buckling Equation

The linearized decoupled buckling equation in the physical domain is deter-

mined from

det(Lm + Lo.). w = det G3Iq=o (4.27) 0
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with a2/6t 0. Due to the length of the resulting symbolic expression, how-

ever, only the case of uniaxial compression will be explicitly presented here. By

assuming o-z is the only nonzero prestress, Eq. (4.27) yields

DIh 2 aD I2 2-3 12 2 D 2) 43w
(1 W~LV )DV w -u~~- or 2[( - hU - -)V + -]-, 4

F2D8  a rz D , D Da t9

[+v-3 D h 2 DD h 1 /v -D ) ___

2 Ds ax =
(4.28)

where I H3 /12. This expression is considerably different than that for the

classical C1 plate. The solution of this equation in terms of crz yields three roots

of which the lowest corresponds to a "flexural" buckling load. When the von Kar-

man strain-displacement relations are instead used, a greatly simplified Eq. (4.28)

results, viz.

3vD 2 DD 1 1 4 a 2 w (.9

(1 -D11V)DV4w - ozh[1 - v DV - =0. (4.29)
Da 2 D + D 2  8z 2

In the thin-plate limit, formally represented here by D, oo, the familiar C 1

equation governing uniaxial buckling results, given by

8O2w 0

DV4 w - a2az = 0. (4.30)
x.'_ ,

In the Fourier domain, one writes LO as

2 10 0Lo.=-(cz]+ ayk + 2rz/kk ) I 1 (4.31)
0 h0 -h

so that transformed counterparts of Eqs. (4.28) and (4.29) can easily be obtained S

from

det(Lm + to,)" - = det 1314_ o  (4.32)

as required.
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§4.2 Discretization of the Reissner-Mindlin Plate Equations

If one employs the bilinear isoparametric shape functions, the element ma- %

terial stiffness matrix for the 4-node Reissner-Mindlin plate bending element is

derived from Eq. (4.2) by first substituting the element displacement interpola- A

tions

u=Nidi; i=1,4 (4.33)
0

with di = LOzi Oy wi jT, Nj - N1I 3 and

I ( / -- (-1,1,1,-i1)

Ni  -(C1 +-- i) (1 +t 77j) ;/ (4.34)
1i77i= (-1,-1,1,) (43

followed by setting bUm = 0, from which the element material stiffness,

k = kb + k= f cBTDbB + BT DsB,)dA

(4.35)

=/J (BTDbBb + BTDB,) iJd &dr.

is obtained. In this expression, Bb and B8 are the isoparametric strain-displacement

matrices representing bending and transverse shear contributions with Db and D3

representing the corresponding isotropic material matrices

D b =D 1 D = 1 (4.36)
[ 0 0 1",

The surface Jacobian, J, which represents the differential transformation between .

the physical (z, y) and isoparametric (e, q/) coordinates, is determined from

=z } PC -PC (4.37)
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Bb and B8 are determined from the strain-displacement relations

o ON. ]
C( Bb.= 0 :-

_ B ON. ON.
C y Bb }d ' 0 (4.38)zz B

"7fyz =[-Nt 0 -iI,, " -N, o N ,
B~i = ONY

Discretization of Eq. (4.7) results in the following geometric stiffness matrix,

T IS IBd
ka= !/A 0 Is 00 Bo dA

X0 0 h

(4.39)

,ii Is 0 01
B4 0 Is 0 Bo. IJI de dq

LiL 0o hs]

where

oZ o
and

0 0

700
j-1 0 01 0

Bo- 0 J-1 0 71 [N 1  N 2 N 3 N4 ]

0 o

with N i = N i 13 and the Jacobian, J, as previously defined.

Functional evaluation of BTDbBb and BTD s B, shows that unlike the Timo-

shenko beam, both integrands contain terms of the same bi-quadratic polynomial
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order. A 2x2 point quadrature rule would be required for an exact term-by-term

spatial integration for the case of a rectangular (or parallelogram) element with its

constant Jacobian determinant. The use of a (lxi) point (or reduced) quadrature

rule would result in the loss of quadratic order contributions to both integrals

introducing rank deficient stiffness matrices with the accompanying possibility of

spurious oscillations appearing in the discrete solution. Thus, one of the impor-

tant question to be answered in this chapter is "What is the effect of employing

different spatial integration rules on Eqs. (4.35) and (4.39)?"

§4.3 Taylor Series Element Evaluation

It was noted in Chapter 3 that the Taylor series approach can not be used to

detect spurious element mechanisms. Nevertheless, it is ideally suited for detecting

parasitic differential operators responsible for element pathologies such as locking.

In the present section, the effect of employing different spatial integration rules

for the bilinear Reissner-Mindlin plate element is evaluated using the Taylor series

approach outlined in Chapter 2. In the later section dealing with discrete Fourier

analysis techniques, the question of spurious element mechanisms engendered by

reduced spatial integration of element stiffness matrices will be addressed.

§4.3.1 Transverse Shear Locking - Exact (2x2) Spatial Integration

The most obvious place to start is to consider the exact spatial integration

of Eq. (4.35) achieved by employing a (2x2) quadrature rule on both bending and

transverse shear terms. Numerical convergence studies by Hughes et al. [35] have

shown that the resulting element exhibits the same type of transverse shear element

locking as encountered earlier for the Timoshenko beam. By using the operational

procedures developed in Chapter 2, the effect of the exact spatial integration on

element behavior is succinctly determined by recovering the element's governing
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decoupled w limit differential equilibrium equation which was found to be1

12DDllI)y VS

[D + + LD,(4+d) + (-(4D-D11) DD

l2

+ I-(5D + DIl)V2 d2 d2Jw =
12

12 D11  D)V 2 + ,DD 11  12(D+ D,))v4Di+( )12 + + D
Ds Ts D2 4 S T

12.,
+ D + D11 )d2d2]q

+ 6 , D,~ Z
(4.40)

for a patch of square (1 x 1) elements as shown in Fig. 4.1. Here, the compact

symbolic notation dz = and dy = - is used. Also, only truncation error

terms that possess the same differential order as that of the continuum operators

have been retained. As in the analysis of the Timoshenko beam in Chapter 2,

these truncation error terms are considered to be parasitic differential operators.

With the presence of these truncation error terms, the full sixth-order equilibrium

equation must be dealt with so that Eqs. (4.16) and (4.17) with 8 2/at 2 = 0 will

serve as the reference equations.

The possibility of transverse shear element locking is apparent due to the

form of the parasitic differential operator associated with the primary differential

bending term, V4 . By looking at these two isolated terms, one finds that

D 4  112D84 22 +(1 + 2 (4.41)
D 4+i -2Ds(d4 + d4.)= D[(1 + -1-2-)d, + 2dzd _ )y4

which means that the z- and y-direction bending modes will lock for essentially

any finite length plate since the bending stiffness in those directions is amplified

by the factor

12D.92 = + > (4.42)

1 The MACSYMA runstream from which the results of this analysis were obtained is

shown in Appendix A.2.
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Fig. 4.1 - Element geometry for 4-node plate discretizations

Thus, in order to obtain a physically realistic solution employing this element, one

must have I < h. The pure xy-twist or torsion bending mode is not effected by

locking as is demonstrated by numerical example in §4.3.3.2.

The effect of truncation error terms on the secondary "thick" plate differential 0

operator, V 6 , are of a much less benign nature. If the parasitic transverse shear

element locking terms could be eliminated, one could return to the traditional

order-of-accuracy notions to evaluate this discretization.

§4.3.2 Element Unlocking - Other Spatial Integration Schemes

As far back as the early 1970's, it was independently recognized by Pawsey

[28] and Zienkiewicz et al. (29] that exactly integrated thin C0 plate (and shell)

elements could be cured of their transverse shear element locking by selectively

employing reduced spatial integration for the transverse shear element stiffnesses

while exactly integrating the bending stiffness. The rationale for this being that,

in the thin plate limit, the last two terms in the potential energy expression for

the C0 plate given by Eq. (4.2) can be considered as penalty constraint conditions

enforcing the Kirchhoff constraints. With this being the case, the rank of the

transverse shear stiffness, ks, must be reduced, a condition easily achieved by
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using reduced spatial integration. In this section, the effect of using different

spatial integration rules to derive the element's material stiffness, as embodied in

the governing limit differential equilibrium equations, is investigated.

§4.3.2.1 Selectively-Reduced Integrated Si Element

The first Reissner-Mindlin plate element to be examined here is the S I element

[35] which employs exact (2x2) spatial integration on the bending stiffness and a

reduced (lxl) integration on the transverse shear stiffness. The decoupled limit

differential equilibrium equation for this element is found to be

[DV 4 + (- 2D - 0 11)V 6 + (7D - D 1 )V 2dd]w =
12 12

12 D D11)V2 + (DD11 12 D D11))4
- D D. DDs B7_D )7

1 2 D _j~d.

6 D + DL8  zdY2 1q.
(4.43)

The above equation reveals that the parasitic locking term associated with the

V4 operator has been eliminated through the use of reduced integration on k8 .

As a result, one obtains a locking-free element discretization. Unfortunately, this

reduced spatial integration of ka results in a rank deficient element stiffness matrix

which exhibits two spurious element mechanisms (see [35]). The first one, an

inplane-twist mode does not propagate in an assembled mesh and hence is of little

practical importance. The second one is the so-called w-hourglass mode which

can be responsible for singular or near singular assembled global stiffness matrices .

with resulting wild solution oscillations if not controlled. The effect of employing

different hourglass control techniques to stabilize this element is discussed in detail

in §4.3.4.2.

§4.3.2.2 Uniformly-Reduced Integrated Ul Element

The next element to be examined is the uniformly-reduced integrated Ul el-

ement (see Refs. [331 and [561) which employs a (lxl) spatial integration rule on
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both the bending and transverse shear stiffnesses. This type of element is poten-

tially quite computationally attractive since the generation of the element stiffness

can essentially be "hard wired" to take advantage of the single Gauss integration

point. This is provided, of course that the attendant spurious mechanisms are

controlled. The decoupled limit differential equilibrium equation for this element

is

2 - DDii)V6 + !-D2dld2]w =-
'12 Ds3 X~ -

D, DaV 3 +D-))

12 D D11
--3( -+ )dx2 dy2 q
3 Ds D.9

(4.44)

Since the same (lx1) spatial integration rule is used for k9 as for the S1 element,

one would again expect that this element is locking-free. This is in fact the case

due to the absence of any parasitic operators associated with the primary bending

operator, V4 . Unfortunately, as was the case for the S1 element, reduced spatial

integration also results in the presence of spurious element mechanisms; four to

be exact. The two additional zero eigenvalues correspond to a Oe-hourglass and a

dy-hourglass mode as a result of the under-integration of kb.The stabilization of

this element will also be symbolically analyzed in the next section.

§4.3.2.3 Directionally Integrated Transverse Shear Element

The last plate bending element to be considered here is the directionally

integrated transverse shear element. This element employs the (2x2) quadrature

rule for kb while further partitioning ks into its "yzz and "1yz contributions and

employing a (x2) rule for the zz stiffness and a (2x1) rule for the yz stiffness.

This spatial integration technique is employed by MacNeal's QUAD4 element [31]

and was the focal point of the recent work by Prathap and Viswanath [541.

The rationale for the selection of these spatial integration rules lies in the

inconsistent polynomial approximation inherent in using the same bilinear inter-
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0

polation functions for both w, Oz and Oy. This point can be clarified if one considers 4.

the transverse shear strain
0

z - - oz. (4.45)
-X

In terms of the generalized displacements,

= = ao + alz + a2Y + a3 xy (4.46)

Oz = bo + b1z + b2y + b3 xy

where (z, y) represents a centroidal-based cartesian coordinate system, one finds

that

'z: -- (al - bo) + (a3 - b2)Y - blz - b3 zY. (4.47)

The last two terms are extraneous since they only represent Oz contributions to

-zz which are not balanced by w contributions. The easiest way to see their

deleterious effect is to consider what happens in the thin plate limit where GI=

0z =0 -zz = 0. Here, these terms represent nonphysical constraints on y/zz which

will ultimately result in element locking since b1 # 0 and b3 0 0.

If one now considers the calculation of the transverse shear stiffness associated

with the ",z contribution, klzz, only even polynomial functions will survive the

spatial integration so that it will be sufficient to only consider the integration of

the (a1 - b0) 2 + (a3 - b2) 2y 2 - b2 z 2 - b2x~y 2 . To eliminate the inconsistent1
contribution of the b1 and b3 terms to kazz, a one-point quadrature rule in the

z direction may be employed while to exactly integrate the y dependence, a two-

point rule is required, hence the rationale for invoking the (x2) rule. Here, it is

assumed that the Jacobian is a constant.

Similarly, it can be shown that a (2xl) quadrature rule is appropriate for k,9 z. .

It is important to note that this element discretization is conceptually different

from that for either the S1 or U1 elements in that this modified spatial integration

rule is not invoked within the penalty function context of reducing the rank of ks. 0
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By selectively eliminating only the "spurious" Oz and Oy constraints, an element

stiffness of full rank is maintained. It is this observation which has motivated

research in redefining the way in which the transverse shears are handled at the

element.level via alternative interpolation procedures.

As expected, this spatial integration technique results in a locking-free plate

bending eiement as is reflected in its limit differential equilibrium equation,

[D1 4 + DD ) +jI(7D -D1) V2 dd]t
3D- 1k8-)V6 12 d

DV+(D 1  2 D 12 D11 ))4 1

(512 D---D---1V 2 D_1 -Pdx2dy2]q.12 Da Ds ' D2 4 Ds 3Da 3 Ds
(4.48)

The success of this element rests solely on taking advantage of the fact that

the local (z, y) and (C, qt) coordinate systems are aligned for a rectangular element.

If, however, one begins to distort the element into a parallelogram as portrayed in

Fig. 4.2, the locking-free property of the discretization is lost. For this particular

distortion, one finds that the (2xl) integration rule for ks8 z still works since I z

but with t7 X y, the (x2) integration of kszz no longer eliminates the spurious

constraints on -yxz resulting in the reappearance of element locking. The dominant

bending operator appearing in the decoupled limit differential equilibrium equation

for this particular parallelogram discretization is found to be

DV 4 + I Dsd4 (4.49)

where 6 is the angle between the y and 17 axes as is portrayed in Fig. 4.2. The

second term in this expression is the parasitic operator responsible for locking the _

z-direction bending mode of the parallelogram mesh. If the local (z, y) and ( , ,7)

coordinate systems were not aligned at all, one would expect to see the return of

element locking with the appearance of parasitic terms associated with both the

d and A4 continuum operators as was the case for the exactly integrated element.
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Fig. 4.2 - Element geometry for paralelogram dicretization

I §4.3.2.4 Alternative Transverse Shear Interpolations Schemes

~In order to overcome the problem of element locking engendered through the

application of the standard" bilinear isoparametric shape functions, the technique

I of employing alternative interpolation schemes based upon assumed strain fields

has proved quite successful (see e.g., Hughes and.Tezduyar's T1 element[531 and

1 the Bathe and Dvorkin element [521). For a rectangular element, these alterna-

tive transverse shear interpolation schemes result in limit differential equilibrium

~equations identical to that determined for the directionally integrated transverse

shear element discussed in the last section. This results from explicitly embeddling ]

into the element's transverse shear interpolation scheme the functional equivalent,

of

^tzz al + bly (4.50) _

for the present cartesian element geometry which is identical to that achieved by

~~employing the (Wx) and (2xl) spatial integration rules. _
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§4.4 Symbolic Evaluation of Hourglass Control Techniques

Over the years various element discretization schemes have been proposed

based wholly or in part upon using reduced spatial integration techniques to al-

leviate different element pathologies or simply to obtain a computationally more

efficient element. The inevitable spurious mechanisms engendered by such an ap-

proach can render an assembled stiffness matrix singular. Different stablization or

hourglass control techniques have been proposed to eliminate these singularities. 0

Except for brief excursions into functional analysis techniques (see e.g. [61,62]), the

developers of hourglass control strategies have, by and large, resorted to physical

considerations whereby generalized stresses and strains (or other conjugate quan-

tities) are appropriately introduced into the analysis [58,59,60]. This physically-

based approach to hourglass control, unfortunately, unnecessarily hides the intrin-

sic linear algebra problem of dealing with rank deficient stiffness matrices.

The present approach to understanding hourglass control is based entirely

upon first viewing the problem from a linear algebraic standpoint. Once the

fundamental problem is understood, the proper physical interpretation follows

in a natural manner. From this starting point, the key to hourglass control or 0

alternatively, consistent spurious element mechanism suppression, is based upon

selectively shifting part of k's spectrum to remove the rank deficiency associated

with the spurious mechanism(s). This entails moving eigenvectors from the null

space of k to the range of an augmented element stiffness matrix, k. All a priori 2

hourglass control techniques presented in the literature are based upon this basic

idea.

From a physical standpoint there are two important aspects of this problem.

2 Jacquotte and Oden [61] use a priori to refer to hourglass control techniques invoked

prior to the global solution while a posteriori implies filtering out hourglass modes S
after a global solution has somehow been obtained.
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The first being the obvious one of removing the spurious mechanism(s) by this

shifting procedure while the second is concerned with preserving the consistency

of the resulting discretization which at a minimum entails preserving the vectors

spanning the rigid body and constant strain modes of k (see Ref. [58]). As will be

shown here, however, there is a potential pitfall in using these techniques, namely,

the reintroduction of element locking. After first briefly describing some of the

underlying linear algebra details of hourglass-control in order to motivate their

use, element evaluation of the "stabilized" SI and U1 elements will be presented.

§4.4.1 Selected Spectral Shifting

The concept of selective spectral shifting, based upon the spectral theorem

(see e.g., [66]), provides the theoretical foundation for hourglass control techniques.

With the spectral theorem, the positive semi-definite element stiffness, k may be

decomposed as

dim(k)
k =AixxT (4.51)

where the Ai's are the eigenvalues and xi's are the corresponding normalized eigen-

vectors determined from the standard eigenproblem

kx i = Aixi; i=1,...,dim(k). (4.52)

The present form of k ensures that all \i's are real and that the corresponding

xi's form an orthonormal basis such that xTxj = 8ij. Selectively shifting one of

k's eigenvalues, e.g., the jth eigenvalue, can now be accomplished by forming the

augmented matrix

k ~ = +jtxjxi (4.53)
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where x xT is a rank one matrix update and is a (positive) scalar. Now,

I j -(k + OjxjxT)xj = kxj + Ojx~x xj

= (A-- + -) x (4.54)

+.7

From this, it is obvious that x, is also an eigenvector of the augmented problem

with its associated eigenvalue being Xj, or in other words, Aj has been shifted by

an amount Op If one considers the remaining eigenpairs from k, they will remain

unchanged since

xTxi = 0 V i 5 j (k + OjxjxT)xi = kxi = Aix i . (4.55) S

These results also hold true for shifting multiple eigenvalues employing rank

two and higher updates where the augmented matrix takes the form

T (4.56)
=k + kkxkxkc

with v denoting the number of eigenvalues to be shifted.

§4.4.2 Rank Deficient Element Matrices

When the element stiffness matrix is constructed using reduced spatial in-

tegration, the element stiffness, k, possesses one or more zero eigenvalues whose

associated eigenvectors do not correspond to physical rigid-body modes. These

spurious hourglass modes, along with the physical rigid body modes, span the

null space of k, )1(k), all of whose vectors satisfy the identity kx = 0. The re-

maining eigenvectors, which (should) represent the physical deformation modes,

form the range of k, R(k). Since rank deficient element matrices can result in

a singular assembled global stiffness, techniques for reducing the rank deficiency

of k are of current research interest. The technique of selected spectral shifting
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3 provides the needed tool for understanding exactly how the different hourglass

control techniques work.

Based upon the discussion thus far, an augmented element stiffness, k, would

be defined by

k + vvT (457)

where v represents the hourglass control vector and 0 is a positive scalar. Since

the xi's form an orthonormal basis, v can be written as

In
V = cx 1i (4.58)

J i=1 :

5 where n = dim(k). We are now in a position to precisely define the (minimum)

requirements for the successful suppression of spurious element mechanisms. First,

a component of the hourglass control vector, v, must be in the direction of the

eigenvector, x, corresponding to the non-physical zero eigenvalue, to ensure that

3 this eigenvalue is shifted to a positive non-zero value. Secondly, v must be orthog-

onal to the rigid body and constant strain modes to ensure element consistency 3.

The one vector which automatically satisfies these conditions is the eigenvector

itself corresponding to the nonphysical zero eigenvalue. It should be noted that

the potential always exists to alter eigenpairs representing physical deformation

and rigid body modes through an improper choice of v.

§4.4.3 Hourglass Control for the Si Element

Hughes et al. [35] have shown that the S1 element possesses the following two

3 This guarantees that the element will still pass the patch test. For higher-order ele-
ments, orthogonality with respect to higher-order strain modes would be necessary
to maintain their accuracy.
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spurious element mechanisms,

mode w ex Y

1 h 0 0

2 0 -y x
0-- -_

where the first mode is the w-hourglass mode and the second is the in-plane twist 'p.

mode. Here, the hourglass d-o-f displacement pattern, h, is given by

h = Lzyl z 2 y 2  z 3 y 3  x4y 4 jT (4.59)

for the general quadrilateral, and by

h= L1 -1 1 --lT (4.60)

for a rectangular element. x and y are used to denote nodal position with respect

to a local cartesian coordinate system. As was noted in [351 and symbolically

verified to be the case in §4.4.3.2, the in-plane twist mode4 is not communicable

when the element is assembled in a mesh and so has typically been ignored.

In their first paper dealing with the control of hourglass modes in plate ele- owlV.

ments, Belytschko et al. [59] proposed two quite different hourglass control proce-

dures for dealing with the w-hourglass mode of the S1 element. In the remainder

of this sub-section, these two techniques will be examined in deLail. -

§4.4.3.1 Method 1 - Weighted Stiffness Averaging

The proposed element stiffness for method 1 was

"x 2) + (1 - e)kIXl] +k 8  (4.61)

4 Note: This mode is the same for both the S1 and U1 elements
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which was assumed to be comprised of the fully integrated bending stiffness (exact

for rectangular elements) and a linear combination of the fully-integrated and

under-integrated transverse shear stiffnesses. This expression was subsequently ION

rewritten as

k -k [2x2 + k1l x1I +,EkH (4.62)

kS1

where

kH -k!2X2] - k l x1] (4.63)

represents the so-called hourglass stabilization matrix.

By making use of the spectral theorem, one can rewrite Eq. (4.62) as

12 12
k ksI + e:O yyT - E oztzT]. (4.64)

1=1i=

k 2x2l k1IX1]

Written in this form, it is obvious that only terms whose eigenvectors are in their

respective ranges of ka Lontribute nonzero matrix updates to ks 1 . The shifting

of the spurious zero eigenvalues of kSl is therefore being accomplished solely by

k 2x21 whose eigenvectors in -(k2 have components in the direction of ksl's

w-hourglass mode - and also in that of the inplane twist mode. From a strictly

hourglass control standpoint, k1lx1] plays no role since information from its null

space is never used for spectral shifting.

From Eq. (4.61), it would be expected that this stabilized S1 element would

perform somewhere in between the parent SI element and the fully integrated

Reissner-Mindlin plate element. The limit differential equilibrium equation corre-
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sponding to this hourglass control procedure was found to be

[ D4+ 2 d4  d)+ 512  612 DDII.)V6
4 D.(z + d (-D - 2(D + D11) - D

[DV 2 12 2D

+.-'(TD - D11 + -(D11 - D) +-D-))V ddjw =
12 6D

+ (DD11 _ 1 ( D D 11 ) +E 2 D DlI))v4

D 2+D D 2 + 2

(4.65)

From examining this equation, it is apparent that transverse shear element locking

is an intrinsic element attribute of this stabilized element for any E > 0 since the

dominant thin plate operator for this discretization is

+ DV D+~D8 (4+ A). (4.66)12 S

The potential locking deformation patterns would be the z- and y-directional bend-

ing modes as was found to be the case for the exactly integrated element. Thus,

the beat one can do is to introduce enough locking into the element formulation to

suppress the spurious element mechanism. For the limiting cases when e = 0 or

= 1, Eq. (4.65) is seen to properly degenerate to the S1 element, Eq. (4.43), or

the exactly integrated element, Eq. (4.40), respectively.

§4.4.3.2 Method 2 - General Rank Update

The second method proposed in [591 reduces to that of selected spectral shift-

ing if applied to a rectangular mesh. Their augmented element stiffness was given .,."

by

k = ks + E + 12)q 4qT (4.67)

where q 4 = h is the w-hourglass mode defined by Eq. (4.60). Eq. (4.67) can
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immediately be rewritten in the form of Eq. (4.57), namely,

U k = ks1 + Ovv T  (4.68)

where v'represents q4 and

= %_*4(12+ ). (4.69)

Comparison of Eq. (4.68) with Eq. (4.64) clearly shows the differences between

the two allegedly similar hourglass control schemes of Ref. [59]. For the present

case, only the spurious zero eigenvalue associated with v is shifted while for the

first scheme, essentially all the eigenpairs of kS1 are affected. Before proceeding,

however, it is important to note that this choice of v is not an eigenvector of

an arbitrarily distorted quadrilateral and therefore should not be used blindly for

other than rectangular elements.

The limit differential equilibrium equation corresponding to Eq. (4.68) is

[DV 4 + +i0 2Ad + (12 D- DD11 )V 6

12D D11 )V 2 ddlw=+ T-(7D - D11 - 120(T + .-5))V dxdl y

L2  D D 11 ) 2  DD11  
2 D D1 4

-)V +- Ds 1 D) +3 + V4

~~2 D D D 11

TF + -D. )dx2dy2]q.

(4.70)

From the limit differential equilibrium equation point-of-view, it is also quite obvi-

ous that these two element stabilization techniques are entirely different. The most

obvious difference is in the form of the parasitic differential operator responsible

for transverse shear locking. Instead of locking the x- and y-directional bending

modes, one now finds that only the torsional bending mode is effected with the
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Method 1 Method 2
Mesh L SlElement r=17 r=10 r=1 r=10

2x2 500 .2385 .1780 .0546 .2324 .2164

4x4 250 .2563 .1925 .0592 .2505 .2340

8x8 125 .2608 .1962 .0604 .2550 .2385

16x16 62.5 .2619 .1971 .0665 .2561 .2397

Analytical .2636

Table 4.1 Displacement of center edge of a laterally loaded S-S-F-F plate for

I a = 200in., t = .lin., q = 10- 5 psi, E = 107psi and v = .3.

appearance of the parasitic differential operator

3 Y2 d2 2 (4.71)

in the discrete thin plate operator, which in retrospect is not too surprising con-

sidering the alternating ±1 w displacement pattern. This result leads directly to

the observation that if the R (k) is changed by this shifting procedure, the poten-
tial exists of reintroducing an element pathology which the reduced integration

eliminated.

One interesting additional aspect is that the loading operator, rD, is seen

to remain unchanged from that of the parent S1 element in contrast to the first

technique which introduces changes there also.

§4.4.3.3 Numerical Verification

The symbolic analysis of methods 1 and 2 predicts that method 2 shifts locking

from the z- and y-directional bending modes to the zy mode. In Table 4.1, the
simple numerical example of a laterally loaded S-S-F-F square plate which exhibits

predominatly pure cylindrical bending in the z direction is used to verify this

observation.
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I Using the same definition as in [59] for e,

21 h2(4.72)

3 *k is found to be

h2D (4.73)

where r is used to parameterize the results. Since the present boundary conditions

appear sufficient to stabilize the S1 element, results for it are also presented for

the different mesh discretizations. No more than a quick perusal of the results in

I Table 4.1 is required to see that the first stabilization technique locks the solution

while the second does not. If one considers that e = 1 corresponds to the exactly

integrated case, an r = 10 only results in an e = 2.56 x 10- 5 for the (16x16) mesh.

With the effective fiexural stiffness for the z-directional bending mode given by

b --(1 + r(-I )D = 4.5D, (4.74)
* 2

one would expect a computed center edge displacement of only about 22% of the

3 analytical value based upon the stiffness modification to the thin plate operator

- Table 4.1 shows that the computed finite element solution is in fact 25% of the

3 analytical value.

3 §4.4.4 Hourglass Control for the U1 Element

The next element to be considered is the uniformly reduced integrated Ul

3 element which has been shown [33] to possess four spurious element mechanisms

defined by

mode w Ox Oy

1 h 0 0

2 0 h 0

3 0 0 h

4 0 -y x
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Since the fourth mode does not communicate in an assembled mesh, as is subse-

quently symbolically verified in §4.4.3.2, Belytschko and Tsay 160] did not correct 0

for it. For a rectangular element, hourglass control is achieved using the augmented

3 stiffness

3
k = kul + OZv, (4.75)

I where the vi's correspond to the first three spurious mechanisms, or hourglass

modes, given above. For an assembled element mesh, the decoupled limit differ- 0

I ential equilibrium equation is

[DV4 + 0112dzd2 + (I2-D- DDj)y6 - (02 dz2 + 4.3 dY2)ldx2 dY2

g ~ ~~~12" l 2
D +  ))V2d2d2jw

n(2D - 3, T. + DD Z

+ (L2 D D11) 2  DDI 1 12D -  D11)4

12 + 3)d
3D( D + D1 1 - (02 + 43 ))dz 2dy 2 ]q.

(4.76) S

Examination of this equation shows that locking is only associated with stabilizing3 the w-hourglass mode. This interesting fact was discovered by numerical exper-

imentation in Ref. [60] when they found that (transverse shear) element locking

Icould be reintroduced into the stabilized U1 element by what they termed as
"overstabilizing the w-hourglass mode." Essentially, one again finds one's self in

a Catch-22 situation: If 01 is too small, the spurious w-hourglass mode returns, A

while if 01 is too large, locking reappears. As they verified numerically, over-

stabilizing the 9-hourglass modes does not result in any form of element locking

since neither mode has any components associated with V4 . The appropriate

q choice of values for 0'2 and 403 can therefore be made based solely upon accuracy

considerations.
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I §4.5 Discrete Fourier Element Evaluation

The basic procedures used for performing a symbolic Fourier analysis of a

finite element discretation were presented in Chapter 3. It was shown there that

the finite element approximations of various terms in the governing differential

equations can be transformed into simple Fourier operators whose effect on ele-

pment behavior could then easily be identified. From them, the effects of different

component-wise finite element approximations on intrinsic element behavior could

be assessed a priori without resorting to time consuming numerical experiments.

In particular, problems such as transverse shear locking, spurious mechanisms and

ultimately, point-wise interior accuracy could be addressed. In this section, these

techniques will be applied to the analysis of the exactly, selectively-reduced, and

uniformly-reduced integrated 4-node Reissner-Mindlin plate elements.

§4.5.1 Component-Wise Analysis - Directional Participation
Operators

The important question concerning how different differential operators are ap-

proxirmated within the Fourier domain is addressed in this section. Before looking

at the different plate discretizations in their entirety, as was done for the Taylor

Iseries technique, the effect of the different spatial integration rules on individual

differential operator components will first be examined in detail. This is an im-

portant step in pinpointing the cause of element deficiencies and at the same time

prepares us for the eventual task of element synthesis[17].

As a precusor to looking at the two-dimensional finite element approxima-

tion of a differential operator at an interior node, its finite difference counter- -

part provides an important point-of-reference. The second-order accurate central-

difference approximation of the differential operator ax-y is given by the following
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stencil,
a2  I•

4"I 82!d i-211 -2 1i (4.77)

where the differencing has been performed directly on aZ, or from the finite

element viewpoint, the strong form of the operator. Discrete Fourier transforming

the above expression using elks results in

1{_L 1 2+ikxlZ) -k2

{TX 1fd' T (e-'kxlx - 2 + e'  )  - (4.78)

where kx is the discrete wave number in the z-direction defined as

sinsin(- ) (4.79)

,9
2

The finite element discretization of T at an interior point in the problem

domain is obtained from the corresponding weak form,

I fAa (82dA. (4.80)

For the element mesh shown in Fig. 4.1, the finite element representation of 8

at the interior node is determined from the assembled equations where the contri-

bution from a single element stiffness is given by 0

f ON ONT (4.81)

where N are the bilinear element shape functions. Employing exact (2 x 2) spatial 0

integration to evaluate k, the following finite element "stencil,"

_2 1 -2 1

-1(2x2) 1 z 1 -2 = -i. ._ 4 -8 4 (4.82)
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is obtained for the interior node where each entry represents the nodal value

corresponding to stencil position. The expected central-difference approximation
embodied in the finite element equations resulting from using the bilinear element U-_

shape functions is apparent by summing the columns of Eq. (4.82). The discrete

Fourier-transformed operator for this stencil is found to be
G12

a2 I } =(4.83)
X z~2x2~

where ei(kzz+kyy) is used in the now two-dimensional transformation process.

The unity operator, V, which is engendered by the finite element discretization,

is given by

12
I= 1 _ 1Y2 (4.84)

-1 6 Y

with ky being the discrete wave number in the y-direction, obtained by substituting

y and ly for z and 1. in Eq. (4.79). The superscript e denotes exact (2 x 2) spatial

integration. If the reduced (1 x 1) spatial integration rule is used instead of the

(2 x 2) rule to integrate Eq. (4.81), one obtains

_2_ 1 1 -2 1
8-1(1xl) 4-- 2 2 -4 2 (4.85)

11 -2 1

with its resulting discrete Fourier-transformed operator

82B) Y{-

As one might expect, a different unity operator,

0,=I (4.87)

now appears, with the superscript r used to denote the use of reduced integration.
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Comparing the finite difference results with those of the finite element, one ex-

plicitly sees that the interaction between adjacent nodes in the finite element equa- 0

tions results in the appearance of an additional operator term. At a first glance, it

would seem to play only the role of a unity operator such as first encountered for

the one-dimensional problems. Closer inspection, however, shows that this unity

operator is also responsible for the interaction between adjacent element nodes.

Because of this inherent participation from adjacent nodes, Fourier-transformed

operators will appear as multiplicative combinations of the transformed funda-

mental operator with other participation operators. For the bilinear finite element S

82representation of the differential operator ax y, ly plays both the role of unity op-

erator and of what will be called a directional participation operator. It embodies

the degree to which cross coupling occurs between adjacent nodes in the direction

orthogonal to that in which the derivative is being calculated.

Making use of results such as this, one can easily construct any of the different

differential operators needed to characterize a particular finite element discretiza-

tion. If, for example, the Laplacian was of interest as will be the case when

considering the transverse shear term, or iww term, from the Reissner-Mindlin- 02

plate equilibrium equations, one would also need the results for O which are

discussed for z and y appropriately interchanged.

The Fourier transformed Laplacians for the different discrete methods are shown

in Table 4.2. As was described above, the only difference between the Fourier

transformed operators resulting from the finite difference and the finite element

approximations is in the presence of a directional participation operator in the

finite element discretization.

§4.5.2 Directional Participation Operators and Spurious Mechanisms

In §3.1.2, Fig. 3.1 illustrated the saw-tooth oscillation which represents the

most rapid spatial variation which linear shape functions could possibly resolve

without aliasing. The corresponding Fourier wave number, kmaz, or the maximum
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Table 4.2 -Discrete approximation of t 2

0
Type of Discretization -2 = (k2 + k)

Central-Difference F.D. -(k2 + k2)

(lxl) F.E. -- X + Y

(2x2) F.E. - + lek 2 )

admissible wave number corresponding to this saw-tooth displacement pattern is 0

kma= (4.88)i"

For the present two-dimensional problem where bilinear shape functions are used,

the maximum admissible wave number in each coordinate direction is

(4.89)
7rkYma z ~y = .

Wave numbers beyond these maximum admissible wave numbers can not be rep- 0

resented by a piecewise linear displacement interpolation approximation.

To examine how the directional participation operators affect t2, their be-

havior is shown in Fig. 4.3 for the admissible nondimensional wave number range S

0 <_k( 23 )(12,ly) < 7r (4.90)

The key observation is that the directional participation operator for the (ixi) 0

integrated case, (2I), becomes zero at the maximum admissible wave number of

kX12 = kyly = r. Since k(,,y) > 0 for 0 < k(2 ,y)(1 2 ,ly) <_ 7r, the state at which

the discrete approximations of t2, denoted here by t2, become zero is dictated

solely by the directional participation operators. The important consequence of
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Fig. 4.3 - Behavior of directional participation operator as a function of nondi- ''

mensional wave number

I ~ ~ lr~y 0 at kzl. = kyly = 7r is therefore the admission of a non-physical

rigid body motion (i.e., spurious mechanism) resulting from the (lxl) integrated

approximation of V 2 .

54.5.3 Symbolic Evaluation of Bilinear Reissner-Mindlin Plate !

Elements %

~In this section, a discrete Fourier analysis of both the exactly integrated and

selectively/ reduced integrated (or S1) plate bending elements is performed for a '

1' rectangular (1, x ly) element domain for the case of static loading only. These ,

two elements succinctly embody both pathologies usually associated with 4-node _

Reissner-Mindlin plate elements; namely, transverse shear locking in the exactly :

integrated element and spurious element mechanisms for the selectively/ reduced

integrated S1 element. The approach taken here in deriving the discrete counter-

part to Eqs. (4.9) and (4.20) is different to that employed earlier for the Taylor
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series results. Each differential component will be constructed in a component-

wise manner which could potentially serve as the starting point for synthesizing a

general plate bending element (see e.g., [17]).

Inspection of Eq. (4.9) shows that in order to construct the discrete Fourier-

transformed material plate operator, Lm, a total of six operator components cor-

responding to

a a a2 02 a2 (4.91)
1a' 19y' ax 2 ' azay' ay 2 ,,

need to be obtained for the different spatial integration rules.

When dealing with the off-diagonal terms, A and T, special care needs to

be exercised in order to obtain the correct algebraic sign. Depending upon which

Euler equation one considers at the interior node, a may, for example, result 0

from either

1 Jf NadA (4.92)

or

IA2Z O (4.93)NAd *A axz"x

The finite element stencil and resulting Fourier transformed operator correspond-

ing to Eq. (4.92) is

Z 1 (2x2) 0 4 4 . -%z2x2 V-1 0 1 ,,

for exact spatial integration and
-I O I ..4 -'V

a = a
1(1X1) 1 0 1 -2 0 (4.95)

for reduced integration where Xz = 1 -/U2k2 is the same irrespective of the inte-

gration rule used.
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=

For the case of the mixed derivative,

1 . N aNT a2

f - y dA = (4.96)
A I8x8yazY'

the finite element stencil and resulting Fourier transformed operator,

a2  1 1 - a2o o * '{oXx}= V ; kzk (4.97) , "
-0 }VzVz"'(2x2) lzy - 0 1 a

are found to be identical for either integration rule.

Lastly, the finite element approximation of unity is determined from

"INTNdA = 1 (4.98)
A

to be for the case of (2 x 2) integration

i 114 1 1 I(2x2)' 4.9
122)36 4 16 4 0 7 fl 1 I(499

1 4 1

and for (1 x 1) case, _

1 2 1 7{.-1 .
11=- 2 8 2 . 1{ I = l. (4.100)

(lx1) 2 0 1 2 1 (lY

0

The discrete Fourier transform of these two unity operators is seen to be just the

product of the two directional participation operators.

With the discrete Fourier transformation for each differential component now
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in hand, one can construct the following general discrete counterpart to Eq. (4.20),

0
- D 1 il~v-Dlxlzv,/7 x-ikzky iDsv1kz'

-ODlzlzl

Lm (kz, ky) -D - DjIiik OVx/ylzky
-Dslxly

.sym. -DsV 2

(4.101)

where the direction participation operators, 1z and ly, in the different terms

above will assume the appropriate form depending upon which spatial integration

r-lte is employed for each term. Examination of Eq. (4.101) reveals the interesting

fact that the entire effect of spatial integration is embodied solely in the directional

participation operators. If (lx1) spatial integration is employed for the different 0

terms used to construct Eq. (4.101), then the directional participation operators

will become 1' ), while for the case where (2x2) integration is used, they will be
lez) For selective/reduced spatial integration, terms associated with D, will be

1ry) while the remaining bending terms will use 1e

The decoupled Fourier-transformed equation for tb derived from Eq. (4.101)

is

ID  = 0.4 (4.102)

where the characteristic operator, i D is

iD= (Iz2 1 -11x(ly xy)t21D )D4 + D3[lzl4(iz X)k 2 + - S..Ds

+ D-[iY(iL - x)4 + 2(1,J- XzX,)kk + Iz(ly - XY)k4]  A

+ D(2XxXy - Xzly- lxy)kzk2

S(D - DII)2 2(XzXyly - i2)kzk2 + 2(1zXXy - 1"Ly)kzk
(4.103)

with t2 _(k2 + j2), and k2 l~k2 and k2 -z2 ,
w = X =1 = 1kY. The characteristic loading

118



"?WIEN wJILkWwX-KW IrK W . Z 1,,- ., ,

operator, iD, is found to be

D"__Lt 2 )+ (D ) (kI4-XzXYk~ k2). (4.104)

§4.5.3.1 Transverse Shear Element Locking

Locking in the four-noded Reissner-Mindlin plate element occurs if the para-

sitic differential term,

llock = Ds[1,I (Ix - xz)k2 + 2,lI(.I,- XY)k I (4.105)

in Eq. (4.103) does not vanish. Hence, the locking-free condition is simply

Lock = 0. (4.106)

If (lxi) spatial integration is employed for the element stiffness, the locking-

free condition is automatically satisfied since the l(zy) in Eq. (4.105) become

(zy) = X(z,y) with the result that the terms in the parentheses vanish so that

llock = 0.

On the other hand, if (2x2) integration is instead performed, one finds that

16,Y - X(zy) 12 (2, Y)
(z=,y)- ,)- 12 (z,y)" (4.107)

Substitution of Eq. (4.107) into Eq. (4.105) provides the measure of the amount

by which the locking-free condition is violated, t'z.,

12 12 Y (4.108)

Since practical considerations on element size generally requires Ix, ly >> h, the
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magnitude of the coefficient in the above equation is seen to be!0

D) )2 >:D 1. (4.109)
12 2 h

The dominant 4th-order part of the spatial operator, 1D, which represents the

limiting thin plate behavior, is therefore modified by the amount of the locking-

free violation resulting in

+ + 2k~kl (1 + 'Y 81O zIvl(1 ) 2  + 12D (4.110)

Except for the rectangular element geometry, this term is identical to its counter-

part in Eq. (4.41) derived using Taylor series techniques.

§4.5.3.2 Spurious Mechanisms in the UJ1 Element

As described in §3.3, an element will exhibit spurious mechanisms if there are

non-physical rigid body motions engendered by the finite element discretization.

In the context of the present symbolic element evaluation analysis, this condition

corresponds to the existence of non-zero admissible wave numbers which satisfy

the homogeneous characteristic equation. For the uniformly-reduced integrated S

U1 element, the homogeneous characteristic operator is given by

Dll 2)Da4 -'0. (4.111)

Potential zeros for the admissible wave number range 0 < (1, ) are in

turn determined from the zeros of its multiplicative components

r Dl = 0 (4.112)

and

t 4 =o. (4.113)
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From them, the following admissible solutions are found,

k* = ky = 0 kz = ky = 0 (4.114)

and
J7r

I = k(zy) = . (4.115)z Y v ky (Iztly)

Clearly, Eq. (4.114) represents the correct rigid body motion while Eq. (4.115)

corresponds to non-physical rigid body motions, i.e., spurious mechanisms. Sim-

ilarly, there are two additional spurious mechanisms corresponding to the Oz and

eY degrees of freedom. The Ul element would therefore possess a total of three

communicable spurious mechanisms.

REMARK 4.1

Unlike the Ul element, the S1 element employs exact (2x2) integration on the
bending stiffness. As a result, it only exhibits a single communicable spurious
mechanism resulting from the reduced (lxl) integration of the transverse shear
stiffness. The homogeneous Fourier-transformed characteristic operator for the S1
element is

=(~r IT - D1 2L )D V+
Da

Ik (D - D11)2  2e kk
(D - Djj 1rr - e y z z "(DDla)" " "2 "r)

(4.116)

REMARK 4.2

The present analysis technique manifests only those spurious mechanisms which
propagate across element boundaries since the analysis is performed on the as- '. ..

sembled difference equations for an interior node. The question of whether a
mechanism will communicate is therefore automatically resolved as a by-product
of the present analysis. In addition, as the analysis requires no knowledge of
boundary conditions, the results manifest intrinsic element behavior. In other
words, suppression of spurious mechanisms by certain boundary conditions or by
spurious mechanism control techniques can be viewed as a case-by-case fix rather
than eradicating inherent spurious mechanisms.
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§4.5.4 A priori Prediction of Interior Solution Accuracy

In §3.4, the subject of spectral error estimation was addressed for the Timo-

shenko beam. Those results will now be employed to provide an a priori prediction

of interior accuracy for the transverse loading and bifurcation buckling of the U1 S

and Si discretizations of the Reissner-Mindlin plate.

The first step in the error analysis for the transversely loaded discrete plate

entails determining the nodal load at an interior node corresponding to the Fourier 0

component

q(z,y) = gei(kzz+kyy) (4.117)

which is determined from

qj f jy f2 [x - ei[(zj-lz+f)+ky(yj-ly+l)]

1z y

+ (1 - -!)'7e[kz(zj+)+YCyj-1Y+i7)] 0

17 i[kz(xC)kyjrJ
+ z (1-Fe ly+y(yu (4.118)

+ (1- .z)(1 -_ [kz( +)+ Y(y+',)]dd

+ e( - 'l ekC'-+)+ CY+")l]d~dq _O

to be

qj= (Lzky) 2$zlye(kzxj+kyyj) (4.119)

employing exact analytic integration. The resulting discrete Fourier transformed

distributed load is then simply

4D =4. (4.120)

Alternatively, if one commits the variational crime of employing reduced (ixi)

spatial integration to calculate nodal loads, 4D would have instead been found to
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be

= (4.121)

Now, from Eqs. (4.16) and (4.17) for the continuum equations, and Eqs. (4.103)

and (4.104) for the discrete ones, the decoupled transformed w equations are given

by

ID _(4.122)

and

so that the relative spectral displacement error is

=(k., A (4.124)

where it is the directional participation operators which solely determine the form

of 1D and P in these equations.

In Figs. 4.4 and 4.5, the relative error in tD is plotted for both the case where

kz ky and kz 0 ky for a patch of square S1 and UX elements with E = 107,

= .3, 1 = 100 and h = 1. In Fig. 4.4, one finds the surprising result that

when exact integration is used to evaluate nodal loads for the U1 element, tDD is

seen to be essentially exact V k. When (lx1) spatial integration is instead used

for element loads, both elements perform much worse than when exact analytic

integration is used. Since there are no geometric modeling errors, all error curves

in Fig. 4.4 will exhibit the same limiting behavior of Z - 0 as k --+ 0 confirming the

consistency of the different discretization schemes investigated for both continuum •

and loading operators. The effect of cross-coupling intrinsically engendered by the

finite element formulation is dramatically portrayed in Fig. 4.5 where i is plotted

as a function of kz for two different fixed values of ky, namely, .3kmax and .6kmax

with kmx = 1. As was discussed earlier in §4.4.1, each differential operator
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in Eq. (4.101) has associated with it a directional participation operator which

intrinsically couples differential information in one direction with each orthogonal

direction. The minimum spectral error in tD for the Ul element occurs at kz = k,

while for the S1 element, the minimum is shifted slightly to the left of where

kz = ky. The determination of the displacement error in the physical domain

would proceed as outlined in §3.4.3.

§4.5.5 Buckling of Bilinear Reissner-Mindlin Plate Elements

The symbolic analysis of the bifurcation buckling of bilinear Reissner-Mindlin

plate elements proceeds in the same component-wise manner as was described

earlier for the material operator. Using those results, 1D can immediately be

written as

4D -(azlyk + aylzk2 + 2joy r zr Y) I 0 (4.125)
10 0 -h

where the directional participation operators are again determined by choice of

spatial integration rule. In the next section, results for both (2x2) and (lx1) inte-

gration rules will be investigated. With Lm defined by Eq. (4.101), the decoupled

w equation governing the bifurcation buckling of the discrete model is determined

from

det(Lm + L') tD = 0 (4.126)

where the flexural buckling load is the smallest root corresponding to a prescribed

k2x and k .

Based upon the discrete results represented by Eq. (4.126), a relative error

estimate of the predicted bifurcation buckling load of the different possible ele-

ment discretizations may be obtained by comparison with the continuum solution,

Eq. (4.32). The stress field for the Reissner-Mindlin plate is comprised of three

components, oz, o' and rzy. The calculated critical buckling loads presuppose

proportional loading so that in reality, one is solving for the load multiplier of the S
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initial stress state,

{ry j -a ay (4.127)
T'zy cr 1 V initial

where a represents the load multiplier at which point instability occurs. The

relative error in buckling load for a given kz and ky and initial stress field is

therefore defined in terms of a by

" a- aD

= (4.128)
a@

The example problem to be considered is that of uniaxial o= compression

with kz = ky for a patch of square Si and U1 elements where E - 107 , v = .3,

I = 100 and h = 1. Fig. 4.6 shows the results for both (2x2) and (lxi) integrated

geometric stiffnesses where the fully integrated kg is seen to be superior to the

(lxI) integration for both elements. Neither the U1 nor the SI elements are

variationally consistent. Nevertheless, the buckling loads are seen to uniformly

converge from above for this problem. Also shown in Fig. 4.6 are the results of

finite element analyses portrayed by the plotted symbols for four different wave

numbers corresponding to (5x5), (4x4), (3x3) and (2x2) mesh discretizations of

a quarter-model of a simply-supported (SS2 5 ) Reissner-Mindlin plate for each •

of the discrete models. With the constant element length, 1, the wavenumber

for each (nelxnei) mesh is given by k = Ir/21nel. The predicted error in the

finite element analysis results are essentially identical to the predicted errors in

bifurcation buckling load obtained from the discrete Fourier analysis results.

For the same element geometry, Fig. 4.7 shows how the relative error in buck-

ling load changes for fixed values of ky with kz allowed to vary continuously.

§4.6 Summary

Both Taylor series and discrete Fourier analysis techniques were employed

see Hughes [67]
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in this chapter for the symbolic evaluation of the bilinear Reissner-Mindlin plate

element. S

The first aspect considered was the effect of different spatial integration rules

on element behavior. The cause of transverse shear locking in the exactly in-

tegrated element was explicitly identified as resulting from parasitic differential

operators associated with the z- and y-directional bending modes. The use of

alternative selectively/reduced rules was shown to result in locking-free discretiza-

tions. Next, the effect of using different hourglass control techniques to stabilize

the S1 and U1 elements was addressed. The exact effect on the governing limit

differential equilibrium equations of using these techniques was then determined.

It was found that w-hourglass control reintroduced element locking in all cases.

In addition, it was found that it was possible to switch the locking mode from the

z- and y-directional bending modes to the zy-twist mode depending upon control

scheme.

Employing the discrete Fourier technique, the individual differential operators .

comprising the transformed limit differential equilibrium equations were next de-

termined. Unlike typical transformed finite difference stencils, transformed finite

element "difference" stencils were found to be characterized by the presence of

directional participation operators. These directional participation operators were .

found to couple the effect of adjacent nodal d-o-f in the orthogonal direction to

that in which the differencing is taking place. Perhaps more importantly, however,

these operators are found to be responsible for the spurious element mechanisms

engendered by selective/reduced spatial integration. Using these results, a pri-

ori interior error estimates were determined for the case of distributed transverse

pressure loading.

Lastly, the discrete respresentation of Reissner-Mindlin plate buckling was

determined for the S1 and Ul elements employing (2x2) and (lxl) spatial inte-

gration rules on the geometric stiffness. A priori error estimates of the predicted

bifurcation buckling loads for simply supported boundary conditions showed the
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surprising result that the U1 element with (2x2) integration on the geometric stiff-

ness performed by far the best. This was verified numerically to be the case. It
was also shown that if the eigenfunctions of the continuum problem are harmonic,

the discrete Fourier element evaluation technique exactly captures the behavior of

the discrete model resulting in exact error predictions.
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Symbolic Analysis of the Circular Arch

and Cylindrical Shell

0 .

The analysis of a curved structure by the finite element method engenders

5 both kinematic and physical modeling errors. The former stems from the usual S

polynomial approximations of the curved geometries whereas the latter are due

3to the discrete representations of the different field quantities. In this chapter,

discrete Fourier analysis techniques are used to examine the errors from these two

sources which arise due to the discretization of both the circular arch and the

cylindrical shell by fiat elements. It is shown that the sources of these errors can

be identified from the symbolically generated discrete Fourier operators that cor-

respond to the reference continuum equilibrium equations. From this information,

both a priori estimates of the interior solution error are obtained as well as the

limit differential equilibrium equations of the discrete problem.

For the case of the circular arch, discretizations using both C1 Hermitian
ne beam and C0 Timoshenko beam elements will be examined. The reference equilib-

rium equations for the Hermitian beam discretization will be derived from Sanders

cylindrical shell theory. For the Timoshenko beam discretization, however, there

does not appear to be any generally agreed upon set of thick shell equations from
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which to derive the corresponding arch equations. As a result, two different sets %-

of reference equations will initially be employed, namely those of Naghdi-Cooper.

and Mirsky-Herrmann. As will be seen, the Timoshenko beam discretization is %

consistent with neither theory. It is, however, shown to be consistent in the thin
shell limit with Sanders theory.

The flat Reissner-Mindlin plate discretization of the cylindrical shell is next

analyzed. Naghdi-Cooper C0 shell theory is employed as the reference theory for A-.

the material operator. For the case of bifurcation buckling, however, a buckling

operator consistent with this linear theory has not been identified. As a result,

buckling loads derived from the symbolic analysis results are compared directly

to those from the finite element analyses for the example problem dealing with

the axisymmetric bifurcation buckling of a cylindrical shell. The mode switching •

characteristics of finite element shell bifurcation analyses is seen to be captured

by the present analysis which is able to almost exactly predict the axisymmetric

bifurcation buckling load of a cylindrical shell.

§5.1 Circular Arch

With the introduction of initial curvature into the symbolic analysis, this

first section serves as the fundamental starting point for the analysis of cylindrical

shells to follow. The first problem to be considered is that of the thin C1 arch.

This appears to be the ideal place to start since one can make use of Sanders N

shell theory as the reference theory. For the case of the CO arch, however, the

question of which shell theory to compare to becomes an important issue. Two

candidate theories will be considered. Since C O elements are more often than not

used to model relatively thin shell structures, the important question of whether

the discrete C O model correctly models C1 behavior in the thin-shell limit will

also be discussed.

§5.1.1 Straight Hermitian (C') Beam Discretization

The most severe geometrical approximation encountered in a discrete analysis
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Fig. 5.1 - Arch Geometry

is the polygonal one resulting from modeling a curved structure with straight (or

flat) finite elements. The simplest example of this is the 2-node C1 (or C0 ) beam

discretization of an arch as portrayed in Fig. 5.1 whose analysis will serve as the

precursor to the cylindrical shell problem. v

Strang and Fix [6] have remarked about employing Hermitian beam bend-

ing elements with linear membrane displacement fields that "Obviously such trial

functions are inadmissible in the arch problem, but since the strain energy is also

modified by the removal of R, the convergence question remains open". As will be

shown, the results of the present analysis can be used to establish the convergence

of the Hermitian beam with linear membrane displacement field to the correct

governing equations.

§5.1.2 Continuum C 1 Arch

Lhe equilibrium equations for the C1 circular arch, cast in terms of the ar-

clength, s, are given in the following general matrix operator form as

Lu = (5.2)
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with

(A I 2 EA 8 E1 83

Sym +E

and

where v and w are the tangential and normal displacements with t and p represent-

ing the conjugate forces. These equations were derived by Graff[68 and are iden-

tical to Sanders [69] shell equations specialized to the arch (i.e., u = T= V = 0).

The negative tangential surface traction is a result of writing L in a symmetric

form.

The corresponding Fourier transformed equations result from assuming a har-

monic solution of the form

Substitution of Eq. (5.3) into Eq. (5.2) results in

* i(k) = EA [- 1 21T) i(* + 2~~ (5.4)
sym R + ak4 J

which will serve as the reference Fourier transformed matrix operator for the

discrete analysis to follow. O

§5.1.3 Discrete C 1 Arch

In previous examples (dealing with the Timoshenko beam), the goal of the

decoupling procedure was the recovery of the limit differential equilibrium bending

equation in terms of the lateral displacement, w. Since the structure was initially .

straight, no coupling existed between in-plane and bending deformation for the

case of linear problems. For the case of a structure with initial curvature such

as an arch, there exists an intrinsic coupling between membrane and bending
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behavior. The operational procedure previously used for the Timoshenko beam

will therefore have to be slightly modified in order to "condense" out the rotational 0

degree-of-freedom from the discrete v and tw equations which represent the discrete

counterparts of the coupled membrane and bending equilibrium equations of the

arch.

§5.1.3.1 Geometrical Relations for Discrete Problem

As a prelude to recovering the limit differential equations corresponding to the

discrete finite element difference equations, it is necessary to first determine the 0

transformations from the element reference frame to the local shell reference frame

in which the equilibrium equations are derived with respect to. This step begins

by noting that the position of any point on the arc (see Fig. 5.1) is determined by

r = LRcosG, Rsin jT, so that the unit tangent vector at any point and hence

the direction of the tangential displacement, v, in the shell reference frame is

determined from
dr drdO I idr

= da d R d

(5.5)
f {-sin }

os 0

where s = RG. If for example, one considers element (2), its unit orientation vector

is given by

e(2) = (r 3 - r 2 ) (5.6)
1(2)

so that the angle between e(2) and t at global node 3 is determined from

e(2) t R sin(03 - 02)e).t=cos T ..

R sin AO (5.7)I

2

to be/ = AO/2 where AO is the angle subtended by the element. This result will

1134

.............



be true for each node in the mesh.

The appropriate element transformation relations from element to shell coor-

dinate systems are given by

Su=Tue, f=Tfe, k--TkeTT (5.8)

where ue and fe represent the element displacement and force vectors and ke,

the element stiffness matrix in the local element coordinate system with u, f and

k representing the same quantities in the shell reference frame. The 2-D nodal

transformation matrix for a [ ui wi 9i J nodal d-o-f ordering at the ith node is

Ai = -sin i cos Oi 01 T = [Al 0

0 0 1 0 A2

where Oi is the nodal transformation angle for element nodes 1 and 2. For the3 present case, 01 = i and 02 = -P for both elements (1) and (2).

§5.1.3.2 Discrete Fourier Analysis

The element stiffness matrix for the present case is [41]

U. 0 0 EA 0 0S

4I 0

ke= e 0 (5.10)
JA 0 0

sym _E*2
where EA, EI and le represent the beam element's extensional stiffness, bending
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stiffness and "computational" length 1 . The d-o-f ordering corresponding to ke is

u = Lu wi 01 u 2  w2 02 jT (5.11)

where 8i = "d i" Since ke results from the superposition of a linear membrane

s .ffness with the Hermitian beam stiffness, no membrane/bending coupling exists

on the element level. Membrane/bending coupling, however, does occurs as a

consequence of element assembly on the global level.

With element transformation relations now defined by Eq. (5.8), an element

patch. as portrayed in Fig. 5.1, is assembled with nodal degrees-of-freedom ex-

pressed in the shell reference frame, 9. With all nodal degrees-of-freedom now

expressed with respect to this common basis, Eq. (5.3) is used in its discrete form,

viz.,

= ;ik(si); us = ieik(s+s, (1

to relate nodal degrees-of-freedom at nodes 1 and 3, back to the center (or th)

node, 2, where sj is the position of the center node and in the present context, a is

now used to represent the arclength spanned by a single element. The fact that this

analysis reflects a facet approximation is embodied in the discrete equations via

the transformed element stiffness matrices. The discrete Fourier matrix operator

at the center node is given in the symbolic form

tI titw (5.13)
tev tow too n-

where 0 and tD are the transformed displacements in the arch (or shell) reference

frame tangent and normal to the arch with 0 representing the nodal rotation;

iD, pD and ,hD represent the conjugate nodal forces. Relating Eq. (5.13) to its

1 In light of the work by Cook and Zhao-hua [70], the question of whether le should ,

be chosen as the chord or arc length will be addressed shortly.
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continuum counterpart entails eliminating the computational d-o-f, 0, which has

no physical significance in thin C1 shell theory, from the v and w equilibrium S

equations. This step is essentially equivalent to one of static condensation with

the result symbolically expressed as

toot" - e s9e9  te99, - 4t 8atw 1 f o ,ID _ "Ofn D

10tv- ewat 0v eeeewu, - twelaw] tB 19f - twqenD J (.4

where again the assumption that the individual differential operators are commu-

tative has been invoked resulting from their linearity. Note that Eq. (5.14) is not

as yet written in its symmetric form.

Substitution of the polar form of e± i k s,

e±iks = cosks i±sinks, (5.15)

into Eq. (5.14) followed by employing the geometric relations

.. ks ka -s s--2 .
sin ks =2 sin os -sk 1 2

2 2 4 L4

cos ks 1 - 2 sin2 ks 1 -k (5.16)

2 2

* sin#3 = 2R

with the discrete wave number, d

kI (5.17)

now being defined with respect to the arc length, results in the discrete counterpart
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to Eq. (5.4), namely 2,

.b h2 )k.2 •~~ I - .b h2 -.3)
-(i"4 + I,, -- , ,(i,,,,, + I-,,--Rk 5.

EA v =12R (5.18)I
with

= S2 =cos2  b = 22a
1~h=f .i/- • •cs 1., = " y cos.

VW Vr- a2 cos/ P b vwVa• o
I M 12 b 4  2

1WW-- al a2 1WW Cos/

and

2 3
4 64 k; a2=1-"6" "

For the loading term, one finds that

=:eh ID r (5.19)

For these equations, 1 and le have purposely been kept separate since I represents

the true geometric chord length while le is used to denote the element length which

may be chosen so as to maximize solution accuracy (see [70]).

In an analogous manner to the beam discretizations addressed in Chapter

3, the maximum wavenumber which the present model is capable of representing

U without aliasing is kmax =r At k = kmax, the point corresponding to a single half

wave spanning a beam element, the terms in Eq. (5.18) representing membrane-

bending coupling effects vanish since cc = 0. If Eq. (5.18) is rewritten symbolically

2 The symbolic analysis runstream used to obtain these results is found in Appendix

A.3. m
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as

= -(L + ,) i(L.M + Lb)
LD (5.20)

then at km=.x , i.e., k = 2/s, one has

L (-) 0 , (5.21)
* [oLM Low]0 L

where only the pure membrane and bending operators Lm and r e
LyU and remain re-

sulting in a degenerate uncoupled membrane-bending arch behavior. For a closed

ring, however, kmax = E may not in fact be the maximum wave number due to

the requirement for a periodic displacement field. For this case, k = n/R, where

n represents an integer value, so that one now has

kmx = nmax < (5.22)

R

I §5.1.3.3 Calculation of Element Loads

The calculation of element loads for the straight element approximation of a
curved structure usually proceeds in two general ways:

1) Calculate element loads as if they were directly applied to the facet approxi-

mation of the curved structure, or •

U2) Project physical loading onto discrete model based upon known physical ge-

ometry.

With the first technique being the one most commonly employed in production

finite element codes, it will also be used here. The element load vector correspond-

ing to 1) for the case of pure pressure loading on the physical structure,

6d.

p =pke (5.23)
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would then simply be

f() k Nek( +C) d (5.24)

for element 1 (see Fig. 5.1) and

f()= Pkf N ek(zj+C) d (5.25)

for element 2 where the element's Hermitian beam shape functions are

0

2  3

N= (5.26)

1 0!+€

Once fj has been calculated for each element, element contributions are then

3 rotated into the shell reference frame and assembled into the global force vector.

As a result of the spatially varying pressure loading and the w-0 shape function

coupling, contributions in all three nodal load components,

i2V(2+-,p.,(1+coskI) -- h4 ~sinki)

- D 24 = ~ k (1 - cos ki) - 12 sin ki) PSk eik. (5.27)

*~ (A l(2 +cos ki) - k12 sin ki) J
are seen to result. The finite element approximation corresponding to method 1,

which results from letting s = Xj, is employed here.
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§5.1.3.4 Spectral Error Estimates

From the results of the previous sections, relative error estimates in the fre-

quency domain for each Fourier component of v and w may be determined essen-

tially as outlined in Chapter 3. There is, however, one important new aspect of the

procedure, namely that of now having to consider the i in Eq. (5.3) as complex,

i.e., u = !R + il. This change arises due to the necessity of accounting for cou-

pling effects in the solution which are present in modelling curved structures due to

the intrinsic bending-extensional coupling. In the past, this would have also been

a problem if one had not restricted loading to that conjugate to the displacement

Pvariable for which the soution was sought. If, for example, distributed moments

had been included in the load vector for the different beam and plate problems

considered earlier, this complex interpretation would have also been needed there.

The emphasis on solution should be noted since this complex intrepretation of

Ii need only be employed when numerical solution evaluation is required as is 0

presently the case. No changes in the earlier symbolic analysis procedures are

3 required when addressing the question of consistency.

From Eq. (5.4), the transformed decoupled continuum equation for the lateral

displacement, w, is found to be

-Ek 2  + Rlk2)l = i(_LA + h2 k 3 )i ( + h) 2  . 5.28
R2lk RA~4R 12 12R2)(5.8

I Rewriting the Fourier coefficients, tD, 1 and P, in complex form as 3

0 = (tR- tl
i= (tiR --iti) (5.29)P=

3 From the analogy with f(s) = F __0(ak cos ks+bk sin s)= °_o ck eiki where 0
ck =(ak - ibk) for k > 0.
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and substituting back into Eq. (5.28) results in

-(R -j2 + T4)k(tR - I )= "

(5.30)

(R +F lR k ) (dta + ii) - (1 + -)k2 (PR - i'1 )

where it suffices to only consider the real part 4 ,

IE (k _ ; !k)tR=(';+h2k)l_( k R (.1

for error estimation purposes. A quick inspection of the continuum operator shows

that in addition to k = 0, the solution will also have a singularity at k = 1/R 3
corresponding to a rigid body mode. Using these exact procedures, the decoupled

in-plane equilibrium equation for v would also be obtained in a similiar manner.

For the Hermitian beam discretization, the decoupled ,DD equilibrium equa-

tion is determined from Eqs. (5.18) and (5.19) to be

EI( cos416 212 a 2 + 12 1k2)bD_

313 1- - 1 T

i(-i/-1 a 2cosT- k + - V cos/3j-R k )t •

(5.32)

-(a2 cos2 3 +j 2R2

-,( /' C ralcosI'3T - j~-Tcos3 ,6 3 )&%.

4 In terms of the usual Fourier series representation, this is equivalent to the assumed 5
solution w = thcos ks with distributed loading t = Esink s and p =Pcos k [71)
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in terms of the nodal loads. For the present problem of interest, namely, that of a

distributed pressure loading as described in the previous section, Eq. (5.27) gives 6

the corresponding nodal loading which when substituted into Eq. (5.32) results in

2,1 12 1-v k2 (! c os k a 2D
+ (1 jch2+ 3,sin+2 12(1 24 ,

Val a-/cos 0 12-R + coskl) - sin ki)

12 h 2  cos/3 24 12-(a c~ - 2 -- (3(1 - cos ki)--22 .sin ki)

12 31
T-k212 - - sin k)] PR

(5.33)

With decoupled Fourier transformed expressions for both the continuum and

discrete problems now available, relative spectral error estimates for both v and

w would be expressed as

0 --OD D

E 0 E (5.34)

Before deriving any spectral error estimates for i, however, it is first instruc-

tive to plot the continuum solution of a circular arch with R/h = 2000, h = 13 and E - 107. This is done in Fig. 5.2 where, due to the singularity in the middle

of the spectrum, 1/t is plotted, rather than w versus ks where the arc length, s,

was chosen corresponding to 3 = 10 as will be the case in the first spectral error

plot to follow. It should be noted that ks values in the domain 0 < ks < -s are

I possible since the question of a closed ring versus an open arch is not an impor-

tant consideration. From Eqs. (x120) and (x125), iw vs. ks plots are determined

as shown in Figs. 5.3 and 5.4 for a 0= and 22.50 for both the case where S

le = I and le = s. In order to avoid the singular behavior at k = 1/R, plotting is
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10"

Fig. 5.2 - Continuum solution for P R =1

started at k = 1.5/R in both cases. The mathematical consistency of the straight

Hermitian beam discretization of the circular arch with Sanders arch equations is
graphically portrayed in these two figures since iW -+ 0 as 3 --+ 0. For the first

~time, however, the effect of a geometrical approximation on the finite element so-

idL

lution is encountered. The operational form of consistency observed for problems

with exact geometry, namely, i -, 0 as k - 0 for finite I is unfortunately not .''

employed. In the present case, one is lead to conclude that for a given k, the finite

element solution corresponds to that of the faceted arch.

Cook and Zhao-Hua [701 showed by numerical experimentation that for a

number of different problems, a more accurate solution resulted if the element

length was defined as the arc length, s, rather than the chord length, 1. Figs. 5.3 w =

and 5.4 verify this result showing that for all wave lengths, a more accurate finite ]

-2 L

element solution will be obtained if the element length is chosen to be the arc ej
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length, i.e., id = s. Lastly, one cannot help but comment on the similiarity between

the results in Figs. 5.3 and 5.4 and those from comparisons between Donnell's 6

shallow shell theory and the shell theory of Flugge-Lur'e-Byrne [241. In both cases,

the accuracy of the approximations improved for shorter wave lengths indicating

that the effect of the initial curvature becomes less severe as the structure becomes

flatter with respect to the higher frequency solution components.

§5.1.3.5 Recovery of Limit Differential Equilibrium Equations

The inverse transformation procedure described in §3.2.3 can also be employed

in the present case to recover the governing limit differential equilibrium equations.

In addition to the expansion of k as

2 sinL'= * -Ik +""- (5.35)

one also needs to use J

C2o 12

cos 1-4R--- i -8R-2..
(5.36)

a RO = 2R sin- I k - + .
2R 24R 2 +

For the case when 1! =1, the limit differential equilibrium equations are found to
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D0
LD L +p+r

SYMEA + EI,4

EA a2 EI 62 EA a 1 (5.37)
I s + 12 9 2R Ma+ T2 Svrn -TI

lEA a4 . 4 + E a 3 I 5 "

4 o , t o |

SYM 5EA 612 EI8'a6

where only truncation order terms through 0(12) have been retained. The first

key point to note is that the present facet approximation to the circular arch is

a consistent one since the correct continuum operator, L, is exactly recovered in

the limit as I --+ 0. Examination of Eq. (5.37), however, reveals the existence of L

parasitic operator term corresponding to L', L6 Lm and L Fortunately,l2

these terms have leading coefficients equal to e- - (= 4e sin2 8), with E = 1/6

for Lm and 1/12 for the other terms, which have a relatively benign effect on

the solution as compared to the parasitic terms responsible for the transverse 0

shear locking phenomena encountered earlier with the Timoshenko beam. The

magnitude of the largest coefficient, namely that corresponding to Lm, is shown

in the following table,

20(= A O) rR

90 .333
45 .098
30 .045
10 .005
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where AG is the angle subtended by a single element. Even for the rather severe

case where only 2 elements are used to discretize 90 of an arch, the change in

apparent stiffness due to the parasitic term for L' is but 9.8%.

§5.1.4 Linear C O Beam Discretization - Continuum CO Arch

For the C1 arch, Sander's shell theory seemed to truly represent what Bu-

diansky and Sander's referred to as the "best" first-order linear shell theory [72].

When it, however, comes time to consider the C O circular arch, the question of

which C O shell theory to accept as the reference theory is not at all clear. For

now, C O arch equilibrium equations derived from two different shell theories -

Naghdi-Cooper and Mirsky-Herrmann - will be presented. The reduction from

the cylindrical shell equations to those of the arch was accomplished in the same

manner as was described earlier for Sander's shell theory. Since CO elements are

often used to model thin shell structures, the limiting case of no transverse shear

deformation will also be examined.

The C0 arch equilibrium equations derived from Naghdi-Cooper C O shell

theory [73] are

EA - cG (EA + -GAN 0 El 12 xGA

arsy WR R- R-IYS K W-T P

r-A (~F~dy GA)a (5.38)

-sym EI 8 2-7 - GcGA

where the loading vector is given by

f= (5.39) it

For the case of Mirsky-Herrmann C O shell theory [74], the corresponding arch I'

equations are

L = LNaghdi-Cooper + Lmod (5.40)
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where the modifying matrix differential operator is

_ 1°
EI G2  xG EI + GI) 0 xGI61 s--- - -R T ( N +T--T 9 _8 --

LmdEl xGI 82 icGI 0 (5.41)

syL - J

with f remaining the same.

§5.1.4.1 Discrete C0 Arch

The element stiffness matrix for the present case is

"EA EA 0 0
IT 0T

icGA icGA 0 -GA xGAT 0
EI -xGA EI + xG

ke 77+ " G 0 -- "4 (5.42)
B A o 0

SY PGA -xGA

El +

where EA, EI, rcGA and Ic represent the beam element's extensional stiffness,

bending stiffness, transverse shear stiffness and length. This ke results from the

superposition of a linear membrane stiffness with the one-point spatially integrated

Timoshenko beam stiffness. S

Following the same symbolic procedures as described in §5.1.3.2 for the C1  0 -

Hermitian beam, one finds the discrete Fourier material operator to be

-~~~i E~JhI (~A +.,3~
LD = 1wij4+%txGAk2 W1 rcCAk

(5.43)
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where

IM 32  2o
2

1row =L = " A "C

Vw V- Va" ICOS

= _ _ * 11

.o i T Dier a Eu E

l1w Te l, onea fid that

1 b 2 I*1

1ram = al" a2 lmm= ao 1

150 -IT.

and as before,

4

§5.1.4.2 Recovery of Limit Differential Equilibrium Equations

For the usual case where element nodes are assumed to lie on the arch, i.e.,

le1, one finds that

12 -a2 cs23 1 b 12 cf,

ILwWal c'2 1b P1. cos 2 p

with
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Using these results, inverse transforming Eq. (5.x168) results in

2 _,GA S~A +GA8 aG4

sym EIj a-. - cGA

Ed' GA r2 .GA 8

E2 

•L sm

EAO 4 
-GA8

2  A+i A 6 1GA

-1- - - + -as 3- 0

E12 EA 82 PcGA 4 GA 3.SYM EI El2

where as before, only truncation order terms through O(12) have been retained.

Comparison of Eq. (5.45) with Eqs. (5.38) and (5.41) shows that for the first V

time, the recovered limit differential equilibrium equations do not correspond to

the reference continuum operator. The L e and Lwe terms of the recovered limit !

differential equations do not correspond to either reference CO shell theory. As

in dealing with comparisons between any shell theories, the question as to what

terms constitute a consistent theory is not an easy one to answer. For the case of

C 1 , or first approximation shell theory, Koiter [22] showed that a wide variation .

in shell equations are possibly consistent with the intrinsic errors introduced by,.''4

employing the basic Kirchhoff-Love assumptions. In the present case, it is not at all ,-

L~~~~~~. 4 c.T+T2 .9

clear whether the omission of the above mentioned terms implies a fundamentally
inconsistent C o discretization.
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§5.1.4.3 Limiting Thin Shell Behavior

Since more often than not, C0 discretizations are used to model thin shell

structures, an important question which needs to be addressed is whether in the

thin shell limit, this approximation is a valid one. The answer to this question can

be found by employing the static condensation procedure described in §5.2.2.2 to

eliminate the 0 d-o-f from Eq. (5.43). After performing this decoupling operation,

the resulting Fourier transformed matrix operator equation is found to be 0

D-D (5.46)

SanL~dersg + LJTrarisverse Shear (.6

As one might have anticipated, a valid thin shell operator is recovered, along with

IM a "transverse shear" modifying operator. The thin shell operator turns out to be

a discrete approximation to Sanders arch equations and is given by

[ + 1b h2 )k2 • m I b h 2 3)

LSanders = EA| 12R (5.47)Sa denrnI 1 .b h2  V.

where for this case,

I 4s82 o 1b 2

Im 81 b Ls31 csI

1m 12 .,,21 4 2o
W - W= .cos .

Except for minor differences in several of the unity operators which only effect

accuracy, Eq. (5.47) is seen to be identical to Eq. (5.18). The "transverse shear"

modifying matrix differential operator is found to be

tD E TS k2  5T.48
iTransverse Sha sym UT£'rnvreShear "- . EA j(5.48)

152TS IiT" , ki
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where the unity operators are

TS - 4 o 2  I "3 TS 12-92
Cos V -V i cos3 1 TS -2 al

and
, E (1 + v_ 2(1 + 2

_6_j 3= " 2  (5.49) V,

Here, we have made use of k " k = where A is the wavelength of a solution

component.

In the "thin shell limit", if one adopts what Flfigge calls the theory of struc-

tures approach [71], Eq. (5.46) becomes

.-D D -D
lim (Lsanderg + L~raruverso Shear) = "Sander• (5.50)

"ysz--O =C G--+oo

Alternatively, by examining e, one can interpret the "thin shell limit" in terms of

--+ 0 so that the two parameters governing this limiting behavior are the shell's

thickness, h, and the wavelength of a solution component, A. One can therefore

conclude that in the thin shell limit, this faceted CO arch discretization is in fact

consistent with Sanders C 1 arch equations.

§5.2 Cylindrical Shell

In this section, the faceted Reissner-Mindlin plate approximation of the cylin-

drical shell, as portrayed in Fig. 5.5, will be examined. One intrinsic problem with

this geometric approximation, or for that matter, any finite element discretization

which does not employ exact physical geometry, is in dealing with rotations about

the shell normal, On, engendered by the element nodal transformations employed

during the assembly process. This rotational d-o-f corresponds to the "sixth" equi-

librium equation representing moment equilibrium about the shell normal - which

has been a continual source of trouble, even from a classical shell standpoint (see

e.g., [75]). Since the usual shell (or plate) element has no stiffness associated with
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Fig. 5.5 - Faceted plate discretization of cylindrical shell

this d-o-f 5 , numerical ill-conditioning may be introduced into the finite element

analysis, depending upon the juncture angle, if this rotational d-o-f is retained i

in the global system. Common practice has therefore been to suppress 0 n in the

assembled equations. In the present case of the cylindrical shell discretization, the

effect of suppressing O,t would be an overstiffening of the ez d-o-f due to the nodal

transformation which links 9z with Gn.

The reference CO equilibrium equations to be employed here are from Naghi-

Cooper's work on cylindrical shells [73] with the material operator, Lm, written

in the following symmetric form,

Lmrb bb

where Lmm, Lmnb and Lbb are used to denote the following membrane, mem-

F Recent work by Bergan and Felippa [76] addresses this problem by linking n to the 0

membrane strain energy.
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brane/bending and bending matrix differential operators

Lmrn. [Kd+ (KI + EI) ds K 1 dzds CA

Lmb [Kjdz 1 2
D Rd2 D -

r.IGAV 2 + AR cGAdz JR + rcGA)d,

Lbb Dd + Djjd2 - iGA D12dxds

sym~ D 1 + Dds - rGAj

with

K= EA - K K 2 -

V-L2  K 1,=- K 21 = 2 +v

D=- EA3  D,=1-VD D2=1v
12(1 - V2) 2 2

2S

and V2 - + d". The shell displacement field and distributed load vector are

defined by

V -PS

U i I= P} (5.53)

Transforming Eq. (5.51) using

u(x, s) =fi(kx, k,) eikzk) (5.54)
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I

results in

im m [- 
K (K 11  + Dl2 k]k s

sym -K[ Kk2k - Kk2 - GAI

0+

-ic.GAt 2 + K DLbb om-2 + +cCA)ik,

lbb -Dk - - rcGA -D 1 2kxks

sym -Dllk2 - Dk - xGA
(5.55)

with = 2+ k). These equations are the transformed reference equations

for the material operator which will be compared to the discrete equations derived ,V

in §5.2.2.

§5.2.1 Derivation of Flat Reissner-Mindlin Plate Shell Element

In §4.2, derivation of the 12 d-o-f Reissner-Mindlin plate bending element

was described. In this section, a bi-linear membrane stiffness will be added to this

element to form a 20 d-o.f general plate bending element which will be used to

discretize the cylindrical shell as portrayed in Fig. 5.5. As was the case for the arch

analysis employing straight elements, there is no membrane/bending coupling at

the element level. S

By including inplane deformation effects, the plate displacement field becomes :>

U(Z,y,zY) - ZO.(,y)

V,(xy,Z) z,,zy - X.y) (5.56)

W(' YyZ) = w(-, Y)

where x, y and z refer to a local plate-oriented coordinate system. With the I Z

addition of the in-plane displacements, u and v, the element displacement vector
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is rewritten as

u= Nid i ;i 1,4 (5.57)

with di = [u i v i w i O i Oj JT and N i = NiI 5 where

Ni= +(I )(1+?7/7l); {(i(5.58)

Based upon an isoparametric element derivation, the element's material stiffness

is comprised of the following components,

k ='kbk+ ks +km + kms (5.59)

kul

where kul is the uniformly-reduced integrated plate bending stiffness6 from §4.2,

except for the d-o-f reordering due to the changes noted above in d. The membrane

stiffness contribution is broken into two parts, kin, which may be either fully (2x2)

or uniformly-reduced integrated (lxi), and kms, which is usually integrated with

a (1x1) rule in order to alleviate membrane shear locking [771. The isoparametric

strain-displacement matrices, Bm and Bins, are derived from

[ Bm0 [ " 0 0 0 0
C ej }{Brn}d Lm = 1 0 01 (5.60)

Bmj = " 0 0 0

Note that on the element level, there is no strain energy associated with a normal

rotation and hence no On d-o-f need appear at the element level. The isotropic

membrane material matrices are

Dmn = KC and Dmaj r.iGA. (5.61)

6 The subsequent symbolic analysis is identical irrespective of which 4-node CO plate

bending element is used here. 4
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For the case of the element's geometric stiffness, two obvious formulation pos-

sibilities exist. The first is simply to use the plate's k0 , Eq. (4.p220), neglecting

any contributions from the membrane displacements, u and v. The second possibil-

ity is to include the nonlinear terms in kq associated with u and v. An interesting

note by Koiter [781 discussing the buckling of short cylinders (L 2 /Rh < 1) in-

dicates that contrary to earlier work, all terms must be included, which is the

approach taken here. With this approach, the geometric stiffness becomes

ho0 0 0 01
hs 0 0 0

k JAfB [ 0 0 IsA ah0 0 01 0  d (5.62)
0 0 0 Is J

where B0. now represents an expanded [10x20] form of B0 found in §4.2 with W ,

remaining the same.

The element transformation matrix used to transform this planar element

with 5 d-o-f per node to the cylindrical shell geometry shown in Fig. 5.5 with 6

d-o-f per node is given by

1 0 0 0 0
0 cos i' sin s 0 0

Ai 0 -sin Oi cos tai  0 0 (5.63)
0 0 0 cos Oi 0(5.63

e 0 0 0 sin Oi 0.

where O = /3 for element nodes 1 and 2, and 0i = - for nodes 3 and 4 for

each of the four elements in the patch. With this transformation operation, the

20 d-o-f plate element has now been transformed into a 24 d-o-f flat shell element,

including the On d-o-f which can now be eliminated at the global level, if required

for numerical stability. ,.
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§5.2.2 Discrete Fourier Results for Material Operator
The transformed limit differential equilibrium equations for this faceted, flat

plate discretization of the cylindrical shell were determined from the symbolic

analysis 7 to be

mM Lmb Lmn

[tD tD "[ D

ORMSYM bb n (5.65)sg nn 0

for the case of a selective-reduced integrated membrane stiffness used in conjunc-

tion with the U1 plate bending element. In addition to the discrete approximation

of the membrane, membrane/bending and bending operators, we also find our-

selves with operators associated with On which are included here for completeness.

The individual matrix differential operators were found to be

" 1(1)K W_ "(2) "-" i 2 _lK1 s

-D --UU --- 8 -- .vK 1 n.11

S/M'  I1(')K i2 1(2)Kk2 _ (3) &GA
uv 11 z - vV v v

D [1= 3 )

ym -1 K 1( 2)

.D 1(3) rGA

-Lo= [ 1 2 '.0b -1M exV"1) Dli

-1~~~,,cGAV~ze + ()Kz"Giz ~ ~ ~ k

~~i(1)~ 1D2) N2(2 _

_ 1(3) .GA 5

L, The symbolic analysis for this faceted discretization of the cylindrical shell is shown
in Appendix A.4
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00

L m nA =1 6 Iz a

icGA " CcO6/aV-,48.z8

Lbn =-D~ co iiai& ~l) + r.GA~- "'coSora4
DD -- -- Vco kz( 2 -_- +2k-

12 2 -- D - + E l -c a 4 + G A 12 2 -2
16R2 R216R 2

where the different unity operators are defined as

(1) (2) g2

lU = z4l- l14 2 j 2 )

= coe2 ~cz8 4  
1(2) = 28 2 /f6

I ( CS9s -(1 .O2, 2.22z

~(1) 1 7-30 0)_1(2) '.-

ovitJ PGAIacc , az4 U4kz

(1) -C03
2 ~ (2 2 (1- 12i + 7-v222 2)

1i~ay = COS#pClz4/aj 0

~COS2 C4 4  (2 IT8 COS /Cfz4 =COS P5tz4cxs4

1a = COS/3Vaz4Vai

(2) 82 (3
cka419 =, = Gcz2 z4

with

2 S k

1.60



and

26(. 32)2zY"
, (z~s,, = (z-',a ,1 ).

For the case when uniform-reduced integration is also employed for the mem-

brane stiffness, the following changes in the above unity operators are found to r.

take place,

1(2) 2
VV 2r cosSz4

VU '4s/ (lTh -v,.~ 2k2)

=S
1(2) =( .-o a 2 2 3v22~2

Comparing Eq. (5.65) with Eq. (5.51), one observes that this discrete approx-

imation is not consistent with Naghdi-Cooper's shell equations, which is perhaps

not too surprising in light of the results from the earlier arch analysis in §5.1.4.2.

Neglected terms may be insignificant if the assumption that

h2 :.

R2

and

A2R

holds, which would be the case in most practical applications. In the spirit of

Koiter's work [22] on first approximation shell theory, these missing terms may not

render this discretization inconsistent in terms of the higher-order approximation

to Lcve's first approximation theory represented by relaxing the Cl continuity

constraint permitting transverse shear deformation to occur.
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Integration Rule

Membrane Bending Spurious Modes

f f no

f sr no
f ur yes

sr f no

sr sr no

sr ur yes

ur f yes

ur sr yes

ur ur Jyes

Ie
Table 5.1 Effect of spatial integration rule on the presence of spurious modes: f

= full (2x2) integration; sr = full (2x2) integration of direct strains,

reduced (lx1) on shear terms; ur = uniform reduced (1x1) integration.

0 An interesting aspect of the membrane/bending coupling engendered by ele-

ment asssembly is the possible suppression of spurious element mechanisms. By

simply determining whether ILml # 0 for kx = 7r/l and k. = ir/s, one can deter- 0

mine whether communicable spurious element mechanisms will exist for a partic-

ular choice of integration rules irrespective of the choice of boundary conditions.

In the present case, nine possibilities exist if one considers full, selectively/reduced "

and uniformly reduced rules for the membrane and bending stiffnesses, as is shown

in Table 5.1. The S1 plate bending element used in conjunction with the selec-

tively/reduced integrated membrane stiffness is seen to become a viable analysis

option for this particular physical geometry with the disappearance of the w-

hourglass mode discussed in Chapter 4.

§5.2.3 Discrete Fourier Results for Buckling Opeiator

Employing the geometric stiffness symbolically obtained from Eq. (5.62) re-
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suits in the following discrete Fourier transformed buckling operator

-tLUU 0 0 0 1
[0 Lvv, Lvw 0 0

LaLw 0 0 (5.66)ILoex 0
L Sym L8~J

where

=u -% 6ha'zk 1 2 6hay 31 - 2/iVas/ahaykks 0

122 2)ha
=v -[cos 2/3a8 6a + (12

12R 2 + 8 jZ x
2 a~

. 1  32 2 -2 12 2
L~a~m2 co/~az6ba6R2S 4 zi

- - Is
-[21v',/a-4a-cos2,3 - /a4,axF2 h yk s

V'as4 cosf,8 -2 23 2a 3 2 /jo~
=v 3R zk khaz+ T-/acz 6 cosikshiy+ R khy

0

=[ 6 Cos 2 3 + 1~2(1 + 'j92 zk

8 32 2 2 j2 -2

-a 6cs+3ck [-as T2 co o 2 axk2 8 -cs2I3k/xIkay

16

+~~ ~~ ~ ~ (2 *'N/acs,

z4~~~ ~ ~ Va.*ax .I iaykk



z

Fig. 5.6 - Axisymmetric buckling mode for m - 11 for quarter-cylinder (R = 0

36in., L = 50.26in., h = .12in., E - 107psi and v - .3) finite element

model discretized with nel = 40.

§5.2.4 Axisymmetric Buckling - Finite Element Validation 0

Having found the discrete material and buckling operators for this faceted

cylindrical shell discretization, a direct comparison of predicted buckling loads

derived from the symbolic analysis with finite element results can now be made.

The axisymmetric buckling of a thin, axially-compressed cylinder, as is portrayed

in Fig. 5.6, will be used to evaluate the ability of these discrete Fourier techniques

to succintly capture finite element behavior. Unlike earlier comparisons where the

continuum equations were employed to derive error estimates, the present corn-

parisons will be directly between symbolic predictions and finite element results.

For the case of a finite length cylinder, the displacement field for a buckling
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2 =0 - --il) e  (fiR --iI) e  (5.67)

~where a complex representation of 6 agains becomes a necessity in order to de-
rive numerical results. For axisymmetric buckling, the following simplifications to

Eqs. (5.65)and (5.66), sF oalv

u = (Y = en = 0 (5.68)

are made prior to computing the critical buckling stresses. This same simplification

was also employed for the finite element analysis.

The results of this comparison of symbolic vs. finite element calculated bi-

furcation buckling loads is shown in Fig. 5.7 where the critical buckling stess is

plotted vs. nel, the number of elements in the axial direction, for three different
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integer wave numbers, m = 9, 11 and 13. The continuous curves represent the

3 symbolic results for the different nel' while symbols are used to represent finite el- S

ement calculations. The finite element results were calculated employing a 2 x nel

3 finite element mesh which exactly represents the axisymmetric buckling of the

cylindrical shell. From a strictly finite element standpoint, this plot graphically

3demonstrates the mode-switching phenomena exhibited by finite element analyses

employing successively refined mesh discretizations. The symbolically-derived pre-

3 dictions are seen to exactly represent this complex mode switching behavior. The

fidelity to which this symbolic technique is able to capture finite element behavior 0

3is remarkable if one considers the "non-smoothness" of the discrete eigenvectors

such as is shown in Fig. 5.8 for m = 11 and nel = 20.U .

z0

Z X

Fig. 5.8 - Axisymmetric buckling mode for m = 11 for finite element model with 0

ael = 20.

§5.3 Summary

Unlike earlier results where one had to contend only with physical modeling

errors, results presented in this chapter show that the additional complexity of

approximate element geometry encountered in shell analysis provides no barrier

to the application of these symbolic element evaluation techniques to regular mesh



discretizations. Discretization errors originating from both sources are seen to be

explicitly captured by the discrete Fourier element evaluation techniques employed 0

here. This accuracy is particularly amazing in light of the extremely "rough" finite

element solutions which in some cases, the symbolic analysis is seen to model.

J..
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Chapter 6

ConclusionsI I
.

This chapter concludes this dissertation with a summary of the technical

highlights presented in this investigation, a brief synopsis of the key technical

contributions made to this area of research, and lastly, describes areas of future

research. 0

§6.1 General Comments (Technical Highlights)

The objective of this dissertation was the development of the symbolic anal-

ysis methodology and associated computer algebra procedures which would be

employed to determine the intri*nsic behavior of general multi-degree-of-freedom

finite element discretizations in the interior problem domain. The scope of the

present work was necessarily limited for the most part to linear, displacement-

based "structural" finite elements - bars, beams, plates and shells - in order to

both develop the methodology and demonstrate the symbolic analysis techniques

for representative one, two and three dimensional element formulations.

This objective was accomplished by systematically extending finite difference-

based analysis evaluation methods based upon both Taylor series and discrete A
Fourier analysis to the multi-degree-of-freedom finite element discretization prob-

lem. By adopting the finite difference view of the finite element method as simply % 'K
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another way of deriving discrete difference equations, formulation details become

immaterial since all aspects of the discretization process which contribute to the

accuracy of the finite element solution are uniquely embodied in the resulting dif-

ference equations. Thus, the inability often times to derive global mathematical

proofs of convergence for different nonconforming elements, modified interpola-

tion schemes, spatial integration rules, numerical techniques (a.k.a. "tricks"), and

miscellaneous variational crimes as they arise in practice, is thereby completely

bypassed. As a result, this symbolic approach to element evaluation shares to

same element-independent generality as does the patch test, albeit, it has thus far

only been applied to regular mesh discretizations.

The results of these computer-aided symbolic analyses of "structural" finite

elements are the limit differential equilibrium equations governing element behav-

ior for the associated boundary-value problems from which it is shown that one is

able to 1) verify formulation consistency and stability and thus solution conver-

gence, 2) derive component-wise error estimates for the primary solution variables,

and 3) open the way for improved element performance by the proper synthesis

of element operators.

§6.2 Summary of Contributions

Specific technical contributions made in this dissertation were:

1) Element-independent symbolic analysis procedures developed - The O

symbolic element evaluation techniques presented herein are generally appli- •

cable to any finite element formulation - displacement-based, mixed, hybrid,

solids, fluids, heat transfer, etc.

2) Application of computer algebra to symbolic finite element evalua- •

tion procedures - Symbolic analysis procedures were implemented for the

different classes of element evaluation problems evaluated in this investiga-

tion. Both MACSYMA and SMP were used with sample runstreams shown

in Appendix A.
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3) A priori error estimates developed using consistently derived load-

ing operator - The present analysis correctly handles the loading operator -

permitting physically correct a priori error predictions to be determined em-

ploying both Taylor series and discrete Fourier symbolic analysis techniques.

4) Stummel's Problem - The evaluation of Stummel's problem, which has

been the source of much controversy in the finite element community, proved

to be an almost trival application of the present element evaluation techniques.

Stummel's nonconforming element, which passed Strang's version of the patch

test yet did not converge, was shown not to be a convergent approximation

since it satisfied neither consistency nor stability requirements.

5) Symbolic analysis used to evaluate different hourglass control tech-

niques - The precise effect of hourglass control techniques on the limit differ-
ential equilibrium equations and hence on the discrete solution was explicitly L:

identified without recourse to numerical experimentation.

6) Symbolic analysis procedures extended to bifurcation buckling

problems - The present symbolic analysis procedures are shown to be di-

rectly applicable to the bifurcation buckling problem. For the case of peri-

odic boundary conditions, a priori error estimates resulting from the discrete

Fourier technique are shown to exactly predict finite element behavior.

7) Faceted beam element approximation of arch - Consistency of the

straight beam approximation to the circular arch with Sanders' shell equations 0

was demonstrated for both Hermitian and Timoshenko beam discretizations.

The advantage of using the arc length in the element formulation vs. the ->
element's actual chord length was shown to result in a more accurate finite

element solution.

8) Faceted Reissner-Mindlin plate approximation of cylindrical shell

- The transformed limit differential equilibrium equations governing this ap-

proximation were derived including the effect of the normal rotation degree-
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of-freedom. It was shown that this approximation was not consistent with

Naghi-Cooper cylindrical shell theory. Bifurcation buckling loads derived 0

from the discrete Fourier results for axisymmetric buckling were found to

nearly exactly reproduce finite element results including the complex mode

switching phenomena encountered when using nonconverged meshes.

§6.3 Future Research

Due to the complexity of developing this element-independent analysis method-

ology encompassing both symbolic analysis procedures and interpretation, only a

very limited subset of potential applications could be investigated in any detail.

As a result, further research in a number of different areas remains to be pursued:

1) Convergence of secondary element quantities - The present analysis •

only addressed the convergence of the primary analysis variables, namely,

translational and rotational displacements for the displacement-based ele-

ments investigated. Convergence of secondary variable fields, such as stress

and strain fields, needs to be addressed.

2) Higher-order element Interpolation fields - Only 2-node one dimensional

elements and 4-node two dimensional element discretizations were employed

in the present analysis. While these represent extremely popular element

families due to their computational efficiency, higher-order elements also need Y.
to be examined for two primary reasons: a) higher-order elements offer a

more exact geometric model description, and b) in some applications with 0

rapid spatial loading variations or geometric discontinuities, increased solution

accuracy may be realized by employing higher-order element interpolation

fields.

3) Effect of mesh distortion - Employing distorted meshes is an unfortunate

modeling necessity in many problems. Eventhough h-type adaptive mesh

refinement schemes presently under development will mesh a model to the

greatest extent possible with regular element geometries, there will always be

171 1
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regions where distorted elements will be used. As a result, the effect of element

distortion on the interpretation of the present symbolic analysis results needs
to be investigated.

4) Application to other fields - This last item represents the ideal note on

which to conclude this investigation. As a result of the generality of the

present symbolic element evaluation techniques, there would appear to be no

reason why they could not be employed in other fields where finite elements

are being used. One extremely important area in which finite elements are just

beginning to make an inroad is that of Computational Fluid Dynamics (CFD).

Many of the problems encountered in Structures have their counterparts in

Fluids, e.g., spurious mechanisms and incompressibility, so that extensions
of the present techniques to CFD problems would appear to be a nature

progression of this research.
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Appenuii A

MACSYMA and SMP Runstreams

0

The different MACSYMA and SMP runstreamns referenced in this investigation

are found in this Appendix. Initial work was performed using MACSYMA (actually,

UC Berkeley's VAXIMA version of MACSYMA). During the latter stages of work,
S

SMP also became available. While not as user friendly or mature as MACSYMA,

SMP was in general able to run similar problems faster using less virtual memory

than MACSYMA would. Initial work was done on a VAX 11/780 and 11/785.

Limited process virtual paging resources on the multi-user VAXes eventually forced S

the migration of all work to a SUN 3/160 with a 40MB swap partition allocation.

While syntax of the different commands used by MACSYMA and SMP are

different (see [191 and [201), there is in general a 1 : 1 correspondence between

them. Hopefully, the inline comments will be sufficient to indicate what operation(s)

is being performed at each step of the symbolic analysis. If not, the reader is refered

to the appropriate user's manual for a complete description.
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§A.1 Exactly Integrated Timoshenko Beam Discretization

Vaxima. 2.00

(a8)/*

2-Mode Tizoshenko Beau

. . . . Define global dof numbering

NEL :2$

(9) NDOF 4$

(CIO0) NEQ e$

(ell) DOF[I] [i,2.3.4]*

(c12) DOF[2] [3.4.5,6]$

(c13) /* . ... Input element lengths

LNGTH : [1.1]$

(c14) /* . . . Determine whether reduced integration is to be used on
transverse shear stiffness

REDINT : READ("Use reduced integration for shear stiffness (Y/N)?");

Use reduced integration for shear stiffness (Y/N)?

(d14) n

(cis) /* S

* Calculate element stiffness matrices *

.... Loop over each element */

FOR IEL:i STEP I THRU NEL DO (

/* .... Define shape functions

NI. I-X/LNGTR[IEL].
112 X/LGTH[IEL].
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*.... Calculate B matrix -

B :MATRIXCE 0, -DIFF(N1.X). 0, -DIFF(N2.X)J,
EDIFF(N1.X), -NI. DIFF(N2.X). 2)

* Form B transpose

BIT TRANSPOSE(B.

*.... Calculate extensional stiffness matrix

X EI*COL(BT.1).ROW(B.1).

*.... Calculate transverse shear stiffness 0

KS :GA*COL(BT,2).R0lV(B,2),

*.... Perform volume integration "

KE[IEL] DIAGMATRIX(NDOF0),

FOR I:1 STEP I THRU 4 DO(
FOR J:I STEP I THRU 4 DO(

IF REDINTY THEN (
KEIEL]EI.JJ KXCI.J]+KS(IJ],
KECIELI (1,3] INTEGRATE(KE(IELJ I.Ji XO.LNGTH[IELI))

*.... Reduced integration on shear terms

ELSE (
KX[I.J] INTEGRATE(KXI.JJ ,X,0.LNGTEIEL)).
KS[I.JJ (LNGTH[IEL]/2) * 2 * EV(KS[I,JJ,X:LNGTH(IEL1/2),
KECIELJ(I.J] :KX(IJ]+KS(IJ] )

(CIO) /*

* Perform element assembly based upon prescribed global0
* degree-of-fredom (dof) number

Loop over each element "

K DIAGMATRIX(NEQ,0)*

(c17) FOR IEL:1 STEP 1 THRU NEL DO(

*.... Assemble into global stiffness matrix

FOR I:I STEP 1 THRU NDOF DO(
FOR 3:1 STEP I TERU NDOF 0O0
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II :DOFCIEL]CI], JJ DOFCIEL][J),

K[II.JJ] :KCIIJJ] KECIEL] [I.J])) )$ S

(CIS) K;

C go g- go. ge.
C 0 0 2

S2 2
C 2 22
g s. g1 3ei go ga I -80 2

C--------------- --- ------------ 0 0 0
2 31 2 81 2

C go. ga 2 ga ga go.

C 2 1 1 2 ]
diS) C 2

12 2 22
go. gal - 6. 2(g1+ ei) ga gl I - ei]
-- ----------- 0 ---------------- - --------------

C2 3 31 2 6 1 3

Cga ga ga ga
0O 0

C12 1 2 2
C 2

C g gal - G8 go. ga 1 3 ei]
r o ------- ------------
E 2 812 3 1

(CIO) /* "

SEXPAND nodal dot about center node *

. . . . Construct I-D Taylor Series expansion function /

TID(F.DXN.XL) :- SUM(XL'I*(DX**I)*F/I] ,I,O,N) ;

± ±
xl dx f

(dlg) tid(f. dx. n, xl) :- sum( ...... 1. 0. n)
ij

(c20) /* .... EXPAND W1,RI. W3,R3 about center node WR

Il : TlD(W.DX.8,-LNGTH[I])$

(c21) R1 : TID(R.DXB,-LNGTH[I])*
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S

(c22) W3 TID(V,DX.8. LNGTH[2])$

(c23) R3 TID(RDX,8, LNGTH[2])$

(c24) /* .... Create symbolic displacement vector /

D: TXIil,VRV3,R3]$

(c25) /* .... Obtain udiscrete" Euler equations /

AREA (LNGTH[l]+LNGTE[2])/2$

(c26) E : RATEXPAND( SUM(K[3,I]*D[I]I.I,NEQ)/AREA-Q );

8 6 6 4 4 2 7 6
dx alw dxga w d ga1 w 2 dx g 1 r

(d26) -.------------.----------- ------------- dX gaw .-----------
20160 360 12 5040

5 4 3 2
dx ga 1 r dx ga 1 r

- ----------- - ----------- - dxgar=q
120 6

(c27) REQ RAT PAND( SUM(K[4,I]*D[I]I,1,NEQ)/AE-0 );

7 6 5 4 3 2 8 8
dx ga 1 w dx ga l w dx ga I w dx ga 1 r

(d27) -- ------------ ----------- ------------ dgaw------------
5040 120 8 120960

6 6 8 6 4 4 8 4 2 2
dx ga l r dx eil r dx ga l r dx eil r dx ga l r

------ -----...--------------- -- - --------- ------------ .-----------

2160 20160 72 360 6

4 2
dx ei l r 2

-..---------- -ga r d si r O0
12

(c28) /*

* Solve for limit differential equations

... . Determine coefficient matrix and determinant operator /

04 COEFMATRIX(ViEQ.REQ).[V.R3)$
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(c20) DETCH R&TEXPAND( DErERMINAr(04) )

L&TEXPAND( EV(DETCM.L:0) )

4
(430) dx ei ge

(c31) /* .. Truncation terms i

PATXPAND( COEUF(DETro4.1) )

(431) 0

(c32) RATEXPAND( COET(DETM.L.2) )

4 2 a
dx ga dx ei g

(032) -- .----- ----------

12 a

(c33) P.ATEXPAND( COEFF(DETCM.L.3) )

(d33) 0

(c34) RATEXPAND( COEFF(DETLNL.4) )

dx gn. dx eciga
(434) ------- +----------------- - -

72 80

(c35) /* . . . . Continuum loading operator

(c36) CME2.13 0$ %

(c37) DETCM RATEXPAND(DETERMINANT(CM))$

(c38) /* . . .* Continuum operator

RATEXPAND(EV(DETCM,L :0));

2
(438) geq-dx i .q

(c3g) /* . . . . Truncation terms

RATEXPAND( COEFF(DETCI.L. 1) )

(439) 0
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-V-04

(C40) RATEXPAD( COETF(DETCM.L.2) );0

2 4 q

dx ga q dx I iqe
(d40)-- - - - - - - - -

a 12

(c41) PJLTMCPAND( COEYF(DETCM.L.3) )

(d4 1) 0

(c42) RATEXPAND( COEFF(DETM.L.4) )

460
dx ga q dx e*iq

(d42)-- - - - - - - - -

72 360

Ye

%

185 
%~



§A.2 Exactly Integrated Reissner-Mindlin Plate Discretization

#1E21: colE$matri* ln::ArEDimE$matrix][El] .matrixt*1,$colnum-]];

*1 £3]:: addcol C$atrix.$addcols] ::Ar Dim Ematrixj] ,ICat E$matrixt#ll\
$addcolsE*1]]];

*1E4]: coefmatrixt$eqns.,*rs]: :(7.rows:DiaE$eqns] l] ;%cols:DimE$vars] E'];\
ArEC(rovmXcols}.CoeESvaZ*E*2J .x[zEeqnu E$l]J ]D;

#1[65]:: ratsubit E$old.$nsw. *.xpr.*base] ::(%ans :PqrE*.xr , old, $base];
Ex[ $new %ansE1] + %ans[2] )

* 4-Node CO Plate

* S

4 -- ----------I * I I R
I 1---------------2

I * Degree-of-freedom ordering: (u~v~w) -> (r1,r2,w)

....Define global equation numbers *

*1E8]:: eqnuz : {13.14.15};

*.... Define element global DOF numbering 0

#1[7] :: dot 1234581.41.0l,2.

(10,11.12,13.14.16,22,23.24,19,20.21},\

*.... Define shape functions in local R.S coordinates -

#1E81:: n1 : (1-r)*(l-s)/4; .a.

#1[91 :: n2 :Ir*l-)4

#11:: n3 :(l+r)*(1+s)/4;
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A

#l]:n4:(1-r)*(il c)I4;

*1[12]:: a { ni, n2, n3, M4

(i - r) (I - a) (I+ r) (I -) (I + r) ( ) (1 r) + a)
#0(12]: .......................................................----

4 4 4 4

/* .... Determine shape function derivatives

#1[13]:: nderiv : Dinr], Din,s] n

-1 -a 1+ -1 -a -+ a r -1 - r I + r I - r
#0[13]: {{---- ------ },{ . . - .-- }}

4 4 4 4 4 4 4 4

1* . . ... Define nodal coordinates

#1[14]:: { C 0. 0 \

C1. 0}.
{1. 1}\{o0,1} };

.* .... Define 2x2 Gauss integration points

*1[16]:: sr3 Sqrt(3J;

*1(2.6]:: rint :C-1/mrS. 1/mr3. 1/srS. -1/mrS }

#1[17]:: mint : {-1/sr3, -li/r3. 1/sr3. 1/sr3 };

/* . . .. Define upro-integrated DB and DS material matrices -/

#1[18]:: db : { { q1l, q12. 0 }.\
{ q12. q11, 0 },\
{ 0, 0. qSS}}

#1[19]:: ds : ( { q44. 0.},\
{ 0. q44 }};

/* . . .. Determine integration rule to be used

f - full spatial integration
or - reduced integration on shear .. , "
dlr - directional shear integration

- uniformly reduced integration /

#1[20]:: integrate : Rd lntegration option [f/ur/der/ur] ? .0/dev/tty"]

Integration option [f/or/dar/ur] ?

#0[20]: f S
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Calculate element stiffness matrices and

assemble into global stiffness

....Initialize rove of global stiffness -

*1[21):: k Art{3.27},O];

*. . . . Calculate element stiffness

. . .. Calculate inverse Jacobian. and Jacobian determinant *

#1[221:: Jac :Extnderiv.xyJ;

#1[23]:: dstj :Ext jacti.i1*jact2.2]-jactl,2*jac[2.1] ];

*1(24]:: Jinv :(1/detj)*{{Jact2.2],-Jact±,.2]},{-Jact2.1J.jactl~i]}}.

/* .. ..... Loop over eac~h nodal group to Calculate element
B matrix *

#1[25]:: Dot inode, utart:I. 4A\
nix :Jinv[1J .col~nderiv,iziode];\
niy :Jinv[2] .col~nderiv.inode];\
bbi : {-nix,O,O}.{O.-niy.O).{-niy.-n~ix,O}};\
bei : {-n~inode] .O~nix).{O,-n~inode ,niy}} A
If[ Hatchtmnode.i], bb:bbi; bs:bsi,\

bb:addcol~bb,bbi] ;bs:addcoltb..bsi)]\

*. . .. Calculate BT*kD*B -

#1[261:: ke : detj*Trans~bbJ.db.bb;

*1[271:: If[ Matchintegrate,dsr] A
ke detJ*q44*bs(1]irdbs(1];ksy:detJ*q44*bet2]*bu2] ,\
ks dotJ*TranstbeJ dabs );

/* .. .Perform volume integration of element stiffness "

#1[28]:: If[ Match Eiutegrate.f I,\
ke : ArE (12.12M,

Ezt Sumt St ke(*I.*2].ks[*1,*2) ,r->rint(%i],s-sintt%iI 3.,\

*1 [29): If t Match [integrate, or]\
ke :Art (12.12M.

Ext Sumt St ket$I$1.r->rintt%ils->int(%i] 1. {%i.1.4} I
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4 * SE ks[$1,*2Jr->Q,s->O I]]2\
1;

*1E[3021: IE Match [integrate, dsrl A 4

ke Ar[ {12,12}.\ ~
ExE Sum[ S~keE*1.*2J.r->rinti.s->int%i21 {%i,1,4} 1
2 Sum[ S~ksE[l$221,r->O.s-rint%i].%i.1.,}21 +

1;

*1I[311: I C Mat ch int egrata. url\,
ke :ArE (12.121.\

Ex[ 4 * SE keE*1,*2J+ksE*1.*221.r-)O. a->O I]]12\

/* .. .. .Update element stiffness with hourglass mods

hgl : 1,O.O.-I.O,O.I.OO,-L.OO} /* ri modes*
Ex Eke .hgl

hg2 :{0O1 .I.O- 1.0.0. 1.0.0. -1. O} /* r2 modes /
Ex Eke.hg2J

hg3 :{O.O.1.O.O.-1.O..1.OO.-1)} / w mode *
Ex Eke .h5 3]

ke :ke + gl*hgl**hgl* g2*hg2**bg2+ g3*hg3**hg3;

*. . .. Perform element assembly based upon prescribed
global degree-ot-freedom Cdof) number

*1E3221:: Do C iel, stcrt:i. 4A\
Do E i. start-:1, 12A\

Do E J. start:1, 12A\
ii:dofiol~i]; jj:dof~iol.j21;\
If E Match~ii.eqnum[l]J .k[1.jjJ :k(l.1121+ke(ij1 21A;
If [ Match~ii.eqnumE2j]. kE2.jj] :kE2,jjlekoij1 21A
It C MatchE~iieqnum(3]1., kE3,jjl:k3,jj21.kei.j12,

* Expand nodal dot about center node

.... Construct 2-D Taylor Series expansion function

4$1[331: t2dE$f.$dx,*dy.*n.*xl.*yl)::\
Sum[ Sum[ *li**l)(d±*$y)*/i*!,

Qj,O,$n-i} 3, {i,,O.*n} 1;
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*.... Construct I-D Taylor Series expansion function '

#1[34]:: tid[$t.$dx.$n.$xl]::Sua((x')(d')*fi.{,.}3

/*.. Construct generalized expansion function s

I[ Match(*xl.0]. tld(*f.$dy.*n.$yl].\
I[ MatchE$yl.OJ. tidC*i.$dx.*n.*xl].\

t2d(*i.$dx,*dy.*n.$xl.$yl] 1 3;

/*.. Expand element dof's about ri.r2,w at global node 6 '

*1(36]:: =*o { -1. 0. 1.\
-1. 0. 1.\0
-1. 0. 1 }

#1[37]:: ynods -{1. 1. 1.\
0. 0, 0.\

#1(38]:: Do C inode, *tart:1, 9.\
If E atchxinode.1].\

d Cexpn~r2.dx~dy,..zods~inode].ynods~inodeJ],\
expu( w.dx.dy.6.znod*E(node].ynode~inodel] JA\

d :Cat[ d.\
{expn~rl.dx~dy.6.xnode~inodeJ .ynode~inodsll\
ezpn~r2.dx.dy.8.znode~inode] ,ynods~inode]j.\
expn( v.dx.dy.6.=odaEinodeJ~ynode~inode]]} 1.

* . * Obtain 0discretem Euler equations

0
*1[39]:: area 4*detj

2
#0(39]: 1

*1[401:: rleq : Ex[ k~l] .dfarsa I

2 2
*0[40): q44 ri. - dx q44 v - dx qil ri - dy q33 ri - dx dy q12 r2

2 2 3 2

-dxdyq33r2 dx 1 q44 rl dx 1 q44 v

4 2 4 4 5 4
dxl1 q11lrl dxl1 q44 rl dx 1 q44 w

12 72 120
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6 4 66 2
dx I. q1I rl dx 1 q44 ri dy 1 q44 ri
------------------------------- 4---- --------------

360 2160W

4 2 4 4 6 4
dy I. q33 ri dy 1. q44 ri dy 1 q33 r1

------- 4--------------------------------------------

12 72 360

66 2 2 3 2
d'y I q44 ri dx dy I. q44 v dx dy 1 q12 r2

4----------------------------------------------------------------

2160 6 6

3 2 4 4 5 4
dx dy 1 q33 r2 dx dy 1 q44 v dx dy 1 q12 r2

6 72 120

5 4 2 22 22 2
dx dy 1 q33 r2 dx dy 1 q11 r1 dx dy 1 q33 ri

----------------- ------------------ -------------------
120 6 6

2 24 2 44 24 4
dx dy 1 q44 ri dx dy 1 q11 ri dx dy 1 q33 ri

4-------------------------------------------------------------------------

36 72 72

24 6 3 2 3 2
dx dy I q44 ri dx dy 1 q12 r2 di dyl1 q33 r2

4----------------------------------- -- ---------------- -- ----------------

432 6 6a

3 24 3 34 33 4
dX dy I. q44 v dx dy 1 q12 r2 di dy 1 q33 r2

----------------- ------------------ -------------------
36 36 36

4 24 4 2 4 4 2 8
di dy 1 q11 ri dx dy 1 q33 r1 dx dy 1 q44 rl

------------------ ----------------------------------------

72 72 432

5 4 5 4
dx dyl1 q12 r2 di dyl1 q33 r2

120 120

#1[411:: z2eq Ex[ k(2J.d/Lrea

2 2
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*0141]: q44 r2 - dy q44 w - dx q33 r2 -dy qll r2 - dx dy q12 rl

2 2 4 2
dx 1 q44 r2 dx 1 q33 r2

- dx dy q33 rl - ---------------.-------------
6 12

4 64 66
d 1 q44 r2 dx 1 q33 r2 dx 1 q44 r2

-------------------- -------------- --------------
72 360 2160

3 2 3 2 4 2

dy 1 q44 r2 dy 1 q44 w dy 1 qll r2
4------------------------------------------ --------------

6 6 12

446 4 6 4
dy 1 q44 r2 dy 1 q44 w dy 1 qll r2

72 120 360

66 3 2 3 2
dy 1 q44r2 didy 1 q12 rl dx dy 1 q33 rl

4------------------------------------------------- -----------------

2160 6 6

5 4 5 4 2 2

dx dy 1 q12 rl dx dy 1 q33 rl dx dy 1 q44 w

1 120 120 6

2 2 2 2 2 2 22 4
didy 1 qll r2 dx dy 1 q33 r2 dx dy 1 q44 r2-U------------------------- 4------ ------------------

6 6 36
2 34 2 44 24 4.

di dy 1 q44 w dx dy 1 q11 r2 dx dy 1 q33 r2

3 36 72 72

4246 3 2 3 2
di dy 1 q44r2 d dy 1 q12 rl dx dy 1 q33 rl

432 6 6 1 334 34 4 4

didy 1 q12 rl d dy 1 q33 rl dx dy 1 q44'i

36 36 72

4 2 4 4 2 4 4 2 8
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dx dy 1q1i r2 dx dyl1q33 r2 dx dyl1q44 r2
- - - - -- - -- - - - - - - - -- - - - -- 4 - - -

72 72 432

5 4 5 4
dx dy 1 q12 rl dx dy 1 q33 ri

120 120

#1[421:; jeq ExE kE3J .d/mree. I

3 2
2 2 dx 1 q44 ri

*0E42J: dx q44 ri +dy q44 r2 -dxq44 w- dyq44 w4- -------------

4 2 5 4 84
dx 1 q44 w dx 1 q44 rl dx 1 q44 w

-------- 4------------------------------------------

12 120 360

3 2 4 2 654
dy 1 q44 r2 dy 1 q44 w dy 1 q44 r2

-------------- ------------- -----------------

8 12 120

dy 1 q44 w dx dy 1 q44 r dx dy 1 q44 ri
--------- 4------------------------4--------------------------

380 a 72

2 2 2 22 23 4
dx dyl1 q44 r2 dx dy 1 q44 w dx dy 1 q44 r2

4------------------------------------------ -4---------------------------

8 3 38

2 44 3 24 4 4
dx dy. 1 q44 w dx dy 1 q44 ri dx dy 1 q44 r2

-----------.--------------------------- 4--------------------------..

38 38 72

4 2 4
dx dy 1 q44 w

38

* Solve for limit differential equations
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.... Extract continuum differen1ial operator matrix
I #I1[43]:: cont;inuum : coofma1trix[(Ex[ BE rlsq, 1->0 I]]. 0

Ex[ BE rvsq, 1->o I],7\

3 {rlr2.w}];

/* .... Determine continuum operator /

#1[44]:: zerolhs : Ex[ Detcontinuum] / q44 ];

#1[45]:: Ex[ SE , q12 -> nu mod. q33 -> ( 1 - nu ) mod / 2, q1l -> mod ]];

#[46]:: ratsubst[ 1-nu, 2 q33 m mod, , nu ];

#1[47]:: continuum1ha Ex SE . od -) qIl J]

4 6 4 a
#0(471: dx q1i q44 -dx qil q33 + dy q1l q44 - dy qil q33

2 22 2 4 4 2
+ 2 dx dy q1l q44 - 3 dx dy qil q33 - 3 dx dy ql1 q33

I /* .... Determine loading operator *

#1[48]:: coutinuum[1,3] 0;

1 #1 49] :: coutinuumE2,3] : 0;

#1[601:: coutinuumCS33 1;

#*I51]:: zerorha ExE Detcontinuu] /q44 ];

3 #I(52]:: Ex( S , q12 -> nu mod. q33 - ( 1 - nu ) mod / 2, qIl -> mod ]];

#1[63]:: rataubst( i-nu. 2 q33 / mod. Z, nu

3 #1[54]:: continuarhs : Ex[ B[ E mod -" q1l 3)

4 4 2 2
*0[64]: q44+ dx q1 q33 dy ql1 q33 2 dx dy q1I q33 2

4--------------------------------dx qil

q44 q44 q44

2 2 2
-dx q33 - dy qil - dy q33

/* . . . . Extract truncation information (2nd order terms only):

..... Differential operator first /

#1[55]:: discrete : costmatrixE {rleq,r2eqweq}. rlr2.,w} 1;
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*1[6]:: SE Ex( Det~diucrete] / q44 ]. V(* z-$n>i4)->O ];

*1[57]:: SC Ex[ % - zerolbs ], 1->1 3; 0

*1[58]:: ExE SE %, q12 -> nu mod, q33 - ( I - nu ) mod / 2, qll -> mod ];

SI *159] :: ratsubst[t-nu, 2 q33 I mod,\
ratsubst[ 1-nu. 2 q33 / mod. %, nu 1. nu 3;

*1[60]:: Ex[ S( mod -> qll ]]

4 2 4 2 2 26 2 2$6 2 4 4 2
diq44 dy q44 d dy qll dxdyq33 didy qil80 [6 ] : -- -- - - --------.. - -- -- - - -- - - -- t- -- - -- - - -

12 12 12 12 6

44 2 a 6 6 2 2
dx dy q33 dx qll q44 dx q33 q44 d, dy ql

-------------- ----------------------------------------------- 4------- -------------

2 3 12 12

6 2 2 8 6 6
dx dy q33 dx q11q33 dy q q44 dy q33 q44

------------- -------- 4---------------------- ------------

12 4 3 12

Udy q11 q33 17 dz dy q11 q44 di dy q33 q44
-------------- ----------------------------------------------- ----------------

4 12 a

2 6 4 2 4 2
5 dx dy qll q33 17 dx dy qll q44 dx dy q33 q44

3 12 8

4 4 8 2
17 dx dy qll q33 5dx dy q11q33

6 30

/* . .Loading operator

#1[61]:: d scralt1.3] : 0;

#162]:: dscrotlC2,3] : 0;

#*163]:: diacreta[3.3] : 1;

#18[64]:: SE ExE Detdisczete] / q44 ]. 1($n_'i>4)->0 ];

#I(85]:: S[ Ex[ % - zerorha ]. 1->1 ]; S
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*#[66]:: Ez[ S[ %, q12 -> au mod, q33 -> ( 1 - nu ) mod / 2, qil -> mod ]];

#1[67]:: ratsubst[I-nu. 2 q33 / mod.\

rataubsat i-nu, 2 q33 / mod. %,. nu ], nu 1;

3 *1[68]:: Ex[ SE %. mod -> ql 1]]

2 4 2 24 2 4 2 2 4 2 2

dx dy qll dx dy q33 dx dy ql dI x dy q33

12q44 12q44 12q44 12q44

dx q11q33 dy q11q33 dx dy q1 1q33
4------------- 4.---- -------------- ----------

6q44 Oq44 q44

4 2 2 4 4 2
dx dy q11 q33 dx q44 dx qil dx q33 dy q44

4 4 2 2 2 2Idy qil dy q33 2 dx dy qll 2 dx dy q33

4 4 3 3

*1 (

I
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§A.3 Faceted Hermitian Beam Discretization of the Arch

SNP 1.6.0 (Jun 24 1987)

* Static analysis ot 2-Node cl Beami diucretization af arch

.... Global element/nodal numbering counter clock-wise "/

#1[6]:: do: {{ 1. 2. 3, 4. .6 }.\
4. 6, . 7. .8 9 3];

#1 [7:: eqnu : 4, 6, 63 ;

/* . . . Input appropriate element length /

#1[8]:: le : Rdu"Effective element length ? U.N/dev/tty]

I Effective element length

U /* 9

Assemble global stiffness matrix and load vector

Element stitffness matrix and load vector in local
bean coordinates - dof ordering - {u1.w1,rl,u2.w2,r2} */

#1[9]:: ke : (\
{ ealle, 0, 0, -sa/le. 0. 0 }\
{ 0, 12*eifle-3. 6*ei/le^2. 0. -12*ei/le'3. 6*ei/le62 },\ 0
{ , 6*ei/les2. 4*ei/le, 0. -6*ei/le^2, 2*ei/le },\
{-ea/le, 0, 0, ea/le, 0, 0 },\
{ 0, -12*ei/le^3. -6*ei/le^2. 0: 12*ei/le3. -6*ei/le2 }\
{ 0 6*ei/le'2. 2*e±/le. 0, -6*ei/le-2. 4*oi/l }}.;

/* ..... Rotate to global (shell) system /

#I[11]:: t : (( cab. snb. 0, 0. 0. 0 ,\
-sb, cab. 0. 0, 0, 0 }M\{ 0. 0. 1. 0. 0. 0 M.\

0 0, 0, 0, cab, -snb, 0 }M\
( 0. 0. 0. snb, cab. 0 ),\

0. 0.0. 0. 0.1 '.1
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*ICII):: ke :Ex[ t.ks.TraLUst3 I

2 22
10th] sub cab sm. -cab as anb 12csb si snb 60± snb
-- - - - - -- - -- - - -- - - - -- -- - -- - --- - -

3 1. 1. 3 2
Is Is Is

126 sub cab on. -cab a. sub 12csb ei anb

3 Is. 1s 3
Is Is

6ei sub

U 2

2 2I-cab Oa SUb l2cab ei aub 40. sub 12 cab si 6cab ei

is 3 1. 3 2

2 2
cab aft sub I2cab si nab sa. sub 12 cab si
-------------------------------- ------------------------- --------

is 3 1. 3

U O~cab miiss

I~is2
8.1 sub Gcab .1 46± 8.1 sub -6cob *i 2@1
{------ - - -- - - -- - - -- - - -- - -

2 2 is 2 2 Is 0

is is Is Is

2 2
12.1 sub cab as. cob am, ub 12cab ei aub 8.1 sub

3-------- -------- n---- - ----.......---

2 2
12.1 sub cub as cub O: sub 12cob ei anb
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3 2 ,5
Gel snb

2 2

-cab ea b s2csb i sub ma sub 12 cab mi -8csb ei

ls 3 lo 3S

-6cab ei

1. l3 2

22

6ei sub 6csb el 2ei 6ei sub -Ocab ei 4ei %,

--- --- --- -- --, ----- --- --- -- I ,
2 2  is 2 2 ,,

/* . perform stiffness assembly for both elements
1 and 2 based upon prescribed global degree-of-freedom

Am(dot) number -

#1[12]:: k : Ar[ (3,9, 0 ]

#0[12]: ({0.0,.0.0.0,.0.0.0(,o 0,0,.0.o00,o,0,o}.(0.o.o,0,o.o,o,o,oo}}

#1[13]:: Do [ iml, st-rt:t. 2A
Do E i start:1, 6.\ %%

Do ( J. stmrt:1, 8.\ ,.
ii:dof[il,i]; jj:dof[iel.J];\
If f Match[ii,eqnuum[1)]. k[i,jj] :k[ljj]4ke[i.J ] ;\
It E Match[ii.eqnum[2J. k[2,Jj] :k[2.jjJ ke[i.j] ];A
If C Match[iiequm[311. k[3.jj] :k[3.jjl+ke[i.j] IA

M.S

* Determine "discrete" Euler equations A

.... Create transformed symbolic displacement vector ./ S

vv;'



#I[141:: Sat[ 1 ]; 1^2 -1; i^4 1; /* Use "iu for imaginary unit -/

#1[15]:: d u*(csks-i*snke), w*(csak-i*anka), r*(csa-i*snk),\ S

11, W, r,\

u*(caks+i*snks), w*(csks+i*nks), r*(caks+i*anks) };

/* . . .. Obtain wdicratm Euler aquLtiOl/

#116:: usq ExC k[ll.d I

2 2
12ei r sub 24a1 sub u 2 cab as. u 12caks oi r anb

*0116] :++

2 3 la 2
Is Ia 1i

2 2
24csks 8i 3nb u 2 cab csks a. u

4---------------------------------------------

3 La
Is

2cab sa, anb anks v 24cab si ± anb anks v

1e 3

#11171:: weq : Ex[ k2] .d I Je
. 2 2 2 2

2sa onb w 24 cob ei v 2cks ea cnb w 24 cab caks ei w
#0117]: ---------- -. -------------------------- -----------------

1. 3 Ie 3
ie lia

12cab 8i i r anks 2cab at i cnb auks u
PLO-------------------4---------------------------------

2 Ie

IQI

24cab ei i sab ska u0
- ------------ ---------

3
La

#1[11:: req : Ex[ k[1l.d ]

8ei r 4coka 0± r 12si sab u 12c-k- ei sub u 12cab ei i mnks '

#0118: ----- - ---------- - .-----------. --------------- -----------------

Le la 2 2 2
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I

II * Solve for transformed limit differential equations

. . . . Create coefficient matrix

#1[19]:: cm : coefmatrix[ Cueq. veq. req}. (u,w.r} ]

2 2 2 2
24ei snb 2 cub a 24cnkn ei anb 2 cub cuke eaI0119]: .........-------- ------- ---

3 Is 3 eo

-2cub ea i nb snks 24cub ei i nb sank

12ei snb 12cuka i snb

2 4-------------- ----- 3.1 2 2

U 2cnb a. i anb inks 24cnb ii nb inks
{-----------------------------------------

Ia 3

2 2 2

2ea snb 24 cub ei 2cakn es snbU -- --- --- ----.----------------- 4------- --------------
1. 3 le

I 2

24 cab cuks ei 12cab ei ± inks

3 2

Is :t.

12ei snb 12cnks ei snb -12cnb si i inks 8ei 4caku ei
------------------------------ ------ ----- ------ - -------- ---------2 2 2 lu l1.'0amle le le

#1[20]:: Ext (a c=[33]*cm1.]-ci[1,3]*cE[3,1],\
cm[3,3Pacm1.21]-c[1.3cm[3 2] }.\[3 c[3.1 *cm (2. 1] -cm [2.3 ca3 [.]\ S

Uca[3,3]*cm[2.2)-cm[2.3]*cm[3,2 . I

1201
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S
I

2 2 2 2 2 2
48 91 snb 16 cab ea, ei 48 cake ei sub

#0[20]: ----------------- -----------------
4 2 4II.. 1. I.

2 2 2
8 cab cak t ei 8 cub cakea em i

2 2

e 2 i 2
-48cab ni sb inks 48csb cake ei sub ink8 S
---------------------------------------------

4 4

16Bcb ea cm i sub anuk

2

2 2

48cb 2i sub auks 48cab cks ri 9 sub ink.
----------------------------------------

4 4 4

16cab cm, ei ± anb anke
-- - 2---------------------II
S cab cikes m ii mb a nks

2

3 1.

2 2 2 2 2
192 cab ei 18.., ei anb 98 cab cake ei
---------------------------4----------------------------- -----------------

4 2 4
Is 1. Is.

2 2 2
96 cab cska ei
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Is4

2 2 2
144 cab si anks

4
Is.

2 2 2
24cas an ei sub 8 caks ain, si ub

------------------ 4------------------------------I

2 2

*1E21):: cm LE[ SEX % (12*.i), caks - -2*kbar'2/2,\
suks -) *kbar*Sqrt~alphai],.\
anb ->1/(2*rad) J]

2 22 4 24 2 2 20
*0E1J ukbar 13 a si kbsz 1 a cab e. kbar u
#0-------------------------------------.--------------------------

4 2 4 2 21. rid 41.s rid 23.

cab as, kbar a

1/2
aphal cab OLi kba~r I

2

alphal 12caba. i kbar 31ua
4-------------------------------------

1/232
aiphall cab em. ± kbr 11 a

-----------------------
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I 04

2
I. rad

1/2 3 3
aiphal cab em. ± kbsar 1 .

2
6 1s rad

aiphal 12cab ei ikber 31.a

4

2 2 22 42 4
a Seakba~r 1 a as kbar 1 a

- -- - - --------- -- -- --------------

2 2 2 2 2 2
Is rad 121.s rad 241.s rad

2 2 2
12 cab ei kbar a

9-------------------------

4
1.

2 4 4
2 cab si kbar a

4

2 2 2
l2alpbhal cab ei kbar a

4
Is
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§A.4 Faceted Reismner-Mindlin Plate Discretization of the

Cylindrical Shell

SNP 1.8.0 (Jun 24 1087)
Sat Feb 1.3 16:16:20 1988

/* . .SHP macros

#1[11]:: col(*aatrix$colnam] ::Ar[Dim[*matrixJ (1.*inatrix(*1 ,*colnum-]J;

#1[£2]:: addcol (matrix. *addcols] :Ar£Dim($atrix ] ,ICat £$matrixC11.\
*addcolsuE*1]I;

#1 £3):: coefEmatrix£*eqna .*varsJ : (%z'ow:DimE$equJ £1];%colu :Dim[$vmre] [1);\
Ar[Erows.%cols}.Coef£*vars[$2] ,Ex[*eqnaE$1]]H3);

#1[41:: ratsubstE$old,*nev.*e-xpr,*base] : : (ans:Pqr[$expr,$old,*base] A
Ex[ $now %axs£1] + %ans[2] )

#1[5]:: submatrizadd(*matrix. $eubmatriz. *iloc,*JlocJ : :
(%zrowsub: Dim £*aubaatrix] [I];
%ncolsub:Dix£*uubmtriz] £2];\
%mat : $matrix ; \
Do[ %i, 0, %zrovsub-1.\

Do[ %J, 0, %Acolsub-1.\
gmat E$iloc+%± .*Jloc*%J] :%mat E$iloc+%i .$Jloc+%J] .

*submtrix£7%iI,%J+I1J

* Static nalysis of cO cylindrical shell

* -------------- 3 2
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7. 8. 9. 10, 12. 13. 14. 15, 16. 17, 18.,\
31, 32. 33. 34, 35, 36, 25, 26, 27. 28, 29, 30 }\U 19, 20, 21, 22, 23. 24. 25, 26, 27. 28, 29, 30,
43. 44 45. 46. 47,. 48. 37 38. 39. 40, 41. 42.\

( 26. 27. 28. 29. 30. 31. 32. 33, 34. 36. 36, \
49. 50. 51. 52, 53, 64. 43. 44, 45. 46, 47. 48 }},

*1[7]:: eqnum { 25. 26. 27. 28, 29. 30 3;

/* . . . . Define shape functions in local rs coordinates
*1(8]:: nl : (1-r)*(1-s)/4;

#I[19] :: n2 (1+r)*(1-s)/4;

3 *1[o10:: nS : (Ir)*( s)/4;

#IC11]:: n4 (i-r)*(1 s)/4;

#1[12]:: n ( ul. n2. n3, n4 3;

/* . . . . Determine shape function derivatives

#1[13]:: uderiv : (Din.r]. D[n,s] 3;

/* .... Define parent element nodal coordinates

#1(14]:: zy : C 0 0 }.\
C1. 03\

( 1, ].},\

0 0. 13);

/* . . . . Define 2x2 Gauss integration points

#1[15]:: sr3 Sqrt[3];

*1[16]:: rint : {-l/arS. l/ar3, 1/sr3, -l/ar3 3;

#1[17]:: sint : (-1/sr, -1/srS. /ar3. l/rS 3;

I /* .... Define *pro-integrated" material matrices "/

#1[18]:: da : ( C mu. .12 }.\3 'C m12, .11 al l ,

#1(19]:: dms : m33;

#1[20]:: db : ql q12. 0 },\
' q12, ql1. 0 }.\0. o, 0. q33}}

#1[21]:: ds : 'C{ q44, 0 },\ 0
0. q44 3 3;
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/* .... Determine integration rules to be used:

f - u.l spatial integration
sr - reduced integration on shear
dar - directional shear integration
ur - unjformly reduced integration "/

#1[221:: membranerule Rd[lntegration option [i/sr/ur] ? ",O/dev/tty"]

Integration option [f/sr/ur] ?

#0[22]: sr

#I[231:: bendingrule : Rd["Integration option [i/sr/dar/ur] ? ","/dev/tty"]

Integration option [i/ar/dor/ur]

#0(23]: u .

* Calculate element stiffness matrices and *
* masemble into global stiffness

. ... . Calculate inverse Jacobian and Jacobian determinant */

#1[24]:: Jac Ex[nderiv.xyj;

#1[25]:: delt E x[ jac[l,1]*tac[2,2]-jac[1,2]Aitac[2,1] 1;

#1[26]:: Jinv : (1/detj)*({Jac[2.23.-Jac[I.2]}.(-JaC[2.1J.jac[I.13 };

/* ..... Loop over each nodal group to calculate different
parts of element B matrix with 6 dof/node

#1[27]:: Do[ inode, start:1. 4\
nix : JinvT[1] .col[nderivinode];\

niy : Jinv(2] .col[nderiv,inode ;A
bmi nix, 0. 0. 0. 0, 0 }, \

S0. niy, 0. ,0. ,} }\
b"si : { niy, nix, 0, 0, 0, 0 };\
bbi : 0 C 0, 0, 0, -nix, 0, 0 }, \

(0, 0, 0, 0. -niy. 0 }, \
{ 0, 0., -niy, -nix, 0 };\

bsi : 0 C 0 . nix, -n[imode], 0. 0 }. \
{0. 0, niy, 0. -n[inode], 0 } };\

It[ Mach(inode.1]. bm:bai; bma:bmsi; bb:bbi; bs:bsi,\
bm :addcol[bm,bmi];
bms : Cat [bms .bi];

207



bb :addeal(bb~bbi];3 bs :addcol~bsuba±J I

/* .. .. .. Calculate BT*D*B

#1(28]::'ke :detj*Trmnu~bb].db.bb;

#1[29]:: km :detJ*Trazs~bmj da.bz;

*1[30]:: ka datj*daa*bmu**bmu;

5#1[31):: I[ Match~beadinp'ule~darJ.\
km detj*q44*bm(1]**bu(1] ;kay:detj*q44*bu (2] **bs (2] A
ka detj*Trans~bs].ds.bs 1;

.......... .. . . ... Peform volume integration of membrane stiffness

#1[32]:: If[ Match~mebraerule.t].\
km : ArE (24,24).\

ExE SumC SE kmEI.$2]e+km[(I$1\

#1[33]:: If[ Match~mmbranerulesr],\
km : ArE (24.24),\3 EzE S%=( BE kut*1.S2],r-rintX±le->aint%iI 1A\

V.i1.4} I + 4 * 5( kms[*1,*2].r->0.u->O J]
3;

#1[341:: If[ Match~membraerul.urJ,\
km : ArE (24.W4.\

Ex[ 4 * SE kmE*1.*2)4kw $.2]r->0,s-0 I]]J\I 3;
/* .. .. .Perform volume integration af plate stiffneus

#1(35]:: IE[ Match~bandinprule.t].\
ke : ArE (24.24M,

ExE S=(E SE ke(*1.*2]eks(*1,*2],r->rint(7.±].s->sint%iI .

3;

#1[36]:: IE[ Match~bendingrule,sr].\

ke : ArE (24 .24}.\

* 3;
#1[371:: IE[ Match~bendingrule~dari,\

ke :ArE (24,24M,
Ex[ Sum( S~keE*1,$2].r->rint(%i2.s->sint(%±]J. (%1,1,4) j+\
2 -Suim[ S~ks(*1.*2].r->0,a->rint(%i]].{%i.,1
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2S
2 * Suz[ S~ksyE*1,*2],r-rinE7li] .s-)'O] ,(%i12} ]]1\

*1 381:: ItE atck[badingrule,ur.\
ke : Az{24.24.\1 wEx[ 4 * S[ ke[l.2] ks[$1.*2].r->. a-> I]]\

......... .. .......Complete element stiffness calculation by combining
membrane and bending contributions

#1[39J:: ke : ke + k;

I*I[40]:: St[{ bm.bms.bb.bs ,k.,ksy.kmsy ]

3 /* ..... . .. Rotate to global (shell) system

. ..... Nodal transformation for nodes 1 k 2

I #r[411 :: t : Az[(24,24}.0];/*

cab :1
sub 0

/* .-.. .Translational dot

#1[42:: lambda (( 1. 0, }.\
{ . cab. nb },\U 0. -anb. cab }};

#1[43]:: t siubmatrixadd[ t. lambda. 1. 1 1;

1i[44]:: t submatrixidd( t. lambda, 7. 7 ];

/* . . . . . . Rotational dot

*1[45]:: lambda : cab. 0. -sub }.\
{ 0 1. 0},\

suab. 0. cab}}

#1[46]:: t submatrixadd[ t. lambda. 4, 4 ];

1[47]:: t submatrixadd[ t, lambda, 10, 10 ].

/* ...... Noda transformation for nodes 3 & 4
. Translational dot *

1[48::lambda -,- 1. 0, 0 ),\
U00 cb, -sub M"" ( 0, sub, cab )); -
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3#1[49]:: t submatrixaddE t. lambda, 13, 13 3;

*1[50]:: t : ubmatrixaddE t, lambda, 19. 19 3;

3 1. .. .. .. Rotational dot '

*1(51]:: lambda : C cab. 0, sub}\
C 0. 1. 0}.

C-sub, 0, cab}}

#1[52]:: t aubmatrixadd[ t, lambda, 18, 18

# 1(54]:: ker : Ex[ t.ke.Trmna[t] 3;
f . .. .... Perform clement assembly based upon prescribed

global degree-of-freedom (dot) number

#1[65]:: k : Ar({8.54}.0];0

*1[56]:: Do C iel, atart:1. 4,\DoIi tr~.2.
Do C i. start:1, 24.\

ii:dof~iel~i]; jj:dot~iel.J] ;\
If C Natcii..qnua(1]] . k(1.jj] :k[11jj]*kerli.j] ;
If ( Match Eii. eqnua(2]] . k[2.jj] :k[2.jjP~kerti.j] 3A;
If ( lMatch~ii~eqnum(3]]. kCSjj]:kCS.JJ]'.ker~i,j] ];\
If C Match~ii..qnual4]] . k(4.Jj] :k14.j].kerli~j] ] ;
If C Matcb~ii..qnum(5]] . kE5.jj] :k(5,JJ]*ker~iJ] 3 ;

IfCMatch~i±.eqnwa[o]]. k[8.jj] :kE8.Jjj]kri~j]3A

3 * Expend nodal dot about center node in tenms of
* shell coordinates/displacements-

.... Construct generalized expansion function (assuming
rectangular element geometry)

#1[57]:.: Set[ ± ]; 1i2 : -1; i'4 : 1; /* Use miU for imaginary unit '

#1[58]:: expnfl.*x.$s]::\

IIf[ MaI [$.] *f ( kx [] i snhx
IfCMatch([$x, 0]. $f ( cake + Nc ($a] i oaks)\
f $( cskx + c[*x] isnkx)( cos + &c(*s isnka)]JJ;
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/* .. . Expand dof'a about global node 5

3*1[591:: SetE{ r, a );0
-1. 0, l.\

#1[611:: ynode -a, -2. -u.\
0, 0. OA\

*I[62]:: Do [ inod.. start:1. 9,\
Itf Match[inod.iJ\
d {expn[ u,xn~ode~inod@].ynode~inode)),\

.xpn( v.mnod.(inodej .ynode[Inod.~J2

.xpu (rx. md md] d mod]p w*moe(mode..ynods (mode)] ,

expn~ry.xzods~inode. ynod.(±nodeJ),\
expn (rz, xnode 'inod. , ynod. (iod.]]},pd CatE d, \

(expn( u.xnode(inode] .ynode~ind.]],\
.xpn( v.xnodemnode] .ynode~inodel,\I gexpn( v~xnods~inod.] .ynods(iaode]],\
.xpn (zx . odm (iode) .ynode (mod.) I .

.xpn Ery mod. [mode] ,ynod. (iode)) .£ e~~xpn~rz~xnode~inod*J .ynods(mnode]] }222

* Obtain "diucret." Euler equations and differential
* operator matrix

3 #1[631:: area :4*dtl;

#1[64):: esks I - s^2 kbazu'2/2;

I#1[66]:: cakx I - 1^2 kba=x2/2;

*1[66]:: auks s kbars Sqrt[ as4 3I*1(87]:: unkx 1 kbarx Sqrt[ ax4 3;

3#1[688:: enb 1 / (2*r);

#1(691:: ueq :Ex[ k(I1.d/aLr9a 3;

#1[(701:: vaq Ex[ kE2] .d/arsa 1;
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*1[71].: veq Ex[ kE3J.d/area 1;

#1(72]:: rzeq Ex[ k[4].d/,rea 1; S

#1[73]:: ryaq Ex k[5] .d/area ];

#1 (74] :: -rzeq Ex[ k[G] .d/area ;

l* .... Extract discrete differential operator matrix -/

I #1[75]:: cm : cofmatrixt ( ueqveq.weq.rxeq.ryoqrzmq }.\
C u.v.w.rx.ry.rz ) I

kba r 2 m aS u2 kbars kbarx 11 a
*0[75]: ----------- kbrx all ---------------------

12 a

2 2 2
kbars kbarx z33 a

1 1/2 1/24
us4 ax4 cab kbarl kbarx m12 a

1/2 1/2
as4 ax4 cab kbarl kbarx .33 a

1- -- - - - - - - - - -3 12

ax4 1 kbarx ,12

1/2 2 2

I ax4 ± kbar. kbax 3012 a4r

1/2 2 2

ax4 ± kba.ra kbarx 33 a1
---------------------- --------------------------------- OO,}

4r

1/2 /2

u4 ax4 cub kbara kba.k 12 1 a

1
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| .-'

31/2 1/2
3.84 ax4 cab kbars kburx m33 a

- - - -- - - - - - - - - - ---- --

2 2 2 2
q44 kbars q44 a kbaxzx 1 q44

2 2 2
r c 4 2 4 r

cab ]kbars all aI,''

2

2 2 2 2
kbars kbarx 1 q44 a 2 2

S. ------------------------ cab kburx m33
2

8-r

2 2 2 2
cab kbars kbarx 3ll a

* 8

2 2 2 2
cab kbars kbarx m33 a

4

1/2
- as4 cub i kbazs all 3

3~ r:
1/20

3.4 cab i kbars q44 a

1 r .,

1/2 2 11 •, M.,

11 4 cab j kbara kbarx 1 all a

8r

1/2 2[



p .

1/2 2
az4 cab i kbs zkbarx 1 q44 a

2r

-au4 1 x4 crb kbars kb x I q44 s

4r

2 2 2 2
q44 kbar.r q44 s kbarx 1 q44

r 4r 4r 0

kbars kbmxx 1 q44 a
- --------------.---------.

18:

1/2 2 2 2
ax4 i kbaz ' kbex 1 q44 a

2
16 r

1/2 1/2 2 2 •

ax4 i kbarx .12 ax4 i kbsr, kbarx m12 a
------------------------------------------

r 4r

1/2 2 2
ax4 ± kbar. kbarx m33 a 0

4r 'C

1/2
us4 cob ± kba~ro mll a

as4 2cb i kb8rI q44 a

',1= r

1/2 2tie.
u34 cob ikbarakbarx 1l a

.Gr

1/2 2
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u4 cab i kbar kbarx 1 m33 a

4r 0

1/2 2
Su.4 cab i kbars kbarx 1 q44.

2r

2 2 22I ll kbara all a kbaxz 1 all1

4r 6 r
0

2 2 2
cab kbar, q44 a

4.------------- --- --

2

2 2 2 2

kbars kbazx 1 all a
4------------------------------

+ ............ +* 2 csb kbax 2 q44

2
14 r

2 2 2 2

kbax k ba.= 1 k33 q44 2

2

cab 4 k b kb. 2 kbaz 1 q44 2

&x1/ csb i kbau q44

1/2 222
a.x4 cab ± kbs kba.= 2 q44 a

121
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4 S

1/2 1/2
as4 ax4 cub kbars kbarx 1. q44 a

4r

1/2 1/2
-as4 ax4 cob kbazs kbax I q44 u

(0 ------------------------------------------

4r

1/2 2 •

- /4 cab 2 kbarx q44

1/2 2 2 2
ax4 c-b i kbars kba-x q44 a

-------------------------------------
4

2 2 2
cab kbazs q3S a 2 2 2
------------------ - cab q44 + cob kbax qil

2

2 2 2 2 2 2
cab kbars q44 a cab kbarx . q44

4 4----- - - 4 -

2 2 2 2
cob kbar, kbarx q 4l a

4

2 2 2 2

cob kbaru kbarx q33 a

4 q

2 2 2 2 2
cab kbars kbarx I. q44 a3 --- ------ ---- N 

18

1/2 1/2
as4 ax4 cab kbaza kbarx q12 a

1/2 1/2
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as4 ax4 cab kbaru kbarx q33 a
S -- - - - - - - - - - - - - - ------

1/2 1/23mu4 cab ± kbmru q33 8 .54 cab ± kbars I1q44 a

I r 4r

.34 12cab ikbars kb~rx 21 q11u P

3 4r

1/2 203 .4 cub ± kba kbarx 1 q33 a

4r

1/2 2 3
&sa4 cab ± kbmrs kbarx 1 q44 a 0

4--------------------------------------------}

2 2 2 2
q44 kbu~ra q44 a kbarx 1 q44

(o -- ------------------------1r 4r 4
2 2 2 2I kbars kbarx 1 q44 a

4-------------------------------

1Cr

I 1/2
.a4 cab ikbarsuq44 a

1/2 2
13s4 cab i kbars kbmrx 1 q44 a

4----------------- --------------- ---- -

4

I1/2 1/2
a.s4 .x4 cub kbars kbarx q12 a

1/2 1/2
~as4 mx4 cub kbara kbarx q33 a

4-----------------------------------------------
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2 2 2 2
kbqr 2 ql i bs 2 kbars q44 -

q44 - ------- kbL= q33 -..............

1

kb 12 q44 kbr, kbz qil a

4 4

2 2 2 2 2 2 2

kbar 2 kbarx2 q33 a kbars kba:r 1 q44 a
- .-------------------------------------------------------- 0

4 16

1/2 1/2 2 2

ax4 i kbazx q33 ax4 i kbars kbarx q12 a

r 4r

ax4 1 kbrs2 kbarx q33 a

4r'

1/2 2 2 2
-ax4 i kbaru kbarz 1 q44 p

({-----------------------------
2

16 r

1/2 1/2
L&4 ax4 cob kbars kbax 1 q44 a

4r

1/2 1/2

-as4 cab i kbar q33a 8.34 cob i kbare 1 q44 s--------------- 4------------------------------------------
1 r 4r

1 /2 2

a4 cab i kbara kbarx 21 qll a
----------------------------------

* 4r

1/2 2
as4 cab i kbazr kbaX 1 q33 a

4rU
218
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ABSTRACT

A formulation for the equations of motion for shells is presented, which is intended to
provide a theoretical foundation for shell elements based on the assumed natural-coordinate
strain (ANS-) interpolations. The present formulation can be hierarchically specialized to
shells that admit normal loads and changes in the normal thickness, to shells exhibiting
transverse shear deformations and to thin shells. In order to facilitate coordinate-invariant
interpolations of variables, the formulation adopts an inertially fixed coordinate system
for translational displacements and a shell coordinate system for changes in the normal
vectc.r. The central aspect of the present formulation is a general set of incremental strain-
displacement relations that are valid for large strain and finite rotations. Hence, the present
strain-displacement relations effectively replace the prevalent usage of the linear plate
strain-displacement relations for constructing C*-shell elements. An attractive feature of
the present thin shell equations is that the in-plane bending strain (ing) is akin to Sanders'
correction term, hence alleviating slow convergence difficulty in doubly curved shell cases.

2
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I

1. INTRODUCTION

A major motivation in the pioneering work on the finite element method (Turner, Clough,
Martin and Topp, 1956) was to provide a shell analysis capability. During the ensuing three
decades, several noteworthy developments have taken place in order to provide reliable and
general shell analysis procedures in many of the existing general finite element analysis
programs. Broadly speaking, these developments may be grouped into four schools of shell
analysis approaches. In the early days of finite element applications to shell analysis, a
patch of a plane stress and a plate bending element was formed and used to discretize
the shell surface. While such elements are still in use today (Taig, 1961; Argyris, 1965;
Klein, 1967; Albasiny and Martin, 1967; Connor and Brebbia, 1967; Greene, Strome and
Weikel, 1971; Cowper, Lindberg and Olson, 1970), it is generally agreed that they can 0
suffer from non-convergence, especially when membrane-bending coupling dominates the
shell behavior.

The second approach has been to discretize the equations of motion based on classical
shell theories (Kraus, 1967). This approach was extensively studied prior to the age of 0
isoparametric shape functions (Zienkiewicz and Cheung, 1964, 1965; Haisler and Stricklin,U 1967; Strickland and Loden, 1968; Cantin and Clough, 1968; Clough and Johnson, 1968;
Fonder and Clough, 1973; Morris, 1976; Ashwell, 1976). A common difficulty with this
approach is that the resulting discrete shell equations suffer from artificial strain states
when the element undergoes arbitrarily large rigid motions (Cantin, 1970; Darve, 1972).

With the introduction of isoparametric shape functions (Irons, 1966; Ergatoudis, Irons and
Zienkiewicz, 1968), many element developers adopted the isoparametric mapping in the
transformation of the natural-coordinate basis into the inertially fixed orthogonal basis.

An important consequence of this adoption in the context of shell elements was to implic-
itly abandon the metric of the shell curvature-i.e., a scalar-invariant quadratic form-in the
strain-displacement representations. Instead, the second-order covariant tensor transfor-
mations that are needed in the formulation of shell elements were accomplished through
the repeated use of the isoparametric Jacobian matrix which relates the parameterized
natural-coordinate derivatives to the inertially fixed spatial derivatives. To a great ex-
tent, from a theoretical point of view, deficiencies in some of the existing shell elements
can be traced to the inadequacy of the isoparametric Jacobian matrix to approximate the
scalar-invariant metric of the space for representing the differential element of arc length
for shell surfaces. This inadequacy, coupled with a set of inconsistent strain interpolations
(Fraijs de Veubeke, 1965), has been shown to cause element locking (Ahmad, Irons and
Zienkiewicz, 1970). Reduced integration (Zienkiewicz, Taylor and Too, 1971; Pawsey and
Clough, 1971) to alleviate such locking phenomena has in turn led to spurious mechanisms
(Kosloff and Frazer, 1978; Flanagan and Belytschko, 1981). Details in the preceding three

approaches can be found in the text of Zienkiewicz (1971), Ashwell and Gallagher (1976),
Irons (1980) and Hughes (1986).

g The fourth approach has been to combine two salient features into element €onstruction:
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X

isoparametric interpolations of strain fields and second-order tensor transformations to M
transform the natural-coordinate strains into the strains in an inertially fixed orthogonal
coordinate system, and vice versa. Shell elements (Dvorkin and Bathe, 1984; Park and
Stanley, 1986; Pinaky and Jang, 1986) based on this approach have shown potential for
more reliable shell analysis. A common variational framework employed in the implemen-
tation of these shell elements may be viewed as the one that bypasses classical shell theories A
and resorts to the basic equations of state and motion of continuum mechanics (Hughes and
Liu, 1981). However, the strain-displacement relations used in the element formulations
have been limited to those of plate theories due to Reissner (1945) and Mindlin (1951)
that are generally considered to be valid for linear small strains only. Consequently, in
order to properly capture shell behavior such as inextensional bending, membrane-bending
coupling for thin shells and in-plane shear deformations within the context of continuum
mechanics-based variational equations, the resulting elements have to be considerably em-
bellished. In other words, many of the shell assumptions-i.e., Kirchhoff-Love's postulates
(Love, 1927)-must be invoked in aa element-level strain interpolation. It should be noted
that, except in Park and Stanley (1986), element developers adopting this approach have
not incorporated the two fundamental differential lengths of arc along the element edges
in the strain-displacement relations.

In essence, the present paper is a first revised series of our effort on shell elements based
on the assumed natural-coordinate strain (or ANS-) formulation. The basic philosophy 4
we advocate here can be summarized as follows. First, we incorporate as much shell be-
havior as possible into the variational equations of motion while, in principle, we maintain
some of the advantageous features in the continuum-based formulation-particularly the
constitutive relations and large rotation algorithms. For this reason, we employ stresses
as the conjugate variables to strain increments in our formulation rather than the resul-
tant forces and moments that are used in most classical theories. In this way we hope
to minimize the element embellishments referred to in the preceding paragraph. Second,
we adhere to a set of physical covariant strains as our basis of strain interpolations along
the natural-coordinate lines. It will be shown that these two aspects, together with an
objective set of strain increments and nonlinear constitutive relations, effectively provide a
general shell analysis capability that replaces the presently prevalent usage of the strains
that were originally developed for linear plate bending theories. Third, we propose to
employ the isoparametric shape functions both for shell surface geometries and displace-
ments. However, we will abandon the isoparametric Jacobian matrix in the derivation of
strains. Instead, we will employ appropriate second-order tensor transformations to ob-
tain the orthogonal shell-surface strains from the natural-coordinate strains. It has been
found that the resulting element strain states become invariant with respect to an arbi-
trary choice of the shell-coordinate system (Park and Stanley, 1986). Fourth, the present
formulation starts with D'Alembert's principle from which the variational equations of mo-
tion are derived, which are valid for shell dynamics. This is in contrast with most existing
shell formulations wherein the inertia force terms are retrofitted into the quasi-static shell
equations, thus often leading to an inconsistent set of dynamical equations.

4
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Hence, Part 1 of the present paper can be viewed as a theoretical foundation on the shell
elements based on assumed natural-coordinate strain (ANS-) elements that began with
the linear interpolation of membrane strains in Park (1985), the 9-ANS shell element by
Park and Stauley (198S), 'ark, Stanley and Cabiness (1986), Stanley (1985), and Stanley,
Park and Hughes (1986). We now summarize the present Part.

Section 2 describes the kinematics of the shell element for which a set of triad coordinate
systems are chosen: an inertially fixed coordinate system for translational motions, an
orthogonal shell-surface coordinate system for rotational motions and a natural-coordinate

system for strains. The present choice of such triad coordinate systems has been shown

to play a fundamental role in mitigating several element deficiencies heretofore present
in many of the existing shell elements. Specifically, the translational displacements and

-i the rotations become uncoupled in the resulting inertia force expression. Shell surface
geometries are characterized in terms of the parameterized natural coordinates for general
shells in Section 3. The natural covariant unit basis vectors and the two fundamental
differential magnitudes along the natural coordinates are derived. These two are then
used to obtain natural-coordinate derivatives that are to be employed in the derivation of
the present variational strain-displacement relations.

The variational equations of motion for general shells are derived in Section 4, starting
with D'Alembert's principle. The acceleration vector that was obtained in Section 2 in

terms of the inertial displacements and the corotational pseudo-vectors and a contravariant
stress dyadic tensor, are introduced to express Cauchy's equations of motion. The product
of the variational position vector and Cauchy's equations of motion yields the -)'Alembert

equation. A variational manipulation of the D'Alembert equation leads us to identify the
present form of virtual strain-displacement relations. The resulting variational equations of
motion, if discretized properly, should yield a consistent set of their discrete counterparts
for general shells.

In order to derive the desired incremental strain-displacement relations from the virtual
strain-displacement relations, we offer the essential difference between the infinitesimal vir-Ii
tual variation (6-process) and the finite incremental changes (A-process). This is discussed
in Section 5. Recognition of this difference enables us to obtain the incremental strain-
displacement relations from the virtual strain-displacement relations. It is shown that the
resulting incremental strain-displacement relations remain objective for arbitrarily large

rigid motions and accurate for up to moderate strain increments. Computations of the
shell-coordinate strain increments are then covered in Section 6. This is accomplished by
the pointwise second-order tensor transformation. These strain increments are then used
to compute the corresponding stress increments. With a suitable stress update algorithm,
one can compute internal force.

Thin shell approximations of the present formulation are discussed in Section 7 and the

present Part concludes with a discussion on classical shell theories. It is shown that, when
the transverse shear strains are negligible, the present equations appear to yield an incre-

mental form of the nonlinear shell equations given by Sanders (1963). A major difference

5
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for this special case of the present shell equations is that they are presented in terms of
the inertial displacements and the finite pseudo-rotations instead of the covariant shell-
surface displacements and the infinitesimal rotations. Thus, the present shell equations
may implicitly have incorporated the finite rotation effects discussed in Reissner(1963,
1969, 1972), and Simmonds and Danielson (1972).

2. Kinematics of Shell

We consider here a shell element undergoing large motions and deformations as shown in
Fig. 1. The position vector of the particle point P from the initial time to to a later time
t can be expressed as

r = (X + U)eL + (Y + v)e 2 + (Z + w)e3 + t 3b3  (2.1)

where (u v to) are displacements measured in the inertial system e = (si e2 e3), the unit I

triads b = (b, b2 b3 ) are attached on the deformed cross-section of the shell, and 3 is .

the distance of the material point P on the deformed cross section from the shell neutral
surface. Therefore, we have the following unique transformation from the inertially fixed
frame, e, to the body-fixed frame, b:

b = Re (2.2) ,-

where R is a (3 x 3) transformation matrix. -

The angular velocity of a particle point, P, on the shell cross section is thus obtained from
(2.2) as ,.

= r, _RR (.3) (23

where
0 -W3 WJ'

J= [W3 0 -Wt (2.4)

The velocity of the particle point P can be obtained from (2.1)

f ie+ib+t = Te+ib+1' r (2.5)

in which the relations of (2.2) and (2.3) have been used and

u =(u,, w) and F'-(00e 3 ) (2.6)
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Time differentiation of i- then yields the acceleration of the particle point P:U 0- 7 TD
-- 1e +tb3+213b3 +tT'b CjTb (2.7)

Finally, the variation of the position vector r can be obtained from (2.5)

3r - 6uT e + bl5b 3 + 6aTib (2.8)

where 6a is a pseudo-vector that is conjugate with w such that

5& 5RT, W L W1  W2 W3 1 T, Sa L bal 6a2  6ar3 IT (2.9)

and is given by

+I 0 0 (2.10) 0
00 0

Remark 2.1: In most shell theories the following approximations are widely accepted:

0 0, 64 = 0 (2.11) 0

These approximations, however, preclude applications of the resulting equations of motion
to large membrane deformations such as balloons and rubber materials under extensive
stretching.

It should be noted that 6a should not be confused with the variation of angles in classi-
cal mechanics. Only for the variation of infinitesimal angles, their components approach
infinitesimal variations of angles.

.

3. Shell Geometries

To describe the shell geometries, we employ two coordinate systems: an orthogonal shell-
surface coordinate system ( the s-system) and a natural coordinate system, ( ,.

that is not in general orthogonal as shown in Fig. 1. In order to streamline our subsequent
derivations of shell geometries, we need to express the position vector (r) to the particle
point, P, on the deformed shell cross section given by (2.1) in the shell-coordinate system.

To this end, we observe that there exists a unique relation between the b-system and
s-system:

b=Sbas, s=T,,e, t=Sb. (3.1)

7

. . -.- ..



where L 2!2-oo , -((.) t ,)(3.2) |

in which h(e, j7) is the initial shell thickness and q( , 7) is the change in the shell thickness.
Using the above relations we have for the second term in (2.1) as

eTb = ETS7 SJT e = eTT.oe (3 3)

Substituting (3.3) into (2.1), the position vector, r, of an arbitrary point in the deformed
shell is then given by

r = r3 + r =zes + ye2 + ze3  (3.4)

where (z, y, z) refer to a current position in the neutral line of the pararnterized shell
surface:

L z(e, ) Y( 71) z( ,7) J = L (x+ u) (Y +v) (Z +w)J (3.5)
and t(c),g is the third row of T., given by

*().u= L t31  t32  t:33 j (3-6)

If the shell is sufficiently thin, a natural coordinate system whose basis vectors are attached
along the neutral shell surface is adequate for the derivation of the governing equations of
motion and the associated incremental strain-displacement relations. However, for general
shells the natural-coordinate basis vectors and/or the differential lengths of arc may vary ".
across the shell cross sections. Hence, we re-express r as

r= 4 j(X(, 7) + t31) (Y( ,7) + t 32 ) (Z( ,7) + t3 3 ) (3.7)

The two fundamental magnitudes along the parameterized curves, (A, r, 7), away from
the neutral shell surface ( 0 0) are obtained (e.g., Kraus, 1967) as

- 9 ar c7r -2 ar ara "~ ~g n-7 1;' ?7 - (.

and the covariant natural-coordinate unit vectors, d d e d , are defined as

I ar 1

i ar

T = -- (2,n eL+g,,,e Z,. e3 ) (. I0) e

Se e - 2  e (

- ...x



or in a compact form
S, e (3.12)

where ( ),t denotes parametric differentiation with respect to .

Note that the position vector for the neutral shell surface, ro( , qt), is expressed in an
inertial coordinate system, (el e2 e3 ), whereas the shell thickness vector away from the
neutral surface is given in the natural-coordinate system. This is consistent with our choice
of dual coordinate systems, viz, the e-system for translational motions and the &-system
for rotational motions.

Remark 3.1: If, however, the shell is sufficiently thin, the preceding relations can be
considerably simplified by replacing r by r* in the preceding fundamental magnitudes and
covariant unit vectors.

The differential lengths of the edges along the natural-coordinate lines, dSe and dS., are
thus given by

dSj=gfed , 2 aa 2 2aAe aa_ (3.13) W
a aa aa14

dS ged , g2" 2 A + 2 e=+2'~ a , + ac - a- a--

aSn g..drj, n. = An +(n)2 + 2 A~a., - --.- : (3.14)
all 3 rl

22-2- ccc 9CA a a (3.15)

in which we used the following definitions:

2 r* arl 2 ar 0  r* A2  77-A'I = "-' - A ='-"O-' A (h,( , 7) + q( ,) (3.16).-v.
A 4

Equations (3.12) - (3.14) imply

a I a
(3.17)

a ia (3.18)as, g.,, 577

a _i

Equations (3.8)-(3.11) and (3.16)-(3.18) will be extensively utilized in the subsequent

description of the present formulation.
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4. Variational Equations of Motion for General Shells

As stated in the Introduction, we begin the derivation of the present incremental strain- "

displacement relations from the D'Alembert principle (Lanczos, 1970). We then cast it

into a variational form in the inertial reference frame, which is then subsequently trans-

formed via the necessary tensor transformations into another variational equation of mo-

tion expressed in a non-orthogonal natural-coordinate system. From this equation, we

then identify eariational strain-displacement relations. The physical incremental strain-

displacement relations are then obtained directly from the variational strain-displacement

relations simply by changing the infinitesimal variation, 6, by the finite increment, A,

provided certain consistency requirements are observed.

In order to effect the derivation of the variational equations of motion, we begin with the

well-known Cauchy equations of motion written in vector form in the inertial coordinate

frame:

Pi +f(4.1)

in which p is the density, the gradient vector operator 7 is given by

'Y Z (4.2)

the Cauchy stress tensor in dyadic form, U,, is given by

-- f oetej + agete2 + owele3
0 ",=/ +ogdie2eL + o'rige2e2 + oale2e 3 , (4 • 3)

+o.,te 3 e, + o'.e 3 e2 -- o.e 3 e 3

and f is an applied force vector.

The variational equations of motion is given by

5 r.- (0 (4.4)

10



Equation (4.4) is re-expressed as

6FI+6F'5-SFT =FE (4.5)

in which NF, 6FS, 6. T and 6 S are referred to as the inertia force, the stiffness force,

the traction boundary force and the external force operators, respectively, and are given

3 by

671 = J pbr - dV (4.6)

FFS + 6F T f= - 6 - V . .  d(47)

6FE / 6r. fdV (4.8) S

We will now treat the above three variational operators separately.

4.1 The Inertia Force Operator, 6F'

The dot product of Sr . f from (2.7) and (2.8) yields

buT(fi + e* b e3 + 2e- b, 3 + RTIjrTc + RT#,5Tw)
6r- i= +61 3(b 3 .eTfi + 13 + b3 "T b + b3 . bC' iTw) (4.9)

+SaTi(Rfi + bT " bT31 + 2b I b4e 3 + i'( + j';JT)

If we choose the origin of the ( , t7, )-coordinate system to be the center of the cross-

sectional area of the shell element, we have

Jdv J iTdV 0 (4.10) %i+

ii "%



Substituting (4.9) into (4.6) and making use of (4.10), we obtain for the inertia force

operator:

f f (6uTI + U313 + .al*+17j1 (4.11)

+ fv p(bu r e • b -+ b4b3 , efi1 + 2bue . br t3)dV

Note that the second row of (4.11) gives rise to off-block diagonal contributions to the mass W

matrix. In other words, they represent the cross coupling between the fi-components and

1 3 . We will assume that the inertia force due to the through-the-thickness relative motion

is small compared to the inertial motions. However, in order to prevent rank-deficiency in

the resulting mass matrix, we will retain 6 3 1 3 . We thus simplify (4.11) to

z,5 = J. p(6uT + 6413j + 6al7F4; + 8aT& LFiw)dV (4.12)-

Remark 4.1: It is noted that the translational displacements u are measured in e, whereas

the pseudo-rotations Sa are measured in b. It is the dual choices that result in the simple

decoupled inertia expressions as given in (4.12).

Remark 4.2: Although the preceding inertia force operator has been derived for a gen-

eral three-dimensional continuum, there exists no contribution due to w3-term. In other

words, the inertia force due to the normal rotation is assumed to be negligible, as a direct

consequence of the admissible displacement adopted in (2.1). This is somewhat akin to

Naghdi's adaptation (1972) of a director vector concept of the Cosserat brothers (1909).

4.2 The Stiffness Force Operator, 5Fs  "ml

Computations of the stiffness force operator terms as given by (4.7) are not convenient

since the stresses are measured in the inertial coordinate systems. A convenient coordinate

system to facilitate computations of the stiffness force is an orthogonal corotational system

12
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(or the shell coordinate system). However, as the element meshes are in general irregular,

a more suitable system is the non-orthogonal natural-coordinate system defined on the

deformed shell element, i.e., the I-system, as introduced in Section 3. This is particularly

attractive when the element is based on the assumed strain states.

Of several possible approaches, the one we will employ is based on the invariance property

of the variational form of the stiffness force operator under an arbitrary choice of coordinate

system. Note that (4.7) contains terms expressed in both the e and A-coordinate systems.

Instead, it can be expressed in the &-system only. To this end, first we re-express 6r in the

e-system:

6r. = (6u T + 654 + 4 ' s1T)e (4.13)

where

t = RI., 6. = RT• 6&-R (4.14)

It should be noted that the presence of 64. admits normal loads on the shell surface.

Since our objective here is to obtain the variational expression for 6Fs in the natural-

coordinate system, A, we first observe that the spatial derivatives in the e-system are

related to the corresponding ones in the &-system according to

UT as

a 7

'fl% as, (4.15)

Second, the contravariant stress tensor in the A-system is related to that in the e-system .

by the following tensorial transformation:

7x Vat 1 [a a " a CLz ag ag a TI~ o,,? a, a., (4.16)
ojz a~z oz J Lo' on acc J

13



Finally, by substituting (4.15) and (4.16) into the the expression, 6r. V.. '., in (4.7) and L."

performing spatial integration by parts, we obtain the desired stiffness force operator:

fs ={6u " + + } "  al

+f {su + 6t.7 + t~yr69}T n }dV (4.17)

+f -L-{5C +II6XT 2 } ac" dV
and the traction force operator:

6F = J(6uT + ar. + 6  )i { }s (41 8)

where (a, q2 a3) are the surface tractions along the ( Y7 C)-coordintes around the

shell element boundaries.

It should be noted that, in the above relation, we have made use of the following intrinsic

shell assumption: a

7-(SuT) = 0 (419)

which means that the translational displacements, u, are independent of the corotational

axis, .

4.3 The External Force Operator, 6FE

The external force can be expressed in the inertial system as

f f~e, f T f I f 2 f 3 (4.20)

so that from (4.8) we have

14



6FE = {6uT + 617 + ET6iT}f dV (4.21)

It should be noted that the gravitational force and the thermal loads may be effectively

accounted for by (4.21) if appropriate accommodations are made into/f.

5. Natural-Coordinate Strain-Displacement Relations

In conventional derivations of various strain-displacement relations, a specific form of
stresses is first adopted. Then, one employs either the Green strain for the Piola-Kirchhoff
second stress tensor or the Euler strain when the Cauchy stress tensor is adopted. In
the present formulation, we will first express the stiffness force operator, 6Fs, derived in
the preceding section in a variational form. From the resulting variational form we will
then identify the v-riational strains. Finally, by simply exchanging the infinitesimal varia-
tional process, 6, with the finite incremental process, A, we obtain the present incremental
strain-displacement relations. It has been shown that the incremental strain-displacement
relations derived for flexible beams by a similar approach remain objective under arbitrarily
large rigid motions and large transverse shear deformations (Park, 1987).

We rewrite the variational stiffness operator, 6Fs, from (4.17) in the following form:

68pS = fV (beflate + 6celaC + 6efcoec + 6,qnann1 + 6 EqcGqc + 6ec)cdV (5. 1)

In order to obtain the natural-coordinate strain-displacement relations expressed in the
natural-coordinate system, we recall from (4.13)

6 = {6z 81 6l =}T Su + 6bt + 6 (5.2)

where the subscript z denotes that the quantities are expressed in the inertial coordinate
system. Eventually, we would like to compute the strains and stresses in an orthogonal
shell coordinate system. To this end we recall (3.1) to express 4 by

.= RT= TSTSb, = Tf, 6= 0  0 j (5.3)

Therefore, 6t. can be expressed as

64t = '6qtJ (5.4)

where tT is the same as the third row vector of T,~

15



Similarly, for the third term in (5.2) we obtain

bi.= d6 (5.5)

in which

Finally, by substituting 64. and 604 into 6-a we obtain for the virtual displacements

ft {6f 61 61DIT 6u+ Cqt, + -r6 (5 T61={= 4 .e o (5. 7)

We will now derive the desired, natural-coordinate strain-displacement relations in the
next section.

5.1 Virtual Strain-Displacement Relations

Equation (5.1) suggests that, by rearranging (4.17), comparing term by term between the
two equations and making use of (5.7), one can identify the variational natural-coordinate
strain-displacement relations as:

6ef 0 = 6 11 T " 8 9611 (5.9)

-'T a~la
b e6 t. (5.10)

.T =8r61 -T 06u
6E a 6=t - t -1 (5.11)s-, as~

8611

as,

in which

16
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t - (2,n Y,n 2,n) (5.15)
-T = 1 ( -6

al 1 ati LO~ '90)T (5.17)
TS t¢ a

and similarly for other expressions.

Remark 5.1: it, i, and f. are the directional cosines that project the derivatives or the

changes in the normals onto the natural-coordinate lines. It is this feature that makes

the ANS shell elements simple, robust, easy-to-incorporate, while being able to preserve
physically-relevant shell behavior.

It is critical to note that the pseudo-rotation vector, 6, are expressed in the e-system;

hence, they are inertially-based quantities and linearly dependent. This linear dependency

can be observed as follows. First, we note that 64 can be expressed from (3.1) and (4.14)

as

6t = RTb&R1. = TT -S &SbaTagTj Tr6/3k (5 18)

where the skew symmetric matrix bj consists of the pseudo-rotation vector components in
the shell-coordinate -ystem:

63 = T S6&S'. (5.19)

Multiplying out 6b, we obtain

b#32
Of~= -603k (5.20)

In other words, both 6& and 69 are related to 6/3 by

[0 0 6/32
6= 0 6, T.g6iTT Sb.6&So (5.21)

so that we have the following linear dependency for 60:

(tl 3 t22 - t 12t23)6O1 + (tL1 t23 - t 13 t2 1)6 2 + (t12 t2 l - tllt22)b03  0 (5.22)

Notice that the purpose of introducing 6 is only for strain interpolations. As they are not

independent variables, one must transform them at each node into 6(3 and then perform -"

the necessary variations. This is accomplished by the following explicit relation:{e b13 L [(t33t 22 - t23 t32) (t13t32 - t33 t12)1
=0= (t23tl- t2lt33) (tlt3 -ttt) 6 2 (5.23)

603 (t32t~l t22t ) (tlta ta2tt )
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Alternatively, one may wish to eliminate one of them (say, 503), and then perform varia-
tions with (601, 602) only.

Remark 5.2: When the element nodal points are placed on a skewed plane as is often
the case for distorted elements on a shell surface, the present ANS formulation effectively
overcomes locking difficulty as the normal vector components, t. , can properly project the
displacement derivatives on the parametrically determined skewed surface. This capability
plays a key role for the modeling of the transverse shear strains, efc and e,c, as derived in
(5.11) and (5.12). Hence, the present formulation faithfully adopts the shell geometry and
the corresponding strain-displacement relations.

5.2 Derivation of Incremental Strain-Displacement Relations

As stated in Introduction, we do not rely on any predefined strain-displacement formula to
derive the present incremental strain-displacement relations. Instead, we derive the desired
incremental strain-displacement relations from the virtual strain-displacement relations in
Section 5.1. It is emphasized that those relations are derived solely from a variational
transformation of the D'Alembert principle starting from the Cauchy equations of motion.

A prerequisite for deriving the incremental strain-displacement relations from the virtual
strain-displacement relations is to observe the difference between the infinitesimal vari-
ation proces, 5, and the finite increment process, A. This is dealt with first. Second, -

except thetrain-displacement relations, (5.8)-(5.13), involve the spatial derivatives of 813.
A computationally tractable approximation of these derivatives is discussed in detail in
Section 5.2.2. Finally, the desired incremental strain-displacement relations are derived in
Section 5.2.3.

5.2.1 The 5- and A-Processes

In order to delineate the difference between the 6 and A processes, let us consider the
two-dimensional rotational matrix:

R=[ cosO sin(5

The variational pseudo-vector operator, S&Zr, for this case is obtained by

6&T= RlL7 63 - csn 0 c sinG~ . cos 1sn (5.25)I= 5RR = -Si 0 L-cs 6cosdj " sin9 os

from which one obtains

63= 6(sin6) cosG - 6(cos9) sin (5.26)



If one performs the required infinitesimal variation of the above expression, the resulting

expression becomes -

ba3 = (60. cos 0) cos 0 - (-60. sin 0) sin 8 = 60 (5.27)

On the other hand, for the finite incremental process we have

Aa 3 = A(sin 0) • cos0 - A(cos 0) .sin0, Asin0 = sin0 ('+1) - sin0 '  (5.28)

for the incremental step from n to (n + 1)-step. Clearly, one observes -

6a3 $ Aa 3  (5.29) 0

We will now extensively use the A-process in order to derive the desired incremental

strain-displacement relations from the virtual strain-displacement relations, (5.8)-(5.13).

5.2.2 Approximation of Incremental Pseudo-Vector, AI3

The incremental counterpart of the virtual pseudo-vector employed in (5.3b) is not com-

putationally tractable in that form. First, we note from Remark 4.3 that the matrix, S,
is associated with the point transformation; it is a constant matrix. Hence, we have from
(4.14) and (5.19)

W -7S-- Rbg, -- b. s (5.30)as, as,

The A-transformation of the above equation, provided one meticulously observes the il- 0

lustration given in Section 5.2.1, yields:

-AiT aA -T aA T  Sr A&T .
R .-_ R.R., b=S. - Sb (5.31)

Rh,, bas,,

Note that the matrix, Sb,, relates from the s-system to the b-system solely due to trans-
verse shear deformations. This means that, when the incremental transverse shear defor-

mations become large, one must adhere to the above equations to update AO3. However, if ,

the incremental transverse deformations are small, a reasonable approximation would be

8aa3 a 8A i aA,3 8aaa5. 2S(5.3) %

Physically, the above approximation corresponds to remeshing of the deformed element

cross sections to be normal with respect to the two natural coordinates, ( , 17) at the end •
of each increment.
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5.2.3 Incremental Strain-Displacement Relations

We now derive the incremental strain-diplacement relations from (5.8)-(5.13), (5.23),
(5.28) and (5.31) with the A-process delineated in Section 5.2.1. The resulting relations 4

are as follows:

A -Te = 8' (5"33)
ase

Ace, aAAi (5-34)

-t e (5 35)

Actc CfT + i7 aaa(5.36)

A, &Aa aAa (5.37)

&cc,, (538)

in which as(

A A d Ail AAu + Aqtg + -T

Remark 5.3: When one can ignore the changes in the shell thickness, one can set

Aq= 0 (5.40) A

which reduces to a classical shell assumption.

6. Computations of Incremental Stresses

The variational stiffness operator expressed in the natural-coordinate system (5.1), even
though it is natural for constructing the assumed strain felds that are aligned along the

shell element mesh shapes, presents difficulties when faced with computing the natural-
coordinate stresses. This is because most constitutive relations are defined in an orthogonal 1
coordinate system. Since a constitutive matrix is a fourth-order tensor, one must perform J

a fourth order point-by-point tensor transformation of each orthogonally-based constitu-
tive matrix to obtain its counterpart in the natural coordinate-based constitutive matrix.
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This conversion procedure can not only be cumbersome but also can destroy in effect the
assumed constant or linear strain fields to non-uniform strain fields.

In the present formulation, we transform the natural-coordinate strain increments into a
shell surface-based orthogonal system. In this way one not only performs a second-order
tensor transformation but also obtains the stress increments for widely preferred shell-
coordinate quantities. To compute the stresses in terms of the orthogonal shell-surface
coordinate system, s, one needs to transform the natural-coordinate strain increments
into the shell-coordinate strain increments. The required transformation is realized from:

I&=Tn T.gs =Ti5, or s= .,,,& (6.1)

where s is defined as
s = (s. s4 8n), s - (6.2)

so that not only (s. st) are chosen to form an orthogonal system that is tangent to the shell
surface, but also the third unit vector, Sn, coincides with the natural-coordinate vector,

The variational stiffness force operator (5.1) in the shell-surface coordinate system, i.e.,
s-system, can be written as

.0

6F is - 6s0a + Os~a + blEsnan + tt t + ctgOtnJ6.~ + 8efncrn)dV (6-3)

in which the shell-surface strain increments are obtained by the following tensor transfor-
mation of the natural-coordinate strain increments: 0

+Aes Att A, - A A'Et :, 
(6.4)

These strains are then used to compute the shell-coordinate stress increments 0

Aa,, = [Aa,, A'ro, A ,m Aatt Aat, Aa,, Jr (6.5)

by adopting a suitable constitutive relation (e.g., see [Stanley, 19851)

zdo. = C AC, (6-6)

where .

C , A re a u t the total (6.7)

Once the stress increments are calculated, the total stresses are updated by
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"  )  Or') + A(n'l )  (6 8)

Finally, the virtual shell-surface strain-displacement relations are obtained from the virtual

natural-coordinate strain-displacement relations by replacing A by 5. Specifically, for the

present choice of the normal vector (6.2b), we have

tan*4 s4*&n a 9-d 0 (6.9) ?

0 0 Ie XnI 0 0o Ja e  4x

Expanding (6.9) while employing (6.10), we obtain the following explicit relations:

se..atr t2  Ea el

6,, 2t.,te 2fn.ft, .ff-n + faqft 0 0 see (6.10)

0C 0 0 t a e0 0 0 ~ Ft4Fn s~
Substitutions of (6.8) and (6.11) into (6.3) and evaluation of the resulting variational oper- 4
ator then yield the desired internal force vector in terms of the shell-coordinate quantities.

Remark 6.1: The strains, Ac,, are equivalent to classical strain-displacement relations

for an orthogonal shell-surface coordinate system, with one major difference. In classical

shell theories, the unknowns are the covariant displacements (a. Au and A,3), and their

covariant derivatives. In the present formulation, the unknowns are the inertially-based

displacements (Au and AO ), and their covariant derivatives. This difference plays a crucial

role in the finite element discretization of the resulting variational equations.

7. Thin Shell Approximations

As in classical shell theories, care must be exercised in approximating (5.2) -(5.13) in order

to obtain a consistent set of virtual (or incremental, for that matter) strain-displacement

relations for thin shells. The most widely accepted approximation starts with (see Sanders

(1959) and Budiansky and Sanders (1963)):

g z At, gnq = An (7.1)

which leads to the following approximations for the covariant derivatives defined in (3.18)

- (3.20):
a 1 1 a _ 18 a 1 a (-2)

dS , a-' as ,, a T.
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J.

The second approximation is to employ

1,~~ ~ q 0(-3)

which means that the shell normals remain straight after deformations, and the changes

in the shell thickness are negligible. We now simplify the virtual and incremental strain-

displacement relations for thin shells.

With the preceding approximations, we can specialize the virtual strain-displacements for

general shells, (5.8) - (5.13), to thin shells as follows: !

bee * + 1re
= 4- T .4)

rift

where I J6
a6u V

Sa6u r a6u (7-6)

+ tj-S

' , = t (7. a) ( )

6 Ta6u + (7.8)

4.n

, T + ratT atT a-6U
t' as a~ s (7-10)

=!
I a s ,8t T a bf at

15VIl ' '1

t atT r at tTa

~~as,



]'"
,,,t 1- + LS f .t aut (7.12)
60" tcs ~ i a~ n " asn

In the above equations we have used 61a for

(7.13)

together with the following definitions:

tT = y,_ =, , ,,) (7.14)

tT =(t3 l t~ t33) = (Z, Y,C ZiC) (.6
au 1 8u 8t, awrasu= I (a, L _') (7.17)

and similarly for other expressions.

The strain-displacement relations that are valid for finite displacement and finite rotations
can be obtained simply by substituting A in place of 6 in the preceding equations with
the understanding delineated in Sections 5.2.2 and 5.2.3.

Remark 7.1: Note the modification of the in-plane bending term in (7.11) denoted byI

( )5. This modification in the in-plane bending is equivalent to retaining the c-dependent
term in i.(e) and iw(i) in (3.12), and is akin to Sanders' modification (1959) to improve
the in-plane bending behavior for normal torsional rigid rotations. Specifically, its first
expression represents the vector cross-product of the rate of change of the normal vector
(a.) along the -line and the membrane strain component along 77-line. Similarly, the
second term represents the vector product of the change of the normal vector along the
ri-line and the membrane strain component along the -iine. Hence, taken together the
modification represents a torsional behavior. It can be shown, though not elaborated
here, that the present strain-displacement relations satisfy the small rigid motion relations
delineated in Appendix A of Sanders (1959).

Remark 7.2. It is noteworthy to point out the consistent rotational kinematics in the
present trnasverse shear strains given by (7.9) and (7.10). To appreciate this important
feature, we substitute (5.23) into (7.13) to obtain

I

= t v(3),~, {o, } = -t(2),g tC(1),, {,1 A3

(4 f
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where t(i),, are the i-th row of Tg that is defined by (3.1b). This relation constitutes
one of the key results of the present formulation. For moderate transverse shear one needs 0
to update first Aa from = ARRT 

(7.19)

and update 6 by (5.31b).

8. Discussion

In this Part, we have derived the variational equations of motion for general shells based
on the natural-coordinate system that is in general not orthogonal. Several features of the •
present formulation are worth mentioning:

* The present formulation has been motivated by the desire to incorporate as much
shell behavior as possible into the basic variational equations of motion, which will be
discretized subsequently by the finite element procedures.

* The translational motions are fixed on an inertial orthogonal coordinate system,
whereas the rotational motions are fixed on a corotational coordinate system. This
choice is in contrast with classical shell theories wherein the covariant displacements <
are the primary variables. Hence, many difficulties associated with the finite element .
discretization of the classical shell equations-i.e., preservation of rigid motions, finite
rotations, etc.-are circumvented.

" The virtual strain-displacement relations have been derived from a variational trans-
formation of the D'Aiembert principle in which the Cauchy contravariant stress tensor
is used in the equilibrium equations for continuum. A pointwise tensor transformation
is then employed to obtain the virtual strain-displacement relations from the varia- -
tional equations of motion. The incremental strain-displacement relations that are
needed to compute the incremental stresses are obtained by exchanging the infinites-
imal variational process (6) with the finite incremental process (A). The resulting
incremental strains remain valid for arbitrarily large rigid translational and rotational
m otions. •

* In the present formulation, the strain increments are interpolated first on the natural
coordinates. The shell-coordinate strain increments are then obtained by pointwise
tensor tranformation. These shell-coordinate strain increments are used to compute
stress increments in the shell-surface coordinates. On the other hand, the inertia
terms are computed in terms of the fixed coordinate system for translations and the
corotational system for rotations.

After completing the present formulation for general shells, the strain-displacement
relations are specialized to thin shells. The resulting equations of motion for thin
shells will be subject to finite element discretizations in Part II. A more concrete form 0
of the equations of motion for thick shells will then be discretized.
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I

ABSTRACT

Thin shell elements whose formulation is based on the assumed natural-coordinate
strain(ANS) fields derived in Part I are presented. The present shell element construc-
tion offers several improvements over the ANS elements previously presented, particularly
regarding the inplane shear strain, twist and transverse shear due to changes in the shell
normals. These improvements have been made possible by adopting the new formulation
presented in Part I and by introducing new ways of interpolating assumed strain fields.
The elements thus constructed correctly preserve rigid motions, exhibiting no locking for
skewed element shapes such as hemispherical geometries. In particular, the new 9-ANS el-
ement resulting from the present construction possesses a significantly improved modeling
of transverse shear strains, which may be important for composite analysis.
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1. INTRODUCTION

The present paper is to serve as a definitive exposition on the construction of the shell
elements based on assumed natural-coordinate strains (ANS) that began with the linear
interpolation of membrane strains in Park (1985), the 9-ANS shell element by Park and

Stanley (1986), Park, Stanley and Cabines (1986), Stanley (1985), and Stanley, Park and

Hughes (1986). In doing so, we rely on several important corrections brought on by the
theoretical formulation presented in Part I (Park and Stanley, 1987). The corrections were
motivated by our desire to base our element construction on the formulation that incorpo-
rates as much shell behavior as possible from the outset into the variational equations of
motion to be discretized, to improve the curvature effects, and to directly incorporate into
the assumed strain-displacement relations a thick-shell capability. The present exposition
may therefore be regarded as our earnest effort to effect a "marriage a la mode" between
the finite element method and shell theories.

The impetus for developing the previous ANS shell elements was to improve the element
performance when the elements become progressively distorted. This was in essence ac-
complished by abandoning the standard isoparametric mapping that is used to transform
the natural-coordinate derivatives into their inertially fixed Cartesian counterparts. In
addition, concepts such as the Hrennikoff grid (1941), a series of consistent interpolations
on the natural-coordinate strain terms (Park, 1985), a tensorial transformation of the
natural-coordinate strains into the corresponding Cartesian strains and directionally selec-
tive reduced-integration were blended to avoid element locking and spurious mechanisms.
The resulting elements thus have acquired one important theoretical property: the strains p,.

remain invariant for an arbitrary choice of the local coordinate system, hence improving

the element performance for distorted grids. Subsequent numerical evaluations of the ANS
elements indicated that the 9-noded ANS element (or 9-ANS element) manifested no os-
tensible deficiency for production-level applications. The 9-ANS element then was used
to analyze the post-buckling problem of a curved composite panel with a cutout (Stanley,
1985), which increased our confidence in the element.

As we turned our attention to more rigorous theoretical aspects of both the 9-ANS and 0

4-ANS elements, there emerged two hard evidences. First, the 4-ANS element almost locks
the solution for a pinched hemispherical problem unless the reduced one-point integration

is invoked instead of the full four-point integration. Second, the 9-ANS element, when put
to the patch test, exhibited an oscillation on the constant strain state with an amplitude of
about one-tenth of a percent of the constant strains. While the first pathology is avoidable

and the second is harmless in practice, these two pathologies motivated us to reconstruct
the ANS elements to eradicate such isolated pathologies (Salmon, 1987), thus making the ". %p

ANS shell elements free from "exceptions" in performance. In what follows we will refer to
the original ANS element construction as "the old construction" and to the present ANS
element construction as the "the new construction." A

In the old construction of the ANS shell elements, the Hrennikoff lattice lines were chosen.

3



In the 4-ANS element, the four grid edges were chosen to be the Hrennikoff lines. In the
9-ANS element, the four edge lines and the two natural-coordinate lines, e = 0 and 7 = 0, 1.

were chosen to be the Hrennikoff lines. Then the derivatives of the covariant displacements
along the Hrennikoff lines were interpolated, which were termed as the covariant strains
along the HMennikoff lines. The natural-coordinate strains in the element interior were
then obtained by interpolating the appropriate covariant displacement derivatives along
the Hrennikoff lines according to the isoparametric interpolation weights. The orthogonal
shell-coordinate or inertial-coordinate strains at any point in the element were finally V

obtained by tensorial transformation of the natural-coordinate strains. This meant two
consequences. First, there must be a congruency between the directions of the natural-
coordinate strains and those of the natural-coordinate basis vectors. Second, we had to
abandon the isoparametric transformation of the natural-coordinate derivatives (Irons,
1966) into the Cartesian ones.

A closer examination of the interpolated natural-coordinate strains has revealed that the
above congruency requirements are met only "in the large," even though the level of the

incongruency quickly diminished as the grids were refined. A pathology of the 4-ANS
element manifested for skewed grids, because the errors committed in interpolating the %-I

normal vectors become significant enough to lock the solution. Of several avenues we have
explored to mitigate this incongruency, we have chosen the following as the basis for the
new ANS element construction.

The most fundamental aspect of the new formulation presented in Part I (Park and Stanley,
1987) is in the choice of its coordinate system: an inertially fixed coordinate system for
translational motions, an orthogonal shell-surface coordinate system for rotational motions

and a natural-coordinate system for strains. The proper use of such triad coordinate
systems has led to the mitigation of several element deficiencies heretofore present in
many of the existing shell elements.

The incremental strain-displacement relations we will employ are expressed on the de-
formed shell geometries. However, they remain valid for finite-strain and finite-rotation
increments, and hence they can be used both for linearized and nonlinear analyses. In
particular, the present element construction based on the strain increments can be easily
interfaced with an element-independent corotational procedure (Rankin and Brogan, 1984)
to effect an efficient nonlinear analysis procedure.

In the construction of the new ANS shell elements, we preserve the two essential ingre-
dients in the old ones: the natural-coordinate strains and the tensorial transformation of
the natural-coordinate strains into any desirable orthogonal components. However, in con-
structing the natural-coordinate strains, we have abandoned the old way of interpolating
the covariant displacements that vary their directions along the natural-coordinate lines.
Instead, we have chosen to interpolate the inertial Cartesian displacement components to
obtain the natural-coordinate covariant strains, since the displacements expressed in the
inertial coordinate system do not vary their directions along the natural-coordinate lines.

4



In other words, the covariant strains are expressed directly in terms of the inertial dis-
placement components and their derivatives along the natural-coordinate lines. Finally, -

the locking-free and mechanism-free measures adopted in the old construction are carried
over almost intact into the new construction. We will now describe the new construction
of ANS-shell elements in full detail.

2. Theoretical Preliminaries for Thin Shells

We summarize the equations of motion for thin shells derived in Part I (Park and Stanley,
1987) and the associated strain-displacement relations.

2.1 Kinematics and Shell Geometries

The position vector of the particle point P (see Fig. 1) on the deformed shell is given by

r = ro + t3 b 3  (2.1)

where
r0 = xe +ye 2 + ze3 , (X y z) {(X+u) (Y +v) (Z+w)} (2.2)

in which (z y z) are the deformed neutral shell surface position coordinates, (u v w) are the

displacements measured in the inertial e-system, 6 is the distance of the material point P Y".

from the shell neutral surface measured in the b-system that is attached on the deformed
cross-section of the shell, and the vector b is related to the vector e by

b =Re (2.3) " '

The angular velocity of a particle point, P, on the shell cross section is thus given as
" ,. % '.]

0 -w3

-W 2  Wi - (

The variational pseudo-vector, 6a, that is conjugate with w, is given by

6&r=6RRT, W= i U)2 60 6a= Ct 6a' 6a 3 jT (2.5)

The displacement variational quantities have been derived in Part I in the form:

6 r = bu e + bii (2.6)

where the pseudo-rotation vector, Rfi, is related to the shell-surface pseudo-rotation quan-

tities, 60 according to

q-t (2) () (2.7)
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in which tT(i) ,presents the i-th row of the transformation matrix, T.g, deF...ed by .

S = Tage (2.8)

that are attached to the deformed shell surface; and, Tb, relates the shell-surface basis
vectors, s, to the inertial basis vectors according to

b = Tb.s (2.9)

The covariant natural-coordin.te unit vectors are then obtained by

a 1 4- ,-(,4 l + ,4 2 +zje) e(2.10)
1 i8ra

a,,= W 7 1(r eI + y,,, o=t + e,,e3) = (2.11) :';:

a , a = a (x,, et + y,, e2 + Z, e3 ) = toe (2.12)

where the two fundamental shell surface quantities, A and A,., are given by

A2 = r ° a-A, = 0 r ° o r °  (2.13)4 = -7" -' " 'a" T
a ,,', .,

For subsequent applications, we express the above relation in a compact form:

4, aa T,,,e = e (2.14) -a

Finally, the covariant partial derivatives are given by

a 1 ( a 13 ai (3~ 1 a'
as A: 7. o- .- = 4 h( ), '2 (2 .15)

where h(c, ?7) is the shell thickness.,.:, .'%, , !%
6
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2.2 Variational Equations of Motion for Thin Shells

The variational equations of motion derived in Section 4 of Part I are recalled for conve- N,
nience:

.; + 67s = 61'r + 6TE  (2.16)

in which 67!, 61S, 6 3rT and 67 1 are referred to as the inertia force, the stiffness force,
the traction boundary force and the external force operators, respectively, given by

61= p(buuf + b&xTtIF(. + ba>r~wew)dV (2-17)

6y s = (bice + efqaq, + 6e,,o,, + elcac + 6beno )dV (2.18)IV

6T=s (uTT + SJ S) a2 dS (2.19)

6 "  J (SuTf + 6uT'RTfa + 6qTRTf, + SqTf + 6aXT!f.f + 6aTIfa)dV (2 20)

f= f/e+ fla (2.21)

where (a, a2 a3) are the surface tractions along the (q r )-coordinates around the shell S

element boundaries, and f, are the inertially applied load and f. are the follow-on force,
respectively.

2.3 Variational Natural- Coordinate Strains •

The variational natural-coordinate strains specialized for thin shells from Section 7 of Part

I are recalled: ,

be =tSE, + (2.22) -

where

7
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Sea, =ti.T+ t7 as (2.24)
i n ~ C -s , n a s ,

a6u (225)

TaYu = a11 (2-26)

6at - T a + a%. (2.27)
as"

[!f= "as j. (2-28)

E., tas, a.

+ fl t. + t f r 2)9

aa~~ t atr tT\ abu

+t +J.}t tTu
___s na. n)as (2.30)

__ 
(2.at .]au31) 

-

+7 TsI a IS n(

in which u 1a t #w

(2. 2

6f-f, 6 Jp4)
T 0

..
It should be noted that the incremental strain-displacement relations are obtained by

replacing 6 simply by A in the preceding equations. The terms designated by ( ~and()

in the bending strains of Sic., and 6,,,, usually remain small for thin shells, and they may

be neglected in most applications. However, as noted in Part 1, the term designated by .



( )§ in the in-plane bending term, bce, must be retained to satisfy rigid-body motions
as discussed in Sanders (1959). 0

2.4 Shell-Coordinate Strains and Stress Increments

The shell-surface coordinate system, s, is related to the inertial system, e, by

a = T.,e (2.35)

Hence, the natural-coordinate system, a, is related to the shell-coordinate system, s, by

a- T, s = Tas, or s = To,,a (2.36)

where s is defined as
s = (s. St ,S), s = ac (2.37)

so that not only (s. st) are chosen to form an orthogonal system that is tangent to the
shell surface but also the normal shell-surface vector, sn, coincides with that of the natural-
coordinate vector, a . .y

The variational stiffness force operator (2.16) in the shell-surface coordinate system-i.e.,
s-system-can be written as W.

big = f (6e °ao + ftstaot + 6 °Ea..a + 6Rtta + 6ftnat.)dV (2.38)

in which the variational shell-surface strains are obtained by the following tensor transfor-
mation of the variational natural-coordinate strains:

6E,g 6,,, 6ft, = ./6ef 6e, 1  
6 e,, Ti (2 39)

L 6e8  6ftn 0 J eec 6,Eq 0j

These strains are then used to compute the shell-coordinate stress increments

Aar,= A,,.. A, A,,., A,,tt ,, 1T (2 40)

by adopting a suitable constitutive relation (e.g., see [Stanley, 1985])

A V (.41)

where
f. A= .o AL. Ae*, Aftt AlT r  (2.42)

Once the stress increments are calculated, the total stresses are updated by



-,nL) 0n + &(n-tl) (2-43)

The incremental shell-surface strain-displacement relations are obtained from the incre-
mental natural-coordinate strain-displacement relations by the same tensor transforma-
tion.

Specifically, for the present choice of the normal vector (2.34), we have

[t t'" 0] st-a,, -st at 0 1
Tom= jt . 0 = - j-ss*a, s..a, 0 (2-44)

0 aa 1 0 o0 la g x a '7 I0

Expanding (2.42) while employing (2.36), we obtain the following explicit relation:

t2 t47 tsft*,7 0 0 , 6ell
6e I I~ 2ttt 0 0H 6C,,

6. = 2t.Ett 2t-,tt, t.(tn, + tntt 0 0 segn (2.45)
s con. 0 0 0 t ( t~1, H er 6C
6eu. J L 0 0 0 t~f t '7J 6CC17 J

Substitutions of (2.43) and (2.45) into (2.38) and evaluation of the resulting variational op-
erator then yield the desired internal force vector in terms of the shell-coordinate quantities.
It should be noted that the strains, Ai., are equivalent to classical strain-displacement
relations for an orthogonal shell-surface coordinate system, with one major difference. In
classical shell theories, the unknowns are the covariant displacements ( a.Au and A/O), and
their covariant derivatives. In the present formulation, the unknowns are the inertially-
based displacements (Au and Afi ), and their covariant derivatives. This difference plays
a crucial role in the finite element discretization of the resulting variational equations.

2.5 Resultant Form of Stiffness Force Operator

Using the above strain-displacerient relations, the thin-shell counterpart to the stiffness
force operator (2.38) can be expressed in a resultant-force form: VA

=S eree das (2 .46)

and the strain and stress resultant "vectors"*, 6eV and f',., expressed in the natural

We will continue to use the term "vector" for one-dimension.al arrays, but note that the
components of vectors such as 6eN and f.J actualy transform as 2nd rank tensors.

10



(curvilinear) coordinate system, N, are defined as:

fl

fu

eN f N,, ' = (2.47)

min
6-ye qe

6yn qn

While the covariant strain measures in beN were defined in (2.46), the corresponding
membrane, bending and transverse-shear contravariant stress resultants, in fS, are defined
by pre-integration of (2.38) through the thickness, as follows:

n 0 = f aP nP fa#C IdC q a dcTd (2.48)

where again a and 3 range from 1-2.

The last quantity to be explained in (2.46) is the differential reference surface area, dS. It

arises by employing the thin-shell hypothesis to the volume integral in (2.38), i.e.,

f ()dV I s d()d d (2.49)
V S

0

3. Strain Interpolations

In Park and Stanley (1986) and Stanley(1985), a procedure for constructing shell elements
whose strains were approximated along the natural-coordinate strain lines were presented.

We shall refer to it as the old construction procedure. Our motivation for developing the

old shell element procedure was to render the locking-free and mechanism-free features

into the resulting shell elements.

In the old procedure, first, we projected the displacements and unit normals onto the

natural-coordinate lines to obtain their covariant natural-coordinate quantities. Second, we
interpolated the resulting covariant displacements and covariant unit normals. Third, we
obtained the natural-coordinate derivatives of these covariant quantities along the element

edges and the two natural-coordinate lines (or along the Hrennikoff lines). Finally, the

strains in the interior of the element were obtained by interpolating the quantities along
the Hrennikoff lines. It is important to note that the nodal displacements in the old-.

construction were expressed in the covariant system, whereas they are expressed in the

A11



inertial system in the new element construction. This difference plays a key role in the
subsequent element construction.

The first key feature of the present construction is the way in which we obtain the product
form of the strain-displacement relations, viz, et, along any C-line from (2.23)

in which the variational operator, 6, and the finite incremental operator, A, are omitted
for presentation clarity, and tr and ML are recalled from (2.10) and (2.32):

u 1 A 31) 3W).

a u 1 a a 9 (3 3 )

Hence, in the new construction, first we interpolate the displacements that are fixed in the
inertial coordinate system and the unit normals, tT, that vary along the and ,-lines.
We then obtain their derivatives along the natural-coordinate lines. Third, we project the

interpolated quantities and the derivatives onto the appropriate natural-coordinate lines
to yield the necessary covariant derivatives. By combining them, we obtain the desired
covariant natural-coordinate strains.

The second key feature is the way in which we represent the natural-coordinate strains
at any interior point of the element. In the old construction, we obtained the natural-
coordinate strains along the Hrennikoff reference lines. The natural-coordinate strains at
an interior of the element were then obtained by interpolating these reference-line strains.
In the new construction, we do not make use of the Hrennikoff reference-line strains.
Instead, at each integration point the necessary interpolations are performed along the
two natural-coordinate lines that pass through the integration point.

The third key feature - perhaps the most significant of all - of the present procedure is
the way the natural-coordinate inplane strain and twist, et,, and t,,, are interpolated.
We have abandoned the directionally reduced integration approach that was adopted in
the old procedure. Instead, we sample these strains at the Barlow points, which are then
tensorially transformed and interpolated at each integration point. We believe that this
enhanced interpolations of efq and ice. are largely responsible for overcoming pathological
4-ANS element behavior for doubly curved shell surfaces. We now describe the present
construction of the assumed natural-coordinate strains for both 4-node and 9-node ANS
shell elements. II ,

3.1. Natural-Coordinate Strains for 4-ANS Element

12



The incremental forms of the natural-coordinate strains derived in (2.23)-(2.31) are to
Ii be implemented with care if the resulting element is to be free from locking and mecha- S

nisms. For 4-node elements (see Fig. 2 for its nodal designations), we have the following
interpolation function:

NEN = 4

N,.(C, 1) = EZN() N. (7)

N2  = (1+ (3.4)

a = 2(8-1) + r

NB= 1

wje)= 1
CL = 0. f

Full integration for this element corresponds to a 2X2 Gauss quadrature rule.

We now describe the interpolation procedures for the natural-coordinate strains, (2.23)-
(2.31) for 4-ANS shell elements.

3.1.1 Interpolations of ef, enrn X, 1,, and ice. Let us recall from (2.23) the
membrane strain

o tT au (35)Sasc

Observe that, along an Y7-constant line, u, and z,c remain constant whereas, along a -

constant line, u,, and z,, remain constant. Therefore, A and te remain constant along
any rq-constant line whereas A,, and t, remain constant along any i-constant line. These
simple observations provide basic properties of the product form of the natural-coordinate Z',.
strains (2.23)-(2.31).

Hence, the axial membrane strain, e, , remains constant along any i-line, since t,, A,
and u,s, are constant along any C-line. Similarly, e,, remains constant along any rT-line.
Hence, the two membrane strains maintain a constant strain state along the two natural-
coordinate lines, thereby satisfying the patch test requirement.

a%

Interpolations of r.,, and ic are thus constructed in the same way as in the case of E,,and e...,.

13
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In other words, these four strains are obtained in a straightforward manner by substi-

tuting into (2.23), (2.25), (2.28) and (2.31) the standard isoparametric coordinates and

displacements, and their derivatives via the shape functions given in (3.4).

3.1.2 Interpolation of Transverse Shear Strains, ef, and e,,,

Since there are several important features associated with the present interpolations of

these two strains, we recall the two strains from (2.26) and (2.27): .

9.U
-Y !U+ ti U (2.26)

- r =Tsj- + t'r U (2.27)

In the above equations, the variational operator, 6, or the finite incremental operator, A,

has been omitted for presentation clarity.

First, let us address the well-known transverse shear locking problem (Zienkiewicz, Taylor

and Too, 1971; Pawsey and Clough, 1971; MacNeal, 1978): that is, the interpolation of

the second terms, t TO and triI, that appear in the above two transverse shear strains. In

the context of the present construction, in order for the term, t7*il, to be constant along

the i-line, we must have d1 constant since t7" remains constant along the i-line. This can

be accomplished by adopting the following interpolation for fi:

2 2 J%A N= 0 . 1)f (3.6

Similarly, we adopt for interpolation of t7:

2 2

Z N , N () -Av (3-7)

so that it remains constant along the r/-line.

The net effect of the above two modifications is the same as the widely adopted reduced S-

integration procedure used to avoid the transverse shear locking phenonenon which is dis-
cussed in (Hughes, Taylor and Kanoknukulchai, 1977; NacNeal, 1973; Lee and Pian, 1978:
Pugh, Hinton and Zienkiewicz, 1978; Hughes and Tedzduvar, 1981; Wempner, Talasiidis >

and Huang, 1982; Crisfield, 1983; Park and Flaggs, 1985; Park, Stanley and Flaggs, 1985:
Park, 1984), among others. However, no rank deficiency is introduced as a consequence
of the present modifications in i for both -ye and -,. This is because the r7-dependency
in 61 for y and and the ,-dependency in fi for -1,, are not compromised as a result of the

14
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foregoing modifications. Further discussions on rank deficiency vs (C, 77)-dependency may
be found in Park (1984).

I

Second, we will address the first term in -ye, viz, tT ol . Since we must have, for consistency,C r n
constant value for this term along the -line, the unit normal, tT, must remain constant

along the C-line.

Observe that, if t7 is to remain constant along the C-line, (z,, yn, z,, I and A n must S
be evaluated at C 0 for each integration point while still substituting the appropriate
value for q. To be specific, we evaluate

t ( = o, au (3.8)

where the coordinates, (C, qj), denote spatial (2 x 2)-integration points.

For -y,, we evaluate in the opposite way, viz,
8u

t(ei, ,n = 0). M-(, ,,A (3.9)

3.1.3 Interpolations of cen and CE,,

The derivatives in the inplane bending strain, e* and the twist, xcn, must be evaluaLed
to preserve constant strain states along each of the natural-coordinate lines. It is noted
that e* consists of two product terms: tT - a and tT ou The first term implies that --I . -- ,,,,,'1 O

the parameteric derivative, au-, is projected on the vector component, te, that is parallel
to the C-line. In the first term, as, remains a constant along i-Iine. Hence, if the first

term is to maintain a constant strain state, so must tI.

To maintain such constant strain states with minimum mesh sensitivity, we introduce
the following approximations. We sample efof, eono and Enono at the element centroid

(io '7o). At each integration point ( , n), we introduce a rotation vector, n, such that
0

n = (a,, x aj)/Iao x aJ (3. 10)

which rotates the normal vector aco at the centroid to coincide with the normal vector a,
at the integration point. The projection of (ato, a,) at the centroid onto the shell surface
at the integration point is thus obtained by (Gibbs, 1960):

a, = (aco. -a,)a, + (1 - ao. a,)(n, alo)n - (a,. aeo)aco (3. 12)

an whr (ac, a.~r aca, + (1 - a,, .a,)(n -ann- (a,. a,,)a, th (3-12)where (a(, a. , represent the projection of (at,,, ano ) on the shell surface at the integra-

tion point (0, vi).

r



Hence, from (3.10)- (3.12) and (2.14) one obtains

({atI = [til t12] alt} (3. 13)

The inplane bending strain at the integration point is obtained via the following tensorial
transformation:

2tiit 2 Ie 0 + 2 tL2t22E0 0 + (tilt22 + t1 2 t~2 I)En (3'14)

The projected inplane strain, e, given by (3.14), thus maintains a constant strain state
at each integration point.

Remark 9.1: When the shell surface is flat, the preceding treatment of the inplane strain
interpolation appears to be akin to the Pian and Sumihara transformation (1984) of the
tensor stress ri to the physical stress component aii for which they used the isoparametric
Jacobian matrix evaluated at the element centroid. For the finite element discretization
based on the natural-coordinate system, the present interpolation of eg, as given by (3.14)
and the assumed stress interpolation of 07 as given by Eq. (34) of Pian and Sumihara
(1984) are different. The present interpolation replaces the inplane bending strain at each
integration point with the one at the centroid via the centroid-to-integration point ihell
surface coordinate transformation. On the other hand, a straightforward application of
the Pian and Sumihara transformation would require that the strains at each integration
point are first transformed to the corresponding ones in terms of the centroid natural-
coordinate system. The transformed inplane bending component at the integration point
is then replaced by the centroidal one. Both approaches are easily implementable for 4-
node elements. However, for 9-node elements, extension of the present interpolation for
9-node becomes easier than the Pian and Sumihara approach as we will discuss in Section
3.2.3.

3.2 Strain Interpolation for Nine-Noded ANS Element

When the shell surfaces are approximated by the isoparametric curved shape functions - [

(see, e.g., Zienkiewicz, 1971 or Irons and Ahmad, 1980), the limitation principle (Frajis
de Veubeke, 1965) states that the strains should vary linearly for 9-node elements. From
the theoretical viewpoints, the mitigation of element locking and spurious mechanisms
resulting from reduced integration can be considered as efforts to adhere to FrMjis de
Veubeke's limitation principle. Efforts to mitigate both locking and spurious mechanisms
for 9-node elements can be found in Wempner, Oden and Kross (1968), Ergatoudis, Irons .' 'S

.' 
5.

and Zienkiewicz (1968), Ahmad, Irons and Zienkiewicz (1970), Irons (1976), MacNeal '. ,..

(1982), Parisch (1979), Park (1985), Park and Stanley (1986), Bathe (1987), Salmon(1987)
and Juang (1987).

In essence, the new 9-ANS shell element is based on the independent approximations of
the two fields in terms of the nodal variables: the displacement and the strain field within
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an element interior. The choice of the nodal displacements and rotations as the nodal
variables for the present 9-ANS shell element presents only a special case; they can be

stresses or strains, as well. Thus, it is this philosophy that is adopted in the discrete (finite

element) version of the thin shell equations (2.23)-(2.31) for a 9-node shell element.

However, while those two fields are interdependent (through the strain-displacement re-

lations), the assumed strain approach takes the liberty of selecting the approximations

independently - each in terms of the nodal displacement variables. This is similar to

what is done for "hybridr elements via a mixed variational principle, except that there an

MA element-level matrix inversion is required to achieve the linkage between strains and nodal

displacements, while in the assumed-strain approach this linkage is made explicit.,.

This allows most of the usual element requirements (e.g., continuity of the displacement

field, completeness of the strain field, convergence, locking-free behavior, etc.) to be met

a priori. However, in particular, the assumed natural-coordinate strain (ANS) approach

focuses on the physical covariant components of the strain field to reduce element sensitivity

to mesh distortion. We will now describe the construction of a new 9-ANS shell element

in detail.

3.2.1 Interpolation of e

In the old construction, the curvilinear membrane strain along the e-line for a fixed 77-line
employed the formula

. a,,_ 1 8 ,, (3.15)

as, A, ae

wherein uj is the covariant displacement defined by:

=( 1)i. + (I _ 2) ,2 + (+ 1),3 (3.16)
2 2

in which iii are the covariant components at the nodal points, i, that are tangent along
NN the c-line. Substituting (3.16) into (3.14) and making use of the relations (2.13), one

can derive an explicit form for i,. It was shown in Park and Stanley (1986) that the

strain i,, thus derived, introduces inconsistencies. The complicated interpolations offered e
therein can thus be viewed as corrective measures to improve .

To illustrate the the present membrane-strain construction, let us consider a 9-node shell

surface as shown in Fig. 3. Both the coordinates and the displacements are interpolateda 17
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by the bi-quadratic Lagrange shape functions as given by

NEN =9 .
3 3 J-, "

= E ( ) N. (7)
r1 713 IN

N1(E~
2

'*"

N2 (EP)

N3(E+ 1)

a = (-)+ r (3.17)

NB=2

1

W2(V) + V(i~V')

CA -1/V3

It is noted that the most one can realize for the covariant natural-coordinate strain, EL,

when interpolated by (3.1), is a linearly varying field along the e-line. It was shown in

Park (1985) that the strains based on the quadratic polynomials yields an equivalent of -
the desired linearly varying field only if sampled at the two Barlow points, 1: = l'- 3.
Hence, a linearly varying strain field along the -coordinate line can be constructed by the
following strain interpolation: ,

+ f*(-C)} + -- E*(6) - E((- b)}, sb l/'VK (31
2 2

which was extensively used in Park and Stanley (1986).-

We now come to the second key aspect of the present construction: that is, the way we

obtain the natural-coordinate strains at any point in the element interior. Notice that
the covariant membrane strain, e,, given by (3.18) can directly represent the natural-
coordinate strain at any point in the element since the directional derivatives with respect ,
to , i.e., z, and uc, represent its values at any n-line. This is an important improvement Ie

over the old construction wherein the strains in the element interior were obtained by
interpolating the strains along the six Hrennikoff lines. ,

For computer implementation ease, we reexpress (3.18) in the following form:



0

= NEN (3.

where NB
= ((320)

where w1(e) are the weighting functions as give in (3.17).

U Remark 3.2: The above explicit form for e given in (3.19) constitutes a key contribution
of the present 9-ANS construction as it is valid everywhere in the element; it is linearly•
varying along the C-line. Hence, we have circumvented the strain interpolation of e* by
utilizing the strains along the three Hrennikoff lines, viz, 17 = (-1, 0, +1), as previously
employed in Park and Stanley (1986).

Remark 3.3: The strain interpolation along the -line for e, as derived in (3.18), does not
require reduced integration as it exactly satisfies the constant and linearly varying strain
states, thus causing no element locking. A similar approach was adopted in Crisfield
(1984), Stolarski and Belytschko (1982, 1983) and Huang and Hinton (1986). It is this
locking-free property of the present element construction that is distinct from -the family
of curved shell elements based on the standard isoparametric construction. In addition, as
long as one invokes 9-point integration, the resulting element possesses its full rank, thus
no spurious mechanism occurs. A symbolic analysis that illuminates this characteristic is
given in Park (1984).

Reamrk 5.4: In the assumed covariant strain approach (Juang and Pinsky, 1987), one
interpolate a nonphysical strain

cg J tT (3.21)

Hence, the difference between the present physical-component strain (3.1) and the covari-
ant strain is the absence of A, in its denominator. If e ' is interpolated to vary linearly
along the C-line, then the two formulations coinside only if Al is constant along the a-line.
This happens only for a constant curvature, viz, when the c-lines lie on a circle. For dis-3torted meshcs, even though the elements may lie on a cylinder or sphere, the 5-line does
not necessarily lie on a constant curvature trajectory. This difference may play a crucial
role on element performance for distorted meshes.

Interpolations of c.., icf and x,m,1 follow a similar procedure for interpolating cc, as
described above.

3 .2.2 Interpolation of Transverse Shear Strains, ec and c,

19
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We recall again the two strains from (2.26) and (2.27): 6

tr = q + tfi(2.26)

t72! + t-,a(2.27)

In order to avoid locking due to inconsistent interpolations of the transverse shear strains,
one must employ the same interpolation procedure adopted for c in the preceding section. C
The resulting expression for the two interpolated transverse shear strains become:1H

1{1 (6)+ 1 - b) } -L -Yt(6) )}, Cb 1/ v13 (3.22)

1={y,,(6) + I,,(-,) + -y{q,(6) n ,C,)}1, 1 , (323)

For computer implementation ease, we reexpress the above equations in the following form:

NEN NEN

b'" '+ E b,"O .(3.24)
a1l a=L

where

bet W Z W~( [NG."i,st (3.25)

NB

-. W( [N. ]t (3 -26)
=

Similarly, an explicit implementable expression for -1. can be obtained by interchanging
( j, 77) with ( , , ) into the preceding equation.

3.2.3 Interpolations of e, and ic,•

Essentially, we extend the procedure outlined for the 4-AINS case to the 9-ANS element as
follows. We sample ee, cc and e,,, at the four Barlow points, (: = -;/v, ?7 = j/ V3)
At each integration point ( , 17), we transform the four inplane bending strains evaluated
at the four Barlow points via the same tensorial transformation as was done for the 4-ANS
case (3.14):

l tb Itb b -r 2 t , (
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where the superscript and the subscript, b, refers to one of the four Barlow points and
the matrtix components, t0, have the same geometrical meaning as the one derived in
(3.13) except they relate the projection on the shell surface from a Barlow point to the
integration point.

The inplane strain, Efq, at the integration point is then obtained by interpolating e as
follows:

4

fell , Wb(' q)(3.28)

where _

*W(Rt 7) = F W-0W(7

= (iVie-) (3-29)2

Similarly, the twist, xig, are obtained by interchaning c. b

4. Preliminary Evaluation of Present ANS Shell Elements

We present a theoretical analysis of 9-ANS element for an inextensional bending case, for 0

a cylinder subjected to uniform pressure, and a comparison of the present 9-ANS element
with the so-called covariant-strain elements (Dvorkin and Bathe, 1984; Pinsky and Jang,
1986). We will then give a priliminary performance of both the present 4-ANS and 9-ANS
elements for two simple shell problems: a pinched cylinder and a pinched sphere.

4.1. Inextensional Bending of Arch

The linearly varying strains derived in the preceding section should yield a locking-free
and mechanism-free curved shell element for most applications. For thin shells, however,
accurate solution of inextensional bending problems remains an important part of shell
analysis for many applications such as sheet metal forming. For an arch in Fig. 3, the
present strain-displacement interpolations for the membrane strain (3.19), the bending
strain that is obtained by replacing (u& v w) in (3.19) with (i, 0, tb), and the transverse
shear strain (3.24), respectively, yield the following results:

etc -- R -sin-u 3 R(1 -cos) wo} (4.1)
1 3
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/C + /sin, { + ( 1 , 1)2 IR' (42)

IR sin , (1,, _ #,)$f(.0) ,(4.3)
'C 2A I

where

fC#,)3 si - #sin, 1. (1 "- cos#,)

The theoretical solutions for the above inextensional bending case are

90 =0 , 1 = ( - ) , =o (4.5)

It is easily verified that the membrane strain (4.1) remains zero due to the small strain-
increment assumption invoked in the present formulation. Hence, the two remaining mea-
sures of accuracy for the present strain approximations for this inextensional bending case
are: the error in the curvature itself, ebN, , and the error in the transverse shear relative
to the curvature change, e,h.,:

40/ i , . { + I, -coo , ,2}
{1 + 4('-{1 + 4 (4.6) -

3f-$in 0

6her,,, 0 f( i 4 ),2 d R (@) (4. 7)

Figure 4 shows the errors in the present approximation of the bending strain in terms of
the element size, ,. For 0 = 600 which corresponds to the element arc length of 2R6, the
error remains within one percent. In Fig. 5, the errors in the relative transverse shear as
defined in (4.7) are plotted against the shell parameter R/h for one-tenth of a percent and
one percent error. Only for extremely thin shells-for example, R/h - 1000, which is not
shown in the figure-one needs 0 < 200 if the ratio in the two energy components, eshear,
i6 to renain less than one percent. Hence, we conclude that the present formulation can
capture inextensional bending deformations with adequate accuracy, provided the element
size is not too large.

4.2 Cylinder under Uniform Internal Pressure

For the case of a cylinder subjected to uniform internal pressure, we obtain from (3.19)
and (3.24)

, =-o(4 3)
R 0



which is exact. Hence, the present formulation yields the exact solution for this classical
problem.

4.3 Comparison with Covariant-Strain Formulations

As an additional error analysis, it is noteworthy to compare the present formulation with
the so-called covariant-strain formulation (Dvorkin and Bathe, 1984; Pinsky and Jang,

1986). For this purpose we recall the physical membrane strain by the present formulation
from (3.23):

1 0

The membrane stress is then computed by

aft = Ee"; (4.10)

which varies linearly along the arch.

In contrast, in the covariant-strain formulation one must obtain the following non-physical S

I quantity
ecu = (zC =, + , , w ) (4.11)

Notice that the above interpolated covariant strain is nothing but the denominator of the
present interpolated form of the assumed natural-coordinate strain (4.9). The computation
of stress based on the covariant strains for the arch, however, must adopt the following
non-physical constitutive matrix:

at = E0'e ' , or au = Cc , 6 c" (4.12)

where
w aaC _ a s6 (4.13)

in which C.7 is the non-physical material tensor that corresponds to the covariant strain 0I 6CM" and
{as as12 ass} = {asI asj aS}l, {I X2 ZX3 = {X Y Z} (4. -14)

The expression for CI, 6 shows that it is a complex function of the appropriate components
of the Jacobian matrix: ~(.~

LZ,e z," z,j

Hence, even though the covaxiant strains iE06 are interpolated to vary linearly, the cor-
responding non-physical contravariant stresses for the covariant-strain formulation will in
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general not be the case. For example, the covariant membrane stress for the arch case
is seen to destroy the linearly varying stress field unless E*' is forced to be a constant
(see (4.13)). For general applications, such arbitrary adjustments of the covariant material a
tensor so that its components become constant, present themselves as a task.

4.4 Preliminary Numerical Results

The present four and nine-node ANS-shell elements have been implemented and tested for
two simple shell cases, viz., cylinder under a concentrated load and a pinched heniphere.
Figure 6 shows the performance of both 4-ANS and 9-ANS elements for the pinched cylin-
der problem which was also studied in Park and Stanley (1986). The present 4-ANS and
9-ANS elements are designated as 4-ANS ' and 9-ANS". We note that the new 9-ANS
element (9 - ANS") element overshoots the solution. For the 4-ANS element, both the
old and new 4-ANS manifest about the same convergence rate. This, however, is not the
case for the hemisphere problem. As shown in Fig. 7, the new 9-ANS shell element (des-
ignated as 9 - ANS') converges at the second grid (9 x 9) whereas the old 9-ANS element
converges at the refined grid (17 x 17). As for the new 4-ANS element, the new element
maintains the performance as the one obtained by the old 4-ANS element in conjunction
with a rigid-mode projection designated as 4- ANS/P. This is a signigicant improvement
over the old 4-ANS element and over the 4-STG/P element that is also compared in Park
and Stanley (1986) and Stanley (1985).

It should be noted that a significant change in the construction of the new family ANS
elements has been in the way the inplane bending strain and twist (egn, ice,,) are interpo-
lated even though interpolations of the rest of the strain compoments have been somewhat
improved from the old construction. We will report in the coming months on the improved
performance of the new 4-ANS and 9-ANS elements via production-level sheli analysis.

5. Discussion

In this Part, we have presented in detail the construction of both 4-ANS and 9-ANS shell
elements based upon the formulation presented in Part I (Park and Stanley, 1987) that is
suitable for assumed-strain shell elements. Major emphasis of that formulation has been to
incorporate as much shell behavior as possible into the basic formulation. One important
consequence of this emphasis is the modification of the in-plane bending strain in the spirit _

of Sanders (1959). Other possibilities exist in the basic formulation, which may be further
improved to better capture shell behavior, as a complete hierarchical approximation of the
basic formulation has not yet been carried out.

It should be noted that, while we have endeavored to preserve the well-known first-order
thin shell theory with transverse shear effects, the present element construction has avoided
two related difficulties that stem from a direct application of the classical thin shell equa-
tions: rigid-body motions and the derivatives of the two fundamental surface coeficients,
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A t and A,. Avoidance of these two deleterious effects by the present element construction
Shas been accomplished by the use of the inertially fixed translational displacements and of

the corotationally based two-rotational variables.

IEven though we construct the basic element attributes-the strain-displacement matrix
(known in the literature as B-matrix)-based on the natural-coordinate system, we pro-
ceed the evaluation of the internal stiffness force based on the orthogonal shell-surface
coordinates. Hence, the present element can be easily plugged into any existing shell an-
alyzer for both geometrical and material nonlinear problems. This is in contrast with
the so-called covariant shell elements (Dvorkin and Bathe, 1984; Pinsky and Jang, 1986)
wherein one works with a set of non-physical strains, which amounts to embedding the
fundamental shell-surface coefficients into their corresponding constitutive matrix. For
example, years of experience in the solution procedures for plasticity analysis based essen-
tially on the amount of physical strain increments may not be of use in the solution of
plasticity problems based on the covaraint strain elements, since the amount of covariant
strain increments is dependent on the element size.

Although not elaborated in this Part, the strain increments need not be infinitesimal. In ;
particular, the displacement and rotation increments for large rigid motions can be arbi-
trarily large. This will be corroborated in Part III, which will report on the performance
of the present elements. Specifically, for nonlinear elasticity problems without bifurcation

I possibility, the present element together with an element-independent corotational algo-
rithm need not accumulate stresses, since the displacement and rotation increments can
be measured from the initial state to the current state.

An error analysis of the present element fur uniform membrane strain state and inexten-
sional bending state (Fig. 5) illustrates that the present 9-ANS element possesses improved3 transverse shear modeling and membrane modeling compared with the old 9-ANS element.
For example, in no case does the error in the computed inextensional bending exceed one
percent, for up to a 90 0-span. This is reported in Fig. 6. The mean square error in the
transverse shear energy, though, restricts the allowable element size as the shell becomes
thinner as illustrated in Fig. 7. A preliminary numerical test of the new 4-ANS and 9-ANS
shell elements on the pinched cylinder and pinched hemisphere indicates that the new el- _
ements improve significantly for shell surfaces with double curvature. We will examine in
more detail their potential improvements through production-level computations.

As for improving the accuracy of the transverse shear strains, this is where a rigorous three-
dimensional analysis should shed light on the reliability of C°-type thin shell elements.

e intend to follow up this aspect in Part III. It should be noted, however, that such errors
are consistent with the bounds of errors in most thin shell theories.
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PARAMETRIZED MULTIFIELD VARIATIONAL PRINCIPLES IN ELASTICITY:
I. MIXED FUNCTIONALS

CARLOS A. FELIPPA

Department of Aerospace Engineering Sciences
and Center for Space Structures and Control8

University of Colorado
Boulder, Colorado 80909-04 29, USA

SUMMARY

A one-parameter family of mixed variational principles for linear elasticity is constructed. This
family includes the generalized Hellinger-Reisener and total potential energy principles as special
cases. The presence of the free parameter offers an opportunity for the systematic derivation of
energy-balanced finite elements that combine displacement and stress assumptions. It is shown
that Fraeijs de Veubeke's stre-assumption limitation principle takes a particularly elegant ex-
pression in terms of the parametrized discrete form. Other possible parametrizations are briefly
discussed.

GOVERNING EQUATIONS

Consider a linearly elastic body under static loading that occupies the volume V. The body
is bounded by the surface S, which is decomposed into S : Sd U St. Displacements are
prescribed on Sj while surface tractions are prescribed on St. The outward unit normal
on S is denoted by n = n. The presence of internal natural or artificial interfaces is not
treated in this paper. -
The three unknown volume fields are displacements u = u, infinitesimal strains e = ejj,
and stresses a =- aq. The problem data include: the body force field b - bi in V,
prescribed displacements d on Sd, and prescribed surface tractions t - ii on St.

The relations between the volume fields are the strain-displacement equations

e = (Vu + VTU) = Du or e, - u + uj, ) in V, (1)

the constitutive equations

v=Ee or ai =E i;keki in V, (2)

and the equilibrium (balance) equations

-div r = De = b or u 1,j + b - O in V, (3)

in which D* = -div denotes the adjoint operator of D =:2(v + VT).

I-i
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The stress vector with respect to a direction defined by the unit vector v is denoted as39 = .v, or ci = aipi . On S the surface-traction stress vector is defined as

a, = a.n, or ani = any. (4)

I With this definition the traction boundary conditions may be stated as

n =t or oini=ti on St, (5)

and the displacement boundary conditions as

u u-d or u, -i on Sd. (6)

NOTATION .

Field Dependency. In variational methods of approximation we do not work of course
with the exact fields that satisfy the governing equations (1-3,5-6), but with independent
(primary) fields, which are subject to variations, and dependent (secondary, associated,
derived) fields, which are not. The approximation is determined by taking variations with
respect to the independent fields.
An independently varied field will be identified by a superposed tilde, for example fi. A
dependent field is identified by writing the independent field symbol as superscript. For
example, if the displacements are independently varied, the derived strain and stress fields
are

e = + (V+VT)i = Dfi, a' = Ee = EDM. (7)

An advantage of this convention is that u, e and o may be reserved for the ezact fields.

3 Integral Abbreviations. Volume and surface integrals will be abbreviated by placing
domain-subscripted parentheses and square brackets, respectively, around the integrand.
For example:

V de f del .S f del s, f f z de ffdS. (8)
~j v ~ fs=JK~ fs dS w s t ,

If f and g are vector functions, and p and q tensor functions, their inner product over V
is denoted in the usual manner

(f.|dV ff1  gidV, (p,q)v d-e fp.qdv=f pjq, idV, (9)

3 and similarly for surface integrals, in which case square brackets are used.
Domain Assertions. Finally, the notation

(a = b)v, [a = bls, [a = b]s,, [a = bls, (10)

is used to assert that the relation a = b is valid at each point of V, S, Sd and St, respectively.
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THE HU-WASHIZU PRINCIPLE

I There are several essentially equivalent statements of the Hu-Washizu functional of linear S

elasticity. The starting form used in this paper is the four-field functional presented in
W ashizu ]" n i (', , , t) = IC a, )v + ( , e" - )v - P t (1 )

where P1 is the "forcing" potential

Pfi )= (b lv+ [fi- als, + Ci ilt 12)

The functional (11) will be called t-generalized (traction-generalized) in the sense that the
volume fields fi, 6, Z and the surface field t are subject to independent variations, whereas
in the conventional form of the principle the relation [t = &,]s, is enforced a priori. The
superscript t is used to distinguish it from the d-generalized variant

Ild (fi, 6, a, d) (13)

in which the surface displacements a are varied independently from the volume displace-
QA ment field u. Functionals of the form (13) require the introduction of internal interfacesI and are studied more extensively in a sequel paper. 2

Application of the divergence theorem

I (a,eu)v = -(div a,u)v + [a,,,uls (14)

3 to transform the (&, 6eu) term yields the first variation of (11)

6ft = (u - &,)v + (eo - 6, )v - (div & + b, 66)v ()3 -[~-~,~]-&n ~st -[6.-, s, -[f a- 6,],i&, s,. 615

Setting 61' = 0 yields the Ealer field equations and boundary conditions satisfied by the
ezact solution:

(,=Ee)v, (e=e')v, (divu+b=O)v, [(o=r]s,, [ =,=t s,, [u=dls=.
*ed(16)

A PARAMETRIZED MIXED VARIATIONAL PRINCIPLE

3 Constraining the Hu-Washizu functional by selectively enforcing field equations and
boundary conditions a priori yields six functionals listed in Ch. 4 of Oden and Reddy's
monograph3 . Of particular interest for the present study are the t-generalized Hellinger-
Reissner functional =i & ~ + (& 'v- P, (7

the t-generalized potential energy functional

(,) -(r', e')v-Pt, (18)
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In addition, Oden and Reddy' list an "unnamed" functional whose t-generalized version
is tU IU (6,a, ) =(a',e') v - e)V - , pt (19)

These three functionals are special cases of the following parametrized form

= (1 - -y)(v',e)v - -f(,,e)v +y(Z,e")v - P1, (20)

3 where -1 is a scalar. If " - 1, 0, -1 we obtain the functionals n'lz, rIf, and Ht , respectively.
The first variation of (20) is

611t = j'(e' - e',6)V - (div e + b,6fi)v

- - e., 'S, t - it - e., 6fi)] s. - [u - a,l t, (21)

in which v7 and u denote the -"-weighted stresses

& + i ). . dea ,",-/+ (1- . (22)

If -y 0 0, the Euler equations and natural boundary conditions are

(e?=e )v, (divu'+b=O)v, [u = t]s,, [u =i]s , [u= d]s . (23)

The constitutive equations do not appear since they are enforced a priori in 1"[. If X=,
the first Euler equation drops out.

ENERGY BALANCING3 Distance. Let U(e) = (Ee,E)v denote the strain energy associated with field c. We may
rewrite (20) as a potential-energy deviator

3II = ][It - U(e - e "), (24)

because 0

112 - = (,e' e) _ _ O',e")v= (25)3 /2 (u e)
i W, - ZT, e' e') v = (Ee4 - Ee' , e' _ e') v. '

If E is positive definite, U(e" - el) > 0 and consequently

it < fl if >o. (26)

If fi is kinematically admissible, l'[t exceeds the exact potential energy as shown below.
It follows that to improve solutions in energy we expect to take -f _ 0. Thus principles
associated with -y < 0 have limited practical interest.
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Let 11(u) denote the exact potential energy

II 1(u) (a,,o e) v - (b,u) v - [t, U1S. (27)

I where o, and e denotes the exact stress and strain field, respectively. If ii is kinematically
admissible and thus satisfies [u = alsd, then the energy distance from II (fl) to the exact
functional (27) is (see e.g. §34 of GUrtin4)

III - IT= Ro - o, e' - e) v = U(e' -e) (28)

I Optimal Approximation. To derive an "energy balanced" approximation we impose the
condition III = 11, which yields

=U(e" - e) (a,_ uor, e" -e)

YO F Uew - ev) (ou- ",eu - (29)

For example, if we assume that the exact stresses and strains lie halfway between the
approximate fields,

0,= (OU'+') e = 1W + eu), (30)

then -'op V

THREE-FELD FIN~ITE ELEMENT DISCRETIZATION

To construct a 3-field finite'element approximation based on It1~, globally assurne*

3(fi = Nq)v, (EY = Aa)v, [i = SSISgt (31)

Here matrices N, A and S collect generalized displacement shape functions, internal stress
modes and boundary traction modes, respectively, whereas column vectors q, a and s coi-

lect generalized displacementat, stress mode amplitudes, and surface traction amplitudes,
respectively. The derived fields are

I(e" = DNq = Bq)v, (U = EBq)v, (e-7 = E-a= E-'Aa)v. (32)

3Inserting these expressions into W7t we obtain the algebraic form

III (a,q,s) = 1(1 - -I)q*K~q~ -. 1TaCa +yqTQa - qTfd _ STRq -sTfQ. (33)

*Following usual practice in finite element work, the components of a and e will be arranged
as column vectors whereas the moduli in E will be arranged as a square symmetric matrix.

t If q are nodal displacements, N contains conventional shape functions. But for the present
study we need not specialize to that level. 4
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The matrices K,, C, Q and R that appear in (31) are called displacement-stiffness, cor-
pliance, leverage and boundary-dislocation matrices, respectively, and are given by

K, = (BTEB)v, C = (ATE-lA)v, Q = (BTA)v, R = [SrN], (34)

Both K, and C are symmetric. The forcing vectors are

f_ = (Nrb)v + [NTl]s,, fo = -[Sa] s , "  (35)

Vector f. contains generalized forces (conjugate to q) whereas f. contains generalized
displacements. Making (33) stationary yields the linear system

-- ,C -.QT 01 I = I ' 036[ YQ (1 - -Y)K, U T ]* {q fq}(6I
0 -R 0 J f.

The first matrix equation is the discrete analog of (e" = e')v in (23) and expresses
internal compatibility. The second one is the discrete analog of the next three relations,
and expresses equilibrium. The last relation is the discrete analog of [u = U1Is, and enforces
boundary compatibility.

Since there is no force term on the first matrix equation, the stress amplitude vector a can
be readily condensed out if C is nonsingular, and we get

-R 0 ls f.5 (3T)

where
K = (1-y)K, + YQC-QT = (1 -- y)K,, +-yK., (38)

is the effective stiffnes mtriz, This is a -- weighted combination of the displacement-
assumed stiffness matrix K. and the stress-assumed stiffness matrix K, = QC-IQT. If
the assumed displacements satisfy [fi = a]s4 , the contribution from (t, fi - d) drops out3 and we simply have the conventional stiffness equations

Kq=fq (39)

LIMITATION PRINCIPLE

The famous limitation principle of Fraeijs de Veubeke5 takes on a particularly striking
algebraic representation in terms of the parametrized matrix system (36). This principle
applies when the derived stress field or is contained in the assumed stress field &:

a cr == EDfi (40)
This inclusion can be expressed in matrix form as

&=Aa=EBa,+Aa,=[EB A,.{] q } (41)

1-6
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Here aq contains the same number of entries as q whereas A= contains "excess" stress3 modes. Inserting (41) into (36) and calling Q= = (BTA2 )v and C=, = (ArTE-'A)v we
get

-- fK. 0 a. 1 0I /--yQ -'yC== /Q= 0 / a= _ 0

-. y. (1- 1)K,. -RT q fq
(1- q 1 (42)

0 0 -R 0 s

The first two matrix equations give aq = q and a. = 0. Drop,;.ing the equations associated
with the extra stress modes reduces (42) to

K. (1 - y)]K. -R 1 (43)

3 0 -R 0 s f.
which obviously condenses to (37) with K = K, for any -y. The solution (q, a, s) becomes
independent of -y. In other words, it is useless to inject additional degrees of freedom in the
stresses beyond w" if the three-field variational principle is used. Furthermore, if a'
there is no point in using anything else than the potential energy principle -Y = 0. S

In fact the limitation principle expresses nothing more than the algebraic identity, valid
for any -y,

_-YYT -Z '7yT {0 0= (44)
x -YX -Y (1-y)X x Xx

where X is symmetric and Y, Z arbitrary.

Constant Stress Assumption. If the derived field a' varies over V, assuming a constant
stress field a for & is a safe way to get around the limitation principle. In this case it is
convenient to take a a a and A = I (the identity matrix) in (31) so that (& = &)v. Then
the stress-assumed stiffness matrix is

i Eo = VYrf (45)

where v denotes the total volume v = (1)v, and B and E are the over-tn -volume averages

B = (B)v/v, r- = (E-)v/v (46)

The effective stiffness matrix (38) is a weighted average of K, and K,. Since K, is
typically rank deficient, -f = 1 is excluded.

TWO-FIELD FINITE ELEMENT DISCRETIZATION

If the relation [t = ua]s is imposed a priori as an essential boundary condition, t is no
longer an independently varied field, and IT' becomes a two-field functional. The last finite
element assumption of (31) is replaced by

[t = a,,, = A,,als,, (47)
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where A,, denotes the normal projection of A on Sd, and the finite element equations
become Q

[~~sC ~(Q+PT~fa _(48)

-y(Q+P) (I- y)K. q fq'

with
P = [N'A. s ,  f = [N'als,. (49)

A range analysis such as performed in the previous subsection reveals that the limitation
principle does not generally apply if fu # dls,. The effect of the additional stress modes
is to improve somewhat the satisfaction of boundary compatibility. But if the assumed
displacements satisfy [u # dls 4 , P and f. drop out and the limitation principle again
holds. o

TRACTION-CONNECTED ELEMENTS

The preceding results are relevant to the construction of conventional mixed elements,
simply by treating each element as a body of volume V, and the element boundary
as S. Continuity of displacements across interfaces is still required and results in trac- S
tion/displacement element connectors s and qbold. If this continuity is relaxed by adding

an additional boundary term, traction-connected mixed-hybrid elements result, for which
displacement connectors (or simply generalized displacement amplitudes) q can be elim-
inated at the element level. As this type of hybrid elements is not so interesting as the
displacement-connected ones, the topic is not pursued here.

OTHER PARAMETRIZATIONS

A one-parameter family of strain-displacement mixed variational principles derived from
the Hu-Washizu functional (11) by eliminating the stress field can be represented as

I (fi,6,) = #(1-3)(& ,e') - 1,3(C',i)v +1(0,e')v - P, (50)

where 0 is a scalar. For j = 0 we recover again II, whereas if 6 = 1 we obtain the
Reissner-type strain-displacement principle listed in Oden and Reddy3 generalized with
an independent t:

-( (as,c)v + (h,eu)v - P'. (51)

Continuing along this path, a two-parameter, four-field family that embeds both IT' and
rI1 is easily constructed as

nt, (, ,, = ( , - -y) ) ,e' v) + (1 - /).{(,e )v - ( ,e')V} (52) r

1- - ,e)v - !(a',)v -P

This functional yields stress-displacement principles for 3 = 0 and strain-displacement
principles for -f = 0. Finally, the Hu-Washizu principle itself may be embedded in a
three-parameter form

fl lt +l'(53)n = (1 - c )nl + cnx 17.

1-8
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which obviously reduces to Il* for a = 1 and to lII for a = 0.
The superiority of one parametrized form variational principle over another as regards the
construction of energy-balanced finite elements is not clear at this time.

CONCLUDING REMARKS
The parametrization (20) of the stress-displacement variational principles provide a uni-
fying framework for the development of finite elements. This framework embodies the po-
tential energy and Hellinger-Reissner principles, and encompasses displacement-assumed
elements, conventional mixed elements and traction-connected hybrid elements. But it
does not cover developments such as displacement-connected hybrid finite elements, in-
compatible elements and the free formulation' To accomplish that one has to continue
the process by introducing a d-generalized version of (20), internal boundaries, internal- 0
field energy-orthogonal splitting, and selective kinematic constraints. These extensions are
covered in a sequel paper. 2
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PARAMETRIZED MULTIFIELD VARIATIONAL PRINCIPLES IN ELASTICITY:

II. HYBRID FUNCTIONALS AND THE FREE FORMULATION

CARLOS A. FELIPPA

Department of Aerospace Engineering Sciences
and Center for Space Structures and Controls3 University of Colorado

Boulder, Colorado 8009-0429, USA

I SUMMARY

A one-parameter family of d-generalized hybrid/mixed variational principles for linear elasticity
is constructed following a domain subdivision. The family includes the d-generaized Hellinger-
Reissuer and potential energy as special cases. The parametrized principle is discretized by in-
dependently varied internal displacements, stresses, and boundary displacements. The resulting
finite element equations are studied following a physically motivated decomposition of the stress

and internal displacement fields. The free formulation of Bergan and Nygird is shown to be a
special case of this element type, and is obtained by assuming a constant internal stress field. The
parameter appears as a scale factor of the higher order stiffness.

INTRODUCTION

I This paper continues a study, initiated in Part I', of parametrized stress-displacement
variational principles in linear elastostatics. The boundary value problem is as follows.
We consider an elastic body of volume V and surface S : St U Sd. Surface tractions t are
prescribed on St whereas displacements a are prescribed on Sd. The internal (volume)
fields are displacements u, stresses v, strains e and given body forces b. The internal field3 equat',. are e = Du, a = Fe and D = b in V, where D = 1(V + VT), D* = -div,

and i the elastic modulus operator. The boundary conditions are u = d on Sd and
an= t on 5

The reader is referred to Part I' for additional notational conventions. Therein the follow-
ing parametrized functional was introduced:

rIt(fi, ri ( a'-- ) v - (,e")v + -y( , e")v - P', (1)

where -y is a scalar, and P' is the forcing potential

Pt (ii, i) = (b, fi)v + [t,ii - ujs, + (t, ilst. (2)

In this functional the volume fields fi, e, ,, and the surface field t are subject to independent
variations.

This functional "interpolates" the t-generalized Hellinger-Reissner and total potential en-
ergy functionals lt and rl,, which are obtained for -f = 1 and -f = 0, respectively. The S

qualifier "t-generalized" means that the surface traction field t is varied independently
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whereas in the conventional form of those principles, the constraint [t = ffuIs is enforced
a priori.

INTERNAL INTERFACES

3 In the following subsection an alternative version of (1) is constructed, in which boundary
displacements d can be varied independently rather than boundary tractions t. These dis-
placement play the role of Lagrange multipliers that relax internal displacement continuity.
Variational principles of this form will be called d-generalized.

The choice of d as independent field is not variationally admissible on Sd or St. We
must therefore extend the definition of boundary to include internal interfaces collectively
designated as Si. Thus

S : $d uSt U $, (3)

i On Si neither displacements nor tractions are prescribed. A simple case is illustrated in
Figure 1, in which the interface S divides V into two subvolumes: V + and V-.

I Ii St USd

3 Figure 1. Internal interface example.

An interface such as Si on Figure I has two "sides" called S and S-, which identify Si
viewed as boundary of V+ and V-, respectively. At smooth points of S the unit normals

n+ and n- point in opposite directions.

The integral abbreviations of Part I generalize as follows, using Figure I for definiteness.
A volume integral is the sum of integrals over the subvolumes:

(f je4f fv + f +f -fdV. (4)

An integral over Si includes two contributions:

[g]s. i - f g+ dS+ g-dS (5)

where g+ and g- denotes the value of the integrand g on S and Si-, respectively. These 0
two values may be different if g is discontinuous or involves a projection on the normals.
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PARAMETRIZED d-GENERALIZED MIXED PRINCIPLE

Variational Principle. The d-generalized counterpart of H' is

3j II(i, 1)=(1 -f- e ,e'fr)v - -~~ v+ _Y(a,e")V _ pd. (6)

This agrees with (1) except for the forcing potential, which is
I ' pd(fi,&, a) = (b, f)v + [an, ii - dis, -'+ [t, fils., + [a" ii - dlsi.- (7)

Defining the -1-weighted stresses

W- de -ya + ( _-y)or in V, e __ -& + (1 - -o)r' on S. (8)

1 the first variation can be written

I 6811d ( e ' - e ', 6a)v - (div e + b, 661)v - a"- €, 6fi].5,

a - Fn, 61] -IU - a, 6&] (9)

[n - -[. - a, ba] sv

Since d is unique on Si whereas Ui and & are generally discontinuous on it, the interface
integrals in (9) split as follows: 0

[an .- an,,bfij, = [an+ - 5Nn+,,6, +]St. + [&n- -I f-,,- S7
[ - a = [f+ - a,+ + - d n

II [-"6] = + f (10)
n6 +[a-,6a] =[z-~,d

Setting the first variation to zero and taking (10) into account, the Euler equations and
natural boundary conditions for -y : 0 are found to be

(eu - )v , (diva-+b=0)V, [On=t15,, [7- = "ls, Sv u = a]. q11)

S[ff' + 0+ = O ls i ' [a,- +ar-= Ojs,, [u+ = u - = dis,, o,€+ = 01,

If - = 0 the first equation, (e = e")v, drops out.

3 Modified Forcing Potential. Substituting d in lieu of u in the potential (7)

Pd(fi,,= (b, i)v + [&,,d- a]s5  + [,d3s, +[n,,.-dis,. (12)

is not variationally admissible because incorrect Euler equations result. This form has S
appeared, however, in publications dealing with mixed-hybrid methods. A correct potential
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that resembles (12) can be obtained in two stages. First, surface terms fli - dis, and3 [~i - d]s, are added and subtracted to produce
Pd(f, ,,1 (b,,fi)v + [i,,,1- . , + [a,. - i, is, + [i,,,]]s, + [,,,- iS. (13)

Second, t is assumed to be in the range of &,,, and the condition [r, , = 1s satisfied a

priori, reducing (13) to

3 P"(fi, &,a) (b,,i)v + [&,a - a]s,4-+[,, a]S, +[3,,-a]s. (14)

This expression differs from (12) in that the all-important surface dislocation integral is
taken over S rather than Si. Further simplification results if the displacement boundary
conditions [( = als, are exactly satisfied:

pd(jj, ,a) = (b,,ii)v + [t, a]s, + [bii - a]s. (15)

This expression of pd is used in the sequel, as modifications required to account for the
case [d 6 a]s, are of minor importance.

FINITE ELEMENT APPROXIMATIONS

In this section the finite element discretization of 111 is studied. Assume formally

(fi = Nq)v, (& = Aa)v, [a = Vvls. (16)

Here matrices N, A and V collect generalized-displacement shape functions, internal stress
modes and interface displacement modes, respectively, whereas column vectors q, a and v
collect generalized internal displacements, stress mode amplitudes, and generalized inter-
face displacements, respectively. The assumed volume fields need not be continuous across
S. The derived fields are

(e' = DNq = Bq)v, (or = EBq)v, (e' = E-1& = E-'Aa)v. (17)

Inserting these expressions into rld with the forcing potential (15), we obtain the algebraic
form

Ild(a, q, s) = .1(1 - )qTK,,q -- fa TCa + -fqTQa - qTPa + vTLa - qTf, - vrf,. (18)

where

K. = (BT'EB)v = KT, C = (ATEI'A)v = CT, Q = (BTA)v,

L = [vTAI,, s, P = [NTAI, ]s, fq = (NTb)v, f,, = [N2 'i]s,. (9

The matrices K,, C, Q, L and P are called internal-displacement-stiffness, compliance, •
leverage, force-lumping, and boundary dislocation matrices, respectively. Making (18)
stationary yields the linear system

,Y QT -PT L71 {a} {0I P)K,, 0 q fq(20)
(~ ~11- 4=(:o
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The first matrix equation is the discrete analog of the first, fifth and eight relations in (11),3 and expresses internal and boundary compatibility. The third equation is the discrete ana-
log of the last relation, and expresses equilibrium across Si. The second one is the discrete
analog of the remaining relations, and expresses internal and boundary equilibrium.

Stress Condensation. If C is nonsingular, the stress amplitude vector a can be statically
condensed from (20), giving

* Kq K ]. q - (21)
Kq Y-_K R vJ

3 in which

Kq = (1- -Y)K. + Iqc-QT - (PC-IQT + QC-IPT) + -PC-PT (22)

K 9 = LC1 (QT - 'fI1pT) KID LC-'LT.

The coefficient submatrices will be identified as follows: Kq is the internal stiffness matrix,
Kb is the boundary stiffness matrix, and Kq, is a internal-boundary coupling stiffness. The
internal stiffness is similar but not identical to the effective stiffness matrix of t-generalized
mixed principles'. We now proceed to reinterpret these results in terms of hybrid elements.

HYBRID ELEMENTS

Approach. The preceding treatment is relevant to the construction of displacement-
connected hybrid elements. Hybrid elements based on more restricted assumptions were

originally constructed by Pian and coworkers 2- 4 . The principal features of the hybrid
approach are:

(I) The domain is subdivided into elements before the variational principle is established.

(II) Continuity requirements across element boundaries are relaxed by introducing bound-
ary tractions or boundary displacements as Lagrange multiplier fields.

(I) All stress and internal-displacement degrees of freedom are eliminated (by either static
condensation or kinematic constraints) at the element level.

Feature (I) says that hybrid functionals are effectively mesh-dependent, since the domain
subdivision process introduces element boundaries which must be treated as internal in-
terfaces, and therefore become part of the boundary portion S. Previous developments
remain valid if we reinterpret "body" as "individual element," 'volume" as "element vol-
ume," and "surface" as "interelement boundary."

Continuity and Connectors. The internal fields & and fi may be discontinuous across

elements. The boundary displacement field d, however, must be continuous on Si, i.e. it
must have the same value on adjacent elements. This conditions may be satisfied if d on an

interface separating two elements is uniquely interpolated by nodal values on that interface.
It is natural to take such nodal values as entries of v, which automatically becomes the 0

vector of connected node displacements or connectors.
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FIELD DECOMPOSITION

In this and subsequent sections we work with an individual element unless otherwise noted.
The element volume is V and the element surface is S : Sd u St U S. The v subvector
contains the element-connector degrees of freedom, whereas q and a contain internal free-
doms. To gain further insight into the structure of the element equations and to link up
eventually with the free formulation, we proceed to decompose both internal element fields
as follows.

Stress Decomposition. The assumed stress field, &, is decomposed into a mean value, i,

and a deviator.

Za = & + r = h + Ahah, (23)

in which 0

a' = (')v/v, (A.)V = 0, (24)

where v = (1)v denotes the element volume. The second relation in (24) is obtained by
integrating (23) over V and noting that a, is arbitrary.

Internal Displacement Decomposition. Next, the fi assumption is decomposed into rigid
body, constant strain, and higher order displacements:

= Nq, + Nq , + Nhqh. (25)

Applying the strain operator D - (V + VT) to fi we get the associated strain field:

es = DN,q, + DN~q0 + DNhq, = Bq,. + B.q, + Bhq,. (26)

But B, = DN, vanishes because N,. contains only rigid-body modes. We are also free to
select B0 = DN, to be the identity matrix I if the generalized coordinates q are identified
with the mean (volume-averaged) strain values o. Then (26) simplifies to

e" = u + eu= u + Bhq, (27) 0

in which

q. = = (eu)v/v, (B,), = 0. (28)

Equation Partitioning. Assume that all elastic moduli in E are constant over the element.
The degree of freedom partition

q,.
a= aq-- ,(29)

qhh
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induces the following partition of the element equations

-t&-L- V -T -T -

-I-0 o -P, 'v-Po -Ph L 00 -YChr -Ph - yQ - PT LT a1  0

-F, Ph, 0 0 0 0 q, fq,I-/ F 0 (1 -- Y)vE 0 0 OU fqc
-Ph 'YQh - Ph 0 0 (1 - "Y)Kqh 0 qh fqhJ

-L -Lh 0 0 0 0 v f.

(30)
where

Ch - (ATElAh)V, Qh = (BTAh)v, ]Kq= (BTEB

-[N , ,r, c, h, P ,_= [NA,. r, =rc,h (31)

L--[V7 ]s, Lh = [VTAh.]s, fq, = (Nlb)v, x = r,c,h

Integral transformation. Application of the divergence theorem to the work of the mean
stress on e'& yields

(, e")v = (,1 " + Bhq)v = va 'i" + 0 (B )vq = vaeW (32)

=In, uiS = [8a,,Nrq, + N i" + Nhqh1s = g(uq + P0 1" + Phq()

Hence, T =0, = = , = 0 . (33)

A similar analysis of the stress-deviator work (a,1 , e")v does not yield simple forms for the
Ph. matrices unless al, is divergence-free, in which case

3Ph" =0, Ph, = 0, Phh=Q (34)

Assuming (34) to hold, the element equations (30) simplify to "

-YVE - 1  0 0 -(1- -)vI 0 Y0
0 -7C,. 0 0 -(1 -- )QT T~a

0 0 0 0 0 0 q, _ f

-(1 - Y)vI 0 0 (1 - -Y)VE 0 0 4" fr,

0 -(1 -- )Qh 0 0 (1 - -)Kqh 0 qh f h

L -t -Lh 0 0 0 0 v f. )
(35) Jf

The stress freedoms a and ah may be eliminated by static condensation as before. To
eliminate q,, a kinematic transformation that uniquely determines the rigid body motion
from the element interface motion is constructed:

q,. = Hrv (36)
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where H, is a rectangular matrix derived in Appendix 1. Elimination of a, ah and q,
gives

1- U 0 =r

0 (1 - -Y)Kqh + "K,h K q h  qh f } (37)I.7 !;]~E Kqwii 'V ) H, +H~fq,

where
Kah = QhC Q'IQ, Kq.h = LhCh'Q , Kh + K,h,

(38)
K. = V - TELr , K~h = LhC-jLT

Mean Strain Elimination. Subvector 6" may be eliminated in two ways. Static condensa-
tion produces

(1-Y)K,h +/Ko,= K{fg Hq"q r f I(39)

Kquh E1 , + qc'K~h v f. + HS, + v

On the other hand, if WA is eliminated through the kinematic constraint a' = Hcv derived
in Appendix 1,

(1 - -Y)Kqh + -yK,, K,. 1 _ (40) 9

Kqvh K, +-/ 1-tK.h v +f, + Tfqr+HfqcJ

*where
whe+- (vHTEH¢ - HTELT - EEH) (41)K' ""=/ ' , + C

3 The two methods produce identical results if

H. =V-1e(42)

As discussed in Appendix 1, this relation may be obtained from the first matrix equation 0

3 in (35) if either -y = 0, or e" = II = E - 1. The last condition is obtained in the
limit of a converged solution as the patch test analysis of Appendix 2 shows. In practice
any difference between (39) and (40) for -y $ 0 is not practically significant, and (39) is

preferable on grounds of simplicity.

THE FREE FORMULATION

The free formulation of Bergan and Nygird5 was originally constructed as an incompati-

ble displacement model that passes a cancelling-tractions version of the patch test which

Bergan and Hanssen called the individual patch test 6. Here the formulation is reinterpreted
in the context of a displacement-connected hybrid variational principle.

3 11-8
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First, assume that the internal stress field is constant, so there are no ah parameters. Then
(39) reduces to

[(1 --y)Kqh 0 q h fqfqh fq (43)
Kb] ~ f +~ Hf,+H ,fqr+ Vfq

The equations for qh uncouple. Consequently static condensation of qh, will not change the
solution. We have run into a displacement limitation principle. This leads to the second
assumption: the higher order internal displacement modes are eliminated by kinematic
constraints that link q, to the boundary displacements:

q = HhV (44)

Matrix H, is derived in Appendix 1. Application of this constraint to (43) produces the
final stiffness equations 0

Kv = [Kb + (1 -- -)Khl v = f (45)

where

Kb-- K, KH = H7KqhH1,, f = f, + Hrfqr + v-Lfqc + Hhfqh. (46)

In the free formulation, Kb and Kh receive the name basic and higher order stiffness
matrices, respectively. A . scaling derived from energy-balancing studies of Kh was rec-
ommended by Bergan and Felippa 7 for a plane stress element This corresponds to taking
I =1

CONCLUDING REMARKS

It has been known7 that the basic-stiffness part of the free formulation can be interpreted
as a constant-stress hybrid element. But the interpretation of the higher order stiffness
within a variational framework has been difficult. A key result of this paper is that this
can be accomplished by a parametrized mixed-hybrid variational principle. Note that the 0
free formulation cannot be obtained within the conventional Hellinger-Reissner principle

1), since then the higher-order stiffness vanishes and K - K,, is generally rank-
deficient. And taking -1 = 0 does not account for the fact that the higher order stiffness
can be scaled by a nonzero coefficient.
The variational framework is important because it allows consistent extensions of the S

free formulation that are not obvious from a physical standpoint. For example: al-
lowing more internal displacement degrees of freedom than boundary freedoms, i.e.
M = dim(q) - dim(v) > 0. A glance at (39) shows that m additional higher-order
divergence-free stress fields have to be retained so that the coupling stiffness Kq, does not
vanish. The reduction of qh, can be then performed by a combination of static condensation %
and kinematic constraints.
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APPENDIX 1: KINEMATIC CONSTRAINTS

One of the principal assumptions invoked in the free formulation is that the dimension of q is the
same as that of v and that the latter are physical node displacements. If so, evaluation of the
expansion fx = Nq on the element boundary S establishes the transformation

v = Gq (47)

where matrix G is square. Furthermore, suppose that G is nonsingular and can be inverted:

q = G-v= Hv, (48)

or, in partitioned form

q- q4 = Hc v. (49)

The first matrix equation (the discrete compatibility equation) in (20) can be presented as

-A(e A - A)v = L'v - QT q = (LT - qTH), = (LrG - QT)q. (50) I.
Setting y = 0 forces the constraint

LT= QTH or LTG=QT (51)
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to be satisfied. The same constraint emerges if 7y A 0 and the finite element solution has converged
in the sense that eu = e' is constant over the element. Now carrying out the freedom partition
(29) and assuming divergence-free higher order. stresses so that (34) holds, the constraint (51) ,
partitions as

i = [ ' H.] or ['] [G, G. G = / [ I 0 . (52)

LT [o L°  °  o o

from which follow the relations

0, =0, G.= vI, V. = vHo, 1-G7 = O, (53)
LTG, = 0, LTG. =0, LT = vHi, LTj, = I.

The first four were obtained through other means by Bergang and Bergan and Nygird6 , who
called them the force orthogonality conditions on account of the physical interpretation of L as a
"boundary nodal force lumping" matrix.

APPENDIX 2: THE CANCELLING-TRACTIONS PATCH TEST

It in not apparent whether this element class passes the patch test for an arbitrary -y. To investigate
this question we use the sketch of Figure 1 and view the subvolumes V + and V- as two elementa
connected along Si with an external traction boundary St. Both elements are in a state of constant
stress 0o. The prescribed surface tractions are = uo.]s, and the body forces b vanish. We
take (35) to be the governing equations for the two-element assembly. The only nonzero forces

are f. = [VTt1st. The key observation is that

I = [ V~(5, (54)

because the integral over Si vanishes because V iz identical for both elements on account of
interface compatibility conditions, and n+ = -n. Similarly for Lk. One may verify that for any S
-y the solution of (35) is

The connector node displacement vector V batisfies

a nd consistency with the third of (55) is easily verified fi ..1 (54). If the rigid body modes are
eliminated, v = G.V. Since the constant stress solution is ecovered, the patch test is passed for

any value of -y.

The physical meaning of this form of the patch test is that the interface virtual work ia zero when
the element patch is in a constant stress state.
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