
VVVW

BBIC FILE COPY

oTHE USE OF NUMERICAL METHODS AND MICROCOMPUTERS
IN UNDERGRADUATE EXPERIMENTS

CPT Mark R. Stevens
HQDA, MILPERCEN (DAPC-OPA-E)
200 Stovall Street
Alexandria, VA 22332

Final Report, May 1988 DT C"ELECTE

S JUN 15

UNCLASSIFIED/UNLIMITED

Approved for public releaselA
Distribution Unlimited

A Thesis submitted to
Rensselaer Polytechnic Institute, Troy, New York

in partial fulfillment of the requirements for the degree of
Master of Science

820



UNCIA361FI j) I~ ! i? A _ _ _ _ _

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE pp o 0408
_______________________________________________Exp Date Jun 30. 1986

la REPORT SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGS

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUJTION /AVAILABILITY OF REPORT

2b. DECLASSIFICATION / DOWNGRADING SCHEDULE

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION 6.OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

~ TAA jtJ-C;D 1 6b.(if applicable)

15c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State. and ZIP Code)
200 Stovall Street
Alexa3ndria, VA 22332-2411

8.. NAME OF FUNDING /SPONSORING Bb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicable)

8c. ADDRESS (City, State and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM IPROJECT ITASK I WO0RK UNIT
ELEMENT NO. jNO ~ NO ~ ACCESSION NO

11. TITLE (include Security Classification)

The U se of Numerical Lethods and h1'icroc o:-,aters in U~ra~t~l i-~-"..~

12. PERSONAL AUTHOR(S)
.Atevens, hak chard

13a. TYPE OF REPORT 113b. TIME COVERED j14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT
Final FROM _____TO___1 , K I Y

16. SUPPLEMENTARY NOTATION
Thesis for -aster's degrree at .enzspelaer .olytechnic insti"'ute, ?rrT .

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP

'-19 . ABSTRAfT (ciontiaue on revers , if necessary and ideptify bjy block numqber)t

>~ heanivioi weoiarcrocon -uter inex. r... 4 s "o C .

numerical methods to solve the differential eqUatiOnS Of :,otion. Foh en'
second order Runge-Kutta method)i and a fourth order 2eitrJre~ ~n r
calculate approximate solutions to the equations of motiln _'Or :c.*
rather tedious calculations are iperformed quickly ,Itlh the CmLtru Vl (1if '

differential equations which -are d-iffi1cult Or '_os l tc Clv ana lvtica!7y
These methods are used to S.inulate ant! analy~e -thr, rotl on of a 1-nta-tl n {

pendulum, both includin, frictlon and air resls2tance. Th mtinnl Of -'7 t.
and Plotted by the microcomp-uter. The iaccal scf tvra re wri tten .- n.L..
with the numerical solution and will. alJso calcu1late nomstr nts of t'he 1 ,'

a curve fitting iterative LproceSS. The encuir.- 1p'boratOTIY ctiif~~ '

computer is then used in t,.:,o colle-P freshi-an nxox rl~entm- an] o.ne z' a.,-trV
a college junior. V*.,, i~''1)S

20 DISTRIBUTION /AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION

0 UNCLASSIFIED/UNLIMITED 91 AME AS RPT ElDTIC USERS ' - _. -T

22a, NAME OF RESPONSIBLE INDIVIDUAL 22b TELFPHONE (include Area Coe 2c OFFICE SYMBOL

CPIT MArk R. Stevens, ( ?7i677

DO FORM 1473. 84 MAR 83 APR edition may be used until exhausted SECuRITY CLASSIFICATION OF THIS PAGE

All other editions are obsolete - ~r"



THE USE OF NUMERICAL METHODS AND MICROCOMPUTERS

IN UNDERGRADUATE EXPERIMENTS

by

Mark R. Stevens

A Thesis Submitted to the Graduate

Faculty of Rensselaer Polytechnic Institute

in Partial Fulfilment of the

Requirements for the Degree of

MASTER OF SCIENCE

Approved by the
Examining Committee:

Walter Eppenstein, Thesis Advisor

Philip Casa a, Member Accesio!, For

NTISc'&
____ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ DTIC TAP [

Thomas Shannon, Member U

Rensselaer Polytechnic Institute
Troy, New York

May 1988

- I.
'I ) ... I



CONTENTS

Page

LIST OF FIGURES.................................................1iii

ACKNOWLEDGEMENTS,............................................ iv

ABSTRACT ....................................................... v

1. IN 1RODUCTION AND HISTORICAL REVIEW......................... 1

2. THEORY...................................................... 4

2.1 Physics Theory .............................................. 4

2.1.1 The Physical Pendulum.................................... 4

2.1.2 The Accelerated Disk...................................... 6

2.2 Mathematical Theory.......................................... 8

2.2.1 Runge-Kutta Methods ..................................... 8

2.2.2 Predictor-Corrector Methods................................ 13

2.2.3 Extension to Higher Order Differential Equations................ 16

3. EXPERIMENTAL APPARATUS AND DATA ACQUISITION............... 19

3.1 Experimental Setup.......................................... 19

3.2 Software.................................................. 22

4. DISCUSSION.................................................. 25

4.1 Goals and System Selection .................................... 25

4.2 Experimental Design ......................................... 26

4.3 Limitations and Possible Improvements ........................... 29

5. CONCLUSIONS................................................ 31

APPENDIX A: The Modified TRS-80.................................... 32

APPENDIX B: Operating Programs..................................... 57

APPENDIX C: Example Plots........................................ 116

APPENDIX D: Experiment Instructions................................. 122

ENDNOTES..................................................... 130

REFERENCES................................................... 131



LIST OF FIGURES

Page

Figure 2.1.1 The Physical Pendulum .................................... 5

Figure 2.1.2 The Accelerated Disk ..................................... 7

Figure 2.2.1 Example Flow Field ..................................... 10

Figure 2.2.2 Runge-Kutta Sampling Method ............................. 13

Figure 2.2.3 Quadrature Methods ..................................... 15

Figure 3.1 Experimental Setup ..................................... 20

Figure 3.2 Counting Circuit ........................................ 21

Figure A. 1 TRS-80 Network Setup ................................... 33

Figure A.2 Color Computer Circuit Layout ............................. 34

Figure B. 1 Freshpen and Airwheel Main Routine ........................ 58

Figure B.2 Takedata Procedure ..................................... 59

Figure B.3 Freshpen Simulate Procedure .............................. 60

Figure B.4 Airwheel Simulate Procedure .............................. 68

Figure B.5 Physpend Main Routine .................................. 79

Figure B.6 Physpend Simulate Procedure .............................. 80

Figure B.7 Procedure Multistep ..................................... 81

Figure B.8 Procedure Runge4 and PredictCorrect ........................ 82

Figure B.9 Physpend Compare Procedure .............................. 83

Figure C. 1 Data Plot ............................................ 117

Figure C.2 Data vs. Simulation .................................... 118

Figure C.3 Simulation 1 vs. Simulation 2 ............................. 119

Figure C.4 Angular Velocity vs. Displacement ......................... 120

Figure C.5 Numerical Method Instability ............................. 121

iiYi

HI



ACKNOWLEDGEMENTS

First and foremost, I would like to acknowledge the extensive work done by

Brian Davis in writing and debugging the 6809 Assembler codes used in the screen and

graphics driving programs and the network communication routines. Secondly, I would

like to thank my family for their patience and encouragement throughout my studies

and research at RPI.

iv

~v



ABSTRACT

Advancements in the semiconductor industry in the last few years have led to

more inexpensive and powerful microcomputers. It is inevitable that students will

encounter some type of computer system at lower levels in the educational system. A

vital part of a student's education should be to learn how to operate and utilize these

systems. As the appearance of computers in educational institutions increases it is

logical that they should be used in laboratory settings where their speed and analytical

capabilities can be exploited for taking and analyzing data.

The analytical power of a microcomputer in experiments is demonstrated

through the use of numerical methods to solve the differential equations of motion. Both

Heun's method (a second order Runge-Kutta method) and a fourth order

Predictor-Corrector method are used to calculate approximate solutions to the equations

of motion for physical systems. These rather tedious calculations are performed quickly

with the computer and provide solutions for differential equations which are difficult or

impossible to solve analytically in closed form. These methods are used to simulate and

analyze the motion of a rotating disk and a physical pendulum, both including friction

and air resistance. The motion of each system is recorded and plotted by the

microcomputer. The Pascal software written allows comparison of the data with the

numerical solution and will also calculate constants of the actual motion through a curve

fitting iterative process.

The ensuing laboratory setup of disk, pendulum and computer is then used in

two college freshman experiments and one experiment at the level of a college junior.

These exercises teach the power, speed and versatility of the computer in the

laboratory; the power, usefulness and accuracy of numerical method solutions; and the

characteristics of rotational and harmonic motion including the effects of friction and air

resistance on each system.

v

I~MP



1. INTRODUCTION AND HISTORICAL REVIEW

No field of science has advanced more rapidly in the past decade than the field

of semiconductors and computers. The impact of smaller, faster, more efficient and

affordable computing systems has been felt by the business and scientific community

alike. This continuing trend has made the presence of personal computers (or

microcomputers) in classrooms and laboratories no longer a luxury, but more of a

necessity. With a great part of industry utilizing and depending on microcomputers it

becomes extremely important that students currently in educational institutions become

familiar with the use and possible applications of such systems.

Currently, most technical institutions do a good job of teaching their students the

languages used on mainframe computers. Courses are offered in most higher level

languages as well as the more specialized, lower level languages such as Assembler.

There are even courses available which teach personal computing and the use of

applications software. Unfortunately, an important area rich in possibilities is often

overlooked. The speed, versatility and analytical capability of even the simplest

microcomputers lend themselves to use in scientific laboratories. The introduction of

such systems into the laboratory opens a wide variety of educational opportunities to

students. These opportunities not only include analytical and computational possibilities

but allow greater insight into physical processes through data collection and analysis.

There are a number of ways to utilize the capabilities of a microcomputer in the

laboratory. Firstly, they can be used for data acquisition. Experiments can be conducted

and controlled using continuously updated data from static sensors. Position and velocity

calculations can be recorded by making repeated measurements in microseconds using

an internal clock. Secondly, the analysis of data is greatly facilitated by a

microcomputer. Curve fitting, differentiation, integration and simulations are all possible

utilizing numerical techniques. Any combination of these capabilities in the laboratory

Ju
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would be an important addition to a student's education.

Three experiments were developed for the purpose of teaching physics while

demonstrating the power of microcomputers. Two of these are suitable for a freshman

in college, and one is designed for the more advanced level of a junior. To demonstrate

data collecting capability a physical pendulum and rotating disk were selected for

investigation. Utilizing a notched wheel and photogates the microcomputer is used to

take rapid measurements of the passing notches and record the resulting angular

velocity of the motion as a function of time. Once the data is taken and recorded it is

analyzed with the aid of the computer. Two numerical methods for solving differential

equations are used to simulate the motion of each system. Heun's method is used for

the freshman experiments and a fourth order Predictor-Corrector method for the junior

experiment. Two computer systems are also needed. To take and analyze the data for

the two freshman experiments a TRS - 80 Color Computer is used. A Zenith Z-140

personal computer is also employed because of a requirement for greater accuracy and

speed for an iterative curve fitting routine in the junior's experiment.

The above selection of physical systems and numerical methods accomplishes a

number of goals. First, it allows the student to more thoroughly investigate the physics

involved with harmonic motion including frictional and viscous damping. The effects of

varying different parameters are easily observed and verified with the experimental

setup. Second, the usefulness of the computer is readily apparent in the ease in which

the system records and plots the angular velocity of the motion. This aspect of the

motion would be difficult to measure without the computer. Finally, using the numerical

method demonstrates the power of the computer in calculating approximate solutions to

normally unsolvable differential equations. Letting the student examine the accuracy of

such methods builds confidence in the technique. After the completion of these

experiments the student should feel comfortable using the computer and have a good

MOW":_I MM&MI 6 MALK. 6 Mq~ U M XVJ I
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appreciation for the versatility and capabilities of the microcomputer in the laboratory.

Armed with this experience the student should be more apt to utilize this powerful tool

in his continued education and research.



2. THEORY

2.1 Physics Theory

Numerous physical systems are suitable for investigation using a computer. In

choosing the physical pendulum and rotating disk two goals are met. First, both

systems are relatively simple, easily constructed and understood. Second, in the case of

the pendulum the differential equations of motion are not solvable analytically. Thus it

is a good system for demonstrating the power and application of a numerical method.

Also, because of the difficulty of solution, the physical pendulum is not often seen in the

laboratory, and certainly not with targe angle oscillations including frictional and viscous

damping. While the solution to the rotating disk is less complicated, addition of viscous

damping again demonstrates the numerical method as well as the concept of terminal

velocity.

2.1.1 The Physical Pendulum

The simple pendulum all students learn about is actually an idealization of a

physical pendulum. Any real pendulum is necessarily a physical pendulum. In

developing the equations of motion we define d as the distance from the rotation axis to

the center of mass, a as the angle between the line from the pivot through the center of

mass and the vertical and I is the moment of inertia of the oscillating body (Figure

2.1.1).

In the absence of any damping, using ci as the angular velocity, the equation of

motion is

1- = -mgd sine
dt

where m is the total mass and g is the acceleration due to gravity.' Solving this

equation for ci and comparing it to the actual motion of a pendulum we can determine

4
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Figure 2.1.1. The Physical Pendulum

the system parameters such as the moment of inertia, providing damping can be

neglected.

Unfortunately, friction and damping are inseparable parts of any real system.

Naturally this affects the equations of motion. In the case of viscous damping the force

can be approximated as being proportional to some power of the linear velocity of the

resisting body moving through the viscous medium. In our case the major source of air

resistance is due to plates fixed to the pendulum at a distance 1. The torque resulting

from this force is always opposed to the direction of motion and modifies the previous

equation to

I-d  = -mgd sine ± kl(lw) n

dt

where n is an integer and k is a constant that accounts for the geometry of the plates

as well as the proportion of the force to the velocity.2 The plus or minus is only

necessary for even values of n as the sign of w will change this term correctly for odd n

I
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values. In actuality the force is dependent on a polynomial which is a function of the

velocity. However, since only one term dominates, and for the sake of simplicity, we

will only use one term in the polynomial. The factor k will also vary depending on the

state (temperature, pressure, humidity) of the viscous fluid that the system is in.

Finally, the pivot in the laboratory is made as close to ideal as possible by

utilizing ball bearings but it also provides a frictional damping which must be

considered. Because the friction involved in the bearing is rolling friction and the

magnitude is small, its effect can be considered constant and opposite to the direction of

motion. Denoting this constant opposing torque by f, the final equation of motion is

Id  
= = -mgd sine ± kl(kj)n ± f

dtt

The exact solution of any of these equations is difficult, except when the small

angle approximation (sine =) is made for the undamped case. An accurate approximate

solution to these equations can be obtained though, through the application of numerical

methods.

2.1.2 The Accelerated Disk

Generally students learn about terminal velocity by considering a sky diver or

an object dropped from a tall building. By using a rotating disk it is easy to demonstrate

this concept in the laboratory. In developing the equation of motion for this system r is

defined as the radius from the axis of rotation to the point where the accelerating

weight is attached, w is the angular velocity and I is again the moment of inertia of the

disk (Figure 2.1.2). Using simple Newtonian mechanics we know that mg - T = ma

where T is the tension in the cord and a is the downward acceleration of the mass. We

also know that the torque caused by the weight is given by Tr = I a-. Noting that a =

r-- we can eliminate the acceleration between the two equations and solve for the

tension T. Thus, neglecting damping, the total tnrque acting on the disk can be written'
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Figure 2.1.2. The Accelerated Disk

&w _ mgrI

In order to attain a terminal velocity the effects of air resistance must be included.

Again the viscous damping force is proportional to some power of the linear velocity of

the plates on the disk which cause most of the resistance. This modifies the total torque

tobe

Id&o mgrIl
dt I + mrl

where I is the distance to the center of the resisting plates and k is the proportionality

constant. This equation of motion would demonstrate terminal velocity, however we

have neglected the rolling resistance of the bearings. Including this effect we obtain
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d mgrI - kl(lw>n f

dt I+mrl

where f again represents this constant factor. Again, terminal velocity is achieved when

the net torque is zero.

As was the case with the simple pendulum, these equations of motion

considering the viscous forces are not easy to solve analytically. We again turn to

numerical methods to provide accurate approximate solutions to this motion.

2.2 Mathematical Theory

Numerical methods exist for a variety of mathematical tasks. We are concerned

with only those methods useful in solving second order differential equations. Different

methods have advantages and disadvantages involving speed, accuracy and application.

Numerical techniques for solving differential equations are divided into one step and

multistep methods. Both types of methods are utilized in the simulation routines for the

experiments. The primary one step technique is the Runge-Kutta method while the

Predictor-Correctoi method is representative of the multistep techniques.

2.2.1 Runge-Kutta Methods

Runge-Kutta methods are designated as one step methods because they only

require the initial condiLions in order to calculate a solution. Because of this capability

they are also classified as being self starting. They approximate the value for the next

point of the solution to a differential equation given an incremental step size for the

independent variable using only the value of the point before. The general one step

method is an iteration that takes the form '

Yi+ 1 
= Yi + h4'(xi'Yi;h) i = 0,1,..,n-1

The function 4t(x ,y i;h) is called the increment function and tells us how to proceed from
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an estimated yi for y(x.) to the next point y i+1 for y(xI+ 1 ). The variable h is the step

size taken with the independent variable. The definition of the function (x.,Yi;h)

depends on the particular method.

If we think of differential equations as specifying the slope of the solution at

points in space we can construct flow fields which give us an idea of the form of the

solution. For example, the differential equation y' = y(2 - y) has the flow field shown in

Figure 2.2. 1. As we move from the point xi to x i+ the nature of the flow field governs

the change in the solution y(x) between the two points. It makes sense to sample the

flow field between the points and then specify the increment function as a weighted

average of the samplings. Thus

tk(xi,Yi;h) = A1f(01,71) + A2f( 2,7 2) + .+ Akf(k7 k)

The problem reduces to choosing the weights A. and the specific sample points (8j,7j) in

the interval.

Before specifying how the Runge-Kutta method selects these weights, we need to

digress to the more familiar Taylor series method. If we expand our function in a

Taylor series we have

h2 hk 1hk + 1
Y(X) _ Y(x) + y,(x 0 )h + y,(x0) k + yk +1(08- h

1 0 0 ( 0)-+ yk!~ ~ k+ 1)!

When y(x) is sufficiently differentiable the more terms carried, the more accurate the

approximation. Since we are given y'(x) = f(x,y) (our equation to solve) we can

calculate the higer order derivatives as necessary. Our increment function is then'

hh-

k Tk(x,y;h) = x,y) + f(x,y)h + . . + (xy)

The difficulty with this method is that it requires the knowledge of the higher order

derivatives. As a result, higher order Taylor methods are rarely used.

&MMYYWIM IN15110 XXXI -- %
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Figure 2.2.1. Example Flow Field

The German mathematicians C. Runge and M. W. Kutta sought to circumvent

the problem of higher order derivatives inherent in the Taylor method. The basis for the

Runge-Kutta method is to choose the sampling points and weighting functions A so thatJ

they agree as well as possible with the increment function for the equivalent Taylor

series method. Note that the familiar Euler's method yi 1  - y. + hf(x,y ) is both a

first order Taylor series and Runge-Kutta method. The simplest way to demonstrate the

method is to use an example.

For a second order Runge-Kutta method we need two sample points. Choosing

the points (x.,yi) and (xi+oh,yi+Phf(xi,yi)), where p is undetermined, the increment

function is of the form
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* 2 (xiyi;h) Af(xiyi) + A2 f(x i +h,y i+hf(x i ,yi))

We want to match this with the Taylor series increment function

T2(x.,y.;h) = f(xi,Y) + -[f (xi,y) + f (x
2112 xy.)~.y

To do this we expand the function associated with A2 in a Taylor series yielding

f(x.+p3h,yi+Phf(x,Yi)) = f(x.,Yi) + f (xiyi)P3h + fy (xiYi)hf(x,y i) + E

where the remainder E is of the form Ch2. Substituting into t2 and collecting like terms

we find "

t2(xiYi;h) = (A 1 + A2 )f(xi,y i ) + A2h[P f X(x,Y) + f y(x.,Y.)f(xi,y) + Ch)

Comparing this with T2 (xiyi;h) we get a fairly close match if A + A2 = 1 and A2P =

1
This means that

t2 (xyi;h) = T2 (x.,yi;h) + A 2Ch2

so the error in approximating the function is partly due to the error in the Taylor

expansion T2(xi,Y.;h) of the order Bh2 and to the error in matching T2(x.,yi;h) of the

order A Ch 2. Looking at the relationship of the coefficients we see that A = 1 and
2 2 20

A, = 1 .A. There are an infinite number of solutions for these parameters, however

1
a natural choice is = yielding

h h
Yi+1 =  Yi + hf(x 2 i 2f(xi'Yi))

This is the modified Euler's method where the sampling point is one half of the way

into the interval. Another choice is 1 = which yields
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h
Y = Y + h [f(x.,Y.) + f(x +h, y +hf(xi'YM))]

This is Heun's method and it samples the flow field at the beginning and the end of the

interval and gives each value an equal weight. Figure 2.2.2 is a graphic example of how

the sampling method works for Heun's method. Both of these methods are of second

order and have the same magnitude of error, proportional to h2 . Heun's method will be

used extensively.

It is possible to use this technique to develop higher order methods, the benefit

being greater accuracy, the cost being increased calculation time. A popular fourth order

method which will also be employed is'

hY. =Y + h[K +2K +2K +K]

1+1 6 1 2 3 4

where

K1 = f(xi,y i)

h h
*~ ~ 2 2 i T j 2 K1)

h hK
K3 = f(xi+2' Yi +-2 2

*K4 =f(xi + h, Y i + hK3)

Note that this method samples the midpoint of the interval twice and five calculations

are required to step to the next point where the whole process is repeated. Accuracy

can also be improved by taking smaller steps. In fact, it is possible to vary the step size

h based on the behavior of the solution to maintain the error of the approximation below

some established limit. Such variable step techniques as well as convergence and error

analysis are thoroughly discussed in the references.'

The algorithm used for the fixed step 4th order Runge-Kutta method is as

follows.

1. Calculate the slope values at the starting point (K1).
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y1

Y2-

I II I

xi X2
Figure 2.2.2. Runge-Kutta Sampling Method

2. Use the estimated slope to calculate the solution's value at one half the interval.

3. Use the estimated value to find the slope at one half the interval (K2).

4. Use this slope to again calculate the solution at one half the interval.

5. Use the estimated value to find the slope at one half the interval (K3 ).

6. Use this slope to calculate the solution value at the end of the interval.

7. Use the estimated value to find the slope at the end of the interval (K4).

8. Calculate the solution's value at the end of the interval using the weighted

average of the slope values K 1 to K4 .

9. Use the final point as the new initial point and return to step 1.

2.2.2 Predictor-Corrector Methods

The one step methods descussed above only require one point to calculate the

next point after sampling the flow field in the interval. This necessarily requires a great

number of calculations for each point (five for the fourth order method above). There is
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a class of numerical procedures called linear multistep methods which use "back values"

Yn' Yni ' * ' Yn+k-1 to determine Y n+k* These methods, one of which is the

Predictor-Corrector, use the past history, or trends, of the numerical solution at equally

spaced points x, x . 1 xn+k 1 to estimate the solution at x = Xn+k. The general

form for a multistep method is 11

k k
Yn+k a aYn+j + hJ z p.f(x njyn-j

where again y' = f(x,y). It is called a linear k - step method because it is linear in yn+j

and f(x n+jyn j) and it requires k back values to calculate yn+k* Normally we demand

that ak = 1 and that 0o + 001 > 1. If Pk = 0 then the method is explicit. If

Ok * 0 then the value of y n+k is needed to evaluate the right side of the equation to

solve for y n+k and the method is implicit. The greatest advantage of this type of

method is that we can save the past evaluations of f(x n+jYn+j) and then only need to

make several evaluations of f(x,y) to obtain Yn+k" This reduces the calculations required

below that of comparable Runge-Kutta methods speeding calculation times. These

methods are not self starting because they require a certain number of back values

before they can proceed. A one step method is generally employed to start a multistep

method.

In practice, the implicit and explicit methods described above are used in pairs.

The explicit method is used to predict the solution's value at a point and this value is

then used in the implicit method to correct the initial solution value. This is the origin of

the name Predictor-Corrector. The most popular methods are Adams methods. These

are quadrature methods based on aproximations to the integral of the form 1

J Xn+kf(x)dx . h[A 0 f(xn) + A 1 f(xn+ 1) + . . + 0

Xn+k-1

Graphically the method is demonstrated in Figure 2.2.3.

El m !PUYU M WI11111111
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y(n+3

y(n) y(n+l) y(n+2)

X(n) X(n+l) X(n+2) X(n+3)

Figure 2.2.3. Quadrature Methods

An explicit Adams-Bashforth method looks like

Yn+k - Yn+k.1 = h[Af +Af + +Ak-lfn+k-

and an implicit Adams-Moulton method has the form

Yn+k" Yn+k-1 = h[A f + A1 n +'" + Akk +k]

where f m= f(xm'y ) = y' m It turns out that the error of a k step explicit method is of

the same order as a k-1 step implicit method. If the error is of the same order it

reduces the number of iterations needed for the corrector to produce an accurate value

limiting the number of calculations. For that reason the Predictor-Corrector pairs

usually differ by one step and the corrector is normally applied once, although it can be

iterated several times.
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Using the fourth order Runge-Kutta method described earlier to start the

multistep method it seems logical to maintain the same level of accuracy with a fourth

order Predictor-Corrector method. Using interpolatory numerical integration techniques

the A. s for different order methods can be specified and standard values are given in

the references. Identifying y as the predicted solution value to be used in the implicit

corrector we can combine the three step Adams-Bashforth predictor

Y,+3 = Yn+2 + n+2 n6f+1 + 5 fn]

with the two step Adams-Moulton corrector

y " +y +[fx hy + 8f -
n+3 -" n+2 f [f(X n+3 Yn+3) n+2 " fn+1]

to obtain a fourth order method requiring three back points and only two evaluations.

Note that in comparison the same order Runge-Kutta method requires five calculations

to obtain the same point. This indicates that the Predictor-Corrector method should be

significantly faster. This method can also be used in variable step techniques and the

resulting error monitored." Variable step techniques are not really necessary, however,

if the solutions to the differential equation are generally well behaved.

2.2.3 Extension to Higher Order Differential Equations

Up to this point the methods discussed only addressed first order differential

equations. The equations of motion we are concerned with are second order differential

equations. To apply the preceding methods to higher order equations we first convert

the nth order equation into an equivalent system of n first order equations. Thus ul(X)

= y(x), u2(x) = y(x), .. , u n(X) = yn'l(x). Then using vector notation we set
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uo(x) uJ(x)
u(x) u2(x)

u = F(x,u(x))

un(x) f(U,(X),U 2(X),..,u n(X))

This gives an equivalent first order system of equations in vector form where

u'(x) = F(x,u(x))

and u(xo ) = u0 are the initial conditions.' Now we just apply the numerical methods to

the vector equation and calculate vector quantities. As an example, Euler's method

becomes

u i+ = ui + hF(x, Ua)

and one step methods take the form

u.+ =u i + h (x., u;h)

This automatically produces the value of the function and any derivative up to the order

of the original equation at any given point. In the physical systems considered

previously this vector technique gives us the value of the angular displacement and

angular velocity automatically at each point.

The algorithm for the fourth order Predictor-Corrector method is as follows.

1. Calculate the first three back points with a one step method.

2. Calculate the initial functional values at each of the three back points (fl,f2,f 3).

3. Apply the predictor and estimate Yn+3"

4. Calculate the function's value fn+ 3 at the estimated point yn+3"

5. Apply the corrector to obtain a more accurate yn+ 3 '

, v ,r_ , i %5" ' "" .. ; "' e " --,.. .* , ". .V.. .- .
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6. Move the functional values up and calculate tLe new value f3 at the corrected

point yn+3"

7. Return to step 3 (functional values are stored in memory and moved up for each

pass).

I
-F - -t



3. EXPERIMENTAL APPARATUS AND DATA ACQUISITON

3.1 Experimental Setup

Both the physical pendulum and rotating disk use the modified TRS-80 Color

Computer system from Radio Shack (Appendix A). For the junior's experiment a Zenith

Z-140 PC with 8087 math coprocesser was also used. The heart of this experimental

apparatus is the hardware used to measure the angular velocity of either system. This

setup can actually measure the angular velocity of any physical configuration you wish

to attach to the slotted disk (Figure 3.1). The motion is recorded through the use f a

ten centimeter diameter slotted aluminum disk mounted on a ball bearing hub. There

are ninety slots equally spaced around the circumference of the disk. Straddling the

slotted area of the disk are two photogates which are capable of signalling as each slot

passes. The light beam is broken as the solid portion of the disk between the slots

passes when the disk rotates. Since we know the angular position of each notch the

angular velocity of the disk is easily calcualated by counting the number of notches that

pass in one tenth of a second.

In order to convert the signal from the photogates into a usable (countable)

signal for the computer, a hardware circuit is used to convert the signal and provide the

input to the cartridge slot of the TRS-80 (Figure 3.2). This circuit actually counts edges

and not notches. Thus each photogate will register two counts (two edges) for every

notch. Considering the redundant photogates there are actually four counts per notch.

This duplicity must be taken into account when calculating the velocity.

Attached to the slotted disk is another thirty centimeter diameter aluminum

disk. For the terminal velocity experiment all that is required is the addition of two

adjustable plates for air resistance. Two rectangular plates measuring 21 centimeters

by 17 centimeters were mounted 22 centimeters from the center axis for this purpose.

To construct a physical pendulum all that is needed is a weight to unbalance the disk.

19



Photogates

Ball
- Bearing

-Hub

Notched

Air
Fin

Figure 3. 1. Experimental Setup



21

d2

CD

b
a-m

KEY
A - M8428 LM 393N I - 1000 ohm
B - SCL 4011 AE 7427 2 - 680000 Ohm
C - 225 2N 3904 3 -4700 Ohm
D - 2000 Ohm Variable 4 - 10000 Ohm
E - .0242mt 50V 5 - 240 Ohm
F-0OP 8825 8203 6 -830Ohm
G -IN 7 -100 Ohm

CCF

b

d

a 
I

Figure 3.2. Counting Circuit



22

To accomplish this a 200 gram mass is attached at the same location as one of the air

resisting plates. This setup is very flexible and other configurations are possible using

the slotted disk as a foundation.

3.2 Software

The hardware described above provides a physical system and a means of

measurement but the photogate signals must be converted into meaningful data and

analyzed by programmed routines. There are several sets of programs listed in

Appendix B. Two different programing languages were used. 6809 Assembler was used

in the procedures for taking the data and plotting as well as the screen driver routines.

These routines can then be linked to the interactive Pascal main program by using

DEFT Pascal Workbench. 14 Both of the freshman experiments use this language and

the TRS-80 system exclusively. For the junior level experiment only the data acquisition

and conversion uses the TRS-80 and DEFT Pascal. The data must then be input into

the Zenith Z-140 PC where the analysis routine used is written in Turbo Pascal. 1S

All of the routines use the same technique to record the data. The signal from

the photogates automatically increments a 6809 register by one for each pulse. Every

tenth of a second the contents of the register is recorded in a vector of data points and

zeroed to receive the next set of signals from the photogates. This data vector is then

used by each routine. Only the Jpendata routine actually converts the counts directly

into angular velocities for input into the Zenith microcomputer.

The structure of both of the routines for the rotating disk (Airwheel) and the

physical pendulum (Freshpen) are essentially the same. Initially the student chooses to

take data or run a simulation of the motion. If he chooses to take data the subroutine

instructs the student how to simultaneously release the system (pendulum or disk) and

trigger the counting routine. The data can then be plotted for viewing. After viewing the

data the student may continue or terminate the program. Continuing, the program
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returns to the starting point where the data can be taken again, if necessary, or

analyzed with the help of the simulation. Once in the simulation subroutine the physical

parameters of the system are entered and the treatment of the air resistance selected.

One can choose to neglect air resistance or include it linearly or quadratically in the

differential equations. The step size in time for use in Heun's method must be selected

next. Heun's method is used to calculate the simulated motion which is plotted and

compared to the actual data points. The previous simulation calculated is also plotted so

that trends can be indentified. The program then allows changes in the step size,

treatment of the air resistance and the initial conditions, in that order. If no changes

are desired the student may elect to terminate the program or return to the beginning

to repeat the simulation or take new data.

The Physpend program on the Zenith PC is a little more powerful and

sophisticated than the above two routines in keeping with the Zenith's capabilities.

When the program is initiated there are five options available to the student. First,

selecting Takedata permits entering the data points provided by the Jpendata program.

After the data is entered it may be plotted and also shifted if necessary. The routine

then loops back to the beginning where the student can select the simulation option.

Here, as above, the type of configuration is selected, the physical parameters of the

system entered, and the time step specified. Now, however, due to the greater

computing power of the Zenith, the fourth order Predictor-Corrector method is used to

provide a more accurate approximate solution. The simulation may then be plotted. If a

simulation has already been done then a second simulation can be calculated and

plotted. If data has been taken and simulations completed the data can be compared

graphically with each simulation and each simulation compared to the other. A printed

version of the plot can be obtained using the print screen key command. Examples of

such output are in Appendix C. The Smallangle option uses the small angle
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approximation and stores the resulting calculated motion as a first simulation so that

the accuracy of this approximation can be investigated. Finally, with the Compare

option the computer will calculate either the moment of inertia, coefficient of friction or

the coefficient of air resistance for the physical pendulum. This routine uses an iterative

technique and calculates the simulated motion and compares it with the data file point

by point. If the value is outside the tolerance set by the student, it will abort the

calculation, increment the variable and recalculate the motion until all data points are

within the tolerance or until an upper limit, also set by the student, is reached. Here

the accuracy of the numerical method is very important. This was the primary reason

for selecting a fourth order Predictor-Corrector method. The final value for the selected

variable is output and the procedure returns to the options menu at the beginning of the

program. At any time when returned to this menu the program can be terminated by

selecting the Quit option. The flow charts and program listings in Appendix B provide

further details.

0



4. DISCUSSION

4.1 Goals and System Selection

Several goals were established in designing the experiments which incorporate

the preceding theory and equipment. First and foremost, the experiments need to teach

a meaningful concept in physics. Secondly, with the current power and availability of

microcomputers the student should be taught to appreciate the value of such systems in

the laboratory, whether in taking or analyzing data. Finally, the student should be

introduced to methods which are available for problems without analytical solutions.

These three experiments accomplish all of these goals.

The selection of the physical system investigated is of obvious importance in

attaining all of the above goals. The choice must lend itself to computer data acquisition

and analysis, as well as the application of a numerical method, while involving more

than trivial physics. Obviously there are numerous possibilities. The area of mechanics

was selected due to the sparsity of existing experiments on mechanical systems. Also,

as equations of motion are in differential form, these systems lend themselves to

numerical analysis. In choosing the specific experiment an endeavor was made to fmd

systems which perhaps have been addressed in courses yet are seldom seen in

demonstrations or laboratories.

Every student learns about terminal velocity in his introductory physics course.

Perhaps he may even solve a representative problem concerning a falling sky diver, but

sky diving is difficult to demonstrate in the laboratory. The rotating disk with air

resistant fins is a compact system which easily demonstrates this concept. It also

reinforces the concepts of rotational motion and the moment of inertia of a rigid body.

Measuring the angular velocity of such a system by hand would be unreasonably

difficult, so the ease of recording this motion with the slotted disk and TRS - 80

provides a good demonstration of a microcomputer's power and usefulness. Finally, the

25
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equations of motion for this system are not analytically solvable when viscous forces are

taken into account. Thus the power and application of a numerical method is easily

demonstrated. The rotating disk in a viscous retarding fluid is a suitable choice

considering the desired goals.

No one can deny the importance of harmonic motion in modern physics. Often

the concept is introduced with the aid of a spring-mass system or simple pendulum.

Unfortunately, pendulums in real life are actually physical pendulums and their

oscillations are not always small. The physical pendulum and large angle oscillations

are often avoided, or treated superficially, due to their more complicated nature and

difficult solution. It is very appropriate, however, for our purposes. This system helps

present the ideas of harmonic motion and the effects of external forces. Over, under and

critical damping are easily ivestigated as well as the real world effects of friction in the

bearings of the apparatus. The accuracy and application of the standard small angle

approximation can be investigated and the concepts of rotational motion and the

moment of inertia reinforced. The computer's ability to easily record this motion again

demonstrates its value in the laboratory. Numerical methods are definitely applicable to

this system because, even neglecting damping forces, an analytical solution to the

equations of motion is not possible without the small angle approximation. Thus the

power and application of a numerical method is easily shown. In view of the desired

goals the physical pendulum is also a suitable, and possibly more flexible system to

investigate.

4.2 Experimental Design

Using the above goals and physical systems three experiments were developed.

Two of these are intended for college freshmen and are done exclusively with the TRS -

80 computer. The third experiment is intended for college juniors in physics and thus

requires greater knowledge and initiative. It also requires a Zenith Z-140 PC computer

I
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or comparable IBM compatible system. The instructions for all three experiments reflect

the different levels of expertise in their presentation and detail (Appendix D).

The structure of both of the freshman experiments are similar. First, the

laboratory setup and general concepts are introduced. Because freshmen are not as

familiar with the theory involved the second section reviews the necessary physics and

the equations of motion for each system. The instructions for the execution of the

experiment are then given, including specific questions that must be answered. The

moment of inertia is calculated for each system using standard shapes and the parallel

axis theorem. The initial parameters of the setup and initial conditions are measured

and recorded. To make the operation of the computer more transparent the terminal

velocity experiment requires the student to calculate a few of the data points by hand

using the improved Euler's method. This is a good exercise to help the student recognize

the power of the computer and understand how the numerical method is applied. Next

the actual motion of the disk or pendulum is recorded. The student then uses the

computer and the programed numerical method to create a plot of the expected

theoretical motion. He then compares the theoretical and actual motion in order to draw

conclusions about the effects of viscous forces and the values of certain constants. The

configuration of the system can then be changed, the new motion recorded, compared to

theory, and similar conclusions can be drawn. Finally, the accuracy of the numerical

method and its dependence on the step size is investigated pointing out the possible

limitations and concerns of numerical methods.

The experiment intended for juniors is concerned with the physical pendulum

only. It is much less structured than the two freshman experiments. The instructions

only cover the necessary information to operate the programs on both of the computers.

Some areas of interest are suggested, however the scope and depth of the investigation

is left up to the student's own initiative. The student can easily investigate a large
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number of things because of the greater versatility and power of the Zenith computer.

Areas include, but are not limited to, small and large angle oscillations, the small angle

approximation, the coefficient of rolling friction in the ball bearings, all categories of

viscous damping, the accuracy of the calculated moment of inertia compared to the

computer's value obtained through curve comparison, and so forth. The accuracy of the

numerical method with varying time step size can also be investigated in a similar

manner to the freshman experiments. The lack of structure and dependence on student

initiative is designed to help develop the student's natural curiosity, good experimental

methods and techniques.

In the fall of 1987 the two freshman experiments were given to selected college

physics majors as part of their normal junior laboratory course. The juniors were

instructed to rigorously tax the software and experimental setup as a means of trouble

shooting and debugging. As a result of their thorough investigation minor changes in

software were affected, however the entire system as a whole ran smoothly. More

importantly, the objectives set for these experiments seemed to be genuinely met. Most

students indicated that the exercises were valuable in conveying the concepts of

terminal velocity and harmonic motion. They also felt the experiments reinforced the

usefulness of the computer in the laboratory and demonstrated an application of a

pertinent numerical method. The junior's experiment was not tested in this manner, but

when the freshman experiments were given to the juniors they were not provided the

instructions in Appendix D. Instead their instructions were less structured, much like

those intended for the juniors. The performance of the juniors on these experiments

indicates that the design and structure of the junior's experiment should also

successfully meet the stated goals.

i.m'
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4.3 Limitations and Possible Improvements

As is normally the case, these experiments have some limitations and are

subject to improvements. While large angle oscillations can be accommodated for the

pendulum, excessively large angles ( greater than 120 degrees ) will cause plots to go

off the screen for displacement graphs. Likewise, if the angular velocity is large the

resulting graphs will also go off the screen. This can be handled by properly selecting

the system, or by changing the plotting scale in the program if necessary. Thus, the

setup will accomodate any configuration of pendulum and disk, subject to some common

sense.

There are also several areas where errors can be introduced. First, because the

notched disk has a fixed number of notches, the values recorded for the angular velocity

form a discrete set. If the actual value for the angular velocity is between two of these

values it will be rounded down to the lower value. Accuracy is less important for the

freshman experiments as comparisons are graphical and the resolution is less

necessary. For the junior's experiment the accuracy of the data is much more important

since numerical calculations are conducted with the actual values for the angular

velocity. A suggested improvement would be to increase the number of notches on the

disk. Doubling the number of notches would cut the inaccuracy in taking the data in

half. The angular velocity values would still form a discrete set, but there would be

twice the number of values.

Another source of inaccuracy and a potential problem is the initiation of the

counting routine and the simultaneous release of either the disk or pendulum. Since all

of the simulations assume that the initial angular velocity is zero, any motion before the

computer begins to take data will make it impossible to match the data curve. For the

two freshman experiments there is no recourse but to retake the data. The program for

the Zenith PC does have a routine that will shift the data to correct for initiation
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problems. Remedies for t his difficulty take two forms. First, it should be possible to

utilize some sort of electronically controlled mechanism to release the pendulum or disk

at the same time the counting routine is initiated from the keyboard. This would reduce

the error significantly. Another option would be to use the data itself to provide an

initial value for the angular velocity. This would only work if the system was already

moving when the computer began to take data. If it was not in motion the resulting

accuracy would be no better than if the system had been released by hand.

Finally, it seems to be counter productive to take data with one microcomputer

and then input numerical values by hand into another. The Zenith PC is capable of

accepting input through its RS 232 serial port. Although the TRS - 80 uses an 8 bit

processor as opposed to the Zenith's 16 bit processor it would be possible for the TRS -

80 to transmit its data to the Zenith. This was explored, however modifications to the

peripheral TRS - 80 where the data was taken seemed to preclude any transmission

back out of the system. It should also be possible to take data directly with the Zenith

through the RS 232 serial port or an expansion slot. This was not explored as

thoroughly because of the existing data taking capabilities of the TRS - 80. Certainly

this is the way to proceed in the future considering the limited speed and memory of the

TRS - 80 compared to the Zenith PC.



5. CONCLUSIONS

With the institutional desire to provide a complete and practical education it has

become important to expose students to the power and versatility of microcomputers in

the laboratory. This is becoming increasingly important as these systems are more

readily available in universities and industry. The incorporation of the physcical

pendulum, rotating disk and a numerical method for solving differential equations into

the laboratory using a microcomputer helps accomplish these goals. The computer is

used as an educational tool to teach the applicable physics of each system. Using the

same computer to collect and analyze the data demonstrates its power and versatility.

Finally, the use of a numerical technique demonstrates a powerful and useful method

for solving analytically difficult problems.

There are other possible structures for the experiments presented which could

accomplish the same results. The limited exposure to current students seems to indicate,

however, that the proposed experiments will be successful in fulfilling the purpose for

which they were designed. As needs change or capabilities in the laboratory increase

the systems and software are easily modified to accommodate different physical

configurations or changed emphasis for each experiment. A great number of possibilities

exist for similar exercises and their development should be looked into in the interest of

keeping education in step with technology and its practical application.
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APPENDIX A: The Modified TRS-80

The physics department at Rensselaer Polytechnic Institute has been

investigating the use of computers in the laboratory for educational purposes for several

years. The original concept was to have a central unit running the main software

routines and a number of peripheral terminals. This structure permits small groups of

students in the freshman laboratory to have simultaneous access to a computer. The

initial system implemented was made up of TRS-80 Color Computers. In order to

establish the desired network (Figure A. 1) some simple hardware modifications were

made and software was developed to link the network together.

The hardware modification primarily consisted of "piggy backing" an AM 2732

chip at the U13 location on the circuit board (Figure A.2). This creates a greater

memory storage area for down loaded programs. The serial port can be used to

transmit the programs to the peripheral stations, however our systems were modified to

transmit through the cassette port. This allows the connection of the serial printer to

the main unit without disturbing the system. The cartridge port on the central unit is

used for the standard peripherals such as disk drives.

In order to send programs to the substations a down loading routine was

developed. The resident BASIC language was abandoned in favor of DEFT Pascal

Workbench. This language package allows programing in either Pascal or 6809

Assembler language. 11 It can compile either language into a standard object code.

Programs and subroutines or procedures can then be linked together and a fimal

program generated in binary machine language This binary code is then run using the

execute command on the TRS-80. This package allows the different parts of a program

to be written in the most convenient language and then incorporated into the main

program. The entire procedure is executed through the use of a short BASIC program.

The following pages list the BASIC language program used to initiate the down loading
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Figure A. 1. TRS-80 Network Setup

procedure and the main routine and subroutines written in 6809 Assembler. The

resulting program will transmit any binary program from the central unit down to the

work stations. Since theoretically it is possible to transmit in either direction some

subroutines have been included for the reverse procedure, although they are not used in

the down loading program (Dump).

When down loading a program it is possible to leave the resident BASIC in the

peripheral computer intact. The following down loading routine overwrites the resident

programing (it actually makes it unavailable for use) in order to allow for more efficient

screen usage, better graphics and more available program memory. As a result, driving

routines for the screen must be sent with the down loaded program or else the monitor

will not function as desired. These driver routines include clearing the screen (cls),

graphics (plot) and keyboard input and polling. The 6809 Assembler language listings of

the routines follow the down load program listings. In order to insure that DEFT Pascal
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recognizes these new commands when compiling code the Pascal library that comes with

DEFT Pascal Workbench must be modified. The lines that must be added are at the end

of this appendix.
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DOWNLOAD INITIATION PROGRAM IN BASIC

10 REM $2000-2 100 DUMP PROGRAM
20 REM $220-7F00 BUFFER
30 REM
40 PCLEAR 1:CLEAR 50,&H1FOO:CLS
50 INPUT"DRIVE*;D
60 DRIVE D
70 LINE INPUT"FILENAME: ";A$
80 A$z=A$+".BIN"
90 LOADM A$,&H2000
95 DRIVE 0
100 LOADM "DUMP.BIN"
110 REM DISK OFF
120 POKE &HFF4O,0
130 PRLNT"HlIT ANY KEY TO TRANSFER"
140 IF INKEY$="" THEN 140
150 PRINT"SENDING..."
160 EXEC &H2000:GOTO 130

DOWNLOAD PROGRAM IN 6809 ASSEMB3LER

* DOWNLOAD OF PROGRAM
*$4200-$6200

SETUPNET EXT
SETWRITE EXT
WRITEBL EXT

MAIN
START ORCC #$50
LBSR SETUPNET
LBSR SETWRITE
LDX #$4200
LDY #$6200
LBSR WRITEBL
RTS
END
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TITLE /NETWORK SUBROUTINES/

* 8124/86

* SUBROUTINES TO HANDLE NETWORK
* FAST VERSION

PUBLIC SETUPNET
PUBLIC SETWRITE
PUBLIC SETREAD
PUBLIC SETNONE
PUBLIC SETBUSY
PUBLIC CLRBUSY
PUBLIC READBLK
PUBLIC WRITEBLK
PUBLIC NETREAD
PUBLIC NETWRITE
PUBLIC NETBUSY

NETSTART RMB 2
NETLENGTH RMB 2
NETERROR RMB 2

PUBLIC NETSTART
PUBLIC NETLENGTH
PUBLIC NETERROR

*PORT BITS:*
* PA7 BUSY IN 0=BUSY
* PA6 DATA IN
* PA5 READ CONTROL 0=ACTIVE
* PA4 WRITE CONTROL 0=ACTIVE
* PA3 DATA OUT
* PA2 BUSY OUT O=ACTIVE

*NETREAD:
* NETSTART=START OF BUFFER
* NETLENGTH= LENGTH OF BUFFER

NETREAD LDX NETSTART,PCR GET START ADDRESS
LDY NETLENGTH,PCR AND LENGTH
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BSR READBLK
STY NETLENGTH,PCR
CLRA
STD NETERROR,PCR ERROR CODE
RTS

*NETWRTE:
" NETSTART=START ADDRESS
" NETLENGTH= NUMBER OF BYTES TO WRITE

NETWRITE LDX NETSTART,PCR GET START ADDRESS
LDY NETLENGTH,PCR AND LENGTH
LBSR WRITEBLK
CLRA
CLRB
STD NETERROR,PCR
RTS

*SETUPNET

" SETS UP PIA REGISTERS
" DISABLES TRANSMIIT,RECEIVE

SEXIT: A,CC CHANGED

SETUPNET LDA #$34
STA $FF2O
LDA $FF21 MAKE DDR
ANDA #$F8
STA $FF21
LDA W$E U00O 0001
STA $FF2O
LDA #$04 MAKE DR
ORA $FF21
STA $FF21
LDA $FF23 CB2=INPUT
ANDA #$7 CB2 INTERRUPTS OFF
STA $FF23
RTS

SETNONE LDA #$34 INITIAL BITS
STA $FF2O
RTS

1* 1,1,0 1,111 lilfW m
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*SETWRITE

*SETS 8T28 TO WRITE

*EXIT: A,CC CHANGED

SETWRITE LDA $FF2O
ORA #$20
ANDA #$EF
STA $FF2O
RTS,

* SETREAD

*SETS 8T28 TO READ

*EXIT: A,CC CHANGED

SETREAD LDA $FF2O
ANDA #$DF
ORA #$10
STA $FF2O
RTS

* SETBUSY

*PULLS BUSY LINE LOW

*EXIT: A,CC CHANGED

SETBUSY LDA $FF2O
ANDA #$FB
STA $FF2O
RTS

* CLEBUSY

*RELEASES BUSY LINE

*EXIT: A,CC CHANGED

CLRBUSY LDA $FF2O
ORA #$04
STA $FF2O
RTS

*FUNCTION NETBUSY : BOOLEAN;
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NETBUSY CLR 4,S RETURN VALUE=FALSE
CLR 5,S
TST $FF21 CHECK BIT 7
BMI NB 1 1 =NOT BUSY
INC 5,S 0=BUSY

NB1 RTS

* READBLK

* READS DATA FROM NETWORK; MUST BE IN READ MODE;

* ENTRY: X-BUFFER START ADDRESS
* Y =BUFFER LENGTH

* EXIT: A,CC CHANGED
* X = ADRESS OF LAST BYTE + 1
* Y=# OF BYTES ACTUALLY READ

* Z=1 & B=0: NO ERROR

* Z = 0 ERROR:
* CODE IN B;
* $FF BUFFER OVERRUN

READBLK PSHS U,Y,CC SAVE REGISTERS
BSR SETREAD
ORCC #$50 NO INTERRUPTS
LDU #$FF20 U=PORT ADDRESS

*WAIT FOR VALID START OF TRANSMISSION
SYNCS LDY #6
SYNC BSR BYTE GET A BYTE
CMPA #$16 SYNC?
BNE SYNCS
LEAY -1,Y
BNE SYNC

SYNC 1 BSR BYTE WAIT FOR START FLAG
CMPA #$16
BEQ SYNC1
CMPA #2
BNE SYNCS

*READ LENGTH
BSR BYTE GET HIGH BYTE
PSHS D SAVE D
BSR BYTE GET LOW BYTE
STA 1,S PUT ON STACK
PULS Y GET LENGTH
CMPY 1,S TOO BIG?
BHI ERR
STY 1,S SAVE ACTUAL LENGTH
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DATA BSR BYTE GET DATA BYTE
STA ,X+ STORE IT
LEAY -1,Y DONE?
BNE DATA

EXIT LBSR SETNONE DRIVERS OFF
PULS CC,Y,U
TSTB SET Z FOR ERROR FLAG
RTS BYE

ERR LDB #$FF FLAG ERROR
LDY #0 NO BYTES READ
BRA EXIT

* BYTE READS A BYTE

* ENTRY: U=$FF20

* EXIT: A=NEW BYTE
* B=O
* U=$FF20
* X,Y: UNCHANGED

BYTE LDD #$0940 A=BIT COUNT B=BIT MASK FOR PORT
PSHS A

WAIT BITB ,U WAIT FOR START BIT
BEQ WAIT
NOP CENTERING DELAY
NOP

BYTEL LDB ,U GET BIT
LSLB SHIT INTO A
LSLB
ROLA
TFR B,B DELAY SOME MORE
NOP
NOP
DEC ,S ANY MORE BITS?
BNE BYTEL
PULS B,PC

* WRITEBLK
,

* SENDS BLOCK OF DATA

* FORMAT:

* VALUE COUNT EXPLANATION

* $16 10 SYNC BYTES

*
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* $02 1 START INDICATION

* $HH 1 HIGH BYTE OF LENGTH

* $LL 1 LOW BYTE

* $XX $HHLL 'LENGTH' DATA BYTES

* ENTRY: X=START ADDRESS OF BLOCK
* Y= LENGTH OF BLOCK

* EXIT: X=END ADDRESS + 1
* D,CC CHANGED
* Y,U UNCHANGED

WRITEBLK PSHS Y,CC SAVE ADDRESS
LBSR SETWRITE
ORCC #$50
LDY #10 SEND 10 SYNC BYTES
WB1 LDA #$16 $16=SYNC BYTE
BSR OUT
LDA #70 DELAY ONE BYTE TIME
WBD DECA
BNE WBD
LEAY -1,Y
BNE WB1
LDA #02 START SEQUENCE
BSR OUT
LDA 1,S HIGH ORDER LENGTH
BSR OUT
LDA 2,S AND LOW ORDER
BSR OUT
LDY 1,S
WBL LDA ,X+ GET BYTE
BSR OUT
LEAY -1,Y SEE IF DONE
BNE WBL
LBSR SETNONE
PULS CC,Y,PC

* OUT SENDS ONE BYTE TO NETWORK
,

* ENTRY: A=BYTE
,

EXIT: A,B=0
* CC CHANGED

OUT LDB #10 START BIT + 8 DATA + 1 STOP
PSHS B
LDB #$08

I i ill j ' L ', , , Z'4 y ",', . J,,
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ORB $FF2O PA3(DATA BIT)= 1;
BRA OUT3

OUTi ASLA NEXT BIT INTO CARRY
BCC OUT2 IF A ZERO,BRANCH
ORB #$8 ELSE SET TO 1
BRA OUT3

OUT2 ANDB #$F7 SET TO ZERO
BRA OUT3 PRESERVE TIMING

OUT3 STB $FF2O SEND THE BIT
NOP DELAY SOME
NOP
NOP
DEC ,S DONE?
BNE OUTil
PULS B,PC BYE

END
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DRIVER ROUTINES FOR THE MODIFIED TRS-80

GSTART EQU 0 START SCREEN
GEND EQU 2 END SCREEN
GY EQU 4
GX EQU 5
GFLAG EQU 6
*

*PUBLIC ROUTINES
.

PUBLIC CLS PASCAL CALL
PUBLIC CLRTOP PASCAL CALL
PUBLIC CURSOR PASCAL CALL

PUBLIC GSELECT PASCAL
PUBLIC GSETUP PASCAL CALL
PUBLIC GSHOW PASCAL/ASM
PUBLIC PLOT PASCAL CALL
PUBLIC SETT ASM CALL
PUBLIC PUTC CALLED BY PATCHED PASIO
PUBLIC GETCURSOR PASCAL CALL
PUBLIC INVERSETEXT PASCAL CALL
PUBLIC VPRINT PASCAL CALL
PUBLIC GETKEY
PUBLIC INKEY

*EXTERNAL REFERENCES

CSET EXT

* GSELECT
* SETS GLOBAL POINTER TO GRAPHICS CONTROL BLOCK

* CALL: GSELECT(BLKADD:INTEGER)

GSELECT LDX 4,S GET ADDRESS
STX $88
RTS

* GSETUP(BLKADD,STARTADD,ENDADD:INTEGER)

* BLKADD=)ADDRESS OF CONTROL BLOCK
* STARTADD=ADDRESS OF SCREEN START
* ENDADD=ADDRESS OF SCREEN END
* IF ZERO, DEFAULTS TO 6143 +STARTADD

* STACK FRAME:

BLKADD EQU 8
STARTADD EQU 6
ENDADD EQU 4

Wt
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GSETUP LDY BLKADD,S
LDD STARTADD,S
STD GSTART,Y SAVE START ADDRESS
LDD ENDADD,S
BNE GSETUP1
LDD #6143
ADDD STARTADD,S

GSETUP1 STD GEND,Y SAVE END ADDRESS
CLR GX,Y
CLR GY,Y
CLR GFLAG,Y
RTS

* GSHOW DISPLAYS SCREEN

GSHOW LDD [$881 GET START ADDRESS
BSR SETSAM SET ADDRESS
STA $FFC3 SET SAM MODE CONTROL REGISTER
STA $FFC5
LDA #248 SET VDG CONTROL
STA 65314
RTS

* SETSAM SETS SAM TO ADDRESS IN A
* (HIGH 7 BITS)
* CLEARS GRAPHICS MODE BITS

*4

SETSAM ANDA #$FE MASK OFF ADDRESS BITS
LDX #$FFD4

STS 1 STA ,--X CLEAR BIT
CMPX #$FFCO DONE?
BEQ STS2
LSLA GET NEXT BIT
BCC STS1
STA 1,X SET SAM BIT IF 1
BRA STS1

STS2 RTS

* CLEAR ROUTINES

* CLEAR TOP

CLRTOP LDD#256
BRA CLR

* CLEAR WHOLE SCREEN

CLS LDD #6144
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CLR LDY $88
LDX GSTART,Y
iEAX D,X

CLR1 LDD #$FFFF
TST GFLAG,Y
BEQ CLR2
CLRA
CLRB

CLR2 STD) ,-X
STD,--X
STD,--X
STD,--X
STD,--X
STD,--X
STD,--X
STD,--X
CMPX GSTART,Y
Bill CLR2
CLR GY,Y
CLR GX,Y
RTS

*PUTC HANDLES CHARACTER OUTPUT

PUTC PSHS D,X,Y.,U SAVE THINGS

LDY $88 GET POINTER o
ANDA #$7F MAKE < 128
CMPA #$20 CONTROL CHAR.?
BLO CONTROLCHAR,
LBSR PUTOOK DISPLAY IT
LDB GX,Y UPDATE CURSOR;
ADDB #5 ADD ONE CHAR. WIDTH
BCS PUTCi CRLF IF PAST END
CMIPB #251 OR TOO FAR RIGHT
BLS PUTC2

PUTC1 BSR CRLF
PTJLS D,X,Y,U,PC BYE

PUTC2 STB GX,Y UPDATE X
PULS D,X,Y,U,PC BYE

CONTROLCHAR CMPA #$OD CR?
BNE NOCRLF
BSR CRLF DO CRLF
PULS, D,X,Y,U,PC

NOCRLF CMPA #$OA LF:
BNE NOLF
BSR LF DO LF
PULS D,Y,X,U,PC
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NOLF CMPA #8 BACKSPACE?
BNE PUTCEXIT NO, INVALID CHAR

* DO BACKSPACE

LDD GY,Y BACK UP ONE CHAR.
CMPB #5 BEGINNING OF LINE?
BHS BACK1
CMPA #9 TOP OF SCREEN?
BLO PUTCEXIT
SUBA #9 NO, BACK UP ONE LINE
CLRB TO COLUMN 251

BACK1 SUBB #5 BACK UP ONE WIDTH
STD GY,Y
LDA #$20 PRINT SPACE
BSR PUTCOK

PUTCEXIT PULS D,X,Y,U,PC BYE

CRLF CLR GX,Y X= 0 DOES CR
LF LDA GY,Y Y+9 DOES LF
ADDA #9
CAIPA #191-9 PAST END?
Bill SCROLL IF YES, SCROLL IT
STA GY,Y
RTS

*L

* SCROLL

SCROLL PSHS D,X,Y,U SAVE THINGS
LDX GSTART,YSTART
LEAU 32*9,X ONE LINE DOWN
LDY GEND,Y END ADDRESS
PSHS Y
TFR X,Y

* ,

* PARTIALLY UNFOLLED LOOP
* MOVES ONE SCAN LINE (32 BYTES)
* AT A TIME

SCROLLOOP PULU D,X GET 4 BYTES
STD ,Y+ + STORE THEM
STX ,Y++
PULU D,X ETC
STD ,Y++
STX ,Y++
PULU D,X
STD ,Y+ +
STX ,Y++
PULU D,X
STD ,Y++
STX ,Y++
PULU D,X
STD ,Y++
STX ,Y+ +
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PULU D,X
STD ,Y++
STX ,Y++
PULU D,X
STD ,Y++
STX ,Y++
PULU D,X
STD ,Y++
STX ,Y++
CMPU ,S SEE IF DONE
BLO SCROLLOOP
LDD #$FFFF CLEAR BOTTOM LINE

SCRL 1 STD ,Y + +
STD ,Y++
STD ,Y+ +
STD ,Y++
CMPY ,S SEE IF DONE
BLO SCRl1
LEAS 2,S CLEAR STACK
PULS D,Y,X,U,PC BYE

* PUTCOK DRAWS CHARACTER

• ENTRY:
• Y =ADDRESS OF DESCRIPTOR
* A=CHARACTER

* STACK USAGE:
• 3,S BYTE COUNT
• 1-2,S STORAGE
• 0,S SHIFT VALUE

PUTCOK SUBA #$20 OFFSET FOR NON-PRINTING CHARACTERS
LDB #$8 BYTES PER CHAR
PSHS B LOOP COUNTER
MUL INDEX TO CHARACTER
LEAU CSET,PCR BASE OF CHARACTERS
LEAU D,U ADDRESS OF CHAR
LBSR SETT GET PIXEL ADDRESS,BIT
LSLB ADJUST BIT SO MUL DOES SHIFT
PSHS B,X SAVE SHIFT FACTOR,RESERVE 2 BYTES
CMPX BEND,Y PAST END?
BHS PUTCO3

PUTCO2 LDA ,U+ GET CHAR BYTE
LDB ,S GET SHIFT FACTOR
BEQ PUTCNS DON'T SHIFT IF ALREADY OK
MUL SHIFT CHAR BYTE

PUTCNS STD 1,S STORE SHIFTED VALUE
LDA #$F8 GET MASK BYTE
LDB ,S GET SHIFT FACTOR
BEQ PUTCNS1
MUL SHIFT MASK
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PUTCNS1 TST GFLAG,Y
BEQ NORMCHAR
COMA FLIP MASK
COMB
ANDA ,X RESET BITS OF BACKGROUND
ANDB 1,X
BRA BITCHAR

NORMCHAR ORA ,X SET BITS OF BACKGROUND
ORB 1,X

BITCHAR EORA 1,S FLIP BITS CHAR
EORB 2,S
STD ,X STORE IT ON SCREEN
LEAX $20,X NEXT ROW
CMPX BEND,Y OFF SCREEN?
BHS PUTCO3
DEC 3,S ANY MORE BYTES?
BNE PUTCO2

PUTCO3 PULS D,X,PC

* PLOT

SETS/RESETS PIXELn*

* CALL: PLOT(X,Y,FLAG :INTEGER)
] *

* PASSED:
S BS: X LOW

* A,S: X HIGH
* 9,6: Y LOW
* 8,S: Y HIGH
* 7,S: MODE O=DOT ON

* 6,S: HIGH MODE (UNUSED)
* 4-5,S: LINK ADDRESS
* 2-3,S: RETURN ADDRESS
* 0-1,S: SAVED GX,GY
*

* CC CHANGED

PLOT LDY $88 GET POINTER
LDD GY,Y
PSHS D
LDA 9,S A=Y COORD
LDB $B,S B=X COORD
STD BY,Y
BSR SETT
CMPX GEND,Y
BHI DOTEND
TST 7,S
BEQ DOTCLEAR

DOTSET ORB ,X
BRA DOTPUT
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DOTOLEAR COMB
ANDB ,X

DOTPUT STB ,X
DOTEND PULS D
STD GY,Y
RTS

*CURSOR

*MOVES CURSOR TO X,Y

*CALL: CURSORCX,Y:INTEGER)

*STACK FRAME:
* 7,S: X LOW
* 6,S: X HIGH
* 5,S: Y LOW
* 4,S: Y HIGH

* 2-3,S: LINK ADDRESS
* 0-1,S: RETURN ADDRESS

CURSOR LDY $88
LDB 7,S
LDA 5,S
STD GY,Y
RTS

*SETTV SETS UP

*ENTRY:

* GY=Y
* GX=X

Y Y=POINTER TO CONTROL BLOCK
*EXIT:

*BYTE ADDRESS IN X
* BIT #IN A
* BIT IN B

SETT LDD GY,Y
LSRA
RORB
LSRA
RORB
LSRA
RORB
ADDD GSTART,Y
TFR D,X
LDA GX,Y
ANDA #7
PSHS Y
LEAY SHFTB,PCR
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LDB A,Y
PUtS YPC

SHFTB FDB $8040
FDB $2010
FDB, $0804
FDB; $0201

*GETCURSOR RETURNS POSITION TO PASCAL

*CALL: GETCURSOR(VAR X,Y:INTEGER)

*STACK FRAME:
* 6-7,S: ADDRESS OF X
* 4-5,S: ADDRESS OF Y
* 2-3,S: LINK ADDRESS
* 0-1,S: RETURN ADDRESS

GETCURSOR LDY $88
CLRA
LDB GY,Y
STh) [4,S]
LDB GXY
STh) [6,S]
RTS

INVERSETEXT: SETS INVERSE FLAG TO VALUE FROM PASCAL

*CALL: INVERSETEXT(FLAG:BOOLEAN)

*STACK FRAME:
* 5,S: BOOLEAN FLAG
* 4,S: UNUSED

* 2-3,S: LINK
* 0-1,S: RETURN ADDRESS

LNVERSETEXT LDA 5,S
LDY $88
STA GFLAG,Y
RTS

*PRINTS VERTICAL STRING

*CALL: VPRINT(S:STRING)

*STACK FRAME:
* 5-N,S: STRING
* 4,S: LENGTH



52

2-3,S: LINK
0-1,S: RETURN ADDRESS

VPRINT LDY $b8
LDB GX,Y
CMPB #251 CHECK X COORD
BLS VP1
LDB #251

VP1 STB GX,Y
LDB 4,S GET LENGTH
LEAX 5,S GET POINTER TO STRING
PSHS U SAVE DYNAMIC LINK (FOR PASCAL)
PSHS B,X SAVE STRING INFO

VPL LDA GY,Y MOVE PRINT LOCATION
CMPA #183 AT BOTTOM OF SCREEN?
BLS VPL1
LDA #183

VPL1 ADDA #9 DOWN 9 COLUMNS
STA GY,Y STORE IT
PULS B,X GET INFO
TSTB SEE IF DONE
BEQ VPEND
DECB
LDA ,X+ GET CHAR
PSHS B,X SAVE INFO
LBSR PUTCOK
BRA VPL

VPEND PULS U,PC

DFTPOLLKEY EXT

* PASCAL CALL

* FUNCTION INKEY:CHAR
,

* WAITS FOR A KEY TO BE PRESSED
* RETURNS ASCII CODE OF KEY

.5

* STACK:
* 5,S: RETURN FUNCTION BYTE
* 2-3,S: LINK
* 0-1,S: RETURN ADDRESS

INKEY LBSR DFTPOLLKEY
BEQ INKEY
STA 5,S
RTS

* PASCAL CALL

* FUNCTION GETKEY:CHAR;

~I
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" SCANS KEYBOARD ONCE
" RETURNS ZERO IF NO KEY

GETKEY LBSR DFTPOLLKEY
STA 5,S
RTS

END
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CHARACTER SET FOR DRIVER SUBROUTINES

PUBLIC CSET
CSET FCB $00,$00,$00,$00,$00,$00,$00,$00
FOB $20,$20,$20,$20,$20,$0,$20,$00
FCB $50,$50,$50,$0,$0,$0,$0,$00
FCB $50,$50,$F8,$50,$F8,$50,$50,$OO
FOB $20,$38,$60,$30,$28,$70,$20,$00
FOB $68,$68,$10,$20,$20,$58,$58,$00

* FOB $20,$50,$50,$20,$68,$50,$28,$00
FOB $20,$70,$A8,$20,$20,$A8,$70,$20
FOB $30,$20,$40,$0,$0,$0,$00,$00
FOB $10,$20,$40,$40,$40,$20,$1,$00
FOB $20,$10,$08,$08,$08,$10,$20,$00
FOB $00,$48,$30,$78,$30,$48,$00,$00
FOB $00,$20,$20,$F8,$20,$20,$0,$00
FOB $00,$00,$00,$0,$30,$30,$20,$40
FOB $00,$00,$00,$78,$00,$00,$00,$00
FOB $00,$00,$00,$00,$00,$30,$30,$00
FOB $08,$08,$ 10,$20,$20,$40,$40,$00
FOB $30,$48,$48,$48,$48,$48,$30,$00
FOB $20,$60,$20,$20,$20,$20,$70,$00
FOB $30,$48,$08,$10,$20,$40,$78,$00
FOB $30,$48,$08,$30,$08,$48,$30,$00
FOB $08,$ 18,$28,$48,$78,$08,$08,$00
FOB $78,$40,$70,$08,$08,$48,$30,$00
FOB $1O,$20,$40,$7O,$48,$48,$30,$Oo
FOB $78,$08,$08,$10,$20,$40,$40,$00
FOB $30,$48,$48,$30,$48,$48,$30,$00
FOB $30,$48,$48,$38,$08,$ 10,$20,$00
FOB $00,$30,$00,$00,$30,$0,$00,$00
FOB $00,$30,$00,$00,$30,$10,$20,$00
FOB $08,$ 10,$20,$40,$20,$10O,$08,$00
FOB $00,$00,$78,$00,$78,$0,$00,$00
FOB $40,$20,$10,$08,$10,$20,$40,$00
FOB $30,$48,$08,$10O,$20,$00,$20,$00

* FOB $30,$48,$58,$58,$40,$48,$30,$00
FOB $F8,$40,$20,$ lO,$20,$40,$F8,$OO
FOB $30,$48,$48,$78,$48,$48,$48,$00
FOB $70,$48,$48,$70,$48,$48,$70,$00
FOB $30,$48,$40,$40,$40,$48,$30,$00
FOB $70,$48,$48,$48,$48,$48,$70,$00
FOB $78,$40,$40,$70,$40,$40,$78,$00
FOB $78,$40,$40,$70,$40,$40,$40,$00
FOB $30,$48,$40,$58,$48,$48,$38,$00
FOB $48,$48,$48,$78,$48,$48,$48,$00
FOB $70,$20,$20,$20,$20,$20,$70,$00
FOB $08,$08,$08,$08,$08,$48,$30,$00
FOB $48,$48,$50,$60,$50,$48,$48,$00
FOB $40,$40,$40,$40,$40,$40,$78,$00
FOB $48,$78,$78,$48,$48,$48,$48,$00
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FOB $48,$68,$68,$58,$58,$48,$48,$00
FOB $78,$48,$48,$48,$48,$48,$78,$00
FOB $70,$48,$48,$70,$40,$40,$40,$00
FOB $30,$48,$48,$48,$68,$58,$38,$00
FOB $70,$48,$48,$70,$50,$48,$48,$00
FOB $30,$48,$40,$30,$08,$48,$30,$00
FOB $704$204$204$204204$20420400
FCB $48,$48,$48,$48,$48,$48,$30,$00
FOB $48,$48,$48,$48,$48,$30,$30,$00
FOB $48,$48,$48,$48,$78,$78,$48,$00
FOB $48,$48,$30,$30,$30,$48,$48,$00
FOB $88,$88,$50,$20,$20,$20,$20,$00
FOB $78,$08,$10,$20,$20,$40,$78,$00
FOB $784$604$604$603$60360378400
FOB $40,$40,$20,$20,$1,$08,$08,$00
FOB $784$184$184183$184$1878400
FOB $20,$70,$A8,$20,$20,$20,$20,$00
FOB $004$104204$784204$1040,$00
FOB $604$604204$10400400400400$O
FOB $004004,384$084$384484$38400
FOB $40,$40,$70,$48,$48,$48,$70,$00
FOB $00,$00,$38,$40,$40,$40,$38,$00
FOB $084$084$384484$484484$38400
FOB $004004,304$483783$404$38400
FOB $104$284$204$704$20420320400
FOB $004004,304484$484$38408430
FOB $40,$40,$70,$48,$48,$48,$48,$00
FOB $203004,604$204$20420470400O
FOB $104004,104$104104$104504$20
FOB $40,$404$404$503604504$48400
FOB $604$204$204$204$2042070400
FOB $00,$00,$78,$78,$ 78,$48,$48,$00
FOB $004004,404$704$484$48348400
FOB $004004,304$484484$484$30,$00
FOB $00,$00,970.$48$48,$70,$40,$40
FOB $004004,384484484$38408408$
FOB $004004,584$604$404$40440400
FOB $004004,384$404$304084$70400
FOB $204$204$704204$203$284$10400
FCB $00,$00,$48,$48,$48,$48,$38,$00
FOB $00,$00,$48,$48,$48,$30,$30,$00
FOB $00,$00,$48,$48,$48,$78,$78,$00
FOB $004004,484484$304$48448400
FOB $00,$00,$48,$48,$48,$38,$08,$30
FOB $004004,784$084$103204$78400
FOB $104$204$20,$404$204$204$10400
FOB $204$204$203$204$20420420400
FOB $404$204$204104$204$204$40300
FOB $48,$BO,$OO,$OO,$OO,$OO,$OO,$Oo
FOB $5O,$A8,$50,$A8,$50,$A8,$50,$A8
END

1 JC2 1----
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REQUIRED ADDITIONS TO PASCALIB/EXT FROM DEFT

TYPE GBLK1 = RECORD
STARTADD :INTEGER;
ENDADD: INTEGER;
GY: CHAR;
GX: CHAR;
INVERSEFLAG: BOOLEAN;

END;

PROCEDURE GSELECT (VAR BLK: GBLK 1);

PROCEDURE GSETUP (VAR BLK: GBLK1; STARTADD,ENDADD: INTEGER);

PROCEDURE GSHOW;

PROCEDURE CLS;

PROCEDURE CLRTOP;

PROCEDURE CURSOR (X,Y: INTEGER);

PROCEDURE GETCURSOR (VAR X,Y: INTEGER);

PROCEDURE PLOT (X,Y,MODE: INTEGER);

PROCEDURE INVERSETEXT (FLAG: BOOLEAN);

PROCEDURE VPRINT (S: STRING);

PROCEDURE GETKEY: CHAR;

PROCEDURE INKEY: CHAR;



APPENDIX B: Operating Programs

The routines written for these experiments are primarily in Pascal. The

programs for the TRS-80 Color Computer were written with DEFT Pascal Workbench

and any differences or embellishments to ISO Standard Pascal are in the cited manuals.

The Physpend program was written with Turbo Pascal from Borland International and

its variations from ISO Standard Pascal are also documented. " Commenting on the

TRS-80 routines has been minimized due to limited memory, however logic flow charts

precede the listings as necessary. Standard conventions on "pretty printing" have been

used for readability. The common subroutines were written in 6809 Assembler and

commented accordingly.

57
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Begin

Introduction and
Instructions

SimulateTake Data

Figure B. 1. Freshpen and Air'wheel Main Routine
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Begin

Introduction and
Instructions

"'I"
Execute Count

Subroutine

Figure B.2. Takedata Procedure

Y s

Yes.

Execut Grap
Subroutin

Return

Figue B.. Taedat Proedur



SEnter initial conditions J4 ,

Select Configuration 4

SSelect displacement or

velocity plot
I

Enter the time step and I

set the number of points

Execute Heun and plot point

Figure hang epsniue Prede



61

PROGRAM Freshpendulum (input, output);

LABEL 1;

TYPE
vector = ARRAY [1..21 OF real;
datapoints = ARRAY [1..11] OF vector;
point = ARRAY [..21] OF integer;
data = ARRAY [1..64] OF integer;
simdata = ARRAY [l..256] OF point;

VAR
select: char;
buffer : data;

PROCEDURE Setup ; EXTERNAL;

PROCEDURE Count (address : integer); EXTERNAL;

PROCEDURE Graph (address : integer); EXTERNAL;

FUNCTION Yes: Boolean;

VAR
ch : char;

BEGIN
readln (ch);
IF ch = 'Y' THEN Yes := true ELSE Yes := false

END;

* *** ** ** ***** **** **** * ** ** * **** * *** * ** ** * *** * **** ** * * *

PROCEDURE Noprime (pendconst : real; VAR upass, uprime:
vector);

BEGIN
uprirnel] : upass[2];
uprime[2] := - pendconst * sin(upass[1]);

END;

PROCEDURE Lprime (pendconst, airlength, airconst: real;
VAR upass, uprime : vector);

I.
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BEGIN
uprime[1] upass[2];
uprime[2J = - pendconst * sin(upass[1]) - airconst *

airlength * upass[21;
END;

PROCEDURE Sqprime (pendconst, airlength, airconst: real;
VAR upass, uprime : vector);

BEGIN

uprimeil] := upass[21;
IF upass[2] < 0

THEN
uprime[2] = - pendconst * sin(upass[Il) +

airconst * sqr(airlength * upass[2])
ELSE

uprime[2] = -pendconst * sin(upass[l])
- airconst * sqr(airlength * upass[2])

END;

PROCEDURE Takedata (VAR buffer: data);

VAR
i : integer;
inchar: char;

BEGIN
cIs;
writeln ('Hit any key to start timing.');
inchar = Inkey;
Clrtop;
writeln ('Collecting ..

Count (Buffer[ 1]);
writeln ('Do you wish to see the data points? (Y/N)');
IF Yes THEN

BEGIN
writeln ('Hit any key when you are finished with');

writeln ('the data.');
writein;
writeln ('Are you ready to plot? (Y/N)');
IF Yes THEN

BEGIN
cIs;
Graph(Buffer[ 1]);
inchar := Inkey;

END;
END; { then

END;

'
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PROCEDURE Heun (pendconst, airlength, airconst deltat:real;
VAR thetadot : datapoints; VAR i: integer;
acase :char);

VAR
kI, k2, utemp : vector;
j : integer;

BEGIN
CASE acase OF

'N':
BEGIN

utempl] :thetadotli,l];
utemp[21 thetadot[i,2];
Noprixne (pendconst, utemp, ki);
FORj:= 1TO 2DO

utempU] : = thetadot[ij] + deltat *kill;

Noprime (pendconst, utemp, k2);
FORj:= 1TO 2DO

thetadot~i + 1 ,j] : = thetadot~ij] + deltat*
(kill + k2ll])12;

END; { case of N

BEGIN
utenpl] :thetadot[i,l];
uternp[2] 1 thetadotti,2];
Lprime (pendconst,airlength,airconst,utemp,k 1);
FORj:= 1 TO 2DO

utempl] := thetadot[ij] + deltat * kill];
Lprime (pendconst,airlength,airconst,utemp,k2);
FORj:= 1 TO 2DO

thetadot~i +l :=j thetadotij] + deltat*
(kill + k2lj])/2;

END; { case of L}

BEGIN
utemp[1] thetadotli, 1];
utemp[2] thetadot[i,2]; '

Sqprirne (pendconst,airlength,airconst,utemp,k 1),
FORj:= ITO 2DO

utemplll := thetadotlij] + deltat * kil;
Sqprirne (pendconst,airlength,airconst,utemp,k2);
FORj:= 1TO 2DO

thetadot[i + ij : = thetadot[ij] + deltat
(kill] + k2ll])f2;

END ( case of Q}
END; { case}

END; I Heun}
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PROCEDURE Simulate (buffer: data);

LABEL 1,2,3,4,5,6,7;

CONST
g = 9.81;
cony = 0.34906585;

VAR
acase, curve, inchar : char;
mass, cmdistance, imoment thetal, airlength airconst,
pendconst, deltat : real;
i, j, subint, int : integer;
thetadot : datapoints;
theta, omega : simdata;

BEGIN
cIs;
int := 0;

7: writeln ('Enter the mass of the pendulum.');
readin (mass);
writeln ('Enter the distance to the center of mass.');
readin (cmdistance);
writeln ('Enter the moment of inertia.');
readln (imoment);
pendconst = mass * g * cmdistance / imoment;
cIs;
writeln ('In conducting the simulation you may');
writeln ('neglect air resistance, include it with');
writeln ('a term linear in velocity or a term');
writeln ('quadratic in velocity. Enter: ');
writeln (' N - Neglect air resistance');
writeln (' L - Include it linearly');
writeln (' Q - Include quadratic term');
readIn (acase);
IF NOT (acase IN ['N','L','Q']) THEN

BEGIN
writeln ('Not a proper response.');
GOTO 1;

END;
2: cls;

writeln ('Enter the initial angle (rad).');
readln (theta 1);
F acase IN ['L','Q'] THEN
BEGIN

writeln ('Enter the distance from the pivot to ');
writeln ('the center of the plates.');
readIn (airlength);
writeln ('Enter the coefficient of air');
writeln ('resistance.');

JA%1W~l , v
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readIn (airconst);
END;

5: CIS;
writein ('Do you wish to plot the displacement or
writein ('velocity? Enter:');
writeln (' D - Displacement');
writein (' V - Velocity');
readin (curve);
IF NOT (curve IN [iD','V']) THEN

BEGIN
writeln ('Not a proper response.');
GOTO 5;

END;
6: writeln('Enter the step size, delta t, to be used in');

writein ('the simulation. (Multiples of .025 or )0
writein ('divisors of .025 down to .0025 only for')
writein. ('graphing purposes.)');
readIn (deltat);
writeln('The simulation will plot the data, the last');
writein ('simulation and one point at a time for the');
writeln (New simulation. Hit S if you wish to stop');
writeln ('the plot. After you are fininshed viewing');
writein ('the plot hit any key to continue the')
writeln ('Program.');

3: writeln
writeln('Are you ready to plot the simulation? (YIN)');
IEF Yes THEN

BEGIN
CIS;
Graph (Buffer[1D;
FOR k: =l1TO intDO

BEGIN
IF curve = 'V' THEN

Plot (omega[i, 1l,omega[i,2],0)
ELSE

Plot (theta[i, 1],theta[i,21,0);
END;

IF deltat < .025 THEN
BEGIN

subint : = round(. 025/deltat);
int:= 255;

END
ELSE

BEGIN
subint :1;
int := round(6.375/deltat);

END;
theta( 1, 11 0;
omega(1, 1]: 0;
theta[1,2] 190 - round(thetal*100);
omega[1,21 :190;
CASE curve OF
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VPlot(theta(1, 1],theta[ 1,21,0);
''Plot(omega[ 1, 1i,omega[ 1,2],0)

END; I case I
thetadot[1,1) thetal;
thetadotlll,2] 0.0;
FOR i:= 1TO intDO

BEGIN
FOR j: =1 TO subint DO

Heun (pendconst,airlength,airconst,deltat,
thetadotj,acase);

theta[i + 1, 21 :=190 - round(abs(thetadot
[subint+ 1,1]) * 100);

omega[i +1,2] := 190 - round(abs(thetadot
[subint+ 1,21)/conv *3);

IF subint = 1 THEN
BEGIN

theta~i+ 1,11 round(i*deltat/.025);
omega[i +1, 1] theta~i +1, 1];

END
ELSE

BEGIN
theta~i +1, 1]
omega[i +1, 11]

END;
thetadot[1,11 thetadot[subint+1,1];
thetadot(1,2] :=thetadottsubint+ 1,2];
CASE curve OF

'D: Plot(theta~i +1, 1j,theta~i + 1,21,0);
'V': Plot(omega[i +1, 1],omega[i +1,21,0)

END; { case I
Plot(omega[i + 1, 11, 5,0); f mark progress}
IF Getkey = 'S' THEN GOTO 4;

END; f{for)
END ( then}

ELSE
GOTO 3;

4: inchar Inkey;
CIS;
writein ('o you wish to change the step size? (YIN)');
IF Yes

THEN GOTO 6;
writein. ('Do you wish to change the initial air');
writein ('resistance constants? (YIN)');
IF Yes

THEN GOTO 2;
writehi. ('o you wish to change the way that air');
writein ('resistance is considered? (YIN)');
IF Yes

THEN GOTO 1;
writein ('o you wish to change the mass or moment');
writein ('of inertia? (YIN)');
IF Yes

pr 117- 11.
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THEN GOTO 7;
END; { Simulate }
* *** ** *** * ** *** ** * ****** *** ** *** * ** * ** ** ** **** * * ** ** * * **}

BEGIN { Freshpendulum }
Setup;
cIs;
writeln ('Welcome to the pendulum datataking and ');
writeln ('comparison program. This program will ');
writeln ('allow you to determine the best way to');
writeln('incorporate air resistance in the equations');
writeln ('of motion and an approximate value for the');
writeln ('coefficient of air resistance. You may ),
writeln ('also investigate the accuracy of the ');
writeln ('numerical method as you change the size ');
writeln ('of the step in time.');
writeln;

1: writeln ('Do you wish to take data or run a
writeln ('simulation? Enter:');
writeln (' T - Takedata');
writeln (' S - Simulate');
readin (select);
CASE select OF

'T': Takedata (buffer);
'S': Simulate (buffer)
ELSE

BEGIN
writeln ('Not a proper response.');
GOTO 1;

END
END: { case }
cIs;
writeln ('Do you wish to continue the program? (Y/N)');
IF Yes THEN

GOTO 1;
END. { Freshpendulum }

p
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PROGRAM Airwheel (input,output);

LABEL 1;

TYPE
vector = ARRAY[I1.21 OF real;
calcvals = ARRAY[.11] OF vector;
point =ARRAY[1..2] OF integer;
data =ARRAY[1..64] OF integer;
simdata = ARRAYRI..256] OF point;

VAR
select :char;
omega: simdata;
buffer : data;

PROCEDURE Setup; EXTERNAL;

PROCEDURE Count (address: integer); EXTERNAL;

PROCEDURE Graph (address : integer); EXTERNAL;

FUNCTION Yes: boolean;

VAR
ch : char;

BEGIN
readin (ch);
IF ch = 'Y' THEN Yes :true ELSE Yes :false

END;

PROCEDURE Noprirne (wheelconst: real; VAR upass, uprime:
vector);

BEGIN
uprime[1 := upass[2];
uprime[2] : = wheelconst;

END;

PROCEDURE Lprime (wheelconst, airlength, airconst, imoment:
real; VAR upass, uprime : vector);
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BEGIN
uprime[1J : = upass[2;
uprine[2] = wheelconst - airconst * airlength/imoment

*upass[21;

END;

PROCEDURE Sqprime(wheelconst, airlength, airconst, imoment:
real; VAR upass, uprime : vector);

BEGIN
uprime[l] upass[2];
uprime[2 := wheelconst - airconst/imoment *

sqr(airlength * upass[2]);
END;

PROCEDURE Takedata (VAR buffer : data);

VAR
i : integer;
inchar : char;

BEGIN
cIs;
writeln ('Hit any key to start timing');
inchar := Inkey;
cIrtop;
writeln (Collecting. .

Count (Buffer[ 1);
writeln ('Do you wish to see the data points? (Y/N)');
IF Yes THEN

BEGIN
writeln ('Hit any key when you are finished with');
writeln ('the data.');
writeln;
writeln ('Are you ready to plot? (Y/N)');
IF Yes THEN

BEGIN
cIS;
Graph (Buffer[l]);
inchar := Inkey;

END;
END; { then

END; { takedata }

PROCEDURE Heun (wheelconst, airlength, airconst, imoment,
deltat : real; VAR thetadot : calcvals;
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VAR i :integer, acase char);

VAR
ki, k2, utemp : vector;
j :integer;

BEGIN
CASE acase OF

BEGIN
utemp[l] =thetadot[i, 1];
utemp[2] =thetadot[i,2];

Noprime (wheelconst, utemp, k 1);
FORj :=1TO 2 DO

utemp~] := thetadot[ij] + deltat *klU];

Noprirne (wheelconst, utemp, k2);
FORj:= 1TO 2DO

thetadot[i + 1j := thetadot[ij] + deltat*
(kl~j]+ k2U])12;

END; I{case of N}

BEGIN
utemp[l] thetadot[i,l];
utemp[1= thetadot[i,2];
Lprime (wheelconst, airlength, airconst, imoment,

utemp, ki);
FORj:= 1 TO 2DO

utempUl := thetadot[ij] + deltat * kl1W;
Lprime (wheelconst, airlength, airconst, imoment,

utemp, k2);
FORj: 1iTO 2 DO

thetadotli + 1 j] := thetadot(ij] + deltat*
(kiUl + k2Ij])/2;

END; ( case of L}

BEGIN
utemp[l] thetadot~i,l];
utemp[2] thetadotli,2];
Sqprime (wheelconst, airlength, airconst, imoment,

utemp, ki);
FORj: 1ITO 2 DO

utemp~] := thetadotij] + deltat * klUl;
Sqrime (wheelconst, airlength, airconst, imoment.

utemp, k2);
FORj: 1 TO 2DO

thetadot~i + 1 j] := thetadot~ij] + deltat*
(klUj]+ k2lj])/2;

END; { case ofQ}I
END; f case

END; { Heun}
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PROCEDURE Simulate (buffer data);

LABEL 1,2,3,4,5,6;

CONST
g = 9.81;
cony = 0.34906585;

VAR
inchar, acase : char;
mass, aradius, imoment, airlength, airconst,wheelconst,
deltat : real;
i, j, subin, int : integer;
thetadot : calcvals;
omega : simdata;

BEGIN
cls;
int := 0;
writeln ('The simulation solves the equation of ');
writeln ('motion for the accelerated wheel using');
writeln ('Heuns method.');
writeln;

6: writeln ('Enter the moment of inertia for the wheel.');
readIn (imoment);
writeln ('Enter the radius of the disk to the cord.');
readin (aradius);
writeln ('Enter the mass of the accelerating weight.');
readIn (mass);
wheelconst := mass*g* aradius/(imoment +mass*sqr(aradius));
cIS;
writeln ('In conducting the simulation you may ');
writeln ('neglect air resistance, include it with a');
writeln('term linear in velocity or a term quadratic');
writeln ('in velocity. Enter:');

1: writeln (' N - Neglect air resistance');
writeln (' L - Include it Linearly');
writeln (' Q - Include the Quadratic term');
readly (acase);
IF NOT (acase IN ['N','L','Q']) THEN

BEGIN
writeln ('Not a proper response.');
GOTO 1;

END;
2: cls;

IF acase IN ['L','Q'] THEN
BEGIN

writeln ('Enter the radius to the center of the');
writeln ('plates.');
readin (airlength);
writeln ('Enter the coefficient of air');
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writein ('resistance.');
readin (airconst);

END;
5: writeInCEnter the step size, delta t, to be used in');

writein ('the simulation. (Multiples of .025 or )
writein ('divisors of .025 down to .0025 only for')
writein ('graphing purposes.)');
readln (deltat);
writein ('The simulaton will plot the data, the last');
writeln('simulation and one point at at time for the');
writeln ('new simulation. Hit S if you wisht to')
writeln ('stop the plot. After you are finished')
writein ('viewing the plot hit any key to continue');
writeln ('the program.');

3: writein;
writeln('Are you ready to plot the simulation? (YIN)');
IEF Yes THEN

BEGIN
CIS;
Graph (Bufferl 1]);
FOR i:= 1TO it DO

Plot(omegali, 11,omega[i,2],0);
IF deltat < .025 THEN

BEGIN
subint : = Round(. 025/deltat);
int :=255;

END
ELSE

BEGIN
subnt: 1;
int : = Round(6.375/deltat);

END;
omega[1,1] 0;
omega[1,2] 190;
Plot(0, 190,0);
thetadot[1,1] 0.0;
thetadot[1,2) 0.0;
FOR i:= 1TO intDO

BEGIN
FOR j 1 TO subnt DO

Heun (wheelconst,airlength,airconst,imoment,
deltat, thetadot, j, acase);

omega[i + 1,21 190 - Round(abs
(thetadot~subint + 1 ,2])/conv * 4);

IF subint = 1
THEN omega[i + 1, 1] R ound(i*deltat/.O25)
ELSE omegai + 1, 11 :

thetadot[1,1]: thetadot~subint +1,1];
thetadot[1,2] thetadot[subint+ 1,2];
Plot(omega~i + 1, 1],omega[i + 1, 21,0);
Plot(omega[i + 1,111, 5, 0); 1 mark progress}
IEF Getkey = 'S' THEN GOTO 4;
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END; { for }
END { then }

ELSE
GOTO 3;

4: inchar Inkey;
cIs;
writeln ('Do you wish to change the initial step ');
writeln ('size? (Y/N)');
IF Yes

THEN GOTO 5;
writeln ('Do you wish to change the initial air');
writeln ('resistance constants? (Y/N)');
IF Yes

THEN GOTO 2;
writeln ('Do you wish to change the way air ');
writeln ('resistance is considered? (YIN)');
IF Yes

THEN GOTO 1;
writeln ('Do you wish to change the values for the');
writeln ('moment of inertia or the accelerating ');
writeln ('weight? (Y/N)');
IF Yes

THEN GOTO 6;
END; { simulate I

BEGIN { Airwheel }
Setup;
cls;

writeln ('Welcome to the rotational motion lab.');
writeln ('This program will allow you to measure');
writeln ('the rotational velocity of a wheel with a');
writeln ('given moment of inertia when under a');
writeln ('constant torque (provided by gravity). The');
writeln ('effects of air resistance can also be ');

writeln ('measured. After data is taken a simualtion');
writeln ('may be run to investigate the moment of');
writeln ('inertia of the system, and the dependence');
writeln ('of the torque due to air resistance on the');
writeln ('velocity. You will also be able to ');
writeln ('investigate the accuracy of the numerical');
writeln ('method as you change the size of the step');
writeln ('in time.');
writeln;

1: writeln ('Do you wish to take data or run the');
writeln ('simulation? Enter:');
writeln (' T - Takedata');
writeln (' S - Simulate');
readIn (select);
CASE select OF

'T' : Takedata (buffer);

11( 1 * ,
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'':Simulate (buffer)
ELSE

BEGIN
writein ('Not a proper response.');
GOTO 1;

END
END; I case}
CIS;
writein ('Do you wish to continue the program? (YIN)');
IF Yes

THEN GOTO 1;
END. {Airwheel}



76

PROGRAM Jpendata (input, output);

LABEL 1;

TYPE
vector = ARRAY[1..2 OF real;
datapoints = ARRAY[1..651 OF vector;
data = ARRAY[1..64] OF integer;

VAR
buffer: data;
omega : datapoints;
inchar : char;

.4

PROCEDURE Setup; EXTERNAL;
4

PROCEDURE Count (address : integer); EXTERNAL;

PROCEDURE Takedata (VAR buffer: data); .1

BEGIN
cIs;
writeln ('Hit any key to start timing.');
inchar := Inkey;
cIrtop;
writeln ('Collecting ... ');

Count(Buffer[ 1]);
END; { Takedata }J.

p.,

PROCEDURE Convertdata (buffer: data;VAR omega: datapoints); Pr

CONST
conv = 0.34906585;

VAR
i : integer;

BEGIN
cIs;
writeln ('Converting data .');
omega[1,1] : 0.0;
omega[i,2] : 0.0;
FORi:= 1 TO 64 DO

BEGIN
omega[i+ 1,] := 0. * i;

7..4
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omega[i+2,2] := buffer[i]/4 * cony
END; { for }

END; { Convertdata }

PROCEDURE Outputdata (omega: datapoints);

LABEL 1,2;

VAR
outfile : text;
inchar, select: char;
start, stop, i: integer;

BEGIN
cIs;

1: writeln ('What output device do you want to use? ');
writeln ('Enter:');
writeln (' P - Printer');
writeln (' S - Screen');
readin (select);
IF NOT (select IN ('P','S']) THEN

BEGIN
writeln ('Not a proper response.');
GOTO 1;

END;
CASE select OF,p,:

BEGIN
rewrite (outfile,':-2');
writeln (outfile,' Time Omega');
FORi:= 1TO65DO

writeln (outfile,omega[i,1]:12,' ',

omega[i,2]: 12);
close (outfile);

END; { case of P }
'5':

BEGIN
writeln ('The data will be written one screen');
writeln ('at a time. When you are finished ');
writeln('with a screen hit any key to view the');
writeln ('next screen of data points.');
writeln;
writeln ('Hit any key to start the output.');
inchar : = Inkey;
start:= 1;
stop:= 16;

2: cls;
writeln (' Time Omega');
FOR i: start TO stop DO

writeln (omegali, 11: 12,' ',omega[i,2]: 12);
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mchar = Inkey;
start:= stop + 1;
stop := stop + 16;
IF stop < = 64 THEN GOTO 2;

END { case of S I
END; { case I

END; { Outputdata }

BEGIN { Jpendata }
cIs;
Setup;
writeln ('This routine collects the data from the');
writeln ('pendulum, converts and outputs it for');
writeln ('manual input into the Zenith program.');
writeln;
writeln ('Hit any key to proceed.');
inchar : = Inkey;

1: Takedata (buffer);
Convertdata (buffer, omega);
Outputdata (omega);
writeln ('Do you wish to take another set of data?');
writeln ('(Y/N)');
inchar := Inkey;
IF inchar = 'Y' THEN GOTO 1;

END. { Jpendata }

VV
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This is the physical pendulum data collection and
simulation routine for the laboratory. The Takedata
procedure requires input by hand as it is very dependent
on the physical set up and hardware used in the lab.
This program is designed to simulate the motion of a
physical pendulum treating it as a simple pendulum or
physical pendulum under no constraints, air resistance,
friction or a combination. Comparison of the motion
using the small angle approximation is also possible.
An additional feature allows the calculation of the
moment of inertia, friction coefficient or air
resistance coefficient for an arbitrary physical
pendulum by fitting a simulated curve for the system to
the actual data using an iterative process. The code
that follows was developed on an AT PC6300 using Turbo
Pascal. The laboratory system uses a TRS-80 Color
Computer and DEFT Pascal Workbench to take data and a
Zenith PC and Turbo Pacal to run this software.
This code was written by Mark R. Stevens. )

PROGRAM PhysPendulum (input, output, simdata, pendata);

LABEL 1, 2, 3;

TYPE
vector = ARRAY [1..21 OF real;
pastpoints = ARRAY [1..4] OF vector;
datafile = FILE OF vector;

VAR
response, simselect : char;
datataken, sim icomplete, sim2complete boolean;
simdatal, simdata2, pendata : datafile;

FUNCTION Yes: boolean;

This function is used whenever a response is requested of
a yes or no nature. It is used extensively throughout
the program and procedures. ,

VAR
ch : char;

BEGIN
readn (ch);
IF ch IN ['y','Y'] THEN Yes = true ELSE Yes = false

END;
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PROCEDURE Takedata (VAR datataken boolean);

{ This procedure may be modified for direct input.
Currently it is set up to accept inputed datafrom the
keyboard. 64 data points, specifically. }

LABEL 1;

VAR
omega : vector;
select : char;
i : integer;

BEGIN
writeln ('Do you wish to use the data currently on
writeln ('the disk? (Y/N)');
IF Yes THEN GOTO 1;
rewrite (pendata);
omega[l] - ord('V');{ Label data as a velocity plot. }
omega[2] 0.0;
write (pendata, omega);
writen ('Currently the pendulum data must be input ');
writeln ('by hand. First input the configuration of');
writeln('the pendulum. Are you expecting to neglect');
writeln('friction, consider air resistance, etc.');
writeln('Enter:');
writeln (' N - No constraints');
writeln (' A - Air resistance only');
writeln (' F - Friction effects only');
writeln (' B - Both friction and air resistance');
readin (select);
omega[l] := ord(select);
writen ('Enter the pendulum constant (m*g*d/I), if");
writeln ('known, otherwise enter zero.');
readln (omega[21);
write (pendata, omega);
writeln ('If air resistance is considered, enter the');
writeln ('length to the center of the plates.');
readln (omega[I]);
writeln ('Enter the initial angle.');
readln (omega[2]);
write (pendata,omega);
omega(l] : 0.0; { These two data spots are reserved }
3mega[2] - 0.0; { for airconst and frictconst which
write (pendata,omega); { are unknowns for the data
writeln ('Enter the data points one point at a time,');
writeln ('with time first followed by the value for');
writeln ('omega separated by a space. Continue ');
writeln Centering data until all 64 points are ');
writeln ('entered. You should also change the sign');
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writeln ('of omega when it should be negative as the');
writeln ('Radio Shack computer ouputs the absolute ');
writeln ('values. If the initial angle is positive');
writeln ('the first values of omega should be');
writeln ('negative until they cross the axis.');
FORi:= 1TO64DO

BEGIN
readin (omega[I], omega[2]);
write (pendata, omega);

END;
1 : datataken = true;

close (pendata)
END;

PROCEDURE Shiftdata (VAR pendata: datafile);

VAR
temp : vector;
tshift: real;

BEGIN
reset (pendata);
clrscr;
writeln('Shifting the data is possible in both');
writeln('directions. A shift of more than a few');
writeln('tenths of a second is not recommended. It');
writeln('would be better to take new data. Note:');
writeln('one pixel on the screen is .01 seconds.');
writeln;
writeln('Enter the shift for the data(include sign).');
readln (tshift);
seek (pendata, 5);
WHILE NOT eof(pendata) DO

BEGIN
read (pendata, temp);
tempi1] : = temp[1] + tshift;
seek (pendata, FilePos(pendata) - 1);
write (pendata, temp);

END;
close (pendata);

END; { shiftdata }

PROCEDURE Axis;

BEGIN
draw (10, 10, 10, 189, 5);
draw (10, 110, 620, 110, 5);

END;
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PROCEDURE DataPlot (VAR plotdata : datafile);

{ This procedure takes whatever datafile it is given and
plots the data with crosses and with labels which are
included in the first three vector values.}

LABEL 1;

VAR
xl, yl, x2, y2, config : integer;
buff, temp, temp2 : vector;
curve: char;

BEGIN
clrscr;
graphmode;
hires;
Axis;
reset (plotdata);
read (plotdata, temp);
config : = round(temp[1]);
curve = chr(config);
read (plotdata, temp, bufftemp2);
config := round(temp[1]); f Get labeling data }
writeln('Data Config = ',chr(config),' mn*g*d/I

temp[2]:5:3,'Airlength = ',buff[l]:5:3,
' Theta(0) = ',buff[21:5:3);

WHILE NOT eof(plotdata) DO
BEGIN

read (plotdata, buff);
x2 : round(buff[l] * 100) + 10;
y2 •110 - round(buffT2] * 10);
draw (x2, y2-2, x2, y2+2, 5);
draw (x2-4, y2, x2+ 4, y2, 5);

END; { while }
close (plotdata);

1 : writeln ('Are you done with the plot? (Y/N)');
IF Yes

THEN textmode
ELSE GOTO 1

END;

{* * * * *** * * **** * ** ** * ** ** ** ** ** ** * * * ** * * * ** * * * * *** ** * * * * *

PROCEDURE Plot (VAR plotdata : datafile);

{ This procedure takes the dataftle it is given and plots
it with labels which are included in the first four
vector values. }



88

LABEL 1;

VAR
xl, yl, x2, y2, config, scale integer;
buff, temp, temp2 : vector;
curve :char;

BEGIN
clrscr;
graphmode;
hires;
Axis;
reset (plotdata);
read (plotdata, temp);
config = round(temp[1]);
curve = chr(config);
IF curve IN ['v','V'] THEN

BEGIN
scale:= 10;
writeln ('Velocity plot');

END
ELSE

BEGIN
scale 40;
writeln ('Displacement');

END;
read (plotdata, temp, bufftemp2);
config := round(temp[1]); { Get labeling data }
writeln('Config = ',chr(config),' m*g*d/I = ',

temp[2]:5:3,' Airlength = ',buffTl]:5:3,
' Theta(0) = ',buff[2]:5:3);

writeln(' Frict Coef = ',temp2[1]:5:3,
' Air Coef = ',temp212]:5:3);

read (plotdata, buff);
x2 : round(buff[l] * 100) + 10;
y2 :110 - round(buff[2] * scale);
WHILE NOT eof(plotdata) DO

BEGIN
xl x2;
yl y2;
read (plotdata, buff);
x2 : round(buff[l] * 100) + 10;
y2 110 - round(buff2] * scale);
draw (xl, yl, x2, y2, 5);

END; { while }
close (plotdata);

1 : writeln ('Are you done with the plot? (Y/N)');
IF Yes

THEN textmode
ELSE GOTO 1

END;



89

PROCEDURE Smallangle (VAR simdata : datafile);

{ This procedure utilizes the small angle approximation to
calculate the motion of a physical pendulum under no
constraints. It allows comparison simulations to be
calculated to the more exact numerical solution. Such
comparisons identify when the small angle approximation
is a reasonable assumption and when it is not. }

CONST
g = 9.81;
deltat = 0.01;

VAR
time, imoment, mass, itheta, theta, cmdistance,
pconst : real;
buffer, temp : vector;
i : integer;
curve : char;

BEGIN
writeln;

writeln('Enter the pendulum mass in kilograms.');
readIn (mass);
writeln ('Enter the distance from the pivot to the');
writein ('center of mass.');
readln (cmdistance);
writeln('Enter the moment of inertia for the system.');
readin (imoment);
writeln ('Enter the initial angle in radians.');
readin (itheta);
pconst mass * g * cmdistance / imoment;
rewrite (simdata);
writeln('Do you wish to plot displacement or
writeln ('velocity? Enter:');
writeln (' D - Displacement');
writein (' V - Velocity');
readin (curve);
buffer[l] : = ord(curve);
buffer[2] 0.0;
write (simdata, buffer);
buffer[1] = ord('N'); { Label data }
buffer[2J : = pconst;
temp[l] : 0.0;
temp[2] := itheta;
write (simdata, buffer, temp);
temp21 := 0.0;
write (simdata,ternp);{ zero values for frictconst and
time 0.0; { airconst }

N.'
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bufferil] time;
buffert2] itheta;
write (simdata, buffer);
FOR i:= 1TO640 DO

BEGIN
time := time + delta__t;
buffer(l] :=time;
IF curve IN ['d','D'] THEN

buffer[2] itheta * cos(sqrt(pconst) *time)

ELSE
buffer[2] =-itheta *sin(sqrt(pconst) *time)

*sqrt(pconst);

write (simdata, buffer);
END; { for i

close (simdata);
END; I Smallangle}

PROCEDURE Noprime(pendconst: real; VAR upass,uprime:vector);

{This is the "slope" vector function derived when the
differential equation for the unconstrained physical
pendulum is decoupled.I

BEGIN
uprimell] upass[2];
uprime[2] pendconst * sin(upass[ 1])

END;

PROCEDURE Airprime, (pendconst, fairlength, airconst real;
VAR upass, uprime : vector);

{This is the "slope" vector function derived when the
differential equation for the physical pendulum including
air resistance is decoupled.

BEGIN
uprime[l] := upass[2];
IF upass[2] < 0

THEN
uprine2] .= *pendconst, * sin(upass[1]) +

airconst * sqr(fairlength * upass[2])
ELSE

uprimet2] := -pendconst * sin(upass[l])
- airconst * sqr(fairlength * upassl2])

END;

{%d * A I I *A *~~~k * ********* ********* ********
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PROCEDURE Frprime (pendconst, frictconst : real; VAR upass,
uprime :vector);

{This is the "slope" vector function derived when the
differential equation for the physical pendulum including
friction is decoupled.}

BEGIN
uprirne[1] :=upass[2];
IF upasst2l < 0

THEN
uprimel2l:= -pendconst * sin(upassl 1]) + frictconst

ELSE
uprime[2]: = -pendconst * sin(upass[ 1]) - frictconst

END;

PROCEDURE Bothprime (pendconst, fairlength, frictconst,
airconst: real;VAR upass,uprime: vector);

{This is the "slope" vector function derived when the
differentail equation for the physical pendulum including
friction and air resistance is decoupled}

BEGIN
uprime[1] := upass[2];
IF upass[2] < 0

THEN
uprine[2l := -pendconst * sin(upass[1II) + airconst

* sqr(fairlength * upassl2]) + frictconst
ELSE

uprime[2] -pendconst * sin(upass[ 1]) - airconst
* sqr(fairlength * upassi2)) - frictconst

END;

PROCEDURE Runge4 (pendconst,airlength,frictconst,airconst,
delta__t: real;select: char;VAR ypast:
pastpoints; i : integer);

{This is the fourth order Runge-Kutta method used to start
the fourth order predictor-corrector method used. It
returns up to three back values for the function and its
first derivative given the values from the point before
in the array ypast.}

VAR
ytemp, k1, k2, k3, k4 :vector;
j integer;

LlII 11 11 'Iw tj.
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BEGIN
CASE select OF

BEGIN
Noprinie (pendconst, ypast(i], k 1);
FORj:= 1TO 2DO

ytempU] := ypast~ij) + delta_t * k1U]/2;
Noprime (pendconst, ytemp, k2);
FORj: 1 TO 2 DO

ytempU] : =ypastliij] + delta__t * k2U]/2;
Noprime (pendconst, ytemp, k3);
FORj: 1 TO 2 DO

ytempU] := ypasttij] + delta__t * k3U];
Noprime (pendconst, ytemp, k4)3;
FORj:= 1 TO 2DO

ypastli+l1j] ypast~ij] + delta t *(k1U] +
2*k2U] + 2*k3U]+k4U])/6;

END; { case of P, NI

BEGIN
Airprixne (pendconst,airlength~airconst,ypasti],

k 1);
FORj:= ITO2 DO

ytempUj] := ypasttij] + delta__r-t * k 1U]/2;
Airprixne (pendconst,airlength,airconst,ytemp,k2);
FORJ: 1ITO 2 DO

ytempU] := ypasttijl + delta__--t * k2U]/2;
Airprime (pendconst,airlength,airconst,ytemp,k3);
FORj:= 1 TO 2DO

ytemp] := ypastij]l + delta__r-t * k3U];
Airprime (perdconst,airlength,airconst,ytemp,k4);
FORj:= 1TO 2DO

ypast[i+ Ijl ypast(ij] + delta t *(klU) +
2*k2U] + 2*k3(j] Tk4[jI)/6;

END; { case of A}
'f','F' :

BEGIN
Frprirne (pendconst, frictconst, ypast[i], k 1);
FORj:= 1 T02 DO

ytemplj] :=ypast(ijI + delta__t * klo]/2;
Frprime (pendconst, frictconst, ytemp, k2);
FORj:= 1 TO 2DO

ytempUj] := ypast(ijl + delta t * k2011/2;
Frprimne (pendconst, frictconst, ytemp, U3);
FORj: 1 TO 2 DO

ytempU] : = ypast~ij] + delta__t * k3fjl;
Frprime (pendconst, frictconst, ytenip, k4);
FORj:= 1 TO 2DO

ypast~i-t Lj] ypast~ij] + delta t *(klfj] +
2*k2U] + 2*k3U] +k411])/6;

END; I case of F I
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BEGIN
Bothprime (pendconst, airlength, frictconst,

airconst, ypastli], ki);
FORj:= 1TO 2DO

ytemplj] :=ypastij] + delta__t * klU]12;
Bothprime (pendconst, airlength, frictconst,

airconst, ytemp, k2);
FORj: 1 TO 2 DO

ytempUj] :=ypast~ij] + delta__t * k2U]12;
Bothprime (pendconst, airlength, frictconst,

airconst. vtemp, k3);
FORj: 1iTO 2 DO

ytempU] := ypast[ij] + delta t * k3U];
Bothprime (pendconst, airlength, frictconst,

airconst, ytemp, k4);
FORj: 1 TO 2DO

ypast~i + 1j] :ypast[ij] + delta t * (k 1U] +
2*k2U] + 2*k3U] 7k4U])/6;

END; { case of B
END; f case)I

END; { Runge4}

PROCEDURE PredictCorrect (pendconst, airlength, frictconst,
airconst, delta__t: real; select :
char; VAR ypast : pastpoints; VAR
k1, k2, k3 : vector);

VAR
k4, ytemp :vector;
j : integer;

BEGIN
FOR j 1 TO 2DO {predictor}

ytempU]:= ypast[3j] + delta__t *(23*k3U] - 16*k2U]
+ 5*k1UjI/12;

CASE select OF
t p',',n''N :Noprirne (pendconst, ytemp, k4);
a''':Airprirne (pendconst, airlength, airconst,

ytemp, k4);
',F :Frprime (pendconst,frictconst, ytemp, k4);

'b','B' : Bothprime (pendconst,airlength,frictconst,
airconst,ytemp,k4);

END; j case I
FOR j := 1 TO 2 DO {corrector - single iteration}

ypastt4j]:= ypast[3j] + delta__f *(5*k4U3 + 8*k3U]
- k2U])/12;

k1 k2; {Move functions up for next pass
k2 :k3;
k3 :k4;
ypast[3] ypastI4]; f Move to next point}
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END; { PredictCorrect }

PROCEDURE Multistep (pendconst,airlength,theta,frictconst,
airconst,delta t: real; curve,select:
char; VAR simdata : datafile);

This is the numerical calculation for the simulation
using a fourth order predictor-corrector method
constructed from a three stage Adams-Bashforth method and
a two stage Adams-Moulton method. The resulting multistage
method is not self starting and requires three back
points in order to begin predicting and correcting. The
three back points are provided by the initial conditions
and the fourth order Runge-Kutta method employed above.
The error from the Runge-Kutta method is as good as the
predictor-corrector method being used so no problems
should arise as a result of the generation of the first
three points. It is relatively fast (5 seconds for 600
data points) and has fourth order accuracy. }

VAR
k1, k2, k3, k4, ytemp, buffer : vector;
ypast : pastpoints;
time : real;
i, j, subint, int : integer;

BEGIN
rewrite (simdata);
IF delta t < 0.01 THEN

BEGIN
subint := ROUND(0.01/deltat);
int := 640;

END
ELSE

BEGIN
subint: 1;
int : = ROUND(6.4/deltat);

END;
buffer[l) := ord(curve);
buffer[2] : 0.0;
write (simdata, buffer);
buffer[l] := ord(select); { label data }
buffer[21 : = pendconst;
ytemp[l] : = airlength;
ytemp[2] : = theta;
write (simdata, buffer, ytemp);
ytemp[1]: = frictconst;
ytemp(2] : = airconst;
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write (simdata, ytemp);
time =0. 0;
ypast[1,1] theta;
ypast[1,21 0.0;
bufferl] - time;
WF curve IN ['d','D']

THEN buffer(21 ypastlil,11
ELSE buffer(2] 0.0;

write (simdata, buffer);
{writein (LST,buffer[1],' ',buffer[2D;}
FOR i := 1 TO 2 DO{ Calculate first three back points.)

BEGIN
time :=time + delta__t;
Runge4 (pendconst, airlength, frictconst, airconst,

delta__t, select, ypast, i);
IF delta t > 0. 01 THEN

BEGIN-
bufferri] time;
IF cii ye IN ['d','D']

THEN bufferl2] ypast[i + 1, 1]
ELSE buffer[2] ypast[i + 1,2j;

write (simdata, buffer);
f writeln (LST,buffer(1],' ',buffer21D;l
END; f if}

END; { for i}
CASE select OF

BEGIN
Noprime(pendconst,ypast[ 1],k 1);{ The initial}
Noprixme(pendconst,ypast[2,k2);{ functional
Noprime(pendconst,ypast[31,k3);{ values for use I

END; f case of P 1{in PredictCorrect}

BEGIN
Airprirne (pendconst,airlength,airconst,ypastl 1,

ki);
Airprinie (pendconstairlength,airconst,ypast[2),

k2);
Airprixne (pendconst,airlength,airconst,ypast[31,

U3);
END; { case of A}

BEGIN
Frprime (pendconst, frictconst, ypastt 1), ki);
Frprime (peridconst, frictconst, ypast[2], k2);
Frprime (pendconst, frictconst, ypast[3], U3);

END; ( case of F}

BEGIN
Bothprime (pendconst, airlength, frictconst,

airconst, ypast[1], ki);
Bothprime (pendconst, airlength, frictconst,

111 12.141
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airconst, ypastL21, k2);
Bothprime (pendconst, airlength, frictconst,

airconst, ypast[31, k3);
END; I case of B}

END; { case I
FOR i:= 1TO intDO

BEGIN
FORji: =1TO subint DO

BEGIN
time := time + delta t;
PredictCorrect (pendconst,airlength,frictconst,

airconst,delta__ t,select, ypast,
k1, k2, k3);

END; { for j I
bufferl] : = time;
IF curve IN ['d','D']

THEN buffer[2] ypastt4, 1]
ELSE buffer[2] :=ypast4,21;

write (sinidata, buffer);
{writein (LST,buffer[1],' ',buffer[2]);}

END; { for i I
close (simdata);

END; { Multistep}I

PROCEDURE Simulate (VAR simicomplete : boolean; VAR simdata:
datafile);

{This procedure runs the simulation when the user requests
the simulation option from the main menu.}

LABEL 2;

CONST
g = 9.8 1;

VAR
curve, select : char;
imoment, mass, airlength, theta, cmdistance,
delta__t: real;
pconst, frictconst, airconst : real;

BEGIN
writeln ('The simulation will proceed based on the');
writeln ('physcical configuration you are using.');

2 : writeln;
writeln ('Enter the system configuration:');
writein (C P -Simple Pendulum');
writeln (' N - No constraints (friction or air)');
writeln (C A - Air resistance only');
writein (C F -Friction only');
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writeln (' B - Both air resistance and friction');
readln (select);
CASE select OF

'p' ,'p' :

BEGIN
writeln('Enter the length of the pendulum in');
writeln('meters.');
readln (cmdistance);
writeln ('Enter the initial angle in radians.');
readln (theta);
writeln ('Enter the step size, delta t, to be ');
writeln ('used in the simulation.(Multiples of');
writeln ('.01 or divisors of .01 down to .001');
writeln ('only for graphing purposes.)');
readln (delta t);
writeln ('Do you wish to plot the displacement');
writeln ('or velocity. Enter:');
writeln (' D - Displacement');
writeln (' V - Velocity');
readln (curve);
pconst := g/cmdistance;
Multistep (pconst, 0, theta, 0, 0, deltat,curve,

select, simdata);
END; { case of P }

BEGIN
airlength := 0.0;
airconst := 0.0;
frictconst := 0.0;
writeln('Enter the pendulum mass (in kg).');
readin (mass);
writeln ('Enter the distance from the pivot to');
writeln ('the center of mass.');
readin (cmdistance);
writeln (Enter the moment of inertia for the');
writeln ('pendulum.');
readln (imoment);
IF select IN ['a','A'] THEN

BEGIN
writeln ('Enter the distance to the center');
writeln ('of the square plates.');
readln (airlength);
writeln ('Enter the coefficient of air');
writeln ('resistance.');
readln (airconst);

END;
IF select IN ['f,'F'] THEN

BEGIN
writeln ('Enter the friction coefficient.');
readln (frictconst);

END;
IF select IN ['b','bj '-LEN
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BEGIN
writeln ('Enter the distance to the center');
writeln ('of the square plates.');
readIn (airlength);
writeln ('Enter the coefficient of air');
writeln ('resistance.');
readln (airconst);
writeln ('Enter the friction coefficient.');
readIn (frictconst)

END;
writeln ('Enter the initial angle in radians.');
readln (theta);
pconst := mass * g * cmdistance / imoment;
writeln ('Enter the step size, delta t, to be');
writeln ('used in the simulation.Multiples of');
writeln ('.01 or divisors of .01 down to .001');
writeln ('for graphing purposes.)');
readIn (delta t);
writeln ('Do you wish to plot the displacement');
writeln ('or velocity. Enter:');
writeln (' D - Displacement');
writeln (' V - Velocity');
readIn (curve);
Multistep (pconst,airlength,theta,frictconst,

airconst,delta _t,curve,select,simdata)
END { case of NOT P }

ELSE
PrGIN

writeln ('Not a valid selection.');
GOTO 2

END; { else }
END; { case I
simcomplete : = true;

END; { Simulate I

PROCEDURE Compare (VAR pendata : datafile);

{ This procedure compares the measured data from the lab
with the motion calculated by the numerical method. It
calculates the moment of inertia, coefficient of air
resistance or the coefficient of friction for the
pendulum by fitting the simulated curve to the curve of
the actual motion. This routine is the slowest because
the simulation must be recalculated iteratively as the
value of imoment, aircon or frictconst is a variable and
must be incremented until a proper fit is obtained. }

LABEL 3, 4, 5, 6;

CONST
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g = 9.81;
xtolerance = 0.004;
deltat = 0.01;

VAR
cselect, calcvar : char;
intolerance : boolean;
mass, imoment, airlength, theta, cmdistance, pendconst,
frictconst, airconst, ytolerance, ilimit,flimit,alimit,
iincrement,fincrement,aincrement,istart,fstart, astart,
time : real;
buffer, k1, k2, k3 : vector;
ypast : pastpoints;
i : integer;

BEGIN
3 : writeln ('In what physical configuration was the ');

writeln ('data taken?');
writeln (' N - No constraints');
writeln (' A - Air resistance only');
writeln (' F - Friction effects only');
writeln (' B - Both friction and air resistance');
writeln (' Q - Quit and return to the main menu.');
readin (cselect);
IF cselect IN ['n','N','a','A','f','F','b','B']

THEN
BEGIN

reset (pendata);
read (pendata, buffer);{skip velocity plot label}
read (pendata, buffer);
IF round(buffer[l]) ord(cselect) {see if the }

THEN { data was taken in the indicated }
BEGIN { configuration. }

writeln ('The data was not taken in the "',
cselect,'" configuration.');

GOTO 3
END; { then }

END { then }
ELSE IF cselect IN ['q','Q']

THEN GOTO 5
ELSE

BEGIN
writeln ('Response not allowed.');
GOTO 3;

END; { else }
6: writeln ('Which constant do you wish to calculate?');

writeln ('Enter:');
writeln (' I - Moment of inertia');
writeln (' F - Coefficient of friction');
writen (' A - Coefficient of air resistance');
readln (calcvar);
IF NOT (calcvar IN ['i',T,'f','F','a','A']) THEN
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BEGIN
writeln ('Not an allowed response.');
GOTO 6

END; { IF NOT }
writeln('The comparison procedure requires certain');
writeln ('incremental values, starting points and');
writeln ('limits. The first value needed is the ');
writeln ('tolerance for the accuracy of the');
writeln('calculated omega, or y coordinate. Enter');
writeln ('the y tolerance (.2 is a good start).');
readln (ytolerance);
writeln ('The next entries deal with the starting');
writeln('value or lower limit, an increment and an');
writeln ('upper limit to the value of the constant');
writeln ('to be calculated.');
CASE calcvar OF

'a','A' :
BEGIN

writeln ('Enter the starting value for the');
writeln ('coefficient of air resistance.');
readln (astart);
writeln ('Enter the amount to be incremented');
writeln ('each pass. WARNING: The smaller');
writeln ('the increment the longer the');
writeln ('calculation.');
readln (aincrement);
writeln ('Enter the upper limit on the');
writeln ('coefficient of air');
writeln ('resistance.');
readIn (alimit);

END; { case of A }

BEGIN
writeln ('Enter the starting value for the');
writeln ('coefficient of');
writeln ('friction.');
readln (fstart);
writeln ('Enter the amount to be incremented');
writeln ('each pass. WARNING: The smaller');
writeln ('the increment the longer the');
writeln ('calculation.');
readln (fincrement);
writeln ('Enter the upper limit for the');
writeln ('coefficient of friction.');
readln (flimit);

END; { case of F }

BEGIN
writeln ('Enter the starting value for the');
writeln ('moment of inertia.');
readln (istart);
writeln ('Enter the amount to be incremented');
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writeln ('each pass. WARNING: The smaller');
writen ('the increment the longer the');
writeln ('calculation.');
readln (iincrement);
writeln ('Enter the upper limit for the');
writeln ('moment of inertia.');
readln (ilimit);

END; { case of I}
END; { case }

writeln ('Enter the total mass of the pendulum.');
readln (mass);
writeln ('Enter the distance from the pivot to the');
writeln ('center of mass.');
readln (cmdistance);
imoment = istart; airconst := astart;
frictconst : = fstart;
CASE cselect OF

BEGIN
CASE calcvar OF

' a ', ' A 

I

BEGIN
writeln ('Enter the distance to the');
writeln ('center of the plates.');
readln (airlength);
writeln ('Enter the moment of inertia');

writeln ('for the pendulum.');
readln (imoment)

END; { case of A }

BEGIN
writeln('Friction cannot be considered');
writeln ('in this set up.');
GOTO 3

END; { case of F }

BEGIN
writeln ('Enter the distance to the');
writeln ('center of the plates.');
readln (airlength);
writeln ('Enter the coefficient of air');
writeln ('resistance.');
readln (airconst);

END { case of }
END; { case I

END; { case of A }
' 'P,'F' :

BEGIN
CASE calcvar OF'a','A' :

BEGIN
writeln ('Air resistance is not');
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writeln ('considered in this set up.');
GOTO 3

END; { case of A'f',']F' :

BEGIN
writeln ('Enter the moment of inertia');
writeln ('for the pendulum.');
readIn (imoment)

END; { case of F17,9T :

BEGIN
writeln ('Enter the coefficient of');
writeln ('friction.');
readin (frictconst)

END; { case of I }
END; { case }

END; { case of F }
'n,'N' :

BEGIN
IF calcvar IN ['a','A','f','F'] THEN

BEGIN
writeln ('Neither air resistance or');
writeln ('friction are considered in ');

writeln ('this configuration.');
GOTO 3

END; { then }
END; { case of N }

tb','B' :

BEGIN
writeln ('Enter the distance to the center ');
writeln ('of the plates.');
readln (airlength);
CASE calcvar OF

'a','A' :
BEGIN

writeln ('Enter the coefficient of');
writeln ('friction.');
readln (frictconst);
writeln ('Enter the moment of inertia');
writeln ('for the pendulum.');
readln (imoment)

END; { case of A}
'fr,'F' :

BEGIN
writeln ('Enter the coefficient of air');
writeln ('resistance.');
readin (airconst);
writeln ('Enter the moment of inertia');
writeln ('for the pendulum.');
readln (imoment)

END; { case of F }
'i','I'
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BEGIN
writeln ('Enter the coefficient of');
writeln ('friction.');
readin (frictconst);
writeln ('Enter the coefficient of air');
writeln ('resistance.');
readIn (airconst)

END; { case of I }
END; { case }

END; { case of B }
END; { case }
writeln ('Enter the initial angle in radians.');
readin (theta);
pendconst := mass * g * cmdistance / imoment;

4: CASE calcvar OF'a','A' :

BEGIN
airconst := airconst + aincrement;
IF airconst > alimit THEN

BEGIN
writeln ('The coefficient of air');
writeln ('resistance exceeds the limit.');
writeln ('Either the tolerance is too');
writeln ('strict or the value is not ');
writeln ('between the start value and ');
writeln ('the upper limit.');
GOTO 5

END;
END; { case of A }

'f1,0F' :

BEGIN
frictconst := frictconst + fimcrement;
F frictconst > flimit THEN
BEGIN

writeln ('The coefficient of friction');
writeln ('exceeds the limit. Either the');
writeln ('tolerance is too strict or the');
writeln ('actual value is not between ');
writeln ('the start value and the limit.');
GOTO 5

END;
END; { case of F }

'ip',T :

BEGIN
imoment := imoment + iincrement;
pendconst : = mass * g * cmdistance / imoment;
IF imoment > ilimit THEN

BEGIN
writeln ('The moment of inertia exceeds');
writeln('the limit. Either the tolerance');
writeln ('is too strict or the actual');
writeln ('value is not between the start');
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writein ('value and the upper limit.');
GOTO 5

END;
END; { case of I}

END; { case )
seek (pendata, 6); { Skip labels and the first few}
ypast[1,11 theta; { points calculated by the )
ypastll1, 2] 0. 0; { Runge-Kutta method which are}
time := 0. 0; { difficult to incorporate into}
FOR i :=1 TO 2 DO f the comparison.}

BEGIN
time :=time + delta t;
Runge4 (pendconst,airl-ength,frictconst,airconst,

delta__t,cselect,ypast,i);
END; { for i

CASE cselect OF
,p "'P,'n, 'N'

BEGIN
Noprime (pendconst, ypast[1], k 1);
Noprixne (pendconst, ypast[2], k2);
Noprime (pendconst, ypast[3], U3);

END; { case of P
'a','A :

BEGIN
Airprime (pendconst,airlength,airconst,

ypast[l, ki);
Airprime (pendconst,airlength,airconst,

ypast[2], k2);
Airprirne (pendconst,airlength,airconst,

ypast[31, k3);
END; { case of A}

BEGIN
Frprirne (pendconst, frictconst, ypast(l], ki);
Frprirne (pendconst, frictconst, ypast2j, k2);
Frprime (pendcorist, frictconst, ypast[31, k3);

END; ( case of F

BEGIN
Bothprinie (pendconst, airlength, frictconst,

airconst, ypast[1],k 1);
Bothprime (pendconst, airlength, frictconst,

airconst, ypast[2],k2);
Bothprixne (pendconst, airlength, frictconst,

airconst, ypast[3],k3);
END; f case of B

END; f case )
WHILE NOT eof(pendata) DO

BEGIN
read (pendata, buffer);
intolerance := false;
WHILE NOT intolerance DO
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BEGIN
time :=time + delta__t;
PredictCorrect(pendconst,airlength,

frictconst,airconst,delta__t,
cselect,ypast,kl, k2, k3);

IEF abs(buffer[ 1] - time) < xtolerance
THEN intolerance := true;

END; I while not I
IF abs(bufferl2l - ypastl4,2]) > = ytolerance

THEN GOTO 4
END; { while not

close (pendata);
CASE calcvar OF

BEGIN
writein ('The coefficient of air resistance');
writein ('for this system is:');
writein (airconst:6:4)

END;

BEGIN
writeln ('The coefficient of friction for');
writeii ('this system is:');
writehi (frictconst:6: 4)

END;

BEGIN
writeln ('The moment of inertia for this');
writein ('system is:');
writeln (imoment: 6:4,' kg-m**21

END;
END; I case

5: writeln;
END; I Compare}

PROCEDURE Compplot (VAR file1, file2 : datafile);

{This routine plots two data tifles for comparison. It
uses the organic Turbo Pascal routines discussed in the
comments for the Plot Procedure.}

LABEL 1;

VAR
x1, x2, yl, y2, config, scale :integer;
buff, temp, temp2 : vector;
curve : char;

BEGIN
clrscr;
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graphmode,
hires;
Axis;
reset (file 1);
read (file 1,temp);
curve := chr(round(templilj);
IEF curve IN t'd','D]

THEN scale:= 40
ELSE scale:= 10;

read (ifiel, temp, buff, temp2); {read labels}
config := round(temp[ 1));
writein (curve,' PLOT 1: Config =',chr(config),

' *g*rdfI = ',temp[2]:5:3,' Airlength-
buff1il:5:3,' Theta(0) = ', buff[l2l:5:3);

writeln C' Frict Coef = ',temp2tl]:5:3,
'Air Coef = ',temp2[2]:5:3);

read (filel,buft);
x2 round(bufT[1 * 100) + 10;

Y2 110 - round(buff[1 * scale);
WHILE NOT eof(filel) DO

BEGIN
x1 x2;
yl y2
read (file 1, buff);
x2 :round(buffl * 100) + 10;

Y2 110 - round(buffl21 * scale);
draw (xl, yl, x2, y2, 5);

END; I while not }
close (file 1);
reset (file2);
read (file2, temp);
curve := chr(round(tempt 1]));
IF curve IN ['d','D']

THEN scale: 40
ELSE scale :=10;

read (file2, temp, buff, temp2);
config:= round(ternp[IlD;
writein (curve,' PLOT 2: Conffig =',chr(config),

I M*g*dII = ',temp[2]:5:3,' Airlength=
bufl1l:5:3,' Theta(0) = ', bufiT21:5:3);

writeln (C Frict Coef = ',temp2[l]:5:3,
Air Coef = ',temp2[21:5:3);

read (file2,buff);
x2 :round(buffT1] * 100) + 10;

Y2 110 - round(bul2J * scale);
WHILE NOT eof(file2) DO

BEGIN
xl :x2;
yl y2
read (file2, buff);
x2 round(bufll * 100) + 10;

Y2 110 - round(buff21 * scale);
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draw (xl, yl, x2, y2, 5);
END; { while not I

close (file2);
1 : writeln ('Are you done with the plot? (Y/N)');

IF Yes
THEN textmode
ELSE GOTO 1

END; { Compplot )

PROCEDURE Compdata (VAR filel, f'le2 : datafile);

{ This routine plots the data and simulation files for
comparison. File1 is the data file. It uses the
organic Turbo Pascal routines discussed in the comments
for the Plot Procedure.

LABEL 1;

VAR
xl, x2, yl, y2, config, scale: integer;
buff, temp, temp2 : vector;
curve: char;

BEGIN
clrscr;
graphmode;
hires;
Axis;
reset (file 1);
read (file 1,temp);
curve : = chr(round(temp[1]));
read (flel, temp, buff, temp2);
config : = round(tempi1]); { Get labeling data
writeln('Data Config = ',chr(config),' m*g*d/I =

temp[2]:5:3,'Airlength = ',buffhi]:5:3,
'Theta(0) = ',buff[2l:5:3);

WHILE NOT eof(flel) DO
BEGIN

read (filel, buff);
x2 : round(buffTl] * 100) + 10;
y2 :110 - round(buffT2] * 10);
draw (x2, y2-2, x2, y2+2, 5);
draw (x2-4, y2, x2+4, y2, 5);

END; { while }
close (filel);
reset (file2);
read (file2, temp);
curve := chr(round(temp[1]));
IF curve IN ['d','D']

THEN scale := 40
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ELSE scale : 10;
read (file2, temp, buff, temp2);
config := round(temp[1]);
writeln (curve,' Plot Config = ',chr(config),

' m*g*d/I = ',temp[2]:5:3,' Airlength =
buffT[I:5:3,' Theta(0) = ', buff[2]:5:3);

writeln (' Frict Coef = ',temp2[1]:5:3,
' Air Coef = ',temp2[2]:5:3);

read (fle2,buff);
x2 round(buff[l] * 100) + 10;
y2 110 - round(buff[2] * scale);
WHILE NOT eof(file2) DO

BEGIN
xl x2;
yl y2;
read (fide2, buff);
x2 round(buff[I] * 100) + 10;
y2 110 - round(buff[2] * scale);
draw (xl, yl, x2, y2, 5);

END; { while not }
close (file2);

1 writeln ('Are you done with the plot? (Y/N)');
IF Yes

THEN textmode
ELSE GOTO 1

END; { Compdata I

BEGIN { Physpendulum }
assign (simdatal, 'A:SIMDATA1.DAT');{ This is Turbo }
assign (simdata2, 'A:SIMDATA2.DAT');{ Pascal's method }
assign (pendata, 'A:PENDATA.DAT'); {of assigning file }
datataken := false; { variables to disk fdes, not by }
sim lcomplete = false; { rewrites. }
sim2complete : false;
writeln ('Welcome to the Physical Pendulum data ');
writeln ('collection and simulation program.');

1 writeln;
writeln ('Enter T to Takedata, S to Simulate, C to');
writeln ('Compare the data with the numerical');
writeln ('solution and calculate the moment of ');
writeln ('inertia, A to calculate data using the');
writeln ('Small Angle approximation, or Q to Quit.');
readin (response);
CASE response OF

'q','Q' HALT;
'a','A' :

BEGIN
writeln('The small angle approximation routine');
writeln('has been calculated assuming a system');
writeln('of no constraints (no air resistance ');
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writeln ('or friction). If comparisons');
writeln('evaluating the appropriate use of the');
writeln ('small angle approximation are going ');
writeln ('to be made, insure that the');
writeln ('simulations are done using the No');
writeln ('constraints (N) option. The small');
writeln ('angle routine stores its data in the');
writeln ('first simulation file so comparison ');
writeln ('simulations are second simulations.');
Smallangle (simdatal);
simlcomplete := true;
writeln ('Do you wish to plot the results')"
writeln ('obtained using the small angle');
writeln ('approximation? (Y/N)');
IF Yes

THEN Plot (simdatal);
END; { case of A }

lt',sT9 :

BEGIN
IF datataken

THEN
BEGIN

writeln('Any new data taken will destroy');
writeln ('the current data. Do you wish');
writeln ('to take new data? (Y/N)');
F Yes
THEN Takedata (datataken)
ELSE GOTO 1

END { then }
ELSE Takedata (datataken);

writeln ('Do you wish to plot the data? (Y/N)');
IF Yes

THEN DataPlot (pendata);
writeln ('Do you wish to shift the data? (Y/N)');
IF Yes THEN

BEGIN
3 : Shiftdata (pendata);

writeln ('Do you wish to plot the shifted');
writeln ('data? (Y/N)');
IF Yes

THEN DataPlot (pendata);
writeln ('Do you wish to shift the data');
writeln ('again? (Y/N)');
IF Yes

THEN GOTO 3;
END;

END; { case of T }
'' 'S' :

BEGIN
IF sim 1complete

THEN
BEGIN

V!,-
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writeln ('A simulation has been ');
2 writeln ('completed. Do you wish to');

writeln ('resimulate, calculate a second');
writeln ('simulation or return to the');
writeln ('main menu? Enter');
writeln (' R - Resimulate ');
writeln (' S - Second simulation ');
writeln (' Q - Quit, return to main menu');
readln (simselect);
CASE simselect OF

'q','Q' GOTO 1;'r','R':

BEGIN
Simulate (sirnlcomplete, simdatal);
writeln ('Do you wish to plot the');
writeln ('simulation? (Y/N)');
IF Yes

THEN Plot (simdatal);
END; { case of R }'s',S' : .

BEGIN
Simulate (sim2complete, simdata2);
writeln ('Do you wish to plot the'); "
writeln ('simulation? (Y/N)');
IF Yes

THEN Plot (simdata2);
END { case of S}

ELSE
BEGIN

writeln ('Not an allowed response.');
GOTO 2

END; { else }
END; { case }

END { then
ELSE

BEGIN
Simulate (sirelcomplete,simdatal);
writeln ('Do you wish to plot the');
writeln ('simulation?(Y/N)');
IF Yes

THEN Plot (simdatal);
END; { else }

END; { case of S }
'c''C' :

BEGIN
F datataken
THEN

BEGIN
Compare (pendata);
GOTO 1

END { then)
ELSE
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BEGIN
writeln ('Data must first be taken in');
writeln ('order to run the comparison');
writeln ('and calculate any of the');
writeln ('constants.');
GOTO 1

END; { else }
END { case of C }

ELSE
BEGIN

writeln ('Not a proper response.');
GOTO 1

END; { else }
END; { case }
IF datataken AND simicomplete

THEN
BEGIN

writeln ('Do you wish to graphically compare');
writeln ('the plot of the data and the first');
writeln ('simulation? (Y/N)');
IF Yes THEN

Compdata (pendata, simdatal);
END; { then }

IF datataken AND sim2complete
THEN

BEGIN
writeln ('Do you wish to graphically compare');
writeln ('the plot of the data and the second');
writeln ('simulation? (Y/N)');
F Yes THEN
Compdata (pendata, simdata2);

END; { then }
IF simicomplete AND sim2complete

THEN
BEGIN

writeln('Do you wish to graphically compare');
writeln('the two simulations? (Y/N)');
IF Yes

THEN Compplot (simdatal, simdata2)
END; { then }

GOTO 1
END. { Physpendulum }
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* SUBROUTINES FOR "DROP"
* MODIFIED FOR USE IN "FRESHPEN"

* 10/19/85

* BRIAN DAVIS
* MODIFIED BY MARK STEVENS
* 8/19/87

* PUBLIC ROUTINES

PUBLIC SETUP
PUBLIC DRAWCURS DRAW CURSOR
PUBLIC COUNT COLLECT DATA
POUBLIC GRAPH GRAPH DATA

*EXTERNAL REFERENCES

PUTC EXT
SETT EXT

* TIME LOCATION: CHANGE TO LOW MEMORY IF ROM'ED

TIME RMB 1

SETUP ORCC #$50
LEAX IRQ,PCR
STX $10D
LDA #$7E
STA $10C
LDA #$BF
STA $FF52 PB6= INPUT
CLR $FF50
RTS

* INTERRUPT HANDLER

IRQ TST $FF02 CLEAR INTERRUPT FLAG
DEC TIME,PCR
RTI

* PASCAL CALL:
* PROCEDURE COUNT (STARTADD:INTEGER)
,

* STARTADD IS STARTING ADDRESS OF BUFFER
* BUFFER: ARRAY OF INTEGER
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* INITIAL STACK:

STARTADD EQU 6 START OF BUFFER ADDRESS
,

* 4-5,S: LINK
* 2-3,S: RETURN ADDRESS
* 0-1,S: SAVED U
,

* SETUP

COUNT PSHS U SAVE LINK
LDU STARTADD,S
LDX #$FF01 TURN OFF PIA INTERRUPTS
BSR CLRINT
INC $FF03 60 HZ IRQ ON
ANDCC #$EF ENABLE INTERRUPTS
LDA #64
PSHS A COUNT ON STACK
LDX #$FF50
SYNC WAIT UNTIL IRQ

TRAN CLRB TRANSITIONS = 0
LDA #$6
STA TIME,PCR COUNT FOR 1/10 SECOND
LDA ,X GET PORT VALUE

TRAN 1 CMPA ,X CHANGE?
BEQ TRAN2
INCB YES, INCREMENT TRANSITION COUNT
LDA ,X NEW PORT VALUE

TRAN2 TST TIME,PCR CHECK TIME
BNE TRAN1
CLR ,U+ CLEAR HIGH BYTE OF INTEGER
STB ,U + STORE POINT
DEC ,S SEE IF DONE
BNE TRAN
ORCC #$50
PULS A,U,PC

* CLRINT CLEARS INTERRUPTS
* X = ADDRESS OF PIA CRA*!
CLRINT LDA ,X
ANDA #$FE
STA ,X
LDA 2,X
ANDA #$FE
STA 2,X
RTS

* PASCAL CALL:

* PROCEDURE GRAPH (STARTADR: INTEGER)
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* STARTADR IS AN ADDRESS: BUFFER[lI]

* PLOTS LOW ORDER BYTES OF ARRAY
* PLOTS 64 POINTS, IE
* BUFFER[l] - BUFFER[641

* STACK:
START EQU 6

* 4-5,S: LINK
* 2-3,S: RETURN ADDRESS
* 0-1,S: SAVED U

* $88 CONTAINS POINTER TO CURRENT
* GRAPHICS CONTROL BLOCK

* FORMAT OF GRAPHICS CONTROL BLOCK;
* (ADDRESS IN Y REG)

* 0-1, Y = SCREEN START ADDRESS
* 2-3, Y = SCREEN END ADDRESS
* 4, Y = GRAPHICS Y COORD.
* 5, Y = GRAPHICS COORD.

GRAPH PSHS U SAVE LINK
LDU START,S U = START ADDRESS
LDY $88 Y = CONTROL BLOCK POINTER
CLR 5,Y X COORD = 0

* LOOP TO PLOT/UNPLOT

LEAU 1,U POINT TO LOW BYTE
GLP LDA ,U+ +
LDB #180 SCALE Y
MUL
SUBA #191
COMA
STA 4,Y STORE Y
LBSR SETT GET THE ADDRESS 'BIT
COMB FLIP BIT MASK
ANDB ,X RESET BIT
STB ,X PUT IT ON SCREEN
LDA 5,Y X = X+4
ADDA #4
STA 5,Y
BNE GLP

GRAPHRET PULS U,PC

* PASCAL CALL DRAWCURS(X,Y:INTEGER)

. _- .
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" DRAWS CURSOR AT COORDINATES
" PERFORMS SCALING

" 7,S:X COORD
" 5,S:Y COORD

DRAWCURS LDY $88
LDA 5,S GET Y
LDB# 180 SCALE IT
MUL
SUBA #186 CURSOR IS 4 BYTES HIGH- 186 ADJUSTS
COMA FOR HEIGHT SO BOTTOM IS ABOVE POINT
LDB 7,S X = X+4
LSLB
LSLB
STD 4,Y PUT INTO GY,GX
PSHS U SAVE LINK
LBSR SETT
LDA #4
LEAU ARROW,PCR
PSHS D

CURSI LDA ,U+
LDB 1,S
MUJJ
ASLB
ROLA
EORA ,X
EORE 1,X
STh ,X
LEAX $20,X
CM:PX 2,Y
Blil CURSEX
DEC ,S
BNE CURSi

CURSEX PULS D,U,PC
ARROW FDB $1OAO
FDB $COEO

EN

..... ....



APPENDIX C: Example Plots

Any plot the Physpend routine displays on the screen of the Zenith Z-140 PC

can be printed using the print screen command and a graphics capable printer. Before

running Physpend the DOS command "graphics" must be executed. The following

example plots include a data plot, a comparison of data to a simulation, a comparison of

two simulations, a plot of the displacement and angular velocity for the same system,

and an example of solution instability with increasing step size.

1
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Data Config b mN*g*d/I : 8,833Airlength : 8,229 Iheta( : 1.571
A e you done with the plot? (Y/N)

• + + +4

S+ 6 + +

+ + + + + +"

+ 4 + +1.

4,4

Figure C. 1. Data Plot



Data Confi g. b MOg*dII : 8,833Airlength :98220 TWOa() : 1,571
y Plot Con fig : h mg*dI : 13,311 Airlength 8,220 Theta(9 1.571

Fric t Coef : 9.890 Air Coef 0.80
Ae you done with the plot? (YIN)

++

Figure C.2. Data vs. Simulation
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b

v PLOT i: Config9o: b I8*/dIi : 21.582 Airlength- 0.288 Theta(): 1.5tt
Frict Coef :8.,88 Air Coef :8.888

v PLOT 2: Config :b g*d/I : 21,582 Airlength : 0,288 Theta(g) : 1,58t
Frict Coef : 8.880 Air Coef : 8.688

Are you done with the plot? (Y/N)

14

I C.3. i 1s ii
/iIIi/~ /,x

Figure C.3. Simulation 1 vs. Simulation 2,

I
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v PLOT 1: Config : a od/l : 19,628 Airlength : 0.309 Theta(): 1,571
Frict Coef : 9,999 Air Coef : 8.888

d PLOT 2: Config : a Mwa/I : 19,629 Airlength : 0,309 Theta() 1.571
Frict Coef : 9.0 Air Coef 8 9.89

Are gou done with the plot? (Y/N)

Figr \ Au // I \ , \\:v ,
/ , / \ / ,,/

/\ ../ \*J "".

Figure C.4. Angular Velocity vs. Displacement
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Uelocitv p lot
Config g: h o d/I 19.629 Airlength 0,8. Theta(@) :2.888

Fric t Coef :8.8 Air Coef :8,899
Ar gou done with the plot? (YN)

Figure C.5. Numerical Method Instability



APPENDIX D: Experiment Instructions

Experimental background and instructions were developed for each of the

experiments. The instructions for all three experiments are included in this appendix.

The level of difficulty and detail of the instructions were matched to the expected

capabilities of the students. The freshmen are expected to complete the experiment and

turn in their laboratory notebooks after two ninety minute periods, while the juniors are

given one week and are required to submit a more formal report.
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NUMERICAL METHODS AND ROTATIONAL MOTION
(VISCOUS DAMPING - TERMINAL VELOCITY)

I. INTRODUCTION

In this experiment we will consider the rotational motion of a disk with
adjustable plates which resist the disk's motion through the air. The disk will be
accelerated by applying a constant torque. The rotational inertia of the rigid body will
be calculated by breaking it into parts and finding the rotational inertia of each by
knowing the mass and shape of each. The total rotational inertia is simply the sum of
the individual parts.

After calculating the moment of inertia the angular velocity plot of the system
will be calculated using the improved Euler's method and a comparison made to the
actual angular velocity curve measured by the microcomputer. By adjusting the fins the
effect of air resistance on the velocity of the wheel will be investigated.

The apparatus consists of a thirty centimeter aluminum disk and a hub of
smaller diameter, both mounted on an axle with ball bearings. We also have a notched
disk which allows us to measure the rotation of the body and two adjustable rectangular
plates provide air resistance.

I1. THEORY REVIEW

The viscous damping force that affects the disk can be approximated as being
proportional to some power of the linear velocity of the plates. The total torque acting
on the disk can be written

d mgrIILT = I - kl(k" )n
dt I+mr2

where k is a constant which describes the damping force, I is the distance from the
rotational axis to the center of the plates, r is the moment arm of the accelerating
weight, and n is an integer. As the disk begins to accelerate under an applied torque the
viscous damping force applies a retarding torque slowing down the angular acceleration.
Finally, the disk reaches a contant "terminal" angular velocity at which point the net
torque acting on the disk is zero.

The exact solution of this motion in practice is quite difficult. The applicaton of
the improved Euler's method to this motion lets us study the behavior of this system in
detail. We can see the effect of varying k and n and compare the calculated solution to
the actual motion as measured by the microcomputer.

I. PROCEDURE AND ANALYSIS

Part A
To find the rotational inertia of the system from the mass and shape of the

indvidual parts use the unassembled parts found next to the balance. DO NOT
DISASSEMBLE THE APPARATUS TO BE USED IN PART C. Measure the mass and
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all relevant dimensions and compute the resulting rotatinal inertia. Estimate the
uncertainty for each of the parts and the overall uncertainty of the calculated value of
the rotational inertia. Show all of the measurements, calculations and uncertainties in
the form of a table.

Part B

Noting in this case that

d = mgr - kl(6)n
dt I + mr

we can apply the improved Euler's method to calculate and plot the angular velocity of
the system. Remember that the improved Euler's method first computes the value of
angular velocity one half of the way into the first interval.

= W0 + a0 , ) 
=

0.5 0 0O2+

Then using this value we calculate

a rngr
o.5  I+mr -k(0. 5) n

Finally we obtain

4), = tOO + ao5 t

00 .0 A

To calculate the value of w for the next point the initial value w 0 is replaced with w 1
and the above steps are repeated. Notice that we are simply using the slope of the
angular velocity curve one half way through the time interval and we add that change
to the preceding value of o at the beginning of the interval. Calculate and plot the first
twenty points for the motion using t = 0.1 seconds and k = 0.4. Measure I and d from
the apparatus and use your calculated value for the rotational inertia from Part A. You
might want to tabulate your values for a and o to aid in calculation and plotting.

Will increasing the length of the time interval increase or decrease the accuracy
of the numerical method in approximating the actual motion? Why?

Part C
We are using the microcomputer to measure the angular velocity of the rotating

disk. It will also use an equivalent numerical method to calculate the angular velocity
curve for comparison to the data. The microcomputer will count slots in the notched
wheel every 0.1 seconds. It plots the resulting angular velocity curve, the slope of which
is the angular acceleration, a.

Turn on the microcomputer and initiate the Airwheel program. Follow the
instructions given and enter the appropriate data when prompted. %

First, orient the plates so that they cause a minimum amount of air resistance.
Wind up the string with the 500 gram mass. Release the wheel and simultaneously
press any key on the microcomputer to take the data. Input your values from Part A
and Part B in the simulation, choosing the no air resistance option, and compare the
calculated curve with the actual motion. Are the curves the same? If not, why?
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Adjust the input value for I until you match the actual angular velocity curve.
Record this value.

Part D
Take data again but adjust the plates for maximum air resistance. Run the

simulation now using I from part C. Again try to match the calculated curve with the
actual angular velocity curve by varying values of k and n. Which model for the viscous
force is closest to the actual motion? What is the value for k?

Adjust the plates to some intermediate position and measure the angular
velocity. Again match the curve with the computer calculated angular velocity. Is the
same model for the viscous force still the most accurate? What happens to the value of
k? What happens to the value for the terminal angular velocity?

If you changed the mass accelerating the wheel would it affect the terminal
velocity? How?

Part E
Test the accuracy of the numerical method when you vary the time interval.

What happens to the value for the terminal velocity for large time intervals? How large
can At be before the difference between the curves becomes significant? For a more
dramatic demonstration of the sensitivity of this type of numerical method to the step
size load the Freshpen program for a physical pendulum and vary the step size for the
harmoric motion calculation. Why would the improved Euler's method be more sensitive
to At for the oscillating function obtained for harmonic motion than to the angular
velocity curve for the rotating disk that approaches a terminal value?

lI
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NUMERICAL METHODS AND THE PHYSICAL PENDULUM
(FREE AND DAMPED HARMONIC MOTION)

I. INTRODUCTION

In this experiment we will use numerical methods to investigate the oscillation
of a physical pendulum. We will examine both undamped and damped oscillations. The
rotational inertia of the pendulum will be calculated by breaking it into parts and
finding the rotational inertia of each part by knowing the mass and shape of each. The
total rotational inertia is simply the sum of the individual parts.

After calculating the moment of inertia the motion of the pendulum will be
recorded by the microcomputer. A numerical method equivalent to the improved Euler's
method (called Heun's method) is then employed by the computer to simulate the
motion.

The apparatus consists of a thirty centimeter diameter aluminum disk with a
hub and slotted disk for measuring rotation. It also has two rectangudar plates which
provide viscous damping and a weight to offset the center of mass from the axis of
rotation.

II. THEORY REVIEW

For an undamped physical pendulum the equation of motion is

li-=-mgd sine

where d is the distance from the rotation axis and 6 is measured from the vertical. In
the case of viscous damping the force providing the damping torque can be
approximated as being proportional to some power of the linear velocity of the resisting
plates. This torque always opposes the direction of motion and modifies the equation uf
motion to

Idt- = -mgd sine ± kl(iw) n

where I is the distance from the rotation axis to the center of the plates, k is a
constantwhich describes the damping force, and n is an integer.

The exact solution to either of these equations is difficult, except when the small
angle approximation (sine = 0) is made for the undamped case. The application of the
numerical method to this system allows us to study the motion in detail. The effects of
varying n and k can be investigated and values for the actual system determined.

III. PROCEDURE AND ANALYSIS

Part A
To find the rotational inertia from the mass and shape of the individual parts

use the unassembled parts found next to the balance. DO NOT DISASSEMBLE THE
APPARATUS TO BE USED IN PART B. Measure the mass and all relevant
dimensions and compute the resulting rotational inertia. (Note: The parallel axis
theorem might be useful here.) Estimate the uncertainty for each of the parts and the

1 F~ l
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overall uncertainty of the calculated value of the rotational inertia. Show all of the
measurements, calculations and uncertainLies in the form of a table.

Calculate the distance from the rotation axis to the center of mass and record
the total mass of the pendulum.

Part B
We are using the microcomputer to measure the angular velocity of the

pendulum. It will also use the numerical method to calculate the angular velocity given
input data and will compare it to the actual data curve. The microcomputer will count
slots in the notched wheel every 0.1 seconds and will plot the resulting angular velocity.
Note that it only plots the absolute value of the angular velocity.

Turn on the microcomputer and initiate the Freshpen program. Follow the
instructions given and enter the appropriate data when prompted.

First, orient the plates so that they cause a minimum amount of air resistance.
Set the pendulum to the starting angle for the desired motion. Make sure you measure
and record the starting angle for the oscillation. Release the pendulum and
simultaneously press any key on the microcomputer to take the data. Input your values
from Part A into the simulation, choosing the no air resistance option, and compare the
calculated curve to the actual motion. Are they the same? If not, why? What is the
calculated period of the motion?

Adjust the input values for I until you match the actual angular velocity curve.
Record this value. What is the period of the actual motion?
Part C

Take the data again but adjust the plates for maximum air resistance. Run the
simulation now using I from Part B. Again match the calculated curve with the actual
angular velocities by adjusting the valuz- of k ad n. 1,'11. ,1ue of n seems to be the
closest to the actual measured motion? What is the value for k? What is the period of
motion for this configuration? Compare it to the period in Part B. Explain any
differences.

Adjust the plates to an intermediate position and again measure the angular
velocity with the microcomputer. Are the values for n and k the same? If not, why?

Part D
Use the simulation routine and determine a value for k that results in a

critically damped system. How might you provide such damping in the laboratory?
Discuss what happens to the period, rotational inertia, d, and the value of k if a heavier
weight were used to unbalance the disk. Would critical damping require a larger or
smaller value for k in this case?

Part E
Test the accuracy of the numerical method when you vary the time interval.

What happens as you increase the step size? At what value for At does the calculated
curve seem to develop a significant error? Why does this error occur? If the angular
velocity function were not oscillatory and approached some asymptotic value would the
numerical method be as sensitive to the size of the step in time? For verification load
the Airwheel program and investigate the effect of changing step size in the terminal
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NUMERICAL METHODS AND THE PHYSICAL PENDULUM

This experiment allows you to investigate the harmonic motion of a real physical
pendulum utilizing a microcomputer to take the data and compare it to the calculated
motion derived using numerical methods. The setup consists of two systems; the
modified TRS-80 system for taking data, and the Zenith Z-140 PC used for analysis.
Each time data is taken it must be input into the Zenith for analysis.

The data is taken by means of a notched wheel and two photogates. The motion
of whatever physical configuration you construct is recorded by counting the tripping of
the photogates as the notches pass. There are 90 notches on the wheel and the count is
recorded every 0.1 second. The resulting data yields an angular velocity plot. Using the
known angular displacement of each notch the integer counts are converted to radians
per second and displayed for transfer into the Zenith. To take data turn on the TRS-80
system. Insert the program disk and type RUN "DUMP". Respond "0" to the drive
prompt and enter "JPENDATA" for the filename. The down loaded program will then
instruct you on the procedure for taking and displaying the data.

Once data is taken you will want to analyze it with the Zenith. To do this insert
the Zenith program diskette. Turn the system on. At the prompt enter GRAPHICS.
This will allow you to print the plots from the screen by using the PrtSc key. Then
enter PHYSPEND. The program will then give you instructions for analysis. The
program will accept the input data, calculate the motion for small angle approximations,
motion with friction and air resistance and even the motion of a simple pendulum. You
are able to compare two simulations, or either simulation with the data. Any plot can
be printed with the Print Screen command. The simulation utilizes a 4th order
Predictor-Corrector method to approximate the solution to the differential equations of ,
motion (you should know what the equations are). The accuracy of this method can be -.

tested by varying the time step size. It is accurate enough to calculate the actual values
of different factors for the physical pendulum by using an iterative process. It will
calculate the motion and compare it to the data point by point until it gets a fit, subject
to the limits you give it.

Utiliing the computer and software as a tool you should ivestigate the physical
pendulum for large and small angle oscillations, large and small moments of inertia,
large and negligible friction effects and the simple pendulum and small angle
approximations verses the actual system. None of the physics theory is difficult and you
should readily verify the effects of varying parameters (such as the moment of inertia,
friction coefficient, etc.) on the motion of the pendulum. What you investigate is up to
you, but areas of interest include, but are not limited to,

- at what angle is the small angle approximation no longer appropriate?

- the acutal moment of inertia of the pendulum.

- the coefficient of friction in the bearings.

- the effects and coefficient of air resistance.

- variations in the accuracy of the numerical method with changing time
intervals.
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