
QIl riLLr. G;UBY

N SOLUTION OF LARGE DENSE TRANSPORTATION

PROBLEMS USING A PARALLEL PRIMAL ALGORITHM

by

Donald L. Miller*
Joseph F. Pekny**

0 Gerald L. Thompson***

June 1988

Carnegie Mellon University
PITTSBURGH, PENNSYLVANIA 15213

GRADUATE SCHOOL OF INDUSTRIAL ADMINISTRATION
WIW.AM LARIMER MELLON. FOUNDER

DTIC"
JUL 13 1988

F..

88 7 1.2 073

• .. =.'-r D

W.P. No. 87-88-42

€I

Management Science Research Report No. 546

SOLUTION OF LARGE DENSE TRANSPORTATION

PROBLEMS USING A PARALLEL PRIMAL ALGORITHM

by

Donald L. Miller*
Joseph F. Pekny

*
Gerald L. Thompson**

June 1988

Central Research and Development Department,

E. I. duPont de Nenours and Company, Inc.

Department of Chemical Engineering
Carnegie Mellon University

Graduate School of Industrial Administration

Carnegie Mellon University

This report was prepared in part as part of the activities of the Management
Sciences Resarch Group, Carnegie Mellon University, under Contract No. N00014-
85-K-0139 NR 047-048 with the Office of Naval Research. Reproduction in whole
or in part is permitted for any purpose of the U.S. Government.

Management Sciences Research Group
Graduate School of Industrial Administration

Carnegie Mellon University ECTE
Pittsburgh, PA 15213 EL

JUL 1
I Wo bo pa

Abstract

SOLUTION OF LARGE DENSE

TRANSPORTATION PROBLEMS USING A

PARALLEL PRIMAL ALGORITHM

by

Donald L. Miller, Joseph F. Pekny, and Gerald L. Thompson

II
We implementet version of the primal transportation code on a 14

processor BBN Butterfly computer and solved a variety of large, fully dense,

randomly generated transportation and assignment problems ranging in sizes up

to m = n = 3000. We fad--that the search phase of primal transportation

algorthm was well suited for implementation on the Butterfly, but the pivot

phase could not be parallelized. Computational experience is presented

showing that speedup factors for a parallel over a sequential computer

of approximately 70 percent of the theoretical maximum were obtained. With

the parallel code the empirical difficulty of solving an nxn transportation

problem was proportional to no where a varied between 2.0 and 2.2. -

Accession For

NTIS GRA&I
DTIC TAB
Unannounced
J tificatit To

COPY
By 'NSPECTED

Distribution/

Availability Codes

AvallF.and/oi
D4st Special

SOLUTION OF LARGE DENSE

TRANSPORTATION PROBLEMS USING A

PARALLEL PRIMAL ALGORITHM

by

Donald L. Miller, Joseph F. Pekny, and Gerald L. Thompson

1. INTRODUCTION

Among the most commonly solved and applied linear programs are

transportation problems, and their close relations, assignment and network

problems. They have applications of their own as well as being relaxations to

others such as travelling salesman problems.

In the decade of the 1960's, the belief by most researchers was that dual

(Kuhn (15]) and/or primal-dual (Ford-Fulkerson (9]) methods provided the most

efficient algorithms for this class of problems. This belief was based on

limited computation performed on very small problems by hand or by first

generation computers.

In the early 1970's two groups of researchers, Srinivasan and Thompson

(21,22] and Glover, Karney, and Klingman [11], wrote codes using the primal

transportation algorithm, also called the stepping stone method or MODI

method, see Charnes and Cooper [4] and Dantzig [6]. They used some newly

invented data structures, as well as some provided in the computer science

literature, to greatly improve the efficiency of the resulting primal codes,

and concluded that primal transportation codes ran 100 to 200 times as fast as

ordinary linear programming simplex codes and about 50 times as fast as primal

dual methods on the same problems. These conclusions are summarized in

Charnes, Karney, Klingman, Stutz and Glover [5]. Later Bradley, Brown and

Graves (3] came to the same conclusion for network problems. Because of the

1

computer memory limitations of that time, fully dense transportation problems

were solved for sizes up to about m = n = 200. For larger dimensions, only

sparse trnsportation problem having a relatively few arcs (approximately

lO) were considered. Further improvements in data structures used by the

primal codes appeared in Barr, Glover and Klingman [1].

In the late 1970's and early 1980's there was a resurgance of interest in

dual codes. Auction and bidding dual codes were proposed by Bertsekas (21,

and Thompson (24]. Srinivasan and Thompson [23] proposed cost operator

algorithmm. A new class of dual codes, using shortest ausgmeting paths, based

on the paper of Tomizawa (25] and improved by Dorhout L8], were developed.

Hung and Ram [13], Derigs (7], and Martello and Toth [16] provided

computational studies that compared their own shortest augmenting path codes

with those of the other ideas. McGinnes (17] programed both primal and dual

codes and made computational studies and included that dual codes were

superior. See also Hatch (12] and Glover and Klingman (10].

All of the computational experience discussed so far was obtained using

sequential computers to solve small dense, or larger sparse problems. In the

last five years a number of hardware companies have built computers which have

a parallel architecture, that is, which consist of several small independent

computers (processors) that can be programmed to work simultaneously on

different parts of the same problem.

The purpose of the present paper is to discuss the implementation of a

primal transportation code on a specific parallel machine, a 14 processor BBN

Butterfly computer, and to give computational experience obtained from using

it to solve a variety of large, fully dense, randomly generated transportation

and assignment problems ranging in sizes up to a = n = 3000. Our conclusions

are:

2

(a) The primal transportation algorithm is well suited for
implementation on the Butterfly computer because of the way the
memory is distributed among the processors which makes the search
step efficient to parallelize.

(b) The pivot step of the primal code is not amenable to
parallelization.

(c) The search for pivot candidates becomes the dominant activity of the
primal algorithm as problem size increases.

(d) Speedup increases as the problem size increases.

(e) Parallel architecture permits the use of coding strategies that are
difficult or not profitable to implement on sequential computers.

(f) The empirical difficulty of solving an nxn transportation or
assignment problem using the parallel code is proportional to nawhere a varies between 2.0 and 2.2.

2. THE PRIMAL ALGORITHM

The transportation problem is to ship at minimum cost a homogeneous good

from a set of m warehouses to a set of n markets. Let x ij be the amount of

the good shipped from warehouse i to market j, let c be the unit cost

of this shipment, let a be the availability (supply) of the good at

warehouse i and let b be the amount of the good required (demanded) at market

j. Assume E a I E jb j so that there is a feasible shipping pattern. The

mathematical statement of the transportation problem then is:

(a n
Minimize E c (1)

n
Subject to jE, x =J = a, for il,...,m (2)

m

E x = b for j=l,...,n (3)

x j 2_ 0 for all i and j (4)

3

Letting u and v be the dual variables associated with (2) and (3)t j

respectively, the dual problem can be stated as:

{ m n bj
Maximize E u a + vb (5)

fli i J= J

Subject to

u + v < c for all i and j (6)I - ii

The following facts are well known concerning these two problems:

(1) The problem has the natural integer property: that is if a andI

b are positive integers for all i and j, then every feasibleJ

basic solution satisfying conditions (2), (3), and (4) gives x J

equal to a nonnegative integer.

(2) In any basic solution, at most m+n-l values of x1I are positive

and exactly m+n-l variables x,, are basic..

(3) Let V = fR ,...,R , CI,...,C } be the set of rows and columns of

the problem, let x be a feasible solution and let B =

{(i,j)lxij is basic); then the graph G = (V,B} is a connected

acyclic graph called the basis tree.

(4) There are well known procedures such as northwest corner, VAM,

matrix minimum, modified row minimum, etc. (see (22]) for finding an

initial basic primal feasible solution to (2), (3), and (4).

(5) Given a primal feasible basis tree, any node (row or column) can be

denoted as the root node and the tree can be rehung so that the

root node is at the top.

(6) The nodes of degree one in a basis tree are called pendant nodes.

Starting from each pendant node and working upward to the root node

it is possible to determine the shipping mounts x J. Similarly,

4

starting at the root node and working downwards it is possible to

determine the optimal dual variables u and v associated with

nodes R and C1, respectively.

(7) If k is any (row or column) node, not the root node r, of a basis

tree, then there is a unique path in the tree from k to r. The

first encountered node on this path is the predecessor p(k) of k,

and the number of arcs on the path is the distance d(k) of k from r.

Note that r has no predecessor and we define d(r) = 0.

(8) If x j is basic then (i,j) is an arc in the basis tree so that

either (a) p(RL) = Cj or (b) p(C) = R . In case (a) we let

x(R1) = xj be the shipping amount and in case (b) we let x(C.) =
I.3

x
ij

(9) If h and k are distinct nodes of the basis tree and k is on

the path between h and the root node r then node h is a

descendent of k. The basis tree is said to be stored in a recursive

list if it has the following property: if node h is stored after

node k on the list and h is not a descendent of k, then all

descendents of k are stored on the list between k and h. The

descendents of a node in a recursive list can be searched by calling

a recursive subroutine.

(10) The dual variables are stored as node lists where u(RH) u and

v(C) = v . (If k is any node then exactly one of u(k) or v(k)

is defined depending on whether k is a row or column node.)

Figure 6 gives the flow diagram of the primal transportation code. It

was implemented by using the five node functions p(k), d(k), x(k), u(k),

v(k), and by storing the basis tree in a recursive list. The sequential

implementation of the primal code is discussed in more detail in [11], [14],

and (21].

5

A. GENERATE PROBLEM

Given m and n generate
the initial data aI, bj and

c ij for the problem at

random within the stated
ranges for each coefficient.

B. BUILD INITIAL TREE

Use a starting method to
find a feasible x . Calcu-ij
late the corresponding dual
solution u and v and the

other lists used to represent
the initial tree.

C. SEARCH F. OUTPUT

Search by row for a pair Stop if no violation
(i,j) such that (6) is found. Print optimal
violated, solution

Add arc (i,j) to the basis
tree, find outgoing cell and

change the primal solution on
the cycle.

E. UPDATE

Rehang the tree, find the
new duals, update all the
tree lists.

Figure 1. Flow diagram for the sequential primal transportation algorithm.

6j

3. THE PARALLEL PRIMAL ALGORITHM

The efficient implementation of any algorithm on a parallel computer

necessarily depends on the exact architecture of that computer as well as the

characteristics of the algorithm. We discuss the implementation of the primal

algorithm of the previous section on a BBN Butterfly Plus computer. The

Butterfly Plus is a tightly coupled heterogeneous, shared memory

multiprocessor consisting of several Motorola 68020/68881 processors each

having 4 megabytes of its own local memory, and accessing the memories of the

other processors through a packet switched network. Our code was implemented

on a 14 processor machine. Discussions of the implementation on the same

parallel computer of a shortest augmenting path algorithm for assignment and p

travelling salesman problems can be found in Miller and Pekny [181 and Pekny

and Miller [19].

Because the Butterfly computer has its memory distributed over the 14

processors it was necessary to distribute the mxn cost matrix C so that

each processor stored several contiguous rows of C in its local memory. ,%
S.

From this fact it is obvious from Figure 1 that steps A and C can readily be

done in parallel. The time to generate the protlem data, step A, was not%

counted in the computation time so will not be discussed further. The search %

subroutine, step C, was performed in parallel and was, in fact, the only major

subroutine that we were able to perform in parallel in this version of the

code. "

Subroutine B, build initial tree, was carried out sequentially because

(a) it was called only once (b) requires only 5 to 10 percent of the total

computation time. Computational experiments with parallel starting tree

bases will be reported on elsewhere.

7

A. GENERATE PROBLEM

B. BUILD INITIAL TREE

C. SEARCH

Each of the p processors searches 2
the next raw it owns for the most .
negative reduced cost; if one is

found it is put in the problem
queue.

TF
G. SYNCHRONIZE D. SYNCHRONIZE

After finishing pivoting After finishing row I
processors wait until searches, processors
all others finish, wait until all

others finish.

F. PIVOT I
No "pi~~vot qee ,

Each processor carries E. Is pivoqe
out each of the pivots list empty?
on its own copy of the
basis tree.

Yes

I. STOP --
Yes H. Have all rows in No

Print optimal !the entire matrix
HIsolution. been searched with-

out finding a pivot? ,_

Figure 2. Flow diagram for the parallel primal transportation algorithm.

*A i.

We now describe the parallel primal transportation algorithm shown in

Figure 3 on the assumption that p (>1) processors are available when the

problem is being solved. Each processor stores the rows it owns in a

wrap-around list so that when it reaches the end of its list it goes back to

the beginning. It maintains a pointer to the current row that is next to be

searched; the pointer initially points to the first row it owns.

After the initial tree is built each processor obtains its own copy of J

the lists defining the initial tree. Then subroutine C is invoked, and each

processor searches its current row for the entry having the most negative

reduced cost. If such a most negative reduced cost is found by a processor

it writes the row and column in which it was found and its reduced cost in the

pivot queue list; then the processor updates its current row pointers and goes

to synchronization step D where it waits until all processors have finished

their searches. This synchronization step is necessary in order that the

pivot queue list is completely defined before pivot subroutine F is called.

Control then passes to step E in which the question is asked whether the

pivot queue list is empty. If the answer is yes control passes to step H in

which the question is asked whether all of the rows in the entire matrix have

been searched without finding a pivot. If the answer is yes, control is

passed to step I and the optimal solution is printed. An answer of no sends

the computer back to search step C.

In the case that the answer to the question in E is no then subroutine F

is called and all p processors simultaneously perform all the pivots listed

in the pivot queue on their own copies of the basis tree. The reason this is

done is that it is faster for each processor to carry out the calculation

rather than have just one of them do the calculation and communicate the

result. As discussed in the next section, we also tried to break the pivoting

9 p.

process down into small tasks and have individual processors carry out these

tasks. However, the sizes of the tasks, sometimes referred to as their

granularity, was found to be too small for a parallel processing strategy to

reduce the time over the previously reported strategy.

After each processor completes its pivot task, it moves to

synchronization step G where it waits until all processors have finished

pivoting. The reason for the synchronization step here is that it is

necessary to prevent the pivot queue list from being altered before one or

more of the processors have completed their pivot tasks.

Once all processors indicate in step G that they have finished pivoting

control returns to search step C, completing the main computational loop.

4. ATTEMPT TO PARALLELIZE THE PIVOT STEP

At the end of the search step each processor has located the most

negative element in its current row, or has determined that the row has no

negative elementi. Hence the problem queue has up to 14 possible pivots that

can be performed. However it is not always possible to perform two (or more)

pivots simultaneously because the pivot operations may require changes to be

made on the basis functions of some of the same nodes.

To make these ideas precise let Q be the set of potential pivots, and

let k be an element of Q. Define T(k) to be the set of basis tree nodes

at which one of the five node functions p(k), d(k), x(k), u(k), v(k) is

changed. Two pivots h and k are said to be independent if T(h) n T(k) 0,

and are said to be dependent if T(h) n T(k) 0 0. Consider the graph P = (Q,E}

whose nodes consist of the pivots k in the pivot queue, and whose edges

(h,k) belong to 6 if pivots h and k are dependent. We would like to

find a maximal independent subset S in P which would then consist of a set

of pivots which can be done in parallel. Since finding a maximal independent

10

l0M lee

subset of a set is a well known NP hard problem, we used the following

heuristic program:

(1) Let S 0.

(2) Find a node k of largest degree in P.%

(3) Remove k from Q; put k in S.

(4) For each edge (k,h) in E, remove h from Q, and remove (k,h) from E.

(5) If Q 0 go to (2) else go to (6).

(6) Stop. Set S consists of independent pivots.

Since at least one node is removed from Q at each step of the algorithm, it

runs very quickly. The set S will not necessarily be the maximal

independent subset of P, but will usually be quite good.
I

We implemented the above procedure but found that it was not

computationally as efficient as the idea described in the previous section.

The main difficulty is that the computational effort of determining for each

k in Q the set T(k) is essentially the same as actually performing the

pivot on k. To that time the work of determining the independent set S and

actually carrying out the independent pivots in S must be added. Overall

the computation time was increased by the attempt to parallelize the pivot

step, so it was abandoned.

5. COMPUTATIONAL RESULTS

In the course of our computational experiments we solved more than 500

randomly generated fully dense transportation problems on the Butterfly

computer. The averaged data is presented graphically in Figures 1 - 5. The

raw computational data appears in the appendix.

Figure 1 shows the performance of the parallel primal algorithm on square

transportation problems for sizes n = 500,1000,...,3000, and for shipping

mounts ranging from 1 (assignment problems) to 1000. As noted in (22] for

11

much svmaller problem sizes, the execution times increase with problem size and

with shipping amounts. We fitted these data points with an exponential
I

function of the form Kna and found that the exponent a ranged from a = 2.0

for assignment problems to a = 2.2 for transportation problems having

shipping amounts in the range [1,1000]. The correlation coefficients for all

of these were greater than .999, indicating an extremely good fit.

Figure 2 shows the effect of varying cost ranges and problem size on

execution times for assignment problems. The larger the cost range the less

the dual degeneracy the problem has. To put it differently the smaller the

cost range is the larger is the number of alternative optimal solutions. The

primal transportation algorithm is able to take advantage of dual degeneracy,
I

and is able to solve problems having smaller cost ranges much faster than

those having larger cost ranges. In contrast, some dual methods find the

opposite phenomena to be the case, see (19].

In order to determine the speedup factor of the parallel primal algorithm

we solved assignment problems with n = 500, 750, and 1000 on the Butterfly

computer with just one processor (no larger problems could be solved on a

single processor) and also solved the same problems with 2, 4, 6, 7, 8, 10,

12, and 14 processors. The averages of the execution times of these runs are

plotted in Figure 3. For problems having the same cost range the speedup

factor is the ratio of the execution time on one processor divided by the

smallest execution time achieved by using any number of processors. Note that

the speedup factor increases with problem size being about 2.2 for n = 500

and increasing to about 2.5 for n = 1000. Note also that the most

effective number of processors seems to be in the range 6 to 8 for this range

of problem sizes. As problems get larger, the primal algorithm should be able

12

to use more processors effectively to improve the efficiency of the search

part of the algorithm, as will become evident in the next two figures.

Since we were able to parallelize the search phase of the algorithm but

not the pivot phase it is important to find out whether the percentage of time

spent increased with problem size. We made runs on the sequential version of

the algorithm using a SUN work station. The average percentage of search time

for three assignment problems with sizes ranging from n = 100 to n = 2500 and

for two cost ranges [0,1000] and [0,10000], are shown in the bar graph of

Figure 4. The search percentage ranged from about 55% for n = 100 to about

95* for n = 2500. The fact that we parallelized the part of the sequential

algorithm that increases with n was the main reason for the good performance

of the parallel primal algorithm.

In order to investigate further the speedup of the parallel versus the

sequential code we made use of a speedup formula due to Rettberg and Thomas

[20]. Let T be the total execution time, let f the fraction of time spent

in the search phase of the algorithm, and let S be the speedup factor. Then

speedup, S, is

-i

S=- T p
(l-f)T + fT/p (l-f)p + f

In Figure 5 we have plotted this curve for problems having costs in the range

[0,1000] with f = .83 as can be observed in Figure 4. We also computed the

observed speedup values by dividing the execution time in Figure 3 for each

value of p into its value for p = 1. These points are also plotted in Figure

5. The maximum speedup observed when p = 8 was 70 percent of its

theoretical maximum value. We were unable to continue this study for larger

13

values of p because of the memory limitation of a single processor of the

Butterfly computer.

6. CONCLUSIONS

This paper is a continuation of the experimental investigations begun in

the 1970's on primal simplex transportation codes. It presents evidence that

the primal code is well suited for parallel computation at least with the

computer architecture of the Butterfly computer. Significant speedup factors

for parallel over sequential machines were achieved which enabled the parallel

ccmputer to solve fully dense transportation and assignment problems which are

at least one order of magnitude larger than those previously reported.

14

- - -- - - -- -

amP I

7

2000

1500

* ship [1.10001
M 1000- - ship [1,100]

-- ship [1,10]
ship 1]

500

0L

500 1000 1500 2000 2500 3000

Problim size. a

Figure 1. The effect on execution time of varying
shipping amounts for square dense
transportation problems. The cost range was
[0,1000). The lowest curve gives solution
times for assignment problems. Fourteen
parallel processors were used.

15

1200

1000-

600 -W (0,100001
600-~ [0 0,1000]

-. (0.100]

400-

200-

0
500 1000 1500 2000 2500 300

Problem zaze, a

Figure 2. The effect on execution tixes of varying
cost ranges for square assignment problems.
Fourteen parallel processors were used.

i6

200*

N A n-1000100.
m n-750

A 0 n-500

1 2 3 4 S I 7 I9101 12 13 14

Number of Process.,:

Figure 3. The effect On execution times of changing
the number of parallel processors for three
different assignment problem sizes. For
each curve the maximm speedup factor is
the ratio of the time for one processor
divided by the smallest time for any
nmer of processors.

17

*

100 p.,

80 •I

60.
I

[0,10001
[0,100001

40

20I

II

0'
100 250 500 1000 1500 2000 2500

Problem size, A

Figure 4. Search tine as a percentage of run time
on a sequential (SUN) computer. Two
different cost ranges (0,I000] and
(0,10000] were used.

1
18 "f" "e,

5.

-(I- Theoretical

4-

3-

0 Actual

22

Number -of Processor

Figure 5. Theoretical maximum speedup and actual
speedup as a function of the number of
processors in solving assignment problems
with cost ranges [0,1000]. The maxim=m
speedup, achieved with 8 processors, was
approximately 70 percent of the theoretical
maximum.

19

REFERENCES

1 1] Barr, R. S., F. Glover and D. Klingman. "The Alternating Basis Algorithm
for Assignment Problems." Mathematical Programming 13, (1977) 1-13.

1 2] Bertsekas, D. P.. "A New Algorithm for the Assignment Problem,"
Mthemtical Programing 21 (1981) 152-171.

[3] Braaley, G. H., G. G. Brown and G. W. Graves. "Design and Implementation
of Large Scale Primal Transshipment Algorithms." Management Science 24,
(1977) 1-34.

[4] Charnes, A., and W. W. Cooper. Management Models and Industrial
Applications of LInear Programing, Vol. I. Wiley, New York, 1961.

[5] Charnes, A., D. Karney, D. Klingman, J. Stutz and F. Glover. 1975.
"Past, Present and Future of Large Scale Transshipment Computer Codes and
Applications." Comp. Opns. Res. 2 (1975) 71-89.

[6] Dentzig, G. B.. Linear Programing and Extensions. Princeton U. Press,
Princeton, N.J., 1963.

[7] Derigs, V., "The Shortest Augmenting Path Method for Solving Assignment
Problems - Motivation and Computational Experience," Annals of
Operations Research 4 (1985/6) 57-102.

8] Dorhout, B., "Het lineaire toewijzingsproblem, vergelijking van
algorithmen," Report BN21, Stichting Mathematisch Centrum, Amsterdam
(1973).

[9] Ford, L. R. and D. R. Fulkerson, Flows in Networks, Princeton University
Press, Princeton, NJ. 1962.

[10] Glover, F. and D. Klingman. "Comment on a Note by Hatch on Network
Algorithms." Operations Research, 26, (1978) 370-374.

(11] Glover, F., D. Karney and D. Klingman. "Implementation and ComputationalComparisons of Primal, Dual and Primal-Dual Computer Codes for Minimum

Cost Network Flow Problems." Networks 4, (1974) 191-212.

[12] Hatch, R. S. "Bench Marks Comparing Transportation Codes Based on Primal
Simplex and Primal-Dual Algorithms." Operations Research (1975) 23,
1167-1171.

[13] Hung, M. S. and W. 0. Rom, "Solving the Assignment Problem by
Relaxation," Operations Research 28 (1980) 969-982.

[14] Kennington, J. L., and R. V. Helgason, Algorithms for Network Program'-
aming, Wiley-Interscience, New York, 1980.

[15] Kuhn, H. W., "The Hungarian Method for the Assignment Problem," Naval
Reearch Logistics Quarterly 2(1955) 83-97.

[16] Mrtello, S. and P. Toth, "Linear Assignment Problems," Annals of
Discrete Math. 31 (1987) 259-282.

20
U

[17] McGinnis, L. F., "Implementation and Testing of a Primal-Dual Algorithm
for the Assignment Problem," Operations Research 31 (1983) 277-291.

(18] Miller, D. L., and J. F. Pekny, "Results from a Parallel Branch and Bound
Algorithm for Solving Large Asymmetric Travelling Salesman Problems,"
Working Paper, April, 1988.

[19] Pekny, J. F. and D. L. Miller, "A Parallel Branch and Bound Algorithm for
Solving Large Asymmetric Traveling Salesman Problems," Working Paper,
May, 1988.

(20] Rettberg, R., and R. Thomas, "Contention is no Obstacle to Shared-Memory
Multiprocessing," Coa=. A.C.N., 29 (1986) 1202-1212.

(21] Srinivasan, V. and G. L. Thompson, "Accelerated algorithms for labelling
and relabelling of trees, with applications to distribution problems," J.
Assoc. Comput. Macb. 9(1972) 712-726.

[22] Srinivasan, V. and G. L. Thompson, "Benefit-cost analysis of coding
techniques for the primal transportation algorithm," J. Assoc. Comput.
MAch. 20(1973) 194-213.

(23] Srinivasan, V. and G. L. Thompson, "Cost Operator Algorithms for the
Transportation Problem," Mathematical Programaing 12 (1977) 372-391.

(24] Thompson, G. L., "A Recursive Method for Solving Assignment Problems,"
in: Studies on Graphs and Discrete Programing, Annals of Discrete
MAthematics II, ed. P. Hansen (North-Rolland, Amsterdam, 1981) 319-343.

[25] Tmizawa, N., "On Some Techniques Useful for Solution of Transportation
Network Problems." Networks 1 (1971) 173-194.

I

21

' -j

Appendix

The following four tables containI the run time information presented, in

Figures 1-5, and also-/additional information concerni the dispersion of run

times, build initial tree time, search and pivot time, number of rows

searched, number of pivots, and number of pivots per search. This information

may be useful to others who are implementing the primal or other

transportation algorithms on parallel computers. ,

22.

%'N

'

,

'p

W I jj !I li11 1 I I2 2I
1 1111 .Mm=

Ship [I]

runs size run time run time build tree search and rows number pivots
avg/std min/max time pivot time searched pivots /search

10 500 22.3/1.3 20.5/24.7 5.3 16.3 19961 9601 6.74
10 1000 86.3/5.3 78.0/93.5 20.9 64.2 59424 30536 7.21
10 1500 203.4/12.1 188.5/229.1 47.8 153.6 118073 60914 7.23
10 2000 370.4/16.7 346.8/402.4 82.0 285.8 192375 103853 7.56
10 2500 578.1/19.1 556.0/610.0 130.2 444.8 254412 145625 8.02
10 3000 801.4/32.5 753.11854.3 181.8 615.6 309771 187116 8.46

Ship [1,10]

runs size run time run time build tree search and rows number pivots

avg/std min/max time pivot time searched pivots /search

10 500 25.8/2.1 23.5/29.2 4.6 20.6 15187 5954 5.47

10 1000 99.9/13.6 87.9/134.4 17.8 80.9 40616 16829 5.75

10 1500 223.6/20.6 196.6/270.8 39.2 182.4 71565 30166 5.89

10 2000 405.4/35.4 375.0/485.0 71.4 331.3 109752 46122 5.87

10 2500 653.4/34.5 609.3/707.0 111.8 538.5 156575 66126 5.92

9 3000 931.2/85.9 849.2/1143.5 158.5 768.7 194868 85376 6.15

Ship [1,100]

runs size run time run time build tree search and rows number pivots
avg/std min/max time pivot time searched pivots /search

10 500 56.3/66.1 32.0/244.4 4.5 51.2 14978 5148 4.80
10 1000 142.9/27.0 125.8/218.8 17.5 124.2 37595 13044 4.82
10 1500 337.9/43.2 308.31447.2 40.0 296.1 64167 22166 4.84
10 2000 635.5/84.5 577.8/843.6 69.0 564.0 98075 33001 4.68
10 2500 1025.8/94.2 947.7/1250.0 109.0 913.7 124921 44339 4.96
10 3000 1522.7/179.5 1404.3/1948.3 155.8 1363.2 161806 56584 4.90

Ship [1,1000]

runs size run time run time build tree search and rows number pivots
avg(std min/max time pivot time searched pivots /search

10 500 38.5/3.8 33.8/45.2 4.5 33.4 14683 5154 4.90
10 1000 168.4/33.9 146.3/261.3 17.5 149.6 39022 12891 4.60
10 1500 399.5/48.3 351.5/524.6 38.8 358.8 64849 21729 4.69
10 2000 784.2/97.0 696.0/1027.6 70.1 711.3 101129 32223 4.45
10 2500 1279.5/110.8 1185.2/1525.9 110.2 1166.1 128667 42681 4.66

8 3000 1937.1/262.6 1795.2/2578.5 156.7 1776.3 163039 54173 4.67

Table 1. Raw data for the graphs in Figure 1. All problems
were randomly generated with costs in the range
(0,10001. All problems were solved using a 14
processor butterfly computer.

23

Cost [0,1001

runs size run time run time build tree search and rows number pivots
avg/std min/max time pivot time searched pivots /search

10 500 13.9/0.8 12.5/15.5 7.2 5.9 7996 3880 6.81
10 1000 41.1/1.3 38.9/42.9 28.0 11.7 9805 5124 7.33
10 1500 79.3/3.1 74.1/83.2 60.7 16.4 11725 5871 7.02
10 2000 135.4/5.9 125.6/142.3 107.0 25.4 13386 6470 6.78
10 2500 200.3/4.0 195.5/207.5 168.5 28.0 15190 7222 6.66
10 3000 281.9/10.6 264.9/301.9 243.7 33.7 17133 7844 6.42

Cost (0,1000]

runs size run time run time build tree search and rows number pivots
avg/std min/max time pivot time searched pivots /search

10 500 22.3/1.3 20.5/24.7 5.3 16.3 19961 9601 6.74
10 1000 86.3/5.3 78.0/93.5 20.9 64.2 59424 30536 7.21
10 1500 203.4/12.1 188.5/229.1 47.8 153.6 118073 60914 7.23
10 2000 370.4/16.7 346.8/402.4 82.0 285.8 192375 103853 7.56
10 2500 578.1/19.1 556.0/610.0 130.2 444.8 254412 145625 8.02
10 3000 801.4/32.5 753.1/854.3 181.8 615.6 309771 187116 8.46

I.

Cost [0,10000]

runs size run time run time build tree search and rows number pivots
avg/std min/max time pivot time searched pivots /search

10 500 23.6/1.6 19.6/25.2 5.3 17.7 22605 10718 6.64 V
10 1000 98.4/6.7 89.3/111.4 21.4 75.7 73509 38064 7.26
10 1500 237.9/10.8 219.6/257.5 46.6 189.3 157858 84369 7.50
10 2000 449.8/29.3 422.3/504.4 82.7 364.4 265005 146606 7.75
10 2500 748.7/41.0 668.8/819.5 135.7 609.8 402653 221668 7.71
10 3000 1136.4/60.0 1001.1/1220.7 185.2 947.2 567511 324035 8.00

Table 2. Raw data for Figure 2. All the problems were
randomly generated assigrment problems of
stated sizes and costs chosen in the given
ranges. All were solved using a 14 processor
Butterfly computer.

24

N
'.%.*.~ ., ~ 'N ,

W AA -J X f ?Ww. . . . i L't , ..

Execution Time vs. Processors

Processors n = 500 n = 750 b 1000

1 45.7 104.3 199.3

2 32.0 73.7 138.3

4 23.5 52.3 102.2

6 22.23 49.2 86.5

7 22.3 - 86.3

8 21.6 47.7 77.6

10 21.0 48.3 81.8

12 21.0 48.7 86.8

14 21.0 49.3 83.9

Table 3. Data used for Figures 3 and 5. All
problems were randomly generated
assignment problems with costs in
the range [0,1000]

Search Time as a Percentage
of Execution Time

n Cost Cost
[0,1000] [0,10000]

100 56.4 54.1

250 61.7 63.9

500 78.1 78.6

1000 82.8 94.2

1500 94.2 95.5

2000 95.0 96.0

2500 94.8 96.4
,.'

Table 4. Data for the graph in Figure 4. The
numbers are average times for the solution
of three randomly generated assignment
problems for various problem sizes and
two different cost ranges. All problem
were solved by a sequential version of
the primal code on a SUN work station.

25

We-

