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1 Introduction

The benefits of using a quantitative measure in engineering systems are well

known. More specifically, a quantitative measure provides us with a rational

basis upon which we can, without having to rely on experience and intuition

alone, analyze, design, and control the systems as follows:

" one can evaluate the performance of a given system and analyze the system,

by estimating this measure; or

* one can design a system that achieves the performance in a certain degree,

by maximizing(or minimizing) this measure; or

* one can control, on the on-line basis, a given system to achieve it, by max-

imizing the measure at each moment.

In the robotic system, also, various performance measures have been incorpo-

rated to quantify desired performance features such as obstacle avoidance(Yoshikawa.1984:

Maciejewski, 1985; Espiau, 1985; Khatib,1986), torque minimization(Hollerbach, 1985),

kinetic energy minimization(Whitney,1972), and constraining the joint variables

within their physical limits(Liegeois,1977).

'Another feature, in addition to these performance features, is to achieve dex-

terous manipulation. This performance characteristics, however, is, in fact, quite

ambiguous unless the concept of dexterity is more precisely defined. One concept

of dexterity was specified by the amount of volume in the workspace, within which

the end effector can have any orientation(Vijaykumar, Tsai, and Waldron, 1985):

the larger the volume, the more dexterous.

Another concept of dexterity, suggested by Yoshikawa(1985a), is the easiness,

due to better dynamic characteristics, of changing the position and orientation
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of the end effector. Another concept of dexterity proposed by Klein(1984,1987)

appeared to mean (1)the goodness of a linear system of differential relationships,

as indicated by either the determinant or condition number of the Jacobian ma-

trix; or (2)a natural appearance resulting from evenly distributed joint angles,

represented by summing the squares of the deviation of actuators displacements

from their midpoints.

According to this definition, the least dexterous manipulation would happen

probably at a singular point; for at a singularity the condition of a linear system

is at its worst, and creates awkward appearances due to lining-up or folding of

links. In this sense, therefore, dexterity may be viewed as a degree of farness or

distance from a singularity. In this paper, the meaning of dexterity is explicitly

specified as the distance from singularity.

To quantitatively represent the distance, several measures have been proposed

(Yoshikawa, 1985a, 1985b; Uchiyama,1985; Maciejewski,1985; Salisbury, 1982): the

determinant of the Jacobian matrix, its condition number, and a few combinations

of its singular values. It is no wonder that all of them are based on the Jaco-

bian matrix, because, only through the matrix, the instantaneous end effector

movement is determined.

Determinant

In linear algebra, the determinant of a matrix has been an important measure

used to test the invertibility of the matrix and its nearness to singularity. Ac-

cordingly the determinant of the Jacobian matrix has been tried for the dexterity

measure for both nonredundant and redundant manipulators. For nonredundant

manipulators, for instance, the determinant has been used as a measure of de-

generacy for the antlysis of the wrist configurations(Paul and Stevenson, 1983).

For redundant manipulators, on the other hand, Yoshikawa(1984) has proposed
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a measure called manpulabh'*ty, defined as the square root of the determinanit ,

jjT . This measure is often viewed as a generalized concept of the determinant.

because of the followings:

" the manipulability reduces to the regular determinant in the nonredundant

case.

" the manipulability become zero, when workspace rank reduces at singularity,

just as the regular determinant of a square Jacobian matrix does.

" since the singular values of jjT have the square values of those of J, the

determinant of jjT may be regarded as if it were the square of the regular

determinant of a square Jacobian matrix.

Condition number

V7Meanwhile, since the condition number of the Jacobian matrix is another im-

portant measure that also indicates the nearness of a matrix to singularity, it

has been proposed for a dexterity measure(Salisbury,1982). It is noteworthy that

this measure was initially used to determine the configuration that minimizes the

propagation from the torque error to the force error - equivalently, the velocity

error propagation from joint space to workspace - for nonredundant manipula-

tor.

Singular values

The determinant and the condition number can be also expressed in terms of sin-

gular values of the Jacobian matrix: the former is the product of all the singular

values, the latter the ratio of the largest to the smallest singular value. Since the

minimum singular va!ue becomes zero when the matrix is singular, and approx-

imately determines the worst limits of the two measures, the value as such was

suggested as a new measure(Klein,1985). In addition to its simple expression,
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the measure has a relatively clear physical meaning: it may be interpreted as

the minimum responsiveness in end effector velocity due to a unit change in joint

velocity( Kiein, 1985).

Besides, the geometric mean and harmonic mean of singular values have been

proposed for the dexterity measures(Yoshikawa,1985b), which may be viewed es-

sentially as variations of aforementioned measures.

Common features

The features common to all these measures are as the following:

" They indicate the presence of singularity: when singular. the value of these

measures become zero, except for the condition number, the value of which

becomes infinity.

" Their absolute values - inverse of the value in the case of the condition

number - appear to represent, in one way or another, the farness or dis-

tance from singularity. That is, the larger the value, the farther is the

manipulator from a singularity.

In the case of redundant manipulators, however, these measures do not ex-

plicitly indicate the successive changes in the available degrees of freedom as long

as the workspace rank is preserved. For instance, suppose we have a five d.o.f.

manipulator which is to move in a three-dimensional workspace, hence having

two degrees of redundancy. Although the manipulator happens to lose one degree

of freedom, or even two, the measures do not necessarily indicat that fact.

Because the degree of redundancy is an important constituent of the distance

from a singularity, there is an obvious shortcoming for these distance measures.

Furthermore, unnoticed relative differences in the distance from singular for a

particular degree of redundancy. Therefore, we feel that a satisfactory dexterity
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measure should not only include the feature of indicating the change in the degrtee

of redundancy, but also represent relative differences in a particular degree of

redundancy.

Losing degrees of freedom may not in itself be a serious drawback, as long

as the workspace rank is fully preserved so that the desired location of the end

effector can be achieved by joint variables. Yet, what may be of more concerns are

potential problems that are expected to arise - from the similar experience in the

nonredundant case - when degrees of freedom are lost. More specifically, in the

nonredundant case, the point where the degrees of freedom are lost - namely the

singular point - is in fact the boundary of switching from one set of joint solution

to another (Uchiyama,1979). Once that switching happens, the manipulator tends

to stay in the new kind of joint configuration different from the previous kind, thus

causing a type of repeatability problem. Besides, when the switching arises, usually

there are accompanying discontinuity in motion, resulting in large joint velocities.

The same problems are expected in the redundant case, since in this case too

there exist multiple solutions of different kinds (Borrel,1986), whose boundaries

are the points where the degree of freedom decreases. It appears, however, that

these nontrivial problems tend to be veiled because of the fact that owing to the

redundancy the switching can happen without causing the more serious problem,

singularity. To our knowledge, there have not appeared any analysis on these

problems for redundant manipulators, and any performance measures that are

intended to prevent them.

The objectives of the present paper are as the following:

9 to analyze the aforementioned relative distance for redundant manipulators

and to derive a new distance concept;
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" to derive from this concept a new performance measure that represents the

dexterity of manipulators including singularity overcoming;

" to examine if the new performance measure helps avoid the repeatability

problems and discontinuous motions due to switching solution types.

This performance measure is intended to be used either with on-line kinematic

control methods, or for off-line design purposes.

In order to better understand the degree of redundancy and the relative dif-

ferences, we first review in Section 2 the concept of singularity, and some basic

knowledge about the degree of redundancy. Then we will derive a new concept of I

the distance from singularity for kinematically redundant cases. This concept is

obtained by observing the structure of the Jacobian matrix of redundant manip-

ulators. Then, from this concept, a new performance measure will be developed.

The property of this measure will be discussed in Section 3. Besides, the new per-

formance measure will be qualitatively compared with two existing performance

measures: the manipulability measure and the condition number. In Section 4,

the numerical simulations will be made with redundant manipulators to compare

the effectiveness of each measure in achieving dexterous movements. In the com-

parison, at the same time, the repeatability problems, as well as the ability to to

preserve the kind of joint solutions are to be observed. Finally some concluding

remarks will be made in Section 5.

2 New Distance Concept and Performance Mea-

sure

This subsection present revipws nip two basic concepts, singularity and kinematic

redundancy for better understanding the distance from singularity in the redun-

6
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dant manipulators. Then the distance concept and its corresponding measure

be derived.

2.1 Review of Singularity and Redundancy

2.1.1 Singularity

Singularities can be easily observed by examining the differential relationship,

or the Jacobian equation, which is,

where 0 is n-dimensional vector representing joint variables, x is m-dimensional

vector representing end effector location.

For the nonredundant case (n = rn), the Jacobian matrix J is a square matrix.

When th9 Jacobian mptrix becomes singular, a manipulator is said to be at a

singular point. Hence at a singular point, the determinant of J, det(J) equals

zero. This simple fact, together with the fact that the determinant is a continuous

function of joint variables, provides some important insights:

1. When det(J) = 0, the rank of J is reduced, and the arm loses corresponding

degrees of freedom. The result is an inability to move in some directions by

any combinations of small motions in the joints.

2. Thus, as an arm approaches this point, small movements in those directions

require very large displacements in joint space.

3. Since the determinant is a continuous function, at singular points, its sign

changes. Since the determinant is the ratio of the differential volume of

'Much of discussions here is based on the personal note on singularity by Professor B.K.P.

Horn, the author's supervisor.

7
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Cartesian coordinates to that of joint coordinates, the sign change in the

determinant indicates a change from one kind of solution to another. In

fact, just as a change of sign in a continuous function cannot occur without

passing through zero, so the arm cannot change from one kind of solution

to another without passing through a singularity. This property was also Jd

discussed in (Uchiyama, 1979)

4. At a singularity, two different kinds of solution become one kind: hence. the

number of different solutions is reduced.

5. Items 3 and 4 can be explained in terms of Riemann sheets: multiple solu-

tions correspond to multiple sheets each of which represents the mapping

from joint angles to Cartesian coordinates; and singular points lie on the

folds. .

The first two items may explain why keeping far from a singularity is closely

related to dexterity.

From the fact that the determinant becomes zero at a singularity, it functions

in a sense, as an indicator of the presence of a singular point. A geometrical inter-

pretation of the absolute value of the determinant is the volume of a parallelepiped

made of n column vectors (or row vectors) of the Jacobian matrix. This inter-

pretation, together with the fact that at a singularity the parallelepiped collapses

and the volume becomes zero, is in fact the basis of the idea that the determinant

is a measure of distance from a singularity.

One disadvantage of using the determinant, however, as an indicator of singu-

larity is that, once the rank of J is reduced, it does not distinguish between one

state of singu!arity and another although their remaining ranks are different; the

determinants of both of them are equally zero. The more accurate indicator For

this purpose would probably be the remaining rank, or degree of freedom, itself.

8
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For redundant manipulators, the measure equivalent to det(J) is the mani,-

lability measure, V/det(JJ T ). Yet, this measure, as mentioned in Section 1. cannot

indicate the change in the degrees of redundancy, which will be reviewed in the

following subsection.

2.1.2 Kinematic Redundancy

The degree of redundancy r is formally defined as

r= n-rn (2)

where n is the degree of freedom, and m the rank of workspace. In linear algebra

(Strang, 1980), the degree of redundancy corresponds to the dimension of null

space of the Jacobian matrix, the degree of freedom to the dimension of its column

space, and the workspace rank to the dimension of its row space. In other words.

the degree of redundancy is the maximum number of linearly independent vectors

in the null space, ej, defined as

Je, =0 (3)

But, we find that this definition is not sufficient for describing the concept of

redunzdanc y.

For instance, consider the following Jacobian matrix representing a three de-

gree of freedom planar redundant manipulator consisting of three two-dimensional

column vectors, J, J, and J

J = (J) J1 J 3 ).

If the second and the third links line up, that is j 3 = cJ1 with c any nonzero

constant, we know we do not have any redundancy left. However, the null space

9-. -p .*
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vector that satisfies (3) is obtained as

e=(O c -1),

which is a nonzero vector. Thus, according to the definition, the degree of re-

dundancy is one, whereas the observation indicates there is no redundancy. This

discrepancy can be resolved if we modify the meaning of n in (2), as the arall- A

able degrees of freedom. But, as mentioned in Section 1, it turns out that this

modified definition is still inadequate to describe the relative differences in the

distance within the same degree of redundancy.

2.2 A New Concept of Distance from Singularity in Re-

dundant Case

In this subsection, we will observe some Jacobian matrices of kinematically re-

dundant manipulators, and identify relative differences in the distance from sin-

gularity. On the basis of the observations, we will propose a new definition of the

distance from a singularity.

Again, the kinematic equation of a kinematically redundant manipulator is

generally given as follows:

x = f(a)

where x E R', and 0 E R' with with m < n. Then, the Jacobian matrix from

the equation, which is given as J E ,n may be denoted in general as,

J - [J,,J 2, ... J, Jm+I .. jj

where Jk is k-th column vector. If m linearly independent vectors are chosen,

without loss of generality, as the first m column vectors of J, then, from linear

algebra, the remaining n - m vectors Jm+,... ,J" are linear combinations of

J',...,J, (Strang, 1980).

10
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Observations show that the number of these m vectors that are included i

the linear combination for each of the remaining n - m vectors determines how

far from a singularity a given configuration of the manipulator is at the noment.

To illustrate the point, let us select a manipulator with one degree of redun-

dancy, i.e., n =m r 1, where

j = ij .... JmJn-t-

Consider the following three cases of linear combinations for Jm-1:

1. jm+ = a1jP

2. Jm+l = aIJi _- a2 J 2

3. J- = a1J q- a2J2 - ... + aJm

where a,'s, (i = 1,2,... ,m) are arbitrary nonzero constants. What are then the

differences among these cases?

According to the formal definition in (2), the degree of redundancy for each of

the three cases are is one. Alternatively, if the modified definition is used, then the

manipulator in Case 1 has no redundancy, whereas both those in Cases 2 and 3

have one degree of redundancy. However, a careful observation reveals that there

still exists another difference in the distance from a singularity between Cases 2

and 3. The differences among the three cases may be explained as follows:

1. In Case 1, the manipulator gets into a singularity, reducing its rank (< m),

if any two of the first m column vectors happen to line up.

2. In Case 2, singularity arises if any two, except for J and J2 , of the m

column vectors line up.

. 11



3. In Case 3, the Jacobian matrix preserves its rank (= m), although any two

of the column vectors happen to line up.

In other words, the chance for the manipulator to get into a singularity decreases

by degrees, as the number of linearly independent vectors to be included in the

combination increases. These differences in chances of getting into singularity

determine the relative differences, for system with the same degrees of redun-

dancy, in the distance from singularity. Meanwhile, the number of J J ...... jm

that appear in each of J"-1,.... J' uniquely determines the number of distinct

combinations of m linearly independent column vectors, or the number of distinct

submatrices of rank m in the Jacobian matrix. Hence, this number of submatrices

also represents the margin from singularity; as the number increases, the system

is less likely to become singular. Of course, this number reduces as the number

of column vectors which line up increases. While these two measures are equiva-

lent, determining the number of submatrices would be much easier than selecting

redundant vectors in the set of m vectors. Note, at the same time, that the ob-

servation is not confined to this particular example of a one degree of redundancy

case, but evidently true for general cases, where the degree of redundancy is more

than one.

As another example, consider the following five jointed robot having a three

dimensional workspace and thus two degrees of redundancy, where the Jacobian

matrix is given as,

j = [j 1j1j 3j1J5 J

where J"s are again the three dimensional column vectors. If J1 ,J 2 , and J3 are

selected as linearly independent vectors, then j and j are, in general, repre-

sented as

= c 1 J' + c2 j c3 J 3

12
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P = dj 1 + d2J2 + d3 J3

Depending on how many and which of c,'s and di's are zero, we have different

numbers and combinations of linearly independent vectors appearing in P and

J 5 . At the same time, this number and combination of vectors determine the

number of submatrices of rank 3 in the Jacobian matrix. The Table 1 shows

the relationship between the number of submatrices and the number (and the

combination) of linearly independent vectors.

It is noteworthy that the number of submatrices successively reduces from the

maximum, 10, to the minimum, 1, depending on the number and combination of

linearly independent vectors. Again, even within the same degree of redundancy,

there are different number of submatrices. Clearly this number of submatrices

differentiates the relative distance from singularity.

In addition, note that the absolute value of the determinant of each submatrix,

called a minor, represents the distance from its own degenerating state. Therefore,

a measure of the overall distance from a singularity should consider the value of

each minor of the Jacobian matrix. In other words, in addition to the number of

submatrices of rank rn, the chance of singularity is even less, as each submatrix is

farther from a singularity, a larger absolute value of the minor.

The above observations directly lead to a definition of distance from singularity

as follows:

Definition

The distance from singularity is represented as the number of distinct

nonsingular submatrices of rank m and the magnitude of determinant

of each submatrix, or the magnitude of each minor of the Jacobian

matrix.

13



2.3 The Derivation of A New Performance Measure

Based on the distance concept developed, we will derive a performance measure

for the purposes of kinematic control and manipulator design More specifically,

the following objectives are simultaneously to be met in order to achieve the

desired performance:

" to keep the number of distinct nonsingular submatrices of rank

m as large as possible;

* to make the magnitude of each minor as large as possible.

As an index that explicitly represents these objectives, we propose the follow-

ing measure:
1 P 1/p

H = JlIA, (4)

where the Ai's for i = 1,2,...,p, with p = nCm, are minors of rank m of

the Jacobian matrix. Clearly, this measure contains in its expression the two

elements of the distance, the number and the magnitude of distinct minors, in

such a way that both objectives are automatically achieved as it increases. To be

more specific, since the measure has nonzero values only if all of the minors are

nonzero, keeping it greater than zero guarantees the maximum number of distinct

submatrices. At the same time, since the measure cannot have a large value unless

each minor is large, increasing the measure tends to increase the magnitude of

each, as a whole. Furthermore, since the measure is a product, it becomes smaller

if the minors have uneven values. Therefore, this prevents any minor from being

particularly large at the cost of forcing others to be too small.

In (4), the exponent 1/p is primarily used so that, when n = m, the mea-

sure might reduce to the absolute value of the determinant. We find a similar

14
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treatment, in (Yoshikawa, 1984), where the manipulability measure is defined 5,

applying the exponent of 1/2 to det(jJT ). Of course, if exponents are used, then

physical interpretations for the measure become different. This will be consid-

ered in the next section. Besides, the use of an exponent, when the measure is

used in the null space of the Resolved Motion Method, results in a different time

response of convergence toward the optimal joint configuration. Except for these

differences, the essential characteristics are not changed.

3 The Properties of The New Measure and Its

Relationship with Other Measures

3.1 The Propertis of The New Measure

tExamining the new measure, we find the following important properties:

* When m = n, i.e., for nonredundant manipulators, the measure reduces to

H = Idet(J)I

which is the same as that proposed by (Paul and Stevenson, 1983). This

measure may be conceptually interpreted as the volume of a parallelepiped

in m-dimensional space, the edges of which come from the rows - or equiv-

alently columns - of the Jacobian matrix, J.

" When n > m, the measure represents the geometric mean of the volumes of

p parallelepipeds made of each combination of m column vectors out of n.

" The points where Ai = 0 dete-mine the boundary between one kind of joint

configuration (or solution) and another kind. These points are also the
A1
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points where some of the column vectors in A, are linear combinations of

the remaining ones in A,, and thereby causing the minor to become zero.

Note that the last property may be considered an extension of the nonredun-

dant case in Section 2 to the redundant case where the points satisfying det(J) = 0

determines boundaries. This property, in fact, was used by Borrel and Liegeois

(Borrel, 1986) to determine the boundaries of different kinds of joint solutions.

These boundaries then divide the joint space into subsets, called aspects, each of

which consists of one kind of joint solution or configuration.

In addition to determining aspects, we can use this property to make the joint

configuration stay within a preferred aspect. More specifically, by keeping A,

nonzero, we preserve the kind of joint solutions for redundant manipulators.

Then why do we need to make the joint configuration stay within an aspect?

The reasons have been mentioned in Section 1 as follows:

" The switching of aspects can cause a certain type of repeatability problem.

" Discontinuities in motion and awkward configurations may accompany the

switching.

Clearly, now that maximizing the performance measure directly prevents A,

from becoming zero, it immediately addresses these problems. In other words, by

virtue of its property, the new performance measure is expected to help solve the

problems.

3.2 Relationship with Other Measures

In this subsection, we investigate the relationship between the proposed measure

and the two others: first the manipulability measure and then the condition

number.

16
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3.2.1 the Relationship to the Manipulability Measure

By the fact that both measures represent the distance from a singularity, the new

measure and the manipulability measure are loosely related. What is the precise

relationship between the two? The following theorem answers this question:

Theorem 1 For any matrix, J E R,, n, with m < n,
P

det(JJT) = ZAj2

j=1

where A, 's , i = 1,2, ..,p, with p = nCm, are again minors of rank m of the

matrix J.

The proof for the theorem is in Appendix 1. Since the manipulability measure,

Hi, is defined as

eH = Vdet(JJ T )

it is expressed in terms of minors as follows: p|
Hr Z' (5)

whereas the new measure expressed in (4) is again,

Comparing the two measures, we note the following differences:

1. Geometrically, the manipulability measure may be interpreted either as the

Euclidean norm of the vector representing the present state in the Al - A2 -

- Ap coordinates system, or as the distance from the origin to the present

state in that coordinate system. In contrast, the new measure represents

the radius of sphere whose volume is equal to that of the hyper-hexahedron

made from the A,, i = 1,2,• , p coordinates in the same coordinate system.

17
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2. As mentioned in Section 3, the new measure cannot have a large value

if the values of the A,'s are uneven; whereas the other measure can still

have a large value if only some of dominant minors have large values. The

manipulability measure can have, in the extreme, some zero minors, as long

as the workspace rank is preserved.

Hence the new measure tends to give more balanced minors than the manip-

ulability measure, not to mention the fact that it prevents minors from being

zero, thus directly controlling the switching of aspects. In contrast, the ma-

nipulability measure does not have an immediate effect on the switching of

aspects.

3. Note that the manipulability can be also expressed as (Yoshikawa, 1985)

HL 11 O ak ,.

k

where ok is the k - th singular value of jjT.

This expression shows that the measure has a similar form to the new mea-

sure in that it is a product; the difference is that the manipulability measure

is the product of the singular values representing the workspace, whereas

the product of minors in the new measure represents the joint space.

This difference implies, in a sense, that the former concentrates on preserv-

ing the workspace rank while the latter concentrates on degrees of freedom

of joint space. Since keeping as many degrees of freedom as possible in joint

space automatically preserves the workspace rank, the latter has the more

sufficient yet the stricter requirements.

To illustrate the second difference, let us consider a three degree of freedom

redundant manipulator as shown in Figure 1, which is to locate the end effector

at a certain x - y position.
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Y 0

01 11= 0.60 m
12 =0.85 m
13 = 0.20 m

x

Figure 1: The Schematic Diagram Of The Redundant Manipulator

At the end effector location, there exists an infinite number of configurations

or sets of joint values for a given position. Each configuration is represented by a

C* distinct Jacobian matrix and thus a distinct set of minors.

For a given end effector location, these sets of minors accordingly determine

a curve in the Al - A2- A~3 coordinate system, as shown in Figure 2. Applying

the inverse kinematic method presented in (Changa, 1986), when the end effector

is located at x 0.2m y = Om, we can obtain two sets of joint values that

maximizes the two measures. Then their corresponding sets of minors are plotted

in the same curve in Figure 2. These plots confirm the predicted tendency: the

new performance measure gives somewhat more balanced minor values than the

manipulability measure. The minor balance changes with the end effector loca-

tion; this improvement is more noticeable as the tip moves toward the outer or

inner workspace limits.

0 19
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Figure 2: Trajectories of minors, J1, J2, and J3, under the constraint of kinematic

equation, when the tip is at x =O.2,y =0; and two optimal configurations with

relative to the two performance measure; the three dimensional trajectory is here

represented with J1 vs. J2 and J1 vs. 2h~ trajectories.
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3.3 Relationship with the condition number

The relationship with the condition number, however, is not so clear as that with

the manipulability measure, because of the difficulty in deriving such a pair of

simple expressions as (4) and (5). As is well known, the condition number H is

defined by

H 2 = '---- (6)
Ornin

where ',mn and Omaz are minimum and maximum values of singular values, re-
a

spectively. The singular values correspond to the workspace rank: a nonzero value

of Omin guarantees workspace rank. Therefore, minimizing the condition number,

in effect, results in maximizing mn. This measure thus tends to weight preser-

vation of rank without weighting what happens within the redundant degrees of

freedom.

4 Numerical Simulations

In this section, the new measure is quantitatively compared with the two other

measures. To this end, some numerical experiments were carried out for the case

of a three degrees of freedom planar manipulator. We will examine through the

experiments:

1. if the new measure can help achieve the desired performance, avoiding sin-

gularities, if used for kinematic control;

2. if the measure can preserve the aspect (or the kind of joint configurations)

and how this relates to the repeatability problem;

3. what other effects the transition of aspects brings about.
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To examine the first point (the ability to overcome singularity), simulations are

performed for when the manipulator has a nearly singular configuration; and

when the end effector touches the base. To examine the second and third points.

the end effector is made to radially reciprocate between the base and outer limits

of the workspace.

The inverse kinematic method (Chang, 1986) or the resolved motion method

(Liegeois, 1977) were alternately used'for the kinematic control in the experi- I

ments. More specifically, the inverse kinematic method obtains the joint variables,

*, by numerically solving the following system of nonlinear equations:

{Zh =0
where the upper equations are the kinematic equations, and the lower equa-

tions the optimizing equations, where Z is the null space matrix defined as - -

Z = [Jn-mJm-I : In-ml, (8)

while h is the gradient of performance measure functions as

h (h1 ,h 2,. ,h, r)T

(9)hi LH (i ,. , n) !

Meanwhile the resolved motion method is to solve

Y = J ax ± a(I - JJ)h, (10)

where a is a gain constant, I the n-dimensional identity matrix, and J+ the matrix

known as Moore-Penrose pseudoinverse defined as

J+= jT(jjT)-, (i1)

22 r IM

22-

-,,--.--.- A,
3 '-,' -



Y
ItI

1.4.

x=
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Figure 3: The Schematic Diagram Of The Redundant

Manipulator With Links of Equal Length

4.1 Overcoming Singularity

The two experiments examining the ability of overcoming singularity are made

with a manipulator that has three revolute joints with equal lengths of 0.55m. as

shown in Figure 3.

4.1.1 Escaping from a nearly singular configuration

In the first experiment, starting from a nearly singular configuration of 0 -

(-90", 17 9 .50,O)T, the manipulator is commanded to have self-motion using each

of the three performance measures, and the respective results are compared.

The resolved motion method is used, with a ='10 in (10), to examine the

change of configurations. In order to avoid a large value of null space term, the

condition number was minimized by maximizing its inverse.
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Table 1: The relationship between the number of linearly indepen- <

dent vectors in representing the remaining vectors and the number of '

submatrices in the Jacobian matrix.

C C2 *3 0 0 1 0 *0 0 0

di d2 d3 #

No. of sub- 10 9 8 8 7 6
matrices (5C3)

Notes: A B C D E F

C1 C2 C3 0 0 *0 0 0 0 0 0 *0 0 0 0 0 0 0

d, d2 d3 0 * *0 0 ***0 *0 0 * 0 0 0 0 :

No. of sub- 5 4 4 3 2 1

matrices ;

Notes: G H I JK L .

*represent any nonzero value :5 '

Notes:

* All of c,'s and di's are nonzero. ,

* Only one among c,'s and d,'s is zero. ..

C Any two of either ci's or d,'s zero.

D One of ci's and one of dj's are zero with i :?4. -

E Two of either ci's or d,'s are zero and one of the other parts, d,'s or c,'s, is zero with
A j.

F One of ci's and one of d,'s are zero with i 1 .,

* Two of either ci's or d,'s are zero and one of the other parts, d,'s or c, s, is zero-with

.

*Tbl 1: bth relsadionsi breteen, wthe numerofpinea Indpn

I All of either ci's or d's are zero.ecr

J One of both e's and d,'s are nonzero, with

K Only one of either c9's or ds is nonzero.
L All of ci's and d's are zero. 24
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Figure 4: The Singularity Avoidance Ability When The Condition

Number Is Used: The Configuration Is Changing Toward The Op-

timal Configuration As Time Goes On. The Link Lengths Are

it = 12 = 13 = 0.55m.
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The result of the experiment is given in Figures 4, 5, 6, where the chang, ,

configurations and the time response of each measure are shown. From this resuit,

it is clearly demonstrated that each measure, if included in the null space term.

makes the manipulator escape from the singular configuration, driving joint values

toward the state where the measure has the maximum value for the tip location.

The effect of including the performance measures is significant because there is no

self-motion without the use of these me.sures. The speed of convergence for the

condition number case is noticeably slower than those of the two other measures,

both of which are almost the same.

Whereas the condition number has a considerably different steady state con-

figuration, the new measure and the manipulability measure have steady state

configurations that look surprisingly similar. Yet a close inspection shows that

they are slightly different. The reason for these similar configurations is as fol-

4lows. The optimizing equation, Zh = 0 in (7), for each measure is in general

quite different from one another. Even for the manipulator in Figure 3 with such

a particularly symmetric geometry, joint solutions for each measure are different.

However, the above optimal condition for each measure turns out to be satisfied

only at end effector locations (x, y) satisfying x' + y2 = 12, with a particular joint

values of 02 = 03 = 90' or 02 = 63 = -90'. Here I is the value of the length of the

three links of the given manipulator.

4.1.2 When passing the base

Whereas the previous experiment examines the self-escaping ability, the present

one examines the behavior of the manipulator when the tip touches the base,

forming a closed kinematic chain - a triangle. This case is of interest because

intuitively we see the self-motion is not possible, except for rigid body rotation
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of the triangle with respect to the base, as long as the tip stays at that location.

This intuition can be easily confirmed if the projection matrix, I - J-J, in the

homogeneous solution term of (10), is symbolically derived. To be more specific,

when the tip is located at the base, the Jacobian matrix in (1) is modified as the

following symbolic form:

( 0 12 i13'* = (12)
222 223

from which the projection matrix can be derived as,

1 00

I-JJ = 0 0 01

0 00

Clearly, through the projection matrix, only 01 is affected by the gradient of

performance measures, h, resulting in a rigid body rotation of the triangle with

respect to the base, without making any other changes in the configuration.

Then, is it impossible for the manipulator to get into and out of the configura-

tion? In other words, can we obtain the inverse kinematic solution that resolves

the motion when the tip is passing the base? The answer for the question is that,

although the homogeneous term becomes ineffective with the tip at the base, it

is still possible for the manipulator to get into and out of the point. The reason

for the answer may be analyzed as follows:

" When the tip is approaching the base, the homogeneous solution term, al-

though diminishing, still exists, continuing the effort to achieve the optimal

configuration, until the tip touches the base.

" When the tip is getting out of the base, now that the projection matrix is

given as in (13). The homogeneous term does not contribute to overcoming

the closed chain configuration. Yet, since the rank is still preserved, the
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pseudoinverse J' is available, which can be derived from (11) as

0 0

J+ = J23  -13 (14)

-J22 j12

Since, in this matrix, the second and the third row vectors are linearly

independent, we may have a differential tip displacement in any direction

we like in the workspace.

9 Then, once the tip is apart from the base - no matter how small the

distance may be - the homogeneous term immediately begins to restore

its effectiveness.

To sum up, at the base, where the particular solution term is still well defined,

this term drives the tip out of it, while the homogeneous term is momentarily

F. ineffective; at the remaining region in the workspace, both terms are effective.

Furthermore, between the two regions, the respective transitions of the two terms

are smooth without discontinuity.

One may suspect that the overcoming ability could have come from the inexact

tip location - the tip can be slightly off the base - due to the linearization

characteristics of (10). On the other hand, the inexact Jacobian matrix may

have made it possible for the tip to get out of the base, which, with the exact

Jacobian matrix, might be impossible. But these are not the cases, because both

the Jacobian matrix in (12) and the pseudoinverse in (14) are exact expressions

defined at an exact point (the base). Rather, the ability comes from intrinsic

back-up function of kinematic redundancy.

The aforementioned analysis is well confirmed in the following experiment. In

the experiment, the tip is made to move along the straight line starting from x

(0. 2 ,0 )T to (- 0 .2 ,0)T, passing the base, (0 ,0)', with units in meters. Together
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with the tip motion, the three measures are included in the resolved motion

method, which provides the exact equilibrium solution after sufficient amount of

iterations (Chang, 1986), thus excluding the effect of inaccuracy in both the tip

location and the Jacobian matrix.

From the result shown in Figures 7, we see that with the three measures the

manipulator had no difficulty in getting into and out of the point. We may con-

clude that the use of a redundant manipulator seals the hole in the workspace at

the origin, where, without the kinematic redundancy, a singularity is unavoidable.

In the Figure 6, one may note the smoothness of motion when the new measure

is used, as compared to motions with the other measures: When the other mea-

sures are used, the motions approaching the base from x = .2 ,0jT are abrupt.

in 01. The reason for the smoothness is not very clear right now; but we can guess

that keeping minors balanced prevents the abrupt changes in the joint angles.

4.2 Preserving the aspect and its effect to the repeatabil-

ity problem

In the following experiment, we examine whether the manipulator, with the new

performance measure, can preserve the aspect and, compare it to the cases with

other measures. The manipulator to be used for this purpose is a three degree

of freedom planar manipulator with revolute joints of 11 = 0.6m, 12 = 0.85m, and

13 = 0.2m with units in meters.

In the experiment, the tip is made to reciprocate radially between the base and

the outer limit, where the manipulator fully extends. The radial motion itself is

not of primary concern. The tip motion is made because it is a way of scanning the

workspace to examine the ability to preserve the aspect. Because of rotational

symmetry, a series of configurations corresponding to the tip reciprocating in -
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one radial direction represent configurations in all of the other directions. t.,- P

covering the whole workspace. Of course, the rotational symmetry lies in the fact

that the new performance measure, together with the other measures, depends

on 02 and 83 only, and is independent of 01 - hence, one optimal configuration

for a fixed tip location is symmetrical to any other location which is the same

distance from the base.

Of the two kinematic control methods, the inverse kinematic method is the

more convenient one for obtaining the equilibrium states. Therefore it is mainly

used together with the three measures. When applying the method, to solve for

the successive joint configurations as the tip reciprocates, the present joint values

are used as the initial conditions for the next tip location. The very first joint

configuration corresponding to the starting point of the tip, by the way, are de-

termined by obtaining the global minimum. To do this, we first determine all the

-0 local minima by providing every possible initial condition for solving the sybtem of

nonlinear equations, '(7). These initial conditions, in turn, may be determined by

finely tessellating the joint space, that is, the domains of joint variables, 01,0 2, 03.

In parallel to this, all the local maxima at each tip location are obtained with the

proposed method, in order to examine if the successive generations of joint values

are indeed correct. In addition to the joint configurations, corresponding minor

values are obtained to examine the correlation between joint configurations and

minor values.

In Figures 8, 10, 12, the optimal joint configurations based on each of the

performance measures and the value of each measure are plotted.

Corresponding minor values are plotted in Figures 9, 11, 13.

As shown in the figures, each performance measure has two distinct sets of

configurations that, depending on the tip location, alternately give the global op-

49
31



iPzuuRAR MV

timum. Hence, each of the two sets of configurations has its own corresponding

performance measure curve: the one, consisting of mostly the ladder-shaped con-

figurations, corresponds to the curve with a solid line (Configuration A); and the

other, consisting of mostly 'N'-shaped configurations, to the curve with a broken

line (Configuration B).

Besides, note that the mirror-image sets of Configurations A and B with re-

spect to the x-axis are not included in th'e figures, since they have the same values

of the corresponding measure. Of course, there are still additional sets of config-

urations - corresponding to local maxima instead of global maxima - that are

not shown in the figures either.

What do we find from the resulting configurations? Let us examine the con-

figurations generated by each performance measure one after another.

4.2.1 The Manipulability Measure

Figure 8 shows the two configurations and the corresponding values of the per-

formance measure using the manipulability measure. As shown in the figure,

depending on the tip location, the two configurations alternately assume larger

performance measure values than the other. In the region between x = 1.1m and

x = 1.6m, however, the two configurations become identical, having the same

performance measure values. Then what happens with the two configurations,

when the tip is coming out of this region of the identical configuration? To answer

this quest.ion, we need more careful observations as follows.

In Configurations A, the initial configuration is preserved within almost the

entire workspace except for the region between the base and x = 0.1m. That is,

except for this region, the initial shape is independent of the tip location and to

direction of tip motion - toward or away from base.
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In Configuration B, on the other hand, where the tip starts near the base. the

initial configuration is preserved only if the tip is located within a certain distance

from the base (about I m). Outside of this range, the configurations shift or merge

into Configuration A. And once merged, configurations corresponding to subse-

quent tip motions stay within Configuration A, never returning to Configuration

B.

Here, we observe that the manipulator has switched the aspect or the kind

of joint solutions. Moreover the configuration, once switched from one aspect to

another, does not return to the initial configuration: this is the source of the

expected repeatability problem. Then, what happened to the minors when this

switching of aspect occurred? Did they change their sign, passing through zero

values? Figure 9 clearly shows that is the case: the tip location where merging

happens is the place where one of the minors changes its sign.

4.2.2 The Condition Number

In the case of the condition number, the situation is even more complicated. In

this case, Configurations A consists of successive joint configurations, where the

tip starts from close to the outer limit of the workspace and moves toward the

base, whereas Configuration B represents the movements in the opposite direction

from the base. Differently from the manipulability case, both Configurations A

and B, merge into the same configuration. Furthermore, the locations where

mergings occur are different: about x = 0.7m for Configuration A; and x = 1.3m

for Configuration B. And within z < 0.7m or outer than ,x > 1.3m, the two

configurations are identical, giving the same measure curve.

Hence, the repeatability problem occurs, between z = 0.7m and z = 1.3m,

when the tip reverses its direction after experiencing a merging. Again, the minor
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curve in Figure 11 shows that, when the switchings occur, signs of minors change.

4.2.3 The New Measure

When the new performance measure is used, there still exist two distinct config-

urations. One thing particularly noticeable is that there is no switching for both

configurations; there is no repeatability problem at all. Because of no merging

effects, the initial configurations are distinctly preserved showing also distinct

measure curves. As expected, the minor curve in Figure 13 clearly shows that

there is no sign change at all for the three minors. We see from this an obvious

consequence of using a measure that has a direct control over each minor value.

Besides, we can observe, as compared to simulations using the other measures,

smoother movements near the base.

ill

4.3 Discontinuity effects

As mentioned in Section 3, when merging of configurations or switching of aspects

occur, discontinuous joint motion was predicted.

To confirm the prediction, we obtained joint velocities of both configurations

for each measure. Here the tip is made to move with a constant velocity of

0.1(m/sec). To resolve the velocity, we used the Resolved Motion Method.

Figure 14, 15, 16 show the resulting velocity curve corresponding to the config-

urations obtained in the previous subsection. As expected, simulations in which

there is no switching (both simulations using the new measure and the Config-

uration A of the manipulability measure experiments), show quite smooth joint

velocity trajectories as plotted in Figures 14 and 16.

For the remaining cases, where switchings occur, the velocity trajectory is gen-

erally rugged, confirming our prediction. Yet, the degrees of ruggedness for the

34



two measures are different. A careful observation reveals the following: for the

manipulability measure, the merging happens through some intermediate con fig-

urations, reducing the degree of discontinuity; whereas, for the condition number

measure, the switching happens instantaneously with few intermediate states.

resulting in much larger values of joint velocity.

It is not clear right now why this difference exists. We will probably be

able to get some clue, if the gradients of the two measure are first expressed

in symbolic form and then each term is examined to pinpoint the cause of the

abrupt switching. To have the symbolic expressions for this inspection appears

to be possible, although quite complicated, fur this particular manipulator case.

4.4 Conclusion

Summing up, the new measure has been compared with the two other measures,

both qualitatively and quantitatively. The result of analysis on qualitative rela-

tionship agrees well with the experimental results.

To summarize these results, all the measures showed the ability to overcome

singularity by successfully treating the two singular locations: the location cor-

responding to almost straight line configuration and the location with the tip at

base or the origin. The essential difference between the new measure and the

other ones is its ability to explicitly prevent the minors from becoming zero. This

ability, in effect, prevents the merging of configurations and switching of aspects,

which in turn prevents the repeatability problem and impulsive motions. In ad-

dition, balancing the values of minors appears to contribute to noticeably smooth

movements near the base.
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Figure 14: The Joint Velocities In Configurations A And B, When The Manipula-

bility is Used As Performance Measure, Where A And B Refer To The Tip-Motion

With Different Initial Configurations.

44



2'

40-

30- dthl
--- - -- dth2

20- ... ... dth3

0-
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

Tip Location X(m)

Joint Velocities With The Condition Number: Configuration A

-

Ti-o in Wit Difrn IntalCn*..ios

I 45



dth2

220- dth3

15,

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Tip Location X(m)

Joint Velocities With The New Measure: Configuration A

dthl

dth2

20- dth3

C /'

15-

10

• _ . . ...........

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Tip Location X(m)

Joint Velocities With The New Measure: Configuration B

Figure 16: The Joint Velocities In Configurations A And B, When The New Measure

is Used As Performance Measure, Where A And B Refer To The Tip-Motion With

Different Initial Configurations
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5 Conclusion

In this paper, we have defined the concept of dexterity as a distance from singu-

larity. Then we reviewed the concept of singularity and redundancy for further

investigation of the distance concept. We have illustrated that there are different

degrees of distance from singularity in the same degree of redundancy, showing

that the conventional concept of redundancy is not sufficient to describe this dis-

tance. The new distance concept we derived was the number of nonzero minors

as well as the magnitude of each minor. On the basis of the new concept, a new

performance measure was derived. Then we have related the new performance

measure with the manipulability measure and the condition number. Having in-

vestigated the qualitative relationship, we pointed out that the othcr measures do

not have the ability to explicitly prevent minors from becoming zero. Through

another series of numerical experiments, the effect of this ability was clearly con-

firmed. Whereas the two other measures without this ability showed repeatability

problem and discontinuous motions, the new measure consistently overcame these

problems.
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Appendix 1: Proof of Theorem 1

[n this appendix, we make a proof of Theorem 1. The Jacobian matrix is expressed

as the following:

Thenn= 
2 .. 7 ,Ek Iilk "-I-~kj m/

In general, the determinant of an m x m matrix A is explicitly given as

det(A) = Z(aiaa .. am,)det(Por)()

where aq, is the element of A at i-th row and J-th column, or (a,,, vt) with

disint ntgers ,~ ,i. V 1, 2,. ,m, P0r is the permutation matrix, and

Ec means the sum is taken all m! permutations of or. Hence, the determinant of
jjT is

nt n nt

det(JJT ) = Z(Zilkik)(Zi 2 kiik) .. EJmkj~k) det (Por)

Expanding this, we have k111k

det (jjT) - l3kLiak~hi2 .k,j~" 'I .MkmJ&,lm)det(PO) (2)

Here, note that terms that have non-distinct k,'s disappears. For instance, if

k= Ic1 = 1, then J1IJCalJ2IJO,*,mi disappears when a = 1 and 3 =2.

Thus, in Equation 2, summation is applied only to the terms with distinct ki's.

Note also that the number, p, of different sets of distinct k,'s is

p =nCm.
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Rearranging Equation 2, we have

det (jj T ) = Ejj (Y itk*k JMkdet (Pff)) (j~lkj2 ~. k k

Here summation k~ k= may be divided into

where a, (j k , k,) is i*-th set of p different sets consisting of m distinct

k,'s. Therefore Equation 2 becomes

p
det (jj T ) = aZZ 30I~~ JIL,, det(PG))j1kJ2k2, 'ln,, 3

t=iGO, a'

If we denote a part of Equation 3 as

Aj Jk C, Jk e Pr

Comparing this with Equation I shows that A, is the determinant of the transpose

of the submatrix made of k,'s column vectors as

A, = det (fJkL jk2 ... jk IT)

where jk, is the k2-th column vector of the Jacobian matrix. Once a set of ki,'s

is chosen, the absolute value of A, is fixed; only its sign changes as k,'s make

permutations. If we set the absolute value as lAiI, Equation 3 becomes

p

det(J T ) Z(±>) jAi (ZlIJ2k,i*Jkde(C)

The facts that the determinant of a matrix is equal to that of transpose of the

matrix and that jjT is positive definite imply that

p

det (jj T ) AS2 .

.E. D. 4
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