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Abstract: This paper explores the motion planning problem for multiple mov-

ing objects. The approach taken consists of assigning priorities to the objects, then
&planning motions one object at a time. For each moving object, the planner con-

structs a configuration space-time that represents the time-varying constraints im-
posed on the moving object by the other moving and stationary objects. The plan-
ner represents this space-time approximately, using two-dimensional slices. The
space-time is then searched for a collision-free path. The paper demonstrates this
approach in two domains. One domain consists of translating planar objects; the
other domain consists of two-link planar articulated arms..[
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1. Introduction

,. A planner solving complex manipulation problems should be able to synthesize
imotion strategies for multiple moving objects. The need for this capability is evident
both in large assembly operations during which it is impractical to move only one

part dt a time, and in tasks whose solutions involve the cooperation of several
robots.

1.1. Examples

This paper considers the motion planning problem for multiple moving objects.
We have implemented planners for multiple moving objects in two domains. The
first domain consists of translating planar objects, while the second domain consists
of two-link planar articulated arms. A detailed discussion of these domains will be

given later.

The approach taken consists of assigning priorities to the objects, then planning
object motions one object at a time. The planner assumes that the prioritization
is given, then plans object motions in the order determined by the prioritization.
A given object's motion is planned taking into account the motions of all objects
whose motions have already been planned, as well as all stationary obstacles. The

time-varying constraints imposed on a given object by other moving objects are rep-
resented in a configuration space-time. Details will be given later (see, for instance,
Secs. 3 and 4).

As an example, consider the objects of Figure 1. The figure displays both the
start and goal positions of the objects. In this example, the objects are permitted to
translate but not to rotate. The numbers attached to the objects indicate the order

in which object motions were planned. Figure 2 displays a solution determined by
the planner to be discussed in this paper. Running on a Lisp Machine, the time
required by the planner to solve this problem was slightly under 7 minutes.

As another example, Figure 3 shows the start and goal configurations for three
articulated arms. Again, the numbers attached to the arms indicate the order in
which object motions were planned. A solution for this problem is shown in Figure
4. The planner required approximately 36 minutes to solve this problem.

In both examples, the planner generated a series of collision-free motions tak-
ing the objects from their start configurations to their desired goal configurations.
The objects generally move simultaneously, although the planner will also consider
stopping an object to wait for other objects to pass, if doing so is advantageous.

1.2. Problem Statement

This paper concentrates on the motion planning problem. There are, however,
other important issues that a task planner should understand. In particular, the 1

1 -I
.. dynamics of object interactions, the effect of uncertainty on object motions, and -

the design of environments conducive to particular tasks, are problems that deserve ',Bs

attention. These issues are beyond the scope of this paper.

The assumptions of this paper are:
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Figure 1. The start and goal configurations of four translating planar objects.
The numbers attached to the objects indicate the order in which object motions
were planned.

* The environment consists of a set of stationary objects and a set of moving
objects. modelled as polyhedra.

o All objects perform rigid motions. In the case of articulated arms. this means
that each link is rigid, although the links may rotate relative to each other.

o Object interactions may be specified in geometrical terms. The physics of object

interactions are not considered.

"- ePlanned motions should be correct to some resolution. Some of our imple-

mented planners have resolution bounds.

The envisioned planner expects a specification of the moving objects' desired
% configurations at particular times. In the simplezt case, this specification consists,

of a set of initial states and a set of goal states. Our implemcnted planner is of this
form. In more complicated settings, a sequence of desired states could be specified.

5 For instance, the sequence could be cyclical, representing the steps in some repetitive
task. The planning process consists of determining a series of motions that satisfies

the goal specifications, while avoiding object collision. 113 i collision we mean an

overlap of object interiors: non-overlapping touching contact,- are permitted.)
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Figure 2. This figure traces a solution determined hy our planner ror the moving
"' ""objects of" Figure 1.

-'" 1.3. LMotivating Topics

. ,Theinmotivation for .q ud.VITng mFuliple moving objects stems from the complexity
, ,¢of manipulati)on tasks. The total degree:, of freedom of all the objects in a task may
Sbe high. Traditionag etrds of robot olpannineg are applicable primarily for a single

.ovinp objec . (See. for xanple. Udupa 1977 Lozano-Piez and Wesley 1979

• " Iozano-Prez 1981: 19S3 . Brooks 1983 . Brooks and Lozano-P6rez 1983 .) Thus
all but one ot objects in a 1i-k must be held fixed during each major sep of the

.... task. This ,- Seldom an efficient approach.
of urthermoral . the approach of only moving one object at a time may actually

e I-,It ig h.a- of T olrdlle task-s. For instance, consider the interlocked rotating linke

moiwn 'it Fig. 5. In order io s-paat th1 two links, both links must be otaed

a-"b:utone of ]The two links cannot be separated by moving only aor linkp athe

-. r( iti: r link (oTIsIlrains the olher link from moving.

,t-'", . 1i~t( t Ie iIrIeIdiaC )roblenM boundaries considered I,\ thil pa-

S;,.'. irgr i , an anliorl;ted failor\. gh, f,. - r cir , '-i ft Of IUTnero)'. aiiltoToI iiou-

".p : rl., j, itig 1111 >oi11 t,(MIe of t hese robots: ark' fixed, perfutTTIIIg
K :, pu:i( blr l , iW-. (it Kr arT feeders. (er\-in to noveobiec- through a

* 'I .. r(
f  A, i:1 i¢',-. r2I1f 1 I t iers aNe Motbile. moving as independcnt vehicles

"
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Figure R. Start and goal configurations for three articulated arms. The numbers
attached to the arms indicate the order in which object motions were planned.

throughout vast stretches of the factory. The aim here is to solve such motion tasks
efficiently and safely.

2. Previous Work
0-.e are aware of six major lines of previous work on multiple moving objects.

The first of these seeks to find an optimal path of a manipulator between a sequence
of edges in space Campbell and Luh 1980. The positions of the edges may be time-
varying. Thus, given a collection of moving objects, this approach may be used to

* compute the trajectory of an additional moving object.

J A limitation of this algorithm is that it determines a shortest path between the
specified sequence of edges without ensuring that the resulting path be collision-free.
Effectively, Campbell and Luh's algorithm is used as a subroutine inside a shortest-

N "path search of configuration space. In searching the space, some other mechanism
must ensure that proposed paths between edges are collision-free. This may be done
easi. in an environrnient conisisting solely of statr obstacles. .nfortunatelV. III a,.

environment Cr- iting ^f y,'-ing e ac'zc-. -pnarto r iIn for t~t.?.:ig
"dge sequences must be developed.

4
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Figure 4. This figure traces a solution determined by our planner for the three

articulated arms of Figure 3.

II.

Figure 5. .wo interlocked links. In order to separate the two links, it is necessar,

to rotate both links simultaneously.

The second line of approach has focused on the special case of coordinating the

ro t il of several circular bodies in two dimensional regions hounded by collect ions

f pok i 5 alls. (see the work b Schwartz and Sharir 1983 . Yap 1984 , and

*"' tortt ohlnk iu5nos
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Ramanathan and Alagar 1985;.) These authors demonstrate various algorithms
for solving the coordinated disk motion problem. The time complexities of these

algorithms are shown to be polynomial in the number of walls and exponential in

the number of disks.

The third line of approach decomposes the multiple moving objects problem

into two subproblems Kant and Zucker 1984'. The first subproblem consists of

planning a path for each of the moving objects that avoids collisions with the static
objects in the environment. The second subproblem consists of varying the velocities

of the moving objects along their specified trajectories so as to avoid collisions with
-" moving obstacles. Effectively, the algorithm plans the velocities of the moving

objects one object at a time. Given that the velocities for some set of moving
objezts arc known, the algorithm computes the velocities of another moving object

so as to avoid collisions with any of the moving objects whose velocities have already

been determined. The velocities may be so chosen as to ensure minimum traversal

times.

The advantage of this approach lies in its explicit representation of time. In

* fact, the subproblem of determining velocities is formulated elegantly as a path

-4 planning problem in a two-dimensional space-time. The algorithm guarantees that

the resulting motions avoid any collisions of moving objects with stationary objects
or other moving objects. The limitation of this approach is that it does not permit
path alterations, only velocity alterations. This may prevent solutions in cases
where some moving object forever remains in the path of some other moving object.

Along the fourth line of approach, Hopcroft, Schwartz, and Sharir 11984' have

examined the complexity classification of the coordinated motion problem. In par-
ticular, they have shown that the two-dimensional problem of coordinating the mo-
tions of an arbitrary number of rectangles in a rectangular region is PSPACE-hard.

Hopcroft and Wilfong '1984 showed that the problem is in fact in PSPACE.

Reif and Sharir [1985' have also considered the multiple moving objects prob-
lem. They showed that the problem of planning motions for a three-dimensional

* rigid body in an environment containing stationary End moving obstacles is

PSPACE-hard given bounds on the moving object's velocity, and NP-hard with-
out such velocity bounds. Furthermore, they exhibit a polynomial time algorithm

for the two-dimensional version of this problem, assuming a bounded number of
moving obstacles. They also exhibit a singly exponential time algorithm for the

* three-dimensional version of the problem, assuming an unbounded number of mov-

S.,ing obstacles.

-". The fifth line of approach [Fortune, Wilfong, and Yap 1986] uses retraction
...-. and critical curve methods to solve the problem of coordinating the motions of two

* polar manipulators. [Fortune, Wilfong, and Yap 19861 construct for one of the ma-

nipulators a graph that represents the manipulator's free space as a function of the
second manipulator's configuration. They then partition the second manipulator's
free space into regions and critical curves over which the topology of this graph is

" invariant. Thus they can represent the combined free-space of the two manipulators

6



as a series of graphs, which then can be searched for a collision-free coordinated

motion.

"':", Finally. the sixth line of approach considers local techniques for computing
collision-free motions of several moving objects. These techniques maintain collision-
free trajectories over small periods of time. They are used in an on-line fashion to

obtain collision-free trajectories between start and goal configurations over large

. time intervals. In particular, Freund and Hoyer [1985) have devised an on-line

control system for coordinating motions in a multi-robot system. Along a differ-
ent direction, Tournassoud [19861 has used separating hyperplanes to locally avoid

collisions of multiple moving objects.

3. General Problem Discussion

The structure of a multiple moving objects planner depends on the type of ob-

ject interactions permitted. The relevant issues are centralization and cooperation.

3.1. Autonomous Planning

* Perhaps the simplest case consists of planning for a single moving object in the
presence of a number of other objects, some of which are stationary and some of
which may be moving. The algorithms of [Campbell and Luh 1980; Kant and Zucker

1984) are formulated in these terms. Of course, given an algorithm for planning for

a single moving object in the presence of other, possibly moving, objects, it is always

possible to plan for a set of moving objects, by planning motions one object at a
time. This approach, however, is not guaranteed to be complete.

The method of planning for a single moving object is also appropriate for an

independent autonomous robot that is trying to navigate and work amidst a group

of other independent entities. For small periods of time and in small neighborhoods

about itself, the robot can observe the motions of other objects, predicting their

immediate future behavior. The robot can then plan its motions using its algorithm
for planning motions of a single moving object in the presence of other moving
objects. Such an approach requires continuous real-time planning.

3.2. Centralized Planning

The previous discussion assumed decentralized control. Planning occurred in
independent entities on the individual level. Another question to address is the

centralized planning problem, in which the motions of several moving objects are
being planned at once. For instance, the planning of complex assembly operations

r. requires centralized planning for multiple objects and robots.

3.3. Configuration Space

_ Let us observe that the centralized multiple moving objects planning problem

is conceptually no more difficult than the problem of planning motions for a single

moving object in the presence of a collection of stationary objects. To see this, let

us (onsider the motion planning problem for a single moving object. One approach

* 7



Ref. Pt. Ref. Pt.

- Real Space Configuration Space

Figure 6. The left figure consists of a translating triangle, and two stationary ob-
stacles. The right figure displays the configuration space constraints imposed on
the triangle by the obstacles. For comparison, the constraints are superimposed
on the actual obstacles.

taken is to transform this problem into that of planning point motions in the object's

configuration space. The configuration space :Arnold 1978; Lozano-Pdrez 1981,

1983: Schwartz and Sharir 1982; Donald 1984; Canny 1984 of an object is the
parameter space representing the degrees of freedom of the object. Obstacles in

real space constitute constraints on the object's degrees of freedom. These may
be represented as hypersurfaces in the object's configuration space. The planning
process consists of determining a path of a point in configuration space that does

not violate any of these hypersurfaces. Figure 6 shows the configuration space of a
translating triangle determined by two stationary obstacles.

,* Now observe that one can construct a configuration space for the multiple
* moving objects problem. The dimension of this space is the sum of the degrees

of freedom of all the moving objects. Again, constraints in real space may be
represented as hvpersurfaces in the configuration space. These surfaces correspond

to configurations of the moving objects at which some moving object is touching

another moving or stationary object. A point in this configuration space represents
the configurations of all the moving objects. while a trajectorN in the configuration

spa( e describes thit mot ions of all t lie niioving objects at ollt. The planning process.
as for a single moving object. corisists of determining a irae( tor\ in configuration

space that does not violate any of the hypersurfaces.

8
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iWe see therefore, that the approach for planning for a single moving object
in the presence of purely stationary objects applies equally well to planning for

multiple moving objects, except in higher dimensions. From this point of view,
the multiple moving objects problem is solved conceptually. There are, however,
some practical concerns. In particular, for tasks involving a large number of moving

objects, the dimension of the configuration space may be very high. Thus, both the
construction of the space and the search for a collision-free trajectory may be time
consuming.

3.4. Prioritized Planning

We have already noted that methods for planning for a single moving object in
the presence of other moving objects may be used for planning for several moving

objects, by planning motions one object at a time. The appeal of this decomposi-
tion approach is that it reduces the problem from a single planning problem in a
very high dimensional space to a sequence of planning problems in low dimensional

spaces. Of course, in contrast to the configuration space approach, in general this
decomposition approach need not be complete. By not considering all moving ob-

* jects at once, the planner runs the risk of choosing a trajectory for an object early on
that prevents finding a solution for an object later in the planning sequence. In this

section, we explore some cases that readily lend themselves to the decomposition
approach.

In essence, any task in which a prioritization of motions may be assigned, may

,  0 be approached using the decomposition approach. In the case of cooperating robots.
a prioritization may be assigned in terms of master/slave relationships. In other
words, one robot is actually performing the task, while the others are helping. Any

robot helping another observes the other's motions, acting in a cooperating fashion.

In the case of assembly operations, in which many parts may be moving at once,
the order in which parts fit together may determine a prioritization. For instance,
if a robot is placing a part onto another part located on a conveyor belt, then the
robot must cooperate with the conveyor. In turn, the motion of the conveyor belt

and the motions of objects fed onto the conveyor are planned after observing the
distribution of parts on the conveyor. If objects begin jamming up at some point.,
then the rate at which objects are fed onto the conveyor may have to be changed,
or the conveyor may have to be stopped.

Notice that a prioritization does not imply that an object of lower priority must
• follow or assist an object of higher priority. Assistance is just one example in which

-. priorities may be assigned naturally. In general, an object of low priority may be
performing independent operations. A prioritization simply states that the burden
of avoiding collisions between two objects falls on the object of lower priority. The

high priority object may move in any fashion that it desires. The low priority object
may also move in any fashion that it desires, so long as it does not collide with the

, '." high priority object.

Finally, let us observe that the prioritization need not be constant. For in-
'tance. in the case of cooperating robots, the master !slave relationships may alter-

'!
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nate during the course of performing a task. Furthermore. at times the particular

prioritization chosen may be irrelevant. For instance, if during the course of a

task two robots cannot possibly interfere with each other, then the order in which

motions are planned does not matter.

These observations suggest that the prioritized decomposition scheme be used
to plan subtasks inside of a larger planner that assigns priorities. The larger planner

1 decomposes a task into smaller subtasks; it determines which objects could possibly

interfere with each other; and it uses task constraints to decide on the order of

motions within a subtask.

4. Outline of the Approach

We now outline a method for planning motions of several moving objects. It

is assumed that the objects have been assigned priorities. Motions are planned

one object at a time, according to the assigned priorities. Each object's motion is
planned so as to avoid collisions with all stationary objects and all moving objects

Vwhose motions have already been determined. Situations in which this approach is

*. ,.,=a suitable were discussed previousiy, in Sec. 3.

4.1. Incorporating Time

The constraints on a single moving object in an otherwise static environment

are readily captured by the configuration space of the object. Motions of the object
are planned by planning motions of a representative point in the configuration space.

* Now suppose that the environment is no longer static. In this case the con-

;- straints on the moving object whose motions are being planned vary with time.
a" However, notice that it is still possible to construct a configuration space at any

fixed point in time. The configuration space at a particular point in time geometri-
,Z'a. cally captures the constraints on the object's degrees of freedom at that time. The

configuration space is identical to a configuration space constructed from a static
environment arranged as are all objects, both stationary and moving, at the given

point in time. Considering all points in time, this construction produces a space-
time configuration space that reflects the time-varying constraints on the object's
possible motions. A particular slice of this space at any given time is just an or-
dinary configuration space. The constraints of stationary objects are constant as

functions of time: the constraints arising from moving objects, change,as functions
* of time. Planning an object motion entails planning the motion of a point in the

configuration space-time that does not violate any constraints.

Notice that it is indeed necessary to incorporate time in some fashion in order

to accurately represent the time-varying constraints. This is not necessary if one is
planning for all of the moving objects at once, for then it is possible. effectively to

jar, treat all the objects as one composite abstract object, with a high numberof degrees

of freedom. B oril planning motions for one object at a time, it is necessarN, to

treat the environment as time-varying. This is because. the planner must somehow
consider the behavior of those objects whose motions have already been planned.

01* .*E 1 0
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As a final comment, suppose that there are n objects, each with k degrees

N ,: of freedom. The composite configuration space approach involves planning in a
V. , space of dimension r. k-. The prioritized decomposition s(heme involves planning n

motions in spaces of dimension k 1.

4.2. Issues

Configuration space-time correctly describes the problem of planning motions
for a single object in a time-varying environment. It remains therefore to devise

algorithms that efficiently consider the relevant portions of the configuration space-
time while planning a motion. Some issues that arise while solving this problem
include:

" How to build the space-time configuration space.
4 How much of the space-time configuration space to build.

" How to search the space for a collision-free trajectory.
We have explored these issues, and implemented algorithms, in two different

domains. The first domain consists of polygonal objects in the plane. The objects

are permitted to translate but not to rotate. The second domain consists of two-link
planar arms with rotary joints. The arms are permitted to rotate at their joints,

with their base points held fixed in the plane. The remainder of this paper is a

..
- description of our observations and results.

4.3. Searching in Time

Let us make a few general observations regarding searching in configuration
space-time. First, unlike searches in general spaces, it is necessary always to search
forward in time. Objects are not permitted to move back in time and interact
with themselves. In other words, configurations are assumed to be single-valued
functions of time. As a simple extension, if object velocities have minimum or

maximum bounds, then the angle of motion between slices is constrained to lie in
some appropriate range. In other words, the space-time region reachable from some
starting point is a cone whose edges are defined by the velocity bounds. The search
algorithm must consider these restrictions when proposing paths.

As a side note, suppose that we placed no temporal restrictions on the search
algorithm, but simply treated the space-time regions as one would treat purely
spatial regions. The search algorithm might then propose a path from start to goal
that v")uld not be a single-valued function of time. Said differently, the graph of
configuration versus time might contain vertical segments or it might curve back
in time. In order to physically realize such a proposed path, the planner would at
times have to slow down or even reverse the motions of the other objects whose
motions were previously planned. Our implemented planners did not considei such
pat hs.

Another observation concerns the safety of achieved goals. Suppose that a given

"oving obj(.ct ", goal is specified solely as a configuralion, wit h no mention of time.
,ippose that the planner achieves the goal at some timie before the other moving

r. , i t- hae stopped moving. Thc n it is still possible for one of the other moving

]11, . ,1
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Obstacle

Ref. Pt. Ref. Pt.

Real Space Configuration Space

S.Moving Obstacle

Figure 7. The top two frames show a rectangle and a stationary obstacle, along
with the constraints in the rectangle's configuration space that are determined by
the obstacle. The bottom two frames show how the translation of the real space
obstacle is reflected in configuration space by a translation of the configuration
space obstacle.

objects to collide with the given object. In order to avoid this, the planner must
check that the achieved goal remains safe until all objects have stopped moving.
A simple method for insuring safety of attained goals is to specify goals as space-
time configurations. where the spatial coordinate represents the actual goal and the
temporal coordinate represents the earliest time at which the goal may be considered
attained. Notice that no such check is explicitly necessary for cyclical tasks in 'Ahich

* all objects continue to move after achieving their goals.

5. Translating Planar Objects

1[ The first domain that we will explore consists of two-dimensional polygons.
The environment is (omposed of both stitt oiwary object,, and moving objects. The
moving objects are allowed to translate but riot to rotate. The objective is to plan
a collision-free motion for a moving object in the presence of the stationary objects
and those other moving objects whose motions haxe alread\ been planned.

12



5.1. Constructing the Configuration Space-Time

. ,-, Configuration space obstacles are shape-invariant under translations. Given
some moving object and some stationary object, suppose we construct the resulting
configuration space obstacle. Now suppose that we change the position of the
stationary oubject. Then the shape of the resulting configuration space obstacle
remains unchanged. Furthermore, the position of the configuration space obstacle
translates exactly as does the real space obstacle. See, for instance, Figure 7.

This invariance greatly simplifies the computation of the configuration space-
time. In order to compute the time-varying constraints imposed on a moving object
by some stationary objects and other moving objects, it is enough initially to treat
the moving objects as stationary. Specifically, the planner computes a standard con-
figuration space obstacle for each of the stationary and moving objects. The actual
constraint imposed by a moving object at a particular time may then be determined
simply by performing a polygonal translation of the associated configuration space
obstacle. In short, for translation spaces, it is sufficient to compute the configura-

*' tion space obstacles once. The time-varying constraints may be determined easily
by performing translations of these configuration space obstacles.

4- 5.2. Representing the Configuration Space-Time

Let us assume that all translations of moving objects are piecewise linear. This
assumption is reasonable in polyhedral environments. Then it is sufficient to repre-
sent the configuration space-time as a list of configuration space slices at particular
points in time. The times are those at which some moving object whose motion
has already been planned changes its velocity. This is because all object motions
between such points in time are straight-line motions in space. In particular, the
corresponding configuration space-time obstacles are simply swept volumes, deter-
mined by sweeping configuration space obstacles along straight lines.

Using this representation of configuration space-time, it is easy to decide
whether a proposed path collides with any of the other stationary or moving objects.
Specifically. the decision amounts to determining whether a moving point collides

* with a moving polygon. In turn. that computation may be reduced to deciding
whether a stationary line secgment intersects a stationary polygon (see Figure 8).

In sumriniar. configuration space-time is represented as a list of configuration
pace shcueS at particular tirnes. The times are those at which some moving object

i(aiigcs it- velocity. A slicr is computed from the slice at time zero by translating
the configiuration space obstacles that correspond to the moving obstacles in real
spate. Motions between slices are implicitly represented as straight line translations
of these configuration space obstacles.

5.3. Searching for a Collision-Free Path

OW"( U I . th(, f, ii g rat iontI sp -t ire has been cot iructed. a collision-free path
ria\ he cete drrnilted bN finding motions that do not intersect any of the constraints

t x I)liit I, or tr it 1\ represented in configuration space-time.

13
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Figure 8. The problem of deciding whether two moving objects collide is first
transformed into the problem of deciding whether a moving point collides with
a moving configuration space obstacle. This problem is then transformed into a

* line-polygon intersection test.

There are several methods for generating possible path segments between slices.

For instance. ore could consider all overlapping free space regions between slices.
* This approach has the advantage of not immediately choosing a particular trajec-

tory, but instead implicitly representing all trajectories within a region.
The particular algorithm that we implemented considers all path segments

between adjacent slices that terminate at vertices of obstacles. Any path segment
that pierces a stationary configurat ion space obstacle or that intersects an implicitly
represented moving obstacle is igniored. This algorithm is a variation of the Vgraph
algorithm used in Lozano-Pdrez and Wesih\ 1979 and Lozano-Perez 1983.

* The difficulty with this approach is that the algorithm may not find a path
because it generates too few path segments. The fundamental cause of this diffi-

14



culty lies in the discrete representation of time. Time is only represented implicitly
between slices. Thus there is no natural mechanism for performing motions over
time intervals that are shorter than the interval between two adjacent slices. In
order to alleviate this problem slightly, the planner does not use solely the slices
arising from changes in object motions. Instead, the planner introduces a fixed
number of extra configuration space slices between those that already are repre-
sented. This is equivalent to ignoring solutions that involve motions below some
fixed time resolution.

An alternative approach consists of explicitly searching the free space-time
between slices. This approach makes the planner complete.

Finally, let us note that the search of configuration space-time may wish to
take into account costs of particular paths. Both the distance travelled and the
time to reach a goal configuration may be important. Standard search techniques
apply.

5.4. Complexity and Completeness

For each slice, the configuration space can be constructed in time that is linear
O in the number of edges in the environment. Thus, let m = n r, where n is the

number of edges in the environment, and r is the number of slices constructed.
Then the configuration space-time can be constructed in 0(m) time. Our planner
uses a search that has time complexity O(r n'), although a faster version of the

't algorithm may be implemented, as we shall see. Note that the search must be
able to decide whether a motion between two vertices in two adjacent slices lies
in free space-time. This is done using the line-polygon intersection test described
in Sec. 5.2. One such test is performed for each moving or stationary obstacle
in the environment. In toto, the tests require time 0(n) per proposed motion.
Thus, for a given vertex, the time required to find all vertices in adjacent slices that
are reachable via collision-free straight-line motions through space-time is 0(n 2 ).

The overall time for testing safety of all possible vertex-vertex transitions between
adjacent slices is therefore 0(r n 3 ).

In fact, a slightly faster construction of the visibility graph is possible. To see
0this. consider a particular vertex w in a given slice. The objective is to find all

vertices in some adjacent slice that are reachable by a straight-line motion through
space-time. Imagine constructing for each configuration space obstacle a certain

iibilitv polygon. This visibility polygon represents the set of points in the slice
containing u, that are visible from u) along straight lines which do not intersect the
obstacle. (Observe that a visibility polygon geometrically solves a line-polygon test
for an entire set of lines.) Taken over all obstacles, the collection of these visibility
polygons may be constructed using an algorithm of time complexity O(n log n).
The total number of vertices in the polygons is 0(n). (See, for instance, ':Sharir

__ -vy ,and Schorr 1984 and Asano et. al. 1986). Now consider translating each visi-
.,iliti polygon into the adjacent slice. Each polygon should be translated with the

V -riIe velocity as is used to translate its generating configuration space obstacle.

A translated visibility polygon describes precisely all points in the adjacent slice
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that are reachable from w along straight lines which do not intersect the corre-
sponding space-time obstacle. Consequently, the intersection of all the translated
visibility polygons describes all points in the adjacent slice that are reachable from
w along some straight-line motion that does not intersect any space-time obsta-
cle. The vertices of this intersection polygon may be used to define the visibility
graph. The intersection may be computed using an algorithm of time complexity
O((n + c) log n), where c is the total number of edge-edge intersections that arise
(see 'Nievergelt and Preparata 1982,). Consequently, the entire visibility graph
may be constructed in time O(r n (n + c) log n). We did not implement the search
algorithm in this form.

The planner, as implemented, is complete only to the time resolution between
slices. Observe, however, that the slice representation essentially represents the
complete configuration space-time. In fact, between slices the space-time constraints
are simply a collection of polyhedral swept volumes. Thus a search algorithm that
considered motions which could change direction between slices would be complete.

Another approach towards making the algorithm complete, would be to intro-
duce space-time slices at certain critical times. The objective is to introduce slices

at those times at which the topology of free space changes. This is a function of
the number of interactions between the other objects in the environment. A slice
should be introduced whenever two moving or stationary configuration space ob-
stacles touch or intersect. A conservative bound on the number of slices is given -
by r = O(s n2 ). Here s is the number of distinct time intervals over which each of
the objects whose motions were previously planned performs a single straight-line

motion. We did not implement the planner in this form.

5.5. Summary for Translating Planar Objects

* The position of a configuration space obstacle at a particular time may be
determined from its position at time zero by translation.

e Configuration space-time is represented as a series of configuration space slices
A at fixed points in time.

* Configuration space-time is searched using a Vgraph algorithm.
% :* Collisions between proposed trajectories and moving objects are detected using

line-polygon intersection tests.

* The planner is complete only to the time resolution between slicet, unless the
free space-time between slices is also searched.

6. Linked Planar Arms with Rotary Joints

The second domain that we will explore consists of two-link articulated planar
arms. The links of the arms are modelled as polygons. In addition to the armIhs th_
environment contains stationary obstacleb that are also modelled as polygons. The

objective is to plan a collision-free path for an arm between specified start and goal
% configurations. The motions of the other arms are assumed to have been planned
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- already. As explained previously, this approach may be used to plan motions for
. several arms, by assigning priorities to the arms, and planning motions one arm at

a time.

6.1. Constructing the Configuration Space-Time

In the previous section we saw that for translational motions it is fairly easy
to build the configuration space-time. One merely builds a standard configura-
tion space at time zero, then translates the moving obstacles in configuration space
in correspondence with the translations of the moving objects in real space. Un-

fortunately, there is no such simple technique available for building configuration
space-time once rotations are permitted. The basic cause of the difficulty stems
from the non-linearity of the constraints imposed by obstacles in the environment
on the rotational degrees of freedom of a moving object.

For rotating linked arms the basic motions performed are rotations of various
polygons about various rotation centers. If a given arm's joints are allowed to rotate
in unison, then several of these rotations may be superimposed. For convenience,
therefore, let us assume that only one joint of any arm is allowed to move at a
time. For further convenience let us also assume that each polygon is convex.

This assumption of convexity is not necessary, but it simplifies the computation
and complexity. Given these assumptions, the basic motions are indeed rotations
of various convex polygons about various rotation centers. It is thus sufficient

/'J_ -<. to concentrate on analyzing the interaction of two convex polygons, each rotating

about its particular rotation center. The constraints resulting from the interaction
of two arms may be built up from the constraints of several such pairs of polygons. In
each pair, one of the two polygons is part of the arm whose motion has already been

determined, while the other polygon is part of the arm whose motion is currently
being planned.

6.2. Constraints Arising from Rotating Polygons

The task now is to derive the constraints imposed on one rotating polygon, the
planning object, by the motion of another rotating polygon, the obstacle polygon.

*_'X The situation is fairly analogous to the domain of translating planar polygons. The
difference lies in the difficulty of computing non-linear time-varying constraints.

One approach would be to reduce the problem further. For instance, the plan-
Ter c0vld compute the collection of half-space constraints arising from each pairing

* of an edge on one object with a vertex on the other object. By intersecting and
unioning these constraints appropriately (see ILozano-Prez 1983; Donald 1984;
Cannm 1984 ). the planner could determine the effective constraints imposed on one
object by the motion of the other object.

The diflicuIt\ \ith this approach lies in its complexity. By considering all pairs

--.- ,Of (Ages and verl ices. the planner would be expanding all possible constraints, even
"""thof sibsurned by other constraints. As an example, the constraint imposed on a

verie\ by an edge on the near side of an obstacle subsumes the constraint imposed

1,N an edge on the far side of the obstacle. In planning a path, the planner must
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test feasibility of the path against all possible constraints. This involves unnec-
essary work in the case that some constraints are subsumed by other constraints
Alternatively, the planner could first decide which constraints were active and %h ich
were subsumed by other constraints, and then only test path feasibility against the
active constraints. Unfortunately, as the obstacle rotates, some active constrailits
become subsumed by other constraints, while some inactive constraints become ac-
tive. Thus the planner would be forced to decide constantly which constraints wer,

about to become active.

Instead of expanding all the constraints and then deciding which are ,cn*IVP
slightly different approach is to consider only active constraints. As some of tihest.
expire and become subsumed by other constraints, the planner determines the newly
activated constraints directly from the expiring constraints. This approach is bcsed
on the observations that the conditions defining a constraint are purely local. In
particular, the validity of a constraint depends only on the edges and vertices at
the point of contact (see also [Donald 1984]). Furthermore, constraints expire and
become subsumed by newly activated constraints precisely at configurations for
which several constraints agree, that is, intersect as hypersurfaces in configuration
space. Geometrically, these constraints represent the simultaneous contact of several
vertices and edges, in the form of vertex-vertex contacts or edge-edge alignments.
The conditions under which these events occur may be determined locally. Thus the

- planner can predict which constraints subsume previously active constraints .3irectly

from the previously active constraints. The remainder of this section considers the
types of conditions under which constraints may change, while later sections analyze
the constraints themselves in more detail.

In the current case we are dealing with the interaction of two polygons. Thus
the type of constraints that the planner must consider are vertex-edge interactions.
There are two types. One involves the interaction of an edge of the planning object
with a vertex of an obstacle object. The other type involves the interaction of a

% vertex of the planning object with an edge of an obstacle object. See Figure 9.

Notice that any such constraint locally defines a rotational direction of forbid-
den angles. This direction is the direction along which a rotation of the planning
object would result in an intersection with the obstacle polygon. The constraint it-
self represents the orientation at which the planning object just touches the obstacle

polygon. The direction of forbidden angles is determined by those local orientations
of the planning object at which the planning object and the obstacle polygon over-

* lap.

In order to determine, for a particular configuration of the obstacle polygon.
all orientations of the planning object that are forbidden, and all orientations that
are valid, the planner considers all active constraints not subsumed by other con-
straints. For each such constraint, the planner locall determines the rotational

0 direction of forbidden orientations. The planner then merges the constraints based
-t on orientation, and pairs up adjacent (oiistrairt.- that have opposing dire(tions of

forbidden angles. For instance, in the example of Figure 10 there are two activ,
constraints. When these are merged. the resulting forbidden range of angles is an
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Obstacle Obstacle

Figure 9. There are two basic types of vertex-edge contacts. In one case, the0contact consists of a vertex on the obstacle polygon interacting with an edge on
the planning object. In the other case, the roles of vertex and edge are reversed.

arc of orientations, as shown. In general, even for convex objects, there may be

more than two active constraints that define the range of forbidden orientations.

Thus there may be more than one arc of legal orientations.

For a particular orientation of the obstacle polygon there are a finite number

of or*entations of the planning object at which the two polygons touch but do not

overlap. As the obstacle polygon rotates about its rotation center, the orientations

of the planning object at which these contacts occur change continuously. The basic
strategy in constructing the configuration space-time entails tracing these touching
orientations as the obstacle polygon rotates. The resulting constraint contours
describe the boundaries of the forbidden regions in space-time.

Consider a specific constraint contour., arising from some vertex-edge or edge-

vertex contact. As the obstacle polygon rotates, the point of contact between the
vertex and the edge moves along the edge. A number of events can occur at which

* the constraint contour changes character:

* The direction of travel of the contact along the edge may reverse sign.

* The direction of rotation of the planning object required to maintain contact

may reverse sign.

The contact may disappear, as when the obstacle rotates out of the reach of
the planning object.

* The contact may run off one end of the edge, that is, vertex-vertex contact
may occur.
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Obstacle

,- • Forbidden

~. Free

Figure 10. This figure considers the constraints imposed by an obstacle polygon
on the possible orientations of a rectangle rotating about a rotation center.
The first two frames show the rectangle in two orientations that just touch

the obstacle. The third frame shows the free range of motions possible. The last
frame represents the range of forbidden and free orientations.

o The edge defining the constraint may become aligned with one of the edge-
* incident at the vertex defining the constraint, that is. edge-edge alignment

may occur.

The planner analyzes the conditions under which these events occur. Of partic-
ular interest are the events in which contacts appear or disappear. and the events in
which vertex-vertex contacts or ed.e,-edge alignments occur. At these orientations
the constraint contours fundamentally change character, either merging with (,tiher

contours or splitting into several contours. In other words, some constraint, ma\

expire. perhaps becoming subsumed by newly activated con.-traints. Thu5. analyz-
ing the conditions under which the events listed above occur. and determining how
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the relevant constraints change during these events, directly solves the problem of
constructing configuration space-time for rotating polygons.

6.3. Example

The first row in Figure 11 displays two rotating triangles along with their
rotation centers. The next three rows in Figure 11 show the construction of the

forbidden regions representing the constraints imposed on the smaller triangle by a
rotation of the larger triangle. For simplicity we represented the constraint contours
using bounding rectangles. This was not, however, a fundamental restriction, as the
constraint contours could be described analytically.

In order to explain Figure 11, consider the pair of frames labelled as 1. In this
pair of frames, the larger triangle performs some rotation. The smaller triangle is

shown in two extreme orientations, at which it is just touching the larger triangle.
The forbidden orientations of the smaller triangle during the motion of the larger

triangle are all orientations between these two extreme orientations. They are
represented in space-time by the rightmost rectangle constructed in the first frame.
The horizontal portion of the rectangle represents the motion of the large triangle;
the vertical portion represents the forbidden orientations of the small triangle.

The pair of frames labelled as 2 depicts another rotation of the large triangle,
along with the associated constraint rectangle.

Consider now the two pairs of frames labelled as 3 and 4. The large triangle

t .. - is shown performing the same motion in both frames. However, during this motion
S.O  there are two distinct ranges of orientations that are forbidden for the small triangle.

These two ranges are indicated by the two sets of extreme orientations shown in
the frames, as well as the two rightmost constraint rectangles.

Finally, the pairs of frames labelled as 5 and 6 show the construction of further
constraint rectangles over the remaining motion of the large triangle.

6.4. Representing Constraints Arising from Edge-Vertex Interactions

In the next two sections we will consider the constraints arising from the inter-
actions of pairs of edges and vertices. Notice that a vertex on an object describes

* a circle as the object rotates. Similarly, any edge of a rotating object defines a line
rotating about some rotation center. The constraint defined by the interaction of
a vertex and an edge may thus be represented by a circle and a rotating line. A
particular contact of the vertex and the edge may be depicted by a specific point on
the circle, and a specific orientation of the rotating line, for which the line passes

,, through the point on the circle.

In order to analyze edge-vertex constraints, it is thus sufficient to consider

-., points moving on circles and lines rotating about rotation centers in such a fash-
ion that the lines pass through the points. This representation makes computation

*of the constraints easy. In particular, it allows a planner to determine how the
rotation of the planning object must change in order that contact be maintained
a- the obstacle polygon rotates. This information defines the shape of the con-

figuration space-time obstacle determined by the motion of the obstacle polygon.

* 21

% j



i2
3 4

U'

6

* (orientation of small triangle)

* 9 (orientation of large triangle)

Figure 11. Construction of the constraints imposed on the smaller triangle b? a
motion of the larger triangle. The larger triangle rotates b. -. about its rotai jit
center. The constraints are approximated by rectangles. IT) an alternating fasF-

• ion, the figures display the constraints constructed thus far. and the rr11 1 f o f

the larger triangle ucer the most recetly coistru ted coiirtrairit rectanglc The
smaller triangle is displayed at the two extreme orientations of this (cont raiit

rectangle

22

" " ," - '," " ," " "',: " " " 3, ~~' ' ''. ; "" €- ',,"" " i .



Local interior information at the edge determines which side of the obstacle contour
in configuration space-time is forbidden. Additionally, by considering the orienta-

-" "-'. tions of the edges incident at the vertex involved in the edge-vertex interaction, the
planner can predict the times at which edge-edge alignments occur. Similarly, the
representation makes explicit the motion of the contact point along the line. By
considering the length of the edge involved in the edge-vertex interaction, the plan-

ner can predict the times at which the contact moves off the end of the edge, that is
the times at which vertex-vertex contacts occur. Finally, the representation makes
explicit points on the circle and orientations of the line at which contact is impossi-
ble, thereby indicating orientations of the obstacle polygon at which contacts must
vanish. Thus the circle-line representation, when augmented with local interior and
incident edge information, provides the planner with a means for determining all
the events at which constraints may change character.

A final comment is in order. Suppose that edge-edge alignment or vertex-vertex
contact occurs. At that point in time, there are up to four pairs of edge-vertex
contacts in effect. The planner must decide which contacts, if any, remain active as
the obstacle polygon continues to rotate. The decision for a particular contact pair

* depends on two derivatives. One derivative is the derivative of the motion of the
V contact point along the edge. The other derivative is essentially the instantaneous

relative motion of the planning object to the motion of the obstacle polygon. The
distance derivative allows the planner to decide whether a contact cannot possibly
exist because the contact would have to occur outside the boundaries of the edge.
The relative motion derivative allows the planner to decide whether a contact cannot
possibly exist because it would force two object edges to pass through each other.

-'. In fact. the exact values of the derivatives are not important. All that is re-
quired of the distance derivative is its sign. All that is required of the relative
motion derivative is whether it is larger or smaller than unity. This information is

readily available while computing the circle-line representation, and may be incor-
porated directly into the representation. In the next section we shall compute such
a representation.

6.5. Analyzing Constraints Arising from Edge-Vertex Interactions

N, As ,%c have already noted. there are two types of edge-vertex interactions.
dcrermiried by whether the vertex is part of the obstacle polygon or part of the
planning object. In this section we will analyze the circle-line representation for
one of these two types. namely the case in which the vertex is part of the obstacle
polygon and the edge is part of the planning object. The symmetric case. in which
the vertex is part of the planning object and the edge is part of the obstacle polygon
may be analyrzed in a similar fashion.

For the case we have chosen, the circle of the circle-line representation cor-
*responds to the vertex of the obstacle polygon. while the line corresponds to the

edge of the planning object whose motion is being planned. The canonical picture
for this circle-line representation is given by Figure 12. The two rotation centers
are separated by a distance h, which we will assume is greater than zero. For
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N Vertex
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Figure 12. Canonical circle-line picture representing the interaction of a vertex
and an edge. In this case the vertex belongs to the obstacle polygon, and the
edge belongs to the object whose motion is being planned. The distance of the
vertex from its rotation center is given by r. The distance of the edge from
its rotation center is given by d. The separation of the two rotation centers is
given by h. The orientation of the obstacle is measured in terms of o. while the
orientation of the planning object is measured in terms of 3.

convenience we will depict the two rotation centers on a horizontal line with the
obstacle's rotation center to the left of the planning object's rotation center The

" distance from the obstacle's rotation center to the vertex is r. while the normal

"-. distance from the planning object's rotation center to the line representing the edge
is d. \Ve will measure the orientation of the obstacle by the angle between the
horizontal and the line from the obstacle's rotation center to the vertex. l)enote
this angle by o. Similarl\. we will measure the orientation of the planning object

* by the angle between the horizontal and the edge normal pointing avaN fr,)ii the

planning object's rotation center. Denote this angle by 3,

.,, We are interested in determining the constraints imposed on the plarning ob-
ject by rotations of the obstacle polygon. For each value of o there ma\ be a
corresponding value of : for which the line representing the edge passes through

the point representing the vertex. In general. of course, there are two value, of .1
(se( Figure 13). an( in some cases no vdlue*. In any event. the problem redume, to
determining how 3 varies as a varies from 0 to 2,. In general. the beha\ ior d'pends

on the relative values of h. r. and d. We will consider the case for which /I r and
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Figure 13. In general, for a given orientation a, there are two values of 6 for
which the line determined by # intersects the point on the circle determined by
a. One such orientation of 3 was shown in Figure 12. The other orientation is

- shown in this figure.

h - r > d > h - r. The other cases are similar.

Since d > h - r there are values of a for which no value of 3 produces a contact

between the vertex and the line. Specifically, consider the two points on the circle
that are exactly distance d away from the planning object's rotation center. One

of the two arcs on the circle that connect these two points can never intersect the

rotating line, as all points on this arc are less than distance d away from the planning

object's rotation center. Let

(r 2 +h -d 2 )
Iw'-'.ot =O COS--

where we take the value of cos- 1 to lie between 0 and 7r. The two points on the

circle are thus given by ao and 27r - a0 . The forbidden arc is the arc between these

two pcints that includes the point a = 0. For values uf a in this range there is no
solution of 3 in terms of a. See Figure 14.

Beginning at a = a0 there is a single solution of 3 in terms of a that has

. ,multiplicity two. This root splits into two distinct roots as a increases from a(, to

7-, " - ac, merging again at o =2r - ,,. Let us trace the behavior of one of these
two roots. The behavior of the other root is similar. As a increases from ac, for
the root we are tracing, initially 3 increases as well.
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Figure 14. This figure displays the orientations of a at which the vertex rep-
resented by a is exactly distance d away from the right rotation center. If the
vertex lies on the arc through the origin that connects these two orientations,

then there is no orientation 03 for which the edge represented by / intersects the
vertex.

Let us measure the motion of the contact point along the line representing the
contact edge in terms of the signed distance s between the contact point and the

point on the line that is closest to the planning object's rotation center, as shown

in Figure 15. As indicated in Sec. 6.4. the sign of the derivative of s with respect to

a . allows the planner to decide whether a motion causes the contact p ' to move
* beyond the endpoints of the edge.
- ',Let us denote by D the relative rotation rates of 0 to a. that is D = Again,

a- indicated in Ye... G.4. the sign of D - 1 allows the planner to decide whether
:edge . might move through each other after an edge-edge alignment has occuired.

Before tracing through the details of one of these roots let us wrilt down
A, expressions for 3 and s in terms of a. The picture to keep in mind is Figurc 16;.

A If we write

f Vr 2 h 2 
-- 2rhcosa,

then

(d
J c (0', 4 arctan (r sin a, r coso - h),

V
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Figure 15. This figure shows how to measure the distance s of a point on the line
representing the edge of contact. Distance is measured as the signed distance
from the point on the line that is closest to the line's rotation center.

assuming that e > d. Furthermore, we have that

s = r sin(O - a) - h sin#i.

Observe that

2= + h2 - 2 r h cos a.

Thus, implicitly differentiating with respect to a yields

di rh- sin a.

Froin this we see that - changes sign exactly when a = 0 or o 7r. Since

s 2 - d2 = j2,

)td 4t change sign simultaneously. Thus we have determined the

conditions under which the contact point changes its direction of motion along the

edge. This event occurs whenever contact is possible and the vertex participating

in the contact lies on the line passing through the two rotation centers.

\\' rnih-it kl1 o ,( 'cide how to (tO <rj)hlWn I) 0),, re that

r cos(J - o) - cos3 - d.
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Figure 16. The canonical circle-line representation augmented with further no-
tation.

Hence, implicitly differentiating with respect to a,

r ( I sin(3- a) = h- - sin'3.
(da d da

Thus D = 1 exactly when 0 = 0 or 0 = 7r, that is, exactly when the edge
participating in the contact is perpendicular to the line passing through the two
rotation centers. At these points the relative rotational motion of the two objects
changes sign. When D > I the planning object is rotating faster than the obstacle
object. When D c 1, it is rotating more slowly.

Finally, notice also that

d3 r sin(3 - a)
Sd c rsin(,3- a)-hsin3"

Thus 1 vanishes when 3 1a or 3 -- r. In other words, the derivative vanishes
whenever the line representing the contact edge is tangent to the circle at the point
of contact. At these tangency points the motion of 3 changes direction. Said
differently, at these tangency points local minima or maxima occur in the function

, 3 = 3(a) which represents the value of 3 at which contact occurs as a funci ion of Pin
ka. We will refer to the graph of this function as an a -3 contour henceforth.

p, This tangency information is useful for approximating the a 3 constraint con-
tours. For instance, one might wish to approximate the contours conservatively us-
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Figure 17. Over regions in which the a,-# contours are monotonic, the planner
can easily construct a bounding rectangle that conservatively approximates the

0 -forbidden regions defined by the a-# contours. The planner uses this approx-
imation for simplicity. The constraints are, in fact, analytically representable.

ing rectangles that completely enclose the forbidden regions in configuration space-
time. Over a region in which 3 varies monotonically with a, an enclosing rectangle

may be constructed directly from the start and end point- of the aL-0 contours (see
Figure 17). Knowing the points at which ± vanishes, allows the planner to split

the contours into such monotonic segments.

* Let us now trace through the contact constraint as a varies.

- The contact constraint first appears at a = a,,. The orientation of the edge is
given by ,,. where

7r-cos ( d 2 - h 2 - r 2

,: 2dh

The value of s at this point is, by construction, zero.

" For the root we are tracing, as a increases from aQ, both 3 and s increase

as well. Furthermore, D is bigger than unity. The first relevant event occurs

when 3 7 r. See Figure 18. At this point o - cos-I((h - d)/r) and s

- L ?
r  d)2 . The event that occurs is that 1) 1 changes from being positive

to negative, that is, at the point we have D 1.

. The next event that occurs is that the motion of the contact point along
the line changes direction. In other words. s, which was increasing, starts
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Figure 18. The relative rotation rates of the two objects portrayed by a and
are identical whenever 6 is 0 or ir. This is the case whenever the edge defining
the vertex-edge constraint is perpendicular to the line joining the two rotation
centers. To either side of one of these orientations one object is rotating faster
than the other object. Furthermore, the faster object on one side is the slower

,. object on the other side.

to decrease. This event occurs when a = 7r, # = 7r + cos-(d/(h + r)), and
s = \1(h + r) 2 - d 2 . See Figure 19.

* The third event that occurs is that D changes sign, which happens when the
line representing the contact edge is tangent to the circle at the point of contact.
See Figure 20. The significance of this event is that /0 changes direction. In
other words, whereas /0 was increasing with a previously. it now decreases
as a increases. The event occurs for a 7r -- cos-J ((d - r)'h) and
s= \/h 2 - (d - r) 2 .

* * The last event that occurs is that the two roots remerge. This occurs when
a = 27r - a0 . 0 = 27r - 3C, and s = 0. As a increases beyond this point, the
contact constraint must disappear. This is because there is no orientation 3 for
which the line representing the contact edge can make contact with the point

on the circle representing the contact vertex at orientation a.

6.6. Representing Multiple Joints 4

The circle-line representation provides a .simple method for describing the con-
straints arising from the interaction of two rotating polygons. For nonconvex poly-
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? Figure 19. The direction of travel of the contact point along the edge changesSdirection whenever a is 0 or 7r. This is the case whenever the contact point lies

( "- on the line joining the two rotation centers.

- . gons the superposition of several such representations determined from a convex
i decomposition of the polygons provides a two-dimensional space-time description

--1 of the relevant constraints. As before, the constraints may be approximated by
. bounding rectangles.

For multi-link arms, it is necessary to extend the dimension of the configuration
.-. ; space-time by the additional number of joints. For example, for two-link arms, the
• , # configuration space-time is three-dimensional. Our objective now is to construct
• - the relevant constraints imposed on an arm by the motions of other arms and by
_:__ st at ionary obstacles.
" ':--"7 "The basic approach consists of reducing the dimensionality of the problem by

;'?-':computing constraints as two-dimensional slices. Consider Figure 21, which por-

• trays a typical two-link arm. For each fixed orientation of Link 1, the planner can
€. construct a two-dimensional space-time for Link 2 that represents the constraints
' z'- " imposed on Link 2 by the other rotating arms and by the stationary obstacles.

,. . During each such computation the base point about which Link 2 rotates is held
i ' :fixed at the orientationI, given by Link 1. Recall, we assumed that for each arm in
e~r.the environment, only one joint is actually rotating at any time. Thus the approach
r. , . €"previously outlined may be applied to compute this two-dimensional space. Stag-

gering these two-dimensional slices produces an approximate representation of the

!.. complete three-dimensional configuration space-time.
NN
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Figure 20. The direction of rotation of /3 required to maintain contact as a
increases changes direction whenever the edge defining the vertex-edge constraint
is tangent to the circle at the point of contact.

ink 2

Link 2

Base

Figure 21. A two-link arm. The arm has two rotational degrees of freedom. Th,
arm's base is fixed in the plane.

e

A few issues deserve coniment. First. it is impossible 1o a(tuall) cunlstruct two-
dinwnsional slices for every orientation of Link I. Instead. the planner discretizes
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the orientations of Link 1, computing slices for the resulting finite number of orien-

tations. The representation of configuration space-time is thus only approximate,
,V: .. *., limited in resolution to the angular separation between slices.

Second, it is possible to reduce the number of orientations of Link 1 for which
it is necessary to compute space-time slices. Certainly, any orientation of Link 1
for which there is a collision between Link 1 and any other arm or object in the
environment, is an invalid configuration at the time of collision. All orientations

Nof Link 2 are automatically forbidden at that time. Thus it is only necessary to
compute portions of space-time slices over time intervals and at orientations of Link
1 that are collision-free. In order to determine these orientations it is sufficient to
compute a two-dimensional configuration space-time for Link 1 that represents the
constraints imposed on Link 1 by the other rotating arms and by the stationary
obstacles. This space may be computed in the manner outlined previously. Slices
are then computed for Link 2 for all the discretized orientations of Link 1 that lie
outside Link l's constraint contours.

Further optimizations are possible. For instance, one can determine orienta-
tions of Link 1 for which all possible orientations of Link 2 are guaranteed to be

-£ collision-free. This may be done in a conservative manner by approximating the
swept volumes of rotating links using sectors of circles.

6.7. Searching the Configuration Space-Time

The planner represents the free regions of configuration space-time as a col-
lection of rectangles in each of the slices. These free space rectangles are simply
the complements of the constraint rectangles described earlier. Thus the free space
rectangles are conservative representations of free space, in the sense that they are
subsets of the actual free space. Searching for a collision-free path for a given two-
link manipulator consists of determining a sequence of motions within and across
slices that remains in free space and leads from the start to the goal configuration.
Motions within a slice represent rotations of Joint. 2 alone, while motions across
slices represent rotations of Joint 1 alone.

Most of the issues that arise in searching for a collision-free path in configura-
tion space-time have already been alluded to. In particular, the path should never

- lead backwards in time. Additionally. if there exist maximum velocity constraints
on the joints then the path may have to maintain certain slope constraints as a
,.patial function of time. Finally, the search may wish to take into account the

,*~ urmporal or spatial cost of proposed motions.

One question regards the representation of paths. Whereas for the planar case
of traiilating objects we chose only to consider particular paths, namely those that
conncted vertices in the environment, in this case we shall choose to represent
111 pathii; irriiplicitly. This is accomplished by regarding regions as descriptive of

path,. A path is possible between two regions only if the regions connect. While
,1( -,Ircli Mg. the planner does not construct explicit paths, but merely considers the

, orU I% i bmtecn regions. The output of the search phase is thus an ordered
- (i d ,f in x\%hich an\ IWO regions that are adjacent in the list are connected
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Part A

R3

R1

Part B

• R3

R2

*1,t 
RI-

,.£

Figure 22. There is a path from region R, to region R 3 only for the example of
Part A. Any path from R, to R 3 in the example of Part B would require moving
backwards in time.

0 in the configuration space-time. A particular path may then be determined by
choosing any path that passes through the regions in the order specified and across

the regions of connectivity.

Deciding whether two regions are connected involves both a spatial and a tem-
poral decision. The distinction is necessary because of the prohibition on moving

, backwards in time. Let us first consider the case of two regions in the same space-

tint slice. Consider F igure 22. In order that , %o regions be connected it is necessarN

that they are connected in the spatial dimension. In both Part A and Part B of
Figure 22, R, and R2. and R 2 and R: are connected spatially, since each of the
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Figure 23. Regions R1 and R 2 , along with their intersection C12. The minimum
and maximum time coordinates of points in C 12 are given by trmnt and tmaz.

regions in each pair shares a common point in space-time. However, there is a path
from region R 1 to region R 3 only for the arrangement of Part A, not for that of
Part B. This is because any such path for Part B would require motion backwards

in time.

In general, the temporal decision regarding connectivity of two regions depends
on the particular partial sequence of regions in which the two regions find themselves
during the search. Specifically, it is necessary to associate a minimum time with
any partial sequence. The minimum time represents that value of time below which
no space-time path may venture lest it be moving backwards in time. Initially this
value is set to zero. As the search phase expands a partial sequence it updates this
va Iuc.

Updating the minimum time value of a partial sequence is fairly straightfor-
ward. Suppose that region R, is the current last region on a partial sequence, and
suppose that the planner is considering adding region R 2 to the partial sequence.
See Figure 23. Let C12 = Rl nR 2 . The planner first checks that C12 is non-void.

This is effectively the spatial decision of connectivity. Now let t,,,, be the minimum
tire coordinate of any point in C12, and let tmz be the maximum time coordinate

of any poirnt in (',,. Then the new value of the minimum time associated with

1, nex partial sequnce is simply the maximum of the old minimum time value
and , Furthermore, the new partial path is valid only if this new value of the
minimum time is no greater than t,,,.
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Figure 24. The intersection region C1 2 may be only partially reachable by mo-
tions from the previous intersection region C01 if joint velocities are bounded

from above.

The case of transitions across space-time slices, that is, the case of rotations in
Joint I alone, is handled similarly. The only real difference is that the intersection

of two regions will in general not be a line segment, but some higher dimensional

-r entity. such as a rectangle.

* Let us briefly comment on the case in which the joints have maximum velocity

"5/5 bounds. In this case, the intersection region C12 must be shrunk to account for

points that are not reachable from the previous region of intersection. See Figure

24. In some cases this may cause the region C12 to become empty. One option is for

the planner to discard the current partial sequence. Alternatively, the planner could

slow down the other arms, thereby effectively dilating time and possibly enlarging

the intersection region. Our implemented planner does not consider slowing down

the other arms.

Finally, in assigning temporal costs to transitions the planner should keep track

* of both the minimum and maximum times required to pass from one region to
another. Again, given a partial sequence and the previous and current intersection

rv'giornW C',,, and C'1 2. the planner can determine the minimum aId iiiaximurn I irnes

required to move from C,.,, to C 12. Any actual path will have a timc cost that
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lies within this range. Since the planner does not consider explicit paths, but only

paths implicit in regions, it is not possible to assign cost more accurately. The
planner must select an actual sequence of regions by comparing both the minimum

4and maximum costs of different proposed sequences. Spatial costs are handled

identically.

In fact, our planner does not first compute intersections regions that are too

large, such as C 12 , and then explicitly shrink them. Instead, the planner computes

the shrunken version of C 12 directly, as the set of all points that lie on the boundary

of the region R 2 and are reachable from the previous intersection region Co1 . Thus

every point in C 12 is reachable from some point in Co1 . Col is computed similarly,

as are all regions in any partial sequence of regions from the start configuration.

It follows that the minimum and maximum bounds on the time required for any

trajectory to reach the region C 12 from the start configuration are given precisely

%i by the minimum and maximum time coordinates of points in C1 2. In other words,

since motions never move back in time, temporal costs alone may be determined

directly from the time coordinates of points in a region. Spatial costs, however,

must be computed as the sum of transition costs between pairs of regions.

V Our implementation considers only temporal costs, in an attempt to find the

minimum time solution. The algorithm employs a best-first search based on the

minimum time required to reach a given region plus the estimated minimum time

to reach the goal from the given region. Once a sequence of regions from the start

, *." to the goal has been found, an actual path is computed backwards from the goal.

By construction, every point in any region in this sequence is reachable from some

point in the predecessor region. Thus this method is guaranteed to select a valid

path from the sequence of regions found by the planner.

6.8. Example

The beginning of the paper contained a sample problem involving three arms.

In this section we consider a simpler problem involving two arms. The point of

. this example is to display the configuration space-time representing the constraints

imposed on one of the two arms by the motion of the other arm and by the stationary

obstacles in the environment.

Figure 25 shows the start and goal configurations of the two arms. The planner

first planned the motion of the left arm. then that of the right arm. While planning

the motion of the left arm. the planner considered the stationary obstacles, but

ignored the right arm. Once the motion of the left arm had been determined,

the planner computed the configuration space-time of the right arm. given the

stationary obstacles, and the motion of the left arm. The planner then determined

a path for the right arm that safely avoided the obstacles and the left arm. The

time required by the planner was 76 seconds.

Figure 26 shows some snapshots of the resulting motions. Figure 27 displays

',- the construction of the space-time slice representing the constraints imposed on Link

2 of the right arm at a fixed orientation of Link 1. The constraints were defined by

Tie inotion of the left arm and by the stationary obstacles. Notice that each frame
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Start Goal

-'.. Figure 25. Start and goal configurations for two arms. The motar. o: ;tic left
arm is planned first. The motion of the right arm is planned given the ,:ot)on
of the first arm.Urm

contains a space-time obstacle that is constant over time. This obslaui, represents
the constraint imposed by the stationary rectangle in real space. TkIe remaining
space-time obstacle varies with time, reflecting the time-varying con.stralit, imposed
by the motion of the left arm.

Finally. Figure 28 displays several slices of the configuration spac,.-, ,me of the
right arm. Each slice captures the constraints imposed on Link 2 of ilie right arm

at a fixed orientation of Link 1. There are several observation:: w 1 ruting in
Figure 28. Consider the three slices corresponding to Link I orlcntm, - 0t. , -I.
and 7 2 radians. In the slice with O = 0 there appears a single s -,,i h .e ibstacle
that is constant over time. This obstacle represents the time-invarji;, oi, t raint
imposed on Link 2 by the large stationary rectangular obstacle in r oai ia~e The
motion of the left arm (Arm 1) imp.,;es no constraint on Link 2 of tc ghl arm at

Y this orientation of Link 1.

all The slice corresponding to 01 = 7r4 is completely darkened, me,,nmg that
oall rientations of Link 2 are forbidden. This is because Link 1 of h riTht ariil.

oriented at 01 = 7r/4. actually intersects the large rectangle. 'hu, lh(,r is no
orientation of Link 2 for which the arm lies in free-space.
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2 Figure 26. Some sample snapshots of the motions determined by the planner
,r 'e~ d while solving the problem of Figure 25.

I Finally. in the slice for 0, = 7r//2, there appears both a time-invariant space-time

obstacle and a time-varying obstacle. The time-invariant obstacle arises, as before,
as the constraint imposed by the large rectangle on Link 2, while the time-varying
constraint arises as the constraint imposed by the motion of the left arm.

W t . 6.9. Co(lliplexity

i':' :I.,,i i ? be tho number of edges in the environment, let r be the number of

'"

... ~ac<-irr)( -li('V C(Mnrlr)cted, and let s be the number of time divisions over which
r.'.- ,,ht ii, In Ilic nvironment perform distinct motions. By this we mean that the

1 I'm axi ha,; been split into s intervals. The intervals are so chosen that over each
F--InlelrNa] each of I fit armns whose motions have already been determined performs at
"."" most a single uniform motion of one ioint. Our planner constructs the configuration
'.... ace- t Irne usi ng an algorithm of time complexity 0O(r s n'). A simple variant of the

,-.

:.. algo~rit hm would require time complexity 0(r s n )og n).
" : "To -,ee, this. t~cite that at most 0(n 2) constraints can arise from vertex-edge

!Tl r,( I,10ion in aTI\ given slice over any given time interval. A priori this suggests
,!ai ihere could be 0(0 ) constraint regions. However, while determining the

;. : ,,Adc.ri re'gions of' space-time. the planner on1y considers active constraints. The

a'--



._____-____ .

I,-"Link 2 2

SConstraints on 7 *

Link 2 Left Arm
_..'.,.. (moving) _

4 6

"-:. Orientation of Link 2

,time

Constraints on Link 2

Figure 27. This figure displas's the construction of the constraiII- w,, L.il,, )I
the right arm for a fixed orientation of Link 1. In aii alternatitig l., hii, n i

* figures display the constraints constructed thus far, and the motu; ,f I h k,
.*.:.: arm over the most recentl constructed constraint rectangle Thi r(,L'

displayed at the two extreme orientations of this constraint rectangle

- planner sweeps a data siructure across space-time, sweeping in he ti dir t .i0-.
x.hiit, maintaining a(ti c orientation constraints in the da td sr u(,it r .C,' W :-d by-
orientation. This amounts to tracing along the constraint 1ounddriv- iniMdcated

-', at the end of Sec. 6.2.
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Configuration Space-Time Slices for Arm 2

~1

time
•02

Arm 2:

Motion of Arm 1

Arm 2

'=

0 V guri 2x Scveral slicve of the configuration space-time representing the con-

straints imposed on the right arm by the motion of the left arm and by the

stationarr obstacles in the environment. Each slice depicts the constraints im-

posed on Link 2 for a fixed orientation of Link 1
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For any vertex-edge constraint, by convexity, the conditions urder which the

constraint expires or becomes activated as a result of interacting with other edges-

or vertices in the environment, are determined by the two edges abutting the vertex
and the two vertices bounding the edge. There are thus four possible conditions,
namely the two vertex-vertex contacts, and the two edge-edge alignments, under
which a constraint may expire or become activated as a result of interacting with
the environment.

Furthermore, for any constraint there are only a constant number of conditions
under which the conbtraint changes character purely by virtue of the circle-line
equations, such as reaching a local extremum in the a-/0 contour, or expiring because
the edge or vertex rotates out of reach. (See Section 6.5.) The constant depends
on the exact type of interaction, but is never more than six. This says that for
each constraint the planner needs to consider no more than ten events at which the
constraint changes character. Thus the planner constructs at most 0(n 2 ) constraint

regions per slice per time interval. Ordering in time the conditions under which
active constraints change character requires time 0(n 2 log n) per slice per time
interval. Furthermore, by convexity of the objects, the sweep structure contains
at most 0(n) constraints at any given time. Updating the sweep data-structure
can thus require 0(log n) time whenever an update must be made. Since there
are r slices and s time intervals per slice, this gives the overall time complexity of
0(r s n2 log n).

In fact, our actual implementation requires 0(n) time to perform an update
of the sweep structure, creating 0(n) constraint regions each time. Thus the time

complexity is 0(r sn 3 ), and the number of regions constructed is also 0(r sn').
Notice that the 0(n) constraint regions constructed at any update of the sweep
data-structure all have the same endpoints along the time axis.

In order to search the configuration space-time, our planner requires a repre-
sentation of free space-time. However, the output of the space-time construction

phase is a collection of rectangles representing forbidden regions of space-time. In
fact. there are 0(s n3 ) rectangles per slice, arranged in O(s n2 ) columns of 0(n)

0- rctangles each. The rectangles in a column all have the same temporal endpoints.

By taking complements of the forbidden rectangles, the planner constructs 0(n)
rectangles per column that represent free space-time. This construction has time
complexity O(n log n). Thus the complele free space-time representation consists

* of 0(r , n) rectangles, constructed in time 0(r sn 3 log n).

The search of configuration space-time that we have implemented. assuming
maximum velocity bounds, requires exponential time in the worst case. It is. how-
ever, possible to implement a polynomial time search. To see this, observe that our

* planner's worst case exponential search time is a direct consequence of the reacha-

bility conditions arising from maximum velocity bounds, as discussed in Sec. 6.7.

Assuming maxirrurn .elo ity bounds, the connectivit3 between free-space regions
depends on the order in which regions are traversed. This was the gist of section
6.7. Only part of a free space-time region may be reachable from a previous region.
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This partial reachability introduces a branching factor in our search that results in
an exponential algorithm.

As an alternative, suppose that the arms can perform motions requiring infinite

velocities. In this case, the planner can represent the configuration space-time as a
graph. The nodes of the graph correspond to the free space-time regions; the edges
correspond to the connectivity between regions. If the graph contains v nodes and

e edges, then the time complexity required to search the graph for some path from
the start to the goal is Q(max(v,e)).

We could also search fo- the shortest path in the graph. Generally, a graph

containing v nodes and e edges can be searched for the shortest path between two
nodes using an algorithm of time complexity O((v + e) log v). In the case of dense
graphs it is appropriate to use Dijkstra's algorithm, which has time complexity
0(v 2 ). In our case, v and e are themselves both O(rs n3 ).

This same polynomial-time search algorithm may be used even if the arm has
maximum velocity bounds. During the search, the planner assumes no velocity
bounds. Once the search has found a path from the start to the goal, the planner

may have to slow down the motions of previous arms. Doing so scales time, thereby
allowing the planner to satisfy the velocity constraints of the arm whose motions
were just planned. Slowing down the other arms may also be done in polynomial
time. We did not implement the planner in this form.

6.10. Summary for Two-Link Articulated Planar Arms

e The constraints imposed on one rotating polygon by another rotating poly-
gon are determined by tracing the orientations required to maintain contact

between the two polygons.

* The constraint contours change character at critical orientations. These include
vertex-vertex contacts and edge-edge alignments.

* Configuration space-time is represented as a series of space-time slices. Each
slice represents the time-varying constraints imposed on Link 2 of the arm at
a particular orientation of Link 1.

* Configuration space-time is searched via connecting free-space regions.

9 Solutions are exact and complete in Joint 2 motions. The planner is complcte
in Joint 1 motions only to the angular resolution between slices.

7. Summary

This paper has explored the motion planning problem for multiple moving
objects. Two domains were considered. The first domain consisted of translating
planar objects. The second domain consisted of rotating two-link planar articulated
a rms. The approach taken consisted of assigning priorities to each of the moving

objects. Motions were planned for the objects in sequence as determined by the
prioritization. Thus the problem was reduced to several versions of the problem
of planining for a single moving object in the presence of other moving objects and
lalionary obstacles.
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14 The problem of planning for a single moving object in the presence of other
moving and stationary objects was solved by constructing a configuration space-
time. The configuration space-time captured the constraints imposed on a moving
object by its time-varying environment. A motion for the object was then found by
searching for a path from the start to the goal configurations through the configu-

0: ration space-time.

In the case of translating planar objects, it was noted that the configuration
space-time could be constructed by initially treating all the objects as stationary and
constructing a stationary configuration space. The complete configuration space-
time could then be obtained by translating the configuration space obstacles in
correspondence with the translations of the real space obstacles.

In the case of rotating arms, the configuration space-time was constructed
as the union of the constraints resulting from the interactions of pairs of convex
polygons rotating about various rotation centers. The constraints imposed on the
orientation of one polygon by the motion of another rotating polygon were de-

. termined by explicitly examining the interactions of vertices and edges. For each

possible type of vertex-edge interaction, the conditions under which contact could
•0 occur, and the conditions under which contact types could change, were analyzed.

This analysis led to a representation that made explicit the constraint contours in
configur;on space-time. Effectively, while constructing the configuration space-
time, the planner would trace a particular vertex-edge contact until that contact
encountered a contact change, such as a break or a vertex-vertex contact or edge-

edge alignment. At the contact change, the representation allowed the planner to
determine the new contacts that were possible. The planner would then examine

these contacts, tracing the new constraint contours.

In the case of translating planar objects, the configuration space-time was rep-
resented as a series of two dimensional spatial slices, corresponding to the con-
straints imposed on the moving object at different values of time. In the case of
rotating planar arms, the configuration space-time was represented as a series of
two-dimensional space-time slices, corresponding to the constraints imposed on the
arm's second link at different orientations of the arm's first link.

Having constructed the configuration space-time, the planner would then search
for a path from the start configuration to the goal. It was noted that such a search

could never move backwards in time. Furthermore, given maximal bounds on the
objects' velocities, the planner was further required to observe slope restrictions on

* proposed paths.
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