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Simple upwind schemes are the basis of many codes of practical

importance for design studies in heat transfer and fluid flow

applications, e.g. the FLOW3D code. [i4 With care, it is possible to

produce codes that can give bounded answers regardless of meshspacing or
time,step size. This note highlights a rather disturbing inaccuracy that

can arise if the mesh/spacing -E)is taken too large. . -.

The relevant dimensionless measure of &x for fluid flow

calculations is the mesh Reynolds number R m, defiaed like the usual

Reynolds number R, but with Ax as length-scale. It has become

customary [2,3] to study the effects of large R using the viscousm

Burgers' equation as a model. Following the work of Cheng and Shubin

[2], hereinafter referred to as "CS", we consider steady state flows ,(x)

which must satisfy

R (1)

subject to boundary conditions u(± ) = 77.

The boundary conditions of oppositely directed flow lead at large R

to the formation of a viscous layer at x = 0 where the flow u abruptly

changes direction. The problem is sufficiently simple that an analytic

solution is available, namely

u(x) - - c tanh(aRx/2), (2)

where a is the positive root of

a tanh(aR/2) = 1 . (3)
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Evidently the viscous layer has thickness 1/R; when this is small

relative to the mesh-spacing employed in a numerical calculation, we shall

see that troublesome errors may occur.

For the purposes of this note, the antisymmetry about x = 0 means

we need only consider what happens on the interval x = 0 to x = 1. We

introduce a uniformly spaced mesh, with points

x. - i Ax, i = 0, ... , N, (Ndx - 1), (4)1

and seek values ui, i = 0, .. , N, to approximate u(x.). The

operators ubu/bc and a/ N
2 

must also be discretised.

For u /x we use the customary conservative upwind difference

scheme as proposed by Patankar [4] for advection of a scalar, such as

temperature T. In that situation it is convenient to use staggered

meshes, i.e. u. and T. are defined at points separated by Ax/2. If

this formalism is applied to Burgers' equation, it follows we need to have

some way of approximating u at points x i+1 /2 = (i+1/2)5x. (A slightly

different treatment is required to give the conservative upwind scheme

described in CS.) Inevitably we take

ui+1/2 - (ui + ui+1)/2, (5)

giving (since ui < 0 for i > 0) the discrete analogue of Burgers'

equation

R[l'(ui + ui+,)i+I -1(ui_ = ui- 2u, + u,+1
2 2

2 bx ( )2
i = 1. . , - .(6)
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(We have taken the customary 3 point centred diference formula for the

diffusion operator.) Eq.(6) can be used to formulate the CS problem as

u 2 i - u 2 u i ~ i I u - 4

+- (u - (ui I - 2u i + ui
R

m
i I . , N - 1, (7)

subject to u. 0, u N  -1.

Following CS, we.-Sum over equations (7); because the scheme is

conservative, internal contributions cancel pairwise, giving

-U 2  - UoU l + u 2 + , =l 4 u N + u
N1 1  N uu°-ul - UN-1 +u (8)

m

Since u0  and uN are given, this is a quadratic equation for u1  in

terms of uN-1 .  Writing UN-I = - 1 + F, we obtain

2 I 2 2 4
u= - - V-) + 2

-c - - }. (9)
R R R
m m m

By Taylor expanding the exact solution (2) about x = 1, we find

R
e -(10)

2 sinh
2
(mR/2)

For R >> 1, (3) implies a = 1, hence both e and E/Km are small,

and

2 + 2
ul -+ 2t) + 2 (11)

R R
m m
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ii
i.e. as R m ,u I  V 2 (we take the negative root because (7)

assumes ui 4 0, all i ).

The exact solution (2) is monotone and for large R, u = - 1

everywhere outside a narrow layer. Hence the scheme (6) produces a result

in error by -40% if R is too large, ot equivalently Ax > 1/R, i.e.

the viscous layer is not resolved. The worrying feature is that the

misleading result is obtained for any sufficiently high R m, thus halvinq

tx need not change the value of the velocity at the first interior

mesh-point. Only by checking the spatial distribution of the computed u.

can the error be detected, see Fig. 1.

There remains the question of error behaviour at smaller R . Fig. 2
m

plots the difference E between ul (eq.(11)) and the true value of

u(Ax) from (2). We see that the error E passes through zero for

Rm - 3.3, and thus that E < 3% provided Rm 4 3.8. Over this range

of R , the Patankar scheme outperforms the conservative upwind scheme in

CS which gives errors of up to about 17%. Misleading results are obtained

only at higher R .

Lest it be thought that the model problem is too idealised to be of

practical use, we remark that a 40% error in velocity will lead to a

similar error in heat fluxes, other things being equal. A mesh refinement

study was conducted, using the FLOW3D code, for the Rayleigh-Benard

proble in a closed box of aspect ratio 3/2 (see [5] for more details).

The results obtained, for a Rayleigh number Ra = 120000 and Prandtl number

Pr = 2.5 are listed in Table I. Observe that the error in heat flux Nu

depends on R much as we should expect from Fig.2, and that the error is

as large as 25% when R = 7.

Detailed inspection of the flow field from the finer mesh reveals the

presence of small counter-circulating "Moffatt" eddies in the corners of

the box. Overall, flow is more vigorous on the finest mesh, R = 49
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against R = 40 on the coarsest, but in a corner, at e.g (x,z) = (17/12,

1'6) we have that the vertical component of velocity U = - 12 asz
against U = - 22 on the coarser mesh with Lx = 1/6. The greaterz
speeds in all four corners are apparently ultimately responsible for the

increased heat flux Nu, since the breakdown of Nu into conductive and

convective contributions (at z = 1/24) is: 4.01 and 0.96 on this coarse

mesh, 3.84 and 0.12 on the finest mesh. Obviously the situation is not

as clear cut as could be desired. Studies even at low Prandtl number show

that the linkage between velocity and temperature fields persists (i.e. we

cannot find an accurate temperature distribution unless the velocity is

correspondingly well represented). However, a two-dimensional version of

the above, spurious velocity enhancement mechanism, must be a strong

candidate to explain the faster flow on the coarser meshes.
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Table I

Mesh refinement study using FLOW3D for the Rayleigh-Benard problem in a

closed box of aspect ratio 3/2 at a Rayleigh number of 120 000 (Prandtl

number 2.5). R is mesh Reynolds number and Nu is the total heat flux,

across a plane near a horizontal boundary, normalised with respect to the

conductive flux in the absence of convection.

1/ &x R NU

4 10. 4.541

6 7.2 4.967

12 3.7 3.940

24 2.0 3.951

48 1.0 3.963
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Fig. I Steady state solutions at R = 500 for the viscous Burgers'
equation, obtained using the Patankar scheme with (a) 4,x=0.2, (b)
Ax=0.I. Observe that reducing R. by a factor of two has no effect
on the maximum.
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