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A NOTE ON DERIVING A RESULT IN DECISION THEORY

INTRODUCTION

A number of textbooks in mathematical statistics [see, e.g., Ref. 1] include an exercise to verify
that if X is a continuous random variable with finite expectation E(X) and density function f (x), then
E IX - c I is minimized for c = m, where m is the median of f. This result is used in statistical
decision theory (see, e.g., Ref. 2].

The usual way authors show this is to first show that

EIX -Cl =EIX -mI +25 (c -x)f(x)dx.

Since the term containing the integral in the above equation is nonnegative, one concludes that
EIX -ml - EIX - c1,andthusElX - cI is minimized at c -m.

MINIMIZING THE EXPECTED VALUE

The reader might be interested in knowing how one determines beforehand that the median is a
plausible candidate for the global minimum. The exercise above asks to show that the median does,
in fact, yield a minimum. However, one may not see readily why it is reasonable to choose the
median in the first place. This note addresses this issue. We will show directly that the median is
the required value which yields the global minimum for E I X - c I. Our derivation will also show
the asymptotic nature of this expectation.

Defining G(c) - E IX - c l, we compute G'(c) and show that it vanishes at c = m. We
have,

G(c) = I lx - c If(x)dx

C

= (c - x) f(x)dx + (x - c)f(x)dx

C c[ . f (x)dx -Jcf (x)dxJI

+ xf (x)dx - I_.xf (x)dx

Now differentiating G(c) with respect to c, we arrive at

C

G'(c) = .j f (x).dx -3 f(x)dx

= 2F(c) -I.

fManuscript approved February 20. 1988.
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where F(x) is the cumulative density function. Finally, we see that G '(c) = 0 if and only if
c = m. Thus we have found a possible local minimum at c = m.

Now it is easy to show that we have the global minimum at the median. Suppose c > m.
Then G '(c) a 0. Further, for c < m, we have G '(c) - 0. Thus, we conclude that G(c) assumes
an absolute or global minimum at c = m.

ASYMPTOTES FOR THE EXPECTED VALUE

It is interesting to note that as c - L oo, then G '(c) - -t 1. Also, we note that for c - 00.

G(c) - c - E(X),

and forc - -c,

G(c) - -c + E(X)

where "-" means "asymptotically equal to". Equivalently, we can write

lira E(X) * G(c) .

C-± * 00 C

Further, we remark that G(c) always lies above the asymptotes.

REFERENCES

1. Cramir, Harold (1946), Mathematical Methods of Statistics, Princeton University Press, Prince-
ton, N.J.

2. DeGroot, Morris H. (1970), Optimal Statistical Decisions, McGraw-Hill, New York.

2

.1
d

q


