
= 1" UMENTATION PAGE
Ia REPORT SECURITY CLASSIFICATiON a"lb. AtSTRICTiVE MARKINGS

UNCLASSIFIED ELECTE
. STRIBUTION /AVAILAILITY e RTeikt,4

. ...1988 Approved for public reeat

- - unlimited

AD -A196 246 H , MONITORING ORGANIZATION REPORT NUMBER(S)ADAi6 4 AFOSR. - X. 8 8 - u 655

6a. NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a NAME OF MONITORING ORGANIZATIONt " i f applicable)

University of Maryland Air Force Office of Scientific Research

6c_ ADDRESS (City, State, and ZiP Code) 7t ADDRESS (City, State, and ZIP Code)

College Park, Maryland 20742 Directorate of Mathermatical & Information

Sciences, Bolling AFB DC 20332-6448

, Ba. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION (If applicable)
AFOSR NM AFOSR-82-0078

8c- ADDRESS (C/ty, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. ACCESSION NO

Bolling M DC 20332-6448 61102F 2304 A "'

• -' 11. TITLE (include Security Classification)

PARALLEL MATRIX COMPUTATIONS

12. PERSONAL AUTHOR(S)
G. W. Stewart, Dianne P. O'Leary

13a. TYPE OF REPORT 13b. TIME COVERED T14. DATE OF REPORT (YearMonthDay) S PAGECOUNT

FINAL' I FROM __-92_TOJj -gB-03-11 I 1
16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

" This project concerns the design and analysis of algorithms to be run in a

processor-rich environment. We focus primarily on algorithms that require no
global control. and that can be run on systems with only local connections among
processors, We investigate the properties of these algorithms both theoretically
and experimentally. The experimental work is done on the ZMOB, a working parallel
computer operated by the Laboratory for Parallel Computation of the Computer
Science Department at the University of Maryland.

S" To give our work direction, we have focused on two areas:

I- Dense problems from numerical linear algebra' 1 1)

-- 2- The iterative and direct solution of sparse linear systems.

20. DISTRIBUTION /AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
OUNCASSIFIED/UNLIMITED (?9 SAME AS RPT. 0 DTIC USERS UNCLASSIFIED

j 22a.. NAME OF RESPONSIBLE INDIVIDUAL 2. . 2b TELEPHONE (include Area Code) 2. OFFICE SYMBOL
John Thomas (202)-767-5026 N

• DO FORM 1473.e4 MAR 83 APR edition may be used until exhausted. SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete.

. ---

*q8y io,.,
iL~I&Y

1
d. ' ~ - ~<. .' -~

A.OSR.. 8 8- 0 655

Technical Summary Report
AFOSR 82-0078

Parallel Matrix Computations
1982-1987

Supported by
Air Force Office of Scientific Research

Numerical Mathematics
Boiling Air Force Base, D.C. 20332

Research conducted at
Department of Computer Science

. University of Maryland
College Park, MD 20742

(301) 454-2001

Principal Investigators
Professor G. W. Stewart (410-68-8197)

Assoc. Prof. Dianne P. O'Leary (359-46-2895)

.G 9

.... 8-S 6 29 0,55

1. INTRODUCTION
r.--.t

This project concerned the design and analysis of algorithms to be run in a processor-rich
environment. We focused primarily on algorithms that require no global control and that can be

Ne.N run on systems with only local connections among processors. We investigated the properties of
these algorithms both theoretically and experimentally. The experimental work was done on the
ZMOB, a parallel computer operated by the Laboratory for Parallel Computation of the Com-
puter Science Department at the University of Maryland, and on the BBN Butterfly computer as
well.

The ZMOB consists of 128 processors which communicate by message passing over a com-
munications network which provides a complete network of connections between processors. The
start-up time for interprocessor communication, the per-word transmission overhead, and the
floating point computation time are all of the same order of magnitude. The ZMOB appears to a
user to be a completely connected network and thus can simulate various locally connected net-
works of processors. Thus we could investigate, in a realistic setting, the effects on our algorithms
of various processor interconnections.

The BBN Butterfly is a 16 or 128 processor machine with a memory module locally assigned
to each processor, globally accessible through a multilevel switch. It, too, can be used to simulate
various processor interconnections for message-passing computers, and we also used it as a tool to
understand algorithm performance on a locally-shared memory computer under construction at
the University of Maryland.

* Our activities may be divided .into four categories: algorithms, software development,
%. theorctica! analysiz, and experimental analysis.

To give our work direction, we focused on dense and sparse problems from numerical linear
algebra. We discuss in this summary the research projects that we have pursued under this grant
support.

2. Summary of Work

Our activities ranged from theoretical analysis to algorithmic design and software develop-
ment. We summarize this work in the following sections. For details, consult the annotated list
of references in Appendix A.

a
A

2.1 Data-Flow Algorithms and Domino
We based most of our work in this area on the notion of a data-flow algorithm. Tha compu-

tations in a dicta-flow algorithm are dcne by independent computational nodes, which cycle
0: between requesting data from certain nodes, computing, and sending data to certain other nodes.

More precisely, the nodes lie at the vertices of a directed graph whose arcs represent lines of com-
munication. Each time a node sends data to another node, the data is placed in a queue on the
arc between the two nodes. When a node has requested data from other nodes, it is blocked from
further execution until the data it has requested arrives at the appropriate input queues. An algo-
rithm organized in this manner is called a data-flow algorithm because the times at which nodes "on For
can compute is controlled by the flow of data between nodes. I

Data-flow algorithms are well suited for implementation on networks of processors which
communicate by message passing. Each node in a computational network is regarded as a process .ed

residing on a fixed member of a network of processors. We allow more than one node on a proces- !at ton
sor. Since many nodes will be performing essentially the same functions, we allow nodes which
share a processor also to share pieces of reentrant code, which we call node programs. Each pro-

* cessor has a resident node communication and control system to receive and transmit messages ution/
Avllability Cod

4-,2 lAva 1 and/o.-. Dist Speolal

S...o

AFOSR-82-0078, Final Report 20

from other processors and to awaken nodes when their data has arrived.

Data-flow algorithms have a number of advantages.

4 1. The approach eliminates the need for global synchronization.

2. Parallel matrix algorithms, including all algorithms for systolic arrays, have data-flow imple-
mentations.

3. Data-flow algorithms can be coded in a high-level sequential programming language, aug-
r.. mented by two communication primitives for sending and receiving data.

4. Data-flow computations can be supported by a very simple node communication and control
system.

5. The approach allows the graceful handling of missized problems, since several nodes can be
mapped onto one processor.

6. By mapping all nodes in a data-flow algorithm onto a single processor, one can debug paral-
lel algorithms on an ordinary sequential processor.

Because of the conceptual convenience and practical utility of the data-flow approach, and
because of the absence of any standard for writing transportable algorithms for parallel machines,
we implemented these ideas in a node communication and control system called Domino. During
1985-86, we documented the system and provided examples of its use in a technical report. The
code is available through Arpanet from Netlib at Argonne National Laboratories. Later, the sys-

*tem was implemented on the BBN Butterfly, McMob (a faster 16 processor version of Zmob), and
on a single processor version of the Sequent. It is being used at various universities around the

- country, and also runs on the ZMOB, Vaxes under Unix or VMS, Sun workstations, and IBM

PC's. The code has been used for numerical analysis and for neural network studies at Maryland
and for real time algorithms and other applications at other universities. The system has been
very valuable to us in our research, and was used in a course on parallel computation taught at
Maryland. One of the students made enhancements to the system by incorporating a window sys-
tem to use on the IBM-PC for debugging. We are working on a revision of the system to make it
more efficient on shared memory systems.

2.2 Theoretical Developments

Work has been done in the design of parallel architectures and in the analysis of parallel
algorithms.

Our work on the determinacy of our data-flow model for parallel computation led us to pro-
pose a modification of the design of systolic arrays in order to eliminate the need for global syn-
chronization. Each cell in the array is augmented by a feedback circuit so that data is sent from
one cell to another only when the receiver is ready to process it. We call such networks systaltic

S~arrays.

In collaboration with hardware experts Mark Weiser and Roger Pierson, we designed a pro-
cessing module called the Maryland Crab, which can communicate with a limited number of
neighbors directly through access to their memories. A prototype is currently under construction.
These modules can be linked in various configurations to create parallel processing machines.
They allow much faster message-passing than standard networks of processors, and avoid the

* complications of increasing depth of the switch that plague shared memory computers. Because
of this we hope that architectures based on modules of this type can be extended to very large
(> 10,000) processor arrays.

This architecture work has motivated an extensive calculation to determine what arithmetic
.. d communication spe, As are needed to perform matrix computations with a large (>10,000)
number of processers.

o

,* .1*

.- *.. ..

AFOSR-82-0078, Final Report 3

David C. Fisher completed a thesis partially supported by this grant which studies the com-
plexity of various tasks in matrix computation, assuming that processors perform computations so
fast that the communication delay in sending between physically distant processors is significant.
Lower bounds on execution time were obtained, and optimal algorithms were derived for several
problems.

The analysis of parallel numerical algorithms has to be understood in two senses. In the
first place there are the conventional analyses that must be done on any numerical algorithm;
rounding error analyses, proofs of convergence, and determination of rates of convergence are typ-
ical examples. In the course of developing algorithms we have done a number of these. Beyond
these analyses there is the problem of determining how well a parallel implementation works.
This is analogous to the computation of operations counts and other performance measurements
for sequential algorithms. The main part of our theoretical work is devoted to the study of this
problem. We have considered three issues: determinacy, assignment, and scheduling.

The determinacy issue arises from the fact that in the specification of a data-flow algorithm,
there may be no unique order of execution for the nodes. Thus it was necessary to show that
whatever the order, the computation produces essentially the same results.

The issues of assignment and scheduling are closely related. When a computational network
is to be mapped onto a smaller network of processors, it may happen that there are several ways
of assigning the nodes to processors. The question then arises of which way is best. Once several
nodes are executing on a processor, an operating system such as Domino must schedule the nodes
which are ready for execution according to some fixed strategy. Again the question arises of

Swhich scheduling strategy is best. The assignment and scheduling issues are related because an
S optimal scheduling strategy for one assignment may not be optimal for another.

We investigated these issues for a class of algorithms for matrix factorization, including
implementations of the Cholesky algorithm, the LU decomposition, and the QR decomposition.
We identified several good assignment and scheduling strategies for problems in which the number
of matrix elements exceeds the number of processors, and computed upper and lower bounds on
the execution times. This permits choice of a good algorithm for a particular machine, once the
ratio of computation time to communication time is known.

2.3 Algorithm Design, Analysis, and Testing

The chief difficulty with the data-flow approach is that the behavior of the algorithms can-
not be analyzed purely from the local viewpoint of the node programs. This is one reason for sup-
plementing theory with experiment.

We devised a number of new parallel algorithms. For dense matrices we developed a paral-
lel version of the QR algorithm for computing eigenvalues, motivated by the fast message passing
capability of the Crab. We also ran a series of experiments to validate a theoretical model of the
performance of parallel algorithms for QR factorization of matrices. For sparse matrices, we
analyzed and reported on block conjugate gradient algorithms for solving linear systems.

John Conroy completed a doctoral thesis partially supported by this grant which studies
efficient algorithms for solution of narrow and wide banded linear systems on parallel processors,
and medium grained algorithms for nested dissection.

8. Summary

Our work resulted in a collection of parallel algorithms for matrix computations, a data-flow
*' operating system to support experiments, a proposal for machine architecture, and theoretical

investigation into complexity issues in parallel matrix computations.

I,..

AFOSR-82-0078, 1g87 Report 4
SAppendix

Accomplishments under Grant AFOSR 82-0078

I. Technical Reports

(1) G. W. Stewart, Computing the CS Decomposition of a Partitioned Orthonormal Matrix,
TR-1159, May, 1982.

This paper describes an algorithm for simultaneously diagonalizing by orthogonal transfor-
mation the blocks of a partitioned matrix having orthonormal columns.

(2) G. W. Stewart A Note on Complex Division, TR-1206, August, 1982.

An algorithm (Smith, 1962) for computing the quotient of two complex numbers is
modified to make it more robust in the presence of underflows.

(3) D. P. O'Leary, Solving Sparse Matrix Problem8 on Parallel Computers, TR-1234,
December, 1982.

This paper has a dual character. The first part is a survey of some issues and ideas for
sparse matrix computation on parallel processing machines. In the second part, some new
results are presented concerning efficient parallel iterative algorithms for solving mesh
problems which arise in network problems, image processing, and discretization of partial
differential equations.

(4) G. W. Stewart, A Jacobi-like Algorithm for Computing the Schur Decomposition of a Non-
Hermitian Matrix, TR-1321, August, 1983.

This paper describes an iterative method for reducing a general matrix to upper triangular
form by unitary similarity transformations. The method is similar to Jacobi's method for
the symmetric eigenvalue problem in that it uses plane rotations to annihilate off-diagonal
elements, and when the matrix is Hermitian it reduces to a variant of Jacobi's method.
Although the method cannot compete with the QR algorithm in serial implementation, it
admits of a parallel implementation in which a double sweep of the matrix can be done in
time proportional to the order of the matrix.

(5) Dianne P. O'Leary and Robert E. White, Multi-Splittings of Matrices and Parallel Solution
of Linear Systems, TR-1362, December, 1983.

We present two classes of matrix splittings and give applications to the parallel iterative
solution of systems of linear equations. These splittings generalize regular splittings and

* P-regular splittings, resulting in algorithms which can be implemented efficiently on paral-
lel computing systems. Convergence is established, rate of convergence is discussed, and
numerical examples are given.

1V

0 °

K - AFOSR-82-0078, 1987 Report

- (6) D. P. O'Leary and G. W. Stewart, Data-Flow Algorithm, for Matrix Computations, TR-
-- 1366, January, 1984.

In this work we develop some algorithms and tools for solving matrix problems on parallel
processing computers. Operations are synchronized through data-flow alone, which makes
global synchronization unnecessary and enables the algorithms to be implemented on
machines with very simple operating systems and communications protocols. As examples,
we present algorithms that form the main modules for solving Liaponuv matrix equations.
We compare this approach to wavefront array processors and systolic arrays, and note its
advantages in handling missized problems, in evaluating variations of algorithms or archi-
tectures, in moving algorithms from system to system, and in debugging parallel algo-
rithms on sequential machines.

(7) G. W. Stewart, W. F. Stewart, D. F. McAlister, A Two Stage Iteration for Solving Nearly
Uncoupled Markov Chains, TR-1384, 1984.

This paper presents and analyses a parallizable algorithm for solving Markov chains that
arise in queuing models of loosely coupled systems.

(8) David C. Fisher, In Three-Dimensional Space, the Time Required to Add N Numbers is
0 (N1 /4), TR-1431, August, 1984.

How quickly can the sum of N numbers be computed with sufficiently many processors?
The traditional answer is t = 0 (log N). However, if the processors are in R (usually

- 'd < 3), addition time and processor volume are bounded away from zero, and transmis-
. sion speed and processor length are bounded, t > 0 (N 11d+1).

(9) Dianne P. O'Leary, G. W. Stewart, On the Determinacy of a Model for Parallel Compita-
tion, TR-1456, November, 1984. (Obsolete: see TR-1553)

In this note we extend a model of Karp and Miller for parallel computation. We show
that the model is deterministic, in the sense under different scheduling regimes each pro-
cess in the computation consumes the same input and generates the same output. More-
over, if the computation halts, the final state is independent of scheduling.

. . (10) Dianne P. O'Leary, Systolic Arrays for Matrix Transpose and Other Reorderings, TR-1481,
March, 1985.

In this note, a systolic array is described for computing the transpose of an n X n matrix
in time 3n -1 using n2 switching processors and n2 btufesAon-dimensional imple-
mentation is also described. Arrays are also given to take a matrix in by rows and put it
out by diagonals, and vice versa.

(11) Dianne P. O'Leary, G. W. Stewart, Assignment and Scheduling in Parallel Matrix Factori-
zation, TR-1486, April, 1985.

We consider in this paper the problem of factoring a dense n Xn matrix on a network
consisting of P MIMD processors when the network is smaller than the number of ele-
ments in the matrix (P < n'). The specific example analyzed is a computational network

.°J,

N ' ' ' , , ' "". ,''. '
,

''. '""" ..

AFOSR-82-0078, 1987 Report S

that arises in computing the LU, QR, or Cholesky factorizations. We prove that if the
:e. nodes of the network are evenly distributed among processors and if computations are

scheduled by a round-robin or a least-recently-executed scheduling algorithm, then optimal
order of speed-up is achieved. However, such speed-up is not necessarily achieved for other
scheduling algorithms or if the computation for the nodes is inappropriately split across
processors, and we give examples of these phenomena. Lower bounds on execution time
for the algorithm are established

(12) Dianne P. O'Leary, G. W. Stewart, From Determinacy to Systaltic Arraya, TR-1553,
August, 1985.

, In this paper we extend a model of Karp and Miller for parallel computation. We show
.4, that the extended model is deterministic, in the sense that under different scheduling

regimes each process in the computation consumes the same input and generates the same
*! output. Moreover, if the computation halts, the final state is independent of scheduling.

The model is applied to the generation of precedence graphs, from which lower time
bounds may be deduced, and to the synchronization of systolic arrays by local rather than

* global control.

(13) David C. Fisher, Matrix Computation on Processors in One, Two, and Three Dimensions,
TR-1556, August, 1985.

= Suppose a problem is to be solved on a d-dimensional parallel processing machine. Assume
that transmission speed is finite. Under this and other "real world" assumptions, if a prob-
lem requires I inputs, K outputs and T computations, then time required to solve the
problem is greater than or equal to O(max(lI/d ,K l i ,T 1/(d'1))). Algorithms for certain
matrix computations are developed. The problems are divided into atoms. The algorithms
are described and analyzed with the use of step and processor assignment functions
These assign each atom to a step and a processor. Here is a table showing the time for
algorithms presented in this paper:

Linear Grid Square Grid Cubic Grid
Problem (-D) (2D) 3-D

Summation of k numbers 0 (k) 0 (k 1/2) 0 k 1/3
Multiply a k Xk matrix by a k vector 0 (k2) 0 (k) 0 (k2 / 3)

Multiply two k Xk matrices 0 (k) 0 (k) 0 (k3 /4)
-Cholesky factorization of a k Xk matrix 0
Except for matrix multiplication in 3-dimensions, these times are a constant multiple of
the lower bounds. Programs are given which will execute these algorithms on an appropri-
ate parallel processing machine.

(14) D. P. O'Leary, G. W. Stewart, R. van de Geijn, DOMINO: A Message Passing Environ-
ment for Parallel Computation. TR-1648, April, 1986.

This report is a description of DOMINO, a system to coordinate computations on a net-
* work of processors. It implements an extension of a model of parallel computation (Karp

and Miller, SIAM J. Appl. Math., 1966), in which computations are synchronized by mes-
sages passed between the processes performing the computations. The system is organized
in such a way that meaningful $cluugging can be done on a single processor. In order to
make DOMINO transportable, system dependent features have been isolated in two

.. ,- -d~

AFOSR-82-0078, 1q87 Report 7

4

interfaces.

(15) G. W. Stewart, Communication in Parallel Algorithms: An Example, April, 1986.

The purpose of this note is to describe and analyze a parallel algorithm for computing the
QR factorization of an n Xp matrix. The algorithm is designed to run on a ring of r pro-
cessors that communicate by message passing.

(16) Dianne P. Oeary, Roger Pierson, G. W. Stewart, Mark Weiser, The Maryland Crab: A
Module for Building Parallel Computers, UMIACS-TR-86-9 and CS-TR-1660, University of
Maryland, April, 1986.

There is not yet a consensus on the best way to interconnect a large number of general
purpose processors to construct a parallel computer. Both of the standard strategies have
major disadvantages: shared memory designs suffer from bus contention; nonshared
memory designs have a relatively large communication overhead even for a small nurber
of processors. In this work we present the design for a module, called the Crab, from
which machines with locally shared memory can be constructed. A Crab consists of a pro-
cessor, some local non-shared memory, a memory module which can be accessed by its
neighboring Crabs, and circuitry to manage shared memory access. Crabs may be con-
nected in arbitrary geometries, e.g., rings, hypercubes, etc. This design greatly reduces the
overhead in passing information between neighboring processors and allows scaling to a
large number of processors without problems of bus contention. Other features of the
design are a global bus, useful for broadcast messages, and interprocessor FIFO interrupt
queues.

(17) G. W. Stewart, A Parallel Implementation of the QR Algorithm, CS-TR-1662, University of
Maryland, May, 186.

In this paper a parallel implementation of the QR algorithm for the eigenvalues of a non-
Hermitian matrix is proposed. The algorithm is designed to run efficiently on a linear
array of processors that communicate by accessing their neighbors' memory. A module for
building such arrays, the Maryland Crab, is also described.

(18) D. P. O'Leary, Parallel Implementation of the Block Conjugate Gradient Algorithm, CS-
TR-1676, TMIACS-TR-86-14, University of Maryland, June, 1986.

The conjugate gradient algorithm is well-suited for vector computation but, because of its
many synchronization points and relatively short message packets, is more difficult to
implement for parallel computation. In this work we introduce a parallel implementation
of the block conjugate gradient algorithm. In this algorithm, we carry a block of vectors
along at each iteration, reducing the number of iterations and increasing the length of each
message. On machines with relatively costly message passing, this algorithm is a
significant improvement over the standard conjugate gradient algorithm.

(19) G. W. Stewart, Bounding Errors in the Solution of a 2X2 System of Equations, CS-TR-

1702, University of Maryland, August, 1986.

This paper solves the small but important problem of assessing the accuracy of the

!

AFOSR-82-0078, 1987 Report 9

computed solutions of 2X2 systems. The result has applications in areas such as computa-
tional geometry, where parallelization is an important issue.

(20) John Michael Conroy Parallel Direct Solution of Sparse Linear Systems of Equations, CS-
TR-1714, University of Maryland, October, 1986.

We consider the solution of certain sparse linear systems of equations on a parallel com-
puter. These systems arise when using a finite difference or finite element method to solve
partial differential equations. We consider both banded matrices and sparse matrices
whose graphs are two dimensional meshes. The algorithms given are designed for linear
and square arrays of processors.

Two fine grain algorithms for the Cholesky decomposition of band matrices with wide
-" .bandwidth are described. We discuss two techniques to perform a Cholesky factorization

using a p Xp array of processors, where p <m, the semibandwidth of the matrix. The
first method uses a folding technique to map a systolic array onto a square array of proces-
sors. The second algorithm uses a torus wrap of the band matrix. These methods are also
modified to allow for medium grain computation. At most 0 (m2) parallelism is exploited
by these algorithms.

Algorithms to yield significant parallelism for narrow banded systems are also derived.
The first class of algorithms yield 0 (n 1/2 /m 1/2) parallelism using a linear array of proces-
sors, where n is the size of the matrix. Two variations are considered. They have similar

-, complexity, but have different numerical properties, and a backwards error analysis is
given. The second method, a fine grain algorithm, allows for up to 0 (n 1/ 2mS/ 2 parallel-
ism using a rectangular array. This method has been implemented on the Zmob at the
University of Maryland. Empirical results of this implementation are discussed.

Finally, an efficient medium grain algorithm for the method of nested dissection for an
N XN mesh is given. The algorithm exploits the ability of a processor to perform com-
munication and computation simultaneously. The strength of the method is its ability to
pipeline much of the computation. This method has an asymptotic efficiency of about
49% using a square array of p 2 processors, where P <<N.

II. Presentations

(1) D. P. O'Leary, Solving Mesh Problems on Parallel Computers,
Bell Laboratory, Murray Hill, N.J., January, 1983

* IBM T. J. Watson Laboratory, Yorktown Heights, N.Y., January, 1983.

(2) G. W. Stewart, A Jacobi-like Algorithm for Computing the Schur Decomposition of a Non-
Hermitian Matriz (invited), Symposium on Numerical Analysis and Computational Com-
plex Analysis, Zurich, Switzerland, August, 1983. Also presented at North Carolina State
University, September, 1983, and at University of Houston, November, 1983,

(3) G. W. Stewart, The Structure of Nearly Uncoupled Markov Chains (invited), International

Workshop on Systems Modeling, Pisa, Italy, September, 1983.

*IV

AFOSR-82-0078, 1987 Report 9

(4) G. W. Stewart, Data Flow Algorithms for Parallel Matrix Computations (invited), SIAM
Conference on Parallel Processing for Scientific Computing, Norfolk, VA, November, 1983.

(5) D. P. O'Leary, Parallel Computations for Sparse Linear Systen (minisymposium invita-

tion), SIAM 1983 Fall Meeting, Norfolk, VA, November, 1983.

(6) D. C. Fisher, Numerical Computations on Multiprocessors with Only Local Communica.

tions (poster session), SLAM Conference on Parallel Processing for Scientific Computing,
Norfolk, VA, November, 1983.

(7) G. W. Stewart, Parallel Computations on the ZMOB, Annual meeting of CER participants,
University of Utah, March, 1984.

(8) D. P. O'Leary, Data-flow Algorithms for Matrix Computations (minisymposium invitation),
ACM SIGNUM Conference on Numerical Computations and Mathematical Software for
Microcomputers, Boulder, Colorado, March, 1984.

(9) D. P. OLeary, Solution of Matrix Problems. on Parallel Computers (invited presentation),
Gatlinburg IX Meeting on Numerical Linear Algebra, Waterloo, Ontario, Canada, July,
1984. Also presented at Oak Ridge National Laboratory, September, 1984; National
Bureau of Standards, Boulder, Colorado, March, 1984; Yale University, November, 1984;
Cornell University, January, 1985; Courant Institute, February, 1985.

(10) G. W. Stewart, The Data-Flow Approach to Matrix Computations, Los Alamos Scientific
Laboratory, October, 1984.

(11) G. W. Stewart, The Impaci of Computer Architecture on Statistical Computing, (invited)
SIAM/ISA/ASA Conference on Frontiers of Statistical Computing, October, 1984.

(12) G. W. Stewart, Determinacy, (invited) Symposium in Honor of G. Dahlquist, Stockholm,
January, 1985.

(13) D. C. Fisher, Fast Matrix Multiplication on Square and Cubic Grids of Processors, SLAM
Conference on Applied Linear Algebra, Raleigh, April, 1985.

. (14) G. W. Stewart, The Parallel Solution of Sparse Unsymmetric Eigenvalue Problems,

(invited) IBM Workshop on Large Eigenvalue Problems, Oberlch, Austria, July, 1985.

(15) D. P. O'Leary, A Testbed for Parallel Algorithm Development, (invited) SL'_M Conference
* on Parallel Processing for Scientific Computing, Norfolk, VA, November, 1985.

(16) D. P. O'Leary, G. W. Stewart, Robert van de Geijn, Domino, a Transportable System for
Parallel Computing, Army Research Conference on Parallel Computing and Medium Scale
Multiprocessors, Stanford, CA, January, 1986.

* (17) D. P. OLeary, Parallel Computation and Linear Programming, Workshop on Future Direc-
tions in Mathematical Programming, Naval Postgraduate School, Monterey, California,
February, 1986.

. • S
w .=5 , '.I - . r - " "

- AFOSR-82-0078, 1987 Report 10

S

(18) G. W. Stewart, Communication in Parallel Algorithms: An Ezample, 18th Symposium on

the Interface between Computer Science and Statistics, College Station, Colorado, March,
.- 1986.

(19) G. W. Stewart, Parallel Scientific Computing, University of Colorado Conference on Coni-
puter Science, Boulder, CO, March, 1986.

(20) D. P. O'Leary, Fine and Medium Grained Parallel Algorithms for Matrix QR Factori:ation,
Stichting Mathematisch Centrum, Centrum voor Wiskunde en Informatica, Amsterdam,
The Netherlands, May, 1986.

(21) G. W. Stewart, A Parallel Implementation of the QR Algorithm, International Conference
on Vector and Parallel Computing, Loen, Norway, June, 1986.

(22) D. P. O'Leary, Parallel Implementation ;f the Block Conjugate Gradient Algorithm, Inter-
national Conference on Vector and Parallel Computing, Loen, Norway, June, 198G.

(23) Robert van de Geijn, Message Passing on the Butterfly, Butterfly Users Group Meeting.
Boston, Massachusetts, October, 1986.

(24) G. W. Stewart, Domino: a Parallel Message Passing Environment, Workshop on Software
Issues in Parallel Computing, Norfolk, November, 1986.

(25) D. P. O'Leary, Some Small Problems in Parallel Computing, University of Illinois, January,
1987.

(26) G. W. Stewart, Parallel Computing, Chinese Academy of Science, January, 1987.

(27) D. P. O'Leary, Some Small Problems in Parallel Computing, Pennsylvania State Univer-
sity, March, 1987.

(28) D. P. O'Leary, Domino: A Portable Parallel Programming Environment, Supercomputing
Research Center, March, 1987.

(29) G. W. Stewart, Communications and Matriz Computations,
Workshop on Numerical Computation, Northwestern University, March, 1987.

A"-" Argonne National Laboratories, March, 1987
University of Illinois, March, 1987

IV. Publications

* (1) G. W. Stewart, "Computing the CS Decomposition of a Partitioned Orthonormal Matrix,"
Numerische Mathcmatik 40 (1982) 297-306.

(2) D. P. O'Leary, "Ordering schemes for parallel processing of certain mesh problems," SIAM
Journal on Scientific and Statistical Computing 5 (1984) 620-632.

"0

AFOSR-82-0078, 1987 Report 11

(3) D. P. O'Leary, G. W. Stewart, "Data-flow algorithms for parallel matrix computations,"
Communications of the ACM, 28 (1985) 840-853.

(4) G. W. Stewart, "A Jacobi-like Algorithm for Computing the Schur Decomposition of a
Non-Hermitian Matrix," SIAM Journal on Scientific and Statistical Computing, 6 (1985)
853-864.

(5) D. P. O'Leary, R. E. White, "Multi-splittings of matrices and parallel solution of linear
systems," SIAM Journal on Algebraic and Discrete Methods, 6 (1985) 630-640.

"n.

(6) G. W. Stewart "A Note on Complex Division," ACM Transactions on Mathematical
Software 11 (1985) 238-241.

(7) D. P. OLeary and G. W. Stewart, "Assignment and Scheduling in Parallel Matrix Factori-
zation," Linear Algebra and Ito Applications, 77 (1986) 275-300.

(8) G. W. Stewart, "Communication in Parallel Algorithms: An Example," Proceedings of the
18th Symposium on the Interface between Computer Science and Statistics, American Sta-
tistical Association, 1986, 11-14.

(9) D. P. O'Leary, R. van de Geijn, G. W. Stewart, "DOMINO: A Transportable Operating
System," Proceedings of the Army Conference on Parallel Processing, Stanford, CA, Janu-

* ary, 1986, A. Wouk, ed., to appear.

(10) D. P. O'Leary, "Systolic Arrays for Matrix Transpose and Other Reorderings," IEEE
Transaction, on Computers, C-36 (1987) 117-122.

(11) G. W. Stewart, "A Parallel Implementation of the QR Algorithm," Parallel Computing, to
appear.

(12) D. P. O'Leary, "Parallel Implementation of the Block Conjugate Gradient Algorithm,"
Parallel Computing, to appear.

(13) D. P. O'Leary and G. W. Stewart, "From Determinacy to Systaltic Arrays," IEEE Tran-
eactions on Computers, to appear.

Uo

U'

..- - _ - -." .

