'-‘ R ARRTY .~ ‘.. ..-.‘,‘4‘ ¢4 PR » ~-'.‘ .'.. Py ..\",,.. o ~ ) “da . 0 .'.v S \-‘- -, -.- I.!~’1

B B F . g )3
- SECURNITY T Asg?‘il:;:lsoil:" 'EPIS PAGE rWhen Deta Entered) ’l E COPV

A
: : READ INSTRUCTIONS ¢
o 1 REPORT NUMBER 2. GOVY ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER (
h Al Memo 1019 '
‘ 4 TITLE rand Subtitle) S. TYPE OF REPORT & PERIOD COVERED ]
' The Combinatorics of Object Recognition in memorandum !
: Cluttered Environments Using Constrained Search -':
‘ §. PERFORMING ORG. REFORT NUMBER iy
¢ )
: 7. AUTROR(e) 3. CONTRACT OR GRANT NUMBERA(s) ;z
" . Eric L. Grimson DACA76-85-C-0010
¢ N NOOO14-85-K-0124 N
‘ u AFORMING ORGANIZATION NAME AND ADDRESS 10. ::EgRQA“OEHL!“ENTT PROJECT, TASK .
w
MIT Artificial Intelligence Laboratory K UNIT NuMBERS ,
: (o] 545 Technology Square t
N Cambridge, MA 02139 )
\ o !ONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE v
§ < Advanced Research Projects Agency February 1988 :
% 1400 Wilson Blvd. 3. NUMBER OF PAGES .
b Arlington, VA 22209 41 N
Q MONITORING AGENCY NAME & ADODRESS(/! different from Conirelling Office) | 18. SECURITY CLASS. (o/ this report) <
< Office of Naval Research Unclassified _ B
Information Systems h
Arlington, VA 22217 18a. O L A3SIFICATION/OGWNGRADING K
ODISTRIBUTION STATEMENT (of thie Repor() h
h -
Unlimited DISTRIBUTION STATEMENT A )
. Appioved for pubkic raleasey b
; i Distribution Ualimited '
{ 17. OISTRIBUTION STATEMENT (of tNe abetract entered In Nieck 20, Il different trom Repert) :
' - DTIC |
“h
. 18. SUPPLEMENTARY NOTES ' d
, JUN 1 5 888 %
¥
None N
v 19. KEY WORDS (Continue on reverse side Il necoseary and identily by biock number) - ':
' > object recognition .. iy proecfg 0 -
) Hough transform, ' T R
A combinatoric complexity : -
D o,
: 20. ABSTAMACT (Continue en reverse slde Il necenseary and ldentily by block mamber) ::
\ Abstract.' The problem of recognizing rigid objects from noisy sensory data has been -
¥ successfully attacked in previous work by using a constrained search approach. Empirical g
; investigations have shown the method to be very effective when recognizing and localizing Ky
isolated objects, but less effective when dealing with occluded objects where much of the
K sensory data arises from objects other than the one of interest. When clustering techniques 3
X such as the Hough transform are usea to isolate likely subspaces of the search space, '
| empiricial performance in cluttered scenes improves considerably. ;_ln this note.»wgestablishg < .'.
. “
¢
‘ DD , 5n'5: 1473  eoimion oF 1 nov 3 1s ossoLETE UNCLASSIFIED .
S/N 0:02-014- 6601 1
2 SECURITY CLASSIFICATION OF THIS PAGE (When Dats interec -
A ~3

L ¥
PP R m A A s A ST T . - - e e ~ " .
" o) "f\..\v"- '\""p '-"‘-'_ . —._‘. :-'_ P ._‘.-" T AP IO CR VRl -,,:"\.,' ., ._'\‘_. (:i_.- J'".“ " - -”‘-’\ Py \"_ - -F . %,‘ -':.’"J“f




NP AN S AT L S gt

>4
o
. -
2]
»
> 4
$
Block 20 cont. ) : '
y »
— . . . . . )
—. formal bounds on the combinatorics of this approach. Under some simple assumptions, .
the expected complexity of recognizing isolated objects is quadratic in the i
number of model and sensory fragments, but the expected complexity of recognizing 3
objects in cluttered environments ia exponential in the size of the correct interpretation. . |f
/—Wo.also-pxmudoformal boundson the efficacy of using the Hough transform to preselect Yy
likely subspaces, showing that problem remains exponential, but that in practical terms, 'I‘\ :

the size of the problem is significantly decreased. ;. ) &

7 R

-
-

)

N
,
~

W A ST
)
Bl

SIES

o e TV

o P
«, X
. C-A

N

[t

‘;_II‘I{-l‘

3 h ]
L J ;.‘-’ﬂ;-,

»
RARL WA T =¥

AAAN AN NGO,
« 9 ¥ %

PP Ty PP T e PO N > o e ) \ ‘ : )
Syl (R "Vﬁ I’.‘t‘. .b') " a w‘. ' -'N-f" M f‘ f \-? >, el \i-"' " e e Al WS " '



o 850 D0 3 %0 Bt gty AV 8% 8 e BV 8T 075 4V B 0 0 B0 0.0 1 R 8 0 e Bt at R © Ra0 1a" 0at 92% 0a% 0a® 00 02" B2’ 0a" B’ Ba® Ba¥ BV $a® 0% Bat Ps’ a0 e’ Ba® 08" 82% U’ la®nbe’ .,...."&.

%% %5

5 ]
"t

MASSACHUSETTS INSTITUTE OF TECHNOLOGY .:
ARTIFICIAL INTELLIGENCE LABORATORY v
(]
»
X
A\l
A.L. Memo No. 1019 February, 1988 -
N
]
) >
Y The Combinatorics of Object Recognition ..:
in Cluttered Environments using Constrained Search A
'
»
W. Eric L. Grimson R
; .
Abstract. The problem of recognizing rigid objects from noisy sensory data has been
successfully attacked in previous work by using a constrained search approach. Empirical L
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\RSARY 1. Object Recognition

X - . :

N Recogrizing and locating objects from sensory data is a common element of many of

At the tasks that an intelligent system must perform. Variations of the problem arise

',:: in tasks ranging from visual inspection to hand-eye coordination to autonomous

"y vehiclelocalization. In all of these domains, the recognition problem can be generally

" characterized as follows: Given a set of object models, and given sensory data about

) some environment, find all the instances of the models in the environment, both

;: identifying the existence of an instance, and identifying the location of that instance.

;Q' Each solution to the recognition problem usually consists of a specification of which

K subset of the sensory data accounts for the object instance and the transformation
, needed to map the object model from its own inherent coordinate frame into the

‘z sensor’s coordinate frame, in order to account for the sensory data.

! Clearly, the information contained in the sensory data can significantly influence
5 possible approaches to the problem. In general, the data may come from any of a
( number of modalities, including visual, range and tactile data, and that data is gen-

erally noisy, partially occluded and partially spurious. Although other approaches

:"t are possible, we shall restrict our attention to the case in which the sensory data,
R from any of these modalities, can be processed to derive measurements about the
o geometry of local portions of the object’s boundary. In order to be robust, a recogni-
¢ PE tion system must be able to deal with measurements of the position and orientation
) L of a patch of surface that are noisy. As well, the data may come from environments
i‘ ‘ in which much of the data is spurious, arising from objects other than the one of
e interest, and in which much of the object of interest is occluded, so that sensory
.: data is available only for some portions of the object.
D The problem of recognizing rigid objects from noisy sensory data has been suc-
. cessfully attacked in previous work by using a constrained search approach [Grimson
;:: and Lozano-Pérez 84, 87]. Empirical investigations have shown the method to be
pr very cffective when recognizing and localizing isolated objects, but less effective
::', when dealing with occluded objects where much of the sensory data arises from ob-
" jects other than the one of interest. When clustering techniques such as the Hough
transform are used to isolate likely subspaces of the search space, empiricial perfor-
’ mance in cluttered scenes improves considerably. In this note, we establish formal

bounds on the combinatorics of this approach. Under some simple assumptions, we
show that the expected complexity of recognizing isolated objects is quadratic in
the number of moedel and sensory fragments, but that the expected complexity of
recognizing objects in cluttered environinents is exponential in the size of the correct

‘: interpretation. We also provide formal bounds on the efficacy ot using the Hough
A transform to preselect likely subspaces, showing that problem remains exponential,

: but that in practical terms, the size of the problem is significantlv decreased.

o) In the remainder of this section, we briefly describe the constrained search

method used to solve the recognition problem. In section 2, we consider the com-
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binatorics of unoccluded objects, obtaining general expressions for the expected '-_._\,':' -
| search. These results are extended to occluded objects in section 3. Specific bounds )
} relating the combinatorics to the object recognition problem are derived in sections | "k
4 and 5. The impact of Hough transforms on the problem are considered in section A
6. !
X
4
1.1 Definition of a solution
Y
L
In more formal terms, a solution to the recognition problem consists of a triplet, A
(ObjeCti’ {(d,—, » Mgy )’ (diz » Mgy )s- - (dik s My, )} ’ T) A
where object,; identifies which object from a library of known objects, the (d,m) P
pairings are associations of a subset of the sensory data, d, with model elements, m, "
from object; and 7 is a transformation from model coordinates to sensor coordi- ‘:1
nates such that each data fragment agrees with its transformed model element, to :ct
within noise bounds. ':‘;

Stated in such general terms, there are a variety of possibilities for specifying

the recognition problem, with variations in the types of models, the specifics of the 4 .
sensor data, and thie method used to find the transformation. In this article, we will -
restrict attention to the following specific case. s
e  We will assume that the objects are modeled as polygons or polyhedra, so that A ;

each m; is a linear segment. The models need not be complete, so that gaps SOEEA
are allowed. ® - =
o We will also assume that the sensory data, d;, can be processed to produce .:
estimates of the geometry of linear fragments of the object’s boundary, either
line segments in the case of two-dimensional data, or planar patches in the case ‘ ;
of three-dimensional data. e
o  We will assume that the objects are rigid, so that the transformation 7 maps g,
points v,, in model coordinates into points v, in sensor coordinates by '..;
V4 = Rvm + vo ..t:
where R is a rotation matrix, and vq is a translation vector. B\
Even in this case,there are a variety of techniques for finding the solution, most of .’_
which can be considered as different forms of search. Successful approaches have N
included maximal clique techniques [e.g. Bolles and Caiun 82, Bolles et al. 84], ’ \
hypothesize and test methods [e.g. Ayache and Faugeras 86] and constrained search >
[e.g. Grimson and Lozano-Pérez 84, 87]. In this article, we are interested in the e
constrained search approach. -
o<
1.2 Constrained search as applied to recognition ::
ot
The basic idea is to find legitimate pairings of data and model fragments by a 3k
depth first search of an interpretation tree (I1T). We begin by associating the first = d
N
N h
<
‘,
L]
Y
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data fragment with the first model face, and represent this by a node at the first
level of the tree. If this association is feasible, we consider associating the second
data fragment with the first model face, represented as a node at the second level
of the tree, which is a son of the first node. If this pair of associations is still
feasible, we continue downward in the tree, associating model faces with the next
data fragment. If this pair of associations is not feasible, then we backtrack, and
consider associating the data fragment with the second model face, and so on. Once
we have considered the association oi a data fragment with all of the m model faces,
we also consider excluding the data fragment from the interpretation, by associating
it with the wild card (*) or null branch. Thus, each node of the tree describes a
partial interpretation of the data, and implicitly contains a set of pairings of data
fragnients and model faces. Nodes at the i** level of the tree define assignments
for the first ¢ data fragments. Each node branches at the next level in up to m + 1
ways, where m is the number of model faces in the object. The last branch is a wild
card or null branch and has the effect of excluding the data fragment corresponding
to the current level of the tree from the interpretation defined at that node. An
example is shown in Figure 1. With the inclusion of the wild card branch, any node
at level ¢ defines a mapping from a subset of the first i data points to actual faces
of the object model.
Given s data fragments, any leaf of the tree specifies an interpretation

{(d1,mj,),(dz,m},),...(ds, mj,)},
where some of the mj, may be the wild card character. By excluding such matches,
the leaf yields a partial interpretation

(i) iy, ), (i ms, )}

where 1 <4y < i3 < ... < 1, but these indices may not include the entire set from 1
to s. This interpretation may then be used to solve for a rigid, scaled transformation
that maps model faces into corresponding data fragments, if such a transformation
exists. This transformation must map the faces so that both the position and the
orientation of the face are consistent with the associated data point, modulo noise
in the measurements. Thus, by searching for leaves of the tree and testing that the
interpretation there yields a legal transformation, we can find possible instances of
object models in the data, and solve the recognition problem.

Because this search process is inherently an exponential problem, the key to an
efficient solution is to use constraints to remove large subtrees from consideration
without explicitly having to explore them, thereby providing a specific definition for
the notion of feasible in the above discussion. In [Grimson and Lozano-Pérez 84, 87]
we describe a constrained search method called RAF (for Recognition and Attitude
Finder), that uses a set of constraints based on the relative shape of parts of objects,
either in two dimensions or in three. In this work, the object models and the sensory
data consist of linear edge or face fragments. The constraints include the following:

e The length (area) of a data fragment must be smaller than the length (area) of
a corresponding model fragment, up to some bounded measurement error;




Interpretation: ((d, m,) (dy*) (dgmy))

Figure 1. An Interpretation Tree. Each node of the tree defines a partial interpretation,
where the level of each ancestor defines a sensory data point, and the branch leading
to each such node defines the corresponding model fragment. An example of a partial
interpretation is shown, where d; denotes the i*"* data point and m,, denotes the k** model
fragment. The * indicates the wild card branch, corresponding to the exclusion of the
associated data point from the interpretation.

The angle between the normals to a pair of data fragments must differ from the
angle between the normals of the corresponding model fragments by no more
than a bounded measurement error;

The range of distances between two data fragments must lie within the range
of distances of the corresponding model fragments, where the model range has
been expanded to account for measurement. errors;

The range of components of a vector spanning the two data fragments in the di-
rection of each of the fragments’ normal must lie within the corresponding range

of components for vectors spanning the model fragments, modulo measurement
error.

A data fragment assigned to the wild card is always consistent.

It is possible to extend these constraints to handle the recognition of curved objects
in two dimensions [Grimson 87], but here we stay with linear elements.
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't QE% 1.3 The constraints reduce the search :

¢ " :
Given these unary and binary constraints, the constrained search process consists

’: of a depth first search, with downward termination based on constraint consistency. )

:f Suppose the search process is currently at some node at level k in the interpretation :

i tree and with a consistent partial interpretation given by :

) ) *

3 Ik={(dl,mjl),(dz,mj,),...(dk,mjk)}. '

a We now consider the next data fragment di,q, and its possible assignment to model

:' face mj,,,, where jx41 varies from 1 to m + 1. This leads to a potential new

:: interpretation p

: Ik+1 = {(dl,mj,),(dg,mj?),...(dk+1,mjk+l)} :

A The following rules hold.

'. » . . . 0

n e Ifmj,,, is the wild card match, then the new interpretation I+, is consistent, '

N and we continue downward in our search. ;

\ e Ifmj,,, isareal model edge fragment, we must verify that the length constraint :

k holds for matching dx4+1 to mj,,,, and that the angle, distance and component g

( constraints hold for the pairings [(dk+1,™Mjy,, ), (di,mj;)], for 1 < i < k.

" e If all of these constraints are true, then the new interpretation Ix;; is a con- N

sistent partial interpretation, and we continue our depth first search. If one of
them is false, then the partial interpretation is inconsistent. In this case, we

IO

LY increment the model face index jg4+1 by 1 and try again with a new I, until b
(Q Je1 =m+ 1. )
If the search process is currently at some node at level k in the interpretation tree, '
’ and has an inconsistent partial interpretation given by -
v Ik:.—{(dl,mj,),(dg,mb),...(dk,m]-k)}
‘ then it is in the process of backtracking. If jx = m+ 1 (the wild card) we backtrack
X up another level, otherwise we increment j; and continue.
3
2
1.4 Model tests
» Once the search process reaches a leaf of the interpretation tree, we have accounted
X for all of the data points. We are now ready to determine if the interpretation is in
" . . . . 3 . .
N fact globally valid. To do this, we solve for a rigid transformation mapping points .
N v,, in model coordinates into points v4 in sensor coordinates, <
Y vie = Rv, +vo
; where R is a rotation matrix, and vg is a translation vector. We can solve for this \
A transformation in a number of ways [e.g. Grimson and Lozano-Pérez 84, 87, Ayache D
:, and Faugeras 86). y
:' Given such a transformation, which is usually found ucing some type of least ]
' squares fit, we must then ensure that the interpretation actually satisfies it. We do
k- -f?rf '
SR 3
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this by considering each of the data fragments associated with a real model frag-
ment in the interpretation, and transforming the associated model fragment by the
computed transform. For each such fragment, we then verify that the transformed
fragment differs in position and orientation from its associated data fragment by
amounts that are less than some acceptable error bounds. These bounds on trans-
form error can be obtained from the predefined bounds on the sensor error [Grimson

86b]. Any interpretation that passes such a model test is a consistent interpretation
of the data.

1.5 Additional search reductions

While the constrained search technique described above will succeed in finding all
consistent interpretations of the sensory data, for a given object model, it is not
particularly efficient. This is mostly due to the problem of segmenting the data to
determine subsets that belong to a single object. Indeed, if all of the sensory data
do belong to one object, the described method is known to be quite efficient, as has
been verified both empirically [Grimson and Lozano-Pérez 84, 87] and theoretically
[Grimson 86a). In order to improve the efficiency of the method, we can add two
additional methods to our search process, both previously discussed for the case
of linear fragments in [{Grimson and Lozano-Pérez 87], and extended to circular
fragments in [Grimson 87].

The first is to use a parameter hashing scheme, such as a Hough transform. to
hypothesize small subspaces of the entire search space that are likely to contain an
interpretation (a more detailed treatment of the Hough transform appears in a later
section). The second is to use a measure of goodness of match, such as the portion of
the object perimeter (in 2D) or the object surface area (in 3D) correctly accounted
for by the matched sensory data, to prematurely terminate the search process. That
is, as soon as an interpretation is found whose value under that measure exceeds
a predefined threshold, the search process is terminated, with that interpretation
taken as the correct solution. Both of these methods are known empirically to
considerably reduce the search needed.

1.6 Empirical Performance

The recognition method described in the previous sections has been tested on a vari-
ety of data, including two dimensional recognition from grey-level images [Grimson
and Lozano-Pérez 84, 87], and three-dimensional recognition from laser range data
[Grimson and Lozano-Pérez 87), silhouettes [Van Hove 87], stereo data [Porrill, et
al. 87], motion data [Murray 87] and tactile data [Grimson and Lozano-Pérez 84]. In
all of these cases, the method typicallv finds a unique interpretation quite rapidly.
in the presence of varying amounts of sensor noise.

For example, in [Grimson and Lozano-Pérez 87], we report on experiments in
which an object containing 50 model edges was correctly identified in scenes contain-
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% ing 100 data edges, when as little as .25 percent of the object was visible in the scene. -t
Over 100 different trials, the median search effort involved the exploration of 59000 y
nodes of the interpretation tree when using a Hough transform. In elapsed time,

such exploration typically took only a few seconds on a Symbolics Lisp Machine.

T e g - -

2. The Combinatorics of Isolated Objects

I\

Given that the RAF recognition technique has good empirical performance, our goal
is to prove that such empirical observations are generally valid. We begin by consid-
ering the combinatorics of recognizing isolated objects, that is, situations in which
all of the sensory data is known to lie on a single object. An earlier study of this
problem is presented in [Grimson 86a]. In that study, we used a simple model of the
recognition system to develop estimates of the performance of the system. In this )
section, we use a more complete model to develop better bounds on the performance )

-
> -

v - -

of the system.
Because we formulate it as a search process, our approach to object recognition ;
can be considered as a problem of constraint satisfaction, or consistent labeling. .
There are several general results available concerning the characteristics of consis-
tent labeling techniques [e.g. Freuder 78, 82, Gaschnig 79, Haralick and Elliot 80, .
‘:E‘ Haralick and Shapiro 79, Mackworth 77, Mackworth and Freuder 85, Montanari d
: 74, Nudel 83, Waltz 75]. In particular, general bounds on the expected number of
o solutions, on the expected number of consistency checks performed at each level of
the search tree, and on the expected number of consistent nodes at each level of the P~
; tree are known. We will use a specific instance of the framework provided by these '
results to derive explicit bounds on our version of the recognition problem.

-

bl Al

2.1 Model of consistency — unoccluded case

b We are particularly interested in bounds on the number of interpretations delivered
by the system, and in bounds on the amount of work performed by the system, in
this case measured as the number of nodes of the search tree actually explored by -y
the system. Since our method uses both unary and binary constraints, we need to )
model the probability that a data-model assignment is consistent and the probability
that a pair of data-model assignments are consistent.

We let ¢; ; denote the probability that assigning the ¢** data element to the I
model element is consistent, and we let q; ;.1 s denote the probability that the pair "
. of assignments i v I, j + J is consistent. Our model of the recognition problem is by
[ defined as follows. 3

For a single data-model pairing, if the pairing is part of the correct interpre-
tation, the probability of consistency is simply 1. If it is not correct, we let the '
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" probability of consistency be py. Thus, we have W
v
1 if2+— I is correct
. g1 = horwi y
! m otherwise. l
¢ ¥
o For a pair of assignments, suppose we are considering a match in which data i
: . . . . .
;: fragmeuts 7,j are paired with model fragments I,J respectively. We will model “
:: the situation by saying that the consistency of this pair of pairs has probability
1 if these pairings are part of the correct interpretation, and has probability ps
N otherwise. Note that this is essentially assuming a random distribution of edges.
N It is also assuming that pairs of model edges are distinctive, so that objects with
A partial symmetries are excluded. Thus, we have ;
W _f1 ifie I, j— Jis correct v
isild p» otherwise. ,
% .
- Because the data is known to lie on a single objec:, we do not need to use the -
- wild card branch of the search tree, so that each node of the search tree has only m
' branches in this case. Thus, the search tree has m* nodes at level k. However, not
] all of these are actually reached by the algorithm.
R, In general, a node at the k" level of the tree, with assignment 1 — I;.... .k —
'.. I has a probability of consistencv: .
¢
'
A
: Hq'l H H q"J L. A
P i=1j=1+1
o
Ll
" 2.2 Simple bounds on the problem 4
' X
" We let nx denote the number of consistent nodes at the kt" level of the interpretation \
: tree, under this model of consistency. The expected number of consistent nodes is
K simply the sum of the probability above take over all mappings. We are interested
v:s in bounds on n,, the number of interpretations of the s sensory data fragments.
‘Q Simple bounds on the number of interpretations are given by the following result.
;:; In the interests of clarity of presentation, the proof is deferred to the appendix. .
Z
Vs Proposition 1: If all of the k sensory measurements are known to lie on a
‘_‘;: single object with m faces, then the number of intorprotations ng is bounded by
1)
'_t ng < [1+( Plpz ]
and by .
:; it ko k(k=1) ;i v
- ny > 14 [pg +p,(m—1)] Py © —py ;
I,’ ‘.
X where p; is the probability of a random data-model assignment satisfving unary .;
Y consistency, and p; is the probability of a pair of random data-model assignments b
satisfying binary consistency. i P h
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This provides us with formal bounds on the number of k-interpretations. Bounds
on the number of nodes explored in the tree can be obtained by
s-1
N, = Z mng,
k=1
because the algorithm must look at each of the nodes below a consistent node, even
if not all of these subsidiary nodes are themselves consistent.

In principle, the bounds on the number of k-interpretations are exponentials
in k. But because p;,p; < 1, we can see that as k increases, the base of the
exponent decreases. This suggests that ny may decrease as k gets large enough, but
to establish this formally, we need to relate the probabilities p;, p; to properties of
the object, in particular to m. Before we do that, we consider formal bounds on the
case of occluded recognition.

3. The Combinatorics of Occluded Objects

We want to extend our analysis to the case in which the scene is cluttered, so that
much of the object of interest may be occluded, and so that much of the data
obtained may come from objects other than the one of interest. To model this,
we will again assume the object has m faces, that there are s sensory fragments, of
which c actually lie on the object to be recognized. We need to determine bounds on
n%, the number of interpretations, and N, the number of nodes of the interpretation
tree actually examined.

3.1 Model of consistency — occluded case

A node at the k" level of the tree defines an k-interpretation, assigning model faces
to the first & data fragments. Each such interpretation can be specified by choosing
7 (out of ¢) of the data points lying on the object to be correctly matched to a model
face, and choosing r — j of the remaining data points (either lying on the object
or not) to be incorrectly matched, with the remaining data points assigned to the
wild card. Such an interpretation would have r actual matches, and k& — r wild card
matches. We denote by nyg, the number of such k, r-interpretations.

We need to determine which of these interpretations are consistent. For the
unary constraints, any wild card match is consistent with probability 1, as is any
correct match. The remaining r — j incorrect matches each have probability of
consistency p;. Thus, we have

1 if i [ is correct
giy= < 1 if Iis the wild card character,
m otherwise,
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$ Any pair of assignments, both of which are correct, is consistent with probability 7y A
1. Any pair of assignments, at least one of which is assigned to the wild card also
!
is consistent with probability 1. Thus, we have R
: 1 ifiw I,j— Jis correct N
. gi.jir.g = 1 if either [ or J are the wild card character, "]
’ p2 otherwise. -}
; Using this model of consistency, we can establish the following bounds. The y
proof is deferred to the appendix. by
: Proposition 2: Given an object with m faces and given k sensory data points, P
Y of which ¢ actually lie on the object, the number of interpretations ny is bounded
by
[ . k-
; np <25 - [14+p)°+ 1+ mppd] " [p2 + L+ mpipf]° N
V 1 3
! +mpr (1= p2)[1 4 p2) T [k + pa(k — )] ,
5 and by
k—c . k=1 g o k_;_l k=1 o -9
22— [14p,7 "+ 1+ (m-Dpp,7 | 1+ (m=1pip,” +p,7 | ‘
-1 £
+pr(m = D1+ p]7 [k + pa(k - 0)] .
b k=1 k—c -1 k—c Py
. —p(m=1)p, T [L+p,7 |7 [k+p,7 (k=c)] -
) where py is the probability of a random data-model assignment satisfying unary ' - <
) consistency, and p; is the probability of a pair of random data-model assignments X
N satisfying binary consistency.| N
L] -

As in the non-occluded case, bounds on the number of nodes explored in the
\ tree can be obtained from

s—1

- =

‘ Ny = E mny.
/ k=1

In order to make sense out of these rather messy equations, we again need to

L a e g g

. relate the probabilities of consistency py, p, to properties of the ohjects.
D
4. Bounding the probability of consistency
v
X In the previous scections, we have derived bounds on the problem. as a function of hY
y the probability of consistency. It is desirable, however, to reduce these expressions K
to ones involving parameters of the problem, in particular, to characteristics of X
the object models and the sensory data. In the following sections, we derive such .
expressions, under some simplifying assumptions. . 3
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4.1 Consistency in the two dimensional case

We begin with the probability of unary consistency, p;. If £ is the length of the data
fragment, and L is the length of the model segment, then the probability that this
20 pairing, made at random, is consistent is given by the probability that

4 ¢<L+e

where € is a bound on the error in measuring the length of the data edge. If we let
f(£) denote the distribution of data lengths, and F(L) denote the distribution of

model lengths, then the probability of consistency is simply given by )

D min(L+¢,D)
o / / F(OF(L)dedL
3 L=0/¢=0

where D is the dimension of the image. In the worst case, this is just 1, which holds,
for example, when the model segments all have the same length and all of the data
oy fragments are smaller than this length. If other models of length distribution are
chosen, a different probability can be derived.

”

[
F o e

Figure 2. A pair of model edges.

Now we turn to the probability of binary consistency. In the RAF system, a pair of
3 fragments is characterized by the relationship between the fragment normals, and
™ by the components of the family of separation vectors between the fragments. We X
'a first transform this representation into a more convenient one.

Claim 1: A pair of edges whose relationship is defined by the ranges of the
j constraints used in the RAF system are equivalently described by the relative trans-
- formation need to align one with the other.

{ Proof: Consider two model edges, cach given by a midpoint, M;, a unit tan-
gent, T;. and a length L, as shown in Figure 2. We can characterize the two edges
by the relative transformation needed to transform edge i into edge j. This is given
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e by the angle 6;; needed to align the tangent vector T; with the tangent vector T}, o
s and the translation t;; needed to shift M; to M;. We must first show that such a
) representation is equivalent to the one used in the constrained search process.
H
K
i
L) . .
:::: —_ L.l Jsin 8|
L0
3
' )
oy
o
Q'f.
(R
1
s
s
:::I Figure 3. The range of positions for edge j, given a component constraint.
d
‘s Consider edge i. We are given a range [ci¢, cin] of values defining the range of
w possible components of a separation vector in the direction of the normal to edge i.
'.a In general, a separation vector between the two edges is given by
W4 - -
;::: S(a,ﬂ):M,--}-aT,-—-Mj—ﬂTj
:::.‘ where a € [-L;/2,L;/2] and B € [-L;/2,L;/2). Now the actual range of compo- -
- nents is given by -
an A1 A1 o el
. (S(e,0),Ti') = (M; — M, T) - (T}, T;)
’ where <,> denotes the standard Euclidean inner product. Because 8 ranges from
En —Lj/2 to L]'/2,
KR ¢in — ¢ie = Lj|sin8|.
.‘. Thus any edge that lies entirely within the region shown in Figure 3 is consistent
> with this cousiraint.
:::I Now edge j must lie at an angle 8 with respect to edge 7, and must lie entirely
:::o within the range of positions shown in Figure 3. Given the length of edge 7 and
& its orieutation relative to edge ¢, this implies that the center of edge j must lie
e somewhere along the line midway between the two bounds shown. But the same
i analysis holds relative to edge j, i.e. there is a range of distances perpendicular to
W it, within which edge i must lie. This is shown in Figure 4. This implies that edge
\: J must have its midpoint along line .X such that edge i lies inside the region shown.
" As a consequence, there is only one position along the line X such that the
ey midpoint of edge 1 lies along the line Y. Note that while we have demonstrated this
o genmetrically, it can also be established algebraically.
\)
"\{ This claim implies that the angle and component constraints used by our recog-
nition system are equivalent to the specification of two edges in terms of their relative =~
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J
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_ — X
\ edge )

edge i

Y

Figure 4. The range of positions for edge i, given a component constraint.

transformation. Hence, a pair of model edges can be equivalently specified in our
system in terms of a relative transformation (6;;, t;;).

The idea is to use the characterization of a pair by their relative transformation
to determine the consistency. Since binary consistency uses pairs of segments, we
must relate a pair of data edges to a corresponding pair of model edges. Suppose we
are considering the consistency of matching a pair of data edges to a pair of model
edges. We know that a pair of model edges are specified by their relative transforma-
tion. We need to determine the set of relative transformations that could correspond
to a pair of data cdges. Note that this is not just the relative transformation be-
tween the two data edges. Rather, we want the set of relative transformations of the
associated model edges assigned to these data edges. This is important because the
problem is compounded by the fact that the data edges may be occluded, so that
only part of the corresponding model edge is accounted for, and by the fact that the
data edges will be noisy. We assume that position measurements in the data are
accurate to within te, and that angular measurements are accurate to within t¢,.

Because we are only interested in relative transformations, without loss of gen-
erality, we position the midpoint of data cdge ¢ at the origin of a coordinate frame,
with its normal pointing along the negative y axis. The position of the second data
edge j relative to this coordinate frame is shown in Figure 5.

Initially, we ignore the effects of noise. Because data edge j may be occluded,
the position of the midpoint of the corresponding model edge, if it were transformed
into this coordinate frame, would lie along the line defined by the tangent of edge

J and the midpoint of the edge, within a distance -liL;—li of the midpoint of the
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Figure 5. The relative position of data edge j with respect to data edge 1.

Figure 6. Set of positions for model edge center, given fixed edge.

data edge. When we allow for noise, we must consider any point that lies within
a distance ¢, of this line. This region of possible positions for the midpoint of the
model edge corresponding to data edge j is obtained by sweeping a ball of radius ¢,
along the line, through a distance of length L; — ¢; centered about the midpoint of
the edge. This region is shown in Figure 6.
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N~

Li' li

Figure 7. Set of possible positions for relative transformation between two model edges
associated with a pair of data edges.

This region shows the range of possible positions for the midpoint of the model
edge corresponding to data edge j, given that data edge i is fixed. Because the
midpoint lies at the origin, this also gives a set of relative translations. But edge i
has the same problem, namely that the centerpoint of the corresponding model edge
may actually vary in position. Because we are interested in relative transformations,
we can obtain the full set of possible transforms by sweeping the entire region shown
in Figure 6 over a distance of :i:-lﬂy'ﬁ along the z axis, and then take the set of points
lying within a distance €, of this region. This new region is shown in Figure 7.

This analysis implies that any model edge pair whose relative translation com-
ponent lies within this area can be considered for consistency. The analysis was
performed assuming that the orientation was correctly known. But the relative ori-
entation could also vary within +e, of the measured angle # between the data edge
normals. For each value, there is a corresponding region of consistent relative trans-
lation, which actually changes shape and position, with the center tracing a helical
path in this space. Hence, the volume of relative transformation space consistent
with a pair of data-model pairings is a skewed extension of the region shown in
Figure 7. In the analysis that follows, however, this skewing is not critical.

To estimate the probability of consistency p, we need to know the probability

N SRS
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that a pair of model faces have a relative transformation that falls within the volume .f’g: ..
described above. To obtain useful results, we will assume that the data edges are B
uniformly distributed in transform space, so that the probability of consistency is Re
a function only of the relative size of the volume, and not on its actual position in o
transform space. '
To obtain an expression for the volume, we begin with the area shown in Fig- ;:-
ure 7. By breaking the region into subareas, we find that the total area is given
by 7
A(8) = dmel + dep[Li — b + Lj — €;]+ (Li — &:)(L; — ¢;)| cos 8] B!
where @ is the angle between the two edges. Byt
As we have noted, this region will change, as 6 varies over the range of values W
consistent, to within the error bounds. with the measured value, [#p — €,,00 + »
¢z]. Thus, the volume of transform space consistent with a pair of data-model R
assignments is 'y
6=00+¢a .
V= / A(8)d6 b
=6o~¢€q N
=2¢, [47!'6?, +4e,[L; — £~ i+ Lj— ;]| +2|cosbp|sine(Li — £)(Lj — ¢;). =
‘
To get an estimate of the expected probability of consistency, we will make f
some simple assumptions. First, we will assume that all the model edges have the W
same length L; = L,Vi. We will also assume that the measured edge fragments have L~ !'.=
at least some minimum length &. . '.__'._ b
Clearly, the worst case volume occurs for |cosfp| = 1, and ¢; = ¢; = h. In this o A
case, we have el
Vi = 8ea[mel + 26,(L — h)] + 2sine (L — h)*. Y
A more likely case is one in which the data edge lengths are uniformly and ™
independently distributed over the range [h,L]. In this case, by evaluating the 2
appropriate integrals, we find that the expected volume is given by :'~
— h)? )
Ve =8€a[7rcf,+ep(L~h)]+|c0500|sinea(L—2h-)—-. ;N
If we also assume that 8g is uniformly distributed, then ;- .
V. = 8¢ [7r€2+e (L — h)]+ sine (L———@?— =3
al™p P e T N
Other models are possible, but these will suffice for our purposes. %
Now, we need to relate two factors, the relative transformation associated with ' X
a pair of model edges, and the set of relative transformations consistent with a pair of AN
model edges that have been assigned to a pair of data edges. Suppose we consider g‘ »
some point t in relative translation space. We need to have an expression that *::
denotes the probability that a pair of model edges is consistent at t, which we call :'.
f(t,8). We also need the probability that a pair of data edges would be consistent at Ny
t (or rather that a pair of model edges matched to this pair of data edges would be o
consistent at t). We will assume that the data edges are uniformly distributed over . ._ .
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relative transformation space, which has a range of [0, 2] in the rotational dimension
and which has a range of [-D /2, D/2] in each of the translation dimensions, where
D is the dimension of the image. In this case, the expected probability of a data
pair being consistent at any point is simply given by the relative volumes. If we let

h=f

»*

€

- P
= L
then the relative volumes are

- [4€a [W(G;)'@ +265(1 - h.)] N sn:a(l ) h*)2] [%]2

€S

T

3

. 2
. _ |4€ “2 . sineg we || L
V* = [T[W(Ep) +€p(1-‘h )]+ 2”2 (1—h )]['5
for the worst case and uniform distribution case respectively. Thus, the expected
consistency is given by

2w D
/ / t Prob( model consistent) Prob( data consistent) dt dw
=0 Jt=0

2n d

=V‘/ / tf(t,w)dtdw
=0 Jt=0

=V*.

Because we assumed that the model edges were of equal length, then
P

L=—
m

This finally reduces the probability of
2
K
B

4eq . . . sineg ol P
K':'iw:\/VT[W(ep)z"'?Gp(l”h)]+ T (l_h)2[5]

in the worst case, and

4e, 2 . . sin e, ol P
K=Ky = \[—W—[W(f,} +e(l~h )] t 5 (1-h )2[-5]

in the uniform distribution case.

Note that & is a constant that depends only on the error bounds on the sensor,
the perimeter of the object, and the size of the image. Unless the perimeter P is
very large compared to the size of the image D, we have K < 1. If the sensor error
in measuring position and the minimum edge length are small relative to the length
of the model edges, then the constant reduces to

where P is the perimeter of the object.
consistency to

P2 =

where

P [sine,
Ky = =

DYV 2x "~

This leads to:
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'::: Proposition 3: Given a two dimensional object with m equal sized edges of w
" length L, and given sensory data that is distributed uniformly in transform space
o with a uniform distribution of lengths, the expected probability of two random
::‘:: data-model pairings being consistent, p,, is given by
‘:!‘ K 2
N P2 = |
aly m
g where
LY
i 4e¢ sin e P
B~ — — *ra ~\2 (1 _ h=* a — h=\2 |
3 n_,gw_\[w [W(fp) +265(1- h )]+ (1 - by |
o in the worst case, and
. de sin¢ P
e K=Ky = = |m(er)? + €5(1 — h* (1 - h*)2| =
,:,.' u - (e5)? + €5( )+27|—2( ) D
. .'
v:o in the uniform distribution case, and where ¢, is a bound on the error in measuring
1
»::' orientation, €, is a bound on the error in measuring position, h is the minimum
length data edge, ¢, = ELL, h* = %, P is the perimeter of the object, and D is the
5. dimension of the image.}
O
b
)
::. 4.2 Consistency in the three dimensional case ‘
_Q';: A% Y
», A similar analysis can be performed for the case of three dimensional recognition.
:n' As in the two dimensional case, we use the angle between two face normals, and the
-::: range of components between two faces, in the direction of each of the normals and
:: in the direction of the cross product of the normals, to prune the search. Here we
i assume for simplicity that each object is modeled by m faces, each a square of size
" L. Using methods similar to those employed in the previous section, we can show
:::i that the probability of consistency is proportional to L3. In this case, the surface
K area of the object S is related to the number of faces in the object by § = mL2?.
::: Hence we can obtain:
)
! Proposition 4: Given a three dimensional object with m equal sized square
. faces of side L, and given sensory data that is distributed uniformly in transform
:?. space, the probability of two random data-model pairings being consistent p is
1% bounded by
2
rl' P2 = K3
'y SR 3
4 where the constant k3 is a dimensionless unit depending on bounds on the error in
" the sensory data and on the ratio of the surface area S to the size of the image.}
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@ 5. Specific Bounds on Recognition Ay
‘l

’

The point of this analysis is that we can relate the probability of consistency p; l
to properties of the recognition problem, specifically to the amount of sensory error !
relative to the object parameters, (¢4, €}, ™), and the actual parameters of the object .f
itself, (number of faces m and perimeter P). We can now use this to establish ts'

particular bounds on the recognition method.

r .
N
A
5.1 Bounds on the non-occluded case @

‘
0

We begin with explicit bounds on the number or interpretations obtained in the ]
case of data obtained from a single object. In the appendix, we provide a proof of .%:
the following assertion. sk
\'.y

Proposition 5: If all of the k£ sensory measurements are known to lie on a .‘
single two-dimensional object with m equal sized edges of length L, and the sensory 3
data is distributed uniformly in transform space, with a uniform length distribution, ’
then the number of k-interpretations is rapidly assymptotic to 1.1 }”"

.

ﬂ;
S -

This is not surprising, because it says that if we exclude objects with symmetries

from consideration, and if we have enough data fragments from a single object, there X '

will only be one interpretation. On the other hand it is reassuring to see that the S

. \ . . Ny

analysis correctly predicts this effect. For most objects and most sensory error Nyt

ranges, the upper bound rather rapidly approaches 1, so that even with k = 3, the )

expected number of interpretations is basically 1. This is consistent with empirical ,l v
data. .
For the amount of search needed to find the interpretations, we show in the N

appendix that under some simple assumptions on the amount of noise, the search
is at most quadratic in the size of the problem.

==

3
%
Proposition 6: If all of the k£ sensory measurements are known to lie on a :-_
single two-dimensional object with m equal sized edges of length L, m > 2, the \‘
sensory data is distributed uniformly in transform space, with a uniform length -
distribution, and if the noise is small enough, then the expected amount of search L1
needed to find the interpretation is bounded by :-,
m? < Ny < m? + ams \‘
. . - S
where a is a constant that depends on the object characteristics and the amount of <
noise in the sensory measurements. i )
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iy In the appendix, we provide a proof of this, giving a specific definition of “small et
. enough”, and a specific definition of the constant a. In particular, we note that

i the conditions for the definition of “small enough” are satisified for most sensing

KN situtations. For example, if the relative sensing error and the minimum edge length

A g g g

f»: are .1, that is, the error in determining position is no more than one tenth the length

"'.! of the model edges, then so long as the perimeter of the object is less than 5 times

o

N the dimension of the image, the proposition is satisfied. Even when the error rises

" to .5, the perimeter can be roughly as large as the image dimensions.
R/} Note that the two bounds are reasonably close. Also note that under the
‘ assumptions of the analysis, in general, we need only explore m(s + m) nodes.
B Because there are ms possible initial hypotheses for pairing data edges with model
L% edges, this implies that the constrained search method will rapidly converge to the
“ correct interpretation.
sﬂ This analysis has been performed using a model in which the consistency of a
:" pair of model-data assignments was taken as 1 if the assignment were correct, and
" as p if not. This excludes objects with partial symmetries from consideration. Note
N that we could amplify our analysis by generalizing the notion of consistency to:
1, if both assignments are correct
W p =4 ¢, ifonly one assignment is correct
9 p, if neither assignment is correct.
:: For the case of three dimensional recognition, a similar result holds:
X "o
] 1 Proposition 7: If all of the k sensory measurements are known to lie on a "
" single three-dimensional object with m equal sized edges of dimension L, m > 2,
::: the sensory data is distributed uniformly in transform space, with a uniform area
::: distribution, and if the noise is small enough, then the number of interpretations is
- assymptotic to 1, and the expected amount of search needed to find the interpreta-
'i' tion is bounded by
m:< N, <m m+n§m’i'+2fcgm%'+s N |
iy
1)
Both of these results indicate that while the total number of possible interpre-

;' tations is exponential, namely m?, the constrained search method is quite effective
'.: at finding the correct interpretation, requiring only a quadratic amount of search.

This result is reflected in empirical studies. It suggests that the constraints, even in
;' the presence of sensor noise, are quite powerful. The analysis has excluded objects

with symmetries, so that in practical situations the amount of search may be larger,
f but it is expected to remain polynomial in the problem size.
o
k¥
": 5.2 Bounds on the occluded case
R,

) We can use similar methods to reduce the rather messy expressions we derived R
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R B | | |
i earlier for the expected number of interpretations in the case of occluded data. The
appendix contains a proof of the following.
X
¥
:‘. 1
) 4
jl: Proposition 8: If ¢y of the k sensory measurements lie on a two-dimensional )
iy object with m equal sized edges of length L, the sensory data is distributed uniformly ]
a3 . . . .
in transform space, with a uniform length distribution, and if the noise is small .
o enough, then the expected number of interpretations, for m large, is bounded by
o 8 P g A
4 27¢0
o 9¢ - c k K K
1) 20 < ny €24 |1+ ;| +pimk{l - — 1+—]
':. SN S +[ P1 ] ”m m m2
B where x is a constant the depends on the ohject characteristics and the amount of
N sensor noise, and p; is the probability of a random data-model assignment satisfying
'. unary consistency.f
b
k)
W
\J . . . . .
K The lower bound is not as tight as we could make it, but we will use this simple
bound for convenience.
)
;:: Note that the bounds in Proposition 8 make intuitive sense. Consider the cor-
3 . . . . . .
" rect interpretation, which involves the correct assignment of ¢¢ of the data points.
:: Not only will this assignment lead to an intepretation, but so will any subset of this
B ‘EL‘:. assignment. Hence, there must be at least the power set of ¢y possible interpre-
L4 tations, which accounts for the 2 term. Any interpretation of length 1 will also
A’ be included, because only pairwise constraints are used to reduce the search. This
,ﬁ accounts for the mk term. The remaining terms essentially imply that if the sensory
W error bounds are large enough, some additional interpretations will also be included.
If, however, the sensory error bounds are small enough that kK « 1, then basicall
g y
i only the interpretations described above will be found.
»
::. Note, of course, that these interpretations involve different amounts of real
“;. matches. As discussed in {Grimson and Lozano-Pérez 87], we can adjust our recog-
& nition method to accept the longest (in terms of number of data points accounted
for) interpretation. This adjustment will in fact reduce the overall amount of search
required, because the depth first search may be terminated at any node such that
5 even if all the nodes below that point werc to be correctly matched, the length of
Wy the resulting interpretation will be less than the best interpretation found so far.
\
» For the amount of search expected in the occluded case, we can use the above
Y, .
: result to obtain the following (a proof is found in the appendix).
‘.
‘ Proposition 9: If ¢g of the k sensory measurements lie on a two-dimensional
o object with m equal sized edges of length /.. the sensory data is distributed uniformly
g in transform space, with a uniform length distribution, and if the noise is small
, = enough, then the expected amount of search necded to find the interpretations, for
4 ’f‘x py
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m large, is bounded by Loy !
[1 + plﬁ]" 1 8 Co Co ’
N <m|———+28—-co+ 1]+ pym| — + [l + a]® - 4+ — .
8 - [ le [ 0 ] pl 02 [ ] 2 2 a(1+ﬁ) \
Y
N;Zm[2°°+1+s~co—3] g
"
where L
—_ Kz \Y
T e
and where « is a constant the depends on the ohject characteristics and the amount ::;’.
of sensor noise, and p, is the probability of a random data-model assignment satis- Ny
fying unary consistency.li o
)
: . : : e
We can see from this result that the introduction of the wild card match puts "
our search method back into the exponential domain, although the amount of work ) 0:
is still considerably less than the normal British Museum algorithm search. The %
bounds are not tight, since we used a number of approximations in deriving them. ;"
Note that the lower bound consists of two terms S
mcet! and m(s — cg). )
Depending on the actual values for the parameters, one of these two terms will ]
dominate, but for most situations, the exponential term is likely to be the larger. o ,:
For the upper bound, there are essentially four different major terms L 14
2 7 ¢o 6 R
s 20 2,2 _ .2 K m o
m(s — m(s* —cg)|1 + — —. 3
m[1+p1n] 18 — ¢g)2 ( 0)[ +m2] pr __:.
.
Again, depending on the actual values of the parameters, one of these terms will <
dominate. For example, if the noise in the sensory data is large, and there are a -
large number of spurious measurements, the first term will dominate. On the other Y
hand, if the noise is small. the second term is likely to dominate. ::
Nonetheless, the analysis implies that in general the introduction of spurious ‘_‘:
data and the use of the wild card branch in a constrained search method forces the ::
expected complexity of the method into the exponential domain. -\
A similar analysis may be done for the three-dimensional case, ‘!
)
4 .- u
A
5.3 Branch and bound search -
One way to decrease the work involved in finding an interpretation is to use a type .‘\
of branch and bound search. In particular, suppose that at each stage during the A
constrained search, we keep track of the longest (measured in terms of the number of ::-
data points assigned to non-wild card model faces) interpretation we have found so \::
1 . . - 0
far. Suppose we reach a non-leaf node of the interpretation tree, such that the sumn \";
of the non-wild card matches assigned so far. plus the number of remaining data :"
points to consider (i.c. the remaining levels of the tree between the current point and R
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the leaves of the tree) is less than the length of the best interpretation so far found.
In this case, we cannot find a better interpretation below this point in the tree, so
we can terminate our downward search and backtrack. In principle, such a branch
and bound technique should reduce the amount of search performed in finding the
best interpretation. We can place a bound on the amount of search in this case by
noting that in the best possible case, we would discover an interpretation of length
co along the first branch of the tree. As a consequence, the remainder of the search
would only have to consider a tree of depth s — ¢o. Unfortunately, this does not
change the lower bound, only the upper bound. Hence, to reduce the search further,
we need some additional techniques for restricting the size »f the search space. We
next consider the use of Hough transforms.

6. Hough transforms

The analysis in the previous sections argues that while the constrained search tech-
nique is quite effective when it is known that all of the sensory data comes from
a single object, the expected search effort is exponential in the size of the correct
interpretation when spurious data is allowed. This increase in required search has
also been observed in empirical tests. The increased cost arises in part because the
use of the wild card branch as a means of separating real from spurious data is
not particularly efficient. One way to improve the perforinance of our recognition
engine is to provide a method for selecting candidate subspaces of the search space,
that are much smaller than the full search space and that have a high likelihood
of containing little or no spurious data. In our experimental work, we have done
this using a Hough transform [e.g. Hough 62, Merlin and Farber 75, Sklansky 78,
Ballard 81].

In brief, we use the Hough transform as follows. Each possible pose of an object
can be described by specifying the parameters of the rigid transformation needed
to take the object from its inherent coordinate system into the sensory coordinate
system. In the case of two dimensional data, for example, a transformat: n can be
described by an augle of rotation and a two dimensional vector of translation. Each
transformation can be reresented as a point in a space of transformations, having
one dimension for the rotation angle, and one dimension for each of the translation
components. We tesselate this space into buckets. using some predefined spacing,
ho he, hy.

One way to extract candidate subspaces of the search space is to find pairings
of data and model segments that are consistent with the same pose of the object.
Thus, for each sensory data fragment d,. we compute the transformation needed
to align that fragment with each of the model fragments, m;, in turn. Then, that
pairing (d;, m;) is placed in'o the tesselation bucket in the transform space in which

R T % R AT R T g ta kg AN A e R A e e - S v -
e X e al o e s o oL ._. g '-'.-». ) \ -r\._- ,\ " s o ,\_.\(\ W

LSRR AL S O Sl A AR S A A A £ 8 605 SR ATRL AN oy



._ov" ,‘
-I“‘v

o
a

-

IS

&~

u
-
.

Y

T XEES
'l."t LT T

o

SN

X

L

‘I'-,'.t. 8.

L

24

the corresponding transform lies. We do this for all pairings of data and model
fragments. When completed, each Hough bucket contains a limited set of data
fragments, each of which is associated with a limited set of model patches. The
expectation is that random data-model pairings will be dispersed in the tesselated
space, while the correct data-model pairings will all fall within the same bucket,
because they correspond tothe same pose of the object. Hence, by sorting the
buckets on the number of votes (or pairings) they contain, we can isolate likely
candidate subspaces.

In the ideal case. the bucket with the largest vote will actually identify the cor-
rect interpretation, and since the bucket also defines the associated transformation,
in principle, we are done. In practice, however, the Hough transform is not sufficient
on its own for solving the recognition problem posed here. There are several reasons
for this. The first is that in practice one cannot use infiritesimal sized tesselation
buckets. Since the Hough bucket has a finite size, any data-model pairing that falls
within that bucket will contribute to the vote in that bucket. As the size of the
bucket grows, the difference in transform between data-model pairs that will be
associated together also grows. This means that spurious data-model pairings may
be accidentally grouped together, potentially scoring a larger vote than the correct
interpretation. As well, spurious data-model pairings may be accidentally included
with the correct pairings, meaning that additional effort is needed to isnlate the
correct pairs in a bucket, in order to find the actual size of the interpretation. Sec-
ondly, a data-model pairing will in general cast a vote in several Hough buckets,
not just a single one. Error in the sensory data will give rise to a set of consistent
transformations, rather than a single one. Also, occlusion may cause a data edge to
correspond to only a part of a model edge. As a consequence, there is a set of cor-
responding transformations, one for each possible position of the smaller data edge
on the model edge. This implies that each data-model pairing contributes to several
Hough buckets, say r, so that the noise level in the transform space is amplified con-
siderably. Finally, while the spurious data-model pairings may well be distributed in
the Hough space, the sheer number of such pairings may potentially drown out the
size of the vote in the correct Hough bucket. For example, if the replication factor is
T as above, and there are m model fragments and s data fragments. then there are
ms different pairings of which ¢g are correct. This means that there are msr — ¢
noisy pairings distributed througlout the Hough space. If there are b buckets, then
the average noise contribution to a Hough bucket is Z2==2 which can clearly be of
significant size relative to eg. the size of the correct interpretation.

The effect of all this is that while the Hough transform can be used to order
candidate subspaces, it is likely in practical circumstances both that the Hough
buckets with the largest number of entries may not contain a correct interpretation,
and that a Hough bucket containing a correct interpretation is also likely to have
some spurious data fragments included and to have some additional model patches
associated with correct data fragments. We see this effect in running the RAF system.
Hence. in our empirical studies. we have use the Hough transform to select candidate
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- :
! :1% subspaces, ranked in order. We then apply the RAF technique to the subtree defined
! by the Hough bucket, that is, we use constrained search on a tree whose levels
¢ correspond only to those data fragments that are contained within the bucket, and
! for each such fragment, we only consider those model fragments associated with it as :"
! possible matches. We take the Hough buckets in order, applying the RAF technique 4
; to each in order, terminating the search when a correct interpretation of sufficient N,
i size is found within a bucket. )
)
3 6.1 Bounds on occluded recognition, using Hough "
K .
4 This argument implies that one cannot assume that the data-model pairings defined ;
by the contents of a Hough bucket correspond to a correct segmentation of the data pt
y into elements that are guaranteed to lie on the object. This is unfortunate. since it
, means that the expected complexity is still in the exponential domain. Fortunately,
! for practical purposes, the actual size of the search complexity is considerably re- §
: duced, since the parameters of the search problem are also reduced.
! We can demonstrate this as follows. Suppose that the contents of a Hough
i bucket define a new interpretation tree, in which the number of model fragments
¢ associated with a data fragment is m', where m' « m (as we have observed in
A practice). Also, suppose that the probability of a random data-model pairing falling
L within a bucket is given by P,, so that the expected number of data points contribut- ¢
e ing to a Hough bucket containing the correct interpretation is s’ = ¢o + Pr(s — ¢o). 4
‘ 6 The bounds on the amount of search required to isolate the correct interpretation .
o are given by the results of Proposition 9, with s replaced by s’ and m replaced by )
| m'. While the expressions are still exponential in form, the key is to observe that the y
parameters have been reduced from their previous values. In the limit, as m’ — 1 .
! and s’ — ¢g, the bounds tend to 3
co
e e ]| :
: N;/ > 2co+1 -3 '
X where ;
a =K.
Hence, the expressions remain exponential, but are tighter than the previous A
5 ones. In fact. much tighter upper bounds can be established in this case, but the y
key point is that the bounds remain exponential. In practical terms, this suggests %
that for many problems, the constrained search approach may still be applicable, "
if the characteristics of the problem are small enough. In our empirical testing
K of the RAF system, for example, elapsed times on the order of a few seconds are N
commonly observed. As the problem size grows. however, and especially when the ~
scenes hecome complex, the combinatorics suggests that an exponential search is 5
4 required and this suggests that other techniques are needed to reduce the cost of .
' recognition. g
1 "
! ¢

LRy e P e ol L -f ot

£ hhdt -+

) !'. v ’r* "y gy~ ) A 1‘\' A A . * ".'-. A R "c:..-'.."- ".“..\‘..\.."_‘. --'_,.‘ ) 3




. . g — . . . . e - ana R R A’ SN Yy
R AN VN NS ML N M N AR AR U N AR RN A N U N LW IR UW LR N Ak at, Sk At Vatu vl L AR S B Sal A S AR LA AL WE DAMERACAEREILE Sl G « DO Ay

o ol

26 :
; s t
p 7. Implications of the combinatorics -:Zj:,‘ t
&
The goal of this paper was to establish a theoretical basis in support of empirical ob- ]
servations of the utility of a constrained search approach to object recognition. Qur .
experience with RAF suggested that when the sensory data could be assumed to all :
lie on a single object, the system was very efficient at finding correct interpretations.
When spurious data was introduced, however, the use of a wild card branch as the ‘\
last resort to remove data fragments from consideration lead to a strong increase
in the amount of work required to find correct interpretations. The analysis in this N
paper supports this observation, showing that, under some simple assumptions, the '~
expected search in the case of isolated data is quadratic in the number of data frag-
ments and the number of sensory fragments, while the expected search in the case of p
spurious data is bounded by an expression that is general dominated by the product o
j of the number of data fragments, the number of model fragments and an exponential :’.‘!
denoting the magnitude of the power set of the correct interpretation. While the '.::
size of this bound is considerably smaller than that associated with British Museum 04
search, it is still exponential. .
To some extent, these results are not surprising. Search methods are well "
known to be computationally expensive. Indeed, some very successful approaches to :
recognition use maximal clique techniques to find the correct interpretations [Bolles B¢
and Cain 82, Bolles et al. 84], and the maximal clique problem is known to be NP- o,
complete. This simply implies that as the characteristics of the problem domain “w -
grow, such approachs may lead to poor solutions, but that for many instances of ,
p the problem, the performance is acceptable. .
At the same time, however, the analysis implies that a general solution to the =
recognition problem will require additional methods to reduce the combinatorics. 1
. 1ass of methods involves the use of measures of fit to terminate the search. o

r example, one can terminate the search once an interpretation is found that
accou: s for some predefined percentage of the object inodel. We have used such a
technique in applying RAF [Grimson and Lozano-Pérez 87], and have found that it )
can signficantly reduce the search cost. The drawback, of course, is in deciding what B
coustitutes an appropriate measure, and what constitutes an appropriate threshold
for termination. Depending on the threshold chosen, such termination procedures
may run the danger of accepting false positives.

A second approach is to use grouping to reduce the search. and the analysis in N
this note suggests strong support for the importance of grouping in recognition. If
one can identify groups of sensory fragments that are likely to have come from a ;
single object, without exponential cost in identifying such groups, then it is likely
that the expected cost of the search process associated with recognizing an object can Y
be reduced to practical levels. While the Hough transform provides a simple method
for doing this. more robust techniques are also emerging, for example, [Jacobs 88].

As such grouping techniques continue to develop, the efficiency and robustness of
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associated recognition methods should also improve.
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Appendix

In the appendix, we establish formal proofs for the results cited in the text. We
begin with bounds on the number of interpretations, for data from a single object.

Proposition 1: If all of the k sensory measurements are known to lie on a
single object with m faces, then the number of interpretations n, is bounded by

k-1 k
ng < [l + (m - l)plp;"_] .
and by

k  k(k—1) 2
nk21+[P§+P1(m“1)} P2 —P:r

where p; is the probability of a random data-model assignment satisfying unary
consistency, and p, is the probability of a pair of random data-model assignments
satisfying binary consistency.f

Proof: To determine the number of nodes of the tree at the k' level of the
tree, we note that each such node defines a k-interpretation, that is, an assignment
of model faces to the first k data fragments. For such an interpretation, there can
be i correct assignments, where ¢ = 0,1,...,k. The ¢ data points that are correctly
assigned to model faces may be chosen in

k
()
ways. For the remaining k — ¢ incorrect assignments, there are m — 1 possible choices
for the assignment of each such incorrect label. By considering all poscible values

for ¢, we see that there are
Ly ‘
> (4 )m -1
l

i=0

nodes at this level. We need to determine which of these are actually consistent.
For each node, there are £ — i incorrect assignments, and the probability that these
all pass the unary constraint is

k—1

4

(2)

different pairwise constraints. of which

(2

involve correct pairs, that have probability of consistency of 1. The rest of the
pairs have a probability of consistency p;. Thus, the probability of a node being
consistent with the binary constraints is given by

(5)-(2).

Py

There are also

w
(S X R M ™

0,005 s N A S P N AT A A i 1 A A e A A AT A A R N R (AN
h ). PP, Py, ) e N W W 0 W 1Y V% W X . ). W% ;

a4 VR S ¢
Fa X

o
P S k% Scth

3 "‘V-:%-'

{4,;.\: T J 1.1

P ]

h

v ne

..f rEee ‘t"v|' [ s’

L A "' ";*’;'.“'-""'l.

-

”



R AR R

2 3'e, v,  van.¥, vl ¥ TR TR o B Wt ) 0t Saflhal Sl el Yol tad ORPON WY Bl Vall felh
30
Putting this all together, we obtain
k
k —ipk=i (3)-(3)
= -1 k-1, k-1 \2 2/
= 3 () om -t (1
Note, by the way, that if p; = p; = 1, this reduces to
k
k )
= - 1 k—1 = — 1 1 k =
" g(i)("’ stme ey

which is the correct expression for the total number of nodes possible at level k of
the tree.

Now, we want to obtain bounds on the expression in equation (1). To obtain
an upper bound on the expression, we can substitute a smaller exponent for the
power of py, because p, < 1 implies that a lower exponent will result in a larger
expression. In particular, we have

nk Sg(f)

But this simplifies to

sk—l;;k—-!
l)k—t k— lp2 .

nk < [L+(m—1) I’ll’z ] @

For a lower bound, we can first expand out the i = k term, and then replace
the exponent for p by a larger expression:

S e

k(k=1)4i
nk>1+2()(m"l)k ‘5 'p, -py

_ 1)k-¢pilc—ipg§)‘(5)

E(k—-1) k2

me2 1+ [pf +mlm = 1)) 5 T = i (3)

For occluded objects, bounds on the expected number of interpretations is given
by the following result.

Proposition 2: Given an object with m faces and given k sensory data points,
of which ¢ actually lie on the object, the number of interpretations n} is bounded
by

np <20 = [L4pa) + [+ mppd ] [p2 + 1+ mprpf]°
+mpi[1 = pd][14p2)"7 [k + pa(k ~ 0)]
and by
np 22— (1457 )+ [L4 (m = Doy (14 (m = Vi, ™ 4,7 )
+ plm = D1+ 2] 7 [k + palk = ¢)]

k-1 koe oo k—c
—p(m=1)p, T [L4p,7 | k4 p,7 (ko)
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where p) is the probability of a random data-mode! assignment satisfying unary
consistency, and py is the probability of a puir of random data-model assignments
satisfying binary consistency.

Proof:

A node at the k** Jevel of the tree defines an k-interpretation, assigning model
faces to the first k data fragments. Each such interpretation can be specified by
choosing j (out of ¢) of the data points lving on the object to be correctly matched
to a model face, and choosing » - 7 of the remaining data points (either lying on the
object or not) to be incorrectly matched, with the remaining data points assigned to
the wild card. Such an interpretation would have r actual matches, and k ~ r wild
card matches, We denote by ny . the number of such &, r-interpretations. Note that
for each of the r — j selections, there is an upper bound of m possible assignments,
and a lower bound of m — | assignments.

\We need to determine which of these interpretations are consistent. For the
unary constraints, any wild card match is consistent with probability 1, as is any
correct match. The remaining r — 7 incorrect matches each have probability of
consistency py. Thus, we have

1 if 72— I is correct
pig=< 1 if I'is the wild card character,
. otherwise.

Any pair of assignments, both of which are correct, is consistent with probability
1. Any pair of assignments. at least one of which is assigned to the wild card also
is consistent with probability 1. Thus. we have

I 2w I.jw— Jis correct
qi,;1.0 = § 1 if either [ or J are the wild card character,
pa  otherwise.

Hence, to derive bounds on the number of consistent nodes, we need only con-
sider pairs of assignments chosen {rom the r actual matches. There are (;) such
pairs. Of these, however. (J) have a consistency of 1. because they correspond to
correct matches. Thus, the number of interpretations of length = from k sensory

points is bounded by

o ~ - (> (/‘ .J>‘ _ 1)y = (;)_(5)
N, 2 Z (j . [ 110 Yo pr Tp,

1=0

s~ /Nl ()0
LC)(, = ;)”"'”Pi P, (4)
PR VANIED

\

Ny,

N

/

Finding tight. closed form -xpressions for the bounds in equation (4) is some-
what difficult. Instead, we consider the total number of intepretations,
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We first consider an upper bound on this expression:

s S5 () (ol

r=0 j=0
We begin by considering the sum over r:

k . k—j
k — s e r —_ +}
E ( J.)m' Py ]Pg’) = E ( t])m Plpg ).
r=0 r—=J t=0

The dominant terms in this sum will be for small ¢, because p» < 1, hence we expand
out the first few terms, yielding

P mpn (k- )l * )+ Z( )m rin *).

To get an upper bound on this expression, we need to replace the exponent of p,
with a smaller linear expression in ¢, so that the above sum is bounded above by

(2) + mp1(k -7)1’2 2 + Z ( ')mtpgp;iﬂ%?iﬂz

. pgé) (m) + mpl(k—J)(ps“) - pf:’lﬁ> + [1 + mp1p, ] (,“) (5)

We can now consider the summation over j, treating each of the terms above in
turn. Taking the first two terms of (5) yields

= e\ - () _ (’“) EXti _ il e _ c
> () -] = S()u-sl=r-penr ©
We can bound the third term of (5) as follows
- ki (3)-()
14+m < 14
on(>[ np ] Z()[ mpipf "~
= [1 4+ mppd ] [p2 + 1 £ mpipf]°. (7)

The final two terms of equation (5) become

mm}_j( ek - (1 - i)

and this can be bounded above by replacing the exponent with a smaller expression,

mm (1 - Pz%) Xc: (;)(k - J)p3.

Jj=0
To reduce this, we note that if we let
flzx)=(142)" =

then

df('T) - 71(1 +I)n-l — : (T,I)l..’l‘i_’
dr .

J‘J‘
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so that

. (n) i -1
it = nx(l 4 2)"
¢

0

Hence,

n

Z(T)(a-—zr =a(l+2)" —nz(l +2)*" 1“(1+l‘)n_1[a+m(a—n)],

=0
Thus, the final two terms of (5) reduce to

mm(l - p-?}(l +p2) 7 b+ ok - o)) (8)
By combining cquations (6)-(8), we get
ne <2 = (Ut ) [0k ] [ + 1+ mprpd]°
+mp L= pE[1 4 ) 7 [k palk = )] (9)

We can use a similar approach to ohtain a lower bound on the number of
interpretations. We have

ny > Z Z ( > (I\ - {\)(m — ])ﬁ-jp;—jpg;)‘(é).

7—
r=0 j=0 J

As before, we begin with the summation over r, which reduces to

] .
k—
5 ( , J)(m “nal ).
t=0
Expanding out terms vields

P 4 (m = k= ])+Z( )(m_1)*ptp§2)

In this case, we need to replace the exponent for p, with a linear expression in t
which is greater than the current one. because this will lead to smaller expressions
in po. We obtain

j ,tl - (k= l!!!+))
P(‘)4~(1n — Dipy (k- J!P» g :i, ( )(7n - 1)'pip,

or
3 'Hl) k—1

1)»(,,') +(m= Upy k= py "+ 1+ = Dpap, T
(14 1k, ) k=1,
—{(m—=Dpithk~=jp, 7 -py
Using the same methods as before. this reduces to

j(k=—1)
=

]k_jlb

* . ey : elyk-e k_l ¢
nkZ'Z‘—[I+1)._,* ]+ [I-é—(m S hpipy | [1+(m—1)p1p2 + py ]
+p¢m~nh+p4”ﬂk+wwucﬂ

k-

= pi(m = 1ip,? H+/u ) / #p, (l.» r)]. (10)
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Once we have a relationsuip between the probability of consistency and the
parameters of the problem, we can derive specific bounds on the number of inter-
pretations. In section 4 of the paper, we derive such relationships.

Proposition 5: If all of the k sensory measurements are known to lie on a
single two-dimensional object with m equal sized edges of length L, and the sensory
data is distributed uniformly in transform space, with a uniform length distribution,
then the number of k-interpretations is assymptotic to 1.

Proof: From equations (2) and (3) we have

k~1 k
nx < 14+ (m - )p1p, 7 | (2)
& k  k(k—1) &2
nk21+[p2 +p1(m—1)] P, 2 -p. (3)
In the case of two dimensional recognition, we substitute from Proposition 3 to get:
k-1 k
ng < [1 + mk_lpl(m - 1)]

1 . 2 (11)
s () (g emen )] [

To establish the result, we need to show that
(14 az*)* > (1 4 az*t1)k+!
for some k, where x < 1. This is equivalent to showing that
k k
az"(1 - z) k+1
<1+1+aa:"+1) 2 Haa™
If we can show that
kaz*(1 - )
1 + (l:l,‘k+1
then we are done, because the left hand side is just the first two terms of the
expanded product. To establish this, we simply need to show that

k(1 —z)> (1 +az**V)z

for some k, but this is clearly true if z < 1.

1+ 21+a1:'c+1

Thus, for k large enough, both the upper and the lower bounds tend to 1.

To establish bounds on the amount of search needed, we use the following:

Proposition 6: If all of the k sensory measurements are known to lie on a
single two-dimensional object with m equal sized edges of length L, m > 2, the
sensory data is distributed uniformly in transform space, with a uniform length
distribution, and if the noise is small enough, then the expected amount of search
needed to find the interpretation is bounded by

m? < N, < m® 4+ ams
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where a is a constant that depends on the object characteristics and the amount of
noise in the sensory measurements.§j

Proof: To get bounds on the amount of search in the two dimensional case,
recall that this amount is given by:

s—1

Ny = g mnyg.
k=1

To bound this, we could simply find the largest term in the summation, and use ms
times that term as an upper bound, since there are s termns in the sum. To do this
explicitly, we first consider the constant s, given by Proposition 3

) [dea . o . sine, ool P
K=K, = x[?r((p)~+(p(l—h)]+ 577 (l—h)Q[E]

To ease the analysis, we will restrict our attention to cases in which k < 1, although
a similar analysis will hold for other cases. To do this, we note that the error in
determining angles can be obtained as a function of the error in determining position,
by considering the worst case deviation, which yields ¢, = tan~! 2¢;. Thus, we have:

Claim: If the perimeter of an object P, the dimension of the image D and the
error in measuring positions relative to the length of a model ecge ¢; = F satisfy
the relationship:

P 4tan_1(25;)<(5*)'~’+ 2(1_62)) + _6_;% (l_f;)z <D
i ™1+ 4(en)?

then
Kk<1.1

This follows naturally from Proposition 3. It is worth noting that the conditions
for this proposition are satisfied for most situations. For example, if the relative
sensing error and the minimum edge length are .1, that is, the error in determining
position is no more than one tenth the length of the model edges, then so long
as the perimeter of the object is less thaw 5 times the diniension of the image, the
proposition is satisfied. Iven when the error rises to .5, the perimeter can be roughly
as large as the image dimensions.

If the proposition holds. it is straightforward to show that the upper bound
for n;. given in equation (11) ix a maximum for & = 1, in this case being equal to
pim + 1 — py. Because there are roughly s terms in the summation, this leads to
the bound

N, < m?s.
{Note that since py is generally a constant. independent of m. using the upper bound
of pp < 1 does not radically change the derived hound.) We can improve on this,
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% however, by noting that if x < 1, then, from equation (11), '::‘:::"'
' n<pm+1-p
o ny < [1+ pisf
: 3
\ n3 < [1 +m ﬁ]
¥ m
o We want to show that under the conditions of Proposition 6, the upper bound on ny
. is monotically decreasing. By taking the derivative of this expression with respect
: to k and considering the worst case, in which k = 1,p, = 1, we need to establish
.: that )
i‘ (14 m?*)log(1 + m2"°)+m2"'°klog;1- <o.
' For k > 3, we can approximate the first log by its second argument, so that we need
to establish that
! 1+ m?* % < klogm.
Since the left hand side decreases with increasing k and the right hand side increases
with increasing k, we need only establish this for ¥ = 3. This expression holds for
k = 3 if m > 1.698, which is trivial to assume. Hence, the expression is monotically
decreasing for k > 3, and case analysis shows this also holds for £ = 1,2. Hence, for
;' large m, s we have
! N, <pm? + (1 + pis)ims + m(1 — py). (12)
) Note that if a tighter constant is desired, we can expand out several more terms in AT
) the summation, before bounding the remainder. .
: Similarly, the lower bound on nj given in equation (11) is a maximum for k = 1,
1 having the value m, provided k < 1. Thus
) N, > pm? + m(1-py). (13)

If we simply let p; = 1, we establish the proposition.j

For the three-dimensional case, we have a similar argument.

Proposition 7: If all of the k sensory measurements are known to lie on a
) single three-dimensional object with m equal sized edges of dimension L, m > 2,
: the sensory data is distributed uniformly in transform space, with a uniform area
. distribution, and if the noise is small enough, then the number of interpretations is

assymptotic to 1, and the expected amount of search needed to find the interpreta-
s tion is bounded by

m? 5N,§m[m+n§m§ + 2. n*+s].

] Proof:

For the case of three dimensional recognition, we substitute from Proposition
| 4 into equations (2) and (3), to get:

| 3 N | (m - Drs~'1"
. 1+[—-3-+m—1] ST~ SnkS[1+—'—-——]- 14
mT e T m T () ,::
NN
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For k = 1, we have
m<ng <m
for k = 2, we have
2 1 1 K3 : h'g 1 2
1+ k3|mT - — 4+ —5| ~—5 <ne< ) l4+rmt ~—
mT m? m
and for k = 3, we have
. 3 9 3
1 1 K K 1 1
1+H§[—,—— —+ —1—] - —r<m< [Hné(-—— ——)] :
m?2 m?z m1 mT mi' m?z
Again, as k continues to increase. we have
ng = 1.
As before, we can substitute to obtain the desired expressions.§i
For the case of occluded objects, we can use equations (9) and (10):
* Yyk—
np < 26— [14p) 4 [+ mprpd) " [pe + 1+ mpipf]°
% c—1
+mpi[1 =P} {1+ p2]" [k + palk = 0] (9)

1

k—c c k—1 —c k=1 k— ¢
np>2—[1+p,7 ] + (14 (m = Dpipy™ |14 (m = Dpipy T + 1,7 |
+ pi(m — 1)[1 +p2]c_1(k+ p(k - c))
k—1 k—c o— k-'—c
—pi(m = p, T [L4p,7 | k49,7 (k= o). (10)

Two dimensional case

To relate these bounds on the number of interpretations to characteristics of the

objects, we substitute from (11). This gives
9

K ¢ & HZ ¢
nZSQ"_[1+;ﬁ] +[l+l\])1] [1+K1)1+;§']

20—t 2
+ mp [1 - i] [1 + i;} [A-+ h‘,(k—c)] (15a)

m

ke m o
. . K
iz (o ()]
NS
+|:l+(m -—l)pl(—> ] [1+(m—l)p1(
m m
AN .
+11|(m—-1)<1. + "—) (A-+-"—(A-—c)>
m* m
N o keqemt k—c
K K K
- pi(m - l)(—-—) [l + (——) } [k+(—> (k—c)]. (15b)
m 1 m

me m-=

| =
N——”’
x
L
+
N
3=
N’
boad
1
7
(2]
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To reduce this to a more manageable form, we will assume that the conditions -
of Proposition 6 hold. If m is also large, then this rather messy bound reduces to
the following.

Proposition 8: If ¢y of the k sensory measurements lie on a two-dimensional
object with m equal sized edges of length L, the sensory data is distributed uniformly
in transform space, with a uniform length distribution, and if the noise is small
enough, then the expected number of interpretations, for m large, is bounded by

c k i K K21
0 < nt < 9% - — — .
2° <np <2+ [1+pk] +pm (1 )[H 2] |

Now we turn to the problem of bounding the amount of search required in this
case. We establish the following claim.

Proposition 9: If ¢ of the k sensory measurements lie on a two-dimensional
object with m equal sized edges of length L, the sensory data is distributed uniformly
in transform space, with a uniform length distribution, and if the noise is small
enough, then the expected amount of search needed to find the interpretations, for AN
m large, is bounded by -

(14 pi&)® = [1 + p1&]
mk

crem(i-5) [t e[ () - (3) + 2=

N2 m[.‘lc"“ + s —cp —3]

N;Sm[ +2%[s ~¢co + 1] —

where

,{2
a_—--2-.

Proof:

The upper bound on the search is given by:

s—1 x 27k
N;Sm[z2°(k)+[1+p‘"]k+plmk(l_%) [14‘:,2] }

k=1

The second term is simply a geometric series, and is easily reduced to closed form.
To obtain explicit bounds on the other terms of the summation, however, we need to
know something about the subset of the data fragments that are part of the correct
interpretation, that is, we need to know how ¢ changes with k. -
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T In general,
iy 0. k<1
1, 1 <k<k
c(k) =
Co, ico < k < 8- 1
in which case

s—1
D o2o) = (5 = 1020+ (G2 = 1)2" H o (i = ieg=1)2070 + (5= 1 — g, )2°.
k=1

The worst case for this sum is when i; = j, in which case, the sum reduces to

Co—l

(s—co~1)2° + Y 2

=0
(s —co—1)2% 4 2% ~ 2
208 —co+ 1] - 2.

Now consider the term
K s—1 IC2
- (k) =2
(1 )plmkg_lk[l + a° a=—.

By the above assumption about ¢(k) the summation part of this becomes

*a
”W‘.r 31-1 i—1 icg—1
Zk[l+a]°+zk[l+a]‘ S ) kltalo 41 +a ]°°Zk
k=i, k=icg—1 k=ic,
and again the worst case is when ¢; = j, in which case, the sum reduces to
Cg— -1
Zk[l+a]k Y41 +ale Z k
k=i,
S (‘0 co-]
] ()~ () et
To bound the remaining summation. we can use the arithmetico-geometric progres-
sion:
n—1
- + _ n _ an=1
(a4 kr)gt = Aoler = Drlg” el — g : ).
k=0 [~ q (1 - a)
In our case we have s = 0,7 = 1 and ¢ = | 4+ a, so that
co—1 _ ca—1 _ co—1
Z /\,[1 +O[]k»l — 1 [l +)“] + (CO 1)[1 +a]
al «
k=1
T (alep = 1) = D)1 + a]o°!
3 ) o '
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This yields:
TS m([l+pm]’—[1+pm]
MK
K 1 ol ) _ [co afcg—-1)-1
eam(= ) [ o |() - (5) + i)

For the lower bound, we have

+2%s-co+1]-2

s—1
Nizmy 2,
k=1
Here, the worst case occurs when ¢ is 0 for the first s — ¢ — 1 terms, and then
increases linearly, yielding

Ny 2m[2°°+] +s—c0—3].|




