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ABSTRACT

Advancements in the semiconductor industry in the last few years have led to
more inexpensive and powerful microcomputers. It is inevitable that students will
encounter some type of computer system at lower levels in the educational system. A
vital part of a student’s education should be to learn how to operate and utilize these
systems. As the appearance of computers in educational institutions increases it is
logical that they should be used in laboratory settings where their speed and analytical
capabilities can be exploited for taking and analyzing data.

The analytical power of a microcomputer in experiments is demonstrated
through the use of numerical methods to solve the differential equations of motion. Both
Heun’s method (a second order Runge-Kutta method) and a fourth order
Predictor-Corrector method are used to calculate approximate solutions to the equations
of motion for physical systems. These rather tedious calculations are performed quickly
with the computer and provide solutions for differential equations which are difficult or
impossible to solve analytically in closed form. These methods are used to simulate and
analyze the motion of a rotating disk and a physical pendulum, both including friction
and air resistance. The motion of each system is recorded and plotted by the
microcomputer. The Pascal software written allows comparison of the data with the
numerical solution and will also calculate constants of the actual motion through a curve
fitting iterative process.

The ensuing laboratory setup of disk, pendulum and computer is then used in
two college freshman experiments and one experiment at the level of a college junior.
These exercises teach the power, speed and versatility of the computer in the
laboratory; the power, usefulness and accuracy of numerical method solutions; and the

characteristics of rotational and harmonic motion including the effects of friction and air

resistance on each system.




1. INTRODUCTION AND HISTORICAL REVIEW

No field of science has advanced more rapidly in the past decade than the field
of semiconductors and computers. The impact of smaller, faster, more efficient and
affordable computing systems has been felt by the business and scientific community
alike. This continuing trend has made the presence of personal computers (or
microcomputers) in classrooms and laboratories no longer a luxury, but more of a
necessity. With a great part of industry utilizing and depending on microcomputers it
becomes extremely important that students currently in educational institutions become
familiar with the use and possible applications of such systems.

Currently, most technical institutions do a good job of teaching their students the
languages used on mainframe computers. Courses are offered in most higher level
languages as well as the more specialized, lower level languages such as Assembler.
There are even courses available which teach personal computing and the use of
applications software. Unfortunately, an important area rich in possibilities is often
overlooked. The speed, versatility and analytical capability of even the simplest
microcomputers lend themselves to use in scientific lgboratories. The introduction of
such systems into the laboratory opens a wide variety of educational opportunities to
students. These opportunities not only include analytical and computational possibilities
but allow greater insight into physical processes through data collection and analysis.

There are a number of ways to utilize the capabilities of a microcomputer in the
laboratory. Firstly, they can be used for data acquisition. Experiments can be conducted
and controlled using continuously updated data from static sensors. Position and velocity
calculations can be recorded by making repeated measurements in microseconds using
an internal clock. Secondly, the analysis of data is greatly facilitated by a
microcomputer. Curve fitting, differentiation, integration and simulations are all possible

utilizing numerical techniques. Any combination of these capabilities in the laboratory
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would be an important addition to a student’s education.

Three experiments were developed for the purpose of teaching physics while
demonstrating the power of microcomputers. Two of these are suitable for a freshman
in college, and one is designed for the more advanced level of a junior. To demonstrate
data collecting capability a physical pendulum and rotating disk were selected for
investigation. Utilizing a notched wheel and photogates the microcomputer is used to
take rapid measurements of the passing notches and record the resulting angular
velocity of the motion as a function of time. Once the data is taken and recorded it is
analyzed with the aid of the computer. Two numerical methods for solving differential
equations are used to simulate the motion of each system. Heun’s method is used for
the freshman experiments and a fourth order Predictor-Corrector method for the junior
experiment. Two computer systems are also needed. To take and analyze the data for
the two freshman experiments a TRS - 80 Color Computer is used. A Zenith Z-140
personal computer is also employed because of a requirement for greater accuracy and
speed for an iterative curve fitting routine in the junior’s experiment.

@ The above selection of physical systems and numerical methods accomplishes a
number of goals. First, it allows the student to more thoroughly investigate the physics
involved with harmonic motion including frictional and viscous damping. The effects of
varying different parameters are easily observed and verified with the experimental

setup. Second, the usefulness of the computer is readily apparent in the ease in which

the system records and plots the angular velocity of the motion. This aspect of the

P L

motion would be difficuit to measure without the computer. Finally, using the numerical
N method demonstrates the power of the computer in calculating approximate solutions to
normally unsolvable differential equations. Letting the student examine the accuracy of

such methods builds confidence in the technique. After the completion of these

experiments the student should feel comfortable using the computer and have a good
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appreciation for the versatility and capabilities of the microcomputer in the laboratory.

Armed with this experience the student should be more apt to utilize this powerful tool

in his continued education and research.
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2. THEORY

2.1 Physics Theory

Numerous physical systems are suitable for investigation using a computer. In
choosing the physical pendulum and rotating disk two goals are met. First, both
systems are relatively simple, easily constructed and understood. Second, in the case of
the pendulum the differential equations of motion are not solvable analytically. Thus it
is a good system for demonstrating the power and application of a numerical method.
Also, because of the difficulty of solution, the physical pendulum is not often seen in the
laboratory, and certainly not with iarge angle oscillations including frictional and viscous
damping. While the solution to the rotating disk is less complicated, addition of viscous
damping again demonstrates the numerical method as well as the concept of terminal

velocity.

2.1.1 The Physical Pendulum

The simple pendulum all students learn about is actually an idealization of a
physical pendulum. Any real pendulum is necessarily a physical pendulum. In
developing the equations of motion we define d as the distance from the rotation axis to
the center of mass, @ as the angle between the line from the pivot through the center of
mass and the vertical and I is the moment of inertia of the oscillating body (Figure
2.1.1).

In the absence of any damping, using « as the angular velocity, the equation of

motion is

dw _ .
IE- = -mgd sing

where m is the total mass and g is the acceleration due to gravity.! Solving this

equation for w and comparing it to the actual motion of a pendulum we can determine
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Figure 2.1.1. The Physical Pendulum

4 the system parameters such as the moment of inertia, providing damping can be
neglected.
Unfortunately, friction and damping are inseparable parts of any real system.

Naturally this affects the equations of motion. In the case of viscous damping the force

-
e T Tl

can be approximated as being proportional to some power of the linear velocity of the

-

resisting body moving through the viscous medium. In our case the major source of air

-

o

resistance is due to plates fixed to the pendulum at a distance 1. The torque resulting

’ -
N

from this force is always opposed to the direction of motion and modifies the previous

equation to

P bl |

Ig-:— = .mgd sind + k()"

PN

where n is an integer and k is a constant that accounts for the geometry of the plates

e el s

as well as the proportion of the force to the velocity.! The plus or minus is only

-
g

’

necessary for even values of n as the sign of w will change this term correctly for odd n
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values. In actuality the force is dependent on a polynomial which is a function of the A
Al

velocity. However, since only one term dominates, and for the sake of simplicity, we .
will only use one term in the polynomial. The factor k will also vary depending on the ':'
state (temperature, pressure, humidity) of the viscous fluid that the system is in. 0::
4

4

Finally, the pivot in the laboratory is made as close to ideal as possible by

utilizing ball bearings but it also provides a frictional damping which must be o
considered. Because the friction involved in the bearing is rolling friction and the ::.'-
..‘:
magnitude is small, its effect can be considered constant and opposite to the direction of ; .
motion. Denoting this constant opposing torque by f, the final equation of motion is "'
-\
1% = -mgd sind + kl(w)® + f 3

2

The exact solution of any of these equations is difficult, except when the smalil ".
\

¥
angle approximation (sind =9) is made for the undamped case. An accurate approximate ‘::
s
solution to these equations can be obtained though, through the application of numerical 2
methods. !
'4.
)
2.1.2 The Accelerated Disk ety
Generally students learn about terminal velocity by considering a sky diver or ,.-

4

an object dropped from a tall building. By using a rotating disk it is easy to demonstrats :a
3

t

this concept in the laboratory. In developing the equation of motion for this system r is ;:::
X}

defined as the radius from the axis of rotation to the point where the accelerating '’
weight is attached, w is the angular velocity and I is again the moment of inertia of the t
= 8
disk (Figure 2.1.2). Using simple Newtonian mechanics we know that mg - T = ma :'_
where T is the tension in the cord and a is the downward acceleration of the mass. We o
also know that the torque caused by the weight is given by Tr = I:T". Noting that a = ‘,
il

rgti we can eliminate the acceleration between the two equations and solve for the ,‘
tension T. Thus, neglecting damping, the total torque acting on the disk can be written’ .‘
3
A
~

\J

g

L
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m
F= mg

Figure 2.1.2. The Accelerated Disk

Iﬂ—' mgrl
dt ~ T+mr

In order to attain a terminal velocity the effects of air resistance must be included.

Again the viscous damping force is proportional to some power of the linear velocity of

the plates on the disk which cause most of the resistance. This modifies the total torque

to be

dw _ mgrl n
IEF T T+me k()

where | is the distance to the center of the resisting plates and k is the proportionality

constant. This equation of motion would demonstrate terminal velocity, however we

have neglected the rolling resistance of the bearings. Including this effect we obtain

. -6 Az O 0 " .
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where f again represents this constant factor. Again, terminal velocity is achieved when
the net torque is zero.

As was the case with the simple pendulum, these equations of motion
considering the viscous forces are not easy to solve analytically. We again turn to

numerical methods to provide accurate approximate solutions to this motion.

2.2 Mathematical Theory

Numerical methods exist for a variety of mathematical tasks. We are concerned
with only those methods useful in solving second order differential equations. Different
methods have advantages and disadvantages involving speed, accuracy and application.
Numerical techniques for solving differential equations are divided into one step and
multistep methods. Both types of methods are utilized in the simulation routines for the
experiments. The primary one step technique is the Runge-Kutta method while the

Predictor-Correcto: method is representative of the multistep techniques.

2.2.1 Runge-Kutta Methods

Runge-Kutta methods are designated as one step methods because they only
require the initial conditions in order to calculate a solution. Because of this capability
they are also classified as being self starting. They approximate the value for the next
point of the solution to a differential equation given an incremental step size for the
independent variable using only the value of the point before. The general one step

method is an iteration that takes the form *

y.+1 = y.l + htb(xi,yi;h) i=0,l1,..,n-1

1

The function 0(xi,yi;h) is called the increment function and tells us how to proceed from
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an estimated Y, for y(xi) to the next point Yieq for y(x_l+ 1). The variable h is the step
size taken with the independent variable. The definition of the function é(xi,yi;h)
depends on the particular method.

If we think of differential equations as specifying the slope of the solution at
points in space we can construct flow fields which give us an idea of the form of the
solution. For example; the differential equation y' = y(2 - y) has the flow field shown in
Figure 2.2.1.° As we move from the point X tox the nature of the flow field governs
the change in the solution y(x) between the two points. It makes sense to sample the
flow field between the points and then specify the increment function as a weighted

average of the samplings. Thus
cbk(xi,y.‘;h) = Alf(o 1,71) + Azf(ez,‘yz) + ..+ Akf(ek,'yk)

The problem reduces to choosing the weights Aj and the specific sample points (Oj,-yj) in
the interval.

Before specifying how the Runge-Kutta method selects these weights, we need to
digress to the more familiar Taylor series method. If we expand our function in a

Taylor series we have

hk+l

h® h¥
¥(x)) = yixp) + y'xh + vz + y"(x0>F + y““(e}———k =yl

When y(x) is sufficiently differentiable the more terms carried, the more accurate the
approximation. Since we are given y'(x) = f(x,y) (our equation to solve) we can

calculate the higer order derivatives as necessary. Our increment function is then®

hk- 1

¢, = T (xyh = flxy) + f‘(x,y)% + ..+ Flx,y) ]

k

The difficulty with this method is that it requires the knowledge of the higher order

derivatives. As a result, higher order Taylor methods are rarely used.
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Figure 2.2.1. Example Flow Field

The German mathematicians C. Runge and M. W. Kutta sought to circumvent
the problem of higher order derivatives inherent in the Taylor method. The basis for the
Runge-Kutta method is to choose the sampling points and weighting functions Aj so that
they agree as well as possible with the increment function for the equivalent Taylor
series method. Note that the familiar Euler’s method Yiep =¥ t hf(x.‘,yi) is both a
first order Taylor series and Runge-Kutta method. The simplest way to demonstrate the
method is to use an example.

For a second order Runge-Kutta method we need two sample points. Choosing
the points (x.‘,y.l) and (xi+ah,yi+ahf(xi,y.l)), where § is undetermined, the increment

function is of the form
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éz(xi,yi;h) = Alf(x,‘,yi) + Azf(x,l+ﬁh,yi+ahf(xi,yi))
We want to match this with the Taylor series increment function
T (x,y:h) = fx,y) + olf (x,y) + £ (x,y)fx,y)]
2Epyph) = fx,y) + S{f (x5, y EpY XY,
To do this we expand the function associated with A2 in a Taylor series yielding
f(xi+Bh,yi+phf(xi,yi)) = f(xi,yi) + fx(xi,y,’)ﬂh + fy(xi,yi)ﬁhf(xi,yi) + E

where the remainder E is of the form Ch2, Substituting into ¢, and collecting like terms

we find ’
éz(xi,yi;h) = (A1 + Az)f(xi,y,l) + Azh[ﬁfx(xi,yi) + afy(xi,yi)f(xi,yi) + Ch]

Comparing this with Tz(xi,yi;h) we get a fairly close match if A1 + A2 = 1 and Aza =

—;—. This means that

. - . 2
<I>2(xi,yi,h) = Tz(xi,yi,h) + Azch

so the error in approximating the function is partly due to the error in the Taylor

expansion Tz(xi,yi;h) of the order Bh? and to the error in matching Tz(xi,y.l;h) of the

order AZChz. Looking at the relationship of the coefficients we see that A2 = 2%’ and
A1 =1- —2% There are an infinite number of solutions for these parameters, however

a natural choice is § = % yielding

h h
Vo1 = ¥ b +5, v+ 5 fx,y))

1

This is the modified Euler’s method where the sampling point is one half of the way

into the interval. Another choice is § = 1 which yields
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h
Yie1 =V, + E-[f(xi,yi) + f(xi+h, yi+hf(xi,yi))]

1

This is Heun’s method and it samples the flow field at the beginning and the end of the
interval and gives each value an equal weight. Figure 2.2.2 is a graphic example of how
the sampling method works for Heun’s method. Both of these methods are of second
order and have the same magnitude of error, proportional to h%. Heun’s method will be
used extensively.

It is possible to use this technique to develop higher order methods, the benefit
being greater accuracy, the cost being increased calculation time. A popular fourth order

method which will also be employed is*

_ h
=y, + -6—[K1 + 2K2 + 2K3 + K4]

Yiv1
where
K, = fix,y)
_ h h
_ h h
Ka - f(x.""?, y‘+?K2)

K4 = f(x, +h, yi+hK3)

Note that this method samples the midpoint of the interval twice and five calculations
are required to step to the next point where the whole process is repeated. Accuracy
can aiso be improved by taking smaller steps. In fact, it is possible to vary the step size
h based on the behavior of the solution to maintain the error of the approximation below
some established limit. Such variable step techniques as well as convergence and error
analysis are thoroughly discussed in the references.’

The algorithm used for the fixed step 4th order Runge-Kutta method is as
follows.

1. Calculate the slope values at the starting point (K 1).

T e e WY
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Figure 2.2.2. Runge-Kutta Sampling Method

2. Use the estimated slope to calculate the solution’s value at one half the interval.
3. Use the estimated value to find the slope at one half the interval (Kz).

4. Use this siope to again calculate the solution at one half the interval.

5. Use the estimated value to find the slope at one half the interval (Ks)'

6. Use this slope to calculate the solution value at the end of the interval.

7. Use the estimated value to find the slope at the end of the intervai (K 4).

8. Calculate the solution’s value at the end of the interval using the weighted
average of the slope values K1 to K "

9. Use the final point as the new initial point and return to step 1.

2.2.2 Predictor-Corrector Methods
The one step methods descussed above only require one point to calculate the
next point after sampling the flow field in the interval. This necessarily requires a great

number of calculations for each point (five for the fourth order method above). There is
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a class of numerical procedures called linear multistep methods which use "back values"

Yoo Youp + -0 Y to determine y These methods, one of which is the

n+k-1 n+k’

Predictor-Corrector, use the past history, or trends, of the numerical solution at equally

spaced points X, X SR estimate the solution at x = x K The general

+1° 7" ! Tn+k n+

form for a multistep method is

k
=-Za

k
+
I h Z ij(xn+j,y )

yn+k jyn+j j=1 n+j

where again y' = f(x,y). It is called a linear k - step method because it is linear in yn+j
and f(xn +j,yn +J.) and it requires k back values to calculate Yok Normally we demand

that @, = 1 and that o | + |8,| > 1. If g, = O then the method is explicit. If
51; # 0 then the value of Yos kis needed to evaluate the right side of the equation to
solve for Yo ek and the method is implicit. The greatest advantage of this type of

method is that we can save the past evaluations of f(x j) and then only need to

n+j"Vn+
make several evaluations of f(x,y) to obtain Yosx This reduces the calculations required
below that of comparable Runge-Kutta methods speeding calculation times. These
methods are not self starting because they require a certain number of back values
before they can proceed. A one step method is generally employed to start a multistep
method.

In practice, the implicit and explicit methods described above are used in pairs.
The explicit method is used to predict the solution’s value at a point and this value is
then used in the implicit method to correct the initial solution value. This is the origin of
the name Predictor-Corrector. The most popular methods are Adams methods. These
are quadrature methods based on aproximations to the integral of the form !

S dx = BASGx) +Afx )+ ..+ Afx )]
Xn +k-1

Graphically the method is demonstrated in Figure 2.2.3.
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y(n+3
y(n) y(n:1) y(n+2)

P

2.

1 t
X(n) X(n+1) X(n+2) X(n+3)
Figure 2.2.3. Quadrature Methods

T

An explicit Adams-Bashforth method looks like

yn-l-l( ) yn+ll-1 = h[Aofn + Alfn-ﬁ-l ..ot Al(-lfn+l:-1]

and an implicit Adams-Moulton method has the form

yxw-k ) yn+k-l = h[Aofn + Alfn-l—l t.o.oF Akfn-t-k]

where fm = f(xm,ym) = y'm. It turns out that the error of a k step explicit method is of
the same order as a k-1 step implicit method. If the error is of the same order it
reduces the number of iterations needed for the corrector to produce an accurate value
limiting the number of calculations. For that reason the Predictor-Corrector pairs o

usually differ by one step and the corrector is normally applied once, although it can be 3

3

iterated several times.
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Using the fourth order Runge-Kutta method described earlier to start the
multistep method it seems logical to maintain the same level of accuracy with a fourth
order Predictor-Corrector method. Using interpolatory numerical integration techniques
the Ajs for different order methods can be specified and standard values are given in
the references. Identifying y as the predicted solution value to be used in the implicit

corrector we can combine the three step Adams-Bashforth predictor

yn+3

h .
— yn+2 + E[23fn+2 - 16fn+1 + 5fn] (3

with the two step Adams-Moulton corrector

= )+ 8fn+z ) fn+1

]

Yn+2 n+3Yn+3

h
Yovs + 5i5f

to obtain a fourth order method requiring three back points and only two evaluations.
Note that in comparison the same order Runge-Kutta method requires five calculations
to obtain the same point. This indicates that the Predictor-Corrector method should be .
significantly faster. This method can also be used in variable step techniques and the i
resulting error monitored.!? Variable step techniques are not really necessary, however, \

if the solutions to the differential equation are generally well behaved.

2.2.3 Extension to Higher Order Differential Equations

Up to this point the methods discussed only addressed first order differential

—~n.-—r-n“-

equations. The equations of motion we are concerned with are second order differential
equations. To apply the preceding methods to higher order equations we first convert
the nth order equation into an equivalent system of n first order equations. Thus ul(x) ;

= y(x), uz(x) =y'x),.., un(x) = y“'l(x). Then using vector notation we set o

Tpp— ' R . ; e - \ an T T e g™ - A :
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Uo(x) u1(x)
m (x) u, (X)
u= . F(x,ux)) =
u (x) £, 0, (x),u_(x)

This gives an equivalent first order system of equations in vector form where
u'(x) = F(x,u(x))

and u(xo) = u, are the initial conditions.!* Now we just apply the numerical methods to
the vector equation and calculate vector quantities. As an example, Euler’s method

becomes

L u + hF(xi, ui)

and one step methods take the form

B, =Yt B uh)

This automatically produces the value of the function and any derivative up to the order
of the original equation at any given point. In the physical systems considered
previously this vector technique gives us the value of the angular displacement and
angular velocity automatically at each point.
The algorithm for the fourth order Predictor-Corrector method is as follows.

1. Calculate the first three back points with a one step method.

2. Calculate the initial functional values at each of the three back points (f 1,fz,f 3).

3. Apply the predictor and estimate ;n +3

4. Calculate the function’s value f__ 5 &t the estimated point §n+ .

5. Apply the corrector to obtain a more accurate Yoss
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6. Move the functional values up and calculate the new value f3 at the corrected {
point Yn+s
7. Return to step 3 (functional values are stored in memory and moved up for each J

pass).
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3. EXPERIMENTAL APPARATUS AND DATA ACQUISITON

3.1 Experimental Setup
Both the physical pendulum and rotating disk use the modified TRS-80 Color

Computer system from Radio Shack (Appendix A). For the junior’s experiment a Zenith

. -

Z-140 PC with 8087 math coprocesser was also used. The heart of this experimental

apparatus is the hardware used to measure the angular velocity of either system. This

e

setup can actually measure the angular velocity of any physical configuration you wish N
to attach to the slotted disk (Figure 3.1). The motion is recorded through the use -.f a
ten centimeter diameter slotted aluminum disk mounted on a ball bearing hub. There
. are ninety slots equally spaced around the circumference of the disk. Straddling the
slotted area of the disk are two photogates which are capable of signalling as each slot
passes. The light beam is broken as the solid portion of the disk between the slots
passes when the disk rotates. Since we know the angular position of each notch the
angular velocity of the disk is easily calcualated by counting the number of notches that
pass in one tenth of a second.

‘ In order to convert the signal from the photogates into a usable (countable)
signal for the computer, a hardware circuit is used to convert the signal and provide the
input to the cartridge slot of the TRS-80 (Figure 3.2). This circuit actually counts edges
and not notches. Thus each photogate will register two counts (two edges) for every
notch. Considering the redundant photogates there are actua'ly four counts per notch.
W This duplicity must be taken into account when calculating the velocity. b
Attached to the slotted disk is another thirty centimeter diameter aluminum

disk. For the terminal velocity experiment all that is required is the addition of two

L]

K . . . . .

K adjustable plates for air resistance. Two rectangular plates measuring 21 centimeters
L]

by 17 centimeters were mounted 22 centimeters from the center axis for this purpose.

e e

To construct a physical pendulum all that is needed is a weight to unbalance the disk.
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To accomplish this a 200 gram mass is attached at the same location as one of the air
resisting plates. This setup is very flexible and other configurations are possible using

the slotted disk as a foundation.

3.2 Software

The hardware described above provides a physical system and a means of
measurement but the photogate signals must be converted into meaningful data and
analyzed by programmed routines. There are several sets of programs listed in
Appendix B. Two different programing languages were used. 6809 Assembler was used
in the procedures for taking the data and plotting as well as the screen driver routines.
These routines can then be linked to the interactive Pascal main program by using
DEFT Pascal Workbench. !* Both of the freshman experiments use this language and
the TRS-80 system exclusively. For the junior level experiment only the data acquisition
and conversion uses the TRS-80 and DEFT Pascal. The data must then be input into
the Zenith Z-140 PC where the analysis routine used is written in Turbo Pascal. ¥

All of the routines use the same technique to record the data. The signal from
the photogates automatically increments a 6809 register by one for each pulse. Every
tenth of a second the contents of the register is recorded in a vector of data points and
zeroed to receive the next set of signals from the photogates. This data vector is then
used by each routine. Only the Jpendata routine actually converts the counts directly
into angular velocities for input into the Zenith microcomputer.

The structure of both of the routines for the rotating disk (Airwheel) and the
physical pendulum (Freshpen) are essentially the same. Initially the student chooses to
take data or run a simulation of the motion. If he chooses to take data the subroutine
instructs the student how to simultaneously release the system (pendulum or disk) and
trigger the counting routine. The data can then be plotted for viewing. After viewing the

data the student may continue or terminate the program. Continuing, the program

T
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returns to the starting point where the data can be taken again, if necessary, or
analyzed with the help of the simulation. Once in the simulation subroutine the physical
parameters of the system are entered and the treatment of the air resistance selected.
One can choose to neglect air resistance or include it linearly or quadratically in the
differential equations. The step size in time for use in Heun’s method must be selected
next. Heun’s method is used to calculate the simulated motion which is plotted and
compared to the actual data points. The previous simulation calculated is also plotted so
that trends can be indentified. The program then allows changes in the step size,
treatment of the air resistance and the initial conditions, in that order. If no changes
are desired the student may elect to terminate the program or return to the beginning
to repeat the simulation or take new data.

The Physpend program on the Zenith PC is a little more powerful and
sophisticated than the above two routines in keeping with the Zenith’s capabilities.
When the program is initiated there are five options available to the student. First,
selecting Takedata permits entering the data points provided by the Jpendata program.
After the data is entered it may be plotted and also shifted if necessary. The routine
then loops back to the beginning where the student can select the simulation option.
Here, as above, the type of configuration is selected, the physical parameters of the
system entered, and the time step specified. Now, however, due to the greater
computing power of the Zenith, the fourth order Predictor-Corrector method is used to
provide a more accurate approximate solution. The simulation may then be plotted. If a
simulation has already been done then a second simulation can be calculated and
plotted. If data has been taken and simulations completed the data can be compared
graphically with each simulation and each simulation compared to the other. A printed
version of the plot can be obtained using the print screen key command. Examples of

such output are in Appendix C. The Smallangle option uses the small angle
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approximation and stores the resulting calculated motion as a first simulation so that
the accuracy of this approximation can be investigated. Finally, with the Compare
option the computer will calculate either the moment of inertia, coefficient of friction or
the coefficient of air resistance for the physical penduluin. This routine uses an iterative
technique and calculates the simulated motion and compares it with the data file point
by point. If the value is outside the tolerance set by the student, it will abort the

calculation, increment the variable and recalculate the motion until all data points are

within the tolerance or until an upper limit, also set by the student, is reached. Here

the accuracy of the numerical method is very important. This was the primary reason

for selecting a fourth order Predictor-Corrector method. The final value for the selected

variable is output and the procedure returns to the options menu at the beginning of the

program. At any time when returned to this menu the program can be terminated by

selecting the Quit option. The flow charts and program listings in Appendix B provide

further details.
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4. DISCUSSION

4.1 Goals and System Selection

Several goals were established in designing the experiments which incorporate
the preceding theory and equipment. First and foremost, the experiments need to teach
a meaningful concept in physics. Secondly, with the current power and availability of
microcomputers the student should be taught to appreciate the value of such systems in
the laboratory, whether in taking or analyzing data. Finally, the student should be
introduced to methods which are available for problems without analytical solutions.
These three experiments accomplish all of these goals.

The selection of the physical system investigated is of obvious importance in
attaining all of the above goals. The choice must lend itself to computer data acquisition
and analysis, as well as the application of a numerical method, while involving more
than trivial physics. Obviously there are numerous possibilities. The area of mechanics
was selected due to the sparsity of existing experiments on mechanical systems. Also,
as equations of motion are in differential form, these systems lend themselves to
numerical analysis. In choosing the specific experiment an endeavor was made to find
systems which perhaps have been addressed in courses yet are seldom seen in
demonstrations or laboratories.

Every student learns about terminal velocity in his introductory physics course.
Perhaps he may even solve a representative problem concerning a falling sky diver, but
sky diving is difficult to demonstrate in the laboratory. The rotating disk with air
resistant fins is a compact system which easily demonstrates this concept. It also
reinforces the concepts of rotational motion and the moment of inertia of a rigid body.
Measuring the angular velocity of such a system by hand would be unreasonably
difficult, so the ease of recording this motion with the slotted disk and TRS - 80

provides a good demonstration of a microcomputer’s power and usefulness. Finally, the
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equations of motion for this system are not analytically solvable when viscous forces are
taken into account. Thus the power and application of a numerical method is easily
demonstrated. The rotating disk in a viscous retarding fluid is a suitable choice
considering the desired goals.

No one can deny the importance of harmonic motion in modern physics. Often
the concept is introduced with the aid of a spring-mass system or simple pendulum.
Unfortunately, pendulums in real life are actually physical pendulums and their
oscillations are not always small. The physical pendulum and large angle oscillations
are often avoided, or treated superficially, due to their more complicated nature and
difficult solution. It is very appropriate, however, for our purposes. This system helps
present the ideas of harmonic motion and the effects of external forces. Over, under and
critical damping are easily ivestigated as well as the real world effects of friction in the
bearings of the apparatus. The accuracy and application of the standard small angle
approximation can be investigated and the concepts of rotational motion and the
moment of inertia reinforced. The computer’s ability to easily record this motion again
demonstrates its value in the laboratory. Numerical methods are definitely applicable to
this system because, even neglecting damping forces, an analytical solution to the
equations of motion is not possible without the small angle approximation. Thus the
power and application of a numerical method is easily shown. In view of the desired
goals the physical pendulum is also a suitable, and possibly more flexible system to

investigate.

4.2 Experimental Design

Using the above goals and physical systems three experiments were developed.
Two of these are intended for college freshmen and are done exclusively with the TRS -
80 computer. The third experiment is intended for college juniors in physics and thus

requires greater knowledge and initiative. It also requires a Zenith Z-140 PC computer
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or comparable IBM compatible system. The insiructions for all three experiments reflect
the different levels of expertise in their presentation and detail (Appendix D).

The structure of both of the freshman experiments are similar. First, the
laboratory setup and general concepts are introduced. Because freshmen are not as
familiar with the theory involved the second section reviews the necessary physics and
the equations of motion for each system. The instructions for the execution of the
experiment are then given, including specific questions that must be answered. The
moment of inertia is calculated for each system using standard shapes and the parallel
axis theorem. The initial parameters of the setup and initial conditions are measured
and recorded. To make the operation of the computer more transparent the terminal
velocity experiment requires the student to calculate a few of the data points by hand
using the improved Euler’s method. This is a good exercise to help the student recognize
the power of the computer and understand how the numerical method is applied. Next
the actual motion of the disk or pendulum is recorded. The student then uses the
computer and the programed numerical method to create a plot of the expected
theoretical motion. He then compares the theoretical and actual motion in order to draw
conclusions about the effects of viscous forces and the values of certain constants. The
configuration of the system can then be changed, the new motion recorded, compared to
theory, and similar conclusions can be drawn. Finally, the accuracy of the numerical
method and its dependence on the step size is investigated pointing out the possible
limitations and concerns of numerical methods.

The experiment intended for juniors is concerned with the physical pendulum
only. It is much less structured than the two freshman experiments. The instructions
only cover the necessary information to operate the programs on both of the computers.

Some areas of interest are suggested, however the scope and depth of the investigation

is left up to the student’s own initiative. The student can easily investigate a large
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number of things because of the greater versatility and power of the Zenith computer.
Areas include, but are not limited to, small and large angle oscillations, the small angle
approximation, the coefficient of rolling friction in the ball bearings, all categories of
viscous damping, the accuracy of the calculated moment of inertia compared to the
computer’s value obtained through curve comparison, and so forth. The accuracy of the
numerical method with varying time step size can also be investigated in a similar
manner to the freshman experiments. The lack of structure and dependence on student
initiative is designed to help develop the student’s natural curiosity, good experimental
methods and techniques.

In the fall of 1987 the two freshman experiments were given to selected college
physics majors as part of their normal junior laboratory course. The juniors were
instructed to rigorously tax the software and experimental setup as a means of trouble
shooting and debugging. As a result of their thorough investigation minor changes in
software were affected, however the entire system as a whole ran smoothly. More
importantly, the objectives set for these experiments seemed to be genuinely met. Most
students indicated that the exercises were valuable in conveying the concepts of

terminal velocity and harmonic motion. They also felt the experiments reinforced the

usefuiness of the computer in the laboratory and demonstrated an application of a

pertinent numerical method. The junior’s experiment was not tested in this manner, but
when the freshman experiments were given to the juniors they were not provided the
instructions in Appendix D. Instead their instructions were less structured, much like
those intended for the juniors. The performance of the juniors on these experiments
indicates that the design and structure of the junior’s experiment should also

successfully meet the stated goals.
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4.3 Limitations and Possible Improvements

As is normally the case, these experiments have some limitations and are
subject to improvements. While large angle oscillations can be accommodated for the
pendulum, excessively large angles ( greater than 120 degrees ) will cause plots to go
off the screen for displacement graphs. Likewise, if the angular velocity is large the
resulting graphs will also go off the screen. This can be handled by properly selecting
the system, or by changing the plotting scale in the program if necessary. Thus, the
setup will accomodate any configuration of pendulum and disk, subject to some common
sense.

There are also several areas where errors can be introduced. First, because the
notched disk has a fixed number of notches, the values recorded for the angular velocity
form a discrete set. If the actual value for the angular velocity is between two of these
values it will be rounded down to the lower value. Accuracy is less important for the
freshman experiments as comparisons are graphical and the resolution is less
necessary. For the junior’s experiment the accuracy of the data is much more important
since numerical calculations are conducted with the actual values for the angular
velocity. A suggested improvement would be to increase the number of notches on the
disk. Doubling the number of notches would cut the inaccuracy in taking the data in
half. The angular velocity values would still form a discrete set, but there would be
twice the number of values.

Another source of inaccuracy and a potential problem is the initiation of the
counting routine and the simultaneous release of either the disk or pendulum. Since all
of the simulations assume that the initial angular velocity is zero, any motion before the
computer begins to take data will make it impossible to match the data curve. For the
two freshman experiments there is no recourse but to retake the data. The program for

the Zenith PC does have a routine that will shift the data to correct for initiation
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problems. Remedies for :his difficulty take two forms. First, it should be possible to
utilize some sort of electronically controlled mechanism to release the pendulum or disk
at the same time the counting routine is initiated from the keyboard. This would reduce
the error significantly. Another option would be to use the data itself to provide an ;
initial value for the angular velocity. This would only work if the system was already
moving when the computer began to take data. If it was not in motion the resulting ;
accuracy would be no better than if the system had been released by hand.

Finally, it seems to be counter productive to take data with one microcomputer
and then input numerical values by hand into another. The Zenith PC is capable of

accepting input through its RS 232 serial port. Although the TRS - 80 uses an 8 bit

[P oy oy g g

processor as opposed to the Zenith’s 16 bit processor it would be possible for the TRS -
80 to transmit its data to the Zenith. This was explored, however modifications to the
peripheral TRS - 80 where the data was taken seemed to preclude any transmission
back out of the system. It should also be possible to take data directly with the Zenith t
through the RS 232 serial port or an expansion slot. This was not explored as ]
thoroughly because of the existing data taking capabilities of the TRS - 80. Certainly
this is the way to proceed in the future considering the limited speed and memory of the

TRS - 80 compared to the Zenith PC.
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5. CONCLUSIONS

With the institutional desire to provide a complete and practical education it has
become important to expose students to the power and versatility of microcomputers in
the laboratory. This is becoming increasingly important as these systems are more
readily available in universities and industry. The incorporation of the physcical
pendulum, rotating disk and a numerical method for solving differential equations into
the laboratory using a microcomputer helps accomplish these goals. The computer is
used as an educational tool to teach the applicable physics of each system. Using the
same computer to collect and analyze the data demonstrates its power and versatility.
Finally, the use of a numerical technique demonstrates a powerful and useful method
for solving analytically difficult problems.

There are other possible structures for the experiments presented which could
accomplish the same results. The limited exposure to current students seems to indicate,
however, that the proposed experiments will be successful in fulfilling the purpose for
which they were designed. As needs change or capabilities in the laboratory increase
the systems and software are easily modified to accommodate different physical
configurations or changed emphasis for each experiment;. A great number of possibilities

exist for similar exercises and their development should be looked into in the interest of

keeping education in step with technology and its practical application.
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APPENDIX A: The Modified TRS-80 '
The physics department at Rensselaer Polytechnic Institute has been

investigating the use of computers in the laboratory for educational purposes for several

years. The original concept was to have a central unit running the main software ::
routines and a number of peripheral terminals. This structure permits small groups of ::‘j
students in the freshman laboratory to have simultaneous access to a computer. The ;\,
initial system implemented was made up of TRS-80 Color Computers. In order to ‘
establish the desired network (Figure A.1l) some simple hardware modifications were '
made and software was developed to link the network together. ‘::
The hardware modification primarily consisted of "piggy backing" an AM 2732 ‘i
chip at the Ul3 location on the circuit board (Figure A.2). This creates a greater :‘
memory storage area for down loaded programs. The serial port can be used to ;
transmit the programs to the peripheral stations, however our systems were modified to (
transmit through the cassette port. This allows the connection of the serial printer to y
the main unit without disturbing the system. The cartridge port on the central unit is '
used for the standard peripherals such as disk drives. :E
In order to send programs to the substations a down loading routine was ‘
developed. The resident BASIC language was abandoned in favor of DEFT Pascal ’
Workbench. This language package allows programing in either Pascal or 6809 AE
Assembler language. !* It can compile either language into a standard object code. Y
Programs and subroutines or procedures can then be linked together and a final :
program generated in binary machine language This binary code is then run using the
execute command on the TRS-80. This package allows the different parts of a program \j
to be written in the most convenient language and then incorporated into the main :
program. The entire procedure is executed through the use of a short BASIC program. "v
The following pages list the BASIC language program used to initiate the down loading !
g
u!
32 .::
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Figure A.1. TRS-80 Network Setup

procedure and the main routine and subroutines written in 6809 Assembler. The
resulting program will transmit any binary program from the central unit down to the
work stations. Since theoretically it is possible to transmit in either direction some
subroutines have been included for the reverse procedure, although they are not used in
the down loading program (Dump).

When down loading a program it is possible to leave the resident BASIC in the
peripheral computer intact. The following down loading routine overwrites the resident
programing (it actually makes it unavailable for use) in order to allow for more efficient
screen usage, better graphics and more available program memory. As a result, driving
routines for the screen must be sent with the down loaded program or else the monitor
will not function as desired. These driver routines include clearing the screen (cls),
graphics (plot) and keyboard input and polling. The 6809 Assembler language listings of

the routines follow the down load program listings. In order to insure that DEFT Pascal
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Expansion Connector

P'ﬂ%backed . o
A Ch:?g oC [ U13 uas Microprocessor ¢

-
(Reset ) 3

ROM ui2 u22 RAM Control

)
O ut1 u21| RAM 3

U9 u20 RAM )

RAM v
assette VDG us u1s y

-

RAM "
RS- PIA u7 u1s b

232C

u17{ RAM o

Video iy
uie| RAM '
Modulator

u1s -3

Power PIA U2 o
U14| RAM

'.,../

o g S

Power Supply

Figure A.2. Color Computer Circuit Layout ::
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recognizes these new commands when compiling code the Pascal library that comes with
DEFT Pascal Workbench must be modified. The lines that must be added are at the end

of this appendix. A
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DOWNLOAD INITIATION PROGRAM IN BASIC

10 REM $2000-2100 DUMP PROGRAM
20 REM $220-7F00 BUFFER

30 REM

40 PCLEAR 1:CLEAR 50,&H1F00:CLS
50 INPUT"DRIVE";D

60 DRIVE D

70 LINE INPUT"FILENAME: ";A$

80 A$=A$+".BIN"

90 LOADM A$,&H2000

95 DRIVE 0

100 LOADM "DUMP.BIN"

110 REM DISK OFF

120 POKE &HFF40,0

130 PRINT"HIT ANY KEY TO TRANSFER"
140 IF INKEY$="" THEN 140

150 PRINT"SENDING..."

160 EXEC &H2000:GOTO 130

DOWNLOAD PROGRAM IN 6809 ASSEMBLER

*

*DOWNLOAD OF PROGRAM
* $4200-$6200
*

SETUPNET EXT
SETWRITE EXT
WRITEBLK EXT
*

*

MAIN

START ORCC #8§50
LBSR SETUPNET
LBSR SETWRITE
LDX #$4200

LDY #$6200
LBSR WRITEBLK
RTS

END

36

v v ¢

(A 4




AT PO PUN TR N XN N Xy RN VY AN AN A A A AT O A AT N 0,8 Wad 020 0.8'0.8%8. 8" 8. a0 w¥a ntd aws 202° th' o8y
37 ‘

TITLE /NETWORK SUBROUTINES/
*

* 8/24/86

<«

* SUBROUTINES TO HANDLE NETWORK ::
* FAST VERSION %
* %
* ¥
PUBLIC SETUPNET ,‘

PUBLIC SETWRITE
PUBLIC SETREAD

PUBLIC SETNONE 3
PUBLIC SETBUSY ‘
PUBLIC CLRBUSY :
PUBLIC READBLK

PUBLIC WRITEBLK
PUBLIC NETREAD

PUBLIC NETWRITE
PUBLIC NETBUSY )
*

KAl

*
*

NETSTART RMB 2 g
NETLENGTH RMB 2 o
NETERROR RMB 2 H
*

PUBLIC NETSTART
PUBLIC NETLENGTH "
PUBLIC NETERROR h
*

* AR
J
* 2

*PORT BITS:

. N

* PA7 BUSY IN 0=BUSY ;

* PA6 DATA IN R

* PA5 READ CONTROL 0=ACTIVE W
y

* PA4 WRITE CONTROL 0=ACTIVE
* PA3 DATA OUT

* PA2 BUSY OUT 0=ACTIVE "
* ;
* ::
. i\
* NETREAD: 9
*+ NETSTART=START OF BUFFER

*+ NETLENGTH=LENGTH OF BUFFER

E

* \
x

NETREAD LDX NETSTART,PCR GET START ADDRESS
LDY NETLENGTH,PCR AND LENGTH

Py VL RN Wi gyt



BSR READBLK

STY NETLENGTH,PCR

CLRA

STD NETERROR,PCR ERROR CODE
RTS

*

*x
*

*NETWRITE:
* NETSTART=START ADDRESS

* NETLENGTH=NUMBER OF BYTES TO WRITE

*
*

NETWRITE LDX NETSTART,PCR GET START ADDRESS

LDY NETLENGTH,PCR AND LENGTH

LBSR WRITEBLK
CLRA

CLRB

STD NETERROR,PCR
RTS
*

*
*

*SETUPNET

SETS UP PIA REGISTERS
DISABLES TRANSMIT,RECEIVE

* * ¥ ¥ ¥

EXIT: A,CC CHANGED
*

SETUPNET LDA #$34
STA $FF20

LDA $FF21 MAKE DDR
ANDA #$F8

STA $FF21

LDA #$3E I100 0001

STA $FF20

LDA #$04 MAKE DR
ORA $FF21

STA $FF21

LDA $FF23 CB2=INPUT
ANDA #87 CB2 INTERRUPTS OFF
STA $FF23

RTS

*

*
*

SETNONE LDA #§34 INITIAL BITS
STA $FF20
RTS

OO ORI
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* SETWRITE

*

* SETS 8T28 TO WRITE
*

*

EXIT: A,CC CHANGED
*
SETWRITE LDA $FF20
ORA #8$20
ANDA #$EF
STA $FF20
RTS

*

SETREAD

SETS 8T28 TO READ

#* # ¥ X R *

EXIT: A,CC CHANGED
*
SETREAD LDA $FF20
ANDA #$DF

ORA #§10

STA $FF20

RTS

SETBUSY
PULLS BUSY LINE LOW

[ 2K JEE IR N B B BB

EXIT: A,CC CHANGED
*

SETBUSY LDA $FF20
ANDA #$FB

STA $FF20

RTS

x
E

* CLRBUSY
RELEASES BUSY LINE

* R O#* x

EXIT: A,CC CHANGED
*

CLRBUSY LDA §$FF20
ORA #$04

STA $FF20

RTS

*

%

* FUNCTION NETBUSY : BOOLEAN;
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x

NETBUSY CLR 4,S RETURN VALUE=FALSE '
CLR 5,8 ¥
TST $FF21 CHECK BIT 7 "
BMI NB1 1=NOT BUSY

INC 5,5 0=BUSY it
NB1 RTS !
* '
* 3
* READBLK .
*
* READS DATA FROM NETWORK; MUST BE IN READ MODE; g
* ‘
* ENTRY: X=BUFFER START ADDRESS 1
. Y=BUFFER LENGTH X
*
* EXIT: A,CC CHANGED y
. X=ADRESS OF LAST BYTE +1 v
. Y=# OF BYTES ACTUALLY READ 3
* Y
. Z=1 & B=0: NO ERROR Lt
*
* Z=0 ERROR: A
. CODE IN B; i
. $FF BUFFER OVERRUN d
. .
ot
* U

READBLK PSHS U,Y,CC SAVE REGISTERS
BSR SETREAD
ORCC #$50 NO INTERRUPTS
LDU #$FF20 U=PORT ADDRESS
*WAIT FOR VALID START OF TRANSMISSION
SYNCS LDY #6
SYNC BSR BYTE GET A BYTE
CMPA #$16 SYNC?
BNE SYNCS
LEAY -1,Y
BNE SYNC
SYNC1 BSR BYTE WAIT FOR START FLAG
CMPA #316
BEQ SYNC1 o
CMPA #2 n's
BNE SYNCS
*READ LENGTH ‘
BSR BYTE GET HIGH BYTE '
PSHS D SAVE D
BSR BYTE GET LOW BYTE '
STA 1,8 PUT ON STACK

g e )

3 > s
- W -

PULS Y GET LENGTH h
CMPY 1,S TOO BIG? 3
BHI ERR :

STY 1,S SAVE ACTUAL LENGTH
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DATA BSR BYTE GET DATA BYTE
STA ,X+ STORE IT
LEAY -1,Y DONE?

BNE DATA

EXIT LBSR SETNONE DRIVERS OFF X
PULS CC,Y,U s
TSTB SET Z FOR ERROR FLAG '
RTS BYE ¥

ERR LDB #$FF FLAG ERROR ¢
LDY #0 NO BYTES READ
BRA EXIT ¢

*

*

* BYTE READS A BYTE
ENTRY: U=$§FF20

EXIT: A=NEW BYTE
B=0
U=8$FF20
X,Y: UNCHANGED

L3R 2N JEE JEE JEK K 2N BB
I R ]

-

BYTE LDD #$0940 A=BIT COUNT B=BIT MASK FOR PORT
PSHS A

WAIT BITB ,U WAIT FOR START BIT

BEQ WAIT

NOP CENTERING DELAY

NOP

BYTEL LDB ,U GET BIT

LSLB SHIFT INTO A \
LSLB ]
ROLA !
TFR B,B DELAY SOME MORE
NOP

NOP

DEC ,S ANY MORE BITS?
BNE BYTEL

PULS B,PC

WRITEBLK

M, N O N

SENDS BLOCK OF DATA
FORMAT: )
VALUE COUNT EXPLANATION |

$16 10 SYNC BYTES

I'20R JEE SEE JEE BEE K NEE BEE BEE EE BEE R

'8

D00 000 O O UL AU M R b KM MO A X 101 (C (DT AR At e e DO
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$02 1 START INDICATION

$HH 1 HIGH BYTE OF LENGTH

$LL 1 LOW BYTE

$XX $HHLL 'LENGTH’ DATA BYTES

ENTRY: X=START ADDRESS OF BLOCK
Y=LENGTH OF BLOCK

EXIT: X=END ADDRESS +1

D,CC CHANGED
Y, U UNCHANGED

IR TN SEE N JEE JIE JEE JEE BEY JNE BN R BEE JEE BER

WRITEBLK PSHS Y,CC SAVE ADDRESS
LBSR SETWRITE

ORCC #850

LDY #10 SEND 10 SYNC BYTES
WB1 LDA #§16 $16=SYNC BYTE
BSR OUT

LDA #70 DELAY ONE BYTE TIME
WBD DECA

BNE WBD

LEAY -1,Y

BNE WB1

LDA #02 START SEQUENCE
BSR OUT

LDA 1,S HIGH ORDER LENGTH
BSR OUT

LDA 2,S AND LOW ORDER

BSR OUT

LDY 1,8

WBL LDA , X+ GET BYTE

BSR OUT

LEAY -1,Y SEE IF DONE

BNE WBL

LBSR SETNONE

PULS CC,Y,PC

E ]
*

* OUT SENDS ONE BYTE TO NETWORK
ENTRY: A=BYTE

* % ¥ ® #

EXIT: A,B=0
CC CHANGED

*

OUT LDB #10 START BIT + 8 DATA + 1 STOP
PSHS B
LDB #$08

42
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ORB $FF20 PA3(DATA BIT)=1;
BRA OUT3

OUT1 ASLA NEXT BIT INTO CARRY
BCC OUT2Z IF A ZERO,BRANCH
ORB #$8 ELSE SET TO 1

BRA OUT3

OUT2 ANDB #$F7 SET TO ZERO
BRA OUT3 PRESERVE TIMING
OUT3 STB $FF20 SEND THE BIT
NOP DELAY SOME

NOP

NOP

DEC ,S DONE?

BNE OUT1

PULS B,PC BYE

*

END

B A O N R R M SR S 5
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O

DRIVER ROUTINES FOR THE MODIFIED TRS-80

Eaags

*

GSTART EQU 0 START SCREEN

GEND EQU 2 END SCREEN ,
GY EQU 4 "
GX EQU 5 .
GFLAG EQU 6 4
*®

*PUBLIC ROUTINES
*

PUBLIC CLS PASCAL CALL A
PUBLIC CLRTOP PASCAL CALL

PUBLIC CURSOR PASCAL CALL

PUBLIC GSELECT PASCAL

PUBLIC GSETUP PASCAL CALL

PUBLIC GSHOW PASCAL/ASM

PUBLIC PLOT PASCAL CALL

PUBLIC SETT ASM CALL

PUBLIC PUTC CALLED BY PATCHED PASIO
PUBLIC GETCURSOR PASCAL CALL
PUBLIC INVERSETEXT PASCAL CALL
PUBLIC VPRINT PASCAL CALL

PUBLIC GETKEY

PUBLIC INKEY

E 3

A XK I

| -

C O M XKW,

.

-

*EXTERNAL REFERENCES

*

CSET EXT )
. .

GSELECT
SETS GLOBAL POINTER TO GRAPHICS CONTROL BLOCK

L IEE N BEE IR

*

4
CALL: GSELECT(BLKADD:INTEGER)
\J
+

GSELECT LDX 4,S GET ADDRESS :
STX $88 Iy
RTS |
* ¢
* GSETUP(BLKADD,STARTADD,ENDADD:INTEGER) ¥
*
BLKADD=ADDRESS OF CONTROL BLOCK }
STARTADD=ADDRESS OF SCREEN START
ENDADD=ADDRESS OF SCREEN END

IF ZERO, DEFAULTS TO 6143+STARTADD

* # % »

*

* STACK FRAME:
BLKADD EQU 8
STARTADD EQU 6
ENDADD EQU 4

X B B B a_a
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*

GSETUP LDY BLKADD,S

LDD STARTADD,S

STD GSTART,Y SAVE START ADDRESS
LDD ENDADD,S y
BNE GSETUP1

LDD #6143

ADDD STARTADD,S

GSETUP1 STD GEND,Y SAVE END ADDRESS ¢
CLR GX,Y
CLR GY,Y
CLR GFLAG,Y
RTS

*

. !
* GSHOW DISPLAYS SCREEN ‘
*
GSHOW LDD [$88] GET START ADDRESS
BSR SETSAM SET ADDRESS
STA $FFC3 SET SAM MODE CONTROL REGISTER
~ STA $FFC5
' LDA #248 SET VDG CONTROL
STA 65314
RTS
*

* SETSAM SETS SAM TO ADDRESS IN A
* (HIGH 7 BITS)
* CLEARS GRAPHICS MODE BITS

*

hal *

SETSAM ANDA #$FE MASK OFF ADDRESS BITS
LDX #$FFD4

STS1 STA ,--X CLEAR BIT
CMPX #$FFCO0 DONE?

BEQ STS2

LSLA GET NEXT BIT

BCC STS1

STA 1,X SET SAMBITIF 1
BRA STS1

STS2 RTS

*

* CLEAR ROUTINES

) *
; *
* CLEAR TOP
) *
CLRTOP LDD#256
BRA CLR
™

* CLEAR WHOLE SCREEN

*

CLS LDD #6144

S 9“.-’.1‘.‘10"-t*’-&"?a”-.t‘l’.‘l\\'i.a..m .-",o. ..’h‘m DR "u’l!o Nm:m&ﬂm "QC"}?;\?\"{*}} R\';":':"?':“
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»
CLR LDY $88 3
LDX GSTART,Y "]
LEAX DX :
CLR1 LDD #$FFFF '
TST GFLAG,Y ;
BEQ CLR2 ™
CLRA '02
CLRB W
CLR2 STD ,-X X
STD ,-X ]
STD ,-X
STD ,--X "
STD ,-X .
STD ,--X 5
STD ,--X A
STD ,-X '
CMPX GSTART,Y o
BHI CLR2 R
CLR GY,Y "
CLR GX,Y o
RTS
*

*

* PUTC HANDLES CHARACTER OUTPUT 3
*

* J
PUTC PSHS D,X,Y, U SAVE THINGS
LDY $88 GET POINTER

ANDA #$7F MAKE <128 ]
CMPA #320 CONTROL CHAR.?

BLO CONTROLCHAR o
LBSR PUTCOK DISPLAY IT o
LDB GX,Y UPDATE CURSOR; ¢

ADDB #5 ADD ONE CHAR. WIDTH 3

BCS PUTC1 CRLF IF PAST END 3
CMPB #251 OR TOO FAR RIGHT N
BLS PUTC2 W
PUTC1 BSR CRLF i

PULS D.X,Y,U,PC BYE

PUTC2 STB GX,Y UPDATE X A
PULS D,X,Y,U,PC BYE
*

CONTROLCHAR CMPA #$0D CR? .
BNE NOCRLF Ny
BSR CRLF DO CRLF X
PULS D,X,Y,U,PC
x

>
NOCRLF CMPA #$0A LF: 5
BNE NOLF 3
BSR LF DO LF he

"

PULS D,Y,X,U,PC
=

b
b,
"
i
<@
o

|3
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NOLF CMPA #8 BACKSPACE?

BNE PUTCEXIT NO, INVALID CHAR
* DO BACKSPACE

LDD GY,Y BACK UP ONE CHAR.
CMPB #5 BEGINNING OF LINE?
BHS BACK1

CMPA #9 TOP OF SCREEN?

BLO PUTCEXIT

SUBA #9 NO, BACK UP ONE LINE
CLRB TO COLUMN 251

BACK1 SUBB #5 BACK UP ONE WIDTH
STD GY,Y

LDA #$20 PRINT SPACE

BSR PUTCOK

PUTCEXIT PULS D,X,Y,U,PC BYE

*

CRLF CLR GX,Y X=0 DOES CR
LF LDA GY,Y Y+9 DOES LF
ADDA #9

CMPA #191-9 PAST END?

BHI SCROLL IF YES, SCROLL IT
STA GY,Y

RTS

*

* SCROLL

x

SCROLL PSHS D,X,Y,U SAVE THINGS
LDX GSTART,YSTART

LEAU 32*9,X ONE LINE DOWN

LDY GEND,Y END ADDRESS

PSHS Y

TFR X,Y

*

* PARTIALLY UNFOLLED LOOP

* MOVES ONE SCAN LINE (32 BYTES)
* AT A TIME

*

SCROLLOOP PULU D, X GET 4 BYTES
STD ,Y+ + STORE THEM

STX ,Y++

PULU DX ETC

STD ,Y++

STX ,Y+ +

PULU D,X

STD .Y+ +

STX ,Y++

PULU D,X

STD .Y+ +

STX ,Y+ +

PULU D,X

STD ,Y+ +

STX ,Y+ +

47
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: PULU D,X
¢ STD ,Y++

STX , Y+ +

PULU D,X

STD ,Y+ +

STX ,Y++

PULU D,X

STD .Y+ +

STX .Y+ +

CMPU ,S SEE IF DONE
BLO SCROLLOOP

LDD #$FFFF CLEAR BOTTOM LINE
o SCRL1 STD ,Y+ +

o STD ,Y++

‘ STD ,Y++

. STD ,Y+ +

¢ CMPY ,S SEE IF DONE

; BLO SCRL1

43 LEAS 2,S CLEAR STACK
) PULS D,Y,X,U,PC BYE

A

*

* PUTCOK DRAWS CHARACTER

*

ENTRY:
Y=ADDRESS OF DESCRIPTOR
A=CHARACTER

STACK USAGE:
3,S BYTE COUNT
1-2,S STORAGE
0,S SHIFT VALUE

# O O H OH K K H O

*

PUTCOK SUBA #$20 OFFSET FOR NON-PRINTING CHARACTERS
LDB #$8 BYTES PER CHAR

PSHS B LOOP COUNTER

MUL INDEX TO CHARACTER

LEAU CSET,PCR BASE OF CHARACTERS

LEAU D,U ADDRESS OF CHAR

LBSR SETT GET PIXEL ADDRESS,BIT

LSLB ADJUST BIT SO MUL DOES SHIFT

PSHS B,X SAVE SHIFT FACTOR,RESERVE 2 BYTES
CMPX BEND,Y PAST END?

BHS PUTCO3

PUTCO2 LDA ,U+ GET CHAR BYTE

LDB ,S GET SHIFT FACTOR

BEQ PUTCNS DON'T SHIFT IF ALREADY OK

MUL SHIFT CHAR BYTE

PUTCNS STD 1,S STORE SHIFTED VALUE

LDA #$F8 GET MASK BYTE

LDB ,S GET SHIFT FACTOR

BEQ PUTCNSI1

MUL SHIFT MASK

R N e T Tt S e AV W W T AV Y
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PUTCNS1 TST GFLAG,Y

BEQ NORMCHAR

COMA FLIP MASK

COMB

ANDA ,X RESET BITS OF BACKGROUND
ANDB 1,X

BRA BITCHAR

NORMCHAR ORA ,X SET BITS OF BACKGROUND
ORB 1,X

BITCHAR EORA 1,S FLIP BITS CHAR
EORB 2,S

STD ,X STORE IT ON SCREEN

LEAX $20,X NEXT ROW

CMPX BEND,Y OFF SCREEN?

BHS PUTCO3

DEC 3,S ANY MORE BYTES?

BNE PUTCO2

PUTCO3 PULS D,X,PC

*

#

»
o)
c
Q
3

SETS/RESETS PIXEL
CALL: PLOT(X,Y,FLAG :INTEGER)

PASSED:

B,S: X LOW

A,S: X HIGH

9,6: Y LOW

8,S: Y HIGH

7,S: MODE 0=DOT ON

6,S: HIGH MODE (UNUSED)
4-5,S: LINK ADDRESS
2-3,S: RETURN ADDRESS
0-1,S: SAVED GX,GY

HOR R OK R R R KKK KK KK NN

CC CHANGED

*

PLOT LDY $88 GET POINTER
LDD GY,Y

PSHS D

LDA 9,S A=Y COORD
LDB $B,S B=X COORD
STD BY,Y

BSR SETT

CMPX GEND,Y

BHI DOTEND

TST 7,8

BEQ DOTCLEAR
DOTSET ORB ,X

BRA DOTPUT

AR L W . y ~ . P . . ; - -
LM QL WY, W l... (AL l.\ \“. Wb, i‘;,“n,l‘! ..“1 I'tt ) 0,.‘& o.l't () ,0‘. l‘.. “J‘ab 5 ‘..Q" t.l.o C‘\o A%

49

'.r'..i ..-._,«.-'., ':'J‘



IR O O QI SR MM R MR R R P g )

R NN R L R M U RN N U U U WU U WL

DOTCLEAR COMB
ANDB X
DOTPUT STB ,X
DOTEND PULS D
STD GY,Y

RTS

*
*

* CURSOR
MOVES CURSOR TO X,Y

* O *

* CALL: CURSOR(X,Y:INTEGER)
*x
* STACK FRAME:
7,8: X LOW
6,S: X HIGH
5,8: Y LOW
4,S: Y HIGH
2-3,S: LINK ADDRESS
0-1,S: RETURN ADDRESS

® O H X * *

*

CURSOR LDY $88
LDB 7,S

LDA 5,8

STD GY,Y

RTS

*

* SETT SETS UP
*
ENTRY:
GY=Y
GX=X
Y=POINTER TO CONTROL BLOCK
EXIT:
BYTE ADDRESS IN X
BIT # IN A
BIT IN B

L IR JEE JNE B R B N

*

SETT LDD GY,Y
LSRA

RORB

LSRA

RORB

LSRA

RORB

ADDD GSTART,Y
TFR D, X

LDA GX,Y

ANDA #7

PSHS Y

LEAY SHFTB,PCR

Bt ) Al

0g bat 62 % 1av Uat WD Na® Ua? fa% 2% AT BatotiF Ba¥ Sai el §ot §a® ac @aV ¢a® $2° 1a% §i° pav

50

"

S BT T e AR IV0 TR G RN R I P Je FU I T e g vy IS P O T P
A NN A N Y P A A O A M e WA Y



EREENY *
v 5%\_",'& h‘.w,"f‘

PRSI R O KA R AR A R R U N U N E R N PR RLUNG WL PO PL WL

LDB A,Y

PULS Y,PC
SHFTB FDB $8040
FDB $2010

FDB $0804

FDB $0201

*

*x

* GETCURSOR RETURNS POSITION TO PASCAL

*

* CALL: GETCURSOR(VAR X,Y:INTEGER)
*

* STACK FRAME:

* 6-7,S: ADDRESS OF X

4-5,S: ADDRESS OF Y

2-3,S: LINK ADDRESS

0-1,S: RETURN ADDRESS

* * *

*

GETCURSOR LDY $88
CLRA

LDB GY,Y

STD [4,S]

LDB GX|Y

STD [6,S]

RTS

*

*

XK

et 2T b 8 000 D 4 e t'h. 8 4" vg §% §728%a ati ol Bal tal va} e
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* INVERSETEXT: SETS INVERSE FLAG TO VALUE FROM PASCAL

*

* CALL: INVERSETEXT(FLAG:BOOLEAN)

*

* STACK FRAME:

* 5,S: BOOLEAN FLAG

* 4,S: UNUSED

* 2-3,S: LINK

* 0-1,S: RETURN ADDRESS
E 3

INVERSETEXT LDA 5,S
LDY $88

STA GFLAG,Y

RTS

*

x

* VPRINT

*

PRINTS VERTICAL STRING
CALL: VPRINT(S:STRING)
STACK FRAME:

5-N,S: STRING
4,S: LENGTH

%* K # R # ® *

A AN N Tt R T (R S Sy e

Lo xSt
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* 2-3,S: LINK i

* 0-1,S: RETURN ADDRESS 4
*
VPRINT LDY $58
LDB GX,Y Y
CMPB #251 CHECK X COORD '
BLS VP1 !
LDB #251 s
VP1 STB GX,Y o
LDB 4,S GET LENGTH .
LEAX 5,8 GET POINTER TO STRING 3
PSHS U SAVE DYNAMIC LINK (FOR PASCAL) 0
PSHS B,X SAVE STRING INFO !

VPL LDA GY,Y MOVE PRINT LOCATION o
CMPA #183 AT BOTTOM OF SCREEN? ¢
BLS VPL1

LDA #183 ;‘;
VPL1 ADDA #9 DOWN 9 COLUMNS )
STA GY,Y STORE IT \

PULS B,X GET INFO
TSTB SEE IF DONE 9
BEQ VPEND

DECB

LDA ,X+ GET CHAR
PSHS B,X SAVE INFO
LBSR PUTCOK

BRA VPL

VPEND PULS U,PC

*

o Mg e G

"

DFTPOLLKEY EXT
*

*

* PASCAL CALL

*

* FUNCTION INKEY:CHAR
*

* WAITS FOR A KEY TO BE PRESSED
* RETURNS ASCII CODE OF KEY

*

* STACK:

*  5,S: RETURN FUNCTION BYTE
*  2:3,8: LINK

*  0-1,S: RETURN ADDRESS

*®

T - -

> PO

-

INKEY LBSR DFTPOLLKEY by
BEQ INKEY
STA 5,8
RTS
*®

. N

* PASCAL CALL :

* \J

* FUNCTION GETKEY:CHAR;

a0 O 000 U OO N NN TN TR AN T RN Ak 'wmzem@:swzmcm-wc-cwmmmmmﬂ
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*

* SCANS KEYBOARD ONCE

* RETURNS ZERO IF NO KEY
*

GETKEY LBSR DFTPOLLKEY
STA 5,8

RTS

*

END

OIS ks St
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CHARACTER SET FOR DRIVER SUBROUTINES

PUBLIC CSET ,
CSET FCB $00,$00,$00,$00,$00,$00,$00,$00 ]
FCB $20,$20,$20,$20,$20,$00,$20,$00

FCB $50,$50,$50,$00,$00,$00,$00,$00 J

FCB $50,$50,$F8,$50,$F8,$50,$50,$00
FCB $20,$38,$60,$30,$28,$70,$20,$00
FCB $68,$68,$10,$20,$20,$58,$58,$00
* FCB $20,$50,$50,$20,$68,$50,$28,$00
FCB $20,$70,$A8,$20,$20,$A8,$70,$20
FCB $30,$20,$40,$00,$00,$00,$00,$00
FCB $10,$20,$40,$40,$40,$20,$10,$00
FCB $20,$10,$08,$08,$08,$10,$20,$00
FCB $00,$48,$30,$78,$30,$48,$00,$00
FCB $00,$20,$20,$F8,$20,$20,$00,$00
FCB $00,$00,$00,$00,$30,$30,$20,$40
FCB $00,$00,$00,$78,$00,$00,$00,$00
I FCB $00,$00,$00,$00,$00,$30,$30,$00
N FCB $08,$08,$10,$20,$20,$40,$40,$00
. FCB $30,$48,$48,$48,$48,$48,$30,$00
g FCB $20,$60,$20,$20,$20,$20,$70,$00 ’
FCB $30,$48,$08,$10,$20,$40,$78,$00
! FCB $30,$48,$08,$30,$08,$48,$30,$00 ‘
) FCB $08,$18,$28,$48,$78,$08,$08,$00
FCB $78,$40,$70,$08,$08,$48,$30,$00
FCB $10,$20,$40,$70,$48,$48,$30,$00 '
FCB $78,$08,$08,$10,$20,$40,$40,$00 '
- FCB $30,$48,$48,$30,$48,$48,$30,$00
® FCB $30,$48,$48,$38,$08,$10,$20,$00 \
: FCB $00,$30,$00,$00,$30,$00,$00,$00 d
FCB $00,$30,$00,$00,$30,$10,$20,$00
FCB $08,$10,$20,$40,$20,$10,$08,$00
FCB $00,$00,$78,$00,$78,$00,$00,$00
FCB $40,$20,$10,$08,$10,$20,$40,$00
. FCB $30,$48,$08,$10,$20,$00,$20,$00
: * FCB $30,$48,$58,$58,$40,$48,$30,$00
- FCB $F8,$40,$20,$10,$20,$40,3F8,$00
FCB $30,$48,$48,$78,$48,$48,$48,$00
FCB $70,$48,$48,$70,$48,$48,$70,$00 ¢
FCB $30,$48,$40,$40,$40,$48,$30,$00
FCB $70,$48,$48,$48,$48,$48,$70,$00 \
FCB $78,$40,$40,$70,$40,$40,$78,$00 ¢
FCB $78,$40,$40,$70,$40,$40,$40,$00
FCB $30,$48,$40,$58,$48,$48,$38,$00
FCB $48,$48,$48,$78,$48,$48,$48,$00 W
> FCB $70,$20,$20,$20,$20,$20,$70,$00
f FCB $08,$08,$08,$08,$08,$48,$30,$00
FCB $48,$48,$50,$60,$50,$48,$48,$00
FCB $40,$40,$40,$40,$40,$40,$78,300
FCB $48,$78,$78,$48,$48,$48,$48,$00

B My My =y~
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FCB $48,$68,$68,$58,$58,$48,$48,$00
FCB $78,$48,$48,$48,$48,$48,$78,$00
FCB $70,$48,$48,$70,$40,$40,$40,$00 !
FCB $30,$48,$48,$48,$68,$58,$38,$00
FCB $70,$48,$48,$70,350,$48,$48,$00

FCB $30,$48,$40,$30,$08,$48,$30,$00 ::
FCB $70,$20,$20,$20,$20,$20,$20,$00 o
FCB $48,$48,$48,$48,$48,$48,$30,$00 Y

FCB $48,$48,$48,$48,$48,$30,$30,$00 .
FCB $48,$48,$48,$48,$78,$78,$48,$00 :
FCB $48,$48,$30,$30,$30,$48,$48,$00 )
FCB $88,$88,$50,$20,$20,$20,$20,$00
FCB $78,$08,$10,$20,$20,$40,$78,$00 2
FCB $78,$60,$60,$60,$60,$60,$78,$00 3
FCB $40,$40,$20,$20,$10,$08,$08,$00
FCB $78,$18,$18,$18,$18,$18,$78,$00
FCB $20,$70,$A8,$20,$20,$20,$20,$00
FCB $00,$10,$20,$78,$20,$10,$00,$00
FCB $60,$60,$20,$10,$00,$00,$00,$00
FCE $00,$00,$38,$08,$38,$48,$38,$00
FCB $40,$40,$70,$48,$48,$48,$70,$00
FCB $00,$00,$38,$40,$40,$40,$38,$00
FCB $08,$08,$38,$48,$48,$48,$38,$00
FCB $00,$00,$30,$48,$78,$40,$38,$00
FCB $10,$28,$20,$70,$20,$20,$20,$00
FCB $00,$00,$30,$48,$48,$38,$08,$30
FCB $40,$40,$70,$48,$48,$48,$48,$00
FCB $20,$00,$60,$20,$20,$20,$70,$00
FCB $10,$00,$10,$10,$10,$10,$50,$20

N A S b o

Ot Y0 S e 2L

FCB $40,$40,$40,$50,$60.$50,$48.$00 )
FCB $60.,$20,$20,$20,$20,$20,$70,$00 r~
FCB $00,$00,$78,$78,$78,$48.$48 $00 §

FCB $00,$00,$40,$70,$48,$48,$48,$00 : o\
FCB $00,$00,$30,$48,$48,$48,$30,$00 .
FCB $00,$00,$70.$48.$48,$70,$40,$40 V'
FCB $00,$00,$38,$48,$485,$38,$08,$08 :
FCB $00,$00,$58,$60,$40,$40,$40,$00 3
FCB $00,$00,$38,$40,$30,$08,$70,$00 \
FCB $20,$20,$70,$20,$20,$28,$10,$00 "
FCB $00,$00,$48,$48,$48,$48,$38,$00
FCB $00,$00,$48,$48,$48,$30,$30,$00
FCB $00,$00,$48,$48,$48,$78,$78,$00
FCB $00,$00,$48,$48,$30,$48,$48,$00
FCB $00,$00,$48,$48,$48,$38,$08,$30
FCB $00,$00,$78,$08,$10,$20,$78,$00 !
FCB $10,$20,$20,$40,$20,$20,$10,$00 :
FCB $20,$20,$20,$20,$20,$20,$20,$00 !
FCB $40,$20,$20,$10,$20,$20,$40,$00 ;
FCB $48,$B0,$00,$00,$00,$00,$00,$00 Ry
FCB $50,$A8,$50,$A8,$50,$A8,$50,$A8 3
END -

- -
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REQUIRED ADDITIONS TO PASCALIB/EXT FROM DEFT

TYPE GBLK1 = RECORD
STARTADD :INTEGER;
ENDADD: INTEGER;

GY : CHAR;

GX: CHAR;

INVERSEFLAG: BOOLEAN;
END;

PROCEDURE GSELECT (VAR BLK: GBLK1);

PROCEDURE GSETUP (VAR BLK: GBLK1; STARTADD,ENDADD: INTEGER);

PROCEDURE GSHOW;

PROCEDURE CLS;

PROCEDURE CLRTOP;

PROCEDURE CURSOR (X,Y: INTEGER);
PROCEDURE GETCURSOR (VAR X,Y: INTEGER);
PROCEDURE PLOT (X,Y,MODE: INTEGER);
PROCEDURE INVERSETEXT (FLAG: BOOLEAN);
PROCEDURE VPRINT (S: STRING);

PROCEDURE GETKEY: CHAR;

PROCEDURE INKEY: CHAR;




APPENDIX B: Operating Programs

The routines written for these experiments are primarily in Pascal. The
programs for the TRS-80 Color Computer were written with DEFT Pascal Workbench
and any differences or embellishments to ISO Standard Pascai are in the cited manuals.
The Physpend program was written with Turbo Pascal from Borland International and
its variations from ISO Standard Pascal are also documented. !’ Commenting on the
TRS-80 routines has been minimized due to limited memory, however logic flow charts
precede the listings as necessary. Standard conventions on "pretty printing" have been
used for readability. The common subroutines were written in 6809 Assembler and

commented accordingly.
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Begin

Introduction and &
Instructions i

Take data

v

Simulate Take Data

LA AA I

Continue? Yes

oy I

Figure B.1. Freshpen and Airwheel Main Routine ::
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Begin

Introduction and
Instructions

!

Execute Count
Subroutine

l

Plot Data?

Execute Graph
Subroutine

Figure B.2. Takedata Procedure
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Begin A
f
~
N
e rgs sat (]
Enter initial conditions | Y
"
I 4
'
Select Configuration |@——————
I ;:'
Select displacement or ,
velocity plot £
r ‘
. "
Enter the time step a.nd '::
set the number of points "
| )
(N
Execute Heun and plot point :
w
h
\]
W
.t
Enough points? vt
rd
v
o
Change step size h
14
wal
No o
t
Change Yes 5
configuration? W
+
]
Char Yes !
initial
conditions? :
A
.’,
s
e
hY.
9
Figure B.3. Freshpen Simulate Procedure
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PROGRAM Freshpendulum (input, output);
LABEL 1;

TYPE
vector = ARRAY [1..2] OF real;
datapoints = ARRAY [1..11] OF vector;
point = ARRAY [1..2] OF integer;
data = ARRAY [1..64] OF integer;
simdata = ARRAY [1..256] OF point;

VAR

select : char;
buffer : data;

{t*****************************************************#**}
PROCEDURE Setup ; EXTERNAL;

ount (address : integer); ;
PROCEDURE C (add i ); EXTERNAL

raph (address : integer); s
PROCEDURE Graph (addr i ); EXTERNAL
{******************************************************tt*}
FUNCTION Yes : Boolean;

VAR
h : char;

BEGIN

readin (ch);

IF ch = 'Y’ THEN Yes := true ELSE Yes := false
END;

{**t**********t*************#*********t*******************}

PROCEDURE Noprime (pendconst : real; VAR upass, uprime :

vector);
BEGIN
uprime([1] := upass{2];
uprime[2] := - pendconst * sin(upass[1]);
END;

{******t**************************************************}

PROCEDURE Lprime (pendconst, airlength, airconst : real;
VAR upass, uprime : vector);

J'Mffl-_-f
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BEGIN
uprime[1] := upass[2];
uprime[2] := - pendconst * sin(upass[1]) - airconst *
airlength * upass[2];
END;
{*********************************************************}
PROCEDURE Sqprime (pendconst, airlength, airconst : real;
VAR upass, uprime : vector); >
BEGIN v
uprime[1] := upass[2]; «]
IF upass[2] < 0 2
‘THEN .
uprime(2] : = - pendconst * sin{upass[1]) + 1
airconst * sqr(airlength * upass{2]) 3
ELSE g
uprime(2] := - pendconst * sin(upass[1])
- airconst * sqr(airlength * upass{2]) _
END;
{*********************************************************} n‘:
Y
PROCEDURE Takedata (VAR buffer : data); oy
VAR AN
i: integer; )
inchar : char; ) \
BEGIN )

cls;
writeln (Hit any key to start timing.’);

inchar := Inkey;

Cirtop;

writeln (Collecting . . .”);

Count (Buffer{1});

writeln (Do you wish to see the data points? (Y/N)');

o

%

A\
I‘V
e
Iy
N
IF Yes THEN b
BEGIN )
writeln CHit any key when you are finished with’); >
writeln ("the data.’); "
writeln CAre you ready to plot? (Y/N)’); o
IF Yes THEN ey
BEGIN ) .
cls; A
Graph(Buffer[1]); - :
inchar := Inkey; o
END; +
END; { then } -
END; )

Y
.

.
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{*********************************************************}

PROCEDURE Heun (pendconst, airlength, airconst deltat:real;
VAR thetadot : datapoints; VAR i : integer;
acase : char);

VAR
k1, k2, utemp : vector;
j : integer;

BEGIN
CASE acase OF
N’ :
BEGIN
utemp(1] := thetadot[i,1];
utemp(2] : = thetadot[i,2];
Noprime (pendconst, utemp, k1);
FORj:= 1TO 2 DO
utemp(j] := thetadotli,j] + deltat * k1[j];
Noprime (pendconst, utemp, k2);
FORj:=1TO 2 DO
thetadot{i+ 1,j] : = thetadot[i,j] + deltat *

i (k1[] + k2(]/2;
: END; { case of N }
; g P
BEGIN
p utemp[1] : = thetadot(i,1];
; utemp(2] := thetadot[i,2];
| Lprime (pendconst,airlength,airconst,utemp,k1);
3 FORj:= 1TO 2 DO
; utemp(j] : = thetadot[i,j] + deltat * k1[j);
Lprime (pendconst,airlength,airconst,utemp,k2);
FORj:= 1TO 2 DO
R thetadot[i+ 1,j] := thetadot[i,j] + deltat *
: &10G] + k20G)/2;
: END; { case of L }
: ,Q’ .
: BEGIN
; utempl[1] := thetadotl[i,1];
0 utemp[2] := thetadot(i,2];
P Sqprime (pendconst,airlength,airconst,utemp,k1);
' FORj:= 1TO 2 DO
utemp(j] := thetadotfij] + deltat * ki(j;
b Sqgprime (pendconst,airlength,airconst,utemp,k2);
FOR j:= 1TO 2 DO
thetadot[i+ 1,j] : = thetadot[ij] + deltat *
k (k1G] + k2G1)/2;
! END { case of Q }
¢ END; { case }
’ END; { Heun }
#
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{*********************************************************}

PROCEDURE Simulate (buffer : data);

LABEL 1,2,3,4,5,6,7;

CONST
g = 9.81;
conv = 0.34906585;

VAR
acase, curve, inchar : char;
mass, cmdistance, imoment thetal, airlength airconst,
pendconst, deltat : real;
i, j, subint, int : integer;
thetadot : datapoints;
theta, omega : simdata;

BEGIN
cls;
int := 0;

7: writeln CEnter the mass of the pendulum.’);

readln (mass);
writeln CEnter the distance to the center of mass.’);
readln (cmdistance);
writeln CEnter the moment of inertia.’);
readln (imoment);
pendconst := mass * g * cmdistance / imoment;
cls;
writeln ('In conducting the simulation you may’);
writeln ('neglect air resistance, include it with");
writeln (Ca term linear in velocity or a term’);
writeln (quadratic in velocity. Enter: ”);
writeln N - Neglect air resistance’);
writeln ( L - Include it linearly’);
writeln ( Q - Include quadratic term’);
readln (acase);
IF NOT (acase IN ['N’,’L’,’Q’]) THEN

BEGIN

writein ('Not a proper response.’);
GOTO 1;
END;

2: cls;

writeln (Enter the initial angle (rad).’);

readln (thetal);

IF acase IN ['L’,’Q’] THEN

BEGIN

writeln (Enter the distance from the pivot to ’);
writeln ("the center of the plates.’);
readln (airlength);
writeln CEnter the coefficient of air’);
writeln ('resistance.”);

) () } " " % " ¥ el
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readln (airconst);
END;

5: cls;
writeln ('Do you wish to plot the displacement or ’);
writeln (velocity? Enter:’);
writeln ( D - Displacement’);
writeln ¢V - Velocity’);
readin (curve);

IF NOT (curve IN I'D’,’V’]) THEN
BEGIN
writeln ("Not a proper response.’);
GOTO 5;
END;

6: writeln(Enter the step size, delta t, to be used in’);
writeln ('the simulation. (Multiples of .025 or ’);
writeln ('divisors of .025 down to .0025 only for ’);
writeln (Cgraphing purposes.)’);
readln (deltat);
writeln("The simulation will plot the data, the last’);
writeln (’simulation and one point at a time for the’);
writeln ('new simulation. Hit S if you wish to stop’);
writeln (’the plot. After you are fininshed viewing’);
writeln (Cthe plot hit any key to continue the ’);
writeln (program.’);

3: writeln
writeln(’Are you ready to plot the simulation? (Y/N)’);
IF Yes THEN

BEGIN
cls;
Graph (Buffer[1]);
FOR k := 1 TO int DO
BEGIN
IF curve = 'V’ THEN
Plot (omegali, 1],omegali,2],0)
ELSE
Plot (thetali, 1], thetali,2],0);
END;
IF deltat < .025 THEN
BEGIN
subint := round(.025/deltat);
int := 255;
END
ELSE
BEGIN
subint := 1;
int := round(6.375/deltat);
END;
theta[1,1] := 0;
omega(l,1] := 0;
theta{1,2] := 190 - round(thetal*100);
omega{l,2] := 190;
CASE curve OF
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'D’ : Plot(thetal[1,1],theta[1,2],0); .
'V’ : Plot(omegal1,1],0megal1,2),0)
END; { case } ]
thetadot{1,1] : = thetal;
! thetadot[1,2] := 0.0; '
FORi:= 1 TO int DO ,
BEGIN X
FOR j:= 1 TO subint DO 2
Heun (pendconst,airlength,airconst,deltat, a
thetadot,j,acase);
thetafi+1,2] := 190 - round(abs(thetadot .
[subint+1,1]) * 100); ‘
omegali+1,2] := 190 - round(abs(thetadot :
{subint+ 1,2))/conv *3);
IF subint = 1 THEN
BEGIN
thetali+ 1,1] := round(i*deltat/.025);
: omegali+ 1,1} := thetali+1,1];
»" END h
: ELSE
BEGIN
thetali+1,1] := §;
omegali+1,1] := i; 1
END; ;
thetadot{1,1] : = thetadot{subint+1,1];
thetadot(1,2] : = thetadot{subint+ 1,2];
CASE curve OF
'D’: Plot(thetali+ 1,1],thetali+ 1,2],0); .
K 'V’: Plot(omegali+ 1,1],omegali+ 1,2],0) q
B END; { case } )
g Plot(omegali+ 1,11,5,0); { mark progress }
IF Getkey = 'S’ THEN GOTO 4;
END; { for}
. END { then }
“ ELSE \
GOTO 3; ¢
4: inchar :~— Inkey; ;
cls;
writeln (Do you wish to change the step size? (Y/N)’);
E IF Yes
R THEN GOTO 6; \
; writeln (Do you wish to change the initial air’); ;
4 writeln (resistance constants? (Y/N)’);
K IF Yes
THEN GOTO 2;
writeln (‘Do you wish to change the way that air’); y
: writeln (‘resistance is considered? (Y/N)’); o
3t IF Yes ]
K THEN GOTO 1;
writeln (Do you wish to change the mass or moment’);
o writeln (of inertia? (Y/N));
3 IF Yes
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THEN GOTO 7;
END; { Simulate }

{*********************************************************}

BEGIN { Freshpendulum }
Setup;
cls;
writeln (Welcome to the pendulum datataking and ’);
writeln ("comparison program. This program will ’);
writeln (Callow you to determine the best way to’);
writeln(’incorporate air resistance in the equations’);
writeln (Cof motion and an approximate value for the’);
writeln ('coefficient of air resistance. You may ’);
writeln (also investigate the accuracy of the *);
writeln ('numerical method as you change the size *);
writeln ('of the step in time.’);
writeln;
1: writeln (Do you wish to take data or run a ’);
writeln ('simulation? Enter:’);
writeln ¢ T - Takedata’);
writeln S - Simulate’);
readin (select);
CASE select OF
"T’: Takedata (buffer);
’S’; Simulate (buffer)
ELSE
BEGIN
writeln ("Not a proper response.’);
GOTO 1;
END
END: { case }
cls;
writeln (Do you wish to continue the program? (Y/N)’);
IF Yes THEN
GOTO 1;
END. { Freshpendulum }
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3
Begin y
3
Enter initial conditions |€— 2
T v
Select Configuration |€—————— )
(4
L {
Enter time step [ .
1
)
Set the number of points N
3
T ,
U
Execute Heun and plot point
) y,
X \
) 4.
4
Enough points?
: ]
H 4
Change step size 4
U
R
1,
Change Yes "
configuration? X
3 ;
.' .,
; b
) initial
conditions?2
* e
:' )
: Figure B.4. Airwheel Simulate Procedure e
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' L}
PROGRAM Airwheel (input,output); Y
o¥
LABEL 1; '
TYPE
vector = ARRAY(1..2] OF real; 3
calevals = ARRAYT1..11] OF vector; "
point = ARRAY[1..2] OF integer;
data = ARRAY[1..64] OF integer; (5
simdata = ARRAY[1..256] OF point; .‘
VAR 4
select : char; s
omega : simdata; g
buffer : data; .‘
1
{*********************************************************} ::
3
t
PROCEDURE Setup; EXTERNAL; E:
PROCEDURE Count (address : integer); EXTERNAL; "
‘J’
(A
PROCEDURE Graph (address : integer); EXTERNAL; :;.
)
{*t*t*********************"*******************************} ::
v
\)
FUNCTION Yes : boolean; ’
\J
VAR l.i
ch : char; ‘,
v
BEGIN J
readln (ch); .
IF ch = Y’ THEN Yes := true ELSE Yes := false
END; i
i
{**#*****************************************************t} :“
* :
PROCEDURE Noprime (wheelconst : real; VAR upass, uprime :
vector);
M}
BEGIN & (
uprime(1] ;= upass[2];
uprime{2) : = wheelconst; Y
END; .
‘),
{****t‘**t*****tt*#***************************************} ,:
"\'\
PROCEDURE Lprime (wheelconst, airlength, airconst, imoment; )-}
real; VAR upass, uprime : vector); N
o
“i
{
A
b,
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BEGIN X
uprime[1] := upass[2}; ::
uprime(2] := wheelconst - airconst * airlength/imoment ‘

* upass[2]; y

END;

0

{********#************************************************} ﬁ

W

PROCEDURE Sqprime(wheelconst, airlength, airconst, imoment: Y
real; VAR upass, uprime : vector);

BEGIN ]
uprime(1] := upass[2]; %
uprime(2] := wheelconst - airconst/imoment * ::

sqr(airlength * upass([2]); :

END; g

$,
{*********************************************************} t
v
y.
PROCEDURE Takedata (VAR buffer : data); :

VAR o
i : integer; ;
inchar : char; 'of

W

BEGIN 0
cls; Al
writeln CHit any key to start timing’); .
inchar := Inkey; .:

clrtop; 2«
writeln (Collecting . . .);
Count (Buffer[1]);
writeln ("Do you wish to see the data points? (Y/N)"); -
IF Yes THEN
BEGIN
writeln (Hit any key when you are finished with’);
writeln (’the data.”);
writeln;
writeln ("Are you ready to plot? (Y/N)");
IF Yes THEN
BEGIN ;
cls;
Graph (Buffer[1)); 3
inchar := Inkey; b
END; X
END; { then }
END; { takedata }

e 4
b &

{#3#*‘**#************t**********t***********t*************}

PROCEDURE Heun (wheelconst, airlength, airconst, imoment,
deltat : real; VAR thetadot : calcvals;

2 s "r"*“s"‘"'k‘.'!!".ﬁr"‘.i’!"'i’ (W9 l'l '-. \" " ” \c .L\ ..« ,.n y !.n‘..a.,'i "(.."\ 3 » -.' o . I- ' v ; % l.l \“ W \‘. * ¥ N;‘\?i l:' ; Ny
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VAR i : integer, acase : char);

VAR
k1, k2, utemp : vector;
j : integer;

BEGIN
CASE acase OF
N .
BEGIN
utemp[1] := thetadot[i,1];
utempl2] := thetadot/[i,2];
Noprime (wheelconst, utemp, k1);
FORj:= 1TO 2 DO
utemp(j] : = thetadot[i,j] + deltat * k1[j];
Noprime (wheelconst, utemp, k2);
FORj:= 1TO 2 DO
thetadot[i+ 1,j] := thetadot[i,j] + deltat *
(k1G1+ k2(1)/2;
END; { case of N }

’L’ :
BEGIN
utempl[1] := thetadot[i,1];
utemp[2] : = thetadotli,2];

Lprime (wheelconst, airlength, airconst, imoment,
utemp, kl);
FORj:= 1TO 2 DO
utempl[j] := thetadot[i,j] + deltat * k1[j];
Lprime (wheelconst, airlength, airconst, imoment,
utemp, k2);
FORj:=1TO 2 DO
thetadot[i+ 1,j] := thetadot{i,j] + deltat *
(k1G1+ k2(1/2;
END; { case of L }

BEGIN
utemp{1] := thetadot([i,1];
utemp(2] := thetadot[i,2];
Sqprime (wheelconst, airlength, airconst, imoment,
utemp, k1);
FORj:= 1TO 2 DO
utemp(j] : = thetadotli,j] + deltat * k1[j];
Sqrime (wheelconst, airlength, airconst, imoment,
utemp, k2);
FORj:= 1TO 2 DO
thetadot[i+ 1,j] := thetadot{i,j] + deltat *
(k1G1+ k2(j])/2;
END; { case of Q }
END; { case }
END; { Heun }

{***t*********t*************t*****************************}
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PROCEDURE Simulate (buffer : data);
LABEL 1,2,3,4,5,6;

CONST
g = 9.81;
conv = 0.34906585;

VAR
inchar, acase : char;
mass, aradius, imoment, airlength, airconst,wheelconst,
deltat : real,;
i, j, subin, int : integer;
thetadot : calcvals;
omega : simdata;

BEGIN
cls;
int := 0;
writeln (The simulation solves the equation of ’);
writeln ('motion for the accelerated wheel using’);
writeln (Heuns method.’);
writeln;
6: writeln (Enter the moment of inertia for the wheel.’);
readln (imoment);
writeln (Enter the radius of the disk to the cord.’);
readin (aradius);
writeln ("Enter the mass of the accelerating weight.’);
readln (mass);
wheelconst : = mass*g*aradius/(imoment + mass*sqr(aradius));
cls;
writeln ('In conducting the simulation you may ’);
writeln ('neglect air resistance, include it with a’);
writeln(’term linear in velocity or a term quadratic’);
writeln ('in velocity. Enter:’);
1: writeln U N - Neglect air resistance’);
writeln L - Include it Linearly’);
writeln ( Q - Include the Quadratic term’);
readly (acase);
IF NOT (acase IN ’N’,’L’,’Q’}) THEN
BEGIN
writeln ('Not a proper response.’);
GOTO 1;
END;
2: cls;
IF acase IN ’L’,’Q’] THEN
BEGIN
writeln CEnter the radius to the center of the’);
writeln ('plates.’);
readin (airlength);
writeln (Enter the coefficient of air’);
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writeln (’resistance.’);
readin (airconst);

END;

5: writeln(CEnter the step size, delta t, to be used in’);

O U s A ‘
R O D N SN T D T

writeln ('the simulation. (Multiples of .025 or ’);
writeln ('divisors of .025 down to .0025 only for ’);
writeln ("graphing purposes.)’);

readin (deltat);

writeln ("The simulaton will plot the data, the last’);
writeln(’simulation and one point at at time for the’);
writeln ('new simulation. Hit S if you wisht to );
writeln (’stop the plot. After you are finished ’);
writeln ('viewing the plot hit any key to continue’);
writeln ('the program.’);

: writeln;

KNk M X

writeln(CAre you ready to plot the simulation? (Y/N)’);
IF Yes THEN
BEGIN

cls;
Graph (Buffer[1]);
FORi:= 1 TO int DO
Plot(omegali,1],omegali,2],0);
IF deltat < .025 THEN
BEGIN
subint := Round(.025/deltat);
int := 255;
END
ELSE
BEGIN
subint := 1;
int := Round(6.375/deltat);
END;
omega[1,1] :
omega[1,2] :
Plot(0,190,0);
thetadot[1,1] := 0.0;
thetadot[1,2] := 0.0;
FORi:= 1 TO int DO
BEGIN
FOR j := 1 TO subint DO
Heun (wheelconst,airlength,airconst,imoment,
deltat, thetadot, j, acase);
omegali+1,2] := 190 - Round(abs
(thetadot[subint + 1,2])/conv * 4);
IF subint = 1
THEN omegali+ 1,1} := Round(i*deltat/.025)
ELSE omegal[i+1,1] := i;
thetadot[1,1] : = thetadot[subint+1,1];
thetadot[1,2] := thetadot{subint+1,2];
Plot(omegali+ 1,1},omegali+ 1,2],0);
Plot(omegali+ 1,1],5,0); { mark progress }
IF Getkey = 'S’ THEN GOTO 4;

0;
190;
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END; { for }
END { then } P
ELSE :
GOTO 3;
4: inchar := Inkey;
cls;
writeln ("Do you wish to change the initial step ’);
writeln (’size? (Y/N)");
IF Yes
THEN GOTO 5;
writeln ("Do you wish to change the initial air’);
writeln (’resistance constants? (Y/N)");
IF Yes
THEN GOTO 2; A
writeln (Do you wish to change the way air ’); :
writeln (‘resistance is considered? (Y/N)");
IF Yes ’
THEN GOTO 1; N
writeln ("Do you wish to change the values for the’); g
writeln (moment of inertia or the accelerating *);
writeln ("weight? (Y/N)’);
IF Yes
THEN GOTO 6; 5
END; { simulate } ‘

. =

o e an

{*********************************************************} t

BEGIN { Airwheel }
Setup; ¥
cls; '
writeln (Welcome to the rotational motion lab.’); "
writeln (This program will allow you to measure’); !
writeln ('the rotational velocity of a wheel with a”);
writeln ('given moment of inertia when under a’);
writeln (constant torque (provided by gravity). The’);
writeln (‘effects of air resistance can also be ’);
writeln 'measured. After data is taken a simualtion’);
writeln ‘may be run to investigate the moment of’); p
writeln ('inertia of the system, and the dependence’); J
writeln (of the torque due to air resistance on the’);
writeln ('velocity. You will also be able to ’);
writeln (investigate the accuracy of the numerical’); .
writeln ('method as you change the size of the step’);
writeln (in time.’); )

1: writeln ("Do you wish to take data or run the’);
writeln (’simulation? Enter:’);
writeln ¢ T - Takedata’);
writeln ¢ S - Simulate’);
readln (select); o
CASE select OF N

'T’ : Takedata (buffer);
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'S’ : Simulate (buffer)
ELSE
BEGIN
writeln ('Not a proper response.’);
GOTO 1;
END
END:; { case }
cls;

writeln (Do you wish to continue the program? (Y/N)");

IF Yes
THEN GOTO 1;
END. { Airwheel }
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PROGRAM Jpendata (input, output);
LABEL 1;

TYPE
vector = ARRAY([1..2 OF real;
datapoints = ARRAY[1..65] OF vector;
data = ARRAY[1..64] OF integer;

VAR
buffer : data;
omega : datapoints;
inchar : char;

{X********************************************************}

PROCEDURE Setup; EXTERNAL;

PROCEDURE Count (address : integer); EXTERNAL;

{*********************************************************}

PROCEDURE Takedata (VAR buffer : data);

BEGIN
cls;
writeln (Hit any key to start timing.”);
inchar := Inkey;
cirtop;
writeln ("Collecting . . .”);
Count(Buffer[1]);

END; { Takedata }

{*********x**************************************t********}

PROCEDURE Convertdata (buffer: data;VAR omega: datapoints);

CONST
conv = 0.34906585;

VAR
i: integer;

BEGIN
cls;
writeln ("Converting data . . .");
omegal[l,1] := 0.0;
omegal1,2] := 0.0;
FORi:= 1 TO 64 DO
BEGIN
omegali+1,1] := 0.1 * i;
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omegali+2,2] : = buffer[il/4 * conv
END; { for }
END; { Convertdata }

{***************************** k*************************}

PROCEDURE Outputdata (omega : datapoints);
LABEL 1,2;

VAR
outfile : text;
inchar, select : char;
start, stop, i : integer;

BEGIN
cls;
1: writeln (What output device do you want to use? ’);
writeln CEnter:’);
writeln (’ P - Printer’);
writeln S - Screen’);
readln (select);
IF NOT (select IN ’P’,’S’]) THEN
BEGIN
writeln Not a proper response.’);
GOTO 1;
END;
CASE select OF
P
BEGIN
rewrite (outfile,’:-2);
writeln (outfile,”, Time Omega’);
FORi:= 1TO 65 DO
writeln (outfile,omegali, 1]:12,’ ’
omegali,2}:12);
close (outfile);
END; { case of P }
'S’
BEGIN
writeln ("The data will be written one screen’);
writeln ("at a time. When you are finished ’);
writeln(with a screen hit any key to view the’);
writeln ("next screen of data points.’);
writeln;
writeln CHit any key to start the output.”);
inchar : = Inkey;

start := 1;
stop := 16;
2: cls;
writeln {  Time Omega’);

FOR i := start TO stop DO
writeln (omegali,1]):12, ’,omegali,2]:12);
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inchar := Inkey;
start : = stop + 1;
stop := stop + 16;
IF stop <= 64 THEN GOTO 2;
END { case of S}
END; { case }
END; { Outputdata }

{*********************************************************}

P
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BEGIN { Jpendata }
cls;
Setup;
writeln ("This routine collects the data from the’);
writeln (pendulum, converts and outputs it for’);
writeln 'manual input into the Zenith program.’);
writein;
writeln CHit any key to proceed.’);
inchar := Inkey;

1: Takedata (buffer);

Convertdata (buffer, omega);
Outputdata (omega);
writeln (Do you wish to take another set of data?’);
writeln C(Y/N)");
inchar := Inkey;
IF inchar = 'Y’ THEN GOTO 1;
END. { Jpendata }
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Figure B.5. Physpend Main Routine
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Figure B.6. Physpend Simulate Procedure :
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LABEL 1, 2, 3;

TYPE

datafile = FILE OF vector;

VAR
response, simselect : char;

FUNCTION Yes : boolean;

the program and procedures. }

VAR
ch : char;

BEGIN
readln (ch);
IF ch IN [’y’,’Y’] THEN Yes := true ELSE Yes := false

END;

vector = ARRAY [1..2] OF real;
pastpoints = ARRAY [1..4] OF vector;
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{ This is the physical pendulum data collection and
simulation routine for the laboratory. The Takedata
procedure requires input by hand as it is very dependent
on the physical set up and hardware used in the lab.

This program is designed to simulate the motion of a
physical pendulum treating it as a simple pendulum or
physical pendulum under no constraints, air resistance,
friction or a combination. Comparison of the motion

using the small angle approximation is also possibie.

An additional feature allows the calculation of the

moment of inertia, friction coefficient or air

resistance coefficient for an arbitrary physical

pendulum by fitting a simulated curve for the system to
the actual data using an iterative process. The code

that follows was developed on an AT® PC6300 using Turbo
Pascal. The laboratory system uses a TRS-80 Color
Computer and DEFT Pascal Workbench to take data and a
Zenith PC and Turbo Pacal to run this software,

This code was written by Mark R. Stevens. }

PROGRAM PhysPendulum (input, output, simdata, pendata);

datataken, simlcomplete, sim2complete : boolean;
simdatal, simdata2, pendata : datafile;

{**#**t**************t************************************}

{ This function is used whenever a response is requested of
a yes or no nature. It is used extensively throughout
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{*********************************************************}

PROCEDURE Takedata (VAR datataken : boolean);

{ This procedure may be modified for direct input.

R N e e [P e . ey |

o - im

Currently it is set up to accept inputed datafrom the
keyboard. 64 data points, specifically. }

o e 2 I

LABEL 1;
\ B
VAR e
omega : vector; 3
select : char; 3
i : integer; K]
K3
BEGIN
writeln Do you wish to use the data currently on ’);
writeln (the disk? (Y/N)’); %
IF Yes THEN GOTO 1; ;
rewrite (pendata); \
omegall] := ord(’V’);{ Label data as a velocity plot. } ’
omegaf2] := 0.0; .
write (pendata, omega); .
writeln (Currently the pendulum data must be input ’); )
writeln by hand. First input the configuration of’); 3
writeln("the pendulum. Are you expecting to neglect’); N
writeln("friction, consider air resistance, etc.’); -
writeln(Enter:’);
writeln ¢ N - No constraints’);
writeln A - Air resistance only’);
writeln ( F - Friction effects only’); ;
writeln B - Both friction and air resistance’); /
readln (select); L.
omegall] := ord(select); y
writeln (Enter the pendulum constant (m*g*d/I), if’); b
writeln (known, otherwise enter zero.’); )
readin (omega(2]);
write (pendata, omega); e
writeln (If air resistance is considered, enter the’); “
writeln ("length to the center of the plates.’);

readln (omega[1]);

writeln CEnter the initial angle.’);

readln (omega(2]);

write (pendata,omega);

omegall] := 0.0; { These two data spots are reserved }
amegal2] := 0.0; { for airconst and frictconst which }
write (pendata,omega); { are unknowns for the data }
writeln ("Enter the data points one point at a time,’);
writeln ("with time first followed by the value for’);
writeln ('omega separated by a space. Continue ’);
writeln (entering data until all 64 points are ’);
writeln ("entered. You should also change the sign’);
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writeln ('of omega when it should be negative as the’);
writeln (Radio Shack computer ouputs the absolute ’);
writeln ('values. If the initial angle is positive’);
writeln (the first values of omega should be’);
writeln ('negative until they cross the axis.”);
FORi:= 1 TO 64 DO
BEGIN
readln (omega[l], omega[2]);
write (pendata, omega);
END;
1: datataken := true;
close (pendata)
END;

{*********************************************************}

PROCEDURE Shiftdata (VAR pendata : datafile);

VAR
temp : vector;
tshift : real;

BEGIN
reset (pendata);
clrscr;
writeln(’Shifting the data is possible in both’);
writeln(directions. A shift of more than a few’);
writeln(tenths of a second is not recommended. It’);
writeln("would be better to take new data. Note:’);
writeln(’one pixel on the screen is .01 seconds.’);
writeln;
writeln(Enter the shift for the data(include sign).”);
readin (tshift);
seek (pendata, 5);
WHILE NOT eof(pendata) DO
BEGIN

read (pendata, temp);

temp{1] := temp(1] + tshift;

seek (pendata, FilePos(pendata) - 1);

write (pendata, temp);

END;
close (pendata);
END; { shiftdata }

{**#****************#*************************************}

PROCEDURE Axis;

BEGIN
draw (10, 10, 10, 189, 5);
draw (10, 110, 620, 110, 5);
END;
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{*********************************************************}

PROCEDURE DataPlot (VAR plotdata : datafile);

{ This procedure takes whatever datafile it is given and
plots the data with crosses and with labels which are
included in the first three vector values.}

LABEL 1;

VAR
x1, y1, x2, y2, config : integer;
buff, temp, temp2 : vector;
curve : char;

BEGIN
clrser;
graphmode;
hires;
Axis;
reset (plotdata);
read (plotdata, temp);
config := round(temp[1]);
curve := chr(config);
read (plotdata, temp, buff,temp2);
config := round(temp[1]); { Get labeling data }
writeln('Data Config = ’,chr(config),” m*g*d/1 = ’,
temp(2]):5:3,’Airlength = ’,bufi[1):5:3,
’ Theta(0) = ’,buff{2]:5:3);
WHILE NOT eof(plotdata) DO
BEGIN
read (plotdata, buff);
x2 := round(buffi1] * 100) + 10;
y2 := 110 - round(uffl2] * 10);
draw (x2, y2-2, x2, y2+2, 5);
draw (x2-4, y2, x2+4, y2, 5);
END; { while }
close (plotdata);
1 : writeln ("Are you done with the plot? (Y/N)’);
IF Yes
THEN textmode
ELSE GOTO 1
END;

{********************************************t************}
PROCEDURE Plot (VAR plotdata : datafile);
{ This procedure takes the datafile it is given and plots

it with labels which are included in the first four
vector values. }

87

-
-~

Y X T X



R AT . $13.% .7 Q% 5,0y, §.° Wat B2 0t Ba¥ 48 g dat > 94 AU (R ') S e Bat fatt S ¥ 9a¢ gk e Ga® 2% (2" K3t (2% 8s", 50" 4a" Davaigvatn’ 0s° a0u® gV B

88

LABEL 1;
VAR
‘: x1, yl1, x2, y2, config, scale : integer;
¢t buff, temp, temp2 : vector;
R curve : char;
BEGIN
¢ clrser;
e graphmode;
& .
hires;
' Axis;

reset (plotdata);
read (plotdata, temp);
config := round(temp[1]);

: curve := chr(config);

K IF curve IN ['v’,’V’] THEN

B BEGIN

b scale := 10;

o writeln ('Velocity plot’);

N END

ELSE

‘ BEGIN

is scale := 40;

B writeln ("Displacement’);

END;

. read (plotdata, temp, buff,temp2);
';:' config := round(temp[1]); { Get labeling data }
0 writeln(Config = ’,chr(config),” m*g*d/1 = ’,
g temp(2]:5:3,” Airlength = ’,buff[1]:5:3,
i * Theta(0) = ’,buff2]:5:3);

' writeln(’ Frict Coef = ’,temp2(1]:5:3,
. ” Air Coef = ’,temp2[2]:5:3);
0 read (plotdata, buff);
;: x2 := round(buff{1] * 100) + 10;

f"». y2 := 110 - round(uff[2] * scale);

i WHILE NOT eof(plotdata) DO

- BEGIN

- x1l := x2;

X yl:= y2;

s:, read (plotdata, bufT);

I x2 := round(buff{1] * 100) + 10;

w:; y2 := 110 - round(buff{2] * scale);

i draw (x1, y1, x2, y2, 5);

P END:; { while }

K close (plotdata);

” 1 : writeln CAre you done with the plot? (Y/N)’);
¥ IF Yes

0 THEN textmode

X ELSE GOTO 1

‘ END;
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{*********************************************************}

PROCEDURE Smallangle (VAR simdata : datafile);

{ This procedure utilizes the small angle approximation to

calculate the motion of a physical pendulum under no
constraints. It allows comparison simulations to be
calculated to the more exact numerical solution. Such

comparisons identify when the small angle approximation

is a reasonable assumption and when it is not. }

CONST
g = 9.81;
delta_t = 0.01;

VAR
time, imoment, mass, itheta, theta, cmdistance,
pconst : real;
buffer, temp : vector;
i: integer;
curve : char;

BEGIN
writeln;
writeln(Enter the pendulum mass in kilograms.’);
readin (mass);
writeln CEnter the distance from the pivot to the’);
writeln (center of mass.’);
readln (cmdistance);

writelnCEnter the moment of inertia for the system.’);

readin (imoment);

writeln CEnter the initial angle in radians.’);
readln (itheta);

pconst := mass * g * cimdistance / imoment;
rewrite (simdata);

writeln("Do you wish to plot displacement or ’);
writeln (velocity? Enter:’);

writeln ¢ D - Displacement’);

writeln ( V - Velocity’);

readln (curve);

buffer[1] := ord(curve);

buffer(2] := 0.0;

write (simdata, buffer);

buffer{1] := ord(’N’); { Label data }
buffer{2] : = pconst;

temp(1] := 0.0;

temp(2] : = itheta;

write (simdata, buffer, temp);

temp(2] := 0.0;

write (simdata,ternp);{ zero values for frictconst and }

time := 0.0; { airconst }
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buffer{1] := time; ¥
buffer[2] : = itheta; .
write (simdata, buffer);

FORi:= 1 TO 640 DO "
BEGIN
time := time + delta_t; v
buffer{1] := time; "
IF curve IN ['d’,’D’] THEN X
buffer{2] := itheta * cos(sqrt(pconst) * time)
ELSE

! buffer{2] := -itheta * sin(sqrt(pconst) * time) ;
: * gqrt(pconst); :
write (simdata, buffer);
END; {fori}
close (simdata);
END; { Smallangle }

{************t#*******t*************************#*********}

- e

PROCEDURE Noprime(pendconst: real; VAR upass,uprime:vector);

{ This is the "slope” vector function derived when the
differential equation for the unconstrained physical
pendulum is decoupled. }

L B Malll Mgy

y BEGIN

’ uprime[1] := upass[2];

‘ uprime{2] := - pendconst * sin(upass[1])
' END;

{********************************************************t}

e e R,

PROCEDURE Airprime (pendconst, fairlength, airconst : real;
VAR upass, uprime : vector);

{ This is the "slope" vector functicn derived when the !
differential equation for the physical pendulum including )
air resistance is decoupled. } ‘

BEGIN
uprime[1] := upass[2];
IF upass[2] < 0
THEN
uprime([2) := -pendconst * sin(upass{1]) +
airconst * sqr(fairlength * upass[2])

T e s e ew m

ELSE )
uprime([2] := -pendconst * sin(upass[1]) ::

- airconst * sqr(fairlength * upass[2)) i

END;

{****‘****#*******#***************************************}
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PROCEDURE Frprime (pendconst, frictconst : real; VAR upass,
uprime : vector);

{ This is the "slope” vector function derived when the
differential equation for the physical pendulum including
friction is decoupled. }

BEGIN
uprime(1] : = upass[2);
IF upass[2] < 0

THEN
uprime[2]:= -pendconst * sin{upass(1]) + frictconst
ELSE
uprime{2]:= -pendconst * sin(upass[1]) - frictconst
END;

{****************************************************#****}

PROCEDURE Bothprime (pendconst, fairlength, frictconst,
airconst: real;VAR upass,uprime: vector);

{ This is the "slope” vector function derived when the
differentail equation for the physical pendulum including
friction and air resistance is decoupled}

BEGIN
uprime[1] := upass[2];
IF upass[2] < O
THEN
uprime({2] : = -pendconst * sin(upass{1]) + airconst
* sqr(fairlength * upass{2]) + frictconst
ELSE
uprime[2] := -pendconst * sin(upass[1]) - airconst
* sqr(fairlength * upass(2]) - frictconst
END;

{#**t***********#**#***#**********************************}

PROCEDURE Runge4 (pendconst,airlength,frictconst,airconst,
delta__t: real;select: char;VAR ypast:
pastpoints; i : integer);

{ This is the fourth order Runge-Kutta method used to start
the fourth order predictor-corrector method used. It
returns up to three back values for the function and its
first derivative given the values from the point before
in the array ypast. }

VAR
ytemp, k1, k2, k3, k4 : vector;
] : integer;

oalt'¥oh tab val ¥

91

S e

o

u-.!hoﬂ-Ql

T

o O ]




AN AR AR AR EAYARNEN Y] 'y ¢ g g% 890 4" 299 atg pt, ‘a4 "o "8 ot NUNLU XL R VIL L WL PL UV VU OO R oo ommTgy

92

-t o

BEGIN
CASE select OF ,
’p’,’P’,’n',’N’ . .
BEGIN

Noprime (pendconst, ypast(il, k1);
FORj:=1TO 2 DO 4
ytemp(j] : = ypast(i,j] + delta__t * k1[j}/2; ',
Noprime (pendconst, ytemp, k2); ¢
FORj:= 1TO 2 DO 1,

ytemp[j] := ypastli,j] + delta__t * k2[j}/2;
Noprime (pendconst, ytemp, k3);
FORj:= 1TO 2 DO y
ytemp[j] := ypastli,j] + delta__t * k3[j}; ,
Noprime (pendconst, ytemp, k4); !
FORj:= 1TO 2 DO Bl
ypast(i+ 1,j] := ypast(ij] + delta__t *(k1[j] +
2*k2(j] + 2*k3[j] +k4[j1)/6;
END; { case of P, N }

i a -

) 39’, A’
BEGIN
Airprime (pendconst,airlength,airconst,ypastl[i],
k1); .
FORj:= 1TO 2 DO d
ytemp[j] := ypast{i,j] + delta_t * k1[j)/2; )
Airprime (pendconst,airlength,airconst,ytemp k2); :
FORj:= 1TO 2 DO )
ytemp(j} : = ypastli,j]l + delta_t * k2(jl/2; N
Airprime (pendconst,airlength,airconst,ytemp,k3); "
FOR j:=1TO 2 DO ::

ytemp[j] := ypastli,j] + delta_t * k3(j};

Airprime (pendconst,airlength,airconst,ytemp,k4);

FORj:=1TO 2 DO L

ypast[i+1,j] := ypastlij] + delta_t *(k1(j] +. -
2*k2(G] + 2*k3(j] +k4{jlve;

END; { case of A } v
PR . .‘;
BEGIN by
Frprime (pendconst, frictconst, ypastli], k1); o
FORj:= 1TO 2 DO 3
ytemp(j] := ypast(ij] + delta__t * k1[jl/2;
Frprime (pendconst, frictconst, ytemp, k2); X
FORj:= 1TO 2 DO i
ytemp(j] := ypast(i,j]l + delta_t * k2[j)/2; gt
Frprime (pendconst, frictconst, ytemp, k3); ::
FORj:= 1TO 2 DO \

ytemp(j] := ypast[i,j] + delta_t * k3[j};
Frprime (pendconst, frictconst, ytemp, k4);

FORj:= 1TO 2 DO
ypastli+ 1,j] := ypastfi,j] + delta__t *(k1(j] + b
2*k2(j] + 2*k3[j] Tk4(/6; H

END; { case of F }
’b’,’B’ :




BEGIN
Bothprime (pendconst, airlength, frictconst,
airconst, ypastl[i], k1);
FORj:=1TO 2 DO
ytemp(j] := ypastli,j] + delta__t * k1(j)/2;
Bothprime (pendconst, airlength, frictconst,
airconst, ytemp, k2);
FORj:= 1TO 2 DO
ytemp{j] := ypast(i,j] + delta__t * k2(j)/2;
Bothprime (pendconst, airlength, frictconst,
airconst, vtemp, k3);
FORj:= 1TO 2 DO
ytemp(j] := ypast[ij] + delta_t * k3(j);
Bothprime (pendconst, airlength, frictconst,
airconst, ytemp, k4);
FORj:=1TO 2 DO
ypastli+1,j] := ypast[ij] + delta_t *(k1[j] +
2*k2[5] + 2*k3[] +k4{j))/6;
END; { case of B }
END; { case }
END; { Runge4 }

{*****t******************************************t******t*}

PROCEDURE PredictCorrect (pendconst, airlength, frictconst,
airconst, delta__t: real; select : ,
char; VAR ypast : pastpoints; VAR
k1, k2, k3 : vector);

VAR
k4, ytemp : vector;
j : integer;

BEGIN
FORj:= 1TO 2DO { predictor }
ytemp(jl: = ypast[3,j] + delta_ t *(23*k3[j] - 16*k2[j)]
+ 5*k1[jD/12;
CASE select OF
'p’,’P’,’n",’N’ : Noprime (pendconst, ytemp, k4);
'a’,’A’ : Airprime (pendconst, airlength, airconst,
ytemp, k4);
P’ ’F’ : Frprime (pendconst,frictconst, ytemp, k4);
'b’,’B’ : Bothprime (pendconst,airlength,frictconst,
airconst,ytemp,k4);
END; { case }
FORj:= 1TO 2 DO { corrector - single iteration }
ypast{4,j]: = ypast[3,j] + delta__t *(5*k4[j] + 8*k3(j]

- k2{j))/12;
k1l := k2; { Move functions up for next pass }
k2 := k3;
k3 := k4;

ypast[3] := ypast[4]); { Move to next point }



END; { PredictCorrect }

{****t***************t********************a ***t**********#}

PROCEDURE Multistep (pendconst,airlength,theta,frictconst,
airconst,delta__t: real; curve,select:
char; VAR simdata : datafile);

{ This is the numerical calculation for the simulation
using a fourth order predictor-corrector method
constructed from a three stage Adams-Bashforth method and
a two stage Adams-Moulton method. The resulting multistage
method is not self starting and requires three back
points in order to begin predicting and correcting. The
three back points are provided by the initial conditions
and the fourth order Runge-Kutta method employed above.
The error from the Runge-Kutta method is as good as the
predictor-corrector method being used so no problems
should arise as a result of the generation of the first
three points. It is relatively fast (5 seconds for 600
data points) and has fourth order accuracy. }

VAR
k1, k2, k3, k4, ytemp, buffer : vector;
ypast : pastpoints;
time : real;
i, j, subint, int : integer;

BEGIN
rewrite (simdata);
IF delta_t < 0.01 THEN
BEGIN
subint := ROUND(0.01/delta__t);
int := 640;
END
ELSE
BEGIN
subint := 1;
int := ROUND(6.4/delta__t);
END;
buffer{1] : = ord(curve);
buffer{2] := 0.0;
write (simdata, buffer);
buffer(1] := ord(select); { label data }

buffer(2] := pendconst;

ytemp{1] : = airlength;

ytemp(2] : = theta;

write (simdata, buffer, ytemp);

ytemp[1] : = frictconst;

ytemp{2] := airconst; F

L

L
B4 T T e A “ ¢ - ¥, ) W oy S §% 84 e S e Ve FeRNRIPY ""\é"‘{""ﬁ’ O, "N -""\rh"‘ LG LY
o0 2 "-i"1~'}~=<~A.»-_ P N A X E . -0 A ® R, - ¥ A 8998, '\“'{A.(_:L .)l.-:h;.:; 3." \L‘mﬁﬁ&d




g,

write (simdata, ytemp);

time := 0.0;
ypast{1,1] := theta;
ypast{1,2] := 0.0;

buffer{1] := time;
IF curve IN ('d’,’D’]
THEN buffer(2] := ypast[1,1]
ELSE buffer[2] := 0.0;
write (simdata, buffer);
{ writeln (LST,buffer(1],” ’,buffer[2]);}
FOR i := 1 TO 2 DO{ Calculate first three back points.}
BEGIN
time := time + delta_t;
Runge4 (pendconst, airlength, frictconst, airconst,
delta__t, select, ypast, i);
IF delta_t >= 0.01 THEN
BEGIN
buffer{1] := time;
IF cwve IN ['d’,’'D’]
THEN buffer[2] : = ypast[i+1,1]
ELSE buffer[2] := ypastli+1,2};
write (simdata, buffer);
{ writeln (LST,buffer(1],”  ’,buffer(2]);}
END; { if }
END; { for i }
CASE select OF
'p’,’P’,’n’,’N’ .
BEGIN
Noprime(pendconst,ypast[1],k1);{ The initial }
Noprime(pendconst,ypast[2],k2);{ functional }
Noprime(pendconst,ypast{3],k3);{ values for use }
END; { case of P } { in PredictCorrect }
’a,,’ I\E
BEGIN
Airprime (pendconst,airlength,airconst,ypast[1],
k1);
Airprime (pendconst,airlength,airconst,ypast{2],
k2);
Airprime (pendconst,airlength,airconst,ypast{3],
k3);
END; { case of A }
kit
BEGIN
Frprime (pendconst, frictconst, ypast[1], k1);
Frprime (pendconst, frictconst, ypast[2], k2);
Frprime (pendconst, frictconst, ypast[3], k3);
END; { case of F }
»,’B’:
BEGIN
Bothprime (pendconst, airlength, frictconst,
airconst, ypast[1], k1);
Bothprime (pendconst, airlength, frictconst,
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airconst, ypasti2], k2);
Bothprime (pendconst, airlength, frictconst,
airconst, ypast[3], k3);
END:; { case of B }
END; { case } ,
FORi:= 1 TO int DO N
BEGIN \
FOR j := 1 TO subint DO !
BEGIN

time := time + delta_t;

PredictCorrect (pendconst,airlength, frictconst,
airconst,delta__t,select, ypast,
k1, k2, k3);

END; { for j}
buffer[1] := time;
IF curve IN ['d’,’D’]
THEN buffer[2] := ypast[4,1]
ELSE buffer(2] := ypast[4,2];
write (simdata, buffer);
{ writeln (LST,buffer{1],’ ’buffer(2]);} ]
END; {fori} A
close (simdata);
END; { Multistep }

- -

{*********t************#**t*******************************}

PROCEDURE Simulate (VAR simcomplete : boolean; VAR simdata:
datafile);

K { This procedure runs the simulation when the user requests
the simulation option from the main menu. }

Ko Sl . oA,

LABEL 2;

CONST :
g = 9.81;

VAR ,
curve, select : char; ’
- imoment, mass, airlength, theta, cmdistance,
2 delta_t : real;
peonst, frictconst, airconst : real; ?

) BEGIN
writeln ("The simulation will proceed based on the’); v
writeln (’physcical configuration you are using.’);

2 : writeln; ;
writeln (Enter the system configuration:’); N
writeln ¢ P - Simple Pendulum’); »
writeln ( N - No constraints (friction or air)’); \

a writeln A - Air resistance only’); !

- writeln ' F - Friction only’);

\
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writeln ( B - Both air resistance and friction’);
readin (select);
CASE select OF
yp),vpy :
BEGIN
writeln(Enter the length of the pendulum in’);
writeln(meters.’);
readln (cmdistance);
writeln (Enter the initial angle in radians.’);
readin (theta);
writeln (Enter the step size, delta t, to be *);
writeln ("used in the simulation.(Multiples of’);
writeln (".01 or divisors of .01 down to .001");
writeln (Conly for graphing purposes.)’);
readln (delta__t);
writeln ("Do you wish to plot the displacement’);
writeln Cor velocity. Enter:”);
writeln ¢ D - Displacement’);
writeln ( V - Velocity’);
readln (curve);
pconst := g/cmdistance;
Multistep (pconst, 0, theta, 0, 0, delta__t,curve,
select, simdata);
END; { case of P}
’n’,’N’,’a’,’A’,’P,’F’,’b’,’B’ .
BEGIN
airlength := 0.0;
airconst := 0.0;
frictconst : = 0.0;
writeinCEnter the pendulum mass (in kg).’);
readln (mass);
writeln CEnter the distance from the pivot to’);
writeln ("the center of mass.’); :
readln (cmdistance);
writeln CEnter the moment of inertia for the’);
writeln ("pendulum.’);
readln (imoment);
IF select IN [’a’,’A’] THEN
BEGIN
writeln ("Enter the distance to the center’);
writeln (’of the square plates.’);
readin (airlength);
writeln (Enter the coefficient of air’);
writeln ('resistance.’);
readln (airconst);
END;
IF select IN ['f",’F’] THEN
BEGIN
writeln (Enter the friction coefficient.’);
readin (frictconst);
END;
IF select IN {’b’,’8’§ THEN
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BEGIN
writeln (Enter the distance to the center’);
writeln (‘of the square plates.’);
readln (airlength);
writeln (Enter the coefficient of air’);
writeln ('resistance.’);
readln (airconst);
writeln CEnter the friction coefficient.’);
readln (frictconst)
END;
writeln (Enter the initial angle in radians.’);
readin (theta);
pconst := mass * g * cmdistance / imoment;
writeln CEnter the step size, delta t, to be’);
writeln ('used in the simulation.Multiples of’);
writeln (.01 or divisors of .01 down to .001’);
writeln (for graphing purposes.)’);
readin (delta__t);
writeln ("Do you wish to plot the displacement’);
writeln (or velocity. Enter:’);
writeln ( D - Displacement’);
writeln 'V - Velocity”);
readin (curve);
Multistep (pconst,airlength,theta,frictconst,
airconst,delta__t,curve,select,simdata)
END { case of NOT P}
ELSE
REGIN
writeln Not a valid selection.’);
GOTO 2
END; { else }
END; { case }
simcomplete := true;
END; { Simulate }

{***********************tt********************************}

PROCEDURE Compare (VAR pendata : datafile);

{ This procedure compares the measured data from the lab
with the motion calculated by the numerical method. It
calculates the moment of inertia, coefficient of air
resistance or the coefficient of friction for the
pendulum by fitting the simulated curve to the curve of
the actual motion. This routine is the slowest because
the simulation must be recalculated iteratively as the
value of imoment, aircon or frictconst is a variable and
must be incremented until a proper fit is obtained. }

LABEL 3, 4, 5, 6;

CONST
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g = 9.81;
xtolerance = 0.004;
delta_t = 0.01;

VAR
cselect, calevar : char;
intolerance : boolean;
mass, imoment, airlength, theta, cmdistance, pendconst,
frictconst, airconst, ytolerance, ilimit,flimit,alimit,
iincrement,fincrement,aincrement,istart,fstart, astart,
time : real;

§ buffer, k1, k2, k3 : vector;

ypast : pastpoints;

i : integer;

BEGIN
3 : writeln (In what physical configuration was the ’); y
writeln ('data taken?’);
4 writeln ( N - No constraints’);
writeln ( A - Air resistance only’);
N writeln F - Friction effects only’);
writeln ( B - Both friction and air resistance’);
writeln Q - Quit and return to the main menu.’);
readin (cselect);
IF cselect IN ['n’,’N’,’a’,’A’)’f",’F’,’b’’B’]
THEN
BEGIN
reset (pendata);
e read (pendata, buffer);{skip velocity plot label} 8
: read (pendata, buffer); ‘
IF round(buffer{1]) ord(cselect) {see if the } X
THEN { data was taken in the indicated }
BEGIN { configuration. }
writeln (The data was not taken in the ', .
§ cselect,’™ configuration.’); 3
GOTO 3 .
¢ END; { then }
END { then } )
ELSE IF cselect IN ['q’,’Q’]
: THEN GOTO 5 ‘
ELSE ,
BEGIN
writeln (Response not allowed.’);
GOTO 3;
END; { else } t
- 6: writeln (Which constant do you wish to calculate?’);
writeln ("Enter:’);
writeln I - Moment of inertia’); )
b writeln F - Coefficient of friction’); ,
‘ writeln A - CoefTicient of air resistance’);
readln (calevar);
IF NOT (calevar IN ['V’,’T,’f",’F",’a’,’A’]) THEN

b
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BEGIN
writeln ('Not an allowed response.’);
GOTO 6
END; { IF NOT }
writeln("The comparison procedure requires certain’);
writeln ('incremental values, starting points and’);
writeln ('limits. The first value needed is the ');
writeln (‘tolerance for the accuracy of the’);
writeln(’caiculated omega, or y coordinate. Enter’);
writeln ('the y tolerance (.2 is a good start).”);
readln (ytolerance);
writeln ("The next entries deal with the starting’);
writein(’value or lower limit, an increment and an’);
writeln ('upper limit to the value of the constant’);
writeln ('to be calculated.’);
CASE caicvar OF
’ ar” A’ .
BEGIN
writeln CEnter the starting value for the’);
writeln (coefficient of air resistance.’);
readln (astart);
writeln CEnter the amount to be incremented’);
writeln (Ceach pass. WARNING: The smaller’);
writeln ('the increment the longer the’);
writeln ('calculation.’);
readln (aincrement);
writeln CEnter the upper limit on the’);
writeln (coefficient of air’);
writeln (’resistance.’);
readln (alimit);
END; { case of A}
g% 2
BEGIN
writeln (Enter the starting value for the’);
writeln ('coefficient of’);
writeln (’friction.’);
readin (fstart);
writeln CEnter the amount to be incremented’);
writeln (Ceach pass. WARNING: The smaller’);
writeln ('the increment the longer the’);
writeln (calculation.’);
readin (fincrement);
writeln CEnter the upper limit for the’);
writeln ('coefficient of friction.’);
readin (flimit);
END; { case of F }
,i’,,I’ .
BEGIN
writeln (Enter the starting value for the’);
writeln 'moment of inertia.’);
readln (istart);
writeln Enter the amount to be incremented’);
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writeln (each pass. WARNING: The smaller’);
writeln ('the increment the longer the’);
writeln (calculation.”;
readin (iincrement);
writeln (Enter the upper limit for the’);
writeln ‘moment of inertia.’);
readln (ilimit);
END:; { case of 1}
END; { case }
writeln CEnter the total mass of the pendulum.’);
readin (mass);
writeln CEnter the distance from the pivot to the’);
writeln (center of mass.’);
readin (cmdistance);
imoment := istart; airconst := astart;
frictconst : = fstart;
CASE cselect OF
’a’,’A’ :
BEGIN
CASE calcvar OF
1 a)’y Ay :
BEGIN
writeln (Enter the distance to the’);
writeln (’center of the plates.’);
readln (airlength);
writeln CEnter the moment of inertia’);
writeln (for the pendulum.’);
readin (imoment)
END; { case of A }
6 i A
BEGIN
writeln(Friction cannot be considered’);
writeln (’in this set up.”);
GOTO 3
END; { case of F }
’i’,’I, .
BEGIN
writeln CEnter the distance to the’);
writeln (‘center of the plates.’);
readln (airlength);
writeln (Enter the coefficient of air’);
writeln ('resistance.’);
readln (airconst);
END {case of I}
END; { case }
END; { case of A }
UF
BEGIN
CASE calcvar OF
’ ay’y A’ .
BEGIN
writeln (Air resistance is not’);
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writeln (‘considered in this set up.’);
GOTO 3
END; { case of A }
R
BEGIN
writeln ("Enter the moment of inertia’);
writeln (’for the pendulum.’);
readln (imoment)
END; { case of F }
7i’,’I, .
BEGIN
writeln ("Enter the coefficient of’);
writeln (friction.’);
readln (frictconst)
END; { case of I'}
END; { case }
END; { case of F }
’n,,’N’ :
BEGIN
IF calcvar IN [’a’,’A’,’f",’F’] THEN
BEGIN
writeln ("Neither air resistance or’);
writeln (’friction are considered in ’);
writeln (’this configuration.’);
GOTO 3
END; { then }
END:; { case of N }
’b’,,B’ -
BEGIN
writeln CEnter the distance to the center ’);
writeln (of the plates.’);
readln (airlength);
CASE calevar OF
’ ar’y A’ :
BEGIN
writeln CEnter the coefficient of’);
writeln (friction.’);
readln (frictconst);
writeln Enter the moment of inertia’);
writeln (for the pendulum.’);
readln (imoment)
END; { case of A }
UF
BEGIN
writeln CEnter the coefficient of air’);
writeln ('resistance.’);
readln (airconst);
writeln (Enter the moment of inertia’);
writeln ('for the pendulum.’);
readin (imoment)
END; { case of F }

’i’,?Ii :
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BEGIN ,
writeln CEnter the coefficient of’); "
writeln (friction.’); .
readln (frictconst); «
writeln CEnter the coefficient of air’); (
writeln (resistance.’); '
readln (airconst) X
END; { case of I } :
END; { case } 2
END; { case of B } W
END; { case } !
writeln (Enter the initial angle in radians.’); »
readin (theta); n:
pendconst := mass * g * cmdistance / imoment;
4 : CASE calevar OF
’ ay,r A’ "
BEGIN s
_ airconst := airconst + aincrement; \
IF airconst > alimit THEN "
BEGIN ;
writeln ("The coefficient of air’); 8
writeln ('resistance exceeds the limit.’); ;
writeln (Either the tolerance is too’); ~
writeln (’strict or the value is not °); "
writeln ("between the start value and ’); y
writeln (Cthe upper limit.’); :
GOTO 5
END; N
END; { case of A} N
F . g:
BEGIN :0
frictconst : = frictconst + fincrement; oy
IF frictconst > flimit THEN 1}
BEGIN o
writeln ("The coefficient of friction’); !
writeln (exceeds the limit. Either the’); ;
writeln ("tolerance is too strict or the’); :
writeln ('actual value is not between °); .:.
writeln (the start value and the limit.’); .
GOTO 5 .
END; )
END; { case of F } "
’i’,,I, : O“
BEGIN Y
imoment := imoment + iincrement; N
pendconst := mass * g * cmdistance / imoment; -
IF imoment > ilimit THEN .
BEGIN %
writeln ("The moment of inertia exceeds’); .
writeln('the limit. Either the tolerance’); d
writeln (’is too strict or the actual’);
writeln ('value is not between the start’); -
]
::.
v
"
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writeln ('value and the upper limit.’);
GOTO 5
END;
END; { case of I'}
END; { case }
seek (pendata, 6); { Skip labels and the first few }
ypast[1,1] : = theta; { points calculated by the }
ypast[1,2] := 0.0; { Runge-Kutta method which are }
time := 0.0; { difficult to incorporate into }
FOR i:= 1 TO 2 DO { the comparison. }
BEGIN
time := time + delta__t;
Runge4 (pendconst,airlength,frictconst,airconst,
delta__t,cselect,ypast,i);
END; {for i}
CASE cselect OF
’p’,'P’,’n’,’N’ .
BEGIN
Noprime (pendconst, ypast[1], k1);
Noprime (pendconst, ypast{2], k2);
Noprime (pendconst, ypast[3], k3);
END; { case of P }
va9” A’
BEGIN
Airprime (pendconst,airlength,airconst,
ypast[1], k1);
Airprime (pendconst,airlength,airconst,
ypast[2], k2);
Airprime (pendconst,airlength,airconst,
ypast[3], k3);
END; { case of A }
P
BEGIN
Frprime (pendconst, frictconst, ypast[1], k1);
Frprime (pendconst, frictconst, ypast[2], k2);
Frprime (pendconst, frictconst, ypast[3], k3);
END; { case of F }
b’,B’ :
BEGIN
Bothprime (pendconst, airlength, frictconst,
airconst, ypast{1],kl);
Bothprime (pendconst, airlength, frictconst,
airconst, ypast[2],k2);
Bothprime (pendconst, airlength, frictconst,
airconst, ypast[3],k3);
END:; { case of B}
END; { case }
WHILE NOT eof(pendata) DO
BEGIN
read (pendata, buffer);
intolerance := false;
WHILE NOT intolerance DO
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BEGIN
time := time + delta t;

PredictCorrect(pendconst,airlength,
frictconst,airconst,delta__t,
cselect,ypast, k1, k2, k3);

IF abs(buffer[1] - time) < xtolerance

THEN intolerance := true;
END; { while not }

IF abs(buffer[2] - ypast[4,2]) > =

THEN GOTO 4
END; { while not }
close (pendata);
CASE calcvar OF
!ai” A’ -
BEGIN

ytolerance

writeln ("The coefficient of air resistance’);

writeln (for this system is:’);
writeln (airconst:6:4)
END;
)P”F’ :
BEGIN

writeln (The coefficient of friction for’);

writeln (this system is:’);
writeln (frictconst:6:4)
END;
’i,’7I’ :

BEGIN

writeln ("The moment of inertia for this’);

writeln (’system is:");

writeln (imoment:6:4,” kg-m**2")

END;
END; { case }
5: writeln;
END; { Compare }

{t*t#t****#*******************t*******************t*******}

PROCEDURE Compplot (VAR filel, file2 : datafile);

{ This routine plots two data files for comparison. It
uses the organic Turbo Pascal routines discussed in the

comments for the Plot Procedure. }
LABEL 1;

VAR
x1, x2, y1, y2, config, scale : integer;
buff, temp, temp2 : vector;
curve : char;

BEGIN
clrser;
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graphmode;
hires;
Axis;
reset (filel);
read (filel,temp);
curve := chr(round(temp{1]));
IF curve IN ('d’,’'D’]
THEN scale := 40
ELSE scale := 10;
read (filel, temp, buff, temp2); { read labels }
config : = round(temp(1]);
writeln (curve,” PLOT 1: Config = ’,chr(config),
> m*g*d/I = ’,temp(2):5:3,” Airlength = ’,
buff{1]:5:3,” Theta(0) = ’, buff[2]:5:3);
writeln Frict Coef = ’,temp2[1]):5:3,
* Air Coef = ’,temp2[2]:5:3);
read (file1,buff);
x2 := round(buff[1] * 100) + 10;
y2 := 110 - round(buff{2] * scale);
WHILE NOT eof(file1) DO
BEGIN
x1 := x2;
yl:= y2;
read (filel, buff);
x2 := round(buffi1] * 100) + 10;
y2 := 110 - round(buff{2] * scale);
draw (x1, y1, x2, y2, 5);
END; { while not }
close (filel);
reset (file2);
read (file2, temp);
curve := chr(round(temp[1]));
IF curve IN ['d’,’D’]
THEN scale := 40
ELSE scale := 10;
read (file2, temp, buff, temp2);
config := round(temp(1]);
writeln (curve,” PLOT 2: Config = ’,chr(config),
' m*g*d/1 = ’,temp[2]:5:3," Airlength = ’,
buff{1]):5:3,” Theta(0) = ’, buff[2}:5:3);
writeln Frict Coef = ’,temp2[1]:5:3,
* Air Coef = ’,temp2(2]:5:3);
read (file2,buff);
x2 := round(buffi1] * 100) + 10;
y2 := 110 - round(buff[2] * scale);
WHILE NOT eof(file2) DO

BEGIN
x1 := x2;
yl:=y2

read (file2, buff);
x2 := round(buff[1] * 100) + 10;
y2 := 110 - round(buff[2] * scale);
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draw (x1, y1, x2, y2, 5); \
END; { while not }
close (file2);
1 : writeln CAre you done with the plot? (Y/N)’);
IF Yes
THEN textmode
ELSE GOTO 1
END; { Compplot } N

{*********************************************************}
PROCEDURE Compdata (VAR filel, file2 : datafile);
{ This routine plots the data and simulation files for

comparison. Filel is the data file. It uses the

organic Turbo Pascal routines discussed in the comments

for the Plot Procedure. }

LABEL 1;

R e - -

VAR
x1, x2, y1, y2, config, scale : integer;
buff, temp, temp2 : vector;
curve : char;

- P

BEGIN
clrser;
graphmode; .
hires; !
Axis;

reset (filel);

read (filel,temp);

curve := chr(round(temp[1]));

read (filel, temp, buff, temp2); _

config : = round(temp[1]); { Get labeling data } s

writeln('Data Config = ’,chr(config),’ m*g*d1 = ’, ¢
temp[2]:5:3,’Airlength = ’buff{1]:5:3, X
* Theta(0) = ’,buff{2]:5:3); ;

WHILE NOT eof(file1l) DO

- BEGIN

i« read (filel, buff);

x2 := round(buff{1] * 100) + 10;

y2 := 110 - round(buff{2] * 10);

draw (x2, y2-2, x2, y2+2, 5);

draw (x2-4, y2, x2+4, y2, 5)
END; { while }

close (filel);

reset (file2);

read (file2, temp);

curve := chr(round(temp[1))); A

IF curve IN [’d’,’D’]

THEN scale := 40
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ELSE scale := 10;

read (file2, temp, buff, temp2);

config := round(temp[1]);

writeln (curve,” Plot Config = ’,chr(config),
' m*g*d/1 = ’,temp[2]:5:3,” Airlength = ’,
buff[1]:5:3,” Theta(0) = ’, buff{2]:5:3);

writeln ( Frict Coef = ’,temp2[1]:5:3,
' Air Coef = ’,temp2[2]:5:3);

read (file2,buff);

x2 := round(buffl1] * 100) + 10;

y2 := 110 - round(buff{2] * scale);

WHILE NOT eof(file2) DO

BEGIN
x1 := x2;
yl:= y2;

read (file2, buff);
x2 := round(buff{1] * 100) + 10;
¥2 := 110 - round(buff[2] * scale);
draw (x1, y1, x2, y2, 5);
END; { while not }
close (file2);
: writeln CAre you done with the plot? (Y/N)’);
IF Yes
THEN textmode
ELSE GOTO 1
END; { Compdata }

{**#**#******************************************t**#*****}

BEGIN { Physpenduium }
assign (simdatal, ’A:SIMDATA1.DAT’);{ This is Turbo }
assign (simdata2, ’A:SIMDATAZ2.DAT’);{ Pascal’s method }
assign (pendata, ’A:PENDATA.DAT’); {of assigning file }
datataken := false; { variables to disk files, not by }
simlcomplete := false; { rewrites. }
sim2complete := false;
writeln Weilcome to the Physical Pendulum data ’);
writeln ('collection and simulation program.’);
: writeln;
writeln CEnter T to Takedata, S to Simulate, C to’);
writeln Compare the data with the numerical’);
writeln (’solution and calculate the moment of ’);
writeln ('inertia, A to calculate data using the’);
writeln ("Small Angle approximation, or Q to Quit.’);
readln (response);
CASE response OF
’q’,’Q’ . HALT;
ra),y A’ :
BEGIN
writeln("The small angle approximation routine’);
writeln(’has been calculated assuming a system’);
writeln('of no constraints (no air resistance ’);

* ¢
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writeln (Cor friction). If comparisons’);
writeln(’evaluating the appropriate use of the’);
writeln ('small angle approximation are going *);
writeln ('to be made, insure that the’);
writeln (’simulations are done using the No’);
writeln (constraints (N) option. The small’);
writeln (angle routine stores its data in the");
writeln (first simulation file so comparison ’);
writeln (’simulations are second simulations.’);
Smallangle (simdatal);
simlcomplete := true;
writeln (Do you wish to plot the results’):
writeln ("obtained using the small angle’);
writeln (Capproximation? (Y/N)");
IF Yes
THEN Plot (simdatal);
END; { case of A}
’t’,’T’ :
BEGIN
IF datataken
THEN
BEGIN
writelnAny new data taken will destroy’);
writeln (the current data. Do you wish’);
writeln ('to take new data? (Y/N)");
IF Yes
THEN Takedata (datataken)
ELSE GOTO 1
END { then}
ELSE Takedata (datataken);
writeln ("Do you wish to plot the data? (Y/N));
IF Yes
THEN DataPlot (pendata);
writeln (Do you wish to shift the data? (Y/N)");
IF Yes THEN
BEGIN
3 : Shiftdata (pendata);
writeln ("Do you wish to plot the shifted’);
writeln ('data? (Y/N)’);
IF Yes
THEN DataPlot (pendata);
writeln (Do you wish to shift the data’);
writeln (Cagain? (Y/N)’);
IF Yes
THEN GOTO 3;
END;
END; { case of T }
’S’,’S’ :
BEGIN
IF simlcomplete
THEN
BEGIN

o T p M T
‘..l.»l‘h...,n\ .-' )

N “ e
S R S



AR BTSN TR U T SR MR AN AN T RN N R AT AN RN NN AN AN TN A AR KR AN AN N

writeln (A simulation has been ’);

2 : writeln (completed. Do you wish to’);
writeln (‘resimulate, calculate a second’);
writeln (’simulation or return to the’);
writeln ("main menu? Enter’);
writeln " R - Resimulate ’);
writeln " S - Second simulation ’);
writeln  Q - Quit, return to main menu’);
readln (simselect);

CASE simselect OF
'¢,’Q : GOTO 1;
’r’,’R’ .
BEGIN
Simulate (simlcomplete, simdatal);
writeln ("Do you wish to plot the’);
writeln (simulation? (Y/N)’);
IF Yes
THEN Plot (simdatal);
END; { case of R }
’S,,’S’ :
BEGIN
Simulate (sim2complete, simdata2);
writeln ("Do you wish to plot the’);
writeln (’simulation? (Y/N)’);
IF Yes
THEN Plot (simdata2);
END {caseof S}
ELSE
BEGIN
writeln (Not an allowed response.’);
GOTO 2
END; { else }
END; { case }
END { then }
ELSE
BEGIN
Simulate (simlcomplete,simdatal);
writeln (‘Do you wish to plot the’);
writeln (simulation?(Y/N)');
IF Yes
THEN Plot (simdatal);
END; { else }
END; { case of S }
’C’,’C’ :
BEGIN
IF datataken
THEN
BEGIN
Compare (pendata);
GOTO 1
END { then }
ELSE

. ba¥ 4a® 12" 82t 8" 62° €a 8
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BEGIN
writeln ("Data must first be taken in’);
writeln (order to run the comparison’);
writeln (and calculate any of the’);
writeln (constants.’);
GOTO 1
END; { else }
END { case of C }
ELSE
BEGIN
writeln (Not a proper response.’);
GOTO 1
END; { else }
END; { case }
IF datataken AND simlcomplete
THEN
BEGIN
writeln (Do you wish to graphically compare’);
writeln ('the plot of the data and the first’);
writeln (’simulation? (Y/N)’);
IF Yes THEN
Compdata (pendata, simdatal);
END; { then }
IF datataken AND sim2complete
THEN
BEGIN
writeln (Do you wish to graphically compare’);
writeln ('the plot of the data and the second’);
writeln (’simulation? (Y/N)");
IF Yes THEN
Compdata (pendata, simdata2);
END; { then }
IF simlcomplete AND sim2complete
THEN
BEGIN
writeln("Do you wish to graphically compare’);
writeln(’the two simulations? (Y/N)");
IF Yes
THEN Compplot (simdatal, simdataZ2)
END; { then }
GOTO 1
END. { Physpendulum }
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*

* SUBROUTINES FOR "DROP"
* MODIFIED FOR USE IN "FRESHPEN"

*

* 10/19/85 i
*

* BRIAN DAVIS

* MODIFIED BY MARK STEVENS -
* 8/19/87

*

* i

* PUBLIC ROUTINES

*

PUBLIC SETUP

PUBLIC DRAWCURS DRAW CURSOR
PUBLIC COUNT COLLECT DATA
POUBLIC GRAPH GRAPH DATA

*

o - A

*EXTERNAL REFERENCES
*

PUTC EXT
SETT EXT
*

*

* TIME LOCATION : CHANGE TO LOW MEMORY IF ROM’ED

*

e e A B % o

TIME RMB 1
*

SETUP ORCC #8$50
LEAX IRQ,PCR
STX $10D
LDA #$7E
STA $10C
LDA #$BF
STA $FF52 PB6= INPUT "
CLR $FF50 t
»

- -

* INTERRUPT HANDLER
*

IRQ TST $FF02 CLEAR INTERRUPT FLAG

DEC TIME,PCR

RTI 4
*

*

* PASCAL CALL:
* PROCEDURE COUNT (STARTADD:INTEGER)
L]

%

* STARTADD IS STARTING ADDRESS OF BUFFER
* BUFFER : ARRAY OF INTEGER

l‘
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i T2

o

" ]
* [
* INITIAL STACK: ).
STARTADD EQU 6 START OF BUFFER ADDRESS ' ‘
%*
* 4.5,S: LINK 't:
* 2.3,S: RETURN ADDRESS ]

* 0-1,S: SAVED U W
*

* SETUP A,
*

COUNT PSHS U SAVE LINK '
LDU STARTADD,S By
LDX #$FF01 TURN OFF PIA INTERRUPTS "

BSR CLRINT Ry
INC $FF03 60 HZ IRQ ON .
ANDCC #$EF ENABLE INTERRUPTS 4
LDA #64 ;"
PSHS A COUNT ON STACK bt
LDX #$FF50 M
SYNC WAIT UNTIL IRQ o
TRAN CLRB TRANSITIONS = 0 »
LDA #3$6 4
STA TIME,PCR COUNT FOR 1/10 SECOND Y,
LDA ,X GET PORT VALUE )
TRAN1 CMPA ,X CHANGE? ot
BEQ TRAN2 .;
INCB YES, INCREMENT TRANSITION COUNT '
LDA ,X NEW PORT VALUE .
TRAN2 TST TIME,PCR CHECK TIME y
BNE TRAN1 iy
CLR ,U+ CLEAR HIGH BYTE OF INTEGER B
STB ,U+ STORE POINT o
DEC ,S SEE IF DONE N
BNE TRAN '
ORCC #8350 X
PULS A,U,PC v
= :"c’
. W
* (]
* CLRINT CLEARS INTERRUPTS .
* X = ADDRESS OF PIA CRA o
* "
CLRINT LDA ,X "
ANDA #$FE N
STA X ™
LDA 2,X ’
ANDA #$FE
STA 2,X v
RTS W
x

* PASCAL CALL: !
* PROCEDURE GRAPH (STARTADR : INTEGER) L
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* STARTADR IS AN ADDRESS : BUFFER(1]
* N .
* PLOTS LOW ORDER BYTES OF ARRAY >
* PLOTS 64 POINTS, IE '
* BUFFER[1] - BUFFER[64) h
* Y
* STACK: W
START EQU 6 !
* Al
* 4-5,S: LINK
* 2-3,S: RETURN ADDRESS -
* 0-1,S: SAVED U A
* .
* $88 CONTAINS POINTER TO CURRENT :
* GRAPHICS CONTROL BLOCK L
* '
* FORMAT OF GRAPHICS CONTROL BLOCK; ]
* (ADDRESS IN Y REG) o
* 4

* 0-1, Y = SCREEN START ADDRESS
* 2.3, Y = SCREEN END ADDRESS -\
* 4, Y = GRAPHICS Y COORD.
* 5, Y = GRAPHICS COORD.

»

0

*
*

GRAPH PSHS U SAVE LINK

LDU START,S U = START ADDRESS

LDY $88 Y = CONTROL BLOCK POINTER
CLR 5,Y X COORD = 0

E 3

)

.p‘;—‘-..-ﬁ

* LOOP TO PLOT/UNPLOT

x

LEAU 1,U POINT TO LOW BYTE
GLP LDA ,U++

LDB #180 SCALE Y

MUL

SUBA #191

COMA

STA 4,Y STORE Y

LBSR SETT GET THE ADDRESS *BIT :
COMB FLIP BIT MASK

ANDB ,X RESET BIT h
STB ,X PUT IT ON SCREEN

T2
o

PR

L &

x

LDA5Y X = X+4 1t
ADDA #4 L
STA 5,Y X
BNE GLP ]
GRAPHRET PULS U,PC "
=- o

)

* PASCAL CALL DRAWCURS(X,Y:INTEGER)
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*

* DRAWS CURSOR AT COORDINATES
* PERFORMS SCALING

* 7,5:X COORD

* 5,5:Y COORD

*

DRAWCURS LDY $88
LDA 5,S GET Y
LDB#180 SCALE IT
MUL
SUBA #186 CURSOR IS 4 BYTES HIGH- 186 ADJUSTS
COMA FOR HEIGHT SO BOTTOM IS ABOVE POINT
LDB 78X = X+4
LSLB
LSLB
STD 4,Y PUT INTO GY,GX
PSHS U SAVE LINK
LBSR SETT
LDA #4
LEAU ARROW,PCR
PSHS D
CURS1 LDA ,U+
LDB 1,8
MUL
ASLB
ROLA
EORA X
EORB 1,X
STD X
LEAX $20,X
CMPX 2,Y
BHI CURSEX
DEC ,S
BNE CURS1
CURSEX PULS D,U,PC
ARROW FDB $10A0
FDB $COE0
E

*
*

END
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APPENDIX C: Example Plots \

Any plot the Physpend routine displays on the screen of the Zenith Z-140 PC

can be printed using the print screen command and a graphics capable printer. Before ':
running Physpend the DOS command "graphics" must be executed. The following .

example plots include a data plot, a comparison of data to a simulation, a comparison of h

two simulations, a plot of the displacement and angular velocity for the same system,

and an example of solution instability with increasing step size.
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Data Config = b n*g*d/l = 0.833Airlength = 8,220 Theta(®) = 1,37
Are you done with the plot? (Y/N)
.
+ - .
- T + + ++*+
T * + + + +
* + + + + +
r ha + -+ -
| + - - + + +“'
+ + + + ++ .
‘ + o+ ot T+
+ ¥

Figure C.1. Data Plot
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Data Confi?_: h wegkd/1 = 0,8330inlength = 0,220 Theta(@) = 1,371 .
v Plot Con.xg = b migxd/[ = 13,311 Awlenath = 8,220 Theta(® = 1.571

| Frict Coef = 0,880 Air Coef - ©.040

Are you done with the plot? (Y/N)

~
\ /\\ £

— T fd
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X 3
v] A ~ :?
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. Figure C.2. Data vs. Simulation W
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v PLOT 1 Conf i 1g b nlf*dll = a1, 582 nlrlength 0.208 Theta(@) = 1,500 o,

Frict Coef e Aw oef "
v PLOT 2. Conhg b = 21,52 ﬂmlength 0.200 Theta(@) = 1,500 o

. Frict Coef = OiBBG fip Coef = 6,600 i
fre you done with the plot? (Y/N)

Figure C.3. Simulation 1 vs. Simulation 2
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3

:

y

v PLOT 1. Config = a weg*d/I = 19.c20 Rirlength = 0,308 Theta(®) = 1.571 4

Frict Coef = B, 09 Aw Coef = 0,800 ot

d PLOT 2, Conflg = a n*g = 19,620 Au-length = 8,308 Theta(®) = 1.571 4

Frict ¢ 00 Air Coef = %

Are you done mth the plot? (¥/K) 3

.‘;

/’\\

Figure C.4. Angular Velocity vs. Displacement
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meg*d/I = 19,028 Rirlength = 8,300 Theta(@) = 2,000

[
-
\ o

\\//

Figure C.5.
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APPENDIX D: Experiment Instructions
Experimental background and instructions were developed for each of the
experiments. The instructions for all three experiments are included in this appendix.
The level of difficulty and detail of the instructions were matched to the expected
capabilities of the students. The freshmen are expected to complete the experiment and
turn in their laboratory notebooks after two ninety minute periods, while the juniors are

given one week and are required to submit a more formal report.
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NUMERICAL METHODS AND ROTATIONAL MOTION
(VISCOUS DAMPING - TERMINAL VELOCITY)

I. INTRODUCTION

In this experiment we will consider the rotational motion of a disk with
adjustable plates which resist the disk’s motion through the air. The disk will be
accelerated by applying a constant torque. The rotational inertia of the rigid body will
be calculated by breaking it into parts and finding the rotational inertia of each by
knowing the mass and shape of each. The total rotational inertia is simply the sum of
the individual parts.

After calculating the moment of inertia the angular velocity plot of the system
will be calculated using the improved Euler’s method and a comparison made to the
actual angular velocity curve measured by the microcomputer. By adjusting the fins the
effect of air resistance on the velocity of the wheel will be investigated.

The apparatus consists of a thirty centimeter aluminum disk and a hub of
smaller diameter, both mounted on an axle with ball bearings. We also have a notched
disk which allows us to measure the rotation of the body and two adjustable rectangular
plates provide air resistance.

II. THEORY REVIEW

The viscous damping force that affects the disk can be approximated as being
proportional to some power of the linear velocity of the plates. The total torque acting
on the disk can be written

dw _ mgrl n
Gt = Tome W)

where k is a constant which describes the damping force, 1 is the distance from the
rotational axis to the center of the plates, r is the moment arm of the accelerating
weight, and n is an integer. As the disk begins to accelerate under an applied torque the
viscous damping force applies a retarding torque slowing down the angular acceleration.
Finally, the disk reaches a contant "terminal" angular velocity at which point the net
torque acting on the disk is zero.

The exact solution of this motion in practice is quite difficult. The applicaton of
the improved Euler’s method to this motion lets us study the behavior of this system in
detail. We can see the effect of varying k and n and compare the calculated solution to
the actual motion as measured by the microcomputer.

III. PROCEDURE AND ANALYSIS

Part A

" To find the rotational inertia of the system from the mass and shape of the
individual parts use the unassembled parts found next to the balance. DO NOT
DISASSEMBLE THE APPARATUS TO BE USED IN PART C. Measure the mass and

LA
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all relevant dimensions and compute the resulting rotatinal inertia. Estimate the
uncertainty for each of the parts and the overall uncertainty of the calculated value of
the rotational inertia. Show all of the measurements, calculations and uncertainties in
the form of a table.

Part B
Noting in this case that
& _ megr n
dt ~ T+mr k()

we can apply the improved Euler’s method to calculate and plot the angular velocity of
the system. Remember that the improved Euler’s method first computes the value of
angular velocity one half of the way into the first interval.

_ t
Wos = @99 T ao(%)

Then using this value we calculate

.. mgr n
%5 = Tome ~ Mg o)

Finally we obtain

o, = wy + gy At

To calculate the value of w for the next point the initial value w_ is replaced with
and the above steps are repeated. Notice that we are simply using the slope of the
angular velocity curve one half way through the time interval and we add that change
to the preceding value of w at the beginning of the interval. Calculate and plot the first
twenty points for the motion using t = 0.1 seconds and k = 0.4. Measure | and d from
the apparatus and use your calculated value for the rotational inertia from Part A. You
might want to tabulate your values for a and w to aid in calculation and plotting.

Will increasing the length of the time interval increase or decrease the accuracy
of the numerical method in approximating the actual motion? Why?

Part C

T 7 We are using the microcomputer to measure the angular velocity of the rotating
disk. It will also use an equivalent numerical method to calculate the angular velocity
curve for comparison to the data. The microcomputer will count slots in the notched
wheel every 0.1 seconds. It plots the resulting angular velocity curve, the slope of which
is the angular acceleration, a.

Turn on the microcomputer and initiate the Airwheel program. Follow the
instructions given and enter the appropriate data when prompted.

First, orient the plates so that they cause a minimum amount of air resistance.
Wind up the string with the 500 gram mass. Release the wheel and simultaneously
press any key on the microcomputer to take the data., Input your values from Part A
and Part B in the simulation, choosing the no air resistance option, and compare the
calculated curve with the actual motion. Are the curves the same? If not, why?
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Adjust the input value for I until you match the actual angular velocity curve.
Record this value.

Part D

T 7 Take data again but adjust the plates for maximum air resistance. Run the
simulation now using I from part C. Again try to match the calculated curve with the
actual angular velocity curve by varying values of k and n. Which model for the viscous
force is closest to the actual motion? What is the value for k?

Adjust the plates to some intermediate position and measure the angular
., velocity. Again match the curve with the computer calculated angular velocity. Is the
- same model for the viscous force still the most accurate? What happens to the value of
: k? What happens to the value fur the terminal angular velocity?

If you changed the mass accelerating the wheel would it affect the terminal
velocity? How?

Part E

T T Test the accuracy of the numerical method when you vary the time interval.
5 What happens to the value for the terminal velocity for large time intervals? How large
- can At be before the difference between the curves becomes significant? For a more
o dramatic demonstration of the sensitivity of this type of numerical method to the step
size load the Freshpen program for a physical pendulum and vary the step size for the
harmoric motion calculation. Why would the improved Euler’s method be more sensitive
to At for the oscillating function obtained for harmonic motion than to the angular
velocity curve for the rotating disk that approaches a terminal value?

-~
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NUMERICAL METHODS AND THE PHYSICAL PENDULUM
(FREE AND DAMPED HARMONIC MOTION)
I. INTRODUCTION

In this experiment we will use numerical methods to investigate the oscillation !
of a physical pendulum. We will examine both undamped and damped oscillations. The 5
rotational inertia of the pendulum will be calculated by breaking it into parts and
finding the rotational inertia of each part by knowing the mass and shape of each. The
total rotational inertia is simply the sum of the individual parts.

After calculating the moment of inertia the motion of the pendulum will be
recorded by the microcomputer. A numerical method equivalent to the improved Euler’s
method (called Heun’s method) is then employed by the computer to simulate the
motion.

The apparatus consists of a thirty centimeter diameter aluminum disk with a
hub and slotted disk for measuring rotation. It also has two rectangular plates which
provide viscous damping and a weight to offset the center of mass from the axis of
rotation.

II. THEORY REVIEW
For an undamped physical pendulum the equation of motion is

do _ .

Iat— = -mgd sing

where d is the distance from the rotation axis and 8 is measured from the vertical. In
the case of viscous damping the force providing the damping torque can be
approximated as being proportional to some power of the linear velocity of the resisting
plates. This torque always opposes the direction of motion and modifies the equation uf
motion to

I:_:" = -mgd sind t kl()"

where | is the distance from the rotation axis to the center of the plates, k is a
constantwhich describes the damping force, and n is an integer.

The exact solution to either of these equations is difficult, except when the small
angle approximation (sin@ = ¢) is made for the undamped case. The application of the

numerical method to this system allows us to study the motion in detail. The effects of
varying n and k can be investigated and values for the actual system determined.

1. PROCEDURE AND ANALYSIS

Part A

T 7 To find the rotational inertia from the mass and shape of the individual parts
use the unassembled parts found next to the balance. DO NOT DISASSEMBLE THE
APPARATUS TO BE USED IN PART B. Measure the mass and all relevant
dimensions and compute the resulting rotational inertia. (Note: The parallel axis
theorem might be useful here.) Estimate the uncertainty for each of the parts and the




overall uncertainty of the calculated value of the rotational inertia. Show all of the
measurements, calculations and uncertain.ies in the form of a table.

Calculate the distance from the rotation axis to the center of mass and record
the total mass of the pendulum.

Part B

T T We are using the microcomputer to measure the angular velocity of the
pendulum. It will also use the numerical method to calculate the angular velocity given
input data and will compare it to the actual data curve. The microcomputer will count
slots in the notched wheel every 0.1 seconds and will plot the resulting angular velocity.
Note that it only plots the absolute value of the angular velocity.

Turn on the microcomputer and initiate the Freshpen program. Follow the
instructions given and enter the appropriate data when prompted.

First, orient the plates so that they cause a minimum amount of air resistance.
Set the pendulum to the starting angle for the desired motion. Make sure you measure
and record the starting angle for the oscillation. Release the pendulum and
simultaneously press any key on the microcomputer to take the data. Input your values
from Part A into the simulation, choosing the no air resistance option, and compare the
calculated curve to the actual motion. Are they the same? If not, why? What is the
calculated period of the motion?

Adjust the input values for I until you match the actual angular velocity curve.
Record this value. What is the period of the actual motion?

Part C

T T Take the data again but adjust the plates for maximum air resistance. Run the
simulation now using I from Part B. Again match the calculated curve with the actual
angular velocities by adjusting the values of k aud n. What vaiue of n seems to be the
closest to the actual measured motion? What is the value for k? What is the period of

motion for this configuration? Compare it to the period in Part B. Explain any
differences.

Adjust the plates to an intermediate position and again measure the angular
velocity with the microcomputer. Are the values for n and k the same? If not, why?

Part D

T 7 Use the simulation routine and determine a value for k that results in a
critically damped system. How might you provide such damping in the laboratory?
Discuss what happens to the period, rotational inertia, d, and the value of k if a heavier
weight were used to unbalance the disk. Would critical damping require a larger or
smaller value for k in this case?

Part E

T 7 Test the accuracy of the numerical method when you vary the time interval.
What happens as you increase the step size? At what value for At does the calculated
curve seem to develop a significant error? Why does this error occur? If the angular
velocity function were nct oscillatory and approached some asymptotic value would the
numerical method be as sensitive to the size of the step in time? For verification load
the Airwheel program and investigate the effect of changing step size in the terminal
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NUMERICAL METHODS AND THE PHYSICAL PENDULUM "
This experiment allows you to investigate the harmonic motion of a real physical ’ ;
pendulum utilizing a microcomputer to take the data and compare it to the calculated .h
motion derived using numerical methods. The setup consists of two systems; the -
modified TRS-80 system for taking data, and the Zenith Z-140 PC used for analysis.
Each time data is taken it must be input into the Zenith for analysis. ‘ .:'.
The data is taken by means of a notched wheel and two photogates. The motion -
of whatever physical configuration you construct is recorded by counting the tripping of -
the photogates as the notches pass. There are 90 notches on the wheel and the count is .'_‘
recorded every 0.1 second. The resulting data yields an angular velocity plot. Using the ey
known angular displacement of each notch the integer counts are converted to radians A
per second and displayed for transfer into the Zenith. To take data turn on the TRS-80 =
system. Insert the program disk and type RUN "DUMP". Respond "0" to the drive ) ‘
prompt and enter "JPENDATA" for the filename. The down loaded program will then s
instruct you on the procedure for taking and displaying the data. l
N
Once data is taken you will want to analyze it with the Zenith. To do this insert :’,
the Zenith program diskette. Turn the system on. At the prompt enter GRAPHICS. 4
This will allow you to print the plots from the screen by using the PrtSc key. Then 4
enter PHYSPEND. The program will then give you instructions for analysis. The ;.:

program will accept the input data, calculate the motion for small angle approximations,
motion with friction and air resistance and even the motion of a simple pendulum. You

L L

are able to compare two simulations, or either simulation with the data. Any plot can :3
be printed with the Print Screen command. The simulation utilizes a 4th order e
Predictor-Corrector method to approximate the solution to the differential equations of L
motion (you should know what the equations are). The accuracy of this method can be <rd
tested by varying the time step size. It is accurate enough to calculate the actual values Y,
of different factors for the physical pendulum by using an iterative process. It will -f
calculate the motion and compare it to the data point by point until it gets a fit, subject '\.."
to the limits you give it. ;
Utilizing the computer and software as a tool you should ivestigate the physical -
pendulum for large and small angle oscillations, large and small moments of inertia, 4
large and negligible friction effects and the simple pendulum and small angle '0:{
approximations verses the actual system. None of the physics theory is difficult and you :lj
should readily verify the effects of varying parameters (such as the moment of inertia, :
friction coefficient, etc.) on the motion of the pendulum. What you investigate is up to g,
you, but areas of interest include, but are not limited to, ]
- at what angle is the small angle approximation no longer appropriate? -
- the acutal moment of inertia of the pendulum. a
- the coefficient of friction in the bearings. o
B
- the effects and coefficient of air resistance. :'.*_
N

- variations in the accuracy of the numerical method with changing time
intervals. ’

~

™,
R SR XA DT LA LA




.
o,

Ty
‘

DOCONOE D G ‘ y 2 ! N
S N e N O O O O O D X R SO O R A S O O XA I X A

oty 253 g 5 et at et ath e WEarH a'h &0 70" S B GRS A QP RTREIRN R gl ol val Sl -Sad Vb sl Gol Sud Se8

ENDNOTES
1 Robert Resnick and David Halliday, Physics, Part I, 3rd ed. (New York: John Wiley
and Sons, 1977), pg 313.
2 Ibid., p. 323.
3 Ibid., p. 245.

4 Lee W. Johnson and R. Dean Riess, Numerical Analysis (Reading, Massachusetts:
Addison-Wesley Publishing Company, 1982), p. 366.

5 Tbid., p. 354.

6 Thid., p. 362.

7 Thid., p. 367.

8 Ibid., p. 369.

9 Ibid., pp. 373-393.
10 Thid., p. 399.

11 Tbid., p. 402.

12 Ibid., p. 408.

13 Ibid., p. 394.

14 DEFT Pascal Workbench User’s Guide ( : DEFT Systems Inc., 1984).

15 Jeff Duntemann, Complete Turbo Pascal (Glenview, Ilinois: Scott, Foresman and
Company, 1986).

16 Lance Leventhal, 6809 Assembly Language Programming (Berkeley:
Osborne/McGraw-Hill, 1981).

17 Peter Grogono, Programming in Pascal, 2nd ed. (Reading, Massachusetts:
Addison-Wesley Publishing Company, 1980).

130

n { LW R W " b,
L0 0, %0, Y 00,540, 748,800, 5,0



R R NN A R N Y N R R R LN U LU R U M M KM T R U U WO WU WL RRIRFU T ORI U IO 4 ™ U TN ROCON TUR U ™8 ™

REFERENCES

Color Computer Disk System Owners Manual and Programing Guide. : Tandy
Corporation, 1981.

: DEFT Pascal Workbench User’s Guide. : DEFT Systems Inc., 1984.

Duntemann, Jeff. Complete Turbo Pascal. 2nd ed. Glenview, Illinois: Scott, Foresman
and Company, 1986.

Getting Started with Extended Color Basic. : Tandy Corporation, 1984.

Goldstein, Herbert. Classical Mechanics. 2nd ed. Reading, Massachusetts:
Addison-Wesley Publishing Company, 1980.

Grogono, Peter. Programming in Pascal. 2nd ed. Reading, Massachusetts:
Addison-Wesley Publishing Company, 1985.

- Johnson, Lee W. and Riess, R. Dean. Numerical Analysis. Reading, Massachusetts:
Addison-Wesley Publishing Company, 1982,

Leventhal, Lence. 6809 Assembly Language Programming. Berkeley:
’ Osborne/McGraw-Hill, 1981.

Meiners, Harry F.; Eppenstein, Walter; Oliva, Ralph A.; and Shannon, Thomas.
, Laboratory Physics. 2nd ed. New York: John Wiley and Sons, 1987.

| Resnick, Robert and Halliday, David. Physics, Part 1. 3rd ed. New York: John Wiley
and Sons, 1977.

Staugaard, Andrew C. Jr. TRS-80 Color Computer Interfacing with Experiments.
Indianapolis: Howard W. Sams and Company, 1983.

131

La"8 §

DO ‘ . O ; T Y N A T R T T R
R T A R SR S R N s K iR, ‘l."'h‘!h"h Tofetele Wl et et i vl e BN e e o )



L N T TR LA TS TR It I R TR T U L S S P L R T S U S R I T TR I o S R IR O I TN

- - - - - - - - - - -
'vl, 541‘1‘ .; I.(g!s"i (X R -1.01*!‘..«..‘ ":‘ G '~. \ ‘(. ; = ¥ l‘ SN _{\. ) ¢
‘h:; {w‘*ﬁ"b‘b:;ﬁ:\‘t::‘l“ 7% A".( u('.g" oK o) J‘ v '.?\«;?f }’ SN I R A A
'f‘«"') %) ..l‘"‘l ,"‘ )" ”3 "“‘, ‘Q "“ '. 4 ( \’ bl ’\ nIN
%fhlgﬁl'.ﬁg_'il_\g.’s' .’ i " o N"ﬁ \‘FNN (-‘r')( ;‘1 oo et
T e b 4’1 O A e R o e .030'0 I HC A T o

.l )

‘&




