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CHAPTER 1

Introduction

This document constitutes the final report for the Very Large Parallel Data Flow
(VLPDF) program. This introduction contains the VLPDF program background, pro-
gram overview, our overall approach, and an outline of the rest of this report, including
the key results contained in each chapter.

1.1. Background

Battle management involves managing large volumes of real time data, interpreting
this data, correlating data from multiple sources into a multidimensional view of the
world, predicting enemy actions, monitoring incoming information for enemy threats
and inconsistencies with predictions, and planning effective countermeasures. The large
volumes of incoming data and the short response times required will force computers to
take over many of the analysis and decision-making functions currently performed by
humans. This implies the use of knowledge based techniques to implement these sophis-
ticated functions. Battle management systems will therefore be required to manage
large data/knowledge bases. •

What does managing a large data/knowledge base mean? What are the functions
of a Data/Knowledge Base Management System (D/KBMS)? These questions are being
investigated by several research groups. However, Brodie's definition seems to capture
the essence of a knowledge base management system. He defines a knowledge base
management system as "a system providing highly efficient management of large, shared ,-

knowledge bases for knowledge-directed applications" [Brod86J. While there is ongoing
debate about the functionality of a D/KBMS, this and other definitions imply that, at a
very minimum, a D/KBMS must provide a set of facilities analogous to the data
definition, data manipulation, data access, and data integrity facilities provided by a S
database management system (DBMS).

A D/KBMS is a combination of two different search engines - an inferential search
engine and a query evaluation search engine. The key technical challenge in designing a ."L .-
D/KBMS is performance, since an inappropriate combination of these two search
engines can lead to very poor response times. The performance issue is particularly
significant in a battle management environment, due to the large size of the
data/knowledge base and the short response times required. A D/KBMS must deliver
very high performance, to be effective in such an environment. :

The objective of the VLPDF program was to investigate the use of parallel process-
ing in very large data/knowledge base management as a means of attaining the required
performance levels. The program is motivated by the following observations: 1) special

N* N
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purpose parallel architectures have been shown to provide high performance for large
database applications, and 2) database management is the minimum functionality a
D/KBMS must provide. Parallel processing techniques have been used in database
management to provide substantially higher performance than mainframe based systems
for large database applications. For example, Thinking Machine Corporation's 64,000
processor Connection Machine performs five times faster than a Cray mainframe com-
puter in searching a text database of 10 billion characters. Teradata Corporation's
DBC/1012, a parallel relational database machine, is another high performance engine
for large database applications. The DBC/1012 can be scaled up to 1024 processors,
each with a Gigabyte of disk, for a total database size of a Terabyte. Both machines
embody special purpose parallel architectures: the Connection Machine, a special pur-
pose architecture optimized for operations on large, complex data structures, and the
DBC/1012, a special purpose architecture optimized for relational operations. The
emphasis of the VLPDF program was on investigating the use of such special purpose
parallel architectures for very large data/knowledge base management.

1.2. Program Overview

The VLPDF program spanned 24 months and was divided into three phases. 0

1.2.1. Phase I

This phase involved investigation of:

" parallel processing techniques for inference processing. _

* parallel processing techniques for very large database management, and

* fault tolerance techniques for very large databases.

Both inference processing and database management were included because a .

D/KBMS is a combination of an inferential search engine and a query evaluation search
engine. The investigation included algorithms and architectures for relational database

machines, and different forms of parallelism present in inference processing - AND,
OR, stream, search, etc.

Fault tolerance was included because a D/KBMS must be highly available, to be
effective in a battle management environment. The fault tolerance investigation was to ,0,.

emphasize high data availability techniques for parallel data/knowledge base manage-
ment systems, where the larger number of components involved may render the system
more susceptible to failure.

1.2.2. Phase II

This phase also spanned 9 mouths and involved development of:

* a methodology for specifying various architecture approaches for large
data/knowledge base management systems, and

* a set of guidelines for choosing among them.

% , %
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1.2.3. Phase III

This phase spanned 6 months and involved:

" development of a test plan for evaluating candidate D/KBMS architecture
approaches, and

" demonstrating capability to search and update a very large data/knowledge base.

1.3. Overall Approach

One issue that confronted us early in Phase I was the choice of a broad approach
to integrating Artificial Intelligence (AI) and database technologies to realize a
D/KBMS. There are basically four such approaches:

* Loose coupling. Couple an existing Al system (Prolog, Lisp, existing expert system
shells, etc.) with an existing DBMS.

* DBMS extension. Extend the data model of a DBMS with knowledge representa-
tion and inference capabilities.

* AI system extention. Include database functionality in an AI system.

* Tight coupling. Combine the AI and DBMS concepts of knowledge representation
and data modeling, i.e., integrate at the so-called knowledge level.

Keeping in mind the 9 month duration of Phase I, we felt that it was better to choose
one broad approach, after carefully considering all four, rather than investigating all
four approaches to the same level of detail. Choosing an approach, we felt, would

enhance the chances of getting concrete results for the program. The issue confronting
was: which of these four broad approaches is best suited to exploiting the capabilities of
a parallel search engine?

In the loose coupling approach, the DBMS is used just as a query evaluation search
engine, with all inferential search being done by the Al system. The loose coupling
approach, therefore, does not exploit the capabilities provided by parallel DBMS archi-
tectures for inference processing, and so, will most likely result in a D/KBMS that per- ,-N.
forms poorly.

The tight coupling approach is the most promising one. However, significant
technical challenges must be overcome before a D/KBMS with knowledge level integra- S

tion becomes feasible. Several research efforts are ongoing that address these challenges.
We believe that it is too early to tell how parallel search engines can be exploited in the
tight coupling approach. %

Out of the remaining two approaches, we felt that the DBMS extension approach
was the more promising one for exploiting parallel search engines. Parallel relational ,

database machines, such as the DBC/1012, provide very high performance for large,
shared database applications. Admittedly, the Connection Machine, a so-called Al
machine, has also been shown to provide high performance in searching large databases.
However, its effectiveness for large, shared database applications has not yet been esta-
blished. This may change in the future. But for our work in the VLPDF program, we
we shunned the Al extension approach, and instead, chose the DBMS extension

. *.. . #,._ ..... .. or- ..-. . ... .
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approach.

In the DBMS extension approach, a D/KBMS is viewed as a functional extension of
a DBMS. A database contains only data in extensional format, or facts. A
data/knowledge base, in addition, contains knowledge in intensional format. The inten- .
sional part of the knowlege base is also called the rule base. The query language of a
DBMS can manipulate the extensional data stored in the DBMS. The query language
for a D/KBMS, in addition, has a deductive inference mechanism, which interprets the
rules, combining them with the extensional data to infer new facts not explicitly stored.
A DBMS uses query compilation and optimization, along with special purpose parallel
architectures to attain high performance for large database applications. Likewise, our
overall approach to obtaining high performance in large data/knowledge based applica-
tions was:

Compile queries to the intensional knowledge base, using appropriate 0
optimizations, into a program that executes against the extensional
data. For queries to the extensional knowledge base, use DBMS
query compilation and optimization techniques. In both cases, use a
parallel database machine to execute the compiled program.

It was in this manner we exploited special purpose parallel search engines for doing
deductive inference, or knowledge directed retrieval. The broad approach of extending
the functionality a DBMS to realize a D/KBMS proved to be very well suited to leverag-
ing the vast amount of research that has gone into parallel database machine architec-
tures.

We adopted the logic programming paradigm for providing the functional exten-
sion to a DBMS. Several research projects have adopted this paradigm, including the
Advanced Database System project at MCC and the NAIL! project at Stanford. Logic
offers several advantages: Ar

" it provides a uniform formalism for data, rules, views, and integrity constraints;

* it is the basis for relational database theory;

" it is amenable to parallel processing;

* it is an adequate basis for implementing other knowledge representations; and

" it has a sound theoretical foundation, which permits the abstract expression of
ideas, independent of their implementation.

1.4. Report Summary

This section gives a brief description of the chapters in the rest of this report,
including the key results contained in each chapter. "..

Chapters 2 through 7 describe the results of the various investigation studies we -?

performed under the VLPDF contract. We performed a total of six studies: (1) alter-
native D/KBMS application interface languages, (2) parallel architectures for such '.--

languages, (3) data/knowledge query processing, (4) transitive closure algorithms, (5) 0

parallel database management system architectures, and (6) fault tolerance in very large

d". ..

NW .d* "
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database systems.

Chapter 2 describes our investigation of alternatives for a D/KBMS application.%

interface language. A D/KBMS will be required to support intelligent applications such

as planning, monitoring, interpretation, diagnosis. and prediction. These applications

will typically be expressed in an expert system shell like language in which the D/KBMS

query language is embedded. This is exactly analogous to data processing applications

expressed in Cobol with embedded SQL. The motivation for studying D/KBMS appli-

cation interface language alternatives is that the overall performance depends not only

on the D/KBMS performance but also on the execution efficiency of the application

interface language on a hardware architecture.

We identified three principal requirements for the D/KBMS application interface

language: it must be amenable to large scale parallelism, it must be a suitable base for

implementing an expert system shell, and it must support efficient non-procedural data- S

base access. We considered three language classes: imperative, functional, and login.

We found that no existing language is uniformly superior to all others with respect to

our requirements. However, we believe that PARLOG, a parallel logic-based language,

represents the best choice among existing languages.

Chapter 3 presents the results of our investigation of parallel architectures for exe-

cuting PARLOG. The form of parallelism present in PARLOG is called stream-AND

parallelism, where several processes work concurrently on constructing the solution to a

logic based query. We designed a parallel abstract machine for executing PARLOG,

which lays bare all the functions needed to execute PARLOG programs as well as the

data objects created and manipulated by these functions. We also developed a simula-

tor for the abstract machine, which serves as a tool for collecting data on the execution

behavior of PARLOG and analyzing this data.

The principal conclusion from this work is that shared memory greatly facilitates

implementing PARLOG's stream-AND parallelism and that the key to high perfor- 0

mance stream-AND parallelism is an efficient shared memory abstraction on a loosely

coupled architecture. Our abstract machine described achieves this via a number of

optimizations. These optimizations address critical problems in the design of efficient

parallel architectures. They address the principal sources of overhead, viz., communica-

tion and memory latencies, and synchronization overheads. .

We also investigated the feasibility of executing PARLOG programs on the Con-

nection Machine architecture. The conclusion from this work is that a coarse grained, '...-

loosely coupled architecture is better suited than the Connection Machine, since the

form of parallelism best supported by the Connection Machine is directly opposite to

that found in PARLOG.

Chapter 4 presents the background concepts pertaining to data/knowledge base

query processing. The two main concepts covered are least fixed point evaluation and "'%- .1

data/knowledge base query optimization.

One of the difficult problems in the design of a D/KBMS is how to evaluate recur-

sive queries efficiently. Among the large family of recursive queries, the transitive
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closure query forms a very important subset. They are important because (1) a large
number of recursive queries can be expressed using transitive closures, (2) most applica-
tion problems involving recursive queries which we can see now are actually transitive
closure queries, and (3) efficient processing of transitive closure queries will provide a or

sound base for solving more complicated recursive queries. We evaluated several algo-
rithms for computing the transitive closure of a database relation. The results of this
evaluation are presented in chapter 5. Based on this investigation, we concluded that it
is possible to further optimize transitive closure processing. This led us to develop new --

strategies for this problem, which we then present.

Chapter 6 presents the results of our investigation of parallel architectures for
database management. Basically, our work in this area has been in the area of parallel
algorithms for the join operation. The join operation is an important operation for
relational database systems, and will become even more important as logic-based infer-
ence capabilities are added to these systems. We describe a number of multiprocessor
join algorithms. The algorithms use sort-merge and hashing techniques, and are highly
parallel and pipelined. The algorithms are designed to execute on a multiprocessor
architecture that is parameterized in the degree of memory sharing, so that tightly cou-
pled, loosely coupled, and intermediate architectures can be modeled. Other architec-
tural parameters include the number of processors, number of disks, amount of main '
memory, and interconnection network bandwidth. We model the performance of the
algorithms analytically to determine elapsed time, resource utilization, and other quanti-
ties as functions of the workload and architectural parameters. The join algorithms
overlap computation, disk transfers, and interconnection network transfers. The
analysis models this overlap and identifies bottlenecks that limit the algorithms' perfor-
mance. We do not model multiple simultaneous join operations, and therefore do not
compute system throughput. Based on this analysis, we answer the following questions:
(1) How do the algorithms compare in performance? When does one outperform
another? (2) How does response time vary as a function of the architectural parame-
ters? (3) How does response time vary with the workload? (4) Does shared memory
help algorithm performance? To what extent? (5) What are the architectural
bottlenecks? How could they be alleviated? Based on the above study, we draw several
conclusions regarding parallel processing of the join operation.

Chapter 7 presents the results of our investigation of fault tolerance in very large
database systems. A very large database is usually heavily used and many users and
applications depend on it. Downtime or unavailability of such a system is expensive
and affects critical applications dependent on it. We studied the effect of fault tolerance ,

techniques and system design on system availability. Specifically, we attempted to
answer the following questions: What are the main parameters that affect fault toler-
ance of a very large database system? How do you evaluate their effect on fault toler-
ance? How important are various fault tolerance techniques? What are the trade-offs
that should be considered when designing a very large database system with a desired
degree of fault tolerance? A generic multiprocessor architecture is used that can be
configured in different ways to study the effect of system architectures. Important ,,W

parameters studied are different system architectures and hardware fault tolerance

*~~~N V'5'.fj.~
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techniques, mean time to failure of basic components, database size and distribution,
interconnect capacity, etc. Quantitative analysis compares the relative effect of different
parameter values. Results show that the effect of different parameter values on system
availability can be very significant. System architecture, use of hardware fault tolerance
(particularly mirroring) and data storage methods emerge as very important parameters
under the control of a system designer.

During Phase II, the results of the six investigation studies were combined to
develop a methodology for specifying high performance, highly available D/KBMS
architectures for very large data/knowledge base (D/KB) environments. Chapter 8 PO
describes this methodology, which is described as a set of policies and steps. The poli- '

cies arc .neant to serve as a guide to the D/KBMS designer in making appropriate deci-
sions for the following critical D/KBMS design issues: overall D/KBMS functionality,
knowledge representation, rule storage, D/KB query processing, D/KB update process- S

ing, D/KBMS functional partitioning, least fixed point evaluation, join processing,
D/KBMS hardware architecture, and fault tolerance. The steps are presented as a
recipe for D/KB query and update processing.

Briefly, using this methodology, we would design a high performance D/KBMS by
first designing a parallel relational database machine that employs the parallel and pipe-
lined join algorithms described in chapter 6. Next, we would design parallel algorithms

for LFP evaluation using the above join strategies, data flow and pipelining techniques,
and semi-naive evaluation. Finally, we would design a compiler that compiles Horn N

clause queries to relational algebra augmented with a general least fixed point operator
and that uses the generalized magic sets strategy for restricting the search space to the
relevant base relation tuples.

Chapter 9 describes a data/knowledge base management testbed that we designed
and implemented on top of a commercial relational database system. The testbed is
intended to serve as both a demonstration and performance measurement and evalua-
tion platform. As a demonstration platform, the testbed illustrates the motivation and
basic functionality of a D/KBMS, the components of a D/KBMS architecture, alterna-
tive implementations of these components and their relative tradeoffs, and the factors
contributing to D/KB query compilation and execution time. As a performance meas-

urement and evaluation platform, the testbed allows us to make quantitative perfor-
mance measurements and to study system performance sensitivity and behavior with
respect to several parameters.

Chapter 10 describes the VLPDF demonstration plan. The demonstration consists
of three experiments designed to demonstrate the motivation and functionality of a
D/KBMS and the components of a D/KBMS architecture.

Chapter 11 describes several experiments designed to quantitatively measure
D/KBMS performance and to understand D/KBMS performance sensitivity and
behavior with respect to various system parameters. The basic motivation for doing
these experiments is to justify the D/KBMS architecture specification methodology
described in chapter 8. That is, to show that this methodology can indeed be used to e%

design high performance D/KBMSs. The chapter describes D/KBMS performance

, -0 'Iwo
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measures, system parameters affecting these measures, test results, analysis of theseV

results, and the conclusions drawn from them.

Chapter 12 summarizes the key conclusions from this work and indicates several0
directions for future work.
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CHAPTER 2

Application Interface -

The choice of an application interface language for a D/KBMS is a difficult one.
No existing language is uniformly superior to all others with respect to our require-
ments. We have chosen PARLOG, a parallel logic-based language developed by Clark
and Gregory [Clar86]. We believe that PARLOG represents the best choice among
existing languages. Its principal weaknesses are limited data structuring capabilities
and possible inefficiencies in implementing object-oriented knowledge representation.
However, it is superior to other languages in many respects. In particular, it permits a
high degree of parallelism in both procedural computation and database access.

The chapter is organized as follows. Section 2.1 lists our requirements for an appli-
cation interfa..e language. Section 2.2 discusses the three language classes considered:
imperative, functional, and logic, and justifies our preference for logic-based languages.
Section 2.3 compares alternative logic-based languages and justifies our choice of PAR-
LOG. Section 2.4 reviews PARLOG with respect to the original requirements. Section
2.5 describes PARLOG in some detail.

2.1. Language Requirements

We have identified three major requirements for the application interface language. .', *\ "

The language must

" be amenable to large-scale parallelism,

* be a suitable base for implementing an expert system shell, and

" support efficient nonprocedural database access.

The following sections explain these requirements. • . % _

2.1.1. Large-Scale Parallelism •

The language must be amenable to parallel execution. Here, we are looking for
large-scale parallelism, where the degree of parallelism possible is proportional to the
volume of data being processed. Such parallelism is currently exploited in multiproces-
sor relational database machines such as the Teradata DBC-1012 [Tera83]. A language
that permits only small-scale parallelism, e.g. pipelined execution, is of less interest. We .--
believe that large-scale parallelism is essential to future C3I applications. It must be
possible to scale the D/KBMS architecture to the size of the problem being tackled;
applications written in the language should not require modification to take advantage
of an expanded D/KBMS system configuration.

1
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% ;.e
2.1.2. Base for Expert System Shell

Advanced C I information management applications must perform many of the
knowledge-based activities associated with expert systems: interpretation, diagnosis, S

monitoring, prediction, and planning [Stef82]. Therefore we expect that these applica-
tions will require the full range of facilities provided by expert system shells such as
KEE, ART, and LOOPS. These facilities include:

forward chaining (data-driven reasoning)
backward chaining (goal-driven reasoning)

procedural computation
object-oriented knowledge representation
evidential reasoning

models of time and hypothetical worlds
belief maintenance
nonmonotonic reasoning
explanation facilities

Forward chaining is a rule-based inference mechanism in which the rules are used
in a forward direction, from prerequisites to conclusion or action, to derive new infor-
mation or a new state from existing information or the current state. OPS5 [Forg8l is
an example of a forward chaining language. Forward chaining is also called data-driven
reasoning because it accepts new information and derives all consequences of this infor-
mation. In the C31 domain, forward chaining is useful in applications that monitor the
current state of the world for significant events that may require a response.

Backward chaining is a rule-based mechanism in which rules are used backwards,
from conclusion or action to prerequisites, to determine whether a given statement or
goal can be supported by existing information. Backward chaining is also called goal-

driven reasoning. Prolog [Cloc84] is the best-known backward chaining language.

Procedural computation is prescriptive computation of results from arguments, as
found in languages such as Pascal and LISP.

Object-oriented knowledge representation models real world objects and concepts as
objects in the Smalitalk sense, i.e., combinations of data and procedures to operate on
the data. Frames [Barr8l] are a form of object-oriented knowledge representation. An-
object's data can be accessed only via its procedures, which are invoked by "sending the
object a message." Different objects can respond to the same message in their own way,
according to their associated procedures. Objects can be combined into larger objects
in an aggregation hierarchy. An inheritance hierarchy can also be defined among
objects, so that an object can inherit by default the properties (procedures or data) of
an object higher on the hierarchy. An object-oriented knowledge representation pro-
vides a concise way of modeling many real world situations.

Evidential reasoning is a form of reasoning in which hypotheses have associated
probabilities or certainty factors. Mycin [Shor76], an expert system for diagnosing and
treating infectious diseases, employs probabilistic reasoning. Evidential reasoning can
be applied to diagnostic and planning tasks in the C3I domain as well.

fo e Ir W I
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Models of time and hypothetical worlds refer to the ability to model not just the

current state of the world, but the sequence of states that constitutes the past, and pos-

sibly one or more hypothetical sequences of future states. Each state in the sequence is

an incremental modification of the previous one, typically representing the addition of a

new fact or assumption. Hypothetical worlds can be used to explore alternative stra-

tegies in a planning activity. tmN.

Belief maintenance is a facility that can be built into a logic-based inference system

to record dependencies among propositions, detect inconsistencies among them, and per-

mit retraction of propositions. , ,.

Nonmonotonic reasoning is a reasoning system in which a default assumption about

an object or situation can be made in the absence of specific information. This assump-

tion can later be overridden when additional information becomes available. Retraction •

of the assumption requires retraction of any conclusions deduced from the assumption,

using some form of belief maintenance.

An explanation facility is a mechanism by which an inference system displays how

it proved or failed to prove a particular conclusion, tracing the conclusion back via

inference rules to base facts.

The application interface language need not support these facilities directly. How-

ever, it should be possible to implement them reasonably efficiently in the language. B..

2.1.3. Support for Nonprocedural Database Access

Most expert systems today use a relatively small amount of data that can be stored

entirely in main memory. Advanced C3 I applications will have large data and

knowledge bases, necessitating an underlying database management system. Therefore, "

the language must support nonprocedural retrieval and update of stored data, as in a

relational DBMS, and must permit efficient execution of traditional relational queries. S

2.2. Alternative Language Classes

The candidate languages can be divided into three major classes: imperative, func-

tional, and logic. The imperative languages are characterized by sequences of com- 00

mands or statements that make incremental changes to a global program state con- -.-,F W

tained in a set of variables. Examples of imperative languages are traditional program-

ming languages such as FORTRAN and Pascal, and more modern object-based

languages such as Smalitalk and CLU.

Programs in functional languages are essentially definitions and applications of

functions. There is no notion of operations on named objects, and therefore there are

no side effects. Examples of functional languages include pure LISP, FP, and dataflow

languages such as Val and Id. LISP, as it is generally used today in expert systems and -

other applications, is an imperative rather than a functional language; great use is made

of side effects.

Programs in most logic programming languages are composed of Horn clauses,

which have the form

,,,.% %B
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head :- body.. 5,
where head is zero or one atomic formulas (predicates with arguments supplied) and
body is a conjunction of zero or more atomic formulas. All arguments that are vari- 0
ables are implicitly universally quantified. The logical interpretation of a Horn clause is M.,

that the body implies the head. For example, the Horn clause

a(X,Y) :- b(X,Z), c(Z,Y).

means that for all X, Y, and Z, b(X,Z) and c(Z,Y) implies a(X,Y). (We use the Pro-
log convention that constants and predicate names begin with lower case letters, while
variables begin with capital letters.)

An empty Horn clause body is considered true. Therefore a Horn clause with an
empty body states that the head is always true. Such a Horn clause is called a fact."'A.
Facts can be written with no implication sign, e.g., 0

parent(a ,b).

means that a is the parent of b.

An empty Horn clause head is considered false. Therefore a Horn clause with an
empty head states that the conjunction of atomic formulas in the clause's body is false.
This refutation of the body can be used to initiate a resolution-based proof that the ', %
body is in fact true [Cloc84]. In the course of this proof, all variable instantiations that
make the body true can be discovered. A Horn clause with no head is therefore called a
goal or query.

Horn clauses do have limited expressiveness: it is difficult to express indefinite
information such as "object X is either an airplane or a missile." However, permitting
the expression of indefinite information makes proof procedures much less efficient.

Logic languages also give a procedural interpretation to a Horn clause: if the head .., ,. S

is a goal, invoke the atomic formulas of the body as subgoals. Logic languages differ

from functional languages in that the predicates can (generally) be used in more than
one direction. The following are all acceptable goals:

I,"-~~~ pare nt~a b ." "
parent(X,b).

parent(a,Y).

parent(X,Y).

Predicates that can be used in more than one direction are called multi-use programs.
In contrast, imperative and functional languages compute in only one direction, from .

argument to result. .

Each language class is superior to each other class with respect to at least one of

our requirements. Imperative languages, particularly LISP, form the basis of current
expert system shells, and therefore demonstrably support the facilities listed earlier. •
Expert system shells based on logic or functional languages, e.g. APES [Hamm82], are
not nearly as highly developed. Furthermore, many imperative languages have been

%. %

% %dN% %%
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extended with interfaces to database management systems. The differences between the
common imperative languages and relational data manipulation languages make these
interfaces awkward and inefficient, however.

Current imperative languages discourage exploitation of parallelism. They typi- .
cally require explicit specification of concurrent processes, and hence make it difficult to .
achieve parallelism proportional to the amount of data being processed. In contrast,
parallelism is often implicit in functional and logic languages. Furthermore, imperative
languages often permit uncontrolled side effects that preclude partitioning a problem
into independent subcomputations. We view exploitation of parallelism as the essence
of the research to be done. Therefore, we have excluded imperative languages from
consideration as the parallel inference language. ..

This is not to say that large-scale parallelism cannot be achieved using imperative
languages. Object-oriented principles can be used to limit side effects and therefore pro-
mote parallelism. Parallel object-oriented languages are a current research area.

Functional languages have implicit parallelism in the concurrent evaluation of , 10.
arguments to a function. The U-Interpreter for the Id language also exhibits large-scale
parallelism [Arvi82]. However, the lack of side effects in functional languages makes it
impossible to do such basic operations as update a database. For example, the FQL
language [Bune82] is a functional language designed for querying databases. It models
stored data as functions, and has a syntax similar to FP. However, it has no update
capability. For this reason, we have eliminated functional languages as unsuitable to
database-oriented applications.

This leaves logic languages. Logic languages provide both nonprocedural database %

access and the opportunity for large-scale parallelism.

A logic language can provide the functionality of a relational database system in
the following way. Relations can be represented as sets of facts. Queries are simply 0
goals. Views (derived relations) can be defined using ordinary Horn clauses, as illus-
trated below. Updates can be accomplished using built-in predicates that have the side
effect of adding or deleting clauses. It is easy to show that a logic language with the
semantics defined above is relationally complete.

Three forms of parallelism have been identified for logic languages: and-
parallelism, stream parallelism, and or-parallelism. And-parallelism is the parallel reso- . -' .
lution of different literals in the body of a Horn clause. This re, ,lution must be coordi-
nated when the literals share logic variables. Stream parallelism is a form of and- "."
parallelism involving parallel binding and use of a structured value, typically a list.
Or-parallelism is parallel pursuit of alternative proofs of a literal.

And- and or-parallelism have analogs in relational database terms. Consider a .
database with relations '.

emp(Eno, Ename, Date_of-birth, Dno)

dept(Dno, Dname. Location)

The SQL query to find the names of all employees in the Sales department is

A '--. .
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SELECT Ename FROM emp, dept
WHTERE emp.Dno = dept.Dno AND dept.Dname = "SALES"

A relational algebra tree to compute this query is shown in Figure 2.1.

SELECT ENAME FROM EMP. DEPT

WHERE EMP. DNO - DEPT. ONO AND OEFT ONAME - 'SALES'

RESULT

PROJECT ENAME

JOIN ONO -ONO

OJECT ENAME. NO) PROJECT ONO

SELECT DNAME - 'SALES,

EMP DEPT

Figure 2.1. Relational Algebra Tree

The equivalent query in a logic language would be

emp-dept(Eno, Ename, Dname) :- emp(Eno, Ename, _, Dno),

dept(Dno, Dname, ..

emp-dept(_, emp, 'SALES').

(Here, we have defined the emp-dept view before issuing the query.) And-parallelism in
the resolution of the first clause's body is realized by concurrent evaluation of the two
independent branches of the relational algebra tree, with the join operation implement-
ing the coordination of the shared logic variable Dno. Or-parallelism is realized by pro-
cessing multiple tuples at a time in the select, project, and join operations. Stream
parallelism appears to have no analog in relational database systems because variables
are bound to unstructured values such as numbers and strings, not lists or other struc-
tures that could be used as they are generated.

%0
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2.3. Alternative Logic Languages

We decided to cohcentrate on logic languages because they provide nonprocedural
database access and the potential for large-scale parallelism. We considered three logic S
languages: Prolog, Concurrent Prolog [Shap83], and PARLOG.

The semantics of Prolog are defined in terms of a sequential execution model. In
this model, the order of the clauses in a Prolog "database" is significant; the database is
scanned sequentially from top to bottom when attempting to satisfy a goal. Within a
clause, the atomic formulas in the body are satisfied left to right in order. Finally, the
cut operator, when executed, prevents searching for later clauses to satisfy the goal that
the current clause is attempting to satisfy.

This top-down, left-right execution model does not exploit and-, or-, or stream
parallelism. Referring to the emp-dept query above, the top-down search rule prevents
an or-parallel search of the dept tuples to find the "SALES" department. It also
prevents an and-parallel execution of the projection of emp and selection of dept,
should this be the chosen evaluation strategy.

The Prolog execution model dictates a particularly inefficient execution of queries
involving joins, such as the emp-dept query shown above. The join between the emp 0
and dept relations is executed essentially as a nested loop join with emp as the outer
relation and dept as the inner relation. The execution time of this join is proportional
to the product of the relation sizes. Joins can often be performed much more efficiently
using a sort-merge or hash-based algorithm [Vald84]. The inefficiency of the nested loop
join relative to other algorithms increases with the size of the relations. Even if a
nested loop join is to be used, using the smaller relation (presumably dept in this case)
as the outer relation results in faster execution when the relation tuples are stored on
disk.

It is possible to analyze Prolog programs to detect instances where a clever execu- S
tion strategy, such as an efficient join or parallel execution of clauses, produces the same
result as the standard execution model. An optimizing Prolog compiler could perform
this analysis and choose the clever strategy where possible. However, we believe that
optimizing a sequential language for parallel execution is inferior to starting with a
language designed for parallel execution in the first place, assuming that such a 0
language is available. ".

A further problem with Prolog is that it does not always provide the natural fixed
point semantics for execution of a set of Horn clauses. This occurs when the Horn
clauses are recursive. For instance, consider the following definition of the ancestor
relation:

ancestor(X,Y) :- parent(X,Y).

ancestor(X,Y) :- ancestor(X,Z), parent(Z, Y).

The definition of ancestor is left-recursive; application of Prolog execution rules leads to
an infinite loop. This is a problem with Prolog semantics and not with any implemen-
tation of those semantics: a clever execution strategy does not alleviate the problem.

. I
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Having eliminated Prolog, we examined two variants of Prolog designed for parallel
execution: Concurrent Prolog and PARLOG. Concurrent Prolog presents a third
interpretation of logic programs in addition to the declarative and procedural interpre-
tations: atomic formulas can be executed as processes. A Horn clause represents an
expansion of a process (the predicate in the consequent) into a set of processes (the
predicates in the body.) Processes communicate with each other via shared logic vari-
ables. This is clear and-parallelism. Stream parallelism is realized when one process
binds a logic variable to a structured value (typically a list), producing the structure as
another process consumes it. A synchronization mechanism called read-only variables is
used to delay the consumer process when it attempts to reference a variable that the
producer process has not yet bound. These concepts appeared in an earlier logic
language, the "Relational Language" [Clar8l].

In this interpretation of logic programs, there is no generation of alternative proofs
for a goal via or-parallelism or backtracking. Concurrent Prolog checks multiple clauses
in parallel for applicability, and then nondeterministically chooses one of them. A com-
mon example is nondeterministic merge [Shap83]. The merge relation interleaves its
first two arguments nondeterministically to produce the third argument:

merge([X: Xs],Ys,[X Zsj) :- merge(Xs?,Ys?,Zs).

merge(Xs,[Y I YsJ,[YZsJ) :-merge(Xs?,Ys?,Zs).

merge (Xs ,[,Xs5).

merge (11, Ys, IYS)

(The question marks indicate read-only variables.) Concurrent Prolog has no back-
tracking: once the choice is made between the first two clauses, the choice is never
revisited. The merge relation produces some merging of its input arguments, not all of

1nus, the semantics of Concurrent Prolog, while appropriate for the construction
oncurrent systems, are quite different from fixpoint semantics and therefore inap-

piupria- for database retrieval.

PARLOG, in contrast, defines two different kinds of relations (predicates): single-
solution relations and all-solutions relations. Single-solution relations are executed using
the parallel process semantics similar to those of Concurrent Prolog. However, their S
semantics have been defined to eliminate runtime management of multiple binding
environments. Each single-solution relation must have a mode declaration that indicates
which of the relation's arguments are inputs and which are outputs. For example, the
following relation computes the sum of the elements on a list:

mode sum(List? ,Sum ).

sum "-"O"

-. sum([X IXsI,S1) :- sum(Xs,S), SI is S + X.

Single solution relations are thus basically functions that compute results from argu- S
ments. They provide a procedural computation facility similar to LISP. It is possible, ,A 0m
though awkward, to specify single solution relations that compute in more than one

:% ".%
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direction. (PARLOG does provide nondeterminism and logic variables, both of which . '
are absent in LISP.)

All-solutions relations are defined using pure Horn clauses that can be executed
with fixpoint semantics. All solutions relations have no mode declarations, and can pro-
vide nonprocedural database access as illustrated earlier.

The interface between the two kinds of relations is provided by the "set" construc-
tor, which constructs a list of the results of an all-solutions relation query. This list can
then be manipulated by single-solution relations. For example, the following clauses
computes the sum of the ages of Sam's children.

sum(Ages, Number).

set(Ages, A, (parent(Sam, X), age(X,A))).

Here, Ages is the list generated by the set constructor. It is a list of terms A, where A •
must satisfy parent(Sam,X) and age(X,A) for some child X. The combination of capa-
bilities provided by single- and all-solutions relations makes PARLOG attractive for
complete applications. Section 2.6 gives a more complete description of PARLOG.

2.4. PARLOG and the Language Requirements

Let us review PARLOG with respect to the language requirements stated earlier.

2.4.1. Large-Scale Parallelism

Large-scale parallelism in single-solution relations is hindered by the lack of an
array or similar direct-access data structure in PARLOG. (Other logic languages have 1,

the same limitation.) Data that might be organized as an array in a conventional
language must be organized as a list (or perhaps as a tree, for faster access) in a logic
language. In order to perform some operation on all elements of a list, the list must be S
traversed element by element, spawning a process to perform the desired operation on
each element, as in the sum example above. This list traversal time, which is linear in
the number of elements, may dominate the total processing time. Organizing the data
as a tree can reduce the traversal time to be logarithmic in the amount of data, assum- ". ..
ing enough processors.

Large-scale parallelism can be achieved in all-solutions relations using or-parallelism
in a multiprocessor architecture. For instance, the Teradata database machine parti- "" "
tions the tuples of each relation across an array of processor/disk pairs [Tera83]. The
common relational operations can then be executed in parallel in these partitions. An "
implementation of all-solutions relations could make use of similar techniques. •

2.4.2. Base for Expert System Shell
Forward chaining: Existing logic-based languages, including PARLOG, have no built-in
forward chaining facility. However, forward chaining can be implemented on top of
logic languages [Subr85j.

N" %1
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Backward chaining: PARLOG, like Prolog, provides backward chaining for goal-
directed reasoning. When multiple alternatives must be explored to find a proof for a '

goal (the usual case), all-solutions relations should be used.

Procedural computation: PARLOG's single-solution relations can be used as functions,
since each argument of a relation must be declared as input or output. These declara-
tions permit more efficient implementation of procedural computation than would be
the possible in Prolog. However, PARLOG lacks structured data types, such as arrays
and records, that are found in conventional programming languages, though they could
be added. In this respect, PARLOG is probably no worse than early dialects of LISP.
Each of these features can be mimicked in PARLOG. For instance, arrays can be
implemented (inefficiently) using relations. However, the lack of direct support makes
PARLOG a poor vehicle for applications that make heavy use of them. To overcome
this problem, an interface between PARLOG and the C language has already been
developed to support multiprocessing for numeric applications [Butl85].

Object-oriented knowledge representation: Shapiro and Takeuchi have shown that
object-oriented programming can be performed in Concurrent Prolog; similar techniques
work for PARLOG, using single-solution relations. Each object is represented by a per-
petual process that receives a stream of messages as input and generates a stream of
messages as output. The state of the object is maintained in logic variables local to the
process. While this implementation may be functionally adequate, the cost of dedicat-
ing a process to each object may be excessive. The execution model for PARLOG
single-solution relations presented in the next chapter is designed to minimize the over-
head of process creation and termination. It may also be possible to develop compile- '-

time techniques to reduce this overhead.

Evidential reasoning, belief maintenance, nonmonotonic reasoning, and explanation facil- "",. 6

ity: PARLOG provides no direct support for these facilities. However, their implemen- "1A 0
tation in PARLOG appears relatively straightforward [Subr85].

2.4.3. Support for Nonprocedural Database Access

As stated earlier, PARLOG provides a relationally complete nonprocedural
language using its all-solutions relations. It goes beyond relational completeness by pro-
viding recursive queries. Aggregate functions can be implemented easily using a combi-
nation of single- and all-solutions relations, as illustrated in the program for summing
the ages of Sam's children.

To summarize, PARLOG is not uniformly superior to all other languages with
respect to our requirements. In many cases, such as procedural computation and
object-oriented knowledge representation, other languages are clearly superior to PAR-
LOG. However, we are not aware of another language that meets the entire set of 0 P
requirements better than PARLOG. Parallel languages for symbolic computation are
an active research area, and we expect better languages to emerge in the next few years.

-P --!
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2.5. An Overview of PARLOG

In this section, we provide an overview of PARLOG. For a more detailed exposi-
tion, the reader is referred to [Greg85], and [Clar86]. As mentioned in section 2.3,
PARLOG features two kinds of relations: single-solution relations, and all-solutions rela-
tions. All-solutions relations can appear in the body of single-solution relations. The .% It
evaluation semantics for these relations are completely different. Indeed, they can be
viewed as two different languages - all-solutions relations constituting a query language
and single-solution reiations a parallel applications programming language. An all-
solutions relation query can be evaluated by computing the !east fixed point of the Horn
clauses defining this relation. Thus, PARLOG can be considered as having a Horn
clause query language embedded within it.

Single-solution relations compute just a single solution to a query. They provide a
procedural computation facility similar, but not identical, to that provided by func- 0
tional programming languages. The difference arises due to the logical variable, which is
basically a variable in a logic programming language. However, terms bound to such
variables may be only partially instantiated, i.e., they may contain variables. If such
terms appear in input argument positions of relation calls, the call may bind the unin-
stantiated variables. This is in contrast to functional programming languages, where
arguments of a function call are fully instantiated. Also, in functional programming
languages, evaluation of a function cannot produce partially instantiated data struc-
tures. All-solutions relations compute all the solutions to a query. Therefore, they are
suitable for non-procedural access to databases. We describe the two halves of the
language below.

2.5.1. Single-solution Relations

A single-solution relation consists of a mode declaration, and a set of guarded
clauses. A mode declaration identifies arguments of a relation as being inputs or out-
puts. For example, the mode declaration R(?, ") specifies that the first argument of
relation R is an input, while its second argument is an output.

A guarded clause is a clause of the form:

head - guard : body

where head is a literal, and where guard and body are possibly empty conjunctions of
literals. If the guard is empty, the operator ":" is not present. A literal is a tuple .,-,..,

prefixed by a relation name. An example of a guarded clause is the following:

R(t, .. )t) - GI(pl, pk), " G (q ,  " " q)

PARLOG features both, sequential and parallel conjunctions. An example is the '.
following.

(R1 I (R 2 , R 3 )), R 4, R 5

The sequential conjunction operator "&" indicates that literals following it are to be

% % %%or~e'I 0
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evaluated only after all previous literals have succeeded. On the other hand, the paral-
lel conjunction operator "," indicates that a "," separated group of literals may be

evaluated in parallel. Thus, in the example above, R2 and R3 may be evaluated in

parallel, but only after R, has been successfully evaluated. Thus, the "&" and ","

operators have a control significance-they dictate the order in which literals in a con-

junction are to be evaluated.

Mode declarations impose a directionality on logic programs. If a particular argu-
ment position has a mode annotation "?", then a non-variable term, say [a I b], appear-
ing in that argument position in the head of a clause can be used only for input match-

ing. That is, the call argument for that position should be a substitution instance of
[a Ib].

Similarly, if a particular argument position has a mode annotation "", then the
call argument for that position must an uninstantiated variable, else we have run-time

error. A non-variable term appearing in that argument position in the head of clause
can be used only for output matching.

The principal advantage of mode declarations is that most of the unification in

PARLOG can be compiled. The details are explained in [Greg85J.

If a call argument is instantiated enough to be able to determine that it is not a
substitution instance of a non-variable term appearing in an input argument position in
the head of a clause, the attempt to use that clause is aborted. However, if the call

argument is not yet instantiated enough to be able to make a decision, the attempt to
use the clause is suspended.

A clause is called a candidate clause for a relation call if the head of the clause

input matches with the call on all the input arguments, and if it has a successfully ter-
minating guard. A clause is called a non-candidate clause if either or both these condi-
tions are false. As described before, input matching may cause suspension. In this case,
the clause cannot yet be classified as a non-candidate clause.

The set of clauses defining a relation may be separated either by a ";" operator, or

a operator. For example, a relation R may be defined by a set of five clauses, com-
posed like so: ,-,o

(C1 ; (C ' C4 -C

The "; and "." operators control the order in which the set of clauses are to be tried in
order to find a candidate clause. A ";" indicates that clauses following it are to be tried
only if all of the preceding clauses prove to be non-candidate clauses. However, all
clauses in a "." separated group of clauses may be tried in parallel. Thus, in the exam-

ple above, the clauses C 2 and C3 may be tried in parallel, but only after C, proves to
be a non-candidate clause. Thus, just like the "&" and "," operators, the ";" and" 2 ".

operators have a control significance-they dictate how a solution to a query is to be
found.

The evaluation of a relation call starts out with an attempt to find a candidate

clause, in the order specified by the ";" and " operators. The implementation is free



%,.

-21-

to choose any candidate clause. When it picks a candidate clause, it is said to commit

to that clause, i.e. the body of this clause is evaluated to find one solution to the call.
There is no backtracking on this choice. This is referred to as committed choice non-
determinism. The operator, ":", separating the guard and body of a guarded clause, is
referred to as the commit operator.

Guards of clauses being tried during the search for a candidate clause, are not
allowed to bind variables in the call until commitment. Guards that don't bind vari-
ables in the call are called safe guards. PARLOG enjoys the advantage that the safety
of guards can be checked at compile time-a property that is significantly conducive to
efficient implementation. The compile time safety check obviates the need to maintain,
at run-time, multiple environments for the different guard evaluations and export them
upon commitment, as is the case in Concurrent Prolog [Shap83].

Binding of call variables is made, in the form of output matching, upon commit-
ment. Since there is no backtracking on the choice of the candidate clause, bindings
made to variables never need be retracted. Thus, variables in PARLOG have the
single-assignment property.

We now describe the distinguishing attribute of single-solution relations, viz., 0
stream-AND parallelism. This form of parallelism arises when there are multiple rela-
tion calls working concurrently on evaluating the same solution. They communicate by
passing bindings through shared variables. It is to be contrasted with all-solutions
AND parallelism, which arises when multiple solutions to a query are available.
Stream-AND parallelism requires that no more than one solution to a call be computed.
If such is the case, the solution can be generated incrementally, via a series of approxi-
mations. If an approximate solution is never retracted, it can be communicated immedi-
ately to other calls, thus making stream-AND parallelism easy to implement. Single-
solution relations in PARLOG feature this form of parallelism since shared variables in
such relations have the single-assignment property, and since only one solution to such -

relations is computed (due to committed choice non-determinism). Stream-AND paral-
lelism is typically used in the construction of a list-different portions of it would be
instantiated by different relation calls working concurrently. .IPIr

Object oriented programming is possible using single-solution PARLOG relations.
This is because, unlike functions, such relations can bind variables in their input argu-
ment terms. Whenever a single-solution relation does this, a back communication to the
calling relation occurs. This mechanism is the basis for object-oriented programming in .
PARLOG: objects are implemented as relations, a message is a partially bound term %
given as input to a relation, and a reply is sent by completing the term binding. •

Like other logic programming languages, PARLOG features the metacall, which
allows data to be executed as programs.

Any PARLOG program can be automatically translated into a program in a lower
level language, called Kernel-PARLOG. It is the first step in the compilation of PAR-
LOG programs. See [Greg851 for the details. We have used Kernel-PARLOG as the
basis of our work in parallel inference architectures.

-- - *,-' ~ '% 94 *%~s. ~ *4
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Kernel-PARLOG does not have any mode declarations. Instead, the mode declara-
tions in PARLOG programs, are used to compile input and output matches to explicit
one way unification (<=) calls. In the input match call, nt <=v, the left argument is
a non-variable term, and the right argument is a variable. During evaluation of the
call, variables in nt are bound, so as to make nt and v syntactically identical. The call
suspends if it can proceed only when variables in v get instantiated. In the output
match call, v <= nt, v must be an uninstantiated variable at the time of the call, in
which case it is bound to nt. Otherwise, there is a run-time error.

2.5.2. All-Solutions Relations

As the name implies, all-solutions relations compute all solutions to a query. In fact
they compute a list of all the solutions. This list may be consumed by a single-solution
relation call. As discussed in section 2.3, the set constructor is the interface between
single-solutions relations and all-solutions relations. The operational semantics of the
set constructor are not specified. Thus, the PARLOG programmer may make no
assumption about the order in which the solutions are computed. This allows consider-
able flexibility in the implementation of the set constructor. One possibility is a
Prolog-style backtracking evaluation. Another possibility is to have sets of solutions
computed independently, and then doing a join operation on them. ":

2.6. Conclusion A

In this chapter, we have presented our investigation of the alternatives for the
application interface language for a D/KBMS. This language forms the basis for
developing C3I applications such as planning, monitoring, threat assessment, interpreta-
tion, etc. We identified three major requirements for this language. It must be amen-
able to large scale parallelism, be a suitable base for implementing an expert system
shell, and support efficient nonprocedural database access. Among the various impera-
tive, logic, and functional languages that we evaluated, PARLOG best met these
requirements. The next chapter describes our investigation of parallel architectures for
executing PARLOG.

0 
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CHAPTER 3

Parallel Architectures for the D/KBMS Application Interface

In this chapter, we describe our investigation of parallel architectures for executing
PARLOG, our choice for the D/KBMS application interface language. Our approach to
this problem was the following:

" Design a parallel abstract machine for PARLOG. The abstract machine is not a
physical hardware architecture. Its purpose is to lay bare all the functions that ,_
need to be performed to execute PARLOG programs as well as the data objects 0
created and manipulated by these functions.

* Develop a simulator for the parallel abstract machine. The simulator serves as an
implementation for the language. The simulator basically implements the func-
tions and the interactions between them. It serves as a tool for collecting data on
the execution behavior of the language, and analyzing this data.

* Analyze the run-time execution behavior of PARLOG programs using the simula-
tor. The analysis focuses on questions such as: How much parallelism is there? % %
What is the granularity of the parallelism? What are the communication patterns?
What operations are performed most frequently? Do they require hardware sup-
port? If so, what kind? etc. . _

" Design a suitable parallel hardware architecture (both interconnection network and
processing element) for implementing the functions, and map the abstract machine
(i.e., the functions) onto it.

This approach was motivated by the fact that while the area of parallel architec-
tures for concurrent logic programming languages enjoys vigorous activity (see
[Ito85, Mil184, Greg85, Hali84]), it is still very much a research area and that much work
still needs to be done. In particular, the run-time execution behavior of concurrent -N
logic programs needs to be studied. We believe that the chances of obtaining high per-
formance are greatly enhanced if architectural decisions are based on an analysis of the
run-time execution behavior of programs. Such an analysis will ensure that the architec-
ture is well matched to the language semantics, which in turn, is very important for k..-

high performance. .r-, h

Carrying out all the above steps is a major effort in itself. However, as part of the _ %
VLPDF effort, we completed the first two steps and briefly investigated the feasibility of .. ...

using the Connection Machine for executing PARLOG by studying the mapping of the
abstract machine onto the Connection Machine. % y

This chapter presents the results of the above work and is organized as follows.
Section 3.1 describes a parallel computational model for PARLOG to motivate the
design of tht abstract machine. Section 3.2 describes the abstract machine. Section 3.3

,,; -"
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describes our investigation of the feasibility of mapping this abstract machine onto the
Connection Machine architecture. Section 3.4 summarizes our conclusions from this
part of the VLPDF investigations.

3.1. A Parallel Computational Model for PARLOG

In this section, we describe a parallel computational model for PARLOG in order
to motivate the design of the abstract machine. Specifically, we

" describe the data objects created and manipulated during execution of PARLOG
programs,

* describe how PARLOG programs are represented, and

* describe what operations need to be performed in order to execute such programs.

The description of data objects includes: -

* a description of the different types of data, both scalar and structured, featured in
PARLOG;

* a description of how data objects are represented;

* a description of how they will be addressed-globally addressed in a shared memory
system, or locally addressed in a loosely-coupled system; and

" a description of how data objects are aggregated to form ever more complex
objects.

The description of operations includes: S

* a description of the PARLOG control structures,

" a description of how these operations are scheduled for execution,

" a description of how these operations are synchronized, and

* a description of how data objects are created.

3.1.1. PARLOG Control Structures

There are basically four control structures in PARLOG: sequential conjunction, '.--.'
parallel conjunction, sequential search, and parallel search. The abstract AND/OR pro-
cess model for PARLOG proposed by Gregory in chapter 6 of his dissertation [Greg85] "

is an ideal vehicle for understanding the control structures of PARLOG. It overcomes
the weakness of the AND/OR tree representation-a graphical representation that cap-
tures the different evaluation paths arising during evaluation of a query in a Horn %
clause program-viz., lack of control information, i.e., information about how a solution
to a query is found.

In this model, a process is created for: evaluating user-defined literals, non-
compilable primitives, and conjunctions of literals; and for searching for a candidate
clause during evaluation of a literal. The state of a PARLOG evaluation is represented ON A
by a process structure called the AND/OR process tree. The nodes in this tree are
processes. The leaf processes are either runnable or suspended on some variable. The
non-leaf processes are not runnable. They await results from their child processes. There

I -
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are two types of non-leaf processes: AND processes and OR processes. A process
assumes a type AND if it is to evaluate a conjunction of literals. A conjunction can be
a sequential conjunction or a parallel conjunction. A conjunction may consist of just a
single literal. A process assumes a type OR if it is to search for a candidate clause
among the clauses defining a relation.

The evaluation of a literal R starts out by searching for a candidate clause. If a
sequential group of clauses, i.e., ";" separated clauses, is to be searched, the process
evaluating the literal initially spawns a child process to evaluate the guard of the first
clause. It then becomes an OR process. Next, it sets its continuation, which for an OR
process is the code to be executed if the guard that is currently being evaluated fails.
The guards of the other clauses are also evaluated in the same child process. However,
for the other clauses, a guard is evaluated only if the guard of the preceding clause fails.
For example, if a relation R is defined as follows:

R-G : B1 ;

R .G 2 B 2;

R B3.
the process evaluating the literal R spawns a process to evaluate G . It then becomes
an OR process. Finally, it sets its continuation to the code that will spawn a process
for evaluating G2.

If a parallel group of clauses, i.e., "." separated clauses, is to be searched, the pro-
cess evaluating the literal spawns child processes for evaluating the guards of these
clauses. These processes are executed in parallel. The spawning process becomes an OR

% '%

process. It then sets its continuation to the code to execute in case all the spawned
processes fail. For example. if a relation R is defined as follows:

R - G1 : B 1. .,1

R -G :B
2 2' "% , % -VeR -B

B- 3.

the process evaluating R spawns two processes, one for evaluating the guard G, and
the other for evaluating the guard G2.These two processes are evaluated in parallel.
The continuation of the spawning process is then set to the code that will spawn a pro-
cess for evaluating the body B3 .

When a process evaluating a guard succeeds, its parent will commit to the clause
containing the guard, in case it hasn't committed to any other clause. The action of
committment is manifested by the parent process proceeding to evaluate the body of the
clause committed to, and terminating the processes evaluating the other guards. if any. f,.
Thus, in the last example above, if G 2 succeeds before G, the parent process will
proceed by evaluating B , and terminating G1.

If a sequential conjunction of literals, i.e., "&" separated literals, is to be evaluated,
the process evaluating the conjunction checks if the conjunction begins with a sequence

A~~ w. .No
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of primitive instructions (see chapter 5 of [Greg85]). If so, the primitive instructions are ..-%
executed within the process evaluating the conjunction. If, however, the sequential
conjunction begins with a user-defined relation call, or a non-compilable primitive, the
process initially spawns a child process to evaluate the first literal in the conjunction. It OW
then becomes an AND process. Next, it sets its continuation to the code to execute if
the literal being currently evaluated, succeeds. For example, the process evaluating the
conjunction:

A 8 B _:

first spawns a process for evaluating the literal A. It then becomes an AND process.
Finally, it sets its continuation to the code that will spawn a process for evaluating the -
literal B.

If a parallel conjunction of literals, i.e., "," separated literals, is to be evaluated,

the process evaluating the conjunction spawns child processes to evaluate the literals in
the conjunction. These processes will be evaluated in parallel. The spawning process
becomes an AND process. It then sets its continuation to the code to execute if all the
child processes succeed. For example, the process evaluating the conjunction

(A, B) & C

spawns two processes, one for evaluating the literal A, and the other for evaluating the

literal B. The continuation of the spawning process is set to the code that will spawn a
process to evaluate the literal C.

If a parallel conjunction occurs at the end of a clause body, the tail forking optim,- .
zation is applicable. This optimization is a generalization of the tail recursion optimiza-
tion applicable to sequential logic programs. Consider the following:

R- P1 , P2 .

P B&B8...& (P 1 1 P1 )

After successful evaluation of the sequential conjunction B 8 B 2 8 ... Bn, the
AND process that evaluated this conjunction can proceed by spawning two child

processes-one for evaluating the literal Pil, and the other for evaluating the literal P 12.

However, there is no need to increase the depth of the process tree. Since the parent of •
this process, i.e. the process evaluating the conjunction (P,, P2 ), is already an AND
process, the child processes for evaluating P1 1 and P 1 2 can be attached as children of

that process. There would then be an AND process evaluating the conjunction
(P 1 ' P'

The tail forking optimization is very import, it since it prevents a steady increase
in the depth of the process tree during a long evbluation. Such an increase would tend
to occur, for example, in the evaluation of recursive calls.

It is useful to observe that an AND process is created even when a conjunction
consisting of just a single literal is to be evaluated. Likewise, an OR process is created S
to control the search for a candidate clause even when there is just one clause defining a

relation.

.. .-.-. ..'.-....Ir........... ..
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We will now trace the evaluation of a PARLOG query, say :A, B. The evaluation
proceeds as though the query was :Q, with a user-defined relation Q, defined by
Q - A, B. A process, say P, is created to evaluate the conjunction consisting of the ___

single literal Q. Since P, is to evaluate a conjunction, it becomes an AND process.
Since Q is assuried to be a user-defined relation, P1 forks, creating a child process, say
P to evaluate the literal Q. P 2 becomes an OR process in order to search for a candi-
date clause. Since there is only one clause defining Q and its guard is empty, P 2 com-

mits to that clause. That is P2 becomes an AND process evaluating the conjunction of
literals A and B. P then forks, creating two processes to evaluate the literals A and
B. These latter processes become OR processes in order to search for a candidate
clause. After committment, they become AND processes evaluating the conjunction of
body literals. The evaluation of the query continues in this manner until the AND pro-
cess at the root of the AND/OR process tree, viz., P, either succeeds or fails.

Since the control structures change the state of the AND/OR process tree, they can
be regarded as the control instructions of the abstract AND/OR process model. In " N*:%

order to support PARLOG's control structures, three additional control instructions are
needed: success, commit, and fail. These are described in the following paragraphs.

Success corresponds to the successful evaluation of a single literal or a conjunction
of literals. The parent of a succeeding process, i.e., one evaluating either a single literal
or a conjunction of literals, always has a process type of AND. If the succeeding process
has no siblings, it is disposed of and its parent resumes execution at its continuation. If
there is no continuation, the parent process reports success to its parent. If the succeed-
ing process has siblings, it is simply disposed of.

Commit corresponds to the :" operator of PARLOG. We have already discussed
the commit operation when we discussed the evaluation of a conjunction of guard JA

literals.

Fail corresponds to the FAIL instruction of PARLOG as well as failure in the 0
evaluation of any literal. The effect of failure depends upon the type of the parent pro-
cess. %

If the parent of a failing process is an OR process, the failing process is a process ON
evaluating a clause guard. If the failing process has no siblings, it is disposed of, and its
parent is reactivated at its continuation. If there is no continuation, the parent process
reports failure to its parent. If the failing process has siblings, it is simply disposed of.

If the parent of a failing process is an AND process, the failing process is a process
evaluating a literal in a conjunction. In this case the entire conjunction fails. The fail-
ing process and its siblings, if any, are disposed of. The parent process reports failure to
its parent. Nil

3.1.2. Data Objects and their Representation % %

Data objects in PARLOG are called terms. A term is a constant, a variable, or a
structured term. A structured term is an n-tuple, optionally prefixed by a functor. The
components of the n-tuple, in turn, are terms. An example of a structureu term is %

J. .1 1 .0V"_ %"% % % %
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F (t1 , t), ... ,I t )_ "'"

where, F is the functor. The arity of a structured term is the number of components in ',.

its tuple.

Notice that a structured term looks like a function call, the functor being the func-
tion name, and the tuple, the call arguments. Indeed, we will refer to structured terms
as structures, and the components of the tuple as the arguments of the structure.

As another point of terminology, we will refer to the memory where terms are

created during run-time as term memory; and the memory that contains the program as
clause memory.

We will now describe how constants, structures, and variables are represented.

Constants are represented as:

TCO:V type contents

type Integer, real, atom, string

contents Integer or real. Atoms and strings are also represented as

integers.

V Structures are represented as:

TSTR I functor-name arity arg - pointer

arg - pointer Pointer to the first argument of the structure. The arguments of
a structure are contiguous.

functor - name Integer, identifying the name of the structure.

arity Number of arguments in the structure.

Variables are represented as follows:
.'4,

TVAR b - ub - tp 1-nl di f var :% %

b - ub - tp BOUND, if the variable appears in term memory, and it is bound

to a structure or another variable. S

UNBOUND, if the variable appears in term memory, and it is
uninstantiated.

TEMPLATE, if the variable appears in clause memory.
,% .

I - nl This field would be needed only in parallel architectures.

LOCAL, if the variable appears in term memory, is bound to .

another data object, and that data object is local, i.e., in the 5."..

same PE: if it is uninstantiated; or if it appears in clause

memory.

% % %
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NON-LOCAL, if the variable appears in term memory, is bound
to another data object, and that data object is in some other PE.

dif fvar If b-ub-tp = BOUND, this field contains the address of the
data object that the variable is bound to.

If b - ub - tp = UNBOUND, this field contains a pointer to a
data structure called a demand list, attached to the variable.
When a reference to an uninstantiated variable is made, a
demand for it is enqueued in the demand list. The enqueued
demand contains all information necessary to restart the compu-
tation that caused the reference. Should the variable get instan-
tiated to a non-variable term, the computation corresponding to N
each enqueued demand is re-scheduled for execution. Demand
lists, thus, are the mechanism we use to implement suspension.
The basic idea behind demand lists is exactly the same as I-
structures [Thom80]; however, the implementation details are
different.

b - ub - tp = TEMPLATE implies that the variable is in clause

memory. In this case, the di/ f var field contains the variable's ID
number, a number that uniquely identifies it within a clause. 0.

In PARLOG, complex data objects are aggregated by nesting structured terms. An
example of a complex data object is the term F(A(B(x, y), C(a, b)).P(q, R(s)), x). As
syntactic sugar, nested structures with functor name CONS are written in list notation. ,

Thus, [a, b] is equivalent to CONS(a, CONS(b, NIL)). Also [a b] is equivalent to
CONS(a, b), and the empty list, [], to the constant NIL. We will assume that terms
with empty functors, i.e.. just tuples, have an implicit functor name, COMMA, and
write such terms as nested structures. For example, ((a, b), c, d) is equivalent to
COMMA(COMMA(COMMA (a, b), c), d).

In our computational model, complex (and simple) data objects are Directed Acy-
clic Graphs (DAGs). Figure 3.1 shows several examples. The leaves of the DAG, i.e.,
the nodes with outdegree zero, correspond to variables and constants. The indegree of 0
leaf nodes may be greater than one. Such would be the case for variables that occur
more than once in a term (see figure 3.1b). The nodes with outdegree greater than zero,
are non-leaf nodes. Their indegree is restricted to be one. They correspond to functor
names.

Terms will be assumed to be globally addressable, i.e. there is a single system wide
virtual memory; Addresses will consist of two components: a PE number and a within
PE address. The motivation for using a single global address space is that stream-AND J. Z.
parallelism is very difficult to implement in the absence of shared memory. This is
because, if a variable v is shared among several processes, it is not known in advance
which process will bind it. When v does get bound by some process, its binding will
have to be communicated to all the processors where the other processes sharing v

N- Z.. .
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Figure 3.1. DAG Representation of Terms -_

reside. This communication can get very complicated in the absence of shared memory.

Thus far, we have described data objects that are part of the language definition.

However, during execution of the language, data objects, called process descriptors,
which are not part of the language definition, are created and destroyed. Process

descriptors are data structures representing the abstract AND/OR processes. Indeed,

whenever we use the term "process", we are actually talking about a process descriptor

data structure. We will refer to the memory in process descriptors are created as

descriptor memory.

We briefly explain the meaning of the different fields comprising a process descrip- %
tor. Their meaning will become more clear in section 3.2, when we describe execution of

PARLOG programs on the abstract machine.

% l %, J- -
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isrunning This field serves as a lock on the process descriptor. The reason such
a field is necessary is that, in the interest of parallelism, we allow
growth and pruning of the process tree to proceed concurrently. The
lock serves to synJhronize thcse operations. It is set whenever a node , S

is added to the process tree; it is reset whenever the process tree is ---
pruned.

killf lag This field is set if the process descriptor is locked (i.e., the isrunning
field is set), but it is to be pruned away.

state This field indicates whether the process is an AND process or an OR
process.

parent - state Same for the parent of this process.

child - count For an AND process, this field indicates the number of literals in the
conjunction being evaluated by the process. This includes user
defined relation calls as well as calls to system primitives.

For an OR process, it indicates the number of clauses being searched
under its control. "

owu - count For an AND process, this field indicates the number of needed vari- S
ables appearing on the left of "<=" calls in the conjunction. A vari-
able appearing on the left of a "<-=" is said to be not needed in the
clause containing the "<=", if it appears in no other literal in the
clause. The diffvar field of such variables is set to NOT-NEEDED,
instead of their ID number.

For an OR process, this field is irrelevant.

PID Process ID. This field is comprised of two parts: a PE number, and a
process number. Thus, every process has a unique, system wide PID.
PIDs are not reusable. % -%

pPID This field contains the process ID of the parent process. The PID
and pPID fields link up the AND/OR process tree.

continuation For an AND (OR) process, this field indicates the code to execute .

when all its child processes have succeeded (failed).

body - pointer This field has relevance for an AND process evaluating a guard, in
which case it contains the address of the body. This information is
needed in case the evaluation commits to the clause whose guard is
being evaluted by the AND process.

For an OR process, this field is irrelevant.

lit - num This field indicates which child this process is of its parent. •.-'

child - list This field is a list containing the PIDs of the children of this process.

"P "% , -' W"
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head-size For an OR process, this field contains the number of arguments in
the literal (relation) being evaluated.

Another object that is not part of the language definition is the poipter- vector.
The pointer vector is a vector of values and addresses. It serves as the binding environ- - -

ment for evaluation of literals and conjunctions.

For an OR process, the size of this vector is equal to the number of arguments in
the literal (relation) being evaluated. The contents of the pointer vector are the call
arguments. Literal arguments that are instantiated to constants are passed by value.
Uninstantiated literal arguments and those instantiated to structures, are passed by 'p

reference. Thus, each slot in the pointer vector may contain either a constant or an
address.

For an AND process, the size of the pointer vector is equal to the number of argu-
ments in the head plus the number of local variables in the clause. After local variables
are allocated, their addresses are inserted into the pointer vector. Should a local vari-
able get instantiated to a constant, its pointer pointer vector slot will be replaced by
that constant. Should it get instantiated to something other than a constant, its pointer
vector slot is replaced by the address of the object it got instantiated to. The single
assignment property of PARLOG obviates the need for consistency checking of variable
bindings present in the pointer vector and those present in term memory.

Other objects that are not part of the language definition, but which are created
and destroyed during execution of PARLOG programs are: one way unification state,
and test unification state. We defer the description of these objects till section 3.2,
where we describe how one way unification and test unification are performed in the 4
abstract machine.

3.1.3. Program Representation

PARLOG programs are represented as data, in order to facilitate evaluation of the 0

metacall. Literals are represented as structures, with functor name being the name of
the literal, and arity equal to the number of arguments of the literal. A sequential con-
junction of literals is represented as a nested structure, with an implicit functor name
AMPERSAND and arity 2. A parallel conjunction of literals is treated similarly, except
that the implicit functor name is COMMA. As an example, the parallel conjunction . -

A(x, y), B(y, z), C(x), is represented as COMMA(COMMA(A(z, y), B(y. z)), C(z)). %
"," and "&" are assumed to be left associative. Also, "," is assumed to bind tighter -:,

than .

We refer to a DAG whose root is COMMA, AMPERSAND, or a literal name, as a
literal tree. The leaves of a literal tree are variables.

The arity of the COMMA functor is set to PARALLEL CONJUNCTION if the
literal tree beneath it does not contain any AMPERSAND functors. Otherwise, it is set
to SEQUENTIAL CONJUNCTION. As will be seen later, this information is used to
determine whether the tail forking optimization is applicable or not.

N N N N
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We now discuss the representation of the PARLOG unification primitives, n<="
and n=, " < =" is represented as a structure with functor name ONE -WA Y- UNIF.
Its arity is set equal to the number of variables in the left argument that are needed in
the clause. As explained in the previous section, a variable appearing on the left of a
"<=" is said to be not needed in the clause containing the "<=", if it appears in no
other literal in the clause. As will be seen later, the count stored in the arity field of
the ONE - WA Y - UNIF functor will be used to determine whether a conjunction of
literals containing , <=" has succeeded.

In ti <= t2, since t1 and t2 can be of type TSTR, TCON, or TVAR, there are 9
cases possible. However, we transform the "<=" call so that a variable appears as the
left argument of the call, or as the right argument, or as both arguments. As an exam-
pie of the kind of transformation implied, nt1 <= nt2, where nt1 and nt2 are non-
variable terms, is transformed to nt, <= v, v <= nt 2, v a vriable.

The same transformation is done in the SPM as well. However, in the SPM,
further transformations are made, which compile the one way unification to a sequence
of primitive instructions. The transformations above merely change the syntactic form
of calls. On the other hand, the transformations in the SPM introduce significant
efficiency benefits by reducing the run-time overhead for a sequential architecture. How- S

ever, sequential execution of the primitive instructions might obscure parallelism possi-
ble if v is distributed among different PEs. In order not to lose this parallelism, we
choose not to compile one way unifications down to low levels.

We transform test unification calls ("=-") so that both arguments are variables.
For example, [a, b] = v is transformed to w = v, w <= [a, bl; [a, b] = (c, di is
transformed to w = v, w <= [a, b], v <- [c, d]. w = v is then represented as a
structure with functor name TUM and arity 2. If one of the arguments is ground, the
test unification call is equivalent to the one way unification call. For example,
[A, B] = v is equivalent to [A, B] <= v-. If both arguments are ground, the test
unification can be performed at compile time, flagging an error if necessary.

Clauses are represented as structures, with functor name BACKARROW. The
arity of the BACKARRO4 functor is set equal to the number of local variables in the
clause. The first argument of this functor is the clause head, a literal. The second argu-
ment of the BACKARROW functor is the clause guard, which can be either empty, or K .
a conjunction of literals. If the guard is empty, the second argument is the constant
EMPTY, otherwise it is a structure whose functor name is either COMMA or AMPER-
SAND. The third argument of the BACKARROW functor is the clause body, which is
represented the same way as the clause guard.

Relations are sets of clauses composed with the operators .." and ";". A '.' (";,)
separated set of clauses is represented as a nested structure with implicit functor name
DOT (SEMICOLON) and arity 2 (see figure 3.2). "." is assumed to bind tighter than

It should be clear that any DAG with root DOT or SEMICOLON would have to S
have at least one sub-DAG rooted with BACKARROW. We refer to the sub-tree, %%10

. .

: 7i ,,, . ,;., .,,,, )v ,. ]. , ,.'y.,,,, ,%,,,,,,:,...,, ' "'N' " "" ""'.5',,N5'¢ '



-34 -

R(x. y) -- A(r. y)

Semicolon /2 aarw/0•
BaAkan'ow /0

%

Figure 3.2. Example of program representation

beginning with the root and including the BACKARROW functors, as a clause tree.
Thus, a clause tree has either a single node, the BACKARROW functor; or several -

nodes in which case its root is the DOT or SEMICOLON functor, and its leaves are
BACKARROW functors.

The neutral composition operators, ".." and "and", are replaced by "." and ",f,
respectively.

The arguments of literals are guaranteed to be variables or constants. This is
because we replace literals like A(B(x, y), C(D(e, f), g)) by A(a, b), a <= B(x, y),
b <= C(D(e, f'), g). The result of this transformation is that the unification related
functors, ONE - WA Y - UNIF, and TUM, are the only ones that can have structures as
arguments. 0

The PARLOG system primitives (Less, Times, Plus, Lesseq, Call, etc.) are com-
piled so as to ensure that their arguments are instantiated at the time the primitive is -
evaluated. For example, Call(x) is transformed to DATA(x) 8 CALL(z);
Times(z,y,z) is transformed to (DATA(x), DATA(y)) & TIMES(z,y,zl) 8 z <= zl.

3.1.4. Operations ... -"

In this section, we motivate the operations needed to execute PARLOG programs
in order to motivate them. We will give a detailed description in section 3.2, when we
describe the abstract machine.

O%. %
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The operations needed to execute PARLOG programs fall under two categories:
unification and operations that implement the PARLOG control structures. They are:

* process tree growth; W

* output matching;

* input matching (i.e., one way unification),

" test unification; and

" process tree management.

Process tree growth and process tree management implement the control structures
of PARLOG. Process tree growth is the creation of process descriptors. Process tree
management is the execution of the control instructions, commit, success and fail,
described in section 3.1.1. That is, process tree management is the pruning of AND/OR
process tree. The reason for separating process tree growth and process tree manage-
ment is to generate more parallelism.

The other three operations are related to unification. Output matching is the
evaluation of n "<=" call in which the left argument is a variable. It is the operation
by which terms in PARLOG programs are created. One way unification is the evalua-
tion of a "<=" call in which the left argument is a non-variable term. Test unification
is the evaluation of an "=" call.

3.2. A Parallel Abstract Machine for PARLOG %

In this section, we describe a parallel abstract machine for executing PARLOG pro-
grams. We call this abstract machine (A.v) 2-Asynchronous Message-passing based
Parallel Abstract Machine for PARLOG.

The architecture of (AMP)2 is shown in figure 3.3. (AMNIP) 2 consists of abstract
processing elements (PEs) linked together by an abstract network, called the inter-PE
interconnection network. Each abstract PE is a collection of the following computing
agents: User Interface (UI), Network Send (NS), Network Receive (NR), Process Tree
Manager (PTM), Process Tree Grower (PTG), Input Matcher (IM), Test Unifier (TU),
Output Matcher (OM), Data Checker (DC), Var Checker (VC), and Term Memory
Allocator (TMA). Each agent performs a dedicated function. The PTM, PTG, TU, 0
IM and OM agents respectively perform the five operations we motivated in section
3.1.4: process tree management, process tree growth, test unification, input matching,
and output matching. The DC and VC agents respectively evaluate the DATA and -"-_N
VAR system primitives of PARLOG. The DATA primitive succeeds if its argument is
instantiated to a non-variable term. Otherwise, the call suspends. It can never fail.
The VAR primitive checks whether its argument is instantiated to a variable at the
time of the call. If so, it succeeds, else it fails. The NS agent receives messages from
other agents in the PE, and sends them out to the network. The NR agent receives
messages from the network and routes them to the appropriate agents in the PE. The
UI is present only in PE0 and is the agent through which communication with the user
(either humans or application programs) is done.

7,
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Each agent has a mailbox, in which it receives messages. It processes messages in

its mailbox, independently of the other agents. Thus, parallelism is exploited at two lev-"".,
els in (AF)2-several PEs processing concurrently, and several agents within a PE pro-

cessing messages concurrentlye wrbgs

(AMP)2 is a loosely coupled multiprocessor. However, it implements a shared •
memory abstraction. That is, PARLOG programs executing on (AMP)2 see a single

address space. Why is providing a shared memory abstraction on a loosely coupled

P

architecture important? There are two opposing factors that come into play in PAR-
LOG implementations. On the one hand, a loosely coupled architecture is attractive for

performance reasons. On the other hand, a shared memory architecture is attractive for
stream-AND parallelism, since it is very difficult to implement stream-AND parallelism

on loosely coupled architectures [Greg85]. The major feature of (AMP) 2 is that it
reconciles these opposing factors by providing a very efficient shared memory abstrac-ta y

tion on a loosely coupled architecture-efficient in the sense that the memory contention

and memory latency problems associated with shared memory systems are absent.
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(AMP) 2 is an abstract architecture and not a physical hardware architecture. Its
purpose is to lay bare all the functions that need to be performed in order to execute
PARLOG programs. It thus acts as a functional specification for the hardware architec-
ture. (A.MP) 2 features only logical entities. For example, the abstract networks are
logical communication channels. These channels would have to be implemented via
appropriate interconnection networks (e.g., bus, banyan, shuffle, hypercube, etc.) in a
physical hardware architecture. Likewise, the agents are also logical entities. They
would have to be mapped onto physical hardware in order to get a physical hardware
architecture. There are several possibilities for this mapping. In a one-one mapping,
there is a dedicated hardware unit for each agent. In a many-one mapping, one
hardware unit performs functions represented by several agents. Finally, in a one-many
mapping, several identical hardware units are dedicated to a single function.

3.2.1. Executing PARLOG programs on (AMP) 2

The user's query is read in by the User Interface (UI) agent, which is present only
in PE0 . A query of the form :A(x, y), B(y, z) is treated as though there were a user
defined relation called QUERY defined by the clause QUERY - A(x, y), B(y, z). The
UI agent creates an AND process, the root of the AND/OR process tree. In the follow-
ing discussion, creation or deletion of a process means creation or deletion of the process

descriptor. It does not mean creation or deletion of a process in the operating systems
sense. Next, the UI agent sends out a SPA WN message to the Network Send (NS)
agent. A SPA WN message is created whenever a user defined literal is to be evaluated.

It includes the PID of the AND process evaluating the conjunction that the relation

call is part of, and a pointer vector containing the call arguments. The NS agent >
sends the SPA WVN message to the inter-PE communication network. In the current ver-

sion of (AMP) 2 , the network uses a uniformly distributed random number generator to
route the SPA WN message to some random PE. In later versions, the network may
incorporate sophisticated load balancing strategies.

Process Tree Growth

The SPA WN message is routed by the Network Receive (NR) agent of the destina-
tion PE to the Process Tree Grower (PTG), which creates an OR process to search for -.. ,0

a candidate clause. Send/acknowledge protocols are used to record parent child rela- -,. ,€

tionships, which may exist across several PEs.

The PTG traverses the DAG of the relation being evaluated. Recall that each PE
has a copy of the program in its clause memory. On encountering a SEMICOLON
functor during this traversal, the PTG creates an OR process descriptor in the descrip-

tor memory. The PTG sets the continuation field of this process to the address of the
right subtree of the functor, and then recursively traverses the left subtree. For an OR
process, the continuation indicates which clause(s) to search next, if the guard of the
current clause fails. The continuation field in an OR process descriptor implements the

";" control construct of PARLOG. On encountering a DOT functor during the traver-
sal, the PTG simply recurses on the left and right subtrees.

%. .,d'
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Eventually, the PTG encounters a BACKARROW functor. At this point, it is
ready to evaluate the guard of a clause. If the guard is a conjunction of more than one
literal (i.e., the third argument of BACKARROW is either AMPERSAND or
COMMA), it creates an AND process to evaluate the guard. However, if the guard
contains just a single literal, it does not create an AND process for it. This is an
important optimization. It prevents the process tree from growing unnecessarily. The
SPM also features this optimization. In addition, in the SPM, the process tree does not
grow if the guard doesn't suspend (on one way unification), even if it is a conjunction of
more than one literal. The sequential nature of the SPM makes this latter optimiza-
tion possible: a conjunction of one way unification calls is actually evaluated one at a
time, and so, if none of the calls suspend, there is no need to create an AND process.
On the other hand, in a parallel architecture, it is desirable to evaluate a conjunction of
one way unification calls concurrently. It is for this reason, the PTG does not perform
the latter optimization: it creates an AND process even if the guard contains only a
conjunction of one way unification calls, none of which may suspend.

In a parallel machine, the AND processes corresponding to guards of different
clauses in a relation, may be created on different PEs. This is how committed OR paral-
lelism is exploited.

Prior to evaluating the guard of a clause, the PTG requests the Term Memory
Allocator (TMA) to allocate space for the local variables in the clause. It uses the
addresses returned by the TMA to create a pointer vector, i.e., the binding environment
for the evaluation. It then continues traversal of the relation's DAG. Traversal of the
DAG within a clause is similar to the traversal of the DAG of a relation, except that
AND processes are created, and AMPERSANDs and COMMAs are encountered instead
of SEMICOLONs and DOTs respectively.

Eventually, the PTG encounters a user defined literal, a system primitive, or a
unification related call. To evaluate user defined literals, the PTG sends out a
SPA WN message, which is processed at some random PE as described above. Thus,
user defined literals may be evaluated in different PEs, concurrently. System primitives
do not cause a SPA WN message to be sent. The DATA and VAR system primitives
are evaluated by the Data Checker (DC) and Var Checker (VC) agents respectively.
Their implementation is quite straightforward, and we will not describe it here. The
other primitives are evaluated directly by the AND process that controls the conjunc-
tion the primitives are part of.

In our description of the unification operations in (AMP) 2, v, w, z, y, and z
denote variables, nt denotes a non-variable term, and t denotes either a variable or a
non-variable term.

Output Matching

v <=t, called output matching, is the means by which PARLOG terms are
created. When the PTG encounters such a call during its traversal, it sends a message 0
to the PE in whose address space v is resident to evaluate the call. The message
includes the call arguments. The call arguments depend upon the compile time form of

,.% ......... ....
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t. If the compile time form of t is a variable, the call arguments are the term memory.

addresses of v and t. Otherwise, the call arguments are the term memory address of v '.

and the clause memory address of t. The message is routed to the Output Matcher Z;
(OM) agent by the NR of the destination PE. If v is not an uninstantiated variable at
the time of the call, the OM flags a run-time error. If, at compile time, t is a variable,
the OM binds v to t. Otherwise, it creates an instance of t and binds v to that
object. After binding v, the OM restarts the computations enqueued on v's demand
list, by sending appropriate messages.

In general, t in v <= t may be in some other PE's address space. For example,
t may be a local variable in some other clause evaluated in the other PE; or it might '.
have been created via a <= call in that clause. Thus, structured terms in (AMP) 2 may
be partitioned across several different PEs.

One Way Unification

The distribution of terms across several PEs, coupled with the fact that each PE
has a copy of the program, makes possible a parallel algorithm for one way unification. ,
When the PTG encounters a one way unification call, say nt <= v, it sends a message
to the PE in whose address space v is resident to evaluate the call. The message
identifies the AND process evaluating the conjunction that the call is part of. Let PID
denote its process descriptor. The message is routed to the Input Matcher (IM) by the
NR of the destination PE. We refer to the left argument of the one way unification
call, as the template DAG and the right argument as the term DAG. We refer to the
partitions of the term DAG as term sub - DAGS. Templates, the left arguments of all
one way unification calls, are loaded at compile time into the template memory of each ' .4
PE.

The LVf traverses, in lock step. the term sub-DAG and the template DAG. Its
behavior on encountering a constant or a structured term in the template DAG is simi-
lar. We describe its behavior for the former case. There are three possibilities:

i). The term sub-DAG is a non-variable term or is a variable bound to a non-variable
term. In this case, the IM checks if the non-variable term is a constant equal to
the one in the template DAG. If so, the traversal succeeds; otherwise it fails and
the IM sends a FAIL message to the PE denoted by PID.

ii). The term sub-DAG is a variable, but it is bound to an object in some other PE.
An access fault is said to occur in this situation. On encountering an access fault,
the IN[ sends a message containing all necessary information to the other PE ask-
ing it to continue the one way unification. It doesn't issue a memory request over
the network to fetch remote data, and wait for it to arrive. This is a very impor-
tant optimization: rather than waiting for remote memory requests to be resolved," ,
the IM sends the computation to where the remote data is, and then starts process- ." m '.
ing the next message in its mailbox.

Actually, the IM does not send the continuation message as soon as it detects an
access fault. Instead, it posts an entry in a data structure called the one way

,.% ,- .
e: .* 6N -S A r-



-40-

unification state, containing the following information: the template DAG and term
sub-DAG node addresses at which the one way unification is to continue in the
other PE, PID, and the PE where the access fault occurred. This data structure is
stored in the one way unification scratchpad. The reason for posting such an entry
rather than sending the computation right away is that the traversal might fail in
this PE, in which case there is no need to continue the computation. This is
another very important optimization. Because of this optimization, a process will
suspend on remote variable accesses, only if the <= call cannot succeed or fail
otherwise. Later, if the traversal succeeds, the IM will send the computation out.
There is a speed penalty that we have to pay in this approach, since the one way
unification cannot continue in other PEs until the traversal of the entire sub-DAG
present in this PE has been completed. However, the speed penalty is likely to be
small, since the sub-DAGs are more than likely to be small. Besides, the speed
penalty has to be weighed against the cost of communicating over the network.

During the course of the traversal, several entries may be posted in the one way
unification state. The more PEs where the unification is to continue, the more the
parallelism.

0

The one way unification can be considered to have succeeded only if the traversal
of every sub-DAG is successful. The successful traversal of a sub-DAG is called
partial success. Messages denoting partial success are propagated in the direction
opposite to which the continuation messages are propagated. This is why continua-
tion messages identify the FE where the access fault occurred. J

iii). The term sub-DAG is an uninstantiated variable. In this case, the IM posts a
demand for the value of this variable in the one way unification state. It doesn't
enqueue the demand right away on the variable's demand list; later, if the traversal
succeeds, it will enqueue the demand. Because of this optimization, a process will
suspend on a variable only if the <= call cannot succeed or fail otherwise.
Enqueueing demands is how suspension in one way unification is implemented in
(AM)'.

If a variable in the template DAG is encountered, the IM posts an entry in the one A

way unification state indicating that a binding for a variable in nt has been found. If
the traversal succeeds, the IM sends out the binding to the PE denoted by PID. The
variable would have been allocated in the term memory of that PE. When the binding
reaches that PE, the OM agent of that PE binds the variable. %

Test Unification

When the PTG encounters a test unification call, t, = t 2, it sends a message to the
PE in whose address space t ! resides. The Test Unifier (TU) agent in that PE processes
this message. The evaluation of test unification calls is similar to the evaluation of one -

way unification calls. The only difference is that no variables are bound. Also, there is ,
no notion of a template DAG since the arguments of the call are not known at compile

N1, %
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time. Therefore, access faults can occur on both sub-DAGs during traversal. If an
access fault occurs when traversing the right sub-DAG, the TU posts a demand for the
right sub-DAG node in a data structure called the test unification state, which is stored A..,

in the test unification scratchpad. The demand is basically a remote memory request. 0
If the traversal succeeds, the TU sends the remote memory request out on the network.
It also sends the context necessary to restart the computation when the remote data
arrives. This is a very important optimization: by sending context along with remote : ,
memory requests, the TU does not have to wait for remote data to arrive; rather, it
starts processing the next message in its mailbox. If an access fault occurs when
traversing the left sub-DAG, the TU posts an entry indicating that the evaluation of
the call is to be continued in some other PE. Later, if the traversal succeeds, the TU
sends continuation messages out.

Process Tree Management 0

During the course of the evaluation of a PARLOG query, the AND/OR process
tree grows and shrinks as literal evaluations (and conjunction evaluations, and clause
searches) succeed and fail. The PTG grows the AND/OR process tree; the PTM prunes
it. The PTA! and the PTG can asynchronously access the descriptor memory, thus S
increasing parallelism. However. concurrent access to a process descriptor must be
synchronized. Therefore, each process descriptor has a lock field. ..

Process tree management is essentially the processing of SUCCESS and FAIL
messages. A SUCCESS (FAIL) message is sent by a process to its parent if it succeeds
(fails). Let CPID denote the succeeding process. PID its parent, and PPID the parent
of the parent. The behavior of the PT! upon receipt of a SUCCESS message depends ,
upon the type of the PID process and the PPID process

i). PID and PPID are OR processes. This occurs when a group of nested clauses
separated by ";" and "." is being searched for a candiate clause. The PTM des-
troys PID and recursively, all of PID's children. It then sends a SUCCESS mes-
sage to PPID.

ii). PID is an OR process, PPID is an AND process. This occurs when CPID is a
guard that has succeeded, signifying that a candidate clause has been found. The
PTM sends a SPA WN-AND message, which contains PPID and a pointer to the
body of the candidate clause, out on the network. It then destroys PID and ,%. %
recursively, all of PID's children, which are the siblings of CPID. There may be
SUCCESS or FAIL messages in transit from the sibling guards. However, these --

messages will be ignored when they arrive at their destination, since PID would
have already been destroyed. To guarantee that the destination process is des-
troyed, it is necessary to ensure that PIDs are not reused. This presents no prob-
lems: all that is needed is that each PE use unique process numbers for its PIDs.
It can be seen that the PARLOG commit operator, ":" is implemented in (AMP) 2

by executing the body of the first clause whose guard terminates successfully. The
graph reduction should also be apparent: the process evaluating a literal is reduced
to another process evaluating the body of the candidate clause.

m .
' ' ~~~~~~ % %~d, ,6 ~ % %lll i liii.i dl~.i~ Fllld -I
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The SPA W.V-AND message is routed by the network to a random PE, just as the
SPA WN message. The SPA WY -AND message is processed by the PTG. The
PTG first checks if the tail forking optimization is applicable. If not, the PTG
creates an AND process and sends a SPA WN-AND-ACK message to the PE
containing PPID. Otherwise, the conjunction of body literals is controlled by
PPID itself-without creating a new AND process. This optimization is a generali-
zation of the tail recursion optimization in traditional logic languages [Greg85. In
a sequential implementation of PARLOG, the tail forking optimization applies if
there is a parallel conjunction at the end of a clause. However, (AMP) 2 being a

parallel machine, we insist on an additional condition: PPID should be in the
same PE to which the network routed the SPAWN-AND message. In the
absence of the second condition, we might get a single AND process with lots of
child processes. While this is fine in a sequential machine, it leads to an unaccept-
able bottleneck in a parallel machine. *,0

iii). PID is an AND process. If PID does not have a parent, i.e., if PID is the root of
the AND/OR process tree, the query evaluation is complete. Otherwise, the PTM %
destroys PID and recursively, all of PID's children. It then sends a SUCCESS
message to PPID.

Failure handling is quite straightforward. If PID is an AND process, the PTM
destroys PID and recursively, all of PID 's children. It then sends a FAIL message to
PPID. If PID is an OR process, the PTM checks if PID has a continuation. If so, it
sends a message to the PTG to initiate the evaluation of the guard of another clause.
If PID does not have a continuation, the PTM destroys PID and recursively, all of
PID's children, and then sends a FAIL message to PPID.

3.3. Mapping (AMP) 2 onto the Connection Machine

In this section, we briefly discuss the feasibility of mapping (AMP)2 onto the Con-
nection Machine architecture, i.e., of executing PARLOG on the Connection Machine.
As we mentioned at the beginning of this chapter, this mapping is best done after
studying the run-time execution behavior of PARLOG programs, to answer questions
such as: How much parallelism is there? What is the granularity of parallelism? What
are the communication patterns between the agents? What operations are performed
most frequently? Do they require hardware support? If so, what kind? What architec-
tural features are required for the efficient execution of single-solution PARLOG pro-
grams? Should the PE design be simple or should it be complex? The above study is a
ma'or effort in itself and beyond the scope of this project. What we present in this sec- .---.

tio-, is a qualitative discussion of the feasibility of executing PARLOG progrms on the
Connection Machine.

The Connection Machine (CM) [Hill85], is a fine grained, highly parallel, SIMD
(Sing Instruction Multiple Data) computer. It consists of 64K processors, each with 4K
bits of memory and a 1 bit wide ALU. Adding two 16 bit numbers takes 16 machine
cycles. The total memory capacity of the CM is 32 Mbytes.
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The CM requires a front-end host computer to issue instructions. These instruc-
tions are broadcast to all the 64K processors, each of which executes the same instruc-
tion, operating on the contents of its own memory. This concept is called data level
parallelism.

There are two forms of communication in the CM: a single bit wide global-or net-
work and a 16 dimensional hypercube. The global-or network allows aggregate opera-
tions such as global-minimum, global-maximum, global-or, etc., to be performed
quickly, while the hypercube network allows processors to communicate by exchanging
packets of information. OA

The form of parallelism in the CM, viz., data level parallelism, is different from tbe
form of parallelism found in control level parallel processing machines. In the latter, ,

the programmer is required to divide his program into fragments, one for each proces-
sor. Data level parallel processing works best on problems with large amounts of data, 0
whereas control level parallel processing works best when the ratio of program to data is
high.

The CM is best suited to applications that have a large amount of data level paral-
lelism. Examples of such applications include document retrieval from a large biblio-
graphic database, image processing, VLSI circuit design, and fluid flow problems. 0

On first glance, it would appear that PARLOG has plenty of data level
parallelism - different parts of a large structured term may be constructed in parallel
by different processes. For example, the elements of the list [e, e2, ... , ej1 may be con-
structed in parallel by n concurrent processes. However, a PARLOG process constructs _

only the top level structure of a variable's binding. That is, it either binds a variable to
a ground term, or if it binds it to a partially instantiated term, then the further instan-
tiation of this term is done by another PARLOG process. This is a characteristic V','.
feature of stream-AND parallelism. A process partially instantiates a variable and
passes this binding to another process through a shared variable. The second process, in
turn, partially instantiates the variables in this binding, and passes them to a third pro-
cess, and so on. Thus, the form of parallelism intrinsic to PARLOG is one where %
several different processes act on different portions of a large data structure. In other :,.I%51

words, the form of parallelism intrinsic to PARLOG is control level parallelism with %
multiple threads of control.

This form of parallelism is directly opposite to what is best supported by the
CM - a single process operating on all portions of a large structure concurrently.
Therefore, we conclude that the Connection Machine, with its SIMD style data level
parallelism, is not a good choice for executing PARLOG. Indeed our experience in
designing (AMP) 2 supports this conclusion. A shared memory abstraction on a coarse %
grained, loosely coupled architecture is better suited to implementing PARLOG than . .

the CM.

%
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3.4. Conclusions

This chapter presented our design of a parallel abstract machine for executing
PARLOG. The principal conclusion from this work is that shared memory greatly facil-
itates implementing PARLOG's stream-AND parallelism and that the key to high per-
formance stream-AND parallelism is an efficient shared memory abstraction on a loosely
coupled architecture. The abstract machine described in this chapter achieves this via a
number of optimizations. These optimizations address critical problems in the design of
efficient parallel architectures. They address the principal sources of overhead, viz.,
communication and memory latencies, and synchronization overheads. A

These problems are overcome because agents never suspend, waiting for remote
data to arrive. If a computation requires access to remote data, the agent sends the
computation over to where the data is, whenever possible (as in one way unification,
and sometimes, in test unification). It then processes the next message in its mailbox.
If a remote memory request cannot be avoided (as sometimes happens during evaluta-
tion of test unification calls), the agent sends a context with the remote memory
request, and then processes the next message in its mailbox. The context enables res-
tarting the computation when the remote data arrives. Thus, arbitrary latencies in
memory requests can be tolerated in (,AMP) 2, which is very important for parallel archi- 2-. -

tectures [Iann83].

Finally, we investigated the feasibility of executing PARLOG programs on the
Connection Machine architecture. The conclusion from this work is that a coarse
grained, loosely coupled architecture is better suited than the CM. since the form of
parallelism best supported by the CM is directly opposite to that found in PARLOG.
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CHAPTER 4

Data/Knowledge Base Query Processing Concepts

This chapter describes our investigation of the concepts relating to data/knowledge

base (D/KB) query processing. It is organized as follows. Section 4.1 gives several

definitions relating the composition of a data/knowledge base. Recursive query process-

ing is a key concept that differentiates D/KB query processing from traditional database

query processing. Section 4.2 introduces definitions relating to recursion. Section 4.3

describes rule representation. Section 4.4 describes top-down and bottom-up evaluation 0

of rule-based queries. Section 4.5 describes evaluation of non-recursive rule-based

queries. Section 4.6 describes the evaluation of recursive rule-based queries. Section 4.7

describes the concepts pertaining to recursive rule-based query optimization.

4.1. Data/Knowledge Base 0

We give several definitions pertaining to the data/knowledge base. These

definitions appear in [Banc86]. .der"

The data/knowledge base is a set of Horn clauses and schemas. A Horn clause has

the form

head - body

where head is zero or one atomic formulas (predicates with arguments supplied) and

body is a conjunction of zero or more atomic formulas. All arguments that are vari-

ables are implicitly unversally quantified. The logical interpretation of a Horn clause is

that the body implies the head.

Example: a(X, Y) - b(X, Y), c(Z, Y) means that for all X, Y, and Z, b(X, Y) and

c(Z, Y) implies a(X, Y). [1 0

A relation definition is the set of clauses whose head refers to a given relation.

A Horn clause with an empty body and no variables in its head is called a fact.

Facts can be written with no implication sign, e.g., parent(a, b) means that a is the

parent of b.

A rule is a Horn clause that is not a fact.

Predicates corresponding to facts are called base predicates. Predicates correspond-

ing to the head of a rule are called derived predicates.

We can assume without loss of generality that a relation is defined entirely by rules %
or entirely by facts. If a set of clauses does not meet this condition, it can easily be

transformed into a set of clauses that does. _

Example: The set of clauses

% 'M Z VX - .v.
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p(X, Y) - a(X, Z), b(Z, Y).

p(a, b).

is equivalent to

p(X, Y) - a(X, Z), b(Z, Y).

p(X, Y) pI(X, Y).

p1(a, b).

p1 (c, d). []

Thus, the data/knowledge base can be partitioned into rule relations and fact relations. •
The set of rule relations is called the intensional knowledge base, or rulebase, while the
set of fact relations is called the extensional knowledge base. or database. The inten-
sional knowledge base contains only derived predicates, while the extensional knowledge
base only base predicates.

The motivation for distinguishing between the intensional and extensional
knowledge bases is that rules are stored in compiled form to allow for more efficient
access, while facts are stored directly. We will describe different storage structures for
storing the compiled form of rules later in this chapter.

The schema of a base predicate is the same as a relational database schema; it con- .
tains the names of the arguments and their types. The schema of a derived predicate is
derived using the base predicate schema and the rules.

4.2. Recursion

In this section we give several definitions pertaining to evaluating recursive queries.
Again, these definitions appear in [Banc86J. ,%V^

We will use the set of Horn clauses shown in figure 4.1 to illustrate the definitions.
The b 's in this example are base predicates, while p, q, pl, and p 2 are derived predi-
cates. -

A derived predicate q is reachable from a derived predicate p if

(i) q is in the body of a rule having p as its head, or

(ii) q is in the body of a rule having s as its head and s is reachable from p.

Example: In figure 4.1 p1 is reachable from p. So is b1 because b1 is reachable from p1

and p , is reachable from p.

Two derived predicates p and q are mutually recursive if they are reachable from %
each other.

Example: In figure 4.1 p and q are mutually recursive. ]

A predicate p is recursive if it is reachable from itself.

,* .- ,-b",,AAs, . '' " ,",G%, .L' , ~''%,v'., , ;-'-. -. %'.,-,." ' ,,:. . / - . , ,:.. ' ' - r,,..'%.
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R: p(X, Y)- p,(X, Z), q(Z, Y).

R,: p(X, Y) b3(X, Y).

R3: p,(X, Y) - b, (X, Z), p1 (Z, Y).

R 4: p1 (X, Y) - b4(X, Y).

R 5: P2(X, Y) - b2(X, Z), p 2(Z, Y).

R : p2(X, Y) - b5(X, Y).

R: q(X, Y) - p(X, Z), p,(Z, Y).

Figure 4.1: Sample data/knowledge base

Example: In figure 4.1 p1 is a recursive predicate. []
A rule p - Pl' P2 ... , Pn is called a recursive rule is there exists a p in the body

that is mutually recursive to p.

Example: In figure 4.1 R is a recursive rule. []
Two rules are mutually recursive if the predicates in their heads are mutually

recursive. ':., ,,

Example: In figure 4.1 R1 and R 7 are recursive rules. j]"\
A recursive rule is called a linear recursive rule if there is only one predicate in the

body that is mutually recursive to the head. A recursive rule that is not linear is called
a nonlinear recursive rule.

Example: All the recursive rules in figure 4.1 are linear. However, a rule of the form
p - p,,pt,r is nonlinear. [] "

It can be easily shown that mutual recursion is an equivalence relation on the set of

derived predicates and the set of rules. Mutual recursion partitions the set of derived
into disjoint blocks of mutually recursive predicates.

Example: {p, q}, {p,}, and {p 2 } are the disjoint blocks of mutually recursive predi-
cates in figure 4.1. []
The predicates in a block must be evaluated as a whole. Mutual recursion groups
together rules needed to evaluate the predicates in a block.

Example: The rule partitions for figure 4.1 are {R 1 , R 2, R 7}, {R 3, R 4}, and (R,,
R6}. ]

~~ a.
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4.3. Rule Representation

Rules are typically represented in a graph formalism. Predicate Connection owl
Graphs (PCGs) are an example of such a formalism. PCGs were proposed by McKay •

and Shapiro [McKa8l] as a representation to facilitate reasoning with recursive rules. A
PCG is a directed graph that represents the relationships between head predicates and
body predicates. Each node in the PCG represents a predicate. Edges arise from rules.
If there is a rule of the form, p - pl, p2, ... P, there is a directed edge from p to each

of the p,'s. Figure 4.2 shows the PCG for the data/knowledge base of figure 4.1.

-P

_ Figure 4.2. Predicate Connection Graph for figure 4.1 ,

~~~The definitions of the previous section can be recast in terms of the PCG. The blocks .,:
~~of mutually recursive predicates are the strongly connected components of the PCG. A _ ]

strongly connected component, also called a clique, of a graph is a set of nodes such r--

that there is a directed path between each pair of nodes. Z"

I .l,

0,.
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In the context of D/KB query processing, we will use a somewhat broader

definition of a clique. Here, by clique we will mean a set of mutually recursive predi-
cates as well as the rules needed to evaluate these predicates. Obviously, some of these
rules will be recursive. The rest are called exit rules. Exit rules ensure that the evalua-
tion of a recursive predicate terminates. Therefore, every clique must have at least one
exit rule.

Example: In figure 4.1 we need rules R 3 and R 4 to evaluate p,. R 3 is a recursive rule,
while R 4 is an exit rule. []

Figure 4.3 shows the cliques for the sample D/KB shown in figure 4.1.

Recursive predicates p, q
Clique 1 Recursive rules R 1, R7

Exit rules R

Recursive predicates P1

Clique 2 Recursive rules R 3

Exit rules R 4

Recursive predicates P
Clique 3 Recursive rules R. ,

Exit rules R

9

Figure 4.3: Cliques for figure 4.1

4.4. Top-Down vs. Bottom-Up Evaluation

There are essentially two strategies for evaluating Horn clause queries - top-down
and bottom-up [Banc86]. We will illustrate these strategies via an example. Consider
the following rules

R r (X, Y) s (X, Z), b (Z, Y).

R 2 : r(X, Y) - b2(X, Y).

R 3: s(X, Y)- b3(X, Y).

R 4: query(X) r(X, "a").

Here, the b,'s are base predicates and r, s, and query derived predicates. Suppose we
want to evaluate the predicate query. In bottom-up evaluation, we start with the base

predicates in the body of rules and keep combining them with other predicates in the
body to produce the head predicates. We stop when query is generated. For the above

I .v--% '
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rules, we get s from b. We combine s with bi to get a partial result for r. We get

another partial result from b 2. Finally, we take the union of these partial results to get

all the values of r. We then apply a selection on r to get query, i.e., the values of X. S

In top-down evaluation, we start with the predicate to be evaluated and keep

evaluating predicates in the body of rules defining this predicate. During this process,
we propagate information till we reach the base predicates. For the above rules,
evaluating query means evaluating r with its second argument bound to "a. " We use
rule R, to propagate this binding to b and R 2 to propagate it to b2. From b2, we get

a partial result for X. From b, we get values for Z, which produces bindings for the

second argument of s. These bindings are propagated using rule R3 to b3, which pro- 'V.

duces another partial result. The union of these partial results then gives all the values
of X.

Bottom-up strategies are simpler and easy to implement, but they compute a lot of

useless results. since they do not use knowledge about the query to restrict the search
space. On the other hand, top-down strategies are more efficient since they use

knowledge about the query to propagate information, but they are more complex and
harder to implement. 0

Several optimization strategies have been proposed for use with bottom-up stra-

tegies [Beer86, Banc86 .... , Banc86, Sacc86, Sacc86 ....... ]. These strategies utilize query

information to restrict the search space, while at the same time enjoying the ease of

implementation advantage of bottom-up strategies. Therefore, we will focus only on
bottom-up strategies. 0

4.5. Evaluating Nonrecursive Predicates

Bottom-up evaluation of a nonrecursive predicate can be achieved by a straightfor-

ward compilation to relational algebra. For example, evaluating the predicate r defined S

by the rules

r(X, Y) - s(X, Z), b(Z, Y).

r(X, Y) - c(X, Y).

is equivalent to evaluating the following relational algebra expression •

C U r1,.2 (s >< b)
.2= b. I

4.6. Evaluating Recursive and Mutually Recursive Predicates

Bottom-up evaluation of a recursive predicate involves computing the least fixed

point (LFP) of a recursive equation [Emde76]. For example, evaluating the recursive :-%

predicate p, in figure 4.1, which is defined by the Horn clauses
p(X. Y) - b6(X, Z), p 1(Z, Y). 0

p (X, Y)- b4(X, Y).

'.',Y4 A%
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corresponds to evaluating the LFP of the following recursive equation

P, = b4 U 'rb,.1,p,.2 (61  >< p1 )
b, 2=p, I

= b4 U b, 0 p,

= 1(p1 )

where the operator '0' is called the composition operator, which is a join followed by a %

projection on the non-join columns. ..

As defined by Ullman [Aho79], a least fixed point of the equation p1 = f(p 1 ) is a

relation p I* that satisfies

(i) pl, = f(pl*) and

(ii) if pI is a relation such that p1 I f(p 1 ), then pI * C p 1.

In general, a recursive equation may not have a least fixed point. However, if the func- J-

tion f is monotone in the sense that

ifp, C p2 then f(p,) C 1(p2 )

it is guaranteed to have a least fixed point [Tars55].

The nice property about Horn clauses is that the function f consists only of union .4
and composition operators and is therefore monotone. This means that recursive rules
are guaranteed to have a least fixed pointO.

Algorithm 1 (see [Aho, 9, Banc86]) is a natural way to compute the LFP of the

equation r = 1(r).

• = ; ;

repeat ..

r f(r)

until (ri - r = 4));

Algorithm 1: Naive Evaluation of a Recursive Equation

This method is called naive evaluation [Banc86I. Naive because the entire relation r is
0

used to compute r even though the monotonocity of f. and r being equal to .

ensure that r C r i.e., tuples of r are also present in r

I Of course, it is necessary that there be an exit rule in order for the recursion to

terminate.
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A more efficient procedure is to compute only the difference between r j* and r,

during each iteration. This procedure is called semi-naive evaluation [Banc85] (see algo- %1
rithm 2 below).

r

8r f (4));

while (8r' :)) do {

r =r jU+r;

r+=/(r ' ) - /(r'); 0

Algorithm 2: Semi-naive Evaluation of a Recursive Equation ,

As we mentioned before, a set of mutually recursive predicates must be solved together .

as a whole. This involves finding the LFP of a set of recursive equations.

Example: Evaluating p and q in figure 4.1 involves finding the LP of the following
recursive equations 0

P = b3 U P, 0 q = f1 (p, q)

q = p =p2 = f2 (p, q) [I
In general, evaluating a set of mutually recursive predicates r, ..., rn will involve 0
finding the LFP of a set of recursive equations of the form

r, f I1(rl, ..., r ) J':''

The LFP is guaranteed to exist since the functions f, are all monotone in the case of "'""

- , 1 r.,_",d)

Horn clauses.
TeAlgorithm 3 shows the naive evaluation procedure for this set of equations, while

algorithm 4 shows the semi-naive evaluation procedure. -- .

Algorithms 1-4 are basically relational algebra programs that execute against the .
set of base relations. That is, they compute the tuples of the derived relations given the
base relations. The efficiency of this program is strongly dependent upon the interface

to the DBMS. If the DBMS interface is relational algebra, the above algorithms must

-. . .? I?

% aV. ? % % a' % N.",,, ' ,' ,,' '.. ,,,, ',. ',,., .x ,' , . '',.',. -* , ,. "_,• ,2 , . ,",. . ,,, , o ,' . ... . ** . .. . ... .. *..' .. t. ,"



-53- _
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M

o '' -"%0VrI  (b; -

repeat

r f(rl ...,

n~ I

until (r 4)) fori n;

Algorithm 3: Naive Evaluation of a Set of Recursive Equations

be executed as application programs since relational algebra cannot express least fixed .

point queries [Aho79]. During each iteration several temporary tables would have to be
created and dropped. Also, checking for termination of the iteration involves set
difference, a costly operation. (In the next chapter, we describe naive and semi-naive

LFP evaluation algorithms with relational algebra as the DBMS interface. We have
used relational algebra as the DBMS interface in the VLPDF demonstration testbed,
since this testbed is built on top of an existing relational DBMS).

On the other hand, if the DBMS interface allows expressing the above system of
recursive equations, the DBMS can better optimize the LFP computation, avoiding these

overheads. Also, the DBMS may be able to optimize certain forms of these recursive S

equations (e.g., transitive closure) better than others. The issues then are: What are
these forms? What is the best way of implementing them? Which of these forms do we "'N ,,

include in the DBMS interface? How should this be done? These issues significantly
affect the efficiency of LFP computation, and thereby D/KB query processing perfor-
mance. Therefore, the DBMS interface is a very critical design parameter for the
D/KBMS architecture..,

Another way of improving the efficiency of LFP computation is to restrict the
search space, i.e., to select only those tuples of the relations r,, : = 1, 2, n that are.ig 1, .2, ..., n, t at ar

needed for the computation. In the next section, we discuss various optimization tech-
niques that have been proposed to restrict the search space.

.AV"i
~ - ~" ~Ah
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0-

8r° 
=

=r f(f)

while some 6r, do {

rI = rI U rI ;

8 r f 1(r) -  
r'" r :'

n/

)j -

.
--.,

8r = /,,(r, . r' - .. , r

Algorithm 4: Semi-naive Evaluation of a Set of Recursive Equations :'

.

4.7. Optimization

In this section, we discuss optimization strategies meant for use with bottom-up ,.,
evaluation. These strategies improve the efficiency of LFP computation. Several stra- ","
tegies have been proposed, e.g., magic sets [Banc86 ... ], supplementary magic sets ":
(Sacc861, counting and supplementary counting [Sacc86 ........ ]. The main idea behindi ~these strategies is the use of sideways information passing to restrict the computation to -'T
tuples that are related to the query. Beeri and Ramnakrishnan [Beer86] have developed a :-t.;

di. %- 0""

j - .. - '-1 : I i l i P = . . . r .. . - i - -- I.
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uniform framework to describe and compare these strategies and to understand the 6

basic ideas that are common to them. They first formalize the notion of sideways infor-
mation passing. Then they describe four strategies in terms of this formalism. They
call these strategies generalized magic sets, generalized supplementary magic sets, gen-
eralized counting, and generalized supplementary counting. We will describe their for-
malism and the generalized magic sets strategy later in this section. But first we will
give a flavor of sideways information passing and optimization. .,

Given bindings for some variables of a predicate, we can evaluate the predicate
with these bindings. This evaluation generates bindings for the other variables of the
predicate. These new bindings can be passed to another predicate in the same rule to
restrict the computation for that predicate.

Example: Given the rules i.-

R- (X, Y) s (X, Z), bI(Z, Y).

R: r(X, Y)- b2 (X, Y).

3 S (X. Y) b 3 (X.)

the query

R 4 : query(X) r(X, "a").

gives a binding for the second argument of r. Since the second argument of r is the S

same as the second argument of b, this binding restricts the computation of b After

evaluating b, we get bindings for Z, which in turn can be passed to s to restrict the

computation of s. []
In terms of relational algebra, sideways information passing corresponds to pushing 0

selections down a relational algebra tree. ",

Example: Evaluating the above query corresponds to evaluating the following rela-
tional algebra expression

IrrI U 2 ="a" (b2 U (Trl,4 b3 >< b 1))
2=3

Use of sideways information passing corresponds to evaluating

7 a"2= "a" b2 Ul (7T1,4 b3 >< (Cr2=a b
2=3

where the a2=.,. selection has been pushed down to restrict the number of tuples of b
and b. [].

As seen in the above example, sideways information passing is easily accomplished
for nonrecursive rules. However, for recursive rules the situation is more complicated. %
We cannot simply push the selection down since we run the risk of losing result tuples

during the LFP computation. Consider the following data/knowledge base and query

%
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-56 -

ancestor(X, Y) - parent(X, Y).

ancestor(X, Y) - parent(X, Z), ancestor(Z, Y).

parent ("john" , "jack"), parent ("john", "mary"),

parent("jack", "evan"), parent ("jack", "ellen"),

parent ("mary", "brian"), parent ("mary", .ann"),

parent ("joe", "charles"), parent ("joe", "diana"),

parent ("charles", "ben"), parent ("charles", "Jan")
r /4

query(X) - ancestor("john", X).

Evaluating this query is equivalent to evaluating

r=..on." LFP(ancestor = parent U ,' 1,4 (parent >< ancestor))

The LFP computation will yield the following tuples for ancestor. . .. ::.
nncestor("john", "jack"), ancestor ("john", "mary"), ancestor ("john", "evan"),

ancestor ("john", "ellen"), ancestor ("john", "brian"), ancestor ("john", "ann") ,"..,.<,

ancestor("jack", "evan"), ancestor("jack", "ellen")
ancestor("mary", "brian"), ancestor("mary", "ann")

ancestor("joe", "charles"), ancestor("joe", "diana"), ancestor("joe", "ben"),

ancestor ("joe", "Jan"), ancestor( charles , "ben"), ancestor("charles, "Jan" ). * ,

Applying the selection (al,,jhn., to this relation then yields the following results for the
query

ancestor ("john", "jack"), ancestor ("john", "mary"), ancestor ("john", "evan"),

ancestor ("john", "ellen"), ancestor("john'. "brian"), ancestor ("john", "ann")

Let us see what happens if we try to push the ul=.joAn. selection through the LFP
operation down to the parent relation. We would then be evaluating the following LFP
expression •

LFP(ancestor = ul=.."ojoh..parent U ir1 ,4((rl=-johnparent) >< ancestor))

This LFP computation yields the following tuples

ancestor ("john", "jack"), ancestor ("john", "mary") -7 .;-
44% P r - P\
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which is obviously not the correct answer to the query.
The source of the problem is that selection commutes across a cartesian product

A X B only if it applies either entirely to A or entirely to B. Therefore, we cannot
apply the selection to parent prior to evaluating the join of parent and ancestor.

What we need is a way of determining prior to the LFP computation all the
relevant tuples of the parent relation that will be needed. Let us first introduce some
definitions to clarify the aotion of relevant facts. These definitions are from [Banc86].
A fact p(a) is relevant to a query q if p(a) is reachable from q(b) for some b in the
answer set. A sufficient set of relevant facts for a query is a set of facts such that
replacing the extensional knowledge base with this set of facts gives the same answer to
the query. A set of potentially relevant facts is a superset of the set of relevant facts. A
set of potentially relevant facts is valid if it contains a sufficient set of relevant facts.

In general, it is impossible to find all the relevant facts for a query without expend-
ing as much effort as is needed to evaluate the query itself. The optimization strategies
for bottom-up evaluation, therefore, compute only a valid set of potentially relevant
facts. The major metric for evaluating an optimization strategy is the difference
between the size of this set and that of the sufficient set of relevant facts contained in
it.

The optimization strategies mentioned at the beginning of this section are all rule

rewriting strategies. The new set of rules is equivalent to the original set but its LP
computation is more efficient. As we mentioned before, [Beer86] have developed a
unified framework for describing and comparing these strategies. They have also
developed four strategies - generalized magic sets, generalized supplementary magic
sets, generalized counting, generalized supplementary counting - in terms of this frame-
work. Here, we will describe the generalized magic sets strategy. But first, we need to

describe the formal meaning of sideways information passing.
@

4.7.1. Sideways Information Passing

Following [Beer86l, let r be a rule with head predicate h. If a predicate occurs

more than once in the body of r, we number its occurrences. Let P(r) denote the set
that contains the head predicate and the predicates occurring in the body of r.

A sideways information passing strategy, called a sip, for a rule r is a labeled

directed acyclic graph where:

(i) Each node is either a member of P(r) or a subset of P(r).

(ii) Each arc is of the form N - p where N is a subset of P(r), and p is a member of
P(r). Arcs are such that there are no cycles in the sip.

(iii) Each arc has a label X, which is a set of variables each of which appears in some ".-. -

member of N. P

Since the sip is acyclic there exists a total ordering of the predicates in P(r) such that
for each arc, all members of its tail appear before its head. The predicates in the rule
are evaluated according to this total order. The evaluation is done as follows. For each
arc N, - p with label x, entering p, we compute the join of the predicates in N (some I,.0.

.. .... .., .,. .,. -. .-.,., .-.. . .,-. .- .. u-.... ..- ' .' .'.' '-'- '- *, 2.'t' .'.z .. '." r..-."
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arguments of these predicates may be bound to constants). These value. are passed to

the predicate p and are used to restrict its computation.

Example:

Ri: ancestor(X.', )- parent(X, Y).

R 2: ancestor(X, Y)- parent(X, Z), ancestor. I(Z, Y).

query(X) - ancestor ("john", X).

We have numbered the occurrence of ancestor in the body of R 2 to distinguish it from

the head. The natural way to use R2 is to evaluate predicates in the indicated order,

passing bindings from one predicate to another. This strategy can be represented by . ,_, .

the following sip

{ancestor, parent} - ancestor. 1, X = Z []

Example

RI: sg(X, Y) - flat(X, Y).

R 2 : sg(X, Y) - up(X, Z), sg.l (Zl, Z 2 ), flat(Z2 ', 3), sg. 2(Z 3 , Z4), down(Z, Y).'"

query(X) - sg("john", X).

Here also it is natural to evaluate the predicates in R2 in the indicated order. We show

two possible sips below.

sip 1: {sg. up} - sg. I X = Z

sip2: {sg, up} - sg. 1 X = Z

N {sg, up, sg. 1, flat} - sg. 2 X = 23

In sipl, values of Z, are used to restrict the evaluation of sg. 1. In sip2, in addition,

values of Z3 are used to restrict evaluation of sg. 2. []
Beeri and Ramakrishnan in their paper just describe what a sip is. They do not

present an algorithm for generating a sip, given a rule and a query. We have developed

. such an algorithm, which we will describe in the next section as part of the adorned rule

set generation algorithm.

4.7.2. Adorned Rule Set

The first step in rewriting the set of rules into a more efficient form is to generate

the adorned rule set. To understand this step, we need to introduce some definitions.

An adornment of a predicate with arity n is a sequence of length n of b's and f's

[Ullm85]. The adornment indicates which arguments are to be considered as bound

,.
%
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during the evaluation of a predicate and which will get values as a result of the evalua-
tion. The bound arguments are denoted by b, while those that will get values as a

result of the evaluation are denoted by f in the adornment.

Example: The sequence fbbf is an adornment of a predicate with arity 4. []
Example: The adornment fbbf indicates that the second and third arguments are to
be considered bound and that the first and fourth arguments will get values as a result
of the evaluation. []

An adorned predicate is a predicate augmented with its adornment, e.g., p An
adorned rule is a rule where (1) the head predicate is adorned, and (2) the derived predi-
cates in the body are adorned (thus, only derived predicates have an adorned version).

Example: pbf(X, Y) - b(X, Z), s1b(Y, Z), where b is a base predicate and s a
derived predicate. [ •

We remarked earlier that informally a sip describes how bindings are passed
between predicates. An adorned rule formalizes this description. For example, the
above adorned rule says that to evaluate p with X bound and Y free, we evaluate b
with X bound to get values for Z. These values values are then used to evaluate s with 0
Z bound and Y free.

The process of generating the adorned rule set starts with the query. The con- N *

stants in the query define adornments for the query predicates. For example, the query
query(X) - ancestor("john", X) defines the adornment bf for ancestor.

For each adornment a of a derived predicate p, we create an adorned predicate p a

We then generate adorned rules defining pa. The adorned rules are generated using the
original rules defining p. We use the following recursive procedure to generate the
adorned rules defining an adorned predicate p For each rule r with head p,

(i) Generate a sip for this rule corresponding to the adornment a using the sip genera-
tion algorithm described in section 4.7.2.1.

(ii) Generate a new rule with head p

(iii) Replace each occurrence of a derived predicate d in the body by its adorned ver-
sion. We do this as follows. Let X denote the union of the labels of all arcs enter-
ing d in the sip. If there is no arc entering d, X is set to empty. The adornment
for the predicate occurrence d is ad where a variable of d is bound in ad if it

appears in X. If X is empty, the adornment ad contains only f 's. .. ,. .

(iv) Generate adorned rules defining dad if they have not been generated before. []

4.7.2.1. Sip Generation Algorithm

As we mentioned before, Beeri and Ramakrishnan in their paper only describe .
what a sip is, but do not say how the sip is to be generated. We have developed a sip
generation algorithm, which we describe in this section.

1. Initialize the set of sip arcs to empty.

% % 
4
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2. Generate the rule-pred graph. The nodes of this graph are predicates. The node
corresponding to the head predicate is called head. An edge between two nodes
means that the corresponding predicates have variables in common. The edges are
labeled to denote the common variables. 0

3. For each derived predicate node p, find all simple paths from head to p. A simple
path between two nodes p and q is a path p, pl, -.- , p,, q, where each node

appears only once. Each such path is a potential arc in the sip. For example, the
path {head, P1, P 2, ... , Pn, P} corresponds to the arc {head, P1, P2, ... , P" - p.

The label X for this arc is obtained as follows. For each node q in the tail of the
arc, if there is an edge between q and p in the rule-pred graph, we add the vari-
ables denoted by this edge to X. This step enumerates for each derived predicate p
all the possible arcs with p as the tail.

4. For each derived predicate, order the potential arcs in descending order of the
number of predicates in the tail. Thus, {head, Pp' P2 - P comes before "r

{head, q} - p.

5. Order the derived predicates in descending order of the sum of the number of
predicates in the tail. Thus, if p has arcs {head, P1, P 2} - p and {head, q} - p •

and if s has one arc {head, PI, P21 P3' P4' P5, P6} - s, then s comes before p.

6. For each derived predicate p (as per the order of step 5), add arcs
{head, p1 , P21 ... , Pn- P (as per the order of step 4) if (1) the edge between head

and p, contains a variable that is bound in the adornment a, (2) adding the arc

does not cause a cycle in the sip, and (3) adding the arc causes a new variable of p
to appear in the label x. [,

The process of determining the set of arcs for sip is exponential in the number of
derived predicates in the body of the rule. Steps 4 and 5 are heuristics that tend to
favor arcs with more predicates in their tail. As we shall see when we describe the gen-
eralized magic sets algorithm, this will keep the size of the potential set of relevant facts
closer to the actual set of relevant facts.

Another feature oi this algorithm is that each arc in the sip will have head in its
tail. This i,%ature makes possible an important optimization in the generalized magic
sets algorithm. See [Beer86] for details. r-.s 0

Example:

R1 : ancestor(X, Y) - parent(X, Y). 'V...,.

R2: ancestor(X, Y)- parent(X, Z), ancestor. 1(Z, Y). •

query(X) - ancestor ("john", X). .4 54

The query gives the adornment bf for ancestor. The sip for R 2 for this adornment is
{ancestor, parent} - ancestor. 1, with label ) Z. The adorned rules are

bf
ancestor (X, Y) parent(X. Y).

N "-. ' . ,"%
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ancestorb/ (X, Y) - parent(X, Z), ancestor. 1b(Z, ( ).I-)

query f (X) - ancestor'f ('john', X). []

Example:

sg(X, Y) - flat(X, Y).

sg(X, Y) - up(X, Z), sg.l (Z,, Z2 ), flat(Z 2, Z3), sg.2(Z3 , Z4 ), down(Z 4, Y).

query(X) - sg("john", X).

Using the sip 'V
I S

{sg, upA - sg. IX =.

f{sg, up, sg. 1, flat I - sg. 2 X Z

we get the following adorned rules

sg ! (X, Y) - f lat(X, Y).

sg (X, Y) - up(X, Z1 ), sg. l6f(Z1 Z2), flat(Z2 , Z3), sg. 2 (Z 3 , Z4), down(Z4, y).

queryf (X) - sgf ( ''Joh, , X). [1

Beeri and Ramakrishnan give a formal proof that for a given query, the adorned
rule set generated using the above algorithm is equivalent to the original rule set. 4 .

4.7.3. Generalized Magic Sets

The second (and final) step in the rule rewriting transformation is to define addi- " . ,
tional predicates that compute the values that are passed between predicates according'"-
to the chosen sip. Each of the original rules is modified by including these additional
predicates in the rule body. This ensures that a rule is evaluated only when the values
for these additional predicates are available, thereby restricting the search space. The
additional predicates are called magic predicates and the values they compute are called .-.

magic sets. The rules defining magic predicates are called magic rules. The original
rules modified to include magic predicates in their body are called modified rules.

We describe the transformation below.
a a(i) For each adorned predicate, p , we create a new predicate, magic_p . The arity of

magicp' is equal to the number of b's in the adornment a. The arguments of .
magic p correspond to the bound arguments in the adornment.

(ii) For each adorned rule r and each occurrence of an adorned predicate pa in its
body, we generate a magic rule defining magic_p a. Let x denote an argument list. S
Then X' (respectively, ) ) denotes x with all argutments that are bound ""

-,-----.% 0 %~
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(respectively, free) in the adornment a deleted. Let the adorned rule r be defined
as follows

a a a
r: pa(X) - q1 (X,), q 2 ) ..., q x).

Here a, a,, ..., a n denote adornments. The q,'s can be either base or derived
predicates. If q, is a base predicate, its adornment a will be understood to be

empty.

Let sr be the chosen sip for this rule. The predicates q, are assumed to be ordered
according to the total order imposed by s'. That is, predicates participating in the
sip precede those that do not and for each arc in s,, the predicates in the tail pre-
cede the predicate at the head.

Consider q,. Either there is only one arc N - q in the sip s,, or there are many.
In the former case. we generate the magic rule as follows. The head of this rule is

a / \a

magic-q, aX,). For each q , j < i, add q (X to the body of the magic rule.
Finally, add magicpa(i ) to the body. '

If there are several arcs entering q,, we proceed as follows. For each arc N - q,
with label X, we define a rule with head label_q,(X,). The body of this rule is gen-
erated as described in the previous paragraph. The magic rule is then defined as a

ab
rule with magcq,() as head and labelq,(X) for all j as the body.

(iii) Modify each adorned rule by adding a magic predicate to its body. The magic
predicate corresponds to the head predicate. N .

(iv) Add the fact magzc-q (Xq) to the set of magic rules, where the query is q with 0

adornment a and argument list Xq. [I
qq

Example: %

14
ancestor (X, Y)- parent(X, Y).

ancestor (X, Y) - parent(X, Z), ancestor't (Z, Y). .

".' -% •

query(X) - ancestorbf ("john", X).

The magic rules are
bf bfmagtcancestor (Z) - magcancestor (X), parent(X, Z).

• ~~bf '"",_ .2

magic-ancestor ("John").

The modified rules are
bf bf *

ancestor (X, Y)- magic ancestor (X), parent(X. Y).

- %. .

J,.#,,<,

,..#,,,, ,-.-%,..,. %. .:....:_,_,:.... % % -: .: N . : %
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an,'.stor+rbf (X)- "f (Z' y).'
ancestor (X, Y) magic ancestor (X), parent(X, Z), ancestor (Z Y). ['

We note the following points from this example.

(1) For the parent relation mentioned in a previous example, evaluating the magic
rules yields the following tuples for magic.ancestor bf

magcbancestorf ("john"), magicancestor bf ("jack), magcancestor bf( mary"),

magic-ancestor bf ("evan"), magicancestorbf (ellen"), magic ancestorbf ("brian"),

magic-ancestor (" ("ann")

These tuples constitute the magic set for magic-ancestorbf.

(2) The magic set is a projection on the first column of the set of relevant tuples of the
parent relation.

(3) The join of magic ancestor and parent yields all the relevant tuples of parent

needed to solve the query.

(4) Adding magic-ancestor to the body of the modified rules forces this join to be N
evaluated. This also ensures that the modified rules will be evaluated only after
the magic set has been computed.

(5) The modified rules are evaluated using only the relevant tuples of the parent rela-
tion thereby reducing the search space. As a matter of fact, the modified rules can
be written as

ancestor (X, Y) - relevant parent(X, Y).

ancestor (X, Y) - relevant parent(X, Z), ancestor / (Z, Y). • % .' I

Beeri and Ramakrishnan give a formal proof that the set of magic rules and modified
rules is equivalent to the set of adorned rules.

4.8. Conclusions .

This chapter described the important concepts pertaining to D/KB query process-
ing. In our work, the data/knowledge base is considered to be a set of Horn clauses and
schemas. Definitions pertaining to the structure and composition of such a D/KB were
given. Recursive query processing was seen to be a key concept differentiating D/KB '""

query processing from traditional database query processing. The concepts of recursive
and nonrecursive predicates, recursive and nonrecursive rules, reachability, mutual
recursion, and cliques were described. Two basic strategies for Horn clause query
evaluation - top-down and bottom-up - evaluation were then described. Top-down
strategies were seen to be more efficient but more complex and harder to implement.
Bottom-up strategies were seen to be simpler and easy to implement but did a lot of
useless work. Bottom-up evaluation of nonrecursive predicates was shown to be , ,

"o I.-
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accomplished via a straightforward compilation to relational algebra, while that of
recursive predicates involved evaluating the LFP of a set of recursive equations. Two
basic strategies for bottom-up LFP computation - naive and semi-naive evaluation -

were then described. Naive evaluation was seen to be more inefficient as it recomputed ,
tuples computed during previous iterations. Semi-naive evaluation was seen to avoid
much redundant work by computing the differential of the right hand side of the recur-
sive equations. Finally, the concepts relating to D/KB query optimization were
described. Sideways information passing to restrict the search space to the relavant
base relation tuples and rewriting the rules in the D/KB to an equivalent form whose
LFP computation is more efficient were seen to be the basic ideas behind D/KB query
optimization strategies. A novel sideways information passing algorithm was described.

..-. -. ,-
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CHAPTER 5

Transitive Closure Algorithms

One of the difficult problems in the design of a D/KBMS is how to evaluate recur-
sive queries efficiently. In general, the solution to a recursive query cannot be expressed
as a finite relational algebraic expression and therefore cannot be evaluated directly by

a conventional relational database system [Aho79].

Among the large family of recursive queries, the transitive closure query, a query
whose processing requires the computation of the transitive closure of a database rela-
tion, is a very important class of recursive queries. They are important because (1) a
large number of recursive queries can be expressed using transitive closures
(Agra87, Rose86]. (2) most application problems involving recursive queries which we
can see now are actually transitive closure queries, and (3) efficient processing of transi-
tive closure queries will provide a sound base for solving more complicated recursive
queries. It is thus not surprising that much effort has been devoted to the efficient com-
putation of the transitive closure of database relations recently [Ioan86, Rose86, Vald8].

There is even a tendency to extend relational algebra to include the operation of transi-
tive closure in relational database management systems [Agra87].

This chapter describes our evaluation of algorithms for computing the transitive
closure of a database relation. The results of this evaluation appears in [Lu87]. Based ".N7%
on this investigation, we concluded that it is possible to further optimize transitive clo-
sure processing. This led us to develop new strategies for this problem, which we also
describe in this chapter. ,

The chapter is organized as follows. Section 5.1 presents definitions and back-

ground relating to transitive closure. Section 5.2 presents four algorithms for comput-
ing the transitive closure of a database relation: the Brute Force and Logarithmic itera-
ti-e algorithms [Vald86], Warshall's algorithm, and Warren's algorithm. Section 5.3
describes two implementations of the Logarithmic algorithm and one implementation of I S

Warren's algorithm, and analyzes their performance. Section 5.4 gives the results of our
performance comparison. Section 5.5 presents conclusions from the evaluation of these

algorithms. Section 5.6 presents two new transitive closure evaluation strategies.

5.1. Definitions and Background N- •

If RO(a,b) is a database relation, its transitive closure R = RO+ is defined by

R = RO ,R (5.1),

where R' denotes the, powe nfR:R n - I

th power of RO: R= RO and R = R 0 R for n > 1. The

composition operator 0 on the two binary relations R and S is defined by

--. %.P.
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R OS = {(z,z) :'y (z,y) E RA(y,Z) S

Using relational algebra, this composition can be expressed as

R 0 S = rR.aSb( R join S )
R b = S a , 6 ,

Graphically, relation RO can be represented as a directed graph G(V,E), where a node

a E V represents a domain value of a E({RO.A,RO.B}, and a directed edge e in E, a-b,
represents a tuple (a,b) in the relation RO. Then, a node pair (z,y) is in the transitive
closure of RO, R (or RO+ ) whenever there is a path of nonzero length from x to y.
The longest path length, that is, the largest number of edges comprising a path, is
sometimes referred to as the depth of the transitive closure. We will follow the same
convention in our discussion.

More formally, the transitive closure of relation RO represents the derived relation •
R defined by the following Horn clauses:

R(x,y) - RO(r,y).

R(x,y) - R(z,z), RO(z,y).

The transitive closure can be used to evaluate more complex recursive queries.
Consider for example the EMPSAL and EMP MGR relations shown in figure 5.1.
Note that not all employees have managers. Consider the query, "For each manager, ,
list the names of his subordinates (direct or indirect) and their total salary." This query %
can be expressed in SQL (augmented with the transitive closure function) as shown in
figure 5.2.

Equation (5.1) is the basis for several iterative transitive closure algorithms e%%%
[Vald86J. These algorithms compute successive approximations to the right hand side of
equation (5.1) until convergence is obtained.

Several years ago, Warshall described an essentially different algorithm for comput-
ing the transitive closure of a relation [Wars621. Warshall's algorithm was originally
designed to compute the transitive closure of a relation represented as an adjacency '"""

matrix. An adjacency matrix is a two dimensional Boolean array M, where
M(x,y)=true whenever (x,y)ER, otherwise M(z,y)=false. This algorithm has the
remarkable property that it can compute the transitive closure in a single pass over the
matrix, in contrast to the indefinite number required by iterative algorithms. Warren
subsequently modified this algorithm to give it better performance in a virtual memory
environment [Warr75. We have developed an implementation of Warren's algorithm in %
which the relation is represented as a set of tuples, as is usual in relational database sys-
terns. In this form, the algorithm can be integrated into a relational database system
for the purpose of evaluating recursive queries.

% %"1
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EMP SAL

Ename Salary

R. Smith 30k 6

A. Bailey 40k
B. Sullivan 40k
N. Johnson 45k
R. Elliott 35k .
K. Doty 40k
C. Shaffer 45k
T. Benton 50k

J. Kennedy 43k
N. Sibell 45k •

EMP MGR k

Ename Mname

R. Smith B. Sullivan
A. Bailey N. Johnson _
B. Sullivan N. Johnson
N. Johnson N. Sibell
R. Elliott B. Sullivan
K. Doty N. Sibell
C. Shaffer T. Benton
J. Kennedy N. Sibell
N. Sibell T. Benton

Figure 5.1. Relations for example recursive query. T,

5.2. Algorithms for Transitive Closure

In the following descriptions of transitive closure algorithms, R is the binary source
relation with attributes A and B. T is the result relation and has the same attribute •
names.

5.2.1. Brute Force Iterative Algorithm

This version of the Brute Force algorithm works directly on the base relations; Val-
duriez and Boral also present a version of the algorithm that uses a join index to
improve processing speed [Vald86]. We have modified the algorithm to work properly
with cyclic as well as acyclic relations, for a fair comparison with Warshall's and %
Warren's algorithms. The Brute Force algorithm can be expressed as follows:

T:=R;
RA: R;

I~ ~~ -. % % P.n "o
S~ %
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INSERT INTO T(Ename, Mname)
SELECT
FROM TRANSITIVECLOSURE(EMPMGR);

INSERT INTO U(Mname, Ename, Salary)
SELECT T.Mname, T.Ename, EMPSAL.Salary
FROM T, EMP_ SAL

WtERE T.Ename = EMPSAL.Ename

SELECT Mname, Ename, SUM(Salary)
FROM U
GROUP BY Mname -,'.'M

Figure 5.2. Implementation of recursive query.

while RA#0 do
begin
R := R

R_:=R- T;
T:= R_ U T;

end

Note that the set union RU T is a disjoint union. After i iterations of the while

loop,

R-%=R -UR)

T= U R'
15)52 '1:';

The algorithm terminates when

R C U R' (5.2) -'

From this it is easy to show that

T= u R) = u R = R

The number of iterations required can be expressed in terms of the directed graph
defined by R. Let paths(x,y) denote the set of paths from x to y in the graph. Let

length(s) denote the length of path s. i.e., the number of edges. Define the quantity p
by ..

.,-,,.,.I
%

N' N' %1 % P r -.
.'i# ." ,',, J' ,.- .¢ .?. .,. ,,,
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p max min length(s)
zty s E paths(z,y)

paths(z,y)#1

It is easy to show that (5.2) holds when ,>p, so the Brute Force algorithm requires p 0

iterations to compute the transitive closure of R.

5.2.2. Logarithmic Algorithm

The following version of Valduriez and Boral's Logarithmic algorithm works with
cyclic relations:

T:= R;

X:=R;

while X*0 do
begin
R-1: = R R:
TAx:= T"- RA;: .

X:=RN- T:
Y:= R , UT;

T:= YU T_1
end

Again, the set union R.U T is a disjoint union. After t iterations, r

T U R"

1I:y 2' -1 0

The Logarithmic algorithm terminates when '.-'-.

R 'C U R I?."'.-.

This occurs when 2'-1->p, i.e., when i- lg(p +1). Therefore the Logarithmic algorithm :i!

reurs[gpllieain.Vluizfudta h oaihi loih e-,''"'erally performed better than the Brute Force algorithm; we will therefore use it as our .7.7

iterative algorithm in what follows.,' ,,,," ,

20

R',- R?'.

t ' ' ." : " : ' .4 , .z : ....' ' .' , .. , " ." ..-" ...' ." ". .' " . . ." - ." " " " " . ...' ' ' ..' " " ' '. .--" ' . " .' ' -" " ." " " ." .'.2":,.X R*" _ . , - ' ' ' ..-.- '. ' ' , " ' " : -" ' .-" .-" " ." " -" ' -' ' .: -: .' " -. " -...-: ..-...- ' " " '- - .' " ." " ." ' -: " -: "



-* 70-

5.2.3. Smart algorithms

Joannidis recently proposed a new set of algorithms, smart algorithms, to compute
the transitive closure of a relation [Ioan86]. A frame work of optimizing the computa-
tion along the same direction as the logarithmic algorithm was provided. According to
the smart algorithms, the transitive closure of relation RO is expressed as

R = (RI O
k=0 1=0

With a different m value, different algorithms can be obtained. The logarithmic algo- "
rithm is actually the special case of m 2.

R+ = ( 1+RO)( I+R02 )( I+R0 4 ).. ."-"N'

5.2.4. Warshall's Algorithm

Warshall proposed a quite different algorithm for computing transitive closure on a
binary relation [Wars62]. In Warshall's algorithm, a binary relation R is represented by
a boolean adjacency matrix M. With this representation, Warshall's algorithm com-
putes the transitive closure of the relation as follows: 0

fo J do.
for j:= 1 to N do

for i:= i to NY do -",

if M(i.j) then ,.A*. d"
for k:= I to V do M(,,k):= ,fcX/M(j,k) 0

This algorithm effectively computes the transitive closure in only one pass over M. If
the matrix is stored in row major order, and if each row is represented as a string of
bits, then the inner loop of this algorithm can be implemented very efficiently using
machine instructions that compute the logical-or of two words or bit strings. .%

\Varshall's algorithm works by creating ever shorter paths between two nodes in
the directed graph represented by R. Suppose R contains a path from z to y. Before r.-
the iteration j=z, T contains a path x, w, . . . Y W,,,y such that w-z for all i. If z is
in this path, then this iteration creates a similar path in T with z removed. When the S
algorithm terminates, (x,y)E T. Warshall's paper gives a more formal correctness proof.

5.2.5. Warren's Algorithm
Warren proposed an improvement to Warshall's algorithm in a paging environment

if the entire matrix will not fit in memory [Wa-r75]. Since Warshall's algorithm scans
the matrix by columns and updates it by rows, it will introduce a large number of page
faults in a virtual memory environment when the matrix cannot fit in real memory.
Warren's algorithm avoids this problem by scanning and updating the matrix by rows.
It has two passes instead of Warshall's one pass. However, each pass is over only half of
Al. Here is Warren's algorithm: ,% -

A,
%N" €. -

M N-f .

'(:
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for i:=2 to N do
for j:1 to i-I do

if M(i,j) then
for k:--" to N do M(i,k):=M(i,k)vM(jk)

for i: 1 to N-1 do
for j:=i+l to N do

if M(i,j) then
for k:=1 to N do M(i,k):=M(i,k)M(j,k) S

A formal correctness proof of the algorithm is given in the original paper [Warr75].

Warren's algorithm can be represented in relational database terms. The domain

of R assumed in the original implementation is the range of integers [1, N]. In fact, any

finite, totally ordered domain D can be used and the choice of total order >,, is arbi-

trary. For the large domains commonly occurring in database relations, the adjacency",",

matrix representation of R is impractical; the set of tuples representation is much more

compact. To achieve the effect of scanning the adjacency matrix by rows, we maintain

the tuples in a sequence sorted by attributes A and B as primaiy and secondary key,

respectively. This gives the following implementation of Warren's algorithm:

T := R sorted by attributes <A, B>

for t E T { in sorted order } do
if t.A t.B then h..:.

insert {t} g tB(T) into T;

for t E T { in sorted order I do
if t.A <Dt.B then

insert {t} -~a tB6(T) into T;
AI

.. V,Jq

Tuples inserted into T must be inserted in sorted order. The <D and >D comparison

operators refer to the total ordering of the domain D. The expression {t} "-or B(T) is

the composition of the singleton relation consisting of tuple t with the tuples of T whose " "

first attribute matched the second attribute of t. All of the tuples in the result of this t..-"

composition have t.A as their first attribute value. Inserting these tuples into T, which .... -

is clustered on attribute A, is fairly cheap. Performing the selection a A=tB(T) is also

fairly cheap for the same reason.

We investigated a similar implementation of Warshall's algorithm. However, the I-

relation T could not be clustered in such a way that the selection and insertion were
cheap. This difficulty reflects the original version of Warshall's algorithm scans the

matrix by columns (clustered on B) and updates the matrix by rows (clustered on A).
Therefore we chose to evaluate the performance of Warren's algorithm only.

'A... F_%---e

' ,t,. * ..,. ,.. -,,.'.., -,+ -,.•, .,. ,% - ",,.%.•.', .. ,. '," ' • - . 5 'v t ,,-P,"- ",'' ,
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5.3. Implementation of Transitive Closure Algorithms and Their Costs

In this section we discuss the implementation details of the transitive closure algo-
rithms and derive their cost formulas.

5.3.1. Basic Operations and Their Costs 'p

The basic operations involved in the iterative algorithm are binary relation compo-
sition, set union and set difference. Composition is a join followed by a project, so we
now describe the implementation of join, union, and difference, and derive their costs. - S

5.3.1.1. Join

For the join operation, we have chosen the hybrid hash join algorithm [DeWi84]
because of its superior performance. Hybrid hash join consists of two phases, partition- •
ing and probing. In the partitioning phase, each of two relations, R and S, are parti-
tioned into a number of disjoint buckets. The bucket sizes of the smaller relation, R,
are selected such that a hash table can be constructed for a bucket in memory. After
this table is constructed, the tuples in the corresponding bucket of relation S are used
to probe the hash table to find matches. In the case that the hash table for the whole
relation of R can not fit into memory, there will be more than one iteration to process t ;%r

the buckets. During the partitioning of R, the tuples of one bucket remain in memory
to construct the hash table; tuples of other buckets are written back to the disk. Simi-
larly, when relation S is partitioned, the tuples in the first bucket are directly used to
probe the hash table in memory and others are written back to the disk. The buckets
written back to the disk are read in again to construct and probe the hash table in the
later iterations. The partitioning phase requires extra buffers to hold tuples being col-
lected for the various buckets. However we assume that M bytes of memory are avail- ! 't
able for each hash table, whether or not partitioning is occurring while the hash table is
being built. Using the notation in Table 5.1, the cost formulas of the hash-based join of N
R and S are given in Table 5.2.

5.3.1.2. Difference

The difference operation R - S can be implemented in a similar way as the hybrid
hash join. In this case, R and S are partitioned using a hash function on the entire '.

tuple. For each bucket of S, a hash table is constructed in main memory. This table is
probed with the tuples of the corresponding bucket of R, and those tuples for which ..

there is no match are added to the result. A notation similar to join selectivity, called
difference selectivity, DS, is defined az the ratio of the number of tuples in the result
relation of the difference operation to the number of tuples in the source relation of R.

The cost of this algorithm is shown in Table 5.3. > .

5.3.1.3. Union

We can use a hash-based algorithm to perform the set union operation R US in a

similar way. In this algorithm, all the tuples of relation S and the tuples from relation , .

R that don't match with tuples in S are moved to output buffers to form the union
.-

_, ..,-..-. -,.-~~~~~~~~~~~.. ,....... ..... ,.................-........-.-....--.-:-{..{
- .- ," " ' ",' " ":" . .. .• ". ,'- " '-'-z . . ... ... "... .... .'.. . .".. . . . . . . . .. "..-.-..".. . . . .".•. .•."., ---• - _-~~~~~~~~~~~~~~...-,...... ........ .. ,..,--..---,.-'.-....-..-....... ....... '...-.-

''5" '' ; ":'{t"~~~~~~~~~~4 14l<T '*' : " - i - l il I -I / I I I I I I , , ,.
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M Size of the available memory (in bytes) %

I R Number of pages in relation R

I I R Number of tuples in relation R

is Join selectivity IRjoinS I

I RI SI I

us I IR U S
Union selectivity = '4- '

hII II + I is I I

DSR - S
Difference selectivity =

iR 1

.,. ,
DS, Selectivity of Difference in i iteration .

TS Tuple length (in bytes)

PS Page size (in bytes)

t o,, Time for comparing two attribute values V 0

tMove Time for moving a binary tuple in memory

thash Time for hashing an attribute S

tread Time for reading one page from disk

tt Time for writing one page to disk

Table 5.1: Notations Used in Cost Formulas.

output. Table 5.4 shows the cost of this algorithm. 0

5.3.1.4. Combined Union and Difference

The union and difference operations both partition R and S by hashing complete %

tuples, so we can combine them to compute R -S and R US simultaneously. This is,, -p-

useful for both the Brute Force and the Logarithmic algorithm. The total cost of S

obtaining these two copies, denoted as UnionDiff(R,S), is the sum of the cost of -

. . . .. .... .
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(1) (---; R ;S I)'t,,=, - Reading of R and S

(2) + ( IR + I S thh - Hashing and partitioning of R and S .. ..

(I iRi +n SI )'TS-M
TS - Moving overflow buckets to the

output buffers

( +(I IR +iiSI S ).TS-M
(tPS - Writing the output buffers to disk

( +I R I +ISI I).TS-M
PS (- Reading those tuples later from disk S

(I 1R I I- S i)TS-M Lhs
TS - Rehashing the tuples to build hash

tables

(7) - R •t,O e - Moving tuples of R to build hash .'. .

tables

(8) - iS "- Probing for a match for all the tuplesin 
S

(9) -2 R "IS .JStmo,e - Moving the matching tuples to the
output buffers

TS(10) - 'ft '.: Si n 'JS-.. t,,0(10) S JS.PS - e- Writing the join output tuples to disk

Table 5.2: Cost Join(R,S) of Hash-Based Join. %

Diff(R,S) in table 5.3 and the terms (9) an (10) in the cost table of Union(R,S), Table ..
5.4. It is shown in Table 5.5. "- ->

5.3.2. Cost of Iterative Algorithm ,Yv

The iterative algorithm ( the Logarithmic algorithm described above) requires
[ig(p+l)1 iterations. In each iteration there are two joins (R 'R and T'RA), one

union (Yu T) and one combined union and difference (between R, and T). The cost
C of iteration 1 is S

P%, %5

%' %% b

,tr r r ,r , ,u w r . • t .% €* '. ,. . .~- '--." " '," .1' '*~ , " * . % U ,, * " "',' ' * ,*. " r" U* U, %* ' U
.* " , , :-% "*', -•.P, *
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(1).(6) =-the same as (1).(6) in Table 5.2 of)~
Join (R, S) _

(7) + IS: ,tmove - Moving tuples of S to build hash
tables for buckets of S

(8) + I iR " - Probing for match tuples in S

(9) + I R IDS'tmove -Moving tuples of R not in S to the
output buffers

I !R I.DS.TS
(10) + twte - Writing the output buffers to disk

Table 5.3: Cost Diff (R,S) of Hash-Based Set Difference.

(.)-(8) . ... - the same as (1) - (8) of Join (R, S) ,'

() -( R S )'USt - Moving union output tuples to the
output buffers

:R - S )US.-TS

(10) twrltePS - Writing the output buffers to disk

Table 5.4: Cost Union(R,S) of Hash-Based Set Union.
,- I

Ci = Join(R - ,R )

RR2 )
+ Join( U R1'R -

Isis 2'- 1

2'
+ UnionDif f(R U R')

15 t 5 2' -1 

+ Union( U R1, U R')
' - ]
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(0-(00) .... -...- the same as (1) - (10) of Duff (R, S)

(11) - R - S )US't.... - Moving union output tuples to the
output buffers

(12) + R S S trif
PS - Writing the output buffers to disk

Table 5.5: Cost UnionDiff (R,S) of Combined Hash-Based Union and Difference.

The total Cost is

1 i [ Ig( - 1)1 "

5.3.3. Improved Iterative Algorithm

The preceeding cost computation assumed that each relation is written to disk as a
sequential file as it is generated by a join or other relational operation. If this file is
used as input to a subsequent operation, it must be partitioned into buckets again.
This partitioning involves reading the sequential file and writing all but one bucket
back to disk.

We propose here an improved implementation of the iterative algorithm in which
each relation, as it is generated, is partitioned in preparation for the next use of the
relation. This technique eliminates writing and reading the sequential file. However, it -

requires more memory for buffers for output relation buckets. As before, we assume
that there are relatively few buckets so that the memory available for a hash table is %
not significantly reduced. "

In the improved iterative algorithm, relations T, TA and Y are partitioned on attri-

bute B whenever they are generated. When relation RA is generated, two partitionings .
are generated: one on attribute A and one on attribute B. Relation X is not parti-
tioned. In fact, it need not be materialized since we don't need to know its exact value,
only whether or not it is empty. These partitionings ensure that each relational opera-
tion can proceed immediately with bucket-by-bucket processing.

The cost of improved iterative algorithm is computed by modifying the cost for the
basic relational operations to reflect partitioning output relations instead of input rela-
tions. The cost of partitioning T and Ta prior to the first iteration must also be -,

included.

*~~~~~ - - . . -

~w * *~ - . . . . . . .1

, ,* 2,.. ..
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5.3.4. Warren's Algorithm

The physical implementation of our version of Warren's algorithm is based on a
particular choice for the total order >D on the domain D of relation R. Instead of

using the normal order relation > on number or chaaracter strings, we define as

follows:

>DY <=>hash(z)>hash(y) V (hash(x)=hash(y) A x>y)

That is, two elements of the domain are ordered primary on their hash values and
secondarily ordered by the normal ordering for numeric or string attributes. This
choice of order allows us to use hashing techniques for sorting, selection and insertion.

Relation T is physically represented as a hash table with a main memory pointer ,A- '

array and disk-resident buckets. The number of buckets is such that one page of each
bucket can fit into main memory.

The first step in our version of Warren's algorithm is to create T by sorting rela-
tion R on attributes A and B. Given the choice of total order on D, we can sort R by

partitioning it into buckets based on the hashed value of attribute A, and then sort
each bucket. After partitioning, main memory is ordered as a cache of recently-
retrieved buckets. _

Table 5.6 shows the cost of partitioning the relation and the cost of sorting the

buckets during processing. Here we use R 0, R 1 and R to represent the source relation,
the result relation after the first pass and the final result relation, respectively.

(1) = R o "td - Reading the source binary relation

(2) : Ro (thaoh-t moe) - Hashing the input relation int
partitions

MS

(3) l(- R 0 . -%)',e.

R11 Writing overflow buckets to disk ,

PS PS(4) + IRo l--'lg -'(t,r+ tm...)
TS TS - Internal sorting of all the pages -

Table 5.6: Cost CO of Partitioning R 0 and Sorting R 0 Pages.
S- .'%

In the first pass over T, the buckets are processed in order of hash value. First,

the bucket is read into main memory. For each tuple t in the bucket such that
t.A >D t.B, the selection U(a=tB(T) is performed using the in-memory hash table

index. The condition t.A > t.B guarantees that the selected tup!es are in the same or
an earlier processed bucket. Therefore no disk access is necessary unless the earlier

%,-

. ,'-.X .',' t,.~ ¢ :, ., . .- ,.* ..,,,' , , ..,'.::.?:,.-:.:...,.,:..',.,,'....',.::..'€- . .,,. ,: :,,:, ,:.r,:,;: ,,-.'., ,~ P
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bucket has been forced out of memory. This is reflected in term (8) of Table 5.7 which
gives the cost C1 for the first pass.

M
(5) Ro ;.11- )'t,,ead

I R - Reading the bucket on disk for
processing

(6) + iIR 1iI.t 0o p  - Comparing the two attribute values

(7) + (I i RtIi-i;Ro I )(thah-+ ttookup) - Hashing and lookup the directory

I I -

(8) + 5: "tread
M i.- TS

T v- Reading the data pages not in

memory

PS a
(9 ) R , 'R r - R , )'lg -P S 't c,,,TS - Locating the tuples in the page 0

(10) -- ( R1 'i- R0  )' - Inserting the generated tuples

M MA
T-R PS - Writing overflow tupJes to disk

Table 5.7: Cost C1 of the First Pass of Warren's Algorithm. 0

Table 5.8 shows the cost of the second pass over the relation. The formulas are
% similar to that in Table 5.7, with different relation sizes. L

As mentioned above, Warren's algorithm complete the transitive closure computa- .

tion in two passes, the total cost of the algorithm can therefore obtained as
CW= Co + c, +

C< 0  C 1 + 2

5.4. Evaluation .

We have chosen four parameters to study the effect of their variation on the perfor- -
mance of the three transitive closure algorithms. These four parameters are 1) the
memory size, 2) the source and the result relation sizes, 3) the number of iterations in %
the iterative algorithms, and 4) the join selectivity We have calculated the total cost of %
each of the three transitive closure algorithms for various sets of parameter values. The •
values of the I/O and computation parameters have been fixed in all our experiments. go

%,

% % 1 % " "% % . . % " . %. .r , % w • , - r ". ,- 1 . . ---- %- .- 1% -- %- - - - ,-'- ,- " - ."" % - %4 - ' - . - % " . % , , . , % F *
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2) = PR1 " " - Reading the bucket on disk for 0
processingj

(13) + R i!'t,,mp - Comparing the two attribute values

(14) + I I R I - I I )'(th.oh + tlookup - Hashing and lookup the directory to 0
find matches

iRi i'TS-M -p.-

(15) + "
M -TS

TS 
- Reading the data pages not in

memory

PS~(16) --( R - R i )'lg - 'to rpTS - Locating the tuples in the page

(17) ( R - R, )'t - Inserting the found tuple after current
processing tuple

(18) - R .tmote-- R .t,,,e - Moving output tuples to buffers and 0%0

writing them to disk .*P-. A

Table 5.8: Cost C 2 of the Second Pass of Warren's Algorithm. :"

In each experiment, we have varied one parameter value over a range, while keeping the

values of the other parameters fixed at some value. The value ranges and the typical, ,.E

values we have used in our evaluation are the following: :.%

Figure 5.3 illustrates the increases in the execution time of the three algorithms as "

the total available memory size is reduced. Warren's algorithm, as we expected from its m

original nature, performs very poorly as the memory size is reduced. The actual cross- ".. ': .
over value of the memory size at which Warren's algorithm starts performing worse -.:,

depends on the source and result relation sizes and the values of the other system .

parameters. However, we can see a significantly better performance from Warren's...'i

algorithm when reasonable memory sizes are assumed (e.g. > 2 M). From figure 5.3,
we can observe that for the memory sizes exceeding 4 megabytes (assuming source and '--

•2 ' .. -, .

result rlation sizes of the order of 6 and 8 megabytes) Warren's algorithm performs far.

better than the iteative algorithms. Since memory sizes of few megabytes are fairly0

typical in current systems, we can expect Warren's algorithm to perform better than

iterative algture perfos vypoorl applications. We can also observe from the figure
that the improved iterative algorithm performs much better than its basic counterpart.

depends~~~~~~~~~~~~~~~~ ontesuc n eutrlto iesadtevle fteohrsse
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Parameter settings used in evaluation -P

Parameter Values (typical value)

Source relation R 0  500KB-IOMB ( 2MB
Memory size M 400KB-8MB
Join selectivity JS 10- 6- 10-8(10 - 7)

Union selectivity, US 1.0 (no duplication)
Difference selectivity, DS 1.0 (no duplication)
Number of iterations, p 1 - 62 (6)

Page size, PS 4K Bytes
Tuple size, TS 8 Bytestrp 3 p.s ? .
tcomp 3L
tmove 20pts

tp 9 .Ls

tlookup 6pJs
tread 15ms

t write  20ms

Figure 5.4 illustrates the changes in the performance of the transitive closure algo-
rithms as the source relation size is varied, while keeping the memory size fixed. We
can observe from this figure a similar behavior as seen from figure 5.3, which is as the %-,.%
memory size available for holding the output of transitive closure becomes limited, the
performance of Warren's algorithm deteriorates rapidly.

Figure 5.5 shows the effect of variation in the number of iterations required to corn-
pute the transitive closure. Since Warren's algorithm is not iterative, its performance
remains the same, while the performance of the iterative algorithms becomes extremely

worse compared to warren's algorithm when the number of iterations required becomes
large. Therefore, if large number of successors of tuples are involved in computing the % %
transitive closure, it is better to use warren's algorithm.

Figures 5.6 and 5.7 illustrate the changes in the performance of the algorithms as

the join selectivity for each iteration is increased and decreased respectively. The per-
formance behavior exhibited in both these figures is the same. In both figures, as the

result relation size increases, iterative algorithms show better performance than
Warren's algorithm. We can conclude from these figures that the values of join selec-
tivity are not as important as the result relation sizes in affecting the relative perfor-
mance of the transitive closure algorithms.

%.' "
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5.5. Summary and Discussion

We have presented in this section an adaptation of Warren's algorithm to the rela-

tional database environment. It is a non-iterative algorithm and computes the transi-
tive closure of a relation in a depth-first search fashion. This algorithm was compared
with a logarithmic iterative algorithm and an improved version of the logarithmic algo-
rithm. The motivation for our study of transitive closure algorithms and their perfor-
mance is to find some alternative methods in recursive query processing. As we
expected, Warren's algorithm, which is basically a simple depth-first search and main
memory algorithm, works better in two cases: (1) the relative size of relation is not
much larger than the size of available memory, and (2) the path lengths in the transi-
tive closure graph vary greatly. In the second case, the iterative algorithms have to join
two whole relations (often very large) iteratively to find a small number of tuples and
the total cost increases dramatically. Thus. our recommendation is to implement
Warrens algorithm for transitive closure in database systems and let the query optim-
izer select it adaptively. In the remainder of this section. we briefly present some obser-
vations for future work. o,

Auxiliary Data Structures. In this work, we have not assumed any auxiliary __,

storage structures such as clustered or non-clustered indices and join indices. All opera-
tions are applied to the original data. .Join indices have been shown to improve the per-
formance of join operations. They also improve the performance of iterative transitive
closure algorithms [Vald861. The reason for this is the size of a join index relation is iII
general less than the binary relation size. Further investigation of the relative perfor-

mance improvement of Warren's algorithm resulting from the use of auxiliary data
structure is a worthwhile task.

Search Techniques. Depth-first and breadth-first algorithms have been explored

extensively to solve the general search and tree traversal problems. Since transitive co-
sure computation is basically a graph search problem. both depth-first and breadth-firsr
algorithms can he employed to compute the transitive closure. Warrens algorithm can
be viewed as a depth-first algorithm and iterative algorithms can be viewed as breadth- %
first algorithms. This analogy can be useful for further research into the application of .e.p

combined breadth-first and depth-first transitive closure computation techniques as ha.,
been suggested in solving other graph search problems. One possible technique is to -

apply an iterative algorithm a few number of iterations first to find most of the tuples ". ,.

in the transitive closure and then switch to the Warren's algorithm to find the few
tuples which can be derived only through longer search paths. P' %A,

Transitive Closure vs. Fix Point Queries. We concentrated only on the tran-
sitive closure algorithms. The algorithms or the evaluation results presented here may
not be applicable to performing general least fixpoint operations. Further research into
the application of these algorithms to least fixpoint query execution is required. ..P%

Restricted Transitive Closure. In general, complete transitive closure is sel-
dom required by applications: a subset of the transitive closure is adequate for answer- S

ing many queries. The algorithm to handle the restricted transitive closure queries is
dependent on the restriction criteria. However. general mechanisms for restricting the

. i
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output of each iteration of transitive closure operation and terminating the transitive
closure computation after a specified number of iterations are possible. These mechan-
isms might also be useful in executing general least fixpoint queries.

Multi-processor Transitive Closure Algorithms. Transitive closure is a
data-intensive operation. It is possible to partition the task of this very large database
processing on to multiple processors and improve the performance of transitive closure
computation significantly. For iterative algorithms in multiprocessor environment, the %-%

join and union operations in each iteration can be assigned to a separate processor %

improving the performance through concurrent and pipeline processing. For executing
Warren's algorithm using multiple processors, the search of subgraphs starting from

different nodes in the graph can be assigned to different processor(s). Another potential
area for future work is to design, analyze and evaluate multiprocessor based iterative
algorithms and Warren's algorithm.

5.6. New Strategies for Optimizing Transitive Closure Evaluation

In this section, we are going to propose two new strategies that further optimize
the computation of the transitive closure of a database relation. As a point of terminol-
ogy, we refer to our adaptation of Warren's algorithm presented in the previous section •
as the recursive algorithm.

We first assume that the relation we are dealing with is so large that it is impossi- ,
ble to hold all its tuples in main memory. In this case the computation of transitive
closure, no matter which algorithm is used, requires a large number of join, union and
set difference operations on very large relations. Partitioning a very large relation into
smaller disjoint partitions has been proved a reasonable way to dramatically reduce the
costs of join operation on large relations [DeWi84]. Both the analysis of the algorithm
[Lu87] and the logarithmic algorithm [Vald86] are based on the hash join method. We
assume that the same technique is used in our discussion.

5.6.1. Strategy 1: Reduce the Size of R

Compared to the naive algorithm, the semi-naive algorithm focus on eliminating
the duplication of computation by only using the newly generated tuples as one of the
source relations of the join in the next iteration. However, none of the previous algo- .
rithms tried to reduce the size of another source relation in the join operation, relation -. ,-
R0. Since relation R is used in each iteration, its size perhaps has more influence on "
the performance of the transitive closure algorithms. . ... -

Our first optimization strategy is to eliminate dynamically those tuples from rela-
tion R 0 that will not generate tuples in the result relation in the later iterations. The
example in figure 5.8 is used to explain the strategy.

R0 consists of 13 tuples. For the semi-naive algorithm, the first iteration joins R0
with R0 and generates AR 1=RoOR0 , which consists of 12 tuples. Traditionally, the
second iteration will join ARl with R 0 again to generate AR 2 =AR 1  Ro. However, if S
we examine the join process, we can find that some tuples in R0 will never introduce

0AM
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Iteration 0 Iteration 1 Iteration 2
R0  R AR1  Rn AR? Ro2

(1,2) (1,2) (1,5) (4,8) (1,7) (4,8)
(1, 3) (1, 3) (1, 6) (5, 6) (7, 4) (5, 6)
(1,4) (1, 4) (1,8) (6, 4) (3,7) (6,4)
(3, 4) (2, 5) (3, 8) (6, 7) (7, 7) (6, 7)
(6, 4) (2, 6) (3, 6) (6, 8) (7, 8) (6, 8)
(2, 5) (3, 4) (7, 6) (7, 5) (2, 8) (7, 5)
(3, 5) (3, 5) (2, 4) (5, 5)

(7, 5) (4, 8) (2, 7) (5, 6)
(2, 6) (5, 6) (2, 8)
(5. 6) (6, 4) (5, 4)
(6, 7) (6, 7) (5, 7)
(4,8) (6,8) (5,8)
(6,8) (7,5) (6,5)

Figure 5.8: An Example of Computation of R+.

new tuples. These tuples, in the column of R0 above the dotted line, can actually be
0 1

removed from R0 without affecting the final result. A new relation R0 formed in this S

way can be used in the second iteration to compute AR 2. In this example, R0 consists
of only 6 tuples, less than 50 percent of R0 .

Figure 5.9 lists algorithm REDUCE, an algorithmic description of the suggested
strategy for reducing the size of relation R0. The notation used is similar to that used
in the semi-naive algorithm: two relations to be joined in iteration i are AR. and R.

th0
AR. contains new tuples in the transitive closure generated in the (i-1) iteration.
Relation R R0, and R' is reduced to R , which is to be used in the next itera-
tion to join with AR, +1 Note that algorithm REDUCE as described above is for gen-
eral cases. For a particular algorithm, for example, the semi-naive algorithm, the remo- 0
val of tuples from AR is only needed for the first iteration of join R0 and R : for the
semi-naive algorithm, AR, only contains newly generated tuples which are not in R0.

Graphically, removing tuples as described in the algorithm is the process of remov-
ing outgoing edges from nodes satisfying the following conditions: (i) there is no incom-
ing edge to the node, and (ii) all outgoing edges are already inserted to the relation.
The second condition is automatically satisfied because the original relation R0 is copied
into the result. Since there is no incoming edge to the node, no more paths can be gen-
erated via the node, and its removal from the graph will not lose results. In the above
example, node 1 has no incoming edges; after the edges started from it are inserted to
the result relation, it can be removed along with those edges. This removal of node 1
further causes the removal of nodes 2 and 3, since only incoming edges for nodes 2 and

% % r t. . .'% % % -
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Algorithm REDUCE:
Input : Two intermediate relations 6R and R
Output : Relation R 0

+ 1

begin 'p

repeat
foreach tuple t E R' do

begin
if AR 3Ot = 0
then begin

remove t from R0; S

if tE.AR,
then remove t from AR,;

end;
end;

until no tuple can be removed from R0;

end;

Figure 5.9: Algorithm Reducing the Size of RO.

3 are from node 1.

For large database relations, it will be very expensive if algorithm REDUCE is
implemented as it is described in figure 5.9. In the next section, one possible implemen-
tation is described which modifies the hash join method to dynamically reduce the size

of R e without heavy overhead. Another point we would like to make is that this stra-
tegy has some flavor of using join indices to compute the transitive closure [Vald86]:
only those tuples which are joinable are kept for computation. However, join indices
are static data structures and do not change for different iterations of the computation.
In our algorithm, size reduction is dynamically performed. We have the benefit of
reducing the data size without the disadvantage associated with join indices: the costs
of generating the join indices and maintaining them in a database; the difficulty of
determining which relations and on which attributes the join indices should be main-
tained; and the complexity to determine whether it is beneficial to use the join indices. -I. e.

5.6.2. Strategy 2: Speed Up the Convergence

The number of iterations needed to complete the transitive closure computation is -..-','

another source of optimization. The logarithmic algorithm and smart algorithms out-
perform the semi-naive algorithm since they generate more tuples in one iteration and
fewer iterations are needed. Intuitively, the source relations are only read from the
disks once in one iteration. The more tuples generated in one iteration, the fewer

~N 7 N
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number of iterations needed to complete the computation. Thus, one of the major pro-
cessing costs, disk I/Os for reading in the source relation, is reduced. The CPU cost,
such as rehashing, if hash join is used, is also reduced partly. The savings gives the log-
arithmic and smart algorithm better performance [Vald86, Ioan861. 0

The recursive algorithm is an extreme along this direction: when a tuple is pro- "- %,
cessed, all tuples derivable from this tuple are generated. The performance of the algo-
rithm is irrelevant to the maximum path length of the transitive closure of the relation. NN*%
If there are some very long paths in the transitive closure, this algorithm will outper-
form the iterative algorithms. The limitation of this algorithm is that, in order to find
all tuples derivable from a tuple, the processing has the flavor of the depth-first search.
In cases where the size of memory is much smaller than the relation size, a large
amount of disk access is required, which leads to bad performance [Lu87].

The strategy suggested here combines the iterative methods with the recursive algo-
rithm. For each pair of buckets which can be held in main memory, all tuples in the
transitive closure derivable from them are generated. These tuples are output either to
the corresponding buckets for further processing or to the final result relation.

Algorithm PROCESSING in figure 5.10 describes the algorithm of processing the
I bucket pair in the k iteration using the strategy. AR, contains the tuples gen-tk

erated in iteration k -1 and is hashed on the second attribute. R0, is the correspond-
0*ing bucket partitioned on the first attribute. R is the 1i bucket of the result relation

R, the transitive closure of Ro. Function GetBucketNo() returns the bucket number a
tuple belongs to when hashing on the second attribute. The algorithm works as follows:
for each tuple t(a,b) in AR, it finds all matching tuples from Rok New tuples are AIN0

formed and hashed on the second attribute to find the buckets to which the tuples
belong. The tuples falling to the current bucket are used to further probe the hash
table. Tuples of other buckets are output to the corresponding buckets. They are ,.,,

either processed in the same iteration (if the bucket has not been processed yet), or pro-
cessed in the next iteration. For each tuple, the processing will terminate when cyclic
data (a tuple t(aa) is obtained) is encountered, or no more matching tuples can be

kfound in R .o

We use a simple example to explain the algorithm. Relation R0 shown in figure
5.11 consists of 8 tuples. They are partitioned into two pairs of buckets, (Rb 0  ,)"""

.--and (R 0 ,Ra0 ), on attribute b and a, respectively, because of the limitation of
22 bbmemory size. A tuple t(ab)ER 0 iff hash(t.b) in {1, 2, 3} and t(a,b)ER bo

0 iff

hash(t.b) in {4, 5, 6}. Partitions R 0 and R0 are formed in a similar way.
02 b

The computation starts with the first pair of buckets, AR R R , and

R0, = Ra 0,. Algorithm PROCESSING is applied and the result tuples are hashed on J.P

the second attribute. Those tuples with hash values in {4, 5, 6} (five of them in this
example) are appended to the bucket AR0 (as shown in the figure uiider the dotted

2Sline). Other tuples (in this case, three ) are output as the result. The second pair of %-X
buckets is processed in a similar way. The difference is that the tuples generated with

,,N %, .--,.MIN,,,.,,
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Algorithm PROCESSING:
Input : A pair of buckets, AR -, R,

Output : Tuples in the transitive closure of R0, which are inserted
into corresponding buckets

begin k

foreach tuple t in AR, do
probe: 

k
if there is a match tuple t' in R 0 k with t.B =t'.A

then begin
form a new tuple newt(t.A,t'.B);
j = GetBucketNo(t'.B);
if 0 > jik-
then output newt to AR,-,
if (j < i)
then output newt to AR;

if (j = i)
then if (t.A * t'.B) ow

then goto probe; 0%
else output newt into R,;

end;
end;

Figure 5.10: Algorithm PROCESSING.

the hash valie of the second attribute in {1, 2, 3} are used to form AR 1 , which is used %

in the next iteration. 1  .

This strategy can be explained intuitively with the graphic representation of R0 as h,

follows: The hashing technique partitions the directed graph, G into a number of sub-

e 00
graphs Go,. An edge e: a-.b is in subgraph G O ifbi nbce .Fr aheg .:,..

Go. ( a-b ), algorithm PROCESSING finds all paths that start from node a and are %

contained in subgraph Go,. If there is a path leading to a node c in another subgraph, "
Go, the output of a tuple (a,c) to bucket AR 6 during the processing can be viewed asA%

inserting a node a and an edge a-c in subgraph G. Therefore, any path starting "._ or

from node a in subgraph G and ending with another node b in subgraph Go can bej-,e

1 In the example we did not show the efiminatin of duplicates: duplicates in the

result tuples are eliminated before the next iteration, as when using the semi-naive
algorithm.

"" i . - - • -
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Iteration 1 Iteration 2

AR0 Ro R, AR 1  R R 2
__ _ _ _ _ _0 _ _ _ _ _ 0 t

(6,1) (1,2) (6,2) (3,1) (1,2) (3,2) N
(1, 2) (1,5) (6, 3) (4, 1) (1,5) (3, 3)
(2, 3) (2, 3) (1, 3) (5, 1) (2, 3) (4, 2)

(5, 3) (3, 4) (2, 1) (3, 4) (4, 3)

(4, 4)
(5, 2) \ . _
(2, 2)

(3, 4) (4, 6) (3, 6) ------ (4, 6)
(1, 5) (5, 3) (1, 6) (3, 5) (5, 3)
(4, 6) (5, 6) (1, 1) (4, 5) (6, 1)

(5, 6) (6, 1) (6, 6) (5, 5)
(2, 6) (2, 5)

(6, 4)
(6, 5)
(1,4)

(2, 4)
( 5 , 4 ) __

Figure 5.11: An Example of U!ing Strategy 2.

internally found in subgraph Go, later on.

The effectiveness of this strategy is clearly shown by the example in figure 5.11.
The longest path in the transitive closure includes five edges (1-2-3-4-6-1), which
requires five iterations for the semi-naive algorithms and three iterations for the ioga- .. :
rithmic algorithm. However, only two iterations are needed using our strategy.

From the example, we can also see some savings other than the reduction of the ..

number of iterations. In the previous iterative algorithms, new tuples generated during
computation have to be read in at least once to join with the original relation. In our
strategy, the result tuples corresponding to the paths which do not cross the border of
subgraphs are not read in again. In the example, among 23 tuples generated in the
transitive closure (excluding the original tuples in R0 ), only 12 tuples are written out
and then reread in for later processing. ,,

5.6.3. Algorithm HYBRIDTC

In this section, we describe a hash-based transitive closure algorithm. It integrates
the strategies described in the last section. Since this algorithm combines the merits of .. ,.

both iterative and recursive methods, we name it aigurithm HYBRIDTC (a hyortd tran-
sitive closure algorithm). ,.r

* NAN
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5.6.3.1. The Algorithm

Algorithm HYBRIDTC;
Input : relation R0

Output: relation R, the transitive closure of relation R 0

begin
partition R0 on Ro.A and Ro.B into

buckets Ro a and Rb (")

for i : 1 to N do begin
AR :=Ro.R, Ro.0 , :--R 0 , '

end;
k := 0;
repeat

k := k + 1;
for i := I to N do

k

if.- % ", o -.if(AR,* 0 ) and (R 0 , #0 ) .*...-. -

then ProcessingBucket (i, k, ARi, R0.

else ARt := 0;
for i := I to N do begin

k

until all AR's are empty;
R u R,;

end. S

Figure 5.12: Algorithm HYDRIDTC.

The algorithm is shown in figure 5.12. Relation R0 is partitioned into two sets of
buckets on attribute Ro.A and Ro.B as in traditional hash joins. These two set of
buckets are denoted by Ro and Ro (1 < i < N), respectively. We will use sub- ,g .

scripts to denote the bucket number and superscripts to denote the iteration number.
Let ARk contain the new tuples in the transitive closure that belong to bucket i (
hashed on attribute B) generated during the (k-i) iteration, and R0 & be the reduced

bucket i of R after (k-1) iterations. The bucket pair processed in the k iteration isA Pt 1 b 1 x *'A:e
AR, and R 0 , where AR , -R 0 ,and R0  - R0 . .

After the relation is partitioned, the ARs are initialized to be the corresponding .".

set of buckets. The processing of bucket pairs proceeds iteratively until all AR, s are
empty for the k"' iteration. Since AR,k contains the most recently generated tuples, '..

and R0 . is also reduced during each iteration, procedure ProcessingBucket is only

%, , , %' . ' % '
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hoot';

called when both of them are nonempty. During the processing of bucket pair AR1 k
k '

aud R 0 , some result tuples are inserted into R,, and others are inserted to other buck-

ets AR, (j * i), as described in algorithm PROCESSING. After each iteration k,

duplicates are eliminated from the AR ks which are going to be used in the next itera-

tion. s hger

procedure ProcessingBucket ( bucketno, iteration :integer;
deltabucket, bucketRO : buckets ); S

begin
BuildHashTable(bucketRO);
foreach tuple in deltabucket do

ProcessingTuple(bucketno, iteration, tuple);
foreach tuple in the hash table do 0S.

if tuple.mark
then OutputBucketRO (tuple, bucketno, iteration+l):

end:

Figure 5.13: Procedures ProcessingBucket.

The union and duplicate elimination procedures are the same as any transitive clo-
sure algorithms, and we are not going to discuss them here. Figure 5.13 and Figure
5.14 give one possible implementation of the procedures ProcessingBucket and Proces-
singTuple. In this implementation, a hash table is constructed for R 0& as in the tradi-

tional hash join algorithms. However, one extra field "mark" is added to the hash table ,.

entry. It is used to mark the tuples actually participating in the join. Procedure Pro-
cessingTuple is called for each tuple in deltabucket (AR). After all tuples have been

processed, only those marked tuples are written back by calling procedure OutputBuck-
etRO to form R 0 -,.

Procedure ProcessingTuple implements strategy 2 using a stack of tuples. Push-

Stack, PopStack, and EmptyStack are procedures and functions manipulating the stack. -"-

The tuple on the top of the stack is used to look up the hash table to find matches. ....

Those matching tuples can be divided into three cttegories according to the bucket it
belongs to. The bucket number of a tuple is returned by function GetBucketNo. The
tuples of other buckets are inserted to AR buckets by procedure OutputDelta. The

tuples of current processing buckets are pushed onto the stack for later processing.
This process continues until the stack is empty.

The advantage of using a stack is its simplicity. Another advantage, perhaps a
more important one, is ease of memory management. If there is a large number of
tuples derived from some particular tuple in the bucket which leads to a full stack, we

can just write part of the bottom of the stack on the disk and reread it back in to free
memory space later on for continuing the process. Thus, algorithm HYBRIDTC does

not introduce new issues in memory management. Techniques of partitioning a relation

111j
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.o

procedure ProcessingTuple( bucketno, iteration: integer;
inputuple : TupleType )

var currenttuple, matchtuple, newtuple :TupleType;
newbucketno : integer;

begin
Push Stack (inputtup le);

while (NOT EmptyStack) do

currenttuple := PopStack;
if (currenttuple.a < > currenttuple.b)
then begin

matchtuple :=LookUp(currenttuple);
foreach matchtuple do%

begin
if (NOT rnatchtuple.mark)
then matchtuple.mark :=true;
newtuple := FormTuple (currenttuple.a, matchtuple.b);
newbucketno := GetBucketNo(newtu pie);
if (newbucketno = bucketno)
then PushStack(newtuple);
if (newbucketno < bucketno)
then OutputDelita( newtuple, newbucketno, iteration+ 1);
if (newbucketno > bucketno)
then OutputDelta(newtuple, newbucketno, iteration);

end;
end-,

Out putResulIt(bucketno. currenttuple);
end-,

end; (*procedure ProcessingTuple *

k *
Figure 5.14: Procedure of Processing a Tuple in AR.

*into buckets and of handling overflow buckets developed in hash join methods can be
directly used.

Now, we prove the following Lemma:

Lemma: Algorithm HYBRIDTC correctly computes the transitive closure of a database
relation.

Proof. The proof of the Lemma consists of two parts. First, we have already explained
in Section 5.6.2 that the removal of unmarked tuples, the tuples not participating in the
join in the current iteration, will not lead to loss of the result tuples. Second, we prove
that the algorithm will find all tuples in the transitive closure. In other words, the

--. z'Z Z 'Z~
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algorithm can find all paths in graph Go if relation R o is represented by Go. Let p be a ,%

path of graph G0. It is obvious that, if all nodes on path p are contained in one sub-
graph of Go, the path can be found by the algorithm when the corresponding buckets

are processed. It is more likely that paths cross over the border of subgraphs. Let e,e

(a-b) E Go, be an edge, and the end nodes of e be a and b, and they are in two
different subgraphs, Go, and Go, respectively. Then tuple (a,b) is in bucket j. During

processing of bucket j, all paths of p starting from b and ending at some nodes y, in
G can be found, and a set of tuples { (b, yj), ... , (b, y,), ...} is generated. If there0,

* are some paths starting from some node x and ending at node a, the processing of

bucket i will not only generate a set of tuples {x,,a}, but also generate a set of tuples
{xi,b}. They are inserted into bucket j. Thus, in the next iteration of processing.'-..

bucket j, all paths starting from node x, and ending at node y can be found. The 0

proof can be extended to the paths across any number of subgraphs.

5.6.3.2. Performance Comparisons

Qualitatively, algorithm HYBRIDTC is expected to improve bad performance in
the following ways:

(1) Reduce the number of iterations.

For the semi-naive and logarithmic algorithms, only paths with certain lengths can
be found in each iteration. The number of iterations needed to complete the com-
putation is determined by the depth of the transitive closure, that is, the longest
path. For algorithm HYBRIDTC, paths contained in a subgraph can be generated
in a single iteration no matter how long it is. Furthermore, the later processed
buckets make use of the new tuples generated by the buckets which have been pro-
cessed in the same iteration. As a result, the number of iterations needed largely
depends on how the relation is partitioned and is usually less than the depth of the
transitive closure. The reduction in the number of iterations at least reduces the % '

disk I/O needed to read in R 0 and CPU time for constructing the hash tables.

(2) Reduce the number of disk I/Os needed to read in the delta relations.

For both the semi-naive and logarithmic algorithms, the result tuples generated in S

one iteration have to be written to the disk and read in again in the next iteration.
However, in algorithm HYBRIDTC, the tuples generated in one iteration need to
be read in again only if they belong to other buckets. Again, the extent of this
savings largely depends on the data distribution and the partitions.

(3) Reduce the size of the source relation.

The source relation used to compute the transitive closure is dynamically reduced
during processing, compared to the constant size in the semi-naive algorithm and
no optimization in the logarithmic algorithm.

Any quantitative analysis of algorithm HYBRIDTC is difficult, since the perfor-
mance will vary dramatically with different data characteristics and the partitioning. In

. %,~ \ .~ N .%e.' ,-
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order to validate our qualitative analysis above, we made some comparisons between the
performance of the semi-naive algorithm, the logarithmic algorithm, and algorithm
HYBRIDTC as follows:

(1) The data model proposed by Bancilhon and Ramakrishnan [Banc86] is used. We ' .
examined two simple cases, lists and trees having fanout 2.

(2) We use the number of tuples read in during the computation as the performance
measure for the comparison. This number roughly reflects the total costs of the
computation. The larger the number is, the more disk I/O cost and CPU cost for
constructing the hash tables. Furthermore, we assume that duplication elimination
costs are the same for all three algorithms, and they are not taken into account.

(3) Some of the implementation details are ignored. For example, for the semi-naive .-w, ,
algorithm and the logarithmic algorithm, we only calculate the total number of
tuples of two relations joined in each relation. This number is therefore indepen-
dent of the memory size and the number of hash buckets. We actually assume
that the pipeline method is used to reduce the number of disk I/Os [Lu87]. That
is, each tuple in the transitive closure only counts once: no separate partition
phase is assumed. S

With the above assumptions, the total number of tuples for the semi-naive and the
logarithmic algorithms are calculated as follows:

For the semi-naive algorithm, h iterations are needed to generate all tuples in the
transitive closure. One more iteration is actually completed, resulting in the termina- S

tion of the computation. During each iteration, there is only one join. The total N
number of tuples participating in the join operations is:

Nem naive = Ri+(h+)l:Ro'

The number of iterations needed in the logarithmic algorithm, k, is determined by
k = lg(h + 1) - 1. For each iteration i, there are two joins: the join of 2 with R',

and the join of the result tuples in the transitive closure so far, which is I R', with

the newly generated relation R i . The total number of tuples participating in the com-

putation is: %
k 2'

N 0garnthmic = 1 (2*R; + I R')

The number of tuples read in algorithm HYBRIDTC is obtained by simulation: a
program was coded to implement the algorithm in memory. A random number genera- .,
tor was used to assign bucket numbers for tuples. The corresponding buckets were then
joined iteratively to compute the transitive closure. When each bucket pair was pro-
cessed, the number of tuples in the buckets was counted. The total number of tuples •

read in could thus be obtained. In the simulation, we used a small bucket size (typi-
cally each bucket contains 10 tuples). Therefore the simulation actually does not favor

algorithm HYBRIDTC.,i



%
%%

- 9s _7"O

1.0-

Logarithmic/semi-naive0.8- U.

0.6

0.4 0

Hybrid/semI-naIve

0.2

0.0 I I I I I I 0
100 200 300 400 500 600 700 8oo 900

Ust Length
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Figure 5.16: The Performance Comparison 2 ( R0 : Tree).

The result of this comparison is shown in figures 5.15 and 5.16. The lengths of the '.'

lists vary from 100 to 1024. The tree depth varies from 4 to 12. The comparison uses
the number of tuples in the semi-naive algorithm as a reference. The ratio of " :y--

logarithmic/semi-naive and hybrid/semi-naive are computed. The results in the figures-%

show that algorithm HYBRIDTC consistently outperforms the other two algorithms.
For lists, the ratio hybrid/semi-naive is about 50 percent. However, the ratio of
logarithmic/semi-naive is about 60 to 70 percent. This result is expected as we dis-
cussed above.
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In both figures, the ratio of logarithmic to semi-naive is not monotonic. Some-
times, the semi-naive algorithm even out erform the logarithmic algorithm. This hap-
pens when the depth is just larger than 2F. This is also observed by loannidis JIoan86].
The explanation is that the number of iterations of the logarithmic algorithm is deter- .
mined by the depth. When the depth increases to past 2 , the number of iterations
increases by 1. That is, another iteration is required to complete the computation to
find just a few more tuples. That is one disadvantage of the logarithmic algorithm.
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Figure 5.17: The Performance versus Number of Buckets ( R0 : List).

We did not compare the performance of algorithm HYBRIDTC with the recursive
algorithm. Its performance becomes much worse than the logarithmic algorithm when
the memory size is small, compared with the relation size [Lu87]. However, algorithm
HYBRDDTC still performs better than the other two algorithms, even in this case. Fig-
ure 5.17 illustrates the number of disk I/O tuples with the different number of buckets
into which the relation is partitioned. When we increase the number of buckets, which
simulates smaller and smaller bucket size, the number of disk I/O tuples also increases.
However, it is still less than what needed in the other two algorithms. S

5.6.4. Conclusions

We have discussed two strategies which optimize the computation of the transitive
closure of a database relation. We also presented a hash-based algorithm that
integrates these two strategies together. The algorithm is easy to implement in real sys-
terns by modifying the traditional hash join methods. A simple performance analysis
was conducted, and the results indicate that the new algorithm does outperform previ-
ous algorithms. This performance analysis is far from complete. However, it does pro-
vide the evidenc- that our new strategies in optimization are in the right direction.
Further detailed implementation in relational database systems and performance
analysis is one of the possible projects for future work.

. , -.. .. .%.,. ,""'%.. . " '. " .'t''''''El :"
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Besides better performance, the algorithm has some other advantages. For exam-
pie, the algorithm is easy to extend to become a distributed or parallel algorithm. In
algorithm HYBRIDTC, there is no inherent sequence among the iterations. For other
algorithms, the result of an iteration is used as the input of the next iteration. In the
logarithmic algorithm the second join in each iteration can only be started after the
first join finishes. For the distributed version of algorithm HYBRIDTC, each processor
or node can work on one or more pairs of buckets. The tuples generated at one proces-
sor are either processed locally or sent to other processors. The only synchronization
needed is the final termination of the whole computation.

This algorithm can be further optimized along the directions proposed. One possi-
bility is as follows: the new tuples generated are not only hashed on the second attribute ... '.,

and inserted into the corresponding buckets, but also hashed on the first attribute and
inserted into the second relation in the join (R0 ). Thus, more tuples can be generated

in each iteration, and performance improvement can be expected. However, it is some-
what difficult to implement in real system since the size of R0 ,k will change during pro-

cessing. Some sophisticated memory management strategy and bucket overflow tech-
niques have to be developed.

Algorithm HYBRIDTC is a basic algorithm for computing the simple transitive clo- 0

sure of a relational database. Interesting future work is to use it as a base for extending
a relational database management system to include transitive closure as one basic
operation. To achieve this, the algorithm should be further augmented so that more
complicated transitive closure queries can be processed efficiently [Agra87].

N
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CHAPTER 6 ,

Parallel Architectures for Database Management 0

As enterprises use database management systems to manage more of their informa-
tion, the size of existing databases is increasing rapidly. Databases of over 100 giga-
bytes now exist; terabyte databases, if they do not exist now, will appear in the next
few years. Managing these large databases will require more powerful architectures
than are in common use today. Technology now permits the construction of multipro-
cessor database management architectures with tens or hundreds of processors, a giga-
byte or more of main memory, and disk capacity in the terabyte range. The Teradata
DBC/1012 is an example of such an architecture [831.

The join operation is an important operation for relational database systems, and
will become even more important as logic-based inference capabilities are added to these
systems. In this chapter, we describe a number of multiprocessor join algorithms. The
algorithms use sort-merge and hashing techniques, and are highly parallel and pipelined.
The algorithms are designed to execute on a multiprocessor architecture that is
parameterized in the degree of memory sharing, so that tightly coupled, loosely coupled,
and intermediate architectures can be modeled. Other architectural parameters include
the number of processors, number of disks, amount of main memory, and interconnec-
tion network bandwidth. We model the performance of the algorithms analytically to
determine elapsed time, resource utilization, and other quantities as functions of the
workload and architectural parameters. The join algorithms overlap computation, disk
transfers, and interconnection network transfers. The analysis models this overlap and
identifies bottlenecks that limit the algorithms' performance. We do not model multiple
simultaneous join operations, and therefore do not compute system throughput. Based
on this analysis, we answer the following questions:

" How do the algorithms compare in performance? When does one outperform
another?

" How does response time vary as a function of the architectural parameters?

" How does response time vary with the workload?

" Does shared memory help algorithm performance? To what extent? r

* What are the architectural bottlenecks? How could they be alleviated?

In the following sections, we describe the multiprocessor hardware architecture and
the join algorithms, develop cost formulas for the algorithms, compare the algorithms'
performance under for various workloads and hardware configurations, and summarize
the results of our investigation.
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6.1. Multiprocessor Data Management Architecture I.,

Many specialized architectures have been proposed for high performance relational
database management. These architectures include logic-on-disk machines
[Schu79, Su79], VLSI-based special purpose processors [Kits83, Shib841, and loosely- and 0
tightly-coupled multiprocessor architectures [DeWi79,83,DeWi86]. We believe that
commercially viable database machines must be constructed principally from commo-
dity components such as general purpose microprocessors and conventional disk storage
devices. This belief is based on the superior price/performance and reliability of com-
modity components compared to custom components. Therefore, we consider in this
study a multiprocessor architecture with the following characteristics:

* The architecture uses a large number (tens to hundreds, at least) of processors to
obtain the necessary performance. This assumes that the processors can be used
effectively. The Teradata DBC/1012 appears to have demonstrated that this is
possible.

" The architecture can use large amounts (hundreds of megabytes to hundreds of
gigabytes) of semiconductor memory. In the next few years, this amount of
memory will be feasible as well as cost-effective.

" The architecture can support an aggregate disk capacity of a terabyte or more; .
only a small fraction of the total database can be accommodated in main memory. 4-
We assume further that many of the individual database relations will typically not -,6

fit in main memory.

Figure 6.1 shows a block diagram of our architecture. The architecture consists of a set
of clusters linked by an intercluster bus or ring. Each cluster consists of a set of proces- -
sors, a shared memory bank addressable by all the processors in the cluster, and a set of
disk storage units and associated controllers. Processors read and write the shared
memory in units of a few bytes, with little contention. The processors may have local
caches to reduce memory contention, but this is invisible to the data management
software except for possibly the need to flush the cache occasionally. Transfers between
disk and memory, and between cluster memories over the bus, are a page at a time,
where a page is a few kilobytes or more in size. A specific configuration of this architec-
ture is determined by the following parameters:

NC number of clusters
NP number of processors per cluster '.

ND number of disks per cluster
M pages of main memory available per cluster

PG page size in bytes

These parameters can be varied to determine the effect of architectural changes. For
instance, if the CPU is a bottleneck, more CPUs can be added per cluster or each CPU
can be made faster. (CPU speed is defined in terms of execution times for basic opera-
tions associated with the join algorithms, such as tuple move.) If the disk is a
bottleneck, the page size can be increased or more disks can be added per cluster. We
have assumed that the network is a single bus, so the only architectural cure for a1.%7%7 p

N,.~ %
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Figure 6.1. Multiprocessor Data Management Architecture

network bottleneck is to increase the network transmission rate.

6.2. Join Algorithm Descriptions N.

The problem that each join algorithm solves is the following: given relations R and
S, compute their natural join on an unspecified pair of attributes, giving output rela-, -

tion 0. R and S are assumed to be uniformly partitioned across all disks on all clus-
ters. The partition is not determined by the values of the join attributes, so that tuples
must be transmitted between clusters to perform the join. Let R, and S, denote the
fragments of R and S, respectively, stored on the disks at cluster Ci . The result of the
join can be partitioned across the clusters; it need not be collected on one cluster. No
projection is performed on the result except to remove the redundant copy of the join
attribute, so no duplicate tuples are produced.

Assume without loss of generality that S is larger (in bytes) than R. Some of the
algorithms transmit only one of the relations over the interconnection network; they
transmit R, the smaller relation.

Each algorithm consists of one or more phases. The phases are executed one after
another; the activity in one phase completes before the next phase starts. Within each N

% %-
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phase, a fixed set of processes execute in parallel, passing data to each other (possibly

over the network) and reading from and writing to disk in pipelined fashion. Each clus-
ter has dedicated send and receive processes to act as intermediaries between communi- S

cating processes on different clusters.

Processes communicate with each other via streams of data pages. Each process

may have several input and output streams. We chose this granularity of communica-
tion to minimize the interprocess communication and synchronization overhead. The
cost of passing a page of data between processes on the same cluster ,s assumed to be ...

negligible in comparison to the cost of producing or consuming it. In some algorithms,
processes on the same cluster read concurrently from the same page buffer or other
memory area; concurrent reading and writing is not used because it would require a
high synchronization overhead. The interprocess communication system uses flow con- '-Ii

trol to match the speeds of the producing and consuming processes and to prevent
buffer overflow. Enough buffers are allocated to allow all processes to execute con-

currently.

We present six algorithms here. The algorithms come in pairs: the first of each

pair transmits tuples from both R and S over the network, while the second transmits
only tuples from R, reducing communications cost while increasing computation. The
two algorithms comprising the first pair are parallel versions of the the basic sort merge

join; they are most similar to algorithms described in [Bitt83, Vald84]. The other four
use hashing to decompose R and S into buckets, and then use either a sort-merge or a

hashing technique to join each pair of buckets. They are similar to algorithms
described in [Kits83,DeWi85].

6.2.1. Parallel Sort Merge Algorithms ;4 d.-

6.2.1.1. Parallel Sort-Merge Join Type 1 (SMJ1)

In the basic sort-merge join, each relation is first sorted on its join attribute.

Then, the two sorted relations are merge-joined. The merge-join operation matches ..?,

tuples in the two relations by their join attributes, and generates the result tuples. It is

pipelined much like a merge operation, except that a tuple in either input relation can .. "-
be used to construct multiple output tuples. .

Previously published algorithms have presented parallel algorithms for the sort
phase. Bitton et al. describe join algorithms employing a parallel binary merge sort

and a block bitonic sort [Bitt83]. The former can be improved, memory permitting, by

using a general multi-way merge [Vaid84]. Both algorithms start by generating a set of

sorted runs from the original unsorted relation. These runs are generated using a

main-memory sorting algorithm or a priority queue. The latter is preferable because it
generates runs that are on average twice the size of the main memory dedicated to the

priority queue, and hence twice the size of the runs generated by a main-memory sort-

ing algorithm [Knut73]. In addition, run generation by priority queue is inherently a

pipelined operation, permitting better overlap between CPU and I/O than run genera-
tion by main memory sorting. Once the runs are generated, the final sorted output is

- 11
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generated either by merging the runs or by using a block bitonic algorithm.

The sort merge join algorithm just described parallelizes the sort operations. but
the final merge-join operation is still performed sequentially over the entire length of 0
both relations. In the algorithm described below, the final merge-join is partitioned into
multiple parallel processes so that no single process must pass over all of either relation.-
This is accomplished by generating NFRUNR final runs of relation R and NFRUN5

final runs of relation S, and merge-joining each of the final runs of R with each of the
final runs of S, all in parallel. One of these merge-joins is executed at each cluster,
leaving the joined relation 0 partitioned across the clusters. There is an obvious con-
straint

NFR UNR"NFR UNs = NC

For convenience in describing the algorithm, let the clusters be named Cii for 0

1si5NFRTNR and isjy-NFRUNs  . The clusters are logically arranged as a two-
dimensional array with NFRUNR rows and NFRUNs columns, though their physical
interconnection is unchanged. (Assume for now that there are at least two rows and
two columns. The degenerate case is discussed below.) The portion of R stored on C..
is called R,,.. .-

The algorithm has three major phases.

Phase 1: At each cluster C ,, NP processes generate initial runs of Rij and write them
back to disk. (NP is the number of processors per cluster.) Each process has its own
priority queue for generating the runs. ____

Phase 2: Each cluster C., generates initial runs of S,, in the same way.

Phase 3: Merge the initial runs of R into NFRUNR final runs, and the initial runs of

S into NFRUNs final runs. Also, merge-join each final run of R with each final run of
S to produce the result. The merging and merge-joining form a five-stage pipeline. S

The final runs of R are produced in two stages. The first stage of the merge occurs at
each cluster CU, where a merge process merges all initial runs of R,, into a single sorted
version of Ri.. One of the clusters in each row, the row pivot cluster, executes the
second stage, merging the sorted R,, 's into a final sorted run for the row. The final
runs of S are generated in the same way except that a column pi,'ot cluster executes the. 0

second merge stage for clusters in its column. The row (column) pivot clusters send
their final runs to the other clusters in the row (column); each cluster merge-joins the ,
final run of R for row i with the final run of S for column j to produce 0, a frag-
ment of the final result. By choosing C,, as the row pivot cluster for row i, and C,®e ,

as the column pivot cluster of column j, no cluster is both a row and a column pivot.

6.2.1.2. Parallel Sort-Merge Join Type 2 (SMJ2) P , 4.-1% -

It may be wasteful to sort both relations completely before merge-joining them,
especially if the join selectivity is low. At each stage of the merging process, tuples are 7
being processed that may not participate in the final join. The following algorithm - 0%

makes only one pass over the larger relation (S). In the description, we revert to single %

'".. - " % - , ,- - . '.
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subscripts on clusters and relation fragments.

The algorithm has three phases.

Phase 1: Generate local runs of R i at each cluster C,, as in algorithm SMJ1. -

Phase 2: Merge these runs into a single sorted version of R. This is done with a two-
stage merge. Each cluster executes the first stage, merging the local runs into a sorted
version of R,. The results from each cluster are sent to C, which executes the second

stage of the merge and broadcasts the resulting sorted R to all clusters. Each cluster
writes this run to disk.

Phase 3: Generate runs of S at each cluster using a priority queue. However, instead i.-

of writing these runs to disk, merge-join them immediately with R to produce the out-
put tuples. Let there be NP processes at each cluster executing the run generation
stage, paired with an equal number of processes executing the merge-join stage.

The advantage of this algorithm is that it produces the join results with one pass
over the S relation. When S is large, this presumably saves much of the i/O and pro-
cessing that would otherwise be required to produce the final runs of S. The disadvan-
tage is that R must be read repeatedly from disk to be joined against the runs of S. (If
R fits entirely in main memory, this is unnecessary. However, hash-based algorithms
may be superior in this case. We do not attempt to fit all of R in main memory.)

6.2.2. Hash Partitioning Join Algorithms

These algorithms all use a hash partitioning technique described in [DeWi84] to
decompose a join of two large relations into a sequence of smaller joins. They partition
tuples of R and S into batches RB 0, .. . , RBNBATCH and SBo,... , SBNBATCH and

join the respective batches. The partitioning is based on the value of a hash function
applied to the join attribute, so that joining the respective batches generates all
required result tuples. The batches are sized so that each batch join can be performed •

in main memory. Batches 1 N....N BA TCH of each relation are written to disk during
partitioning. Batches RB o and SB o are joined during or immediately after partitioning, %
depending on the particular algorithm. If sufficient memory is available, NBATCH=O:\.
and no batches must be written to disk. Otherwise, batches 1, ... , NBA TCH are read
from disk and joined one after the other. The number of batches can be computed
from the size of the relations and available memory; see Section 6.3. This partitioning
technique minimizes the amount of intermediate data that must be written to disk.

All of the algorithms partition the batches further into buckets and join the buck- .
ets within each batch in parallel. Two of the algorithms, HSM1 and HSM2, join respec-
tive buckets using a sort-merge technique similar to the GRACE algorithm [Kits83]. 7
The other two, HH1 and HH2, use the in-memory hash table technique described in
[DeWi84,Brat84]. The type 1 algorithms HSM1 and HSM2 transmit both R and S over
the network; the type 2 algorithms HSM2 and HH2 transmit only R, the smaller rela-
tion.

, +++ + . +..o.
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6.2.2.1. Hash Based Sort Merge Join Type 1 (HSM1)

This algorithm partitions each batch of R and S further into NC'NPo buckets

that are joined in parallel by NP. . processes on each of the NC clusters. A hash func-

tion applied to the join attribute of each tuple determines the batch, cluster, and pro-
cess in which it will be joined. Each pair of buckets is joined using a sort-merge join.

Let RBij denote the subset of RB,. derived from R i, the subset of R stored at Ci.
Define SB,, similarly.

The algorithm has three phases.

Phase 1: At each cluster C,, NP0 n processes read R, from disk a page at a time.

The assignment of pages to processes is arbitrary. The processes hashes each tuple in a
page to determine the batch, cluster, and process in which it will be joined. If the tuple

is in batch j*:0, it is placed in a buffer to be written to a disk file for RB,,. If the tupleQe

belongs to batch 0 but is to be joined on a different cluster, it is placed in a buffer to be
sent to that cluster. If the tuple is to be joined by a different process on the same clus- lot

ter, it is placed in a buffer to be sent to the correct process. When a process fills one of
these buffers, it writes it to disk or sends it to another cluster or process as appropriate. .f'-..

When a page is sent to another cluster, it is received by an arbitrary process on that

cluster; the tuples in the page are rehashed and sent to another process in the cluster if

necessary. Once the tuple arrives at the correct process, it is inserted into a binary

search tree. The search tree will be traversed inorder in the next phase to produce a

sorted version of the bucket.

When all of R, has been read, S, is processed in the same way.

Phase 2: This phase is repeated for 3 ranging from 1 to NBATCH. If NBATCH=O, >,-A.. ,

this phase is omitted.

At each cluster C,, each process performs an inorder traversal of its R and S search

trees to produce a sorted stream of tuples for each bucket. It merge-joins these tuples

to produce the join results. As tuples are consumed, the space they occupied is freed.

As the memory is freed, the processes read the file for batch RB,,, hash each tuple, send

the tuples to the appropriate cluster and process, and insert them into search trees occu-
pying the newly freed space. When all of RB, has been read, SB,, is processed in the

same way. .. -

1. o %. %

Phase 3: In this phase, the buckets in batch NBATCH are joined as described for Poo

phase 2. No data remains to be read from disk and partitioned.

6.2.2.2. Hash Based Sort-Merge Join Type 2 (HSM2)

This algorithm differs from algorithm HSM1 in that relation S is not sent over the

network. Instead, each cluster C, joins all of R with its portion S of relation S. A
hash function on the join attribute of each tuple determines the batch to which the

tuple belongs, and the process on each cluster (in the case of R) or the process on clus-

ter C, (in the case of S;) that will do the joining.

.
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The algorithm has three phases. Only the first phase will be described; the other
phases should be clear from the description of phase 1 and Algorithm HSM1.

Phase 1: At each cluster Ci , Naphh processes read R i . They hash each tuple to deter-
mine the batch and process number. Each tuple is buffered either to be written to disk
or to be broadcast to the correct process on each cluster. Each process constructs a 4154
binary search tree of tuples belonging to its own bucket. When all of R. has been read,

5t is processed in the same way, except that tuples from S, are not transmitted to other
clusters, only to other processes on the same cluster.

6.2.2.3. Multiprocessor Hybrid Hash Join Type 1 (HH1)

Algorithm HH1 partitions R and S into batches and buckets in the same ways as
Algorithm HSM1. However, it uses a hash-based algorithm to join each pair of buckets.
An in-memory hash table is constructed for each bucket of R. This table is then 0

probed using tuples from the corresponding bucket of S to produce the join results.
The concurrent processing of consecutive batches performed in phase 2 of Algorithm
HSM1 is not possible here because the hash table for a bucket of R cannot be deallo- Np ,
cated until it has been probed by all the tuples in the corresponding S bucket. On the
other hand, Algorithm HSM1 requires memory to hold S buckets, while this algorithm
does not.

The algorithm has four phases.

Phase 1: At each cluster C,, NP 1  processes read R, from disk. They hash each
tuple and copy it to the appropriate buffer if it must be written back to disk or sent to
another cluster or process, as in Algorithm HSM1. Each process constructs a hash table
of tuples belonging to its own bucket.

Phase 2: At each cluster C,, the NP 0 ,, processes read S, from disk. They hash each
tuple and buffer it to be written to disk or sent to another cluster if necessary. It is not
necessary to send a tuple from one process to another on the same cluster, however. •
Once a tuple is at the correct cluster, any process can probe the appropriate hash table
to generate the join results.

Phases 3 and 4 are repeated for j ranging from 1 to NBA TCH. If NBA TCH = 0,
these phases are omitted.

Phase 3: This is similar to phase 1 except that each cluster C, reads RB. from disk
instead of R,, and performs no disk writes. -. .p

Phase 4: This is similar to phase 2 except that each cluster C, reads SB,, from disk -. ....

instead of S., and performs no disk writes.

6.2.2.4. Multiprocessor Hybrid Hash Join Type 2 (HH2)

This algorithm is to Algorithm HH1 as Algorithm HSM2 is to Algorithm HSM1. It
has four phases similar to those of Algorithm HH1. However, tuples of S are not
transmitted over the network. In fact, they are not even transmitted between processes S

on th-. same cluster since any process can probe a hash table on the same cluster.

I
i  
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6.2.3. Discussion %

The algorithms described above represent the latest versions in a sequence of algo-

rithms. These versions provide better overlap in the usage of different resources than 6

earlier versions. For example, in all four hash partitioning algorithms, the communica-

tions load is spread as evenly as possible over the duration of the algorithm execution.

Tuples are sent across the network only whet they are about to participate in a join.

One of our earlier versions transmitted all tuples to the joining cluster when the rela-
tions were being partitioned, as in DeWitt and Gerber's algorithm [DeWi851. We found
that this could cause a network bottleneck during partitioning: the disks and CPUs
were not well utilized. Spreading the communications load over the duration of the

algorithms reduced their execution time.

The overlapping among disk I/O. CPU processing and data transfer over the net-
work gives algorithm designers opportunities to tune the algorithms to obtain the

desired tradeoff between the elapsed time. total processing cost and memory usage
which is best for their system. Another example regarding this is the way the hash-
based algorithms store tuples in batches I - YBATCH. One possibility is to use one

file per batch at each cluster: we chose to use one file per remote cluster at each cluster.

In the former case. no repartitioning is needed in the later phases. but more buffer pages ;Z;

have to be allocated in the partitioning phase. In the latter case. the tuples in the same

batch have to be rehashed to determine its bucket number, but far fewer buffer pages '-

are needed to hold the tuples rewritten to .disks.

6.3. Performance Comparisons

This section presents performance comparisons of the six join algorithms described

in Section 6.2. These comparisons are based on the formulas obtained from the
analvsis. 1. _.

The main purpose of the performance comparison is to get some insight of the
behavior of different algorithms. The novelty of this performance analysis lies in two

facts. First. there are few comprehensive performance studies of join algorithms in the

multiprocessor-multi disk environment [DeWi85]. Second. most performance studies use
total processing time as the metric. In fact, disk I/O operations, data transfer along the

network and CPU processing are often overlapped. The extent of the overlap varies "
among different algorithms which leads to different elapsed times even with the same
total processing cost. One of the goals of parallel join algorithm design should be to

overlap the usage of various system resources as much as possible while holding total-'.,\.,

resource usage constant.

The tests conducted can be categorized into three groups that investigate (1) the
effects of communication speed: (2) the effects of system configurations: and (3) the
effects of data sizes. In this section. we first describe the methodology used in the

analysis. Then the details of the tests. including the parameter settings and test results "

are discussed. ___

~ . . .. . ,. * .- . ..* - - .. .. .
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6.3.1. Analysis Methodology

For each algorithm, we will compute the following quantities:

T elapsed time S

T pu total CPU time
Td7s total disk transfer time

T net  total network transfer time

Each of these is the sum over all phases i of the corresponding per-phase quantities TV, -

T" ,  Ts and T" Resource utilization percentages are easily derived from these

basic measures. The analysis uses the following times for basic operations:

tcomp CPU time to compare two attributes
thash CPU time to compute hash function of a key
tmote CPU time to move a tuple in memory
tswapp  CPU time to swap two pointers in memory $- N -

tbuIddtuple CPU time to build a join result tuple

tsend CPU time to send a page over network . f._%
trecv CPU time to receive a page over network 0

tnet  network hardware page transfer time
tdisk disk page transfer time

We first compute the following basic quantities for each phase i:

isk the number of disk transfer pages ..
p;end the number of pages sent over the network
P' the number of pages received over the network
T'oon CPU time unrelated to disk or net transfers

Pe can be greater than Pd due to broadcasting. Then,
T i  = T' +P,' t +P " tI..

cpu join send recv recv

Tsk P disk tdisk

1=: send *tnet

We assume that the CPU time attributable to disk transfers is negligible. For network
communication, we consider both the CPU time and the hardware transfer time; either All
is a potential bottleneck.

The elapsed time T for phase i will in general be significantly less than
TIPU+ T + T,,, due to overlap. It is computed as the minimum of:

0 The total disk transfer time of any disk. If I/O is spread evenly over all disks, this
quantity is TjI,/(NC"ND). .

T;.sk
0 The total network transfer time Tnet for the phase. *-.'-

0 The total CPU time for any single process, including network send and receive

processes.

• ,p ,. € . .-* , . ' , Y'-,, t J,, . , . , , .. .- , d .- o .. , . . . . . . .. - , ... ,. . • . . . ,.
,% " " % -o" ", " 

, . . ' "-' " -. "• """" .' " P " -" " 

€ ,

,;": '," t '; g , '-',% r P ,, , , .,, ' , , .,.'.-,- .. ' -,' ., , ,.-. f .-.-- . . . , ".' ..- . .. .".-, .-. .



S The total CPU time for any cluster, divided by NP, the number of processors per
cluster. If processing is spread evenly over all clusters, this quantity is _

Tj., /(NC.NP). This quantity models processor sharing among the processes at a

cluster.

The rationale for this approximation of elapsed time is as follows. In each phase,
the processes execute in pipelined fashion. The time for data to flow from the begin-
ning of a pipeline to the end is assumed to be negligible compared to the total elapsed
time, so the pipeline is in steady state for most of the phase. Sufficient buffering is pro-
vided to permit all processes to execute in parallel with each other and with disk and
network transfers:

• One buffer is allocated for each input and output stream for each process.

" One buffer is allocated for each disk to contain the data being read or written.

• One buffer is allocated for the network send process at each cluster to hold the

next page to be transmitted, and one buffer for the network receive process to hold
the next incoming page.

The detailed formulas derived in the analysis are listed in the next section.
0

6.3.1.1. Analysis of Join Algorithms in Section 6.2 ,.. .

In this section, we list the detailed formulas used in the analysis of the join algo-

rithms described in 6.3.

6.3.1.1.1. Elapsed Time of Type 1 Sort-Merge Join Algorithm, SMJ1

The parameters that determine the performance of the algorithm include the archi-
tecture, timing, and workload parameters listed earlier, and algorithm-specific parame-

ters: NFRUNR, the number of final runs of R, NFRUNs, the number of final runs of

S, and NPheP, the number of heap processes per cluster.

There are three major phases in this algorithm: (1) Generate runs of R, (2) Gen- .

erate runs of S, and (3) Merge R-runs, merge S-runs, and merge-join. The total execu- %
tion time for the algorithm is therefore TSMJ1 = Ti + T2 + T3

T and T2 - Execution Time of Phase 1 and 2. The memory requirements
per cluster for this phase are as follows: ND + NPeap input buffers, the same number of

output buffers, and NPAe, heap areas of the size required to fill the remainder of the M

bytes dedicated to the algorithm. Let this size be H bytes; NHRECR and NHPAG be

the number of R records and pages that it can hold. We have 0

M-2PG"(ND+NPhr)

HH
NP e ..-"..

NHRECR = I •
F"ts(R) Ile

H
NHPAFG NG'I

F, PG
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There is three processing stage in phase 1: IRH (read R from disk until heap "I,.h

filled), IDRH (read R from disk and write runs to disk until all of R is read from disk), .

and DRH (empty heap onto disk, completing R-runs). The heap processing time of-_
these stages is calculated as follows: ,

tIRil = TPR "(tmov +(2"tcomp + t pp)'ig(NHRECR ))

tIDRH TPR"(2"tmoe+(2"tmp +t,,,,, )'Ig(NHRECR))

tDRH TPR"(tore+(2"tcomp +t swpp )lg(NHRECR)) -0

The execution time of this phase is:

I R tdJk tIR-
T= min(NP.p'NHPAG, N ) ( max( , ) +

NC ND NP heap

tdik tDRH  %

max(, +) ) +
ND ~Nheap

fR 2 tdsk tJDRH 4

max(-- NP)eap "NHPAG, O))x(
NC ND NPhep

The calculation of execution time of phase 2, T 2 is the same as for phase 1, substi-
tuting S for R.

T3 - Execution Time of Phase 3. There are five pipelined processing stages:
the first and second merge stages for R and S, and the merge-join, denoted as MIR,
M2R, MIS, M2S, and MJ. Stages MIR, M2R, and MJ are performed at each cluster;
-age M2R is performed at NFRUNR clusters, and stage M2S is performed at NFRUNs

clusters. Since the runs produced in phase 1 contain an average of 2"NHPAG pages, the
I R tab

merge factor for stage MIR is MF1R . The merge factor MF1 for
2"NHPAG NC

stage MIS is similar. The merge factor for stage M2R is NFRUNS. The merge factor .

for stage M2S is NFR UN ..

Each cluster requires two buffers per input stream and two buffers per output
stream for stages MIR, M2R, and MJ. Assuming that merging and merge-joining have
no other memory requirements, this gives a memory requirement per cluster (in bytes)

Y of 2 "(MFIR + MF1s + 4)PG. The NFR UNR clusters that perform M2R require an addi- %
tional 2.(NFRUNR + ).PG bytes, and the NFRUNs clusters that perform M2S require

• .
an additional 2-(NFRtUN 3 +1)PG bytes.

The per-page execution times for the stages are: -.

tMR = TPR'(t +(2"t + t.)'lg(MFI

tM R = TPR "(tove +(2"tcomp + tpp)'g(NFRUNR))
tMS = TPS(t +(2"t +tswa p )'lg(MF13 )) S

tMI2S TPS "(to e + (2"tcomp + t app )'g(NFRUNs))

-~~~~~~~ %. J...yZ. .***
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I !R I/NFRUNR+ I SI J/NFR UN,
tMJ = TPT'( " tcomp + t build- tuple)

The network sends and receives performed by the pivot and non-pivot clusters are
summarized in the following table:

# sends # receives
RI+IJ I 'Si _

non-pivot +
NC NFRUNR NFR UN,

iS IR I IR' ISI
row pivot + (NFRUNs -1). +

NC NFR UNR NC NFR UNs

Rr ISI .S; .RI
column pivot + (NFR UNR - 1)" +

NC NFR UN s  NC NFR UN s

The total number of pages transmitted over the network is
(2- )" R + (2- IS I This is less than the total number of pages

NFR UN s  NFR UN R

received because the pivot clusters use a one-to-many broadcast to send their results to
the merge-join processes.

The total execution time for phase 3 is therefore N

1 R +1S,1
T 3  max( tdsk, ((2- " R I +(2- - ) IS I)tnet

NC ND NFR UN s  NFR UNR

S 'RI RI 'SImx-+ ,
NC NFR tAR  NC NFR UN,

I R i IS

NFR UNR NFR UN s

IR I ISI RI ISI IT
tMIR, "tM1S, N U tM2R, tMeS, 'tMJ)

NC NC NFRUNR  NFRUNs  NC

6.3.1.1.2. Elapsed Time of Type 2 Sort-Merge Join Algorithm, SMJ2 %

There are also three major phases in algorithm SMJ2: (1) Generate initial runs of
R and store on disk, (2) Merge R-runs into complete sorted relations, broadcast to all 14%
clusters, and (3) Generate S-runs and merge-join with R.

1 0..*AV
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Two algorithm-specific parameters are: NP heap the number of heap processes used
in phase 1 to generate the initial runs of R, and NPm, the number of heap and merge-

join process pairs in phase 3.

T 1 - the execution time of phase 1, is identical to that of phase 1 for the type

1 sort merge join algorithm.

T 2 - Execution Time of Phase 2. There are two processing stages: the first
and second merge stages, denoted MIR and M2R. MiR is performed at all clusters,
and M2R is performed at C1. Clusters other than C l require a process to receive R

from the network and write it to disk. The merge factor for MiR is (as before)

MF1R = , and the merge factor for M2R is NC.
2"NHPAG NC

Inputs and outputs are double buffered. Clusters other than C, execute MiR and 0

the net-to-disk copy, so they require 2"(MFIR+3)'PG bytes. Cluster C1 requires an

additional 2"(NC + 1)'PG bytes for stage M2R. The per-page execution times are:

tMIR = TPR"(tM0ow+(2"tcoMp +t 0wapp ) ' lg(MF1R ))

tM2R = TPR"(tmove+(2"tcomp +t spp)'lg(NC))

At each cluster, MiR produces I R INC pages. M2R produces I R I pages at C,.
Each cluster reads I R I INC pages and writes I R I pages. A total of (2-1/NC). I R.
pages are sent over the network. The total execution time for this phase is therefore

1 IR 1
T= max(( +-) tdisk, (2- - ) I R I'tn , I R IT "tend, I R I "tec,

N C ND NC nt ed ev

. MIR :IR tM R
NC J MR

T 3 - Execution Time of Phase 3. The heap and merge-join stages of this

phase are denoted IDSH and MJ respectively. Assuming NP heap processes andMj
merge-join processes at each cluster, the per-cluster memory requirements are as follows:
(ND + NPm,)'PG bytes for input buffers to IDSH, 2"NPm,' PG bytes for buffers between
IDSH and MJ processes, a like amount for input buffers to MJ for relation R, and
NPmy'H$ bytes for the heaps, where Hs is defined so that available memory is fully util- -

ized: H. and the number of record and pages of S that can fit in each heap are, respec-

tively: M-NDG H5 _._

M-ND "PG Hs Hs"e""'

HS -5PG, NHRECs - NHPAG s

Th NP M F.ts(S) F"PG

The following analysis is simplified by assuming that the I/O rate is constant over
the phase. In fact, R is read only after the heaps are filled.

The number of disk reads per cluster is S

IS! is,
+ IRI

NC 2" NPm" *NHPA G. 'NC
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0

There is no network I/O. The per-page processing times for the two stages are:

tJDSH = TP S (2 tmove+ (2 t 0m p + t , -,p ) g(N H R E C s))

I S.
iIR I i S

2 NHPA Gs

tMJ = TPT'( mI T+ tbild-tuple)

The execution time for this phase is

T a  m a x (( - + I R 1 ) .t d s , " l t , '
3R NC -tdisk, N IDSH%
NC 2NP " NHPAG *NC NP. NC

NPm, NCM-

6.3.1.1.3. Analysis of Algorithms

In the following sections we list the formulas used in evaluting hash-based join

algorithms, which compute the number of disk I/O and network transfer and the CPU

processing time for each phase. The phases 3 and 4 for hybrid hash algorithms and the

phases of partitioning and joining batches 1 to NBATCH are the same, the quantities

listed in the formulas are the totals of all these batches. The elapsed time is computed

from the number of disk I/O's, the number of pages transferred, and the CPU time

obtained using the method described in Section 6.3.1. S

The Number of Batches and Batch Sizes. Before giving the formulas, we first

briefly describe the computation of the number of batches and the data size of the J9

batches, NBATCH, IRB0 I, IIRBoI0 , iSBoi, iiSB0.:, etc. These quantities are deter-

mined by the amount of memory left in each cluster after allocating buffers for disk and •

network I/O and interprocess communication according to the principles described in

the above section. They are computed as follows:

Let NBFo be the number of buffer pages required during partitioning and NBF be

the number of buffer pages required at other times. Let us first compute NBF, ".. .
which is algorithm-specific. For the first type of hash-based algorithms HSM1 and •

HHIl, where both relations are transferred among clusters, each join processor has. ,

three output streams after reading in and hashing tuples: tuples to be used to , ,

probe the hash table for itself, tuples to be used for other processors at the same '.. ' .-

cluster to probe the corresponding hash tables, and tuples to send to other clusters.

That is, three kinds of buffer pages have to be allocated for each processor. The-. .
total number of buffer pages is therefore

NBF1 = NC(ND +2+ NPoin'(NC+NPoin-1))

For another two algorithms, HSM2 and HH2, where the small relation is replicated

at every cluster, all tuples arriving at a join processor will either be processed by S

the processor itself, or processors at the same cluster, less buffer pages are needed.

* .w ~ ~ Y ~ ~ k%
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For HSM2 and H12,
NBF1 = NC(ND +2+NPo, (NP,,,+ 1))

In the partition phase, each processor also generates a stream of tuples which are
written back to disk for later processing, NBF o is therefore related to NBF1 as fol-
lows:

NBF0 = NBF1 +NBATCH'NC'NPJoi,

The size of the batches can be computed as follows. Let NDP be the total number
of data pages staged in main memory during join processing for sorting (HSM1 and
HSM2) of building hash tables (H1ll and HH2), excluding buffers. For algorithms HSM1
and HSM2, NDP = I R I + IS 1, since these algorithms stage batches of both relations
prior to joining them. For algorithms HH1 and HH2, NDP = I R I. Let NDPo be the
number of data pages staged to join batch 0 and NDP1 be the number of data pages 0

staged for each subsequent batch. Clearly,

NDP = NDPO+ NBATCH'NDP

We want to maximize NDP 0 to minimize the amount of intermediate data written to
disk. We therefore assign all available memory to stage batch 0:

NBFo+F'NDP o - NC'M

with the equality holding unless NBATCH=O. Here, F represents the "universal fudge
factor", a number slightly greater than one that accounts for the memory overhead
required for a hash table or binary search tree of tuples, beyond the memory required
for the tuples themselves. To maximize NDP o, we must minimize NBF o, and therefore

NBA TCH, subject to the constraint

NBFI+FNDP, 5 NCM

It is relatively easy to derive the following:

F"NDP+NBF1 -NC M P-..,
NBA TCH = max(I,

NCM-NBF -NC'NPo

With NBATCH and the above equations, we can then calculate the data size I RB I,
I SBo I, etc.

6.3.1.1.4. Analysis of Algorithm HSM1

Partition Batch O:

P4,,k: 2 R i + S i)- RBo - SBoI read R and 5, write batches

NC-I
P.,a: NC (RBo SBo )

-6,N'N
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NC-I
plotNC (RB, 0 + ISBf)

NC-

(11 I RB-I I ISB0I I(h. +B~ (thas +tm tuples to detwk buffer

NC-

NP- I
"NP .(IIRBOII+ SBOI).(kh +tvt) tuples to interprocess buffer

" IIRBII -(Ig "Cm Io.
N -nNC co~~,~F)insert R tuples

SB,):S
-KS 0 (Ig NPI m NC COM p ve, insert S tuples

Join Batch 0:

2-(IRB 0 .1+ ISBO') i~- find matching tuples

-JS ! R SB 0 'tbild -tul generate result tuples F

Partition Batches 1 -NBA TCH

Pd: I-RE +S-S0 read batches

NC-i I;IR 1

NC-E)0

Plot. NC-i (tR;-iRE '-,-S SO
NC 0 -S 0

NC-1
T (IIRII-IIRB I-4-ISII-IISB 1)(

NC tuplee to network buffet

NP-i1
+ (I IR IlI-I1REO + 114 II-- 1B~y~hs +iaeNP 0 I ~tuples to interprocess buffer

I I R II- IIREOII
+ I IR I I -11RB 0II)Ig - 'tom +ner R tupl

NP,., NC NBA TCH atinsert R tuples

*~~~ IS I I~* , -~ IISB%

I~~. I~ S 
,OTI -cm
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Join Batches 1- NBATCH

Tj", :  2(; IR, i -IRBoI + i S i-SB 0 i').teoo find matching tuples

+JS"; ; R i(ii S, ; -:iSBo,,i)t b.,l I...t generate result tuples

6.3.1.1.5. Analysis of Algorithm HSM2

Partition Batch O "

2"(IR i+ ISi)-iRB oi-iSB Oi readR and S, write batches

P .. ,. RB 0

(NC- 1) IRB o I

i iR I i(t,+t) tuples to disk or broadcast
buffer

iRBol0
+NC IIRBi(Ig- - t p- t

NP,. NC C . .mov insert R tuples

:iSB o I
• [!SBo,. g.to t . .)NP .. ' NC insert S tuples

Join Batch 0:

T'..f. 2 (NC iRBO '+iiSBO1i), 0m find matching tuples
0

-- JS, R uSEob - generate result tuples .

Partition Batches I-NBATCH %

Pi.k: iRl-IRB i+IS-ISB oi read batches

Peen.: IR I - IRB o I

P . (NC-1).(iRI-IRol) I

SI( R I I -IIRBoI1) '(tha.k + t-o.*) tuples to broadcast buffer

I IR I -IIRB 0 1.
+NC (i iRI -IuRBO1) (Ig to +t mo) 

NPo., NCNBATCH o insert R tuples N%
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I IS I I-I:SBoI!
'( S' I-IISBOI0Ii(i 0+

NP~on NC NBATCH +t"' o) insert S tuples

Join Batches 1-NBATCH.

T=, • 2-(NC(i IR I-IIRBo;I) IISII -ISBoII),tcomp find matching tuples

+Jf-I IRi I-(I ISII -11SBoIt).t d -_upt. generate result tuples --

6.3.1.1.6. Analysis of Algorithm HH1

Phase Is

2 RIRB 0  read R, write batches

NC-i
P-d I RB oNC

NC -I iR
NC 0

! 1R - RBl ,)( - . tuples to disk buffer

- ,,B o I (t .. h 'tm....),.- .
NC tuples to network buffer," -

NP-! I
ir B o (t + .

NP tuples to interprocess buffer

+ oRB.(t + tifove) tuples to hash table ,

Phase 21

Pdi.. 2- IS I - I SBoI read S, write batches
. . ,.A.

NC-i $o 
' .' "

NC -IS

---n I $B0 I " #%
NC .p .% .

NC- 1
P .ISBi

pro., NC 0

( 1$SI i-iiSBo!!)(ti, . +t .... ) +uj.es to disk buffer S

%

a0 -. % :~~, % %..
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NC-1

NC tuples to network buffer

+ IISBOII(th..h + Ftco probe hash table

+ JS- I I R I I IISBOII-t&.d -e.pl. generate result tuples

Phase 38

Pdi.&: IR;I-IRE I

NC-iR-E)J.b.
NC S

NC -

NC- 1( I R - RB o I) '- "

NCI(IR -IREol)

NC

NC -I NP - I
(- +- +l)( 1 R I IIRBO')(th.h +t .Ov.)

NC NP

Phase 4:

Pd..k I S I-SBR I

NC- I
P,,d' : - .( S - SBo I

NC •

NC-I
T'., -- (I S -SBo)

NC

NC-i .

NC

-(, I Si-IISBo).(t.*.h+F-tcomp)

-JS II R I I.( I S I I- EISBoll)t .id. -. pi.

S.3.1.1.7. Analysis of Algorithm HH2 J

Phase Is ,

2"RI -R I Rread R, write batches

P., :!RB o I v

P,..: (NC-1) ,RB o  
%.', .. '

%

*..- *, ,. ." -,'., , '.C~. ., ,,".,, p ,' . " ." - -. - . ";.C. " , *:,'.,' ,. . . ,r * *. . .-,. -
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: iR i (th.At.-,, o) tuples to disk or broadcast
buffer r%,_t?

NC IRB 0 1 I(th.. + t) tuples to hash table

Phase 2

2 IS!- 18BOI read S, write batches

T (I S I I-IISBo I)-(th h t tuples to disk buffer

+IISBo II(th..A + Ftomp) probe hash table

'"S R IISBo tb.Ld - tuple generate result tuples

Phamse 31

P R - RB o '..

P**,,, R - RB"

P .... (NC-1)('R -'RBo:)

I R I RBo1) (tt... t ) tuples to broadcast buffer V.

SNC( IR iI - !IRBII).(t ha + tmo..) tuples to hash table

Phase 4:

.. 4%

S i-SBO I

T.~ IS I I - IISBOII)(t&G.h +Fticom,) 
'

+JS- I I R I I-(I I S i I -IISBOII)th.:..l

6.3.2. Parameter Settings

Three types of parameters are used in the comparisons: architectural parameters,
timing parameters, and workload parameters. The parameter values used are listed
below.

oi

br r r '

% % % % % % %.
N.?-

% r %
v-~~~~~W d, %v. rw. Z *- . *Nf ~j % N, %l~ % % 5

. ~ ~ ~5 4 **.- .,
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Parameter Range Typical Value

Architectural NC 2 - 64 16
Parameters ND 2 - 20 8 0

NP 2- 64 8
M 16- 512 128
PG 32K bytes __

Timing teomp 5 ts

Parameters tkah 3 Rts
tmove 10 Rs

tbuiidtupe 20 ts
tend 0.1 - 3 ms 1 ms
t 0.1 - 3 ms 1 ms
tnet 100 - 600 Mbps 100 Mbps
tdis I10 - 30 ms 15 ms -"

'Workload R 50 - 400K pages 100K pages
Parameters S IR 1 - 10- R R I

JS 10 - s .,. _.___

6.3.3. Tests and Results

Now we describe the tests conducted in the performance comparisons. Initial
analysis showed that the sort merge algorithms were generally much slower that the
hash-based algorithms. Therefore we show the results for the hash-based algorithms
only. Figures 6.2-6.10 show the results. ".....

6.3.3.1. Communication versus Performance

In this test, the bandwidth of the communications line was varied from 100 Mbps
to 600 Mbps to study the effects of the data transfer rate on the performance of the . '
algorithms. The results are shown in figure 6.2. The elapsed times of type 1 algorithms
drop dramatically when the bandwidth in eases from 100 Mbps to 300 Mbps. This is 0
because the system is network bound with ,ur typical parameter settings for these algo-
rithms. In other words, the data transfer was the bottleneck and the bandwidth of the . .

communications line determined their elapsed times. In contrast, the elapsed times of
type 2 algorithms did not change at all when the bandwidth was varied in the range.
In these two algorithms, the amount of data transferred equals to the size of the small
relation R. It was not the bottleneck when the bandwidth is greater than 200 Mbps.

6.3.3.2. System Configuration versus Performance

The first group of tests that investigated the effects of system configurations on the
performance consists of the following five tests.

%

.10%

NZ "r
% e.-4--e.. ~* ..... .

RI, *~ ~ i.I ? kI~' ,.'. d%".Jd." ".
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0 The total hardware cost, that is, the total number of disks (NC-ND), and proces-
sors (NC-NP), and memory size (NC'M) is kept as constants. The number of
clusters in the system (NC) is varied.

0 The configuration of each cluster is kept the same, (e. g. fix NP and ND), the
number of the clusters in the system varies.

0 The number of disks at each cluster, ND, is varied and other parameters are kept
as constants.

* The number of processors at each cluster, NP, is varied and other parameters are
kept as constants.

Memory size M at each cluster is varied while other parameters were kept as con-
stants. '"'

We will describe these tests in more detail.

(1) The elapsed time versus different configurations under the same total hardware cost.
That is, the total number of processors and disks, and the total size of memory
banks in the system were kept as a constant. The number of clusters were varied
and the number of disks and processors and the size of memory bank at each clus-
ter were varied accordingly to keep the total resources constant. One extreme of -

the spectrum is that all resources form a single large cluster. Another extreme is a
system such as Gamma [DeWi86] where each cluster has only one processor, one
disk and one piece of memory. The results are shown in figure 6.3. The second
extreme case is not shown in the figure since the trend is already shown when the
system consists of 64 clusters. That is the case each cluster has two disks and two N
processors. When the system consists of 128 clusters with one processor and one
disk, the elapsed time for HSM-2 is almost doubled compared to 64 cluster case.
Other 3 curves kept flat (not shown in the figure).

From figure 6.3, it, can be seen that a huge single cluster provides the best perfor- 0

mance since the communications cost is eliminated. The curves of HH-2 and
HSM-2 are flat since the system is network-bound. This will be seen more clearly r.
later. The total amount of data transferred in the type 2 algorithms equals the size I-%,%
of relation R, which is a constant when the system configuration is changed. With -.1

the large number of clusters ( > 32), HSM-2 performs poorly since replicating rela- .
tion R increase the total processing cost. The increasing CPU cost makes the sys- . "
tem CPU bound. When the number of clusters is doubled, the elapsed time is also
doubled. For the type 1 algorithms, increasing the number of clusters increases

NC - I
the quantity iR I I + I S I I), which is the quantity of data transmitted

over the network. When the number of clusters in the system increases from 2 to '• --.
4, this amount increases one third. This is reflected in the increase of the elapsed
time. We ignore the memory contention and the cost of synchronizing the con-
current access of disks in our analysis. The processing power with regard to disk
I/O and CPU processing do not change since the number of disks and processors
are kept constants no matter how they are organized into clusters during all the

~ ~ '-~ '
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tests. The huge single cluster case is just an indication of the lower bound of the

elapsed time. It is impractical to put a large number of disks and processors with
shared memory in one cluster.

Figure 6.3 was obtained with 100 Mbps network. With 600 Mbps. the perfor-

mance is a little different. In this case. the type I algorithms performed better

than their counterparts. Figure 6.4 shows the results. As in Figure 6.3. the type 2

algorithms performed very poorly when the number of clusters exceeded 64.

(2) The elapsed time versus the number of clusters. In this test. the configuration of 0

each cluster was kept the same and the number of clusters in the system was
varied. The result of this variation is to increase the parallel processing power of-
the system and also introduce more data transfer for some algorithms since we .

assume that the original data is scattered around the system. The result of this '

test is shown in figure 6.5.

(3) The elapsed time versus the number of disks at each cluster. In these tests. the
number of disks is varied and other parameters are kept as constant. Figure 6.6
shows the result. It can be seen from the figure that it is unnecessary to attach

more disks to a cluster when the bottleneck is not disk I/O. When the number of'

disks was more than S in the tested case. increase of the number of disks did not
bring real performance benefit.

(4) The elapsed time versus the number of processors at each cluster. In these tests. the
number of processors at each cluster was varied and the results are shown in figure

6.7. It can be seen from the figure that CPU processing was not the bottleneck
even with 2 processors at each cluster. Only exception was the HSAI-2 algorithm %

which needed the most extensive CPV computation among these algorithms. How-
ever. with more than S processors per cluster, the elapsed time did not decrease
further when more processors were added to the clusters. Another observation is
that. in our buffer allocation scheme. the number of buffers needed increases pro-

portionally to the square of number of processors (not linear). The large number of'
processors may cause insufficient memory for executing the algorithms.

(5) The elapsed time versus the size of memory bank at each cluster. In this group of.
tests. the size of the memory bank at each cluster was varied. From the results.

shown in figure 6.8. it can be seen that the type 2 algorithms required more
memory space for buffers. That is. the minimum memory requirement is more
strict for them. However, as long as the memory was big enough to start the algo-
rithm, there was not a big difference in the elapsed time with different memory
sizes. This can be explained as follows. The only benefit a large size memory pro- S

vide is to save the disk I/O and related rehashing of the first batch of buckets.

The processing of the remaining buckets will not be affected by the bucket sizes
which are determined by memory size. If the processing cost of the first batch is
not the dominant factor of the total processing, or the disk 1/O cost is not the
bottleneck in the first phase. the memory size will not affect the elapsed time a lot -
as seen from the fi, re. -"V.

%
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6.3.3.3. Data Sizes versus Performance

The third group of tests studied the effects of the data size on performance of the

algorithms. The size of relation R ranged from 1 .75 "10g bytes to 25"10 I i S I

ranged from II R I! to 10" ! I R Figure 6.9 depicts the relationship between the .- "

elapsed time and the relation size. Along with the increase of the size of two relations,
the elapsed time of all algorithms increased. However, the type 1 algorithms were more "_WO
sensitive to this increase. The elapsed time increased linearly when the size of relations p
increased. The reason for this is that the bottleneck in these tests are network. The
amount of data transferred increases when the relation sizes increase. Figure 6.10 shows
the same system and relation sizes with high bandwidth network (600 Mbps). The first
observation is that the type 1 algorithms outperform the type 2 algorithms when the

relations were small. Second, the elapsed time of all algorithms increases to some
extent when the relations become larger. The type 1 algorithms were still more sensi- 0

tive to the relation sizes. When the relation sizes become larger, their performance
become worse than the type 2 algorithms.

Ile
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Elapsed Time Versus Data Size (13=10 Mbps)
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6.4. Conclusions

In this chapter. we have described six different parallel and pipelined join algo-
rithms. Some results from our analysis are also presented to compare those algorithms. 0

The results of our performance evaluation reiterate the relative performance superiority
of the hash based algorithms compared to sort based algorithms. Our results also show
how the effects of overlaps among the different steps of an algorithm affects its relative
performance. We calculate the bottlenecks in the alternative join algorithms and show
that the performance of an algorithm improves by distributing the tasks across the vari-
ous non-overlapping stages of the algorithm so that maximum overlap and equitable -'.

resource utilization are achieved. Our results show that intercluster communication
bandwidth is typically a bottleneck and thus the algorithm or system configuration
which reduces intercluster data transfer is preferred. The replicated versions of the
algorithms perform typically better than their non-replicated counterparts because of
the reduced intercluster data transfer.

From this study, we can conclude some basic conclusions regarding the parallel
processing of join operations in the multiprocessor environment.

(1) The different performance shown by the algorithms studied indicates that it is
important to choose appropriate algorithms for a particular join operation with a
given system configuration. Furthermore, with a given system and relations to be
joined, the query optimizer has to carefully determine the number of cluster, the
number of disks and the nurnbcr of processors which will be used in the join. Gen-
erally speaking, the hash-based algorithms outperform the sort-merge algorithms if
the output tuples are not required in the sorted order. However, in the case that
the source relations are already sorted, or the applications require the output tuples
are sorted on the join attributes, the sort-merge algorithms may be advantageous.
One possibility which is not mentioned is to use an order-preserving hash function
in the hash-based sort-merge algorithms. The sorted order is maintained between
different buckets and the fial output tuples can thus be in the desired sorted
order. The use of an order-preserving hash function should not introduce heavy
extra cost.

(2) In multiprocessor-multidisk systems, high parallelism can be achieved by dividing I S

the total processing task among processors and disks and executing the subtasks
concurrently. However, in some algorithms, such as the sort-merge algorithms
evaluated in this study, the parallel processing becomes difficult for some steps
(final merge, for example). The increase of the number of processes cannot speed
up the processing. On the other hand, the hash-based algorithms are naturally 0

parallelizable. Both the partitioning and joining phase can be concurrently exe- . .
cuted by all participating processors. This is the main reason that explains why -.- .. ,',

the hash-based algorithms outperform the sort-merge algorithms with regard to the
elapsed time.

(3) Among three major system resources, CPU, disk and communication network, V.

CPU seems not the bottleneck of the processing pipeline in general (only in some
steps of the sort-merge joins as mentioned above). For hash-based algorithms a oil
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small number of processors at each cluster is enough to provide the necessary pro- V
cessing power. On the other hand, disk I/O can be the bottleneck of the pipeline,
although we intentionally used large page size (32K) and very high disk-memory
tranfer rate in our study. One possible approach is to increase the number of disks ,
in each cluster. This multi-disk system can efficiently remove the bottleneck
caused by slow disk I/O. However, the number of disks that can be attached to .

one cluster must be limited by the complexity of control.

For joins with small or moderate size relations, communications cost should not be
a dominant factor in local area networks [Lu851, there is, however, still the possibil-
ity that the communications line become bottleneck when the large amount of data :- .
has to be transferred in a very large system through the communications line. This
is especially true for the algorithms where a large amount of data transfer is
required (such as HSM1 and HH1).

(4) One key point in the design of a parallel processing algorithm is to achieve max-
imum overlap among operations requiring different resources in order to increase %VP
the parallelism and reduce the effect of some resource which is the bottleneck of the
pipeline. For example, in the hash-based algorithms, the remotely processed tuples r;
can be transferred either during partitioning or right before their use in the joining .?

phase. The total communication cost is the same in these two schemes, while their
overlapping with disk I/O is different. In the first scheme, all communication
occurs while the relations are partitioned. The second scheme distributes the com-
munications cost; each relatively small amount of data transfer overlaps with disk
I/O and CPU processing iin joining phases. Which scheme is better will depend on ,-
the relative speed of disk I/O and data transfer over the network. This example
reminds us that parallelism between different type of resources can be further .-

increased by tuning the processing steps carefully for each algorithm. Further-
more, the precise analytical analysis of such parallel processing algorithms is very
difficult. Some simulation or tests in real systems would be useful.

Since the system configuration, that is, the number of clusters, the number of pro-
cessors, the number of disks, and the size of memory used in a join operation affects the
performance along with the relation size and selectivities, query optimization in this ]
multiprocessor environment could be more complicated, and also more important. It
might be a useful practice to more thoroughly investigate the relative behavior of
different algorithms with regard to the parameters and derive some heuristics which can
be used in the query processing process for such a data flow database machine.

% %
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CHAPTER 7

Fault Tolerance in Very Large Data Base Systems

A system for very large databases will require a high degree of parallelism and, -

therefore, will involve a large number of components. In such a system, many com-
ponents can fail, affecting the performance of active components and the availability of
the system. Designing such a system with a desired degree of fault tolerance is difficult
and requires qualitative and quantitative considerations of factors affecting system fault
tolerance.

In this investigation, we study the effect of fault tolerance techniques and system
design on system availability. Specifically, we attempt to answer the following ques-
tions: What are the main parameters that affect fault tolerance of a very large database
system? How do you evaluate their effect on fault tolerance? How important are var-
ous fault tolerance techniques? What are the trade-offs that should be considered when
designing a very large database system with a desired degree of fault tolerance? A gen-
eric multiprocessor architecture is used that can be configured in different ways to study

the effect of system architectures. Important parameters studied are different system
architectures and hardware fault tolerance techniques, mean time to failure of basic - l
components, database size and distribution, interconnect capacity, etc. Quantitative
analysis compares the relative effect of different parameter values. Results show that
the effect of different parameter values on system availability can be very significant.
System architecture, use of hardware fault tolerance (particularly mirroring) and data
storage methods emerge as very important parameters under the control of a system
designer.

7.1. Introduction

A very large database is usually heavily used, and many users and applications
depend on it. Downtime or unavailability of such a system is expensive and affects crit-
ical applications dependent on it. A system can become unavailable because of the
faults in one or more of its components. To increase its availability, the system must
tolerate components faults. It is also desirable to contain or tolerate faults, because ...

recovery after a failure that affects the data can be very costly if the database has to be
reconstructed.

A system that gives good performance and manages a very large database has
many components and a high degree of parallelism. In such a system, even though any
individual component may be fairly reliable, the probability that one of the components
will fail becomes much higher than the probability that an individual component will
fail. Since many components need to cooperate in a parallel processing system, achiev-
ing fault tolerance is more difficult. However, because the system is large and there is

% .Np'>,tj * ' I ." - .
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more redundancy, there are more opportunities to achieve fault tolerance. ..
" %

The topic of fault tolerance in computers and database system has received a fair .
degree of attention. Articles by Kim [Kim84] and Siewiorek [Siew84] discuss architec-
tures of fault-tolerant computers and fault tolerance techniques used in many commer-
cial and prototype systems. Some of the publications that discuss fault tolerance tech-
niques used in commercial and prototype computers are
[Siew78. Borr8 1. Kast83. Borr84. Bern851 and [Gray86]. Recently. work continues on
larger systems, such as Teradata DBC1012 [Deck861, but not much has been published •
on the fault tolerance techniques used in such systems or on evaluation of such tech- -

niques. While it seems that many of the techniques developed for smaller systems are
applicable to larger systems, designing fault tolerance for large systems is more difficult N
because they have many more components that can fail and there are more alternatives

to provide fault tolerance. [Koon861 and [Shet87] evaluate fault tolerant algorithms in •
a relatively small (- 10 nodes) and loosely coupled distributed systems. However. there
is no published research on evaluating fault tolerance in a tightly coupled multiproces-
sor system for large databases ( > 100 gigabytes).

In this chapter. we study the effects of various system parameters and fault toler-
ance techniques in a system for very large databases. We use a generic multiprocessor
architecture which, by choosing different system parameters ran represent a range of
system architectures. from a loosely coupled multiprocessor with non-shared memory
and partitioned database to a tightly coupled multiprocessor with shared database and
shared memory. We study the effects of various architectures. fault tolerance tech-
niques. mean time to failure of important components. database size and distribution.
interconnect capacity. etc. on the availability of a system. The results show that theV
choice of different system architectures and some parameter values significantly affect
availability. Because fault tolerance is obtained at the cost of additional system
resources (in terms of number of redundant components and system time and resources
required to maintain redundant information), a designers task is to minimize such cost
to obtain the desired level of fault tolerance. The results can help a designer to under-
stand important trade-offs and choose an appropriate system architecture and fault
tolerance techniques.

This chapter is organized as follows. Section 7.2 describes the generic system archi-
tecture we evaluate. Section 7.3 describes basic concepts and terminology as well as %..
various fault tolerance techniques. Section 7.4 defines two availability measures. one of
which we evaluate in detail to measure fault tolerance. Section 7.5 describes the quanti-
tative analysis and the results. Section 7.6 discusses our conclusions. '"*':"

,.

7.2. System Description

Achieving good performance in a very large database system (-IDBS) requires a -

large amount of computing power. Given the limitation of the computing power of a
single component. we use a high degree of parallelism. A \IDBS has these characteris-
tics:

% .: -..%..
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1 It has many major components such as processors, disks and memory.

2. The relations are very large and distributed over many components for storage and
parallel-processing. Because of the very large size of the database, the amount of
replication possible is limited.

3. An update transaction will change ma..y data items. This means that reintegration
of failed components can take longer.

We assume a generic multiprocessor architecture for a VLDBS, as shown in Figure
7.1. This architecture consists of a set of "clusters" linked by an interconnect. Each ,
cluster consists of a set of processors, a shared memory bank addressable by all proces-
sors in the cluster, and a set of disk storage units and associated controllers. Each clus- . ,"
ter has its own power supply. All the components within a cluster (processors,
disks/controllers, memory and power supply) are connected by an intracluster bus. The
size of a VLDBS is defined by the architectural parameters given in Table 7.1. A com-
ponent unit (e.g., a processor unit or disk unit) consists of one or more components. A
component unit consisting of k components is called a k-redundant unit in which k-1
components are redundant components used to increase fault tolerance. However, all
active components in a unit perform the same function, so the redundancy does not add
to the computing power (in the case of the processor unit) or storage capability (in the
case of the disk unit or memory unit). Our architecture has one power supply unit, one
memory unit, and an intracluster bus per cluster. j-,

Int ec et•- ,--PSS
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Figure 7.1. Architecture of a V'LDBSH.yN
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NC Number of clusters .
NP Number of processor units per cluster
ND Number of disk units per cluster

Table 7.1: Architectural Parameters

7.3. Fault Tolerance Techniques

In this section, we discuss basic concepts and principles of fault tolerance (section
7.3.1), hardware fault tolerance techniques (section 7.3.2), software fault tolerance tech-
niques (section 7.3.3), and data storage methods (section 7.3.4).

7.3.1. Basic Concepts

A component or a subsystem that functions according to its specifications is called
active. Three terms are relevant to the operation of the components and the system:
fault, error, and failure [Siew82, Aviz84]. A fault is a defect in a component of the sys-
tem. Faults result in errors, which are undesired or invalid component states. Errors
may result in failures, which mean loss of the service expected from the component (or
the system of which the component is a part). Errors may be transient, intermittent, or
permanent. The first two are also referred to as soft errors, while permanent errors are
referred to as hard errors. Siewiorek and Swarz [Siew82] estimate that soft errors
account for more than 90% of all faults. Failures from soft errors are called soft
failures, while those from hard errors are called hard failures. The fault tolerance tech- %"

niques should protect the system against soft as well as hard failures.

After the failure of a component (or subsystem), the system may take a corrective
action called failure recovery. This may involve reconfiguring the system to isolate the
failed component and to reorganize the system so that it can be restarted without the %
failed component. Once the failed component is repaired, it is reintegrated with the sys-
tem. In a multiple-component system the failure of a single component that affects no
other component during the recovery is called a single failure. Simultaneous failure of
more than one component, or a failure of a component while the system is recovering 0

from a previous component failure are called multiple failures (or double failures, if two
components fail as defined). Normally, the probability of a multiple failure is very low.
After a failure of one or more components, a system that can continue to operate at
lower efficiency corresponding to the loss of power associated with the failed components ".-
is called a gracefully degradable system.

The following criteria are desirable in a highly available database system [Kim84]:

1. The system must guarantee database consistency by providing transaction process-
ing with concurrency control, distributed commit, and recovery techniques. ..

2. The system must support automatic recovery when failure occurs. A backup pro-
cess should automatically take over when the primary process fails. ., "

%. % %
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3. The system must survive at least a single failure (and possibly multiple failures) of
major system components, including the processor, disk drives, memory, and inter-

process communication medium. S
4. The system should support on-line reintegration of failed components when they

are repaired or replaced.

5. Other features, such as the automatic restart of transactions affected by failures
and the rerouting of messages to bypass failed communication route, are desired.

Two basic principles are used to achieve fault tolerance:

1. Modularity - By modularizing the system, the modules become units of failure and
replacement.

2. Redundancy - By having a redundant module (a hardware or a software resource),
the primary component can be replaced with the redundant component if it fails. 0

The principle of modularity must be taken into account while designing the system.
The multiprocessor system evaluated is made modular by providing various hardware
fault tolerence techniques to tolerate component failures, and by designing a clustered
architecture so that the system can be partially available using reconfiguration when
some clusters fail. -. 0

Redundancy is a basic property required for all fault tolerance techniques. It is
used to provide information needed to negate the effect of failures [Siew84]. Redun-
dancy can be obtained by having extra components, or physical redundancy, and by
having extra time, or temporal redundancy. Physical redundancy is used as hot stand-
bys (or backups), as checkers that mask faults via voting, and to reconfigure the system
around faulty components. Temporal redundancy is used for retrying operations to ,i
recover from transient or soft errors.

The basic physical redundancy technique used to increase the availability of each of 2 ,_
the components include duplication (2-redundancy), triplication (3-redundancy) and vot-- -
ing, and k-redundancy. We will briefly discuss the first two techniques.

In the duplication technique, two identical components (processors, disks, or
memory) are used in parallel. Duplication can be used in two ways. One technique is
to use the second component as a hot standby. In this technique, if either component
fails, the other component takes over. This technique is especially useful to provide ..

fault tolerance against hard failures. Examples of this type of duplication are disk mir- . t-

roring and memory mirroring, which are discussed in the next subsection. In the second
duplication technique, the two components are driven by the same input, and their out-
puts are compared. If the outputs are not the same (i.e., they vote differently), the
operation is retried. This technique is especially useful for providing fault tolerance
against soft failures and for detecting potential hard failures. An example of this type %--0%
of duplication is processor pairing, also discussed in the next subsection. %,%

The triplication component is usually used for the triple modular redundancy
(TMR) technique. Here three components are used in parallel. Outputs of all com-
ponents are compared, and the component unit continues to function as long as at least
two outputs match (i.e., at least two votes are received). The technique is most useful

': .: - .:. . . -: - . : . :. ...% -%-.-.' ' -.-...-.---< -".' "V.-.- ..' 1 .: .: -1:
W ' ' ' " -, " c", " " "-) :" " "-"'" " """"'- "" . . "•"" " -"""-% -" %" "" "" " '
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for masking errois by voting. Thus. it is helpful for soft failures but not hard failures.

7.3.2. Hardware Fault Tolerance

In this subsection. we will examine the fault tolerance techniques for the major sys-
tem components. These include processors. disks, memory, power supply, intracluster
bus, and interconnect.

7.3.2.1. Processor Pairing

The reason for duplication of processors is to check for soft errors and increase
fault tolerance bv eliminating them. Like other components. a processor experiences %A,%
two types of failures, hard and soft. The mean time to failure (MTTF) for hard failures
for microprocessors that are used in highly parallel systems is estimated to be 100 Khrs. I

The rate of soft failures is estimated to be an order of magnitude higher: hence a soft
failure NITTF is estimated at 10 IKhrs. With a high degree of parallelism, this failure
rate can have a disastrous effect.

In processor pairing, the same input and clock drive two processors. but the system
uses output of only the primary processor. Thus. the second processor does not add -_,

computing power to the system. However, the output of the secondary processor is used 4.

to compare with that of the primary processor. and differing output signals an error.

An error triggers the instruction retry. Thus the processor pairing attempts to mask

soft failures at the instruction level. It also helps to prevent error propogation. It' the

error persists after several retries, it is identified as a hard error, and both the proves-
sors turn themselves off after raising an interrupt. .Microprocessor-based fault-tolerant
system vendors, such as Stratus [Kast83] and Sequoia [Bern851 have taken similar

approaches. Gray [Grav86J discusses several approaches for designing processor pairs. %
It is also possible to use the processor pairs to tolerate hard failures by using a different

scheme. but we will handle hard processor failures by using redundancy in processor

units in a cluster and keep the technique for processor pairing simple.

7.3.2.2. Disk Mirroring

In most systems, disks are the biggest reliability problem, because they are complex

systems containing a fair number of mechanical components. Disks contain circuitry to
detect and tolerate soft failures; so the VLDBS does not deal with soft failures within a %

disk. The hard failure MTTF of a disk is estimated to be 10K hours. Disk mirroring.

also called duplexing, is used to increase this MTTF.

The technique used for mirroring disks is generically called reconfigurable duplica- ]

tion [Siew82]. A disk unit in this duplication technique consists of two disks. Both

disks receive the same input through independent paths and controllers and store on

respective media. Thus. both disks are in sync. When both disks are active, one acts as , %

a primary and the other as a hot standby. If either of the disks fails. then the other '

disk takes over. The system can run with only one disk operating correctly. When a
failed disk is repaired. its contents are updated so that both disks again contain the

same information. A repair may mean replacement. Tandem uses the disk mirroring

11 N N N N N V IN.
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technique in its fault tolerant systems. ®R

7.3.2.3. Techniques for Memory

The shared memory in our architecture is a random access memory. As with other

components. the memory unit suffers hard failures as well as soft failures. The soft
failures can be classified as intermittent and transient failures and are much more fre-
quent than hard failures. Intermittent failures occur under conditions such as system
overload, while transient failures are due to external conditions such as voltage fluctua-
tions.

Techniques to tolerate soft failures include error detection and correction techniques
such as parity codes. In case of hard failures, the failed chip or a memory bank contain-
ing the failed chip is replaced. A hard failure can be tolerated by a reconfiguration.
which isolates the failed chip. Duplication is another fault tolerance technique some-

times used. The duplication can be used to detect soft failures as in processor pairs. or
it can be used for mirroring as in mirrored disks to tolerate hard failures.

7.3.2.4. Techniques for Power Supply

Two components of power need to be considered: power that comes to the system

as a whole. called power source. and the power that is supplied to each of the clusters.
called power supply. The power coming from the source is usually conditioned. To
improve the fault tolerance. w6 expect that an uninterrupted power supply (LP5) will
be used. A UPS uses a battery that immediately takes over if the normal power source

fails. When the system draws power from the battery, it may be run at reduced capa- .w,
city to save power. Next. we expect that each cluster will use at least one power sup-
ply. By having an independent power supply for each cluster, the failure of a power

supply can directly affect only one cluster. If the cluster size is big. more than one
power supply per cluster is recommended. A,

7.3.2.5. Techniques for Intracluster Bus

This component connects all the processors. memory, and disks within a cluster.

We expect it to be a short (within one cabinet) and very high speed bus. It will occa-

sionally suffer from soft failures. but we assume that the low level protocols and the

hardware will tolerate them. A hard failure of this component is extremely infrequent.
but if it occurs. it can be modeled as the failure of one or more components that are

affected.

7.3.2.6. Techniques for interconnect

The type and frequency of failures in an interconnect that connects all the clusters

in the system will depend on the type of interconnect (e.g.. ring. hypercube. bus) and its

topology. For the sake of simplicity, we will assume a generic interconnect. An inter-

connect may suffer a soft !ink failure, which may corrupt or lose data. These errors can )
be detected by check codes and time outs. Most of these errors are recoverable by the Not
protocol (e.g.. retransmission) or taken care of by error correction codes. If the soft

%
%
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error is not recoverable, the transaction is aborted. Hard failures can occur because of
the physical breakup of a link or failure of the cluster's connection to the interconnect.
The basic technique to handle hard failures is duplication in the interconnect (e.g., dou-
ble ring). Each cluster can have independent paths to two interconnects to handle hard _
failures.

7.3.3. Software Fault Tolerance

Basic software fault tolerance techniques can be divided into three components: (1)
transaction fault tolerance for failures that affect transaction execution, (2) system
software fault tolerance for failures that affect system software (e.g., operating system
and communication software), (3) and data fault tolerance for failures that affect data
availability.

A soft failure may occur in the system because of transient or intermittent failures 0
in its hardware components or software. These errors may corrupt the system software
as well as fail transactions. For example, a transient error in the shared memory may
corrupt the system software. Alternately, such a failure may corrupt a transaction's
work space. The techniques discussed in transaction fault tolerance (section 7.3.3.1) and
system software fault tolerance (section 7.3.3.2) aim to tolerate such soft failures. Sec- .- -,,
tion 7.3.3.3 discusses tolerating hard failures that have a more serious impact on system
functioning and require more elaborate recovery schemes such as the one discussed in
section 7.3.3.4.

7.3.3.1. Transaction Fault Tolerance

In this subsection we discuss transaction failure and recovery.
A transaction is a set of operations performed on the database. It should have four

properties (recognized as ACID properties), [Haed83, Gray86], atomicity, consistency,
integrity, and durability. Two of these properties are of main interest to us:

* Atomicity - Either all or none of the operations in the transaction should be per-
formed. The transaction commits if all the operations are performed; otherwise it
aborts. This property should be guaranteed even in case of failures (this property
is sometimes called failure atomicity).

* Durability - Once a transaction commits, all of its effects must be preserved, even
if there are failures.
Transaction fault tolerance techniques aid the concurrency control mechanism to

guarantee the four properties even if there are failures. In particular, a two-phase com- .'.'.

mit protocol is used in a distributed database environment to guarantee that either all •
or none of the copies of data are updated when a transaction executes. If there is a
failure that prevents the transaction from completing all its operations, none is per-
formed and the transaction is aborted.

A transaction may fail because of a hardware (component) fault or a software fault AT.

in the system. Examples of the faults are incorrect execution of the transaction (e.g., a
divide by zero); failure of a component on which the transaction was executing (e.g., a

- - . - "*- "- -"" .- " - " " . - " - - " . " " " " " "%.
%. -".



-145 -

processor failure); and a transient error in the transaction's work space in memory. The
approach to handling these failures is simple. In two-phase commit, a temporary copy of %
data resulting from updates is stored on the disk (called safe storage). If a failure affects
the transaction, the transaction is aborted. If the failure has resulted from a soft fault
such as transient error in the transaction work space, the transaction is restarted. If the
failure has resulted from a hard fault but is recovered (e.g., by reconfiguration as dis-
cussed in section 7.3.3.4), the transaction is restarted. For example, if the processor
executing the transaction fails, the transaction is aborted and restarted by assigning it
to another processor in the same cluster. If the disk in a cluster fails, the cluster fails. e
In this case, all transactions in the failed cluster are aborted. After the recovery, which
is discussed in the next subsection, the transactions may be restarted.

When a failure affecting a transaction occurs, it is important to efficiently abort the
transaction and bring the database and the system to a consistent state. There are two
basic models -f transaction execution that lead to different techniques for transaction
abort. One model is called an UNDO model, in which the transaction writes directly in
the database while executing ("write in place"). When the transaction is aborted, the
transaction mechanism performs UNDO operations for all the operations performed by
the aborted transaction. In the other model, called the work space model, a transaction
writes in a work space (also called differential files) until it is committed. Upon commit-
ment, it writes the changes stored in the temporary database into the permanent data- PJ

base. If a transaction is aborted, the work space is simply discarded. We prefer the
latter model. S

To aid in transaction restart and system reconfiguration, at least two copies of
transaction information are maintained in the system (see section 7.3.3.2).

7.3.3.2. System Software Fault Tolerance

In this subsection, we discuss how to tolerate failures that affect the system
software. We will only discuss the soft failures that corrupt the system software
because the hard failures are handled as in the data fault tolerance.

We considered transaction failures in the previous subsection. We use the tradi- ..

tional way of reinitialization (or reboot) to recover from the failures that corrupt the
system software. The reinitialization may be limited to the cluster in which corruption '- .
occurs. Many systems today have multiple levels of system reboot procedures, often
referring to a more extensive reboot as a cold reboot and to a less extensive or limited
reboot as a warm reboot. Proper care in developing system software, especially recovery
techniques, will limit software reinitialization to a warm reboot.

7.3.3.3. Data Fault Tolerance .",

Availability of the database greatly depends on how the data is distributed and , .

duplicated. The data fault tolerance is attained by proper placement of data. Our pri-
mary method is to have two copies of each data item. To do this, we first horizon- . ,o

tally fragment a relation and assign different horizontal fragments to different clusters.
A fragment assigned to a cluster is further vertically fragmented, and different vertical

%? %% % % wk I
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fragments are assigned to different disk units in a cluster. In this scheme, multiple disk
units within a cluster are used to improve response time but not fault tolerance. Later
we briefly discuss a data quadruplication scheme in which multiple units within a clus-
ter are also used to improve fault tolerance.

Maintaining two copies and multiple fragments of each copy can also simplify and
improve the retrieval performance of the system, but we will not address that issue
here. We use three rules in our primary scheme to distribute the database:

1. The database is partitioned across the clusters. Thus the failure of a cluster will
make only the fragment(s) assigned to it unavailable.

2. Each partition assigned to a cluster is uniformly distributed over all the disk units
in that cluster. It may be noted that the purpose of having multiple disks in a
cluster is to increase the parallelism and not the fault tolerance.

3. The two copies of data (fragment in our scheme) cannot reside in the same cluster
for the sake of fault tolerance.

Fragment Allocation Scheme

Now let us discuss how fragments are allocated to different clusters. It is impor- -'- .

tant to allocate the fragments of each of the two copies to the clusters in an intelligent
way because it affects the fault tolerance. For example, consider dividing the database %.4,

into four fragments so that two copies of each fragment are distributed over four clus-
ters. Two of the possible data distribution schemes are shown in Figures 7.2 and Figure
7.3. In both schemes, the database will remain available if there is a single failure of
clusters because one copy of every fragment will still be accessible. In the first scheme
the database will be available in two out of a possible six double failures of clusters. In
the second scheme the database will be available in four out of a possible six double
failures of clusters. Thus, the data placement in the second case is preferable. Because
the probability of double failures is negligible, we will not address recovery of double (or
multiple) failures of clusters.

Now let us look at how the system can be reconfigured in terms of data placement
after one or more single failures of clusters. Consider the failure of cluster 1 when the
scheme shown in Figure 7.2 is used. In this case, one copy each of fragment F1 and
fragment F4 will be lost, and the other three clusters have only one copy of fragments .:
F1 and F4. Although it is possible to continue processing the transactions, it is not
desirable to do so, because it will not allow the system to be gracefully degradable.
Failure of one more cluster may leave the system with no copy of a fragment. For

example, failure of cluster 2 would mean that no copy of fragment F1 will be available,
and so the system can no longer process transactions.

The solution is to create a second copy of th, fragments that are unavailable
because of a cluster failure. Following the data placement rules discussed above, the
system of three working clusters can be reconfigured as shown in Figure 7.4. Following
the same arguments, if cluster 3 were to fail after reconfiguration before cluster 1 failed
(as shown in Figure 7.4) but before cluster I is reintegrated, the system can be

'.A 'WP ac .0
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Double failures in which database will be unavailable

- Double failures In which database will be available
FI First copy of fragment I

FI Second copy of fragment I

Figure 7.2. Data Placement Scheme 1
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Double failures In which database will be unavailable N

Double failures In which database will be available ",'

fl First Copy of fragment 1 ._-:
FI Second copy of fragment I %_

Figure 7.3. Data Placement Scheme 2 •

reconfigured as shown in Figure 7.5. Because at least two copies of data must be kept .€- ,
in the working system and the two copies cannot be stored on the same cluster, the sys- ?? --'

tern can tolerate faults until two clusters are left in the working system. : '
After a failed cluster is repaired, it is reintegrated into the system. This involves

replacing (or updating) the copies of the fragments on the repaired cluster with the up-
to-date copy in the rest of the working system. For example, if cluster 1 was repaired

......... ......
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Figure 7.4. Data Placement After Cluster 1 Fails

*F 3
UF I

Figure 7.5. Data Placement After Cluster 3 Also Fails

after the situation shown in Figure 7.5, fragments F1 and F4 will be updated using A.
either of the two up-to-date copies on clusters 2 and 4, fragment F1 will be deleted from
cluster 4, and fragment F4 will be deleted from cluster 2. The process of replacing (or I., 7-I"

updating) can occur in the background for the active clusters (clusters 2 and 4 in this
case) for most of the time. However, just before cluster 1 is made active, there may be
a brief pause in the system to allow for the reallocating transaction and for updating
the global data allocation directories. We leave out some details of cluster reintegra-
tion. %:

The above scheme is based on data duplication. If the fault tolerance achieved by .

maintaining two copies does not meet the requirement, the amount of data replication >\"V
can be increased. However, this can be done only at the cost of performance since the <-"

more copies of a data item, the more overhead of storage and update synchronization.
We will briefly discuss a data quadruplication strategy, which may improve the fault N

%~~~ .1% IrJs.
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tolerance substantially.

The quadruplication strategy maintains two copies of data within one cluster and
two additional copies in another. The two copies within the clusters can be distributed 0
in two ways, giving two different quadruplication schemes. In the first scheme, a disk.
unit consists of mirrored disks. In this case, logically, there are only two copies of every % €..
fragment, but physically there are four copies of fragments. The hardware keeps two" I
identical copies on every mirrored disk. Since system software uses the addressing, the
data update algorithm knows about only two copies. In the second scheme, the same
strategy of fragmentation used across the clusters is also used now for the two copies
across the disk units within a cluster. In this case, the data update algorithm knows
about the four copies and has to send update commands to all four copies separately.
Thus, in this scheme the cluster cannot fail if a disk unit goes down in a cluster (just as
the system will not go down if one cluster goes down). We feel that the first scheme is
simpler and has less overhead when there are no failures. Overheads for the two
schemes when failures occur remain to be studied.

7.3.3.4. Recovery From Hard Failures

A hard failure is usually more serious, requiring more expensive methods to tolerate
it. There are two types of hard failures with respect to the type of recovery required -
one in which the availability of the data is not affected and the other in which the data

becomes unavailable. The latter type is like a media failure in traditional systems and
requires more an elaborate recovery process. An example of the first type of failure is a 0
hard failure of a processor unit (a single processor or a processor pair). An example of a % %
second type of failure is the failure of the shared memory or the failure of a disk unit (a -

disk or mirrored disks), both of which lead to the cluster failure in our primary scheme
of data distribution.

A component suffering a hard failure remains out of commission for a relatively
long time, and we cannot let the system be unavailable for that time. The process we
use to recover from hard failures is called reconfiguration. In this process, the following
actions are taken: The failed component is logically isolated from the system so that it
can be either repaired or replaced. Secondly, in some cases, spare replacement com-
ponents can readily replace the failed components. If a replacement is made, the system .
can function at the original capacity once the reconfiguration is complete. If a replace-
ment is not made, the system will function at a lower capacity proportional to that loss
because of the component failure. Third, the functions of the failed component are
redistributed to the functioning components. If a part of data becomes unavailable,
then that data is made available by making a copy of it. -. .-

Next let us look at recovery when a cluster fails and data availability is also
affected. Let us first discuss the important design features that help in the recovery. -

Adjacency - There are many ways in which a cluster failure can be detected. For the -"

0sake of brevity, we will discuss only one possible scheme. We arrange all the clusters in
a logical unidirectional ring. Periodically, each cluster sends an "I am alive" message to
the cluster to its left. If a cluster does not receive this message within a predetermined -

"S
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time, it will communicate with the node to its right to ascertain that it is dead.

Duplicate Transaction Information - It is necessary to keep at least two copies of
information on the active transactions in the system. To store this information, each 0
cluster maintains a transaction table. Information about each active transaction can be
maintained in two transaction tables, one in the transaction table in the cluster of tran-
saction origin, and other in the transaction table in the cluster to its left.

Global Data Allocation Directory - A global data allocation directory is a bidirec-
tional list of data fragment -- cluster.

Duplicate Lock Information - Each cluster maintains a lock table. When a transac-
tion accesses a data item, a lock is set on both copies of the data item, which are in -

different clusters. The respective iock tables maintain this information.

Component Failure Type Failure Handling Method

Soft Failure Processor Pairing

Transaction Recovery, or
Processor, Hard Failure Software Reinitialization, or

System Reconfiguration (in extreme cases) 'a-..

Error Correction Codes and ,Soft Failure , %:,'.'
Hardware Techniques

Disc Mirroring, or
Hard Failure i

System Reconfiguration

Parity and Error Correction Codes, or

Soft Failure Transaction Recovery, or

Software Reintialization
Memory

Partial Failure Memory Reorganization

Memory Mirroring, or
Hard Failure

System Reconfiguration

Soft Failure Hardware TechniquesPower Supply %
Hard Failure System Reconfiguration

Soft Failure Hardware Techniques
Intracluster Bus

Hard Failure Treated as failure of associated component N

Protocol/Retries, and
Soft Failure

Interconnect Error Correction Codes *m ,

Hard Failure Redundant Paths S

Table 7.2: Failure Tolerance Techniques As Applied To Various Failures

In certain failures, it is necessary to isolate the failed component and continue the
system operation. When a component is isolated, access to some data may be lost until I
the failed component is repaired. Our data storage scheme dictates that at least two '/

copies of any data must be available to allow tolerating any additional failures and
graceful system degradation. The reconfiguration scheme depends on system hardware
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and software configuration, including the data storage scheme. We will now discuss the .0,
system recovery scheme used to tolerate some of the hard failures that result in cluster
failure. We will assume the data duplication scheme defined earlier.

1. Detect Cluster Failure. Some of the hard failures result in the cluster failure.
A failure of a cluster is detected using the adjacency feature described above. For
simplicity, we will discuss a centralized reconfiguration algorithm in which the
adjacent cluster that detects the cluster failure coordinates the reconfiguration.

2. Prepare for reconfiguration. Upon detection of a cluster failure, the system
enters a pause state. During this step, all the committed transactions are com- %
pleted. All the transactions, which are active but not yet committed, are aborted.
This step requires accessing and updating appropriate transaction tables and lock
tables. The aborted transactions are restarted when the system leaves the pause
state. The system remains in the pause state until the reconfiguration is completed.
While the system is in the pause state, newly arriving transactions are queued
behind the transactions to be restarted.

3. Find what is missing and locate the redundant copy. The coordinator
accesses its global data allocation directory to find out the data (fragments) that
was (were) stored on the failed cluster and to locate the respective redundant data
(fragments). We call the cluster with redundant data source clusters.

4. Decide the Destination Clusters. These are the clusters where the second copy
of the data has to be created from the copy of data on the source clusters.

5. Send the Data to the Destination Clusters. The coordinator instructs the .. .

source clusters to send the relevant data to destination clusters. A destination clus-
ter decides how to store the data on its disks.

6. Update the Global Data Directories. The coordinator sends appropriate infor-
mation to all the active clusters to update their respective global directories. 0

7. Restart. The coordinator signals all O.K. to all the clusters. The system then %

leaves the pause state and start processing transactions in its queues.

After the repair of one or more failed components, a cluster may be ready to be
reintegrated with the rest of the active system. The reintegration process requires that ,
the repaired cluster is updated with respects to the data. Most of this process can be
performed in the background. For the sake of brevity, we do not provide further

details.

7.4. Measuring Fault Tolerance

The parameter used most widely to characterize the fault tolerance of a system is
its availability. To measure the availability of a system and to devise fault tolerance . --. ,I

techniques to achieve the desired level of system fault tolerance, we should also be able -'%\.,

to measure availability of each of the system components.

Y
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7.4.1. Component Availability

The term fault tolerance reflects the ability of a system or component to tolerate a
fault and remain active. As discussed earlier, availability of a component or a system
reflects its fault tolerance. Two parameters of a component are relevant in calculating a ,,
component's availability: MTTF, mean time to failure, and MTTR, mean time to
repair. MTTF refers to the average time that elapses between two consecutive failures
of a component. MTTR refers to the average time needed to detect and repair a failed
component. The availability of a component can simply be given by the ratio, - 0

MTTF
Availability = (7.1)

MTTF + MTTR

Estimates of the MTTF and MTTR of each component of a system should be
known before system availability can be estimated. Table 7.3 gives the estimates of
MTTF for the components that we will use in our analysis. These estimates have been
derived from the literature.

Component MTTF Estimates

Processor 100K hours
Memory (64 MB RAM) 1OOK hours
Disc 10K hours
Communication lOOK hours S
Power Supply 1OOK hours." -

Table 7.3: Component MTTF Estimates

7.4.2. System Availability -

Availability of a fault tolerant database system can be defined in one of two ways.
We call them strong availability criteria [Smit86I and weak availability criteria

[Shet87j.

Strong Availability: Strong availability of a database system is given by the percent
of the time the entire database is available for access by authorized users, i.e.,

time the entire database is available
SAvail = x 100 (7.2)

total time ...

Weak Availability: Weak availability of a database system is given by the percent of IV
the time a transaction can be processed without being aborted because of a failure in "% % -' ,'%

the system. The system is available as far as the transaction s,,Imitted to the system
can be processed without a delay or with a reasonable delay. An example of a reason-
able delay is the recovery time for one soft failure during a transaction execution. Let:

P(nf) - Probability that no failure occurs while a transaction executes. and
P(sf) = Probability that there are no multiple failures during the transaction

W0
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execution and that the system recovers from every single failure. In other words, this.%'6
is a probability that the system goes into a pause state at least once during a transac- '. N

tion execution.

Then, oil -

W Avail P(nf) + P(sf) (7.3)

There may be two reasons for using SAvail as the availability criteria [Kim84, Smit86].
First, it is easy to quantify SAvail as compared with WAvail. Second, it is easier to
justify that the specified fault tolerant techniques meet certain availability goals. -

;- ...

7.4.3. Assumptions

Our analysis is not a detailed analysis of a particular system. We make several
simplifying assumptions without compromising the basic nature of the problem. Some of
the important assumptions are as follows:

1. Each system component or module is fail fast, i.e., it either functions properly or
stops [Sch183J.

2. Each component fails and recovers independently.

3. Mean time to failure of a component is exponentially distributed with mean •

MTTF. Similarly, mean time to repair of a component is exponentially distributed
with mean MTTR.

4. Components (particularly interconnect) are lightly loaded during recovery. To
include the queuing effect in calculating MTTR u.,te,. a more detailed model (e.g.
[Shet85] ) needs to be used.

7.5. Quantitative Analysis I S

In this section, we will study the availability of a VLDBS. In section 7.5.1, we ,, ,'

study the availability of subsystems that consist of multiple non-redundant and redun-
dant components. A VLDBS comprises the subsystems of components. In sections 7.5.2
and 7.5.3, we study the mean time to failure of a cluster and time to recover from a
cluster failure, respectively. These two parameters are used to calculate system availa-
bility of a VLDBS in section 7.5.4. Each of these sections discusses basic quantitative %

methods to calculate output parameters using input parameters, followed by examples
and evaluations using a range of input parameter values.

7.5.1. Component Availability

In this subsection, we calculate the availability of subsystems consisting of multiple
nonredundant components (section 7.5.1.1) and multiple redundant components (sec-
tion7.5. 1.2).

% %

'Mill...... ............-........-...-........... ,
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7.5.1.1. Availability of Subsystems Consisting of Nonredundant Components

A system with no redundant components requires that all the components are
active for the system to be active. Such a system is also called a series system. Let the e

mean time to failure of the i th component be MTTF.. Then the mean time to failure

of a system of n components, MTTF .y, is given by:

1
MTTFserys n 1 (7.4)

MTTF.

If a subsystem has k identical components and if mean time to failure of each corn-
ponent is MTTF, then mean time to failure of the subsystem, MTTF. ,, is given by--

reducing (equation 7.4). i.e.,

MTTF
MTTFk sesys = (7.5)

k

7.5.1.2. Availability of Subsystem Consisting of Redundant Components

In section 7.3.2 we discussed using redundancy to increase fault tolerance of a com-
ponent. Consider a subsystem that has reconfigurable duplication as in disk mirroring.

Such a subsystem consists of a pair of identical components working in parallel and per-

forming the same task. The subsystem can perform the required task as long as at least

one of the two components is active. Using a combinatorial model of system availabil- "

ity, we can map this subsystem to a two module, two repairman model (or alternatively .-.
a Markovian queue called M/M/2/2/2 queue) as follows. We note that the system can

be in one of the three states (see Figure 7.6). In state 0, both components are active.

In state 1, one of the component has failed, but the other is active. In state 2, both the
components have failed. An arc joining two states specifies the rate at which the sub-
system changes from the state at the tail of the arc to the state at the head of the arc. (

The two state transition rates shown over the arc are defined as follows (assume mean

time to failure and mean time to repair of each component to be MTTF and MTTR,
respectively). N. %

21 1 S'~

m 2 m %'-.

Figure 7.6. Model of Reconfigurable Duplication

II failure rate X ,
MTTF

'!W~~ %. .'
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repair rate = .
MTTR

Now availability of this subsystem. A can be calculated from the probability that the
system will be either in state 0 or state 1 and can be given as follows [Siew82], page
280:

A = 2X + (7.6)
X2 + 2Xpg + g

%L, %<'.P

Repair time for this subsystem, MTTR ., is given by MTTR12, because the sub-
system is modeled as failed when it is in sate 2, and it is repaired when it comes to
state 1. This happens at the rate 2 I.. Now, the mean time to failure of the subsystem, S
MTTF .,is given by using equation 7.1.

pair'
We can extend the above two component subsystems with one redundant com-

ponent to a k component subsystem with k-1 redundant components. This subsystem
fails only when none of its components is active. It can be modeled by a k module, k -
repairmen model (or an M/M/k/k/k queue). Availability of this system, Ak-redundant'
can be given by extending equation 6 as follows.

k -
k  " " .

Ak-redundant ( (7.7)
(X + I-)k

Practically, this availability quickly approaches 1 for the values of the mean time
to failure given in Table 7.3. We can show that the mean time to repair for this subsys-
tem is inversely proportional to k. Corresponding value of the mean time to failure of
the subsystem will be very large as compared with the mean time to failure of the indi-
vidual component. .

,. 2. 2,." .

7.5.1.2.1. Availability of Hardware Components with Redundancy

Now let us look at the effect of some of the hardware fault tolerance techniques dis-
cussed in section 7.3.2. Table 7.4 gives the parameters of interest.

MTTFdik mean time to failure of a single disk
MTTF mean time to failure of a single processor
MTTF r°  mean time to failure of a single memoryme m
MTTFn Mean time to failure of a single interconnect
MTTF Mean time to failure of a single power supplypa .6

% %

Table 7.4: Component Fault Tolerance Parameters '."-..',

Effect of Disk Mirroring: Disk mirroring is used to tolerate hard failures of disk 'I
units. By disk mirroring, the availability of the disks can be greatly improved. , .N4.0

K , % % % % % % % 1 . 1 ,
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However, this fault tolerance is achieved at the cost 100% overhead in number of corn-
ponents.

Example: Consider a subsystem consisting of mirrored disks with MTTFdisk to be
10K hours and the mean time to repair, MTTR dikto be 24 hours. By using equation *N
(6), availability of a disk unit of mirrored disks, Ad evaluates to 0.999942675 and the

mean time to failure, MTTFdu to 239 years. V'O_

Example: A duplication scheme can also be used for memory. For MTTF of 1OOK
hours, the mean time to failure of a memory unit consisting of mirrored memory will be
23,793 years! Similar cases arise for dual interconnect and dual power supply. The
effect of using dual interconnect and dual power supply can be calculated similarly.

Effect of Processor Pairing: The use of redundancy in processor pairing as discussed,,
in section 7.3.2 is quite different from that in disk mirroring. This is because disk mir-

roring is used to tolerate hard faults, while processor pairing is used to tolerate soft
faults. By processor pairing, all the soft faults are detected. Since many of the errors
are transient, many of the faults do not recur. For recurring soft faults, the transaction
is aborted or the system code is reinitialized. If the soft error is persistent after several
retries, it is manifested as a hard failure. The mean time to failure corresponding to
the soft faults is estimated to be 10K hours or about ten times as frequent as the hard
failures. The processor pairing tolerates these soft faults. For any hard failure, an
interrupt is generated and the processor pair detaches itself from the system. Thus,
unlike disk mirroring, the processor pair does not continue to work if one of the two
processors in a pair fails.

Example: For a processor pair to be active, both the processors should be active.
Thus if mean time to failure of each processor, MTTFr , is 1OOK hours, then by

processor
using equation 7.5, mean time to failure of a processor unit, MTTF , consisting of pro-
cessor pair will be 50K hours. Pu

Effect of Processor Redundancy: Processor redundancy is used to tolerate hard
failures that disable processor units (which may be a single processor or a processor
pair). This is done by using multiple processor units in a cluster. Since at least one
processor unit should be active for the cluster to be active, processor redundancy
decreases the probability of a cluster failure due to processor failures. Processor redun- 0
dancy also contributes to an increase in the processing power.

Example: If a cluster contains two processor units, such that each unit is a processor
processor pair with the mean time to failure of each unit, MTTF to be 50K hours,
then the mean time to failure of the cluster due to processor failures, MTTF will be

5950 years. If a cluster contains three processor units, MTTF will be, 269,65 0
years! -rc-

7.5.2. Parameters %

Many parameters affect the availability of a system. Table 7.4 defines component
parameters. Table 7.5 defines system parameters. The last three parameters in Table
7.5 are called output parameters; the rest are called input parameters. Range or

% % -. P.- ~- .'. *V...~wx

%. '' %' .-
, ,%S,- , ,3 . :._ :, _.. / ..,.,;/ .:...;-.- ,..:.-. ,.... .....- :,-...... .....-..- . ...-....%
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multiple values of input component and system parameters are used to study the effect
of parameter values on system availability. Table 7.6 gives range values and default
values used in our quantitative evaluations. If the value of a parameter used during a
calculation is not explicitly mentioned, then the default values should be assumed. ,

NC Number of clusters in the system
ND Number of disk units per cluster
NP Number of processor units per cluster %
DBS Database size
DF Distribution factor
C Interconnect capacity 1. .01Y

PS Page size
I I/0 access time
MTTFIt Cluster MTTF
AfT TRtR MTTR for a cluster failure

Av System availability

Table 7.5: Important System Parameters

The distribution factor (DF) is given by the average number of clusters on which
the second copy of data stored on one cluster is stored. For example, the DF of the
data placement scheme shown in Figure 7.2 is 2, and the DF of the data placement
scheme shown in Figure 7.3 is 1. I/O access time is the time to transfer one page from
a disk to memory.

Parameter Values/Range Default

MTTF disk 10K or 30K (hours) SOK (hours)
MTTF 100K (hours) -

MTT Y rOc 100K (hours) -

MTTF int  100K (hours)
MTTF 100K (hours) - '.
NC p 1024 to 2 0

ND 1 to 512
NP 1, 2 or ND/2 ND/2
DBS 10"*11 (100 Giga) or 10**12 (1 Tera) 10**12 (byte)

byte .'
DF 1, NC/2 or NC-1 NC/2
C 100M, 500M, or 1000M (bits) 500M (bits)
PS 4K, 16K, or 64K (bytes) 16K (bytes) %

I ~~20 ms . .,

Table 7.6: Input Parameter Values S

Depending on the component fault tolerance techniques used in a system, we get
different system configurations. We identify three system configurations of interest to

. . . . . .., z : . ,"- -",
..~~~ %-. -, -,.,...- .,. .-,, .• . -% %.•. ,%...-",',,'., .,.,....':':' 'e-. ,'.'.',',", .
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our study. These configurations are given in Table 7.7.

Configuration 1 Single disk, processor pair, single memory, single interconnect, single 0 P

power supply

Configuration 2 Mirrored disk, processor pair, single memory, single interconnect, single I.

power supply

Configuration 3 Mirrored disk, processor pair, dual memory, dual interconnect, dual
power supply

Table 7.7: System Configuration

To simplify the presentation without reducing the scope of evaluation, we will

assume that all the clusters are identical and all the components of the same type have
the same characteristics. We also assume that the total number of disk units in the sys- ,'

tern will be 1024 (i.e., NC * ND = 1024). If each disk unit uses mirroring, there will be
twice as many disks in the system. We will assume the data storage scheme described
in section 7.3.3.3. Because this scheme uses data duplication, the total amount of
storage capacity required in tl.e system will be twice that of DBS. Thus if the DBS is

100 gigabytes, then each disk unit should have a storage capacity of (100 * 2 / 1024) or

nearly 200 megabytes. If the DBS is I terabyte, then each disk unit should have a ,-. -j.

storage capacity of nearly 2 gigabytes.

In this study we focus only on the fault tolerance. Thus we do not consideration in
detail the query processing and optimization issues. However, it should be noted that
these issues are very dependent on the data storage scheme used. Fault tolerance is also
very dependent on the data storage scheme used. But a data storage scheme that is "'

good for fault tolerance may not be very good for query processing. This presents a
very important trade-off that we do not address in this study. •

7.5.3. Mean Time to Failure of a Cluster

A cluster is active if all of the following hold true:

1. All of the ND disk units are active,

2. At least one of the NP processor units is active, 0

3. Shared memory unit is active,

4. Interconnect and connection to it is active, and '

5. Power supply unit is active.

Thus, by using equation 7.1, MTTFluate7 is given by: .

%I

'..~~ ~~ '% P% o 0

.5..:
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_ ++
MTTFtuse, MTTFSkS MTTF

+ + (7.8)
MTTFmu MTTF ini MTTFu.

where MTTF k. is the MTTF of the system of all the disk units in the cluster,
MTTF is t~e MTTF of the processor units in the cluster, MTTF is the MTTF of N

the shared memory unit in the cluster, MTTF. is the MTTF of interconnect and con-

nection to it, and MTTF is the MTTF of power supply unit in the cluster. Each of
these items are discussed eow.

0 All of the disk units of a cluster must be active in an active cluster. This is 0
because of the way we distribute the data, namely, the data allocated to a cluster is
vertically fragmented and different fragments are stored on different disks. Hence
all the fragments are required to construct a copy of a relation. MTTFdisks can be
given by equation 7.5 because it is a system consisting of k identical disk units
working in parallel and each of the units should be available for all the system to
be available. Thus:

MTTFdu
MTTFdsks k

kI
where MTTFd is the MTTF of a disk unit. Each disk unit may be comprised of a
single disk or mirrored disks. Section 7.5.1 discusses how to calculate MTTF for
mirrored disks.

* At least one of the processors units must be active in an active cluster. When a
processor fails, transaction fault tolerance aborts the transactions being executed by V 0

the failed processor. As long as at least one of the processor units is active, the -
processing will continue in the cluster, but at reduced speed. Such a property of
the system is called graceful degradation. A processor unit is either a single proces-
sor or a processor pair. Subsection 5.1 discusses how to calculate MTTF when a
cluster contains several processor units. •

* The shared memory must be active in an active cluster. The shared memory could
be either nonredundant or redundant. If it uses memory mirroring, MTTF can % N

me m e.\be calculated in a way similar to the mirrored disks. % e It

• An interconnect and the cluster's communication to it must be active for an active 3 0
cluster. The system may have single interconnect or dual interconnects (i.e., two
interconnects with independent communication controllers at each cluster).
M TTF. of a dual interconnect can be calculated as in the case of mirrored 0%e .,P -._
memory. I

" The power supply must be active for the cluster to be active. A cluster may have
a single or a dual power supply. MTTF can be calculated as in the case of dual
interconnect and mirrored memory. ps U

% %%%
% % %%
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7.5.3.1. MTTF Results

There are many parameters that influence MTTF Among the important
ones are the size of the cluster (primarily identified by /R), fault tolerance techniques
used for each of its components (i.e., configuration), the reliability (or mean time to

failure) of each of its components, and the data storage scheme. As noted in before, we
quantitatively evaluate only one data storage scheme, which we discussed in section
7.3.3.3.

The larger the size of a cluster, the more parallelism and storage capacity within a
cluster. However, there are more components in a cluster that can fail. Thus the

MTTF will decrease. Two important parameters that decide cluster size are ND

and NP. In terms of fault tolerance and our study, ND plays a significantly more dom- %

inant role because of the following reasons:

" MTTFd.k is smaller than MTTF because a disk has mechanical components .. ,'
die kprocessor

and hence is inherently less reliable.

* Usually ND is larger than NP since the memory contention limits the number of
processors that can be used in parallel.

• ND also decides the size of the database.

Because of the importance of ND and the sensitivity of all the three output param-
eters with respect to it, we plot it on the x-axis for all the graphs. The output parame-

ters are plotted on the y-axis.

The fault tolerance techniques require redundancy and hence more components. .

The system configurations reflect the hardware fault tolerance techniques used in the
system. Figure 7.7 compares the MTTFluster of cluster using different configurations.

Configuration 3, which uses hardware fault tolerance techniques for all of its com-
ponents, performs significantly better. •.L-

Because the MTTF of a disk is significantly smaller than the MTTF of other com-

ponents, MTTFd. has a very significant effect on MTTF . This effect is shown in•t • l str

Figure 7.8. Note that the scale on the y-axis is logarithmic r.e., it doubles every unit). .. _ "

Figure 7.9 compares MTTFI ter of a cluster that has one processor with a cluster <%

that has more than one processor. The difference between the curves for NP = 1 and

NP - 2 is significant for smaller values for ND. At larger values for ND, MTTFdk
becomes a bottleneck for both cases; so the difference is not significant. Also, having

more than two processors does not increase the MTTF 1  r noticeably because the

value of 1 / MTTF does not contribute significantly in equation 7.8.
procs

7.5.4. Response Time of a Cluster Recovery

A cluster recovery takes place after a cluster fails. In section 7.3.3.4, we discussed

a procedure to perform such a recovery. Estimating MTTR , response time for

cluster recovery is quite difficult. As explained below, we will calculate an optimistic
estimate.

V-..
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The step of the recovery procedure that may contribute the most to the recovery
time is step 5, "send the data to the destination cluster." This step can be divided into ,

three substeps. S

Step 5a. Read the data from the source clusters. The DF is the same as the number of
source clusters; so the recovery data will be read from the disks of each of the ,'

source clusters. Because we assume that vertical fragments of the parts of rela-
tions are stored on a cluster, it is possible to retrieve data from all the disks in
a cluster in parallel. The following equations give the time to read the
recovery data.

DBS
total data lost due to cluster failure, DBC = 2x

NC
DBC S

total recovery data on a source cluster, DBR =
DF

data on a disk in source cluster, DBD " b4 S

ND
DBD

number of pages to be read from a disk, PG - DB-T "

time to read PG pages or the total read time, RT = PGXI

Step 5b. Transmit data from source clusters to destination cluster. We assume that the
data received in a one page fetch cycle is packeted together and transmitted to
a destination cluster. Transmission time includes the time required for physi-
cal channel transmission and communication software overhead. Optimistically,
we assume a communication software overhead factor (CSF) of 2.0. The time
to transmit recovery data can be calculated as follows.

packet size, PKS = ND x PS

PKS
time to transmit a packet, TP x CSF ;"d.

C
total transmission time, TT = TP x PG

Step 5c. Write data on the destination cluster. The time to perform this step can be -'-',.

calculated as in step 5a.

We assume that as far as possible, the system will read, transmit and write data in
parallel. Thus, if I < TP (i.e., the time to read a page is less than the time to transmit
a packet), the total time for step 5 is (I + TT + I), where the first I is due to the time
to read a page and the second I is due to the time to write the data received in a packet
in parallel on all the disks in a destination cluster. On the other hand, if I > TP, then
the total time for step 5 is (TR + TP + I).

Table 7.8 summarizes the time taken by various steps of the recovery procedure.
The time taken for other steps of the recovery procedure is our best guesstimate.

% %
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Step of Recovery Procedure Time Taken

1. Detect failure 2 sec
2,3,4. Prepare to send data 10 sec
5. Send data max(21 + TT, TR + TP + I)
6,7. Update dictionary and restart 2 sec

Table 7.8: Factors Contributing to MTTR
7.5.4.1. MTTR Results

As in case of MTTF MTTR is influenced by many parameters. Among
cluster' cluster

the important parameters are size of the database, distribution factor, interconnect
capacity and page size.

The larger the size of the database, the more data will become unavailable when a
cluster fails. Thus more data will need to be transferred during the recovery procedure
especially if the system has fewer large clusters. Figure 7.10 shows that MTTRcs is
significantly larger for database size of 1 terabyte as compared to the database size of
100 gigabytes. Mcst of the MTTRIt is contributed by the transmission time (TT).

A higher DF means more clusters have the recovery data and hence less recovery
data per cluster and disk in a source cluster. Thus it is possible to have more parallel-
ism for systems with a higher DF. DF =1 means that only one cluster has all the
second copy of data required for recovery, DF - NC / 2 means on average half of the .
cluster in the system have part of the recovery data, and DF = NC-1 means all the 0

active clusters have some part of the recovery data. Figure 7.11 shows that effect of the
DF is very significant. Since the DF depends on the data storage scheme, the effect of
data storage scheme on MTTRIe is very significant.

We found that TP > I in most cases. Thus the transmission time is more dom- •
inant than read time, especially for large clusters (i.e., higher ND). Because of this,
effect of interconnect capacity, C, on MTTR is significat, particularly for clusters -

with ND :- 16. See Figure 7.12.

The larger the page size, the more recovery data is read in a page fetch cycle. This
results in smaller I/O read and write time and comparatively larger transmission time %I Y
per packet. For smaller clusters, the read time is dominant and since large page size
results in fewer page fetches, a system with larger PS has a smaller MTTR lut . See
Figure 7.13. For ND - 64, transmission time dominates; so the PS does not affect X% :

MTTR .-,.t..
cluster" 0

7.5.5. System Availability

The mean time to a cluster failure in a system is NC * MTTF . The meanc•. u ter
time to repair from such a failure is MTTR Thus the system availability can be
calculated as follows using Equation (1). i .

(NC x MTTFo,,,,,,)
A V = -(10)

(NC x MTTF ,,,-, + M'TTR ,,t,')
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7.5.5.1. Availability Results
To study the effect of various parameters on a system, we evaluate same-size sys-

tems. We do this by fixing the total number of disk units in a system to 1024 (i.e., NC ,
ND = 1024). Thus if the system has large clusters (i.e., ND is large), then the system % a

has fewer such clusters. However, we will need fewer large clusters in a system for a
given database size. Depending on the capacity of each of the disk, the total database
size can be varied from 100 gigabytes to 1 terabyte. This size, in our opinion, defines a
very large database system. •

System availability is affected by all the parameters that affect MTTF and ..'%:

MTTR . The parameters that have more significant effect are system configuration, *.,

MTTFd, NP , DBS, DF, C and PS.

Table 7.9 relates Av to system down time. The desired level of availability depends o
on the type of system application. We feel that modern systems will be expected to
give availability of 0.999 or more. It is comforting to note that the fault tolerance tech-

niques we already know may be able to give such availability even for very large sys-

tems. It may be noted that all the Av curves that follow are drawn to logarithmic scale.
Thus towards the higher end of the scale, even small vertical separation of curves may w
mean very significant differences in Av.  N

Av Unavailability of the System

0.99 Unavailable for one hour in 4 days
0.999 Unavailable for one hour in 41 days (more than a month)
0.9999 Unavailable for one hour in 416 days (more than a year)
0.99999 Unavailable for one hour in 4,166 days (more than 11 years)
0.99999 unavailable for one hour in 41,666 days (more than 114

years) •

Table 7.9: Availability vs Unavailability

Figure 7.14 compares the Av of different configurations This shows that the effect

of system configuration (i.e., the hardware fault tolerance techniques) is very significant. S

For example, a 64-cluster system with 8 disk units each will be unavailable for one hour
in approximately 79 days if it uses configuration 1, unavailable for 1 hour in approxi-

mately 767 days (2.1 years) if configuration 2 is used, and unavailable for 1 hour in
1250K hours (143 years) if configuration 3 is used. '.

Figure 7.15 compares Av for systems with different MTTFdik. Since MTTFd% is

always the bottleneck for configurations 1 and 3 and usually the bottleneck for

configuration 2, the effect of this parameter is very significant. It should, however, be - -

noted that because both configuration 2 and 3 use disk mirroring, the improved fault ,

tolerance results in a 100% increase in disk costs.

Figure 7.16 shows the effect of NP on Av. This figure shows the curves for

configuration 2, in which MTTF is the bottleneck for NP = 1. Thus the effect of N .X
PTOs P

4. ',.aV
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processor redundancy is significant in this case. However in all other cases, because disk .

availability is the bottleneck for At, the effect of processor redundancy is not significant
if NP > 2. By comparing the curves for NP = 2 and NP = ND / 2, we also note that
the effect of more than two processor on fault tolerance is insignificant. Thus, the pri-

mary purpose of having more than two processors in a cluster will be efficiency in query
processing and not fault tolerance. Also note that processor redundancy costs less than
disk redundancy.

Figure 7.17 shows the effect of DBS on Av. The difference between DBS of 100

gigabytes and 1 terabyte is less when the system consists of many small clusters because
of the smaller difference between values for MTTRcuster. This difference is very

significant for the system consisting of fewer large cluster for both MTTRJlster (see Fig-
ure 7.10) and Av.

Figure 7.18 shows the effect of DF on Av. A higher DF means more clusters have

the recovery data and take part in recover procedure, thus providing more parallelism.

This effect is more significant for a system consisting of a large number of small clus-
ters.

Figure 7.19 shows the effect of C on Av. The differences for a system of many

small clusters is insignificant because the time to read recovery data is dominant (i.e.,
the system is node bound). However, the transmission time is dominanL (i.e., the system-'
is communication bound) for a system with few large clusters, so the effect of C is more *.,

significant.

Figure 7.20 shows the effect of PS on A. The effect is more significant for a sys- -

tern with many small clusters. In general, At is higher for higher PS. A higher PS

means fewer pages need to be fetched and larger chunks of data need to be transmitted..",-.
This results in the system becoming communication bound sooner.

In general, we can observe that systems with many small cluster have better availa-

bility and fault tolerance. .

. 0t
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7.6. Conclusions

In this chapter, we identified and described basic hardware and software fault
tolerance techniques that are required to achieve a high degree of fault tolerance in a %
very large database system. We also develop quantitative methods to evaluate availabil-
ity. The quantitative evaluation helps us to understand the relative importance of vari-

ous parameters that affect system fault tolerance.

We use system availability as the main parameter to measure fault tolerance. Our

study shows that system availability is very sensitive to the following parameters:

1. System Architecture. By varying the number of clusters, the number of disks per
cluster, and the number of processors per cluster, we were able to study different
system architectures. For example, one extreme of our parameterized architecture

presents a loosely coupled, non-shared memory architecture (i.e., case of ND = 1,
NP = 1). We found that better availability is obtained when the system has many

small clusters. In most cases, ND - 8 when availability peaks.

2. Fault Tolerance Techniques. We studied the effect of various hardware fault toler-
ance techniques by varying system configurations that differ in the fault tolerance
techniques used for different components. We found that the effect of fault toler-
ance techniques on system availability is very significant. We also found that relia-
bility of a disk (MTTFdi,) is usually a bottleneck, and performance gain due to
disk mirroring is very substantial. Processor redundancy significantly helps if disks
are mirrored (or other disk redundancy methods are used). However, NP = 2 is
sufficient for fault tolerance. A higher NP does not improve availability
significantly. Fault tolerance techniques for other components are useful in con-
junction with fault tolerance techniques for disks and processors. , 2, .

3. Database Size. The size of the database has a significant effect on system availabil-
ity. If the database is larger, more data will be lost when a hard failure occurs; so
recovery takes longer. This degrades availability. Also, as the database size
increases, the system will require more components of given capacity for storage '- ".

and efficient processing. This can have a very significant affect on system availabil-
ity.

4. Component Reliability and Capacity. Since disk reliability is usually the
bottleneck, we studied availability for disks with two different MTTF values.
Higher MTTFd.k improves availability significantly. System availability will also --...

improve significantly if disks with higher capacities are used (provided MTTFd.dk of
a high capacity disk is not much lower than that for a low capacity disk). We also '
studied the effect of using interconnects with different capacities. A system with a r.. -Vr

higher capacity interconnect has a significantly better fault tolerance when the sys- - '
tern consists of a few large clusters. 's

5. Data Storage and Access Method. We studied only a limited aspect of this issue.
We used one basic data storage method in our study. By varying the distribution 0

factor, we were able to study how a data storage method can affect recovery time . Z-
and hence system availability. By showing the dependence of the quantitative
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evaluation on the data storage method and by using a distribution factor, the
study shows that the data storage method greatly affects system availability. We

studied the access method only with respect to page size. A larger page size helps-
significantly in a system with many small clusters. i
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CHAPTER 8 N.
- I

D/KBMS Architecture Specification Methodology

Phase I of the VLPDF contract involved six investigation studies: (1) alternative
D/KBMS application interface languages, (2) parallel architectures for such languages,
(3) D/KB query processing, (4) transitive closure algorithms, (5) parallel D/KBMS archi-
tectures, and (6) fault tolerance in very large database systems. During Phase II, the
results of these studies were used to develop a methodology for specifying high perfor-
mance, highly available data/knowledge base management systems for very large -

data/knowledge base environments. This chapter presents this methodology.

The methodology is presented as a set of policies and steps. The policies constitute
a method of action selected from among alternatives to guide and determine D/KBMS
design decisions. They are actually a philosophical statement of intent to guide the
D/KBMS designer in making suitable design decisions, rather than a comprehensive
recipe for design.

Two sets of steps are presented, the first representing a recipe a recipe for D/KB
query and update processing, and the second, an overall procedure for D/KBMS archi-
tecture specification. The steps for D/KBMS architecture specification are not intended
to be comprehensive. Where gaps exist, the D/KBMS designer should consult the poli-
cies to determine an appropriate course of action.

The policies are grouped under 10 categories: .1--,

1. policies regarding overall D/KBMS functionality,

2. knowledge representation policies,

3. rule storage policies,

4. D/KB query processing policies,

*5. D/KB update processing policies,

6. D/KBMS functional partitioning policies,

7. LFP evaluation policies,

8. join processing policies,

9. D/KBMS hardware architectural policies, and

10. fault tolerance policies.

These categories represent the critical issues in the design of high performance, highly
available D/KBMSs for very large D/KB environments. Several alternatives are avail-
able for addressing each of these issues. These alternatives have a wide ranging perfor-
mance impact. For example, previously published performance results indicate 6 to 8
orders of magnitude difference in performance between certain LFF evaluation stra-
tegies. The policies pfesented in this chapter are intended to guide the D/KBMS
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designer in the choice of suitable alternatives for each critical issue listed above.

The chapter is organized as follows. Sections 8.1 through 8.10 present the policies.
Section 8.11 describes the steps in D/KB query and update processing. Section 8.12
presents the overall procedure for D/KBMS architecture specification.

8.1. Policies Regarding Overall D/KBMS Functionality

To motivate the overall D/KBMS functions, let us sketch out a typical user session
with the D/KBMS. The user first enters a set of rules and facts. These rules and facts
are stored in a memory resident private environment called the Workspace D/KB. The
Workspace D/KB rules may refer to rules and facts stored in a shared disk resident
repository called the Stored D/KB. The rules in the Stored D/KB may also refer to
rules and facts in the Workspace D/KB. After entering a set of rules and facts into the
Workspace D/KB, the user issues queries against them. If he is satisfied that the rules
and facts in the Workspace D/KB are correct, he updates the Stored D/KB with these
rules and facts.

With this background, we list the overall D/KBMS functions. The D/KBMS shall
provide five basic functions: (1) provide knowledge representation and modeling capa-
bilities, (2) enter rules and facts into the Workspace D/KB, (3) enter queries, (4) execute
queries, and (5) update the Stored D/KB with rules and facts from the Workspace
D/KB.

8.2. Knowledge Representation Policies %

Knowledge representation is a basic capability expected of a D/KBMS. This sec-
tion presents policies relating to knowledge representation.

* The basic level of knowledge representation capability provided by a D/KBMS
shall be Horn clause logic. The reason for this is that logic offers several advan-
tages:

a. it provides a uniform formalism for data, rules, views, and integrity con-
straints; "

b. it is the basis for relational database theory;

c. it is amenable to parallel processing; S

d. it is an adequate basis for implementing other knowledge representations; and

e. it has a sound theoretical foundation, which permits the abstract expression of
ideas, independent of their implementation.

" The data/knowledge base shall consist of a set of Horn clauses and schemas. See
chapter 4 for the concepts and definitions pertaining to such a data/knowledge
base. N

e P-

Nv," :

- • I k l • - . ... %



101

183 -

8.3. Rule Storage Policies

The choice of rule storage structures is a critical one since it affects the time taken
to extract the relevant rules from the Stored D/KB during query processing. This sec-
tion presents a set of policies relating to rule storage structures.

" The basic rule storage structures in the Stored D/KB shall consist of three rela-
tions: isystables, isyscolumns, and irulesource. These storage structures are basi-
cally "source form" storage structures, in that they contain a direct representation
of the source form of the rules.

The first two relations, isystables and isyscolumns, shall contain the names and
column types of the derived predicates, respectively. These tables shall have the
following schema:

isystables (tablename char, tableid integer)

isyscolumns(tableid integer, colname char, colnumber integer, coltype integer)

irulesource shall store for each derived predicate p, the rules defining p, and shall

have the following schema: -.-...

irulesource(headpredname char, rule char)

" For update intensive applications, the above source form storage structures shall
suffice. However, for query intensive applications, there there shall be a "compiled
form" storage structure (described below), in addition to the basic rule storage
structures. The motivation for this policy is that with compiled form storage struc-

tures, queries can be processed faster, but updates take longer.

* The compiled form storage structure for query intensive applications shall be a
relation called ireachablepreds. This relation shall be the transitive closure of the 0
PCG of the rules stored in irulesource. That is, it shall store for each derived
predicate p all the predicates reachable from p. It shall have the following schema:

ireachablepreds(f rompredname char, topredname char).

The motivation for storing the transitive closure of the PCG is that using this
storage structure, the time to extract the relevant rules can be made independent
of tbp total number of rules in the Stored D/KB. If the transitive closure is not :°"

stored, it would have to be computed during query processing and the time for . ,
doing this increases with the number of rules. 0

8.4. D/KB Query Processing Policies

This section presents policies relating to D/KB query processing. These policies
constitute a broad D/KB query processing strategy; the specific policies relating to high
performance query execution are presented in sections 8.7 through 8.9.

V ....
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" D/KB query processing shall consist of two phases: query compilation and query
execution. The motivation for splitting up query processing is twofold. First,

several optimizations can be performed during the compilation phase and second, S

frequently occurring queries can be precompiled, speeding up the processing of such
queries. "-'

* During compilation, all the rules needed to solve the query shall be brought into
the Workspace D/KB. In general, these rules will be present in both the
Workspace and Stored D/KBs. Bringing all of them into the Workspace D/KB
will typically involve first determining from the existing Workspace D/KB rules all
the predicates reachable from the query and then extracting from the Stored D/KB
the rules needed to solve these predicates.

* After all the relevant rules are loaded into the Workspace D/KB, the PCG of these
rules shall be constructed and the cliques in the PCG identified. 0

* The cliques shall be ordered in such a way that a clique evaluation begins only
after all its body predicates have been evaluated.

" The type of the each column of a base predicate is fixed at the time it is created.
The type of the columns of the derived predicates shall be inferred from the rules.
For example, in the rule p(X, Y) - b(X, Y), the type of the first (respectively,
second) column of p is the same as that of the first (respectively, second) column of
b. Type checking shall infer the types of the derived predicates and also check
whether the same types are inferred from all the rules defining p.

* The compiled query shall consist of either a standard relational query (when
evaluating a non-recursive D/KB query) or an ordered list of LFP queries (one for
each clique that is to be solved when evaluating a recursive D/KB query). An LFP
query is a query that takes a set of recursive equations of the form,
ri = f,(r1 , ... , rn), i = 1, ... , n, as input and computes their least fixed point,
thereby solving each r,. The f,'s are relational algebra expressions.

* Database (as opposed to rule base) queries shall be processed using traditional rela-
tional compilation and optimization techniques.

* A bottom-up strategy (see section 4.4) shall be adopted for rule base query process-
ing. This is because bottom-up strategies are simpler and easy to implement.
Bottom-up evaluation of a non-recursive predicate shall be done using traditional
relational compilation and optimization techniques (see section 4.5). Bottom-up
evaluation of a recursive predicate involves computing the LFP of a set of recursive
equations. Policies for LFP evaluation are presented in section 8.7. " '

8.5. D/Kb Update Processing Policies ,.>,."
This section presents policies that relate to updating the Stored D/KB with rules

and facts from the Workspace D/KB.

* During updates, the D/KBMS shall ensure that after the update, ireachablepreds is
the transitive closure of the PCG of the rules in irulesource.
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0 During updates, the D/KBMS shall ensure that the Workspace D/KB rules do not
cause the type of any Stored D/KB derived predicate to change. If this is likely to

happen, the update shall be rejected.

8.6. D/KBMS Functional Partitioning Poiicies

This set of policies relates to the functional components of a D/KBMS and their
interfaces.

* The D/KBMS shall be partitioned into two layers, the Knowledge Manager (KM)
and the Data Base Management System (DBMS), with the KM at the top and the
DBMS at the bottom. The KM provides the interface to the D/KBMS from the
outside world.

The basis for this partitioning is the division of D/KB query processing into compi- 0
lation and execution phases. The KM and the DBMS correspond respectively to
these phases: the KM is the D/KB query compiler, while the DBMS is the compiled
query execution engine.

The KM shall be responsible for query parsing, relevant rule extraction, magic set -
optimization, clique identification and ordering, and semantic checking. The
DBMS shall be responsible for evaluating the cliques and non-recursive predicates -
as per the order prescribed by the KM.

* The KM/DBMS interface shall be relational algebra augmented with a general LFP
operator and one or more specialized LFP operators. This interface determines the
allocation of functions above and below the KM/DBMS layer boundary, and there-
fore, is a key D/KBMS design issue.

The motivation for including relational algebra in this interface is the following. 0
First, there is a close match between logic and relational algebra and this makes
relational algebra an attractive starting point for Horn clause query processing sup- :.Y
port. Second, the set oriented nature of relational algebra makes powerful, non-
procedural query languages possible. Third, operations on sets and relations are
inherently parallel. •

,. _.'

The reason for augmenting relational algebra with a general LFP operator is that it ,
is not possible to express LFP queries (or recursive queries) using relational algebra
alone. Such queries arise when a clique of mutually recursive predicates is to be
evaluated. Since relational algebra cannot express LFP queries, cliques must be
evaluated via an application program generated by the Knowledge Manager when ' -
using relational algebra as the KM/DBMS interface. There is not much scope for
the KM to optim*zc the performance of this application program since the informa- .,

tion needed for this optimization (join selectivities, intermediate relation sizes, etc.)
is not visible to the KM through the relational algebra interface. On the other
hand, suppose a general LFP operator is included in the KM/DBMS interface,

'r. - d,, e.'d9 fVp
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which accepts a set of recursive equations of the form, r= f(r ), N,),
1, ... , n, as input and computes their least fixed point, thereby solving each r,.

Then the KM need not generate an application program; it can simply generate
LFP queries and the DBMS can figure out an efficient way to execute them (several "

policies for enhancing the performance of LFP evaluation are outlined in section
8.5).

The reason for including one or more specialized LFP operators in the KM/DBMS
interface is that it may be possible to optimize the execution of certain special
operators better than that of a general LFP operator. Since special LFP queries
like transitive closure are expected to occur frequently, including such operators in
the KM/DBMS interface and implementing them efficiently in the DBMS can
enhance overall performance. 0

8.7. LFP Evaluation Policies

D/KB query execution performance is very significantly affected by the efficiency of
the LFP evaluation strategy. This section presents policies relating to LFP evaluation.
SLFP evaluation shall be done using semi-naive evaluation (see algorithm 4 in

chapter 4). The motivation for choosing semi-naive evaluation over naive evalua-
tion is that it avoids much of the redundant work (i.e.. recomputing tuples in an
iteration that were computed in the previous one) of the latter.

* While simpler and easy to implement, bottom-up strategies compute a lot of useless
results, since they do not use knowledge about the query to restrict the search
space. To overcome this problem, the KM shall rewrite the relevant rules using the
generalized magic set optimization algorithm (see section 4.4) into an equivalent set
of rules whose bottom-up evaluation is more efficient. The policy of combining
semi-naive evaluation with the generalized magic set optimization algorithm
addresses the inefficiency problem of bottom-up strategies, while at the same time
retaining their ease of implementation advantage. A

* To enhance LFP evaluation performance, a dynamically adaptable indexing stra-
tegy shall be used to speed up the evaluation of the right hand side of the recursive
equations or their differential. This strategy shall dynamically create and drop
temporary indexes on the base and intermediate derived relations depending on
their relative sizes.

* During LFP evaluation, the join strategy shall be dynamically changed between
iterations if necessary, depending on the sized of the base and intermediate derived
relations and the join selectivities from the previous iterations.

• Parallel and pipelined processing techniques shall be employed during LFP evalua-
tion. These include evaluating the right hand side of each recursive equation in
parallel and pipelining and data flow techniques for evaluating the relational alge-
bra tree corresponding to the right hand side of these equations.

V.1
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8.8. Join Processing Policies

The efficiency of the join operation has a significant impact on D/KB query execu-

tion performance. This is because during recursive query execution, evaluation of a
clique generally involves numerous join operations. This section presents policies relat-

ing to join processing.

* The DBMS shall employ the parallel and pipelined join algorithms described in
chapter 6.

* The query optimizer shall choose an appropriate algorithm for a particular join
operation and system configuration. It shall carefully determine the number of
clusters, the number of disks, and the number of processors that will be used in the
join.

* In most cases, the query optimizer shall choose a hash-based join algorithm. This
is because hash-based join algorithms are naturally parallelizable and indeed, the
performance evaluation reported in chapter 8 confirms the relative superiority of
hash-based join algorithms over sort-merge join algorithms. However, in cases * ,
where the output is required in sorted order or the source relations are already
sorted, sort-merge based join algorithms shall be preferred. •

8.9. D/KBMS Hardware Architectural Policies

This section presents policies relating to the D/KBMS hardware architecture.

• The KM and the DBMS shall be resident on different pieces of hardware, the KM

on a general purpose workstation and the DBMS on a special purpose parallel rela-
tional database machine. The DBMS software and the parallel database machine
shall constitute a data/knowledge base server. The overall environment shall be a

local area network in which several workstations running the KM send LFP queries
to this server.

* The DBMS shall be a multiprocessor relational database machine to get the
requisite levels of performance. The DBMS architecture shall be parameterized in

the degree of memory sharing, so that tightly coupled, loosely coupled, and inter-
mediate architectures can be obtained. It shall use a large number (tens to
hudreds, at least) of processors to obtain the necessary performance, a large ' •
amount (hundreds of megabytes to hundreds of gigabytes) of semiconductor
memory, and shall support an aggregate disk capacity of a terabyte of more. It
shall be constructed principally from commodity components such as general pur-
pose microprocessors and conventional disk storage devices, since commodity com-
ponents have superior price/performance and reliability compared to custom con-
ponents.

• The architecture shall consist of a set of clusters linked by an intercluster bus or

ring. Each cluster shall consist of a set of processors, a shared memory bank
addressable by all the processors in the cluster, and a set of disk storage units and
associated controllers. The processors may have local caches to reduce memory
contention, but this shall be invisible to the data management software except for
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possibly the need to flush the cache occasionally. Transfers between disk and
memory, aud between cluster memories over the bus, shall be a page at a time,
where a page is a few kilobytes or more in size. A specific configuration of this
architecture shall be determined by the following parameters: number of clusters,
number of processors per cluster, number of disks per cluster, pages of main .
memory available per cluster, and page size in bytes. These range of values for V
these parameters shall be such that a wide range of performance and D/KB sizeV
requirements are accommodated.

* The effect of system configuration on join performance is significant. A
configuration with a few large clusters shall be preferred to one with many small
clusters. In fact, our investigation showed that a very large single cluster provides .

the best performance, since the communication cost is eliminated. .

• A system with many clusters shall be preferred to one with fewer clusters of the
same size. This variation increases the parallel processing power of the system and
speeds up the data transfer rate for some algorithms because the data is distri- -e
buted better in the system.

* The number of disks at each cluster shall be increased if the disk I/O proves to be
a bottleneck.

* Except for systems employing processing intensive join algorithms, the number of
processors at each cluser shall not be increased as a means of enhancing perfor- .-.

mance. This is because the CPU processing speed is not the bottleneck in most -
cases. S

* The effect of disk I/O speed and network transfer rates on join algorithm perfor-
mance is significant. Therefore, the values of these components shall be adjusted
to achieve the required levels of cost/performance. If disk I/O still becomes a
bottleneck, other solutions such as, using a large page size, using a large disk-
memory transfer rate, increasing the number of disks at each cluster, and increas-
ing number of clusters, shall be employed.

8.10. Fault Tolerance Policies -....

Fault tolerance is a system's ability to tolerate faults in its components. Fault
tolerance techniques make a system tolerate faults, and in case of failures that cannot "--
be tolerated, allow the system to degrade gracefully (i.e., allow partial operation). The
parameter most often used to measure the fault tolerance of a system is its availability,
which is the percentage of time a system performs according to its specifications (i.e., is
available to do useful work). This section presents policies for ensuring high D/KBMS
availability in very large D/KB environments.

* The D/KBMS shall employ the hardware fault tolerance techniques described in
section 7.3.2 to tolerate failures of D/KBMS hardware components affecting availa-
bility. These components are: disks, processors, memory, interconnect, and power '---

supply. Failure of a sixth component, the intra-cluster bus, is very infrequent and
can be considered as manifesting itself as a failure of one of the other five ,

or -A '., . , .- ,A ,p % e r P



- 189- 0

components. The hardware fault tolerance techniques introduce redundancy at the
component level so that component failures can be tolerated without affecting sys-
tem operation.

* The D/KBMS shall employ the software fault tolerance techniques described in sec- .'r V
tion 7.3.3 to tolerate failures affecting the major software components of the
D/KBMS. These components are: transaction management and operating system
software.

* From a fault tolerance point of view, architectures with small clusters (i.e., less S

than 8 disks per cluster) and a low degree of memory sharing shall be preferred to
architectures with large clusters and a high degree of memory sharing, as the
former have better fault tolerance. However, exactly the opposite is true from the
query processing point of view. The choice depends on the application require- .'., ,,,
ments. If fault tolerance is more important, a large number of small clusters shall
be used, while if query processing performance is more important, a few large clus-
ters shall be used.

0 The D/KBMS shall employ components with high individual reliability values (par-
ticularly disks) and high capacity (particularly disks and interconnect) as the Phase
I investigation showed that such components have a significant positive effect on
D/KBMS availability.

* The D/KBMS shall employ data storage methods with high replication and high V

distribution factors.

* The D/KBMS shall employ access methods that allow large amount of parallelism
Larger page sizes shall be preferred in a D/KBMS with many small clusters.

* Query processing and optimization techniques and system fault tolerance are very

intimately related. A comparison of the results of our parallel join processing and
fault tolerance investigations present interesting but difficult trade-offs. The join
processing investigation shows that algorithms perform better in a tightly coupled
(single cluster) architecture since the communications cost is eliminated. However,
the fault tolerance of such an architecture is the worst since failure of one com- -.. ,

ponent unit, such as the shared memory, can stop the complete system. In another
example, consider the trade-offs with respect to the data storage scheme. The S

query processing techniques and the data storage schemes depend on the type and
frequency of queries asked (i.e., the application). As we saw in our investigation,
the data storage scheme affects the fault tolerance significantly. Thus, in designing - '
a real system, the designers of query processing software and fault tolerance have

to understand the application and devise a storage scheme that is acceptable from
the query processing as well as fault tolerance viewpoint. Required levels of .'

response time, fault tolerance and reliability are application dependent. V

8.11. Steps in D/KB Query and Update Processing ,.

We first describe the steps for processing queries to the workspace D/KB, for the y.-
case where the rules in the workspace D/KB do not refer to rules in the stored D/KB
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(scenario 1). We then describe how to update the stored D/KB with rules and facts
from the workspace D/KB. Finally, we describe workspace and stored D/KB query pro- AV
cessing (scenario 2) for the case where the rules in the workspace D/KB and the stored
D/KB may refer to each other. -

8.11.1. Scenario 1

Consider the following rules and query.

R,: ancestor(X, Y) - parent(X, Y).

R2: ancestor(X, Y) - parent(X, Z), ancestor(Z, Y)..' ' "

query(X) - ancestor ("john", X). .

1. Add the query rule to the predicate conraction graph. The PCG then is as shown
in figure 8.1. .,,,

-:-,-

query

ancestor

%. - a%

Figure 8.1. PCG with Query Rule Added ._Z._,

p v d. ,

2. Find relevant predicates and rules. The relevant predicates are the predicate:. .

reachable from PCG ithe PCG. The relevant predicates can be

obtained by computing the transitive closure of the PCG. For the ancestor query,,,. ,' -- "
the relevant predicates are ancestor and parent. The relevant rules are thoseepredica

defining derived relevant predicates. For the ancestor query, the relevant rules are
R and R 2. We also add query to the set of relevant predicates and the query rule
to the set of relevant rules. e'.".
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3. Generate the adorned versions of the relevant predicates and adorned rules defining ,.<-

these predicates.

R1: ancestor (X, Y) - parent(X, Y).

R 2: ancestor (X, Y) - parent(X, Z), ancestor b(Z' Y).

queryf (X) - ancestor'f ("john" , X).

4. Generate magic rules and modified rules.
mI magicancestor bZ) - .

1: (Z) - magic-ancestor (X), parent(X, Z).bf , :
R 2: magic-ancestor ("john').

R3: ancestorb (X, Y) - magic-ancestor b (X), parent(X, Y).

R4: ancestorb (X, Y) - magic-ancestorbt (X), parent(X, Y), ancestorb (Z, Y).

queryf (X) - ancestorb' ("john', X).

5. Split the data/knowledge base into its intensional and extensional components. % %
•f bf

RI: magic-ancestorbf (Z) - magic-ancestor (X), parent(X, Z).

R 2: magic ancestor b (X) - base ma bf (X).

3 ancestor bf Y) - magic ancestorf (X), parent(X, Y).

R:ancestorb/(X y)_ - / -

4 a r (X, Y magic-ancestor (X), parent(X, Y), ancestor (Z, Y).

base mab joh n " ).

6. Construct the PCG of these rules.

7. Find the cliques of this PCG (see figure 8.2).
8. Construct the evaluation graph. This is a directed graph whose nodes are either '

derived predicates or cliques. There can be four types of directed edges: (1) P - C
indicates that some predicate in the clique C appears in the body of a rule defining
P, (2) C - P indicates that P appears in the body of a rule defining some predi-
cate of C, (3) P 1 - P 2 indicates that P 2 appears in the body of a rule defining P, ..
and (4) C - C2 indicates that some predicate of C2 appears in the body of a rule
defining some predicate of CV

For the ancestor query, the evaluation graph is shown in figure 8.3. The evalua-
tion graph is essentially the PCG with the base predicates removed and the
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Recursive predicates ancestor by % " .

Clique C1 Recursive rules R4

Exit rules R 3

Recursive predicates magic-ancestor bf

Clique C2 Recursive rules R1
Exit rules R 2

Figure 8.2: Cliques for ancestor query

query

N,'

Figure 8.3. Evaluation Graph for ancestor Query ,.,:,,

predicates of a clique collapsed into a single node. Thus, the predicate nodes of the

evaluation graph are the nonrecursive predicates of the PCG. Also, it should be
clear that while the PCG may be cyclic, the evaluation graph is acyclic. -.,-,

.. , ,," ,

9. Perform a topological sort of the evaluation graph. This gives a total order indi-,' :--;

cating the order in which the nonrecursive predicates and cliques are to be e"".,:,-"

~~~evaluated. The order is such that a rule is evaluated only after the predicates in," . ""--,

Sthe body are evaluated. The total order is called the evaluation order list. 0

,- '%'~'w-

For the ancestor query, the total order is C2, C1, query."--. ,

r, .. .

10. Perform semantic checks. In this work, we consider two kinds of checks. The first "---."
is to check for each derived relevant predicate whether there is a rule defining it.

The second is a type check. The type of each column of a base predicate is fixed
at the time it is created. The type of the columns of the derived predicates is
inferred fromthe the PCGe mo Ya bl, in the uationtype ofgh ac

the first (respectively, second) column of p is the same as that of the first (respec-
tively, second) column of b. Type checking involves inferring the types of the

derived predicates and also checking whether the same types are inferred from all
the rules defining p. This is easy to do for nonrecursive predicates. However, for

he irst (rsetiey seod coum of. p1 is the saea htohert(epc
. "%" 1. ,%-%..

t..vely, s ln b ,,....... Tye checking involves inferring the tys . of. th

derivedA prdcae aA als chckn whehe tesm tysarinferedromal
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recursive predicates, we need to loop till either closure is reached or there is a type Z
mismatch. We have developed a type checking algorithm, which we describe in - w/ ,
section 8.11.1.1.

If there is an error in either of the two semantic checks, we do not perform the
next step.

11. Evaluate the cliques and nonrecursive predicates as per the order of step 9.
Evaluating a clique means evaluating a block of mutually recursive predicates.
This is done as described in section 4.6. Nonrecursive predicate evaluation is done
as described in section 4.5. []

8.11.1.1. Type Checking Algorithm

Type checking in data/knowledge base processing has two purposes: the first pur- l
pose is to determine the types of each of the derived predicates. The second purpose is
to ensure that the type of each respective column of a predicate is the same in every
occurrence of the predicate, which is similar to type checking by a compiler of any
strongly typed language.

The type of each column of a base predicate is fixed at the time it is created. Dur-
ing the type checking, the type of each column of a base predicate is available from the
data dictionary of the database that stores the relations corresponding to the base
predicates. The type of a column of a derived predicate is not known before the type
checking is performed. It is inferred from relationships in the rules using the type of
columns of base predicates and the type of columns of the derived predicates which are
already inferred.

Example:
RI: p(X, Y) - bl(X, Y).

Here the type of the first (respectively, second) column of p is the same as that of"'
the first (respectively, second) column of bl.

R2: p(X, Y) - b2(XZ), q(Z, Y).

Here type of the first column of p is the same as that of the first column of bR and
the type of the second column of p is the same as the type of the second column of q.
Additionally, the type of the first column of q is the same as the type of second column
of b2. Il

If the rule set contains both rules, the type of columns of p inferred using both
rules should be the same. Thus, in the above example, if type of the first column of b1
is not the same as that of the first column of b2 then the type checking will give error V
since different types for the first column of p will be inferred using the two rules. Simi-
larly, if the type of the second column of bl is not the same as that of the second
column of q, the type checking will given an error since different types of the second
column of p will be inferred using the two rules.

Type checking is easy to do for a nonrecursive predicate. However, for recursive
predicates, it may involve several iterations until either a closure is reached or a type

L- 
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mismatch is found.

Example:
Ri: p(X, Y) - bl(X, Y).
R2: p(X, Y) - b2(X,Z), q(Z, Y).
R8: q(X, Y) - p(X,Z), bS(Z, Y).

If the rules are evaluated in order RI, R2 and RS, the type of columns of predicate
q will not be known when R2 is evaluated in the first iteration. However after evaluat-
ing R3, the type of columns of q will be known and hence the type check can be com-
pleted by evaluating R2 again. [.

Type check for a recursive predicate is performed by evaluating together all the [ .
rules in the cliques to which it belongs. However, before a clique can be evaluated,
types of all the nonrecursive predicates should be known. While the types of nonrecur-
sive predicates that are base predicates are known from the data dictionary of the data-
base, types of other nonrecursive derived predicates can be known if type checking fol-
lows the total order defined by the evaluation order list. All exit rules in a clique are
evaluated before evaluating the recursive rules.

The important steps of the type checking algorithm are as follows.

1. Evaluate for type checking the nodes of the evaluation graph according to the total
order (see steps 8 and 9 of section 8.11.1).

2. If the node is a clique, evaluate for type checking the exit rules first, followed by
the recursive rules. Iterate through the recursive rules until type of all predicates
are Known, and the type of columns derived in every occurrence of a predicate is
found to be consistent or a type mismatch is found.

Example: Consider rules given in figure 4.1 and the corresponding cliques shown in
figure 4.3. According to the total order, Clique 2 (or Clique 3) will be evaluated first,
followed by Clique 3 (or Clique 2), and then Clique 1. Before Clique 3 is evaluated, the
type of all derived nonrecursive predicates in Cliques 3 (pl and p2, in this case) will be
known. First the exit rule, R2, will be evaluated, followed by the recursive rules, RI
and R7. [1

8.11.2. Updates to the Stored Data/Knowledge Base 0

In this section, we describe our algorithm for updating the stored D/KB with rules .

and facts from the workspace D/KB. In this work, we only consider the storage struc-
tures for storing rules and facts on disk. We do not consider checking the workspace
D/KB rules and facts against integrity constraints that may be associated with the
stored D/KB.

The storage structures for rules and the update algorithm described in this section
are our work; they do not appear in the literature.

The storage structures for base predicates are the usual relations of relational alge-
bra. Each base predicate is a table in the relational database. The data dictionary of 0
the relational database is used to store information about the columns of base predi-
cates.
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We propose four. relations as the storage structures for rules. These relations are

called isystables, isyscolumns, irulesource, ireachablepreds. isystables and isyscolumns
are the data dictionary of the intensional knowledge base. They contain the types of
the columns of the derived predicates. These types are inferred using the type checking
algorithm described in the last section.

The rule storage structures have the following schema:

isystables (table name char, tableid integer)

isyscolumns(tableid integer, colname char, colnumber integer, coltype integer)

irulesource stores for each derived predicate p, the rules defining p. It has the fol-
lowing schema: K

irulesource (headpredname char, rule char)

ireachablepreds is the transitive closure of the PCG of the rules stored in iru-
lesource. It stores for each derived predicate p all the predicates reachable from p. It
has the following schema:

ireachablepreds(frompredname char, topredname char).

We now illustrate how the ancestor rules would be stored using the above storage
structures. Assume that both columns of the parent relation are of type char(30).
Then the type checking algorithm will infer that both columns of ancestor are also of
type char(30). We add tuples to the storage structures as follows.

isystables (ancestor, tanc)

isyscolumns(t , ancestor.col_ 1, 1, char(30))
isycolmns(t 1~anc etro.1 ,ca 3)

isyscolumns(tanc, ancestor col_2, 2, char(30)) 4

:rulesource(ancestor,'ancestor(X, Y) - parent(X, Y).")

irulesource(ancestor,"ancestor(X, Y) - parent(X, Z), ancestor(Z, Y).")

ireachablepreds (ancestor, parent)

ireachablepreds (ancestor, ancestor)

The major advantage of ireachablepreds as a compiled form of the rules is that it allows
very efficient retrieval of the relevant rules from the intensional knowledge base. For
example, suppose the stored D/KB contains the following rules:

R1 : p(X, Y) - a(X, Z), q(Z, Y). V

. %. .
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R 2 : a(X, Y) - b1(X, Z), a(Z, Y).

R a(X, Y) - b2(X, Y).

R4 q(X, Y) -c (X, Y).

R,: c(X, Y) - b 3 (X, Y).

R.: m(X, Y) - b4(X, Y).

where the b,'s are base predicates. Then retrieving all the rules needed to solve the
query

query(X, Y) - p(X, Z), m(Z, Y).

is accomplished via the following SQL query:

SELECT irulesource.rule 0

FROM irulesource, ireachablepreds

WHERE (ireachablepreds.topredname = iruesource.headpredname OR

ireachablepreds.frompredname = irulesource.headpredname) AND

ireachablepreds.f rompredname = "p" OR

ireachablepreds. f rompredname = "m"))

This query retrieves rules R1 through R. above. To speed up the execution of this
query, we place a composite index on the columns of ireachablepreds.

We now describe the update algorithm. Let ADKB denote the workspace D/KB.

1. Extract from the stored D/KB all the rules needed to evaluate the derived predi- ?

cates in ADKB. This can be done using a query like the above SQL query. Let
IKB 51 denote the extracted rules. ".

2. Construct the PCG of the rules in ADKBcomposite = ADKB U IKBre, which
denotes the set of rules which are either in ADKB or in IKBrel.

3. Compute the transitive closure of this PCG. This gives all the predicates reachable
from a given predicate in ADKBcompote*

4. Perform the two semantic checks described in step 10 of scenario 1. N

5. For each derived predicate p in ADKBcmpoaite , add tuples to isystables and isys-
columns if information on p is not present in these tables. .-'..-.,

6. For each derived predicate p in ADKBomPo,,d add tuples to ireachablepreds by ".",

looking at the transitive closure computed in step 3.

% I
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7. For each rule in ADKB, add tuples to irulesource. [I

We mentioned before that ireachablepreds is the transitive closure of the PCG of
the rules in irulesource. The above algorithm computes this transitive closure incre-
mentally. That is, whenever the stored D/KB is to be updated, we do a transitive clo-
sure on only those portions of the stored D/KB that will be affected by the update
(IKBre), and not of the entire stored D/KB. This can result in substantial savings in
update times for very large rule sets as the size of IKBrel will be much smaller than that
of the entire rule set.

0 SA .

8.11.3. Scenario 2

In this section, we describe workspace and stored D/KB query processing for the
case where the rules in the workspace D/KB and the stored D/KB may refer to each
other. In this case, we need to extract all the relevant rules from the stored D/KB. We
replace step 3 of scenario 1 with the following steps.

3.1. Compute the transitive closure of ADKB.

3.2. From the transitive closure, find the predicates reachable from the query. Let P
denote this set of predicates. •

3.3. Extract from the stored D/KB all the rules needed to evaluate the predicates in P.
Let IKBe denote the extracted rules.

4. Compute the transitive closure of ADKBOmPoite = ADKB J !KB,. This gives
the correct set of relevant predicates and rules. [1

We point out that ireachablepreds makes it possible to efficiently extract the
relevant rules from the stored D/KB. This efficiency will translate to higher perfor-
mance, especially for very large rule sets. %

8.12. Steps in D/KBMS Architecture Specification

This section presents an overall procedure for specifying D/KBMS architectures.
The steps below are not intended to be comprehensive. Where gaps exist, the D/KBMS
designer should consult the policies described earlier in this chapter to determine an
appropriate course of action. S

* Design a high performance parallel relational database machine that employs the
parallel and pipelined join algorithms described in chapter 6. ..:. -

* Implement the hardware and software fault tolerance techniques described in
chapter 7.

* Design parallel algorithms for general LFP evaluation using the above join stra-
tegies, data flow and pipelining techniques, and semi-naive evaluation. %

* Design parallel algorithms for special LFP operators such as transitive closure using
the HYBRIDTC strategy outlined in chapter 5.

* Design a Knowledge Manager that compiles Horn clause queries to relational alge- " -
bra augmented with a general LFP operator and that uses the generalized magic

I .WI ', v , . % % % % _% u u , -.-... . .. e ,.,- :-e: .e- ,j -, - ' .'¢. ,. , :
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sets strategy for restricting the search space to the relevant base relation tuples.
The Knowledge Manager should follow the steps for D/KB query and update pro-

cessing described in the previous section.

8.13. Conclusions

This chapter presented a methodology for specifying high performance, highly
available, large D/KBMS architectures. The methodology was described as a set of poli-
cies and steps. The policies are meant to serve as a guide to the D/KBMS designer in
making appropriate decisions for the following critical D/KBMS design issues: overall
D/KBMS functionality, knowledge representation, rule storage, D/KB query processing,
D/KB update processing, D/KBMS functional partitioning, LFP evaluation, join pro-
cessing, D/KBMS hardware architecture, and fault tolerance. The steps were presented
as a recipe for D/KB query and update processing and for D/KBMS architecture
specification.

7
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CHAPTER 9

VLPDF Demonstration Testbed ,

This chapter describes a data/knowledge base management testbed that we have ,
designed and implemented on top of a commercial relational database system. The ,
testbed is intended to serve as both a demonstration and performance measurement and
evaluation platform. As a demonstration platform, the testbed illustrates the motiva-
tion and basic functionality of a D/KBMS, the components of a D/KBMS architecture,
alternative implementations of these components and their relative tradeoffs, and the 0

factors contributing to D/KB query compilation and execution time. As a performance
measurement and evaluation platform, the testbed allows us to make quantitative per-
formance measurements and to study system performance sensitivity and behavior with
respect to several parameters. _ .

9.1. VLPDF Demonstration Testbed Architecture

The VLPDF demonstration testbed is built on top of an existing testbed - the
Informix Relational Database Management System (RDBMS) - and is implemented in a
Unix 4.2 BSD environment on Apollo workstations. The overall configuration of the
testbed is shown in Figure 9.1. The testbed consists of four components: User Interface,
Knowledge Manager, Informix Relational DBMS, and C Compiler.

The Knowledge Manager together with the Informix RDBMS constitutes the
D/KBMS. The User Interface manages the interaction between users and the D/KBMS.
The users can be either humans or application programs (we also view expert system as ;..*

application programs).

The Knowledge Manager is essentially a compiler. It accepts Horn clauses and
queries from the User Interface and compiles queries into C code fragments. The C
code fragment is then compiled by the C compiler and linked with a run-time library to
produce the object code, which is executed by the User Interface as an application pro- %
gram against the Informix RDBMS to give the query results. The C code fragment con-
tains information specific to the query, while the run-time library contains the algo-

rithms for LFP evaluation and miscellaneous utilities.

9.1.1. User Interface

The User Interface provides the following options:

Quit

This option terminates the current session with the demonstration testbed.

SQL

U -O.
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Use Inefc Obec
Knowledge Manager -C Compiler

- Informix Relational DBMS librar

S

Figure 9.1. VLPDF Demonstration Testbed 
g

This option allows the user to directly access the Informix RDBMS through an SQL N'interface." 

" -. , .Em bedded H orn Clauses PARLO G.. 
.. ,.'... .PARLOG is a language with two types of relations: single-solution relations and r[ :all-solutions relations. All-solutions relations can appear in the body of single-solutionrelations. The evaluation semantics for these relations are completely different. Indeed, ""' ,-_ . ,.they can be viewed as two different languages - all-solutions relations constituting a. .,query language and single-solution relations a parallel applications programming ,% -''-language. An all-solutions relation query can be evaluated by computing the least fixed--,, <point of the Horn clauses defining this relation. Thus, PARLOG can be considered as %

ILJ
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having a Horn clause query language embedded within it.

This option allows the user to enter and query single-solution PARLOG clauses.
These clauses may contain calls to all-solutions relations in their body. The Horn S

clauses defining these all-solutions relations are assumed to be in the stored D/KB.

D/KBMS Interaction

This option allows the user to interact with the D/KBMS. The D/KBMS interac-
tion options constitute the second level menu and are described below.

Set D/KB

This option allows the user to specify the name of the stored D/KB
against which to process queries and updates. OF

Enter Rules •

This option allows the user to enter a set of Horn clauses into the
workspace D/KB, either interactively or through a file.

Enter Query

This option allows the user to enter a query. The entered query will get
compiled by the Knowledge Manager. The User Interface prompts the user
for the query and for the name of the object file in which to put the com-
piled query. It then puts the entered query into a file and requests the
Knowledge Manager to compile the query.

Execute Query

This option allows the user to execute a previously entered query. The
User Interface executes the previously compiled query as an application pro-
gram against the Informix RDBMS.

Update Stored D/KB

This option allows the user to update the stored D/KB with rules and
facts from the workspace D/KB.

Quit

This option allows the user to return to the top-level menu.

Initialize D/KBMS

This option allows the user to initialize the major data structures of the
Knowledge Manager.

List Workspace D/KB Rules

This option allows the user to view the rules present in the workspace
D/KB.

List Relevant Stored D/KB Rules

This option allows the user to view all the rules present in the stored
D/KB required to evaluate a given predicate. The User Interface prompts
the user for the predicate name and arity. It then requests the Knowledge
Manager to list the stored rules needed to evaluate this predicate, giving it

-

4 Q.
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the predicate name, the arity, and the stored D/KB name. The Knowledge

Manager extracts the relevant rules from the storage structures and puts
them in a file, which is then displayed by the User Interface.

9.1.2. Knowledge Manager

In this section, we describe the architecture of the Knowledge Manager. The
Knowledge Manager consists of the following components: Rule Parser, Stored D/KB
Manager, Workspace D/KB Manager, Semantic Checker, and Code Generator. The
architecture of the Knowledge Manager, indicating the interconnections between these
components, is shown in figure 9.2. The circles in this figure represent data structures
and the boxes, components.

First, we list the functions provided in the Knowledge Manager interface and the
functions provided in the various components' interface. Second, we describe the major
data structures of the Knowledge Manager. Finally, we describe the processing done by
the Knowledge Manager to implement the functions in its interface.

9.1.2.1. Knowledge Manager Interfaces

Overall Knowledge Manager Functions

Initialize D/KBMS

Enter Horn clauses

Compile query

Update stored D/KB

List workspace D/KB rules

List relevant stored D/KB rules

Workspace D/KB Manager Interface

Compute PCG transitive closure

Extract relevant predicates ." *"

Find cliques ,..x',

Generate evaluation order list %

.1- V

%~I

~1IW
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Rule Parser rule orJ'
0%

[ I
Stored D/KB Workspace Semantic Cd
Mana D/KB Mgr Checker Optimizer Generator -

,6 %.,
.. .',

query execution®gmn
environment

To DBMS - _

Figure 9.2. Knowledge Manager Architecture

Stored D/KB Manager Interface

Extract relevant rules

Insert temporary base predicates

Read data dictionary %

Update D/KB ,%. % *' .
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Optimizer Interface

Generate adorned rule set

Generate mairic and modified rules ,

9.1.2.2. Knowledge Manager Data Structures

The major data structures in the Knowledge Manager are: rules, predicates, and
query execution environment. .

Rules .' '

This a hash table with each bucket containing the following information:

" Rule id.
• Name and list of arguments of each predicate as indicated in the source

form of the rule.
" Other information about each predicate (see below).

Predicates

This a hash table with each bucket containing the following information:

* Predicate id.
0 Internal name.
0 Type, i.e., base or derived.
0 Arity (number of arguments).
• Schema information, i.e., name and type of each column.
0 List of rules for which the predicate is a head.
* List of rules for which the predicate is a body predicate.

Query execution environment -'0

The query execution environment data structure contains all the information neces- a.,..

sary to execute a query to the data/knowledge base..-

% % %,%
%-- "
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0 tcpcg: transitive closure of the PCG of the rules in the workspace D/KB
(the transitive closure graph is represented as a boolean matrix).

* relpreds: list of predicates and rules relevant to the query.
" cliques: list of cliques in the workspace D/KB. Each clique contains:

- Clique id. .-
- List of exit rules.

-t r s r
-List of recursive rules.
- List of recursive predicates.

" evalorderlist: lIst of nodes of the evaluation order graph for the query

in topologically sorted order.

9.1.2.3. Knowledge Manager Processing ,

In this section, we describe the processing done by the Knowledge Manager to
implement the functions provided by its interface. I

Initialize D/KBMS

The Knowledge Manager sets the rules and predicates hashtables to null. "

Enter Horn Clauses

The Knowledge Manager asks the Rule Parser to parse ihe Horn clauses. The Rule ,
Parser loads the rules and predicates hash tables. -.-.

Compile Query

1. The Knowledge Manager constructs a query execution environment data structure.
It then asks the Workspace D/KB Manager to extract the predicates relevant to 7,.

the query from the workspace D/KB. These are the predicates reachable from the
query. The Workspace D/KB Manager computes the transitive closure of the PCG %,N>
of the workspace D/KB rules to determine the reachable predicates. It fills the
tcpcg and relpreds fields of the query execution environment.

2. The Knowledge Manager asks the Stored D/KB Manager to extra,' from the stored 0

D/KB all the rules needed to evaluate the relevant predicates found in the previous
step. The Stored D/KB Manager extracts the relevant rules and calls the Rule %
Parser to load them into the rules and predicates hash tables. The extracted rules
then become part of the workspace D/KB.

3. The Knowledge Manager asks the Workspace D/KB Manager to extract the :'*-
relevant predicates from the workspace D/KB.

4. The Knowledge Manager asks the Optimizer to rewrite the workspace D/KB rules
into a more efficiently executable form. First, the Optimizer generates adorned
versions of the relevant predicates and adorned rules defining these predicates,
including the adorned version of the query (the result of evaluating the adorned
query against the adorned rule set is the same as the result of evaluating theII
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original query against the original rule set). Second, it calls the Rule Parser to load
the adorned rules and predicates into the rules and predicates hash tables. Third,
it generates the magic and modified rules. Fourth, it calls the Rule Parser to load
them into the rules and predicates hash tables. Finally, the Optimizer asks the S

Stored D/KB Manager to insert the relevant base predicates present in the
workspace D/KB into the stored D/KB.

5. The Knowledge Manager sets the tcpcg and relpreds fields of the query execution
environment to null. It then asks the Workspace D/KB Manager to extract the
predicates relevant to the adorned query from the workspace D/KB. These are the
predicates reachable from the adorned query. The Workspace D/KB Manager fills .,, ,

the tcpcg and relpreds fields of the query execution environment.

6. The Knowledge Manager asks the Workspace D/KB Manager to find the cliques in
the workspace D/KB. The Workspace D/KB Manager fills the cliques field of the 0
query execution environment. It assigns an id to each clique and fills in the exit

rules, recursive rules, and recursive predicates for it.

7. The Knowledge Manager asks the Workspace D/KB Manager to generate the
evaluation order list. The evaluation order list is a topological sort of the evalua-
tion graph of the adorned query. The Workspace D/KB Manager fills the evalor-
derlist field of the query execution environment.

8. The Knowledge Manager asks the Semantic Checker to perform semantic checks.
The Semantic Checker performs two types of checks. The first is to check for each
derived relevant predicate whether there is a rule in the workspace D/KB defining "

it. The second is a type check. The Semantic Checker asks the Stored D/KB
Manager to read the extensional and intensional data dictionaries to get schema
information from the stored D/KB. See section 2.8 for the details of the type
check algorithm. If the Semantic Checker reports no errors, the Knowledge
Manager performs the next step.

9. The Knowledge Manager asks the Code Generator to generate the code for each .,.-,.,
entry in the evalorderlist. The Code Generator generates a C code fragment con-
taining information specific to the query.

Update Stored D/KB

1. The Knowledge Manager constructs a query execution environment data structure. P.,,W,%
It then asks the Stored D/KB Manager to extract from the stored D/KB all the
rules needed to evaluate the predicates in the workspace D/KB. The Stored D/KB

Manager extracts the relevant rules and calls the Rule Parser to load them into the
rules and predicates hash tables. The extracted rules then become part of the •

workspace D/KB.

2. The Knowledge Manager asks the Workspace D/KB Manager to compute the tran- - -

sitive closure of the PCG of the rules in the workspace D/KB. The Workspace
D/KB Manager fills the tcpcg field of the query execution environment.

3. The Knowledge Manager sets the relpreds field of the query execution environment
to the list of all predicates in the workspace D/KB.

%; %
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4. The Knowledge Manager asks the Workspace D/KB Manager to find the cliques in

the workspace D/KB. The Workspace D/KB Manager fills the cliques field of the
query execution environment.

5. The Knowledge Manager asks the Workspace D/KB Manager to generate the 6

evaluation order list. The Workspace D/KB Manager fills the evalorderliat field of
the query execution environment.

6. The Knowledge Manager asks the Semantic Checker to perform the two semantic

checks mentioned above. If the Semantic Checker reports no errors, the

Knowledge Manager performs the next step. 4.

7. The Knowledge Manager asks the Stored D/KB Manager to update the stored

D/KB. The Stored D/KB Manager updates the intensional data dictionary and

stores the compiled and source forms of the workspace D/KB rules.

List relevant stored D/KB rules

The Knowledge Manager asks the Stored D/KB Manager to extract from the stored

D/KB all the rules needed to evaluate the indicated predicate. It then puts these rules

in a file and asks the User Interface to display it.

9.1.3. Compiled Code and Run-time Library

The Knowledge Manager compiles data/knowledge base queries into C code frag- ,

ments. The C compiler compiles a fragment and links it with the run-time library to

produce an object program, which when executed against the Informix RDBMS gives

the query results. In this section, we describe the contents of the C code fragment and

the run-time library.

C code fragment .,
The C code fragment generated by the Knowledge Manager basically loads certain

data structures in the object program with information specific to the query. These S

data structures contain information similar to the nodes of the evaluation order graph

of the query. Recall that this graph contains two types of nodes - predicates and

cliques. The predicate nodes contain information about evaluating non-recursive predi- -"

cates, while clique nodes contain information about evaluating a block of mutually

recursive predicates. S

For predicate nodes, the C code fragment loads the predicate name, schema infor- >,..:
mation (name and type of each column), and the SQL query to evaluate the body of .

each rule in which the predicate appears as head (see section 2.5 for what this SQL " ."

query looks like). For clique nodes, the C code fragment loads the same information,
except that it differentiates between exit rules and recursive rules.

Run-time library

The run-time library contains routines that interpret the information loaded by the

C code fragment. Non-recursive predicates are evaluated as described in section 2.5, "'..
while recursive predicates as in section 2.6. The major contents of the run-time library 0

are the embedded SQL routines for naive and semi-naive evaluation of a system of

-,, ,,, ... . % , .... . . , .. . . .. . . .,. . . . . 4. * . . ... .. . . .. . ".,..:,...,
,~~~~~~~~~~~.,. . ........ ... ,,,......... ..... ... ,.... .,....... . ... ,. . ... .
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recursive equations. We describe these below.

naive-evaluation (clique)

/ Embedded SQL algorithm for naive evaluation of a clique. /

changed = TRUE;

/* Initialization "/ .-.
foreach predicate p in the clique {J

/ Create temporary tables -
create table delta_p,

create table p;
create table temp-p;
create table ezs_p;

/* Evaluate exit rules "
insert into p tuples resulting from evaluating the SQL query associated S

with each exit rule for which p is the head;

copy p into ezit_p;

/* While loop /

while (changed) {
changed =FALSE.

foreach predicate p in the clique {
copy ezitp into delta-p,

/ Evaluate right hand side of recursive equation /
insert into deltap tuples resulting from evaluating the SQL query

associated with each recursive rule for which p is the head;

/ Termination check -/
foreach predicate p in the clique {

tempp = delta.p - p;

If there are tuples in temp-p

changed = TRUE, I. .

delete all tuples from tempp;

foreach predicate p in the clique { 5
drop table p;
rename table delta.p to p;
create table delt_..p;

/" Clean up"/
toreaeh predicate p in the clique {

drop table delta.p,
drop table temp_p;
drop table ezitp;"

seminaive_evaluation (clique) 0

-..,. ... V M- % % :.-: -. I, -/, . #.'...',,,: -- ?-,,@-: ,,,-,,.,..., ,.:',,'j,? ,,.' ..- '=,
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/ Embedded SQL algorithm for semi-naive evaluation of a clique. /

changed = TRUE,

/" Initialization /
foreach predicate p in the clique { (

/ Create temporary tables /
create table p;
create table aew-p;
create table DEL TA-p;
create table delta_p;_

/" Evaluate exit rules /
insert into delta-p tuples resulting from evaluating the SQL
query associated with each exit rule for which p is the head;

copy deltap to newup;

/ While loop /

while (changed) {

foreach predicate p in the clique {
delete all tuples from DEL TAp;

/ Evaluate right hand side of recursive equations /
insert into DELTAp tuples resulting from evaluating the ui\

differential of each recursive rule for which p is the head,

foreach predicate p in the clique {
copy delta-p to p;
delete all tuples from delta j; 1 _

/ Set difference operation for termination check /
deltap = DELTAp - p;

foreach predicate p in the clique { .
copy delta-p to NEWp;

If there are tuples in NEW-p
changed = TRUE;

/ Wrap up /
foreach predicate p in the clique { 0

drop table p;
rename table ew.p to p;
drop table DEL TA_p;
drop table deltap;

Wk.

%I P

a- _-.'
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CHAPTER 10

Demonstration Plan

This chapter describes the VLPDF demonstration plan. The demonstration will
consist of three experiments designed to demonstrate the motivation and functionality
of a D/KBMS and the components of a D/KBMS architecture. The next chapter
describes several tests designed to study the relative tradeoffs in D/KBMS design and
the factors contributing to D/KB query compilation, execution, and update times.

The chapter is organized as follows. Sections 10.1 and 10.2 describe the demons-
tration data base and rule base respectively. Sections 10.3 through 10.5 describe the
demonstration experiments. For each experiment, we describe the objective, the back-
ground, and the experimentation procedure.

10.1. Demonstration Data Base

The demonstration database will consist of the following relations:

parent (childname char(20), parentname char(20)).

person(name char(20), sex char(20)). ' i

parts(partid integer, name char(20), units char(O), weight integer). -- 0

supplier(name char(20), address char(50), supplierid integer). ,'.
b l(coll integer, col2 integer).
b2(coll integer, col2 integer).

b3(coll integer, col2 integer).

b4(coll integer, col2 integer).

b5(coll integer, col2 integer). * h

10.2. Demonstration Rule Base

The demonstration rule base will consist of 1000 rules, 11 of which are listed below,
the rest being random generated. N

Ancestor rules -

R1 : anc(X, Y) - parent(X, Y).

R2: anc(X, Y) - parent(X, Z), anc(Z, Y).

Non-linear version of ancestor rules

Rs: ancnl(X, Y) -parent(X, Y).

-,. ... . %.,.,.2' : ,.,..:,, , ¢.:.:: ".t "z .-.,z,.. % '., .,4:-':,;-- :,. .,' _:: :, < .:.;-: ::-:,.,..., .:-..,v-:,,-.. ..:-:-.:.:.::. .:%;.
.'%".'" , .4' " W' ' ' . c .. "... %. % , %. '- . % % % % % ' ." % ". . ' . '%.
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R 4: anc-nl(X, Y) - anc-nl(X, Z), ancnl(Z, Y).

Rules with multiple cliques and mutual recursion

R6: p(X, Y) - p , (X, Z), q(Z, Y).

R6 : p(X, Y) - b3(X, Y).

R 7: pI(X, Y) - bI(X, Z), p1(Z, Y).

RS: pI(X, Y) - b4(X, Y).

Rg: P2 (X, Y) - b2(X, Z), p 2 (Z, Y). S
R10 : p2(X, Y) -b 5(X, Y).

R11: q(X, Y) - p(X, Z), p 2(Z, Y).

10.3. Experiment 1: D/KBMS Motivation and Basic Functionality

Objective

* Demonstrate the motivation for combining Knowledge Based Systems (KBSs) and
DBMS technologies to yield a D/KBMS - efficiently managing access to large,
shared data/knowledge bases and improving productivity and functionality of
information systems.

, Demonstrate the basic functions of a D/KBMS - knowledge representation, D/KBI
query language, D/KB query processing, and D/KB updates.

Background

Both KBS and DBMS technologies are designed for access and manipulation of
information. Each has the potential for increasing the productivity and ease of use of
the other. KBS technology provides techniques for acquiring and representing domain
knowledge. It provides increased functionality for information systems via knowledge
directed reasoning. It provides increased productivity for information systems via its
clean separation between the knowledge base and inference engine. This separation
allows incremental incorporation of new knowledge as it becomes available without __

changing the reasoning mechanisms. It also allows certain information retrieval tasks '.
requiring application program development using a DBMS to be expressed as D/KB
queries. This advantage becomes very apparent in information retrieval tasks involving
recursive queries. These tasks require application program development when using a
relational DBMS, since relational algebra is incapable of expressing recursive queries.
However, using a data/knowledge base management system they can be expressed

,- .... %...
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simply as queries, since such a system can process recursive requests. The added func-

tionality of a D/KBMS results in productivity gains for the end user.

Thus far, KBS technology has not addressed systems and efficiency issues. The

knowledge bases in current KBS applications are small (typically, memory-resident) and

difficult to share between applications. DBMS technology, on the other hand, offers

solutions to various systems issues such as concurrency, security, integrity, reliability,
and recovery. It offers solutions to various efficiency issues such as organizing large

amounts of data and search and query optimizations.

Thus, KBS and DBMS technologies have much to offer each other - DBMS tech-

nology solutions to systems and efficiency issues and KBS technology improved func-

tionality and productivity. This synergy is the motivation for combining these techno-

logies and has led to the notion of a D/KBMS, a tool for efficiently managing access to

large, shared data/knowledge bases. S

Procedure

1. Look at the contents of the shared data/knowledge base, noting its size.

2. Demonstrate the database representation and manipulation facilities of a D/KBMS.

The VLPDF demonstration testbed offers logic as the knowledge representation -

specifically, Horn clauses with no complex terms and no negation. This represen-

tation provides the power of expressing relational operators in way simpler than
the de facto relational data manipulation language, SQL.

2a. Demonstrate a selection operation - "find all female persons" - by entering

and executing the query:

query(X) - person(X, "female").

2b. Demonstrate a projection operation - "find the name and weight of every
part" - by entering and executing the query:

query(X, Y) - parts(NA1, X, NA2, Y).

2c. Demonstrate a join operation - "find part name and supplier of every
part" - by entering and executing the query:

.query (X, Y) - parts(Z, X, NA1, NA 2), supplier(Y, NA3, Z).

3. Demonstrate the knowledge representation and modeling facilitites of a D/KBMS.

Look at some of the rules in the data/knowledge base to get an idea of the type of ., .

knowledge that can be represented.

3a. Demonstrate the D/KB query language by entering and executing the query:

query (X) - anc("chris", X).

This query means "find all ancestors of Chris". isV

3b. Enter and execute the query:

query(X) - anc(X, "ch..s"). ..
.¢

.. ,, -. ,..,-,,' .Z. ? '.. .. . ... K
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This query means "find all persons whose ancestor is Chris". Comparing this query
with the previous one demonstrates the expressive power of the Horn clause based
query language.

4. List the rules in the workspace to see the definition of the anc relation.

5. Look at the application program needed to determine all ancestors of a given per-
son when using a relational DBMS. Compare the size of this program with the two
rules defining the anc relation to get an idea of the productivity improvement
made possible by a D/KBMS.

6. Demonstrate the ease with which new knowledge can be added by entering the
non-linear version of the ancestor rules (rules R 3 and R 4 ) into the workspace
D/KB.

7. Enter and execute the query:

query(X) - anc_nl("debby", X).

8. List the workspace D/KB rules.

9. Update the stored D/KB.

10.4. Experiment 2: D/KBMS Query and Update Processing Scenario

Objective

Demonstrate the various steps involved in processing queries and updates to a
large, shared data/knowledge base.

Background

See chapter 7.
I0

Procedure
1. Enter the following rule into the workspace D/KB:

f emanc(X, Y) - anc(X, Y), person(Y, "female").

2. Enter the following query:

query (X) - f emanc ("eugene', X).

3. Demonstrate each step for compiling queries by describing its purpose and the
changes it causes in the Knowledge Manager's data structures - rules, predicates,
and query execution environment. roe

4. Execute the above query. Demonstrate the execution of the C code fragment by 5/.t.-

describing the information loaded into the object program's data structures.
Demonstrate the execution of the LFP evaluation routine by describing the results
of each step of the semi-naive evaluation algorithm.

I

,7*
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5. Enter rules Rg through Rs into the workspace D/KB and then update the stored
D/KB. Demonstrate each step in update processing by describing its purpose and
the changes it causes in the Knowledge Manager's data structures. Also, look at
the contents of the rule storage structures, i.e., the relations irulesource, ireacha- S

blepreds, isystables, and isyseolumns. 14 ".w

10.5. Experiment 3: D/KB Query Language Embedded in PARLOG

Objective

Demonstrate the embedding of Horn clauses in PARLOG.

Background

PARLOG is a language with two types of relations: single-solution relations and 0
all-solutions relations. All-solutions relations can appear in the body of single-solution
relations. The evaluation semantics for these relations are completely different. Indeed,
they can be viewed as two different languages - all-solutions relations constituting a
query language and single-solution relations a parallel applications programming
language. An all-solutions relation query can be evaluated by computing the least fixed 0
point of the Horn clauses defining this relation. Thus, PARLOG can be considered as
having a Horn clause query language embedded within it. This experiment will demon-
strate this embedding.

Testbed Configuration

Same as for experiment 1. ,

Procedure

First, load the following single-solution program into the PARLOG environment. •

mode partition(pivot?, list?, less-list', greater-list^).

partition(u, [vlxl], [vlyl], z) <- v < u: partition(u, xl, yl, z). -
partition(u, [vyxl], y, fvizlJ) <- u -<v : partition(u, xl, y, z1).
partition(u, /], [J, 1]).

mode append(listl?, listV?, appended- list'), sort(list?, sorted-list)..,

<-v

append[[hd tail], list2, l~atail]) < - append~tail, list2, atail). "'

append(fl, list , list2).

o-wr .-
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.sortQ'hidi tail], sorted-list) <-

part ition(hdi, tail, listi, list2),
sort(li*stl, sorted-listi),
sort(list2, sorted-list2),

sortfl,[P-appe nd(soHe d- Is ti, /hd sorted-list2j, sorted-list).

Second, enter the following single-solution PARLOG query.

(z <= Allsol(Anc('eugene', z), Person(z, "female"))) 8 SET(y, z, z), Sort(y, a) 8

This PARLOG query will produce a sorted list of the female ancestors of eugene. Here,
the D/KB query Anc('eugene", x), Person(z, "female") is embedded in the single-solution
PARLOG relation SET. The D/KB query returns a list of the female ancestors and
binds y to this list. The sort call is like executing an application program.

Execute the above PARLOG query, demonstrating the various parallel processes
created and the interactions between them.

CI.

sq

%0
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CHAPTER 11

D/KBMS Performance Measurement and Evaluation
.S

The demonstration experiments described in the previous chapter demonstrated the
motivation and functionality of a D/KBMS and the components of a D/KBMS architec-
ture. This chapter describes several experiments we designed to quantitatively measure
D/KBMS performance and to understand D/KBMS performance sensitivity and
behavior with respect to various system parameters. The basic motivation for doing
these experiments is to justify the D/KBMS architecture specification nmethodology
described in chapter 8. That is, to show that this methodology can indeed be used to
design high performance D/KBMSs.

The chapter is organized as follows. Section 11.1 describes D/KBMS performance
measures. Section 11.2 describes parameters that affect these measures. Sections 11.3
and 11.4 characterize the data and rule bases used during the experimentation. Section
11.5 contains a description of the tests and an analysis of the test results. Section 11.6
describes the conclusions drawn from the experimentation.

11.1. D/KBMS Performance Measures

The main D/KBMS performance measures are shown in table 11.1.

te  D/KB query compilation
time -.

te D/KB query execution time

t D/KB update time

%

Table 11.1. D/KBMS performance measures

During experimentation, values of these measures were obtained by averaging over
5 readings. -

The components comprising D/KB query compilation time, tc, are shown in table
11.2. Each component corresponds to a step in the compilation procedure. We haven't
included the time to execute the magic set optimization algorithm, since we have not .,.

implemented this algorithm in our testbed. S

S% % %. % "% Z .%.
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t Time to parse the query. %.

t Time to construct the query
execution environment data
structure.

tc3  Time to extract the relevant
predicates from the workspace
D/KB.

Time to extract the relevant rules
from the stored D/KB. 0C

t c5 Time to extract the relevant
predicates from the workspace
D/KB after the relevant rules from
the stored D/KB have been
extracted. -

tcs Time to read the D/KB data
dictionaries. 

%

tc7  Time to find the cliques in the
workspace D/KB rules.

tcS Time to generate the evaluation W
order list, i.e., to construct the ..
evaluation order graph and "
perform a topological sort of this
graph. -I %I?

g Time to perform the semantic
checks.

tc O Time to generate the code "
fragment.

tCI1 Time to compile the code fragment .
and link it with the run-time •
library.

Table 11.2. tc breakup
S

NOa .
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The components comprising D/KB query execution time are shown in table 11.3.
Each component corresponds to a step in LFP evaluation. %W .

tel Time for initialization.

te2 Time for while loop execution.

te3  Time for dropping derived
predicate and other temporary
tables.

Table 11.3. te breakup 0

The components comprising D/KB update time are shown in table 11.4.

t Time to extract the rules relevant
to the Workspace D/KB from the
Stored D/KB.ON

tu2  Time to update the irulesoure

relation.

tu3 Time to update the I
ireachablepreds, isystables, and

isyscolumns relations.

Table 11.4. t breakup %

11.2. Parameters .

We studied the effect of several parameters or the three D/KBMS performance .

measures described in the previous section. These parameters can be grouped into three
categories: (i) D/KBMS architecture related parame. ,s, (ii) workload related parame-
ters, and (iii) D/KB query and update related parameters. The D/KBMS architectural
parameters relate to different aspects of the system architecture, the workload parame-
ters relate to D/KB size, and the query and update parameters relate to the portions of
the D/KB relevant to the query. Table 11.5 describes these parameters. .- . ."

.1N Z
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11.3. Data Base Characterization

The base relations used in the experimentation are all binary relations. We charac-
terize them in terms of their directed graph representation. In this representation, a
binary relation is represented as a directed graph; domain elements form the nodes of
this graph and tuples the edges.

We used the following types of data bases in the experimentation: lists, full binary
trees, directed acyclic graphs, and directed cyclic graphs. The parameters used to
characterize these data bases are shown in table 11.6.

Relation type Parameters Remarks

List Number of lists, their The number of tuples in a
average length data base with n lists of

average length 1 is
_ _ _ _ _approximately n(I - 1).

Full binary tree Number of trees, their The number of tuples in a
depth data base with n trees,

eachd of depth d, is
n(2 - 2). 0

Directed acyclic graph Number of tuples, fan- Fan-out and fan-in %

out, fan-in, path length respectively refer to the ,, -
number of arcs leaving
and entering a node in the
graph. Path length refers
to the number of nodes in ,. ,.-

a path starting with a
node with zero fan-in and %
ending with a node with
zero fan-out.

Directed cyclic graph Number of tuples, fan-
out, fan-in, path length,
number of cycles in the ,
graph, their average .'.-,.
length %

Table 11.6. Database characterization

To facilitate experimentation, we developed a D/KB generator that accepts parameter,%"%

values as input and creates a "random" data base satisfying these values.

11.4. Rule Base Characterization

We characterize the rule base by characterizing its PCG, which is a directed cyclic
graph. Table 11.7 shows the parameters we used to characterize the PCG. Tne D/KB,
generator accepts these parameters as input and creates a "random" directed cyclic 0

graph satisfying these parameters. It then generates a rule base, such that the PCG of

-V
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Parameter Description

D/K .MS architecture Optimization strategy
related parameters

LFP evaluation strategy

Rule storage structures

Workload related R Total number of rules in /. 4-

parameters the Stored D/KB

R w  Total number of rules in
the Workspace D/KB

P Total number of derived
predicates in the Stored 0
D/KB

Query and update related Rsr Number of Stored D/KB
parameters rules relevant to the query

P Number of derived

urpredicates relevant to the .

query

D8 r I  Total number of tuples in
all base relations relevant % 41-IF

to the query

Dv Number of relevant base
relation tuples .

T Number of edges in the
transitive closure of the
PCG of the Workapace
D/KB rules after
extracting the relevant
rules from the Stored
D/ KB

Table 11.5. Parameters
p.5 9_]
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Number of cliques

Average number of derived predicates in each clique

Average number of rules defining a derived predicate

Probability that a rule calls a base relation

Fan-out -

Fan-in

Path length

Number of cycles in each clique

Average cycle length

Table 11.7. Rule base characterization

this rule base is the above cyclic graph. In general, there are several rule bases satisfy-
ing this condition; the D/KB generator generates one such rule base.

11.5. Tests and Results

We now describe the results of the performance measurement and evaluation tests
we performed using the testbed. These tests can be categorized into two groups: (1)
tests relating to D/KB query processing and (2) tests relating to D/KB updates.

11.5.1. Tests Relating to D/KB Query Processing"p

The tests relating to D/KB query processing can be further categorized into two
groups: (a) tests relating to D/KB query compilation and (b) tests relating to D/KB
query execution.

11.5.1.1. Tests Relating to D/KB Query Compilation

In this section, we describe the tests we conducted relating to D/KB query compila-
tion. After making several measurements of the various components contributing to the ... .p

compilation time, we found that the parameters that had the most effect on D/KB
query compilation time were R,, P, R , and P.. R, and R,, affect the time to extract
the relevant rules from the Stored D/KB, while P and P affect the time to read the %'-

D/KB data dictionaries. The purpose of the tests below is to study the effect of these "%,

I'% N N. N NN N N N N -N-N.." Z
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parameters on D/KB query compilation time.

(1) Study the effect of the total number of rules in the Stored D/KB, R , and the

number of Stored D/KB rules relevant to a query, R.., on the time to extract the

relevant rules frmi the Stored D/KB, tc4. We varied R, from 29 to 205 in steps of

16, recording the value of te4 for a query with R,, = 2. We then repeated this pro- ".

cedure for queries with R,, = 7 and R,, = 20.

Figure 11.1 shows the results of this experiment. For each query, notice that t4 is

relatively insensitive to R,. To understand why this is so, let us look at how the

relevant rules are extracted from the Stored D/KB for a typical D/KB query, say,

query(X, Y) - p(X, Z), m(Z, Y).

This is accomplished via the following SQL query:

SELECT irulesource.rule

FROM irulesource, ireachablepreds

WHERE (ireachablepreds.topredname = irulesource.headpredname OR

ireachablepreds.frompredname = :rulesource.headpredname) AND

ireachablepreds.frompredname = "p" OR

ireachablepreds.frompredname = "m"))

%

The insensitivity of tc4 to R, (the number of tuples in irulesource) is because iru-

lesource is typically a small enough relation to hold in memory and because
ireachablepreds has an index on its columns.

Notice in figure 11.1 that for a given value of R , to, increases with R,7 ' the

number of rules in the Stored D/KB relevant to the query. This is because R., is

related to the join selectivity of the above SQL query. Figure 11.2 shows a plot of

t versus R,7 for three different values of R,. " ."P•

The data in figure 11.1 is for the case where the rules are stored in compiled form *.

in the Stored D/KB as the transitive closure of the PCG. If they are stored in raw

source form only, or if the compiled form is just the PCG (as opposed to its transi-

tive closure), the transitive closure of the PCG would have to be computed during

query compilation. We did not make quantitative measurements of t 4 versus R,
for these cases, since we know from our previous work on algorithms for computing

the transitive closure of a database relation that the performance deteriorates
rapidly for very large relation sizes (see chapter 7).

q_ '

% %i % % % -. %



-223-

(2) Study the effect of the total number of derived predicates in the Stored D/KB, P',,
and the number of derived predicates relevant to the query, Pr' on the time to read

the D/KB data dictionaries. The purpose of reading these dictionaries is to deter-
mine the types of the columns of the base and derived predicates prior to executing •
the type inferencing algorithm. The motivation for doing this experiment is that V
reading the D/KB data dictionaries involves accessing the Stored D/KB, which %
impacts performance. The procedure here was basically the same as that in the
preceding experiment. The values of Pr were 1, 4, and 10 for the three queries.

Figure 11.3 shows a plot of ten versus P,. Notice that for a given value of P,, t,, is
relatively insensitive to P5 . To see why this is so, let us look at how the inten-
sional data dictionary is read for a query having say, pI and p2 as the relevant
derived predicates. This is accomplished via the following SQL query:

SELECT *

FROM isystables, isyscolumns

WHERE isystables.tabid = isyscolumns.tabid AND

(isystables.tabname = "pl" OR

isystables.tabname =p 2"))

The execution time of the above query is insensitive to Pi (the number of tuples in
isystables), because we place indexes on isystables and isyscolumns. F

Also notice that for a given value of P,, t,, increases with P7 . This is because P.
is related to the join selectivity of the above query. Figure 11.4 shows a plot of t

versus P. for three different values of Ps. •

We haven't shown a plot of tce versus R., but we found tcS to be insensitive to R,.
This is because R5 affects tc in so far as it affects P , the number of derived predi-
cates in the Stored D/KB, and as we explained above, tc is insensitive to Pi" -

(3) Study the relative contributions of the different steps in D/KB query compilation on
the total compilation time t . After making several measurements of tc through

t we found that the principal contributions to t¢ came from tc2 , t, t ., and
t t1 . Figure 11.5 shows pie charts of the contributions of these components for

three different queries, with R, equal to 1, 7, and 20. Notice that as R increases ..

from 1 to 20, the relative contribution of to4, the time to extract the relevant
%*

Stored D/KB rules, increases from 25% to 67%. Also, the rate of increase appears _',,.,.

to be quite rapid. ... ".,,.

tC8 appears to be making a non-trivial contribution to tc . This is actually due to

•W .. , I.' e.
.- ',.
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the fact that in our testbed, the evaluation order list is computed by making a
Unix system call to execute the Unix topological sort. utility. The overhead ,.
imposed by the system call is particularly significant, since the evaluation order
graph is typically quite small. We could have avoided making the system call by
implementing a topological sort algorithm; this would have had the effect of mak-
ing the contribution of tce insignificant.

Finally, note that the relative contribution of tC11 , the time to compile the code
fragment generated by the Knowledge Manager and link it with the run time
library appears quite significant. However, this is very much compiler dependent
and can vary greatly from system to system. We can make a similar observation
about tc2.

11.5.1.2. Tests Relating to D/KB Query Execution

Quantitative analysis of D/KB query execution performance is complicated by the
fact that the execution time is greatly influenced by the nature of the query and data.
This is because the type of query and data greatly affect the size of the set of relevant
facts, D,, and the amount of duplicate work done during LFP computation, which
were shown in [Banc86] to be two of the most important parameters influencing D/KB
query execution time. The principal purpose of the tests described in this section is to
study the effect of these parameters on D/KB query execution time.

The tests all use the ancestor query:

ancestor(X, Y) - parent(X, Y).

ancestor(X, Y) - parent(X, Z), ancestor(Z, Y).

query(X) - ancestor("john", X).

and tree structured data for the parent relation. The results will obviously be different
for other queries and data types. Still, we can draw some general conclusions from the
test results for the ancestor query and tree structured data.

When studying the effect of redundant work, we didn't directly measure this 0

parameter. Rather, we measured the execution times for naive and semi-naive LFP
evaluation, the difference between the two indicating the impact of redundant work.

We now describe the tests in more detail.

(4) Study the effect of the fraction of relevant facts, D /Dt , on D/KB query execution

time, t,. We varied DI 2/D,,, in two different ways. In the first method, we kept
D,n fixed by keeping the size of the parent relation fixed and varied D,,2 by root- ...
ing the ancestor query at different sub-trees of the parent relation. Thus, each
value of D,,2 was obtained from a different query, each query having a different .
constant. In the second method, we kept Dr 2 fixed by fixing the query constant

and varied the size of D,,, by making the parent relation progressively larger.

% %*> % % ** % % %% %
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Here, the same query was applied to parent relations of different sizes. Semi-naive
evaluation was used for LFP computation. Optimization was not used.

Figure 11.6 shows a plot of te versus Dr21ID,,l. Notice that when D..1 is fixed, te is

insensitive to D,, 2. This is because in the absence of the magic set optimization, P
the transitive closure of the entire parent relation is computed, regardless of the
percentage of this relation that is actually relevant to the query. We study the
impact of this optimization in another experiment.

On the other hand, when D,. 2 is fixed but D.., is not, te increases with D,.r

(equivalently, t. decreases with D,. 2/D5,l ). This is because the transitive closure is

being computed for progressively larger relation sizes.

(5) Study the impact of redundant work done during LFP computation on D/KB query

execution time. We first measured te for several ancestor queries rooted at different .

sub-trees of the parent relation, keeping D,. fixed and using semi-naive LFP
evaluation. We then repeated this procedure for naive LFP evaluation.

Figure 11.7 shows a plot of te versus D r2/DrI for both naive and semi-naive 0

evaluation. Notice that for the query and da.abase in this test, semi-naive evalua-
tion is between 2.5 to 3 times faster than naive evaluation. The difference is due to
the fact that semi-naive evaluation avoids a lot of duplicate work by computing

only the differential of f(R) during each iteration when evaluating the LFP of
R f (R). Naive evaluation, on the other hand, recomputes tuples computed in
previous iterations.

(6) Study the relative contributions of the various steps in the while loop of naive and

semi-naive LFP evaluation. Chapter 12 showed the pseudo-code for naive and

semi-naive LFP evaluation used in our testbed. This experiment studies the rela- 0

tive contributions of the various steps in the while loop of these algorithms. Table
11.8 shows these steps. lie

Figure 11.8 shows the results of this test. Notice that in naive evaluation, 94% of

the time is spent in evaluating the right hand side of the recursive equations and I
doing the termination check, while the corresponding activities consume 82% of the

time in semi-naive evaluation. The activities are not quite the same since semi-

naive evaluation computes only the differential of the right hand side of the recur-

sive equations during each iteration.

Figure 11.9 shows a comparision of the time taken to evaluate the right hand side %
of the recursive equations (or the differential in semi-naive evaluation) and to do -

the termination check for naive and semi-naive evaluation. Notice that the times ,

for naive evaluation are about 2.5 to 3 times greater than those for semi-naive
evaluation. This is the principal reason semi-naive evaluation was found to be 2.5

to 3 times faster than naive evaluation in the previous test.

a •- ,-,, ," .- ,%
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Step Naive Semi-Naive

tweO Time to make temporary Time to clear temporary I S
copy tables -

twe 1 Time to evaluate right Time to evaluate
hand side of recursive differential of right hand
equations side of recursive equations

Ite2 Time for termination Time to make temporary

check copy

twe 3 Time to clear temporary Time to clear temporay
tables tables

Time to drop temporary Time for terminationtwe4 Tm o emnto

tables and create new ones check
for next iteration

tweT5 ime to make temporary ,

copy
%.

Table 11.8. Steps in while loop of LFP evaluation

The termination check is expensive in our implementation because the SQL inter- l %1

face between the Knowledge Manager and the DBMS forces a set difference, an

expensive operation, to be computed during this check. 0

(7) Study the impact of using the magic set optimization on D/KB query execution %. '.

time. This test consists of three parts. First, we measured t as a function of

Ds7 2/DsrI for the four cases resulting from using naive and semi-naive evaluation % .

with and without optimization. D,27 lD,,1 was varied by keeping D.,n fixed and

varying Dr 2 . Figure 11.10 shows the results of this test. Notice that t, is insensi-

tive to D 21D,, 1 in the absence of optimization, since the transitive closure of the

entire parent relation is computed in this case. However, with optimization, te

increases with D,,2ID,,1 . This is because with optimization the transitive closure is

computed only for the relevant portion of the parent relation, which grows progres-
sively larger in this test.

The tradeoffs in using optimization can be clearly seen in figure 11.10: there is a
crossover point beyond which optimization results in higher query execution times.

This typically happens when the selectivity of the query is high, i.e., when most of S

the database is relevant. To understand why this is so, recall that in the magic set

.............. ........................... .... ,........... .,-.... ,.......--
f~ ~~~~~~~~~~~ r 
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strategy, an LFP computation is done is first to evaluate the magic rules and deter-
mine the set of relevant facts. Then, another LFP computation is done to evaluate %

the modified rules and determine the query results. In the latter computation, the
magic set predicates are base relations. When the selectivity of the query is low,
the size of these relations is small enough so that the two LFP computations
together take less time than a single LFP computation on the original base rela-
tions. However, when the selectivity of the query is high, the size of the magic set
predicates is large and the extra overhead in first computing them results in a
higher overall execution time.

The crossover selectivity where optimization degrades performance for semi-naive
evaluation is about 72%, while it is about 82% for naive evaluation. The higher
crossover point for naive evaluation is due to the fact that optimization has a
bigger impact on naive evaluation as it does a lot of redundant work.

Figure 11.11 shows the execution times for the two LFP computations as a function
of D,, 2 /D,. The rate of increase of the magic rules evaluation is lower than that
for the modified rules evaluation. This is because the magic rules evaluation time 0
depends mostly on D, , the sze of the base relations, which was fixed in this test.
On the other hand, the modified rules evaluation time 'As quite sensitive to D,. 2, the
number of relevant facts, which was varied.

The impact of optimization is significant for queries with low selectivity. For 0
example, notice from figure 11.10, that for semi-naive evaluation when only 5% of
the base relation tuples are relevant, the execution time with optimization is about
6 to 7 times faster than without optimization.

The impact of optimization is particularly significant for very large base relations
and very low query selectivity. The second part of this test studied this impact.
Here, we executed an ancestor query with very low selectivity (.05%) against a
parent relation containing over 16,000 tuples and measured te with and without
optimization. We found that without optimization, the query took several orders
of magnitude longer to execute than it did with optimization! We expect that in
very large database environments, the query selectivity will be small in many cases
and so, this test represents a very plausible scenario.

In the third part of this test, we varied D., 2/Dor by keeping Dr 2 fixed and varying
D,,l. Figure 11.12 compares the query execution times with and without optimiza-
tion. As expected, with optimization the curve is flat, since the number of relevant
facts is fixed. On the other hand, without optimization, the execution time
decreases with D, 2ID, 1,, since the transitive closure is being computed for progres- '..'

sively larger relation sizes. •

%N
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11.5.2. Tests Relating to D/KB Updates

In this section, we describe the tests we conducted relating to D/KB updates. We
reiterate that in our testbed, D/KB updates just update the rule storage structures in
the Stored D/KB with the Workspace D/KB rules. In particular, there is no checking .
of these rules against integrity constraints that may be associated with the Stored
D/KB.

The parameters affecting D/KB update time are R, Rs,, RW, and T.. R, and R,9
affect the time taken to extract the relevant rules from the Stored D/KB, while R, and
T. affect the time taken to update the ireachablepreds storage relation. The experi-
ments below study the effect of these parameters.

(8) Study the effect of R. and R., on the D/KB update time, t.. We loaded the
Workspace D/KB with a single rule and updated the Stored D/KB, varying the
value of R, from 9 to 189. There were 8 rules in the Stored D/KB relevant to the
Workspace D/KB rule. Figure 11.13 shows a plot of t versus R both with and
without compiled rule storage structures. In the latter case, the update time is
simply t u3, the time to store the source form of the rules. Notice that updates are
almost an order of magnitude faster without compiled form rule storage.

Also, t is relatively insensitive to R.. The main reason for this is that the time to
extract the relevant rules from the Stored D/KB is a significant contributor to tu
(see next experiment) and this time depends only on R,,, (see D/KB query compila-
tion experiment 1). We have not explicitly studied the impact of R on t as it is
the same as the impact of Rs, on t which we studied before. The insensitivity of
t to R. is significant because it means that the D/KB update time does not
degrade for very large rule sets. I.

(9) Study the relative contributions of the different components of tu as a function of ,

R and T.. We updated a Stored D/KB with R, = 189 with a Workspace D/KB
containing 38 rules and measured the values of tul, t 2 , and t. 3. The value of T.'
was 137, i.e., the transitive closure of the PCG of the Workspace D/KB rules after
extracting the relevant rules contained 135 edges. We then repeated this procedure
for a Workspace D/KB with 1 rule and T. = 21. Figure 11.14 shows a pie chart
of the relative contributions. The main point to note is that t,,, the time to
extract the relevant rules is a significant component of t.. For small values of R.
and T., this time in fact makes the bulk of the contribution to tu. However, for
large values of R, and T., the percentage contribution of tul decreases, since that .

of t 3 increases. Also, notice that the time to store the source form of the rules, N.

t contributes only a small amount to the overall D/KB update time.

I,,

..4, % ' 0 -

%.i



-229 -

!' "'

Query 3, Rsr -20

S
1)100

o Query 2 , Rsr 7

100 200

Rs (rules) Aoo .

Figure 11.1. tC4 vesus 'A- .- '

%, %J'%

-. ,A-

3$ )%, W



-230-:.
%

-2300

160 Rs 205 •

140- RS= 0

120-

100. Rs - 45

tc4 (sec) 80

60

40 AI

20 
"'
0

0 2 4 6 8 10 12 14 16 18 20 %
Rsr (rules).

Figure 11.2. t 4 versus i* " .

%4 " . e%4-

4.. ,5 ',,.4



- 231 -

20

" Query 3 Pr 10

1 oQuery 

2, Pr 4

, • ~Query 1, Pr ,,1I- ..

0 -"
40 50 s0 70 80 90Ps (predicates)

I S

Figure 11.3. tcs versus P

ON1

Ai%,

A 6

.%: ,. . , . % ",.% .'- % - .- - -. -* . . . . . .
-

.- -'%,dO .
- - " " '-' -Z .; ,.,= , , - . •  

. - - -: %,'5...' ., . ,, ,-. ,. ' ,,' , S.. ,- R.. .

m / II i



-232-

%

20 Ps -8P*V
18

16 PsSi5
14

12
tc6 (sec) 10 0

6
4

2

0 1 2 3 4 5 6 7 8 9 10
Pr (predicates) .,,

Figure 11.4. t., versus P,

A%. 

q



-233 -

Zee

6.00%5.00

Rsr~. 3600/

0 IC63 S.0 (M0 IC

ice 0 We6

.00%,5.0%-

48.004.00%

0 IC0
83.00, a 00% 6

*%N

SS
10%

8.00 %c P
J,%- -A



234- -

.. U

150

Dsrl fixed, Dsr2 varies .

" 100
C0

S 50-
Dsr2 fixed, Dsrl varies

0 L L ...,-- .
0 20 40 60 80 100 120

Dsr2/Dsrl 100% --..

N - 0===

Figure 11.6. te versus Dsr2/ l s- I

,%

% %

J5,

"';NA:;-;.:

.,,:..: -.., *
.,..:..-

J ', 
"
" - .e .."e".' ./ 'e ,/' ee_._.'e....'.-'.-'...v... .;.... .... - .-.. ... :.. -.-.. ... .. : -..' .'. -' ,. j, e ." , .- 5 % ,

,/€' ' , , J -_'-3'-,'-,'.; , .- . .-" . . ..".,". ". " -."", . --"-'." = -. -. Y..-- ... .. -" - -'_ " ." .. "-*.'- .. ,.' . .' ,' .".' .*, >":-.



23' - '-

% %

0

500-

Dsrl fixed, Dsr2 varies

400.. 400 S " : * , -.

7E Naive evaluation

300-

2oo,
Semi-naive evaluation

S0 i , NI , i , * , * , m .- ,
100-

0 20 40 60 80 100 120
Dsr2/Dsri 100% .. -

Figure 11.7. Comparison of naive and semi-naive LFP evaluation *. S

PI, , We 0'.

70 "w r 4 P
of%, - %..- - : -. . . - - . .- .

A, - - - -" -.. . *. ... .. .



Ir -It

28%

WM3

*] twS0

67% 13 We4 A-

Naive evaluation
7%/ 29/6o-

31%
,p;

Etwel S
two2

51% 3 ,tWe4

Figure 11.8. Breakup of LFP while loop evaluation *tw%
I

%~, %-%.%:% %

,+ ..'. .. ,;,"
Figue 118. Beaku of FP wile oop valutio

+ e = + m - + < . m + + i . ~ l m u + m .r m I m . " . u ~ . - " + m m " + - • .
+  

ql i = ,l - I Il N f N N l

+" '" ""' "' +*+..,,', " " P+.'+ • " "" '"""" . "' . ... ',,"+' ' "'. ' " "" "" ,., . ..,"-" . .".' ,'" ,.".""" '- -"" - ,. " " '" "+ "",, "" "" 'S,'' "
+ "" .. +' W ." '"" .. "+ '" 'p + = " J ""

+,P .  
. .' "%' .S """

",++ , r +" +r , '+S'3 ," ,+.+" .+ .+ '"'. '. ,. .+ .? .' " . . . . . +, + ," ," + "' . ," ,+ ' + +" . ,



-237-

300 -
CMJ

"o"'N
200-S

C
00 C')'

100 n

0 t

t - Time for f(R) or differential of f(R) evaluation

2 = Time for termination check

Figure 11.9. LFP termination check comparison

%' -,,

%% %1
.- ' 3., !'

, , " vr ,P .P .." " " . w .",r . " € , € ,r ,. , , ,e .. .e 7 II1 .



-238 -

600 aiveevalatio

(wit optmizaion

600 Naive evaluation
(wit optimization)

500 ~

to (sec) 3 00 Semi-naive evaluation .

(with optimization)
200

100 Semi-naive evaluation
(no optimization)

00

0 10 20 30 40 50 60 70 80 90 100 %I

Dsr2IDsrl 100 %

FigUe 1.10 Efect f otimzaton fr fxedD,, P

% %~ u-~

NO' %**



239 -

SN

180 Modified rules evaluation

160

140

120
100 -

te (sec) 80

60 Magic rules evaluation

40

20 *

0 10 20 30 40 50 60 70 80 90 100

Dsr2/Dsrl 100 %
Fg. '1." ,a.iu l t i

Figure 11.11. Magic and modified rules evaluation time ---'-

Ip 0N i



240-

N

Dsr2 fixed, Dsrl varies
150-

Without optimization

- 100

1 0

Figure 11.12. Effect of optimization for fixed D r2

%

0~0

0.2 4:60 80 100 12DsrI~sl 10/



30-

update with compled
. 20- rule storage structures

10-

update without compiled
rule storage structures

0~
0 100 200

Rs (rules)

Figure 11.13. t~ versus R5

Ny'-% %



-242-

13.00%

Rw 1, Tw 21

*tul

450%Rw 
38, Tw 137 -

*tu2

13.00%4

01 0

O* S

% %



243 -pN
11.6. Conclusions

This chapter presented and analyzed the results of several experiments we per-

formed to quantitavely measure D/KBMS performance and to study performance as a
function of various parameters. We list below the conclusions we can draw from the
D/KBMS performance measurement and evaluation study.

1. In order that the D/KBMS be scalable to handle large rule sets. it is important
that the rule storage structures be such that the time to extract the relevant rules
is independent of the total number of rules in the Stored D/KB. Otherwise. the
D/KB query compilation times will grow with the size of the rule base. Our exper-
imentation has shown that storing the transitive closure of the PCG of the rules
and placing an index on the columns of this storage structure achieves the effect of'
making the relevant rules extraction time independent of the rule base size. This is
because with this storage structure. the time to extract the relevant rules depends

only on the number of rules extracted and not on the total number of rules.

2. There are two important tradeoffs that relate to rule storage structures. The first
is a time-vs-space tradeoff. Compiled form rule storage structures like the transi-
tive closure of the PCG use more space but permit faster query compilation than

non-compiled storage structures. The other tradeoff is between query compilation
time and update time. Compiled form storage structures take longer to update. :%>

sometimes even an order of magnitude longer as some of our experiments indicated.
than non-compiled storage structures. The choice of rule storage structure must be.
dictated by the relative cost of storage versus compilation and by the application
characteristics - whether it is query intensive or update intensive. '

3. The PCG itself (as opposed to its transitive closure) has been proposed as a rule

storage structure. However. this is not a good choice f~or query intensive applica-
tions. This is because during query compilation. the transitive closure of the PCGu
will have to be computed to extract the relevant rules and this can get very time
consuming for rules with large PCGs.

4. As we argued before. from the D/KB query compilation point of view. a good rule
storage structure is one where the relevant rule extraction time depends only on the
number of rules extracted and not on the total number of rules. However. we
found that the time to extract the relevant rules is very sensitive to the number of
rules extracted. A key to avoiding excessive compilation times is to structure the
rules in such a way that the number of relevant rules for a query is small. Object-
oriented database techniques can prove to very useful here. For example. a small
set of rules can be encapsulated within an object and these rules can be retrieved
whenever the object receives a message representing a query against them. Encap-
sulating rules within an object is a way of structuring the rules so that only the

relevant portions of the rule base are processed during compilation. Of course. do
much work needs to be done to integrate the concepts of object-oriented database
systems - inheritance, message processing, persistent objects, etc. - with those of_

D/KB query and update processing. '

%F -J % -%
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5. Precompilation of D/KB queries can prove to be very useful. This is especially true
for frequently occurring queries with large R,, values. The price of precompilation
is that, for precompiled queries, information about referenced relations and rules

must be recorded. During updates, this information is checked to see whether the 0

update invalidates any compiled query. However, for applications involving few
updates and frequently occurring queries with large R., values, this price is well
worth paying.

6. Two of the main parameters affecting D/KB query execution time are the ratio of
relevant facts to total number of facts (D,?2 ID , 2) and the amount of redundant
work done in the while loop of LFP evaluation. To reduce the amount of redun-
dant work and to restrict the LFP evaluation to the relevant database tuples, the
D/KBMS architecture can use semi-naive LFP evaluation and the generalized
magic sets optimization strategy.

7. There is a tradeoff in using optimization: while optimization restricts LFP evalua-
tion to the relevant tuples of the database, work must be done to first determine
these tuples. There is a crossover value of D 7 2/Ds, 1 beyond which optimization
actually results in higher query execution times. Optimization pays best when the
selectivity of the query is low, i.e., for queries that retrieve only a small fraction of
the database. The benefit of optimization is particularly telling for queries with ,
very low selectivity and very large base relations. For such applications, we found
that without optimization, the query took several orders of magnitude longer to
execute than it did with optimization! We expect that in very large database W3

environments, the query selectivity will be small in many cases and the use of ".

optimization is highly recommended despite the extra work introduced. Ideally,
the D/KBMS query optimizer should adapt the optimization strategy dynamically,
switching it on for queries with low selectivity and off otherwise. ..-%

8. Relational algebra alone is not a good choice for the DBMS interface, since the LFP .
evaluation in this case has to be done via an application program and this intro-
duces several inefficiencies. For example, during each iteration of the while loop, :* "

several table copies are performed. Also, the termination check becomes a very .-.

expensive operation since with relational algebra as the DBMS interface this
involves computing a set difference. In fact, with relational algebra, the 'real" 7 0V

work in LFP evaluation, viz., evaluating the right hand side of the recursive equa- .--
tions (or their differential), takes up only about 30% of the while loop execution
time. The rest of the time is spent doing table copies, termination checking, and .
clearing temporary tables.

9. The above inefficiencies cannot be overcome using parallelism alone. While a.-
parallel relational database machine can certainly speed up table copying and ter-
mination checking, it does not significantly reduce the percentage contribution of ...

these operations to the while loop execution time.

10. To achieve high performance in D/KB query execution, it is very important that S

the relational algebra interface be augmented with a generalized LFP operator.
This operator should accept a set of recursive equations of the form,

W-J. -.
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,-,(r , ., , = 1, ... , n, as input and compute their least fixed point, %,SI%.

thereby solving each r,. By including such an operator in the DBMS interface, ., ' '

many of the inefficiencies that arise with relational algebra can be alleviated. W,-
mention several optimization possibilities that open up if the DBMS interface
included an LFP operator, none of which are possible if the interface was just rela-
tional algebra:

a. Table copying can be avoided by manipulating buffer pointers.

b. The full set difference operation during termination checking can be avoided.
This is because as soon as a tuple is found that was not computed in the pre-
vious iteration, the termination check can stop.

c. A dynamically adaptable indexing strategy can be designed to speed up the
evaluation of the right hand side of the recursive equations or their
differential. This strategy would dynamically create and drop temporary
indexes on the base and intermediate derived relations depending on their
relative sizes.

d. The join strategy can be dynamically changed between iterations if necessary,
depending on the sized of the base and intermediate derived relations and the
join selectivities from the previous iterations.

11. The performance of LFP evaluation can be significantly improved by parallel and
pipelined processing. We list several strategies below: I.

a. During each iteration, the right hand side of each recursive equation may be
evaluated in parallel.

b. Pipelining and data flow techniques may be used to evaluate the relational
algebra tree corresponding to the right hand side of these equations.

c. Parallel join algorithms may be employed during this evaluation.

12. In addition to a general LFP operator, the DBMS interface should include com-
monly occurring special LFP operators, such as transitive closure. This is because
it may be possible to optimize the execution of such special operators better than
that of a general LFP operator. In general, it will be difficult for the query optim-
izer to recognize that a given set of LFP equations corresponds to one or another
specialized LFP operator. Therefore, the Knowledge Manager interface should
include ways of denoting such operators. Then the Knowledge Manager can gen- V__ N.r
erate code containing them and the DBMS can execute this code efficiently.

The conclusions above justify our D/KBMS architecture specification methodology.

Briefly, using this methodology, we would design a high performance D/KBMS by first • '
designing a parallel relational database machine that employs the parallel and pipelined
join algorithms we developed under the VLPDF contract. Next, we would design paral-

lei algorithms for LFP evaluation using the above join strategies, data flow and pipelin-
ing techniques, and semi-naive evaluation. Finally, we would design a Knowledge
Manager that compiles Horn clause queries to relational algebra augmented with a gen- 5

eral LFP operator and that uses the generalized magic sets strategy for restricting the
search space to the relevant base relation tuples. The conclusions above suggest that
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such a D/KBMS would indeed perform well.,..
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CHAPTER 12

Conclusions and Future Directions

This chapter summarizes the conclusions from the VLPDF program and indicates
several directions for future work. It is organized as follows. Sections 12.1 through 12.3
present the principal conclusions from the three phases of the VLPDF program. Section
12.4 presents our thoughts on future directions.

12.1. Phase I Conclusions S
This section presents the principal conclusions from the six investigation studies

conducted during Phase I.

Parallel architectures for D/KBMS application interface

* Shared memory greatly facilitates implementing stream-AND parallelism and the
key to high performance stream-AND parallelism is an efficient shared memory
abstraction on a loosely coupled architecture. The (AMP)2 abstract machine
described in chapter 3 illustrates how such an abstraction can be achieved. It does
so using a number of optimizations that address critical problems in the design of
efficient parallel architectures, viz., communication and memory latencies, and syn-
chronization overheads. . -

* The conclusion from our work on investigating the feasibility of executing PAR- .
LOG programs on the Connection Machine architecture A coarse grained, loosely

coupled architecture is better suited than the Connection Machine for executing S
PARLOG programs, since the form of parallelism best supported by the CM is
directly opposite to that found in PARLOG., .

D/KB query processing concepts
0

0 Recursive query processing is a key concept differentiating D/KB query processing 0

from traditional database query processing.

0 The two basic strategies for Horn clause query evaluation are: top-down evaluation

and bottom-up evaluation. Top-down strategies are more efficient but more corn-
plex and harder to implement. Bottom-up strategies are simpler and easy to imple-
ment but do a lot of useless work. Bottom-up evaluation of nonrecursive predi-
cates can be accomplished via a straightforward compilation to relational algebra,.-,
while that of recursive predicates involves evaluating the LFP of a set of recursive
equations.

* The two basic strategies for bottom-up LFP computation are: naive evaluation and
semi-naive evaluation. Naive evaluation is more inefficient as it recomputes tuples

w1I
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computed during previous iterations. Semi-naive evaluation avoid much redundant %.
work by computing the differential of the right hand side of the recursive equa-
tions. 

*.6:32 ,

• Sideways information passing to restrict the search space to the relevant base rela-
tion tuples and rewriting the rules in the D/KB to an equivalent form whose LFP ",

computation is more efficient are the basic ideas behind D/KB query optimization
strategies.

Transitive closure algorithms ..

* Travsitive closure represents an important class of D/KB queries. '

* Warren's algorithm works better than the logarithmic iterative algorithm and an
improved version of this algorithm in two cases: (1) the relative size of relation is
not much larger than the size of available memory, and (2) the path lengths in the
transitive closure graph vary greatly. In the second case, the iterative algorithms
have to join two whole relations (often very large) iteratively to find a small
number of tuples and the total cost increases dramatically. Thus, our recomenda-
tion is to implement Warren's algorithm for transitive closure in database systems
and let the query optimizer select it adaptively.

" The HYBRIDTC algorithm that we developed and reported in chapter 5 can pro-
vide significant performance benefits, particularly in large D/KB environments, .. .

since it is very amenable to parallel processing. .

Join algorithms,.- -..

0 It is important to choose appropriate algorithms for a particular join operation
with a given system configuration. Furthermore, with a given system and relations
to be joined, the query optimizer has to carefully determine the number of cluster,
the number of disks and the number of processors which will be used in the join.
Generally speaking, the hash-based algorithms outperform the sort-merge algo-
rithms if the output tuples are not required in the sorted order. However, in the
case that the source relations are already sorted, or the applications require the
output tuples are sorted on the join attributes, the sort-merge algorithms may be 0

advantageous.

* In multiprocessor-multidisk systems, high parallelism can be achieved by dividing , .

the total processing task among processors and disks and executing the subtasks -
concurrently. However, in some algorithms, such as the sort-merge algorithms
evaluated in this study, the parallel processing becomes difficult for some steps -
(final merge, for example). The increase of the number of processes cannot speed
up the processing. On the other hand, the hash-based algorithms are naturally
parallelizable. Both the partitioning and joining phase can be cc- "urrently exe-
cuted by all participating processors. This is the main reason that explains why
the hash-based algorithms outperform the sort-merge algorithms with regard to the
elapsed time.

..
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0 Among three major system resources. CPU, disk and communication network. .1-

CPU seems not the bottleneck of the processing pipeline in general (only in some
steps of the sort-merge joins as mentioned above). For hash-based algorithms a
small number of processors at each cluster is enough to provide the necessary pro-
cessing power. On the other hand. disk I/O can be the bottleneck of the pipeline.
although we intentionally used large page size (32K) and very high disk-memory

tranfer rate in our study. ()ne possible approach is to increase the number of disks
in each cluster. This multi-disk system can efficiently remove the bottleneck L

caused by slow disk 1/O. However, the number of disks that can be attached to "..J.
one cluster must be limited by the complexity of control. .%- %

0 One key point in the design of a parallel processing algorithm is to achieve max-
imum overlap among operations requiring different resources in order to increase
the parallelism and reduce the effect of some resource which is the bottleneck of the 0

pipeline. For example. in the hash-based algorithms, the remotely processed tuples
can be transferred either during partitioning or right before their use in the joining
phase. The total communication cost is the same in these two schemes. while their
overlapping with disk I/O is different. In the first scheme. all communication
occurs while the relations are partitioned. The second scheme distributes the corn- 11% ,

munications cost: each relatively small amount of data transfer overlaps with disk
1/O and CPU processing iin joining phases. Which scheme is better will depend on
the relative speed of disk I/O and data transfer over the network. This example
reminds us that parallelism between different type of resources can be further
increased by tuning the processing steps carefully for each algorithm.

Fault tolerance

* The principal factors affecting D/KBMS availability are: system architecture. fault
tolerance techniques, database size, component reliability and capacity, and data ,
storage and access method. ' -V

* Better availability is obtained when the system has many small clusters. In most
cases. .VD - 8 when availability peaks.

* The effect of fault tolerance techniques on system availability is very significant. 0

The reliability of a disk (MTTFdik) is usually a bottleneck, and performance gain
due to disk mirroring is very substantial. Processor redundancy significantly helps
if disks are mirrored (or other disk redundancy methods are used). However. .VP

- 2 is sufficient for fault tolerance. A higher NP does not improve availability

significantly. Fault tolerance techniques for other components are useful in con-.0
junction with fault tolerance techniques for disks and processors.

* The size of the database has a significant effect on system availability. If the data-
base is larger, more data will be lost when a hard failure occurs: so recovery takes Ile
longer. This degrades availability. Also. as the database size increases, the system %
will require more components of given capacity for storage and efficient processing.

This can have a very significant effect on system availability.

% %1-"" .
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0 Higher MTTFd.ik improves availability significantly. System availability will also
improve significantly if disks with higher capacities are used (provided MTTF Jk of
a high capacity disk is not much lower than that for a low capacity disk). AI sys-
tem with a higher capacity interconnect has a significantly better fault tolerance
when the system consists of a few large clusters.

12.2. Phase II Conclusions

A high performance, highly available D/KBMS for very large D/KB environments
can be specified using the following methodology. First design a high performance
parallel relational database machine that employs the parallel and pipelined join algo-
rithms we developed under the VLPDF contract. Next, implement the hardware and
software fault tolerance mechanisms described in chapter 7. Then, design parallel algo-
rithms for LFP evaluation using the above join strategies, data flow and pipelining tech-
niques, and semi-naive evaluation. Finally, design a Knowledge Manager that compiles
Horn clause queries to relational algebra augmented with a general LFP operator and
that uses the generalized magic sets strategy for restricting the search space to the
relevant base relation tuples.

12.3. Phase III Conclusions

This section presents the conclusions from the test and experimentation work in
Phase III.

" In order that the D/KBMS be scalable to handle large rule sets, it is important
that the rule storage structures be such that the time to extract the relevant rules
is independent of the total number of rules in the Stored D/KB. Otherwise, the
D/KB query compilation times will grow with the size of the rule base. Our exper-
imentation has shown that storing the transitive closure of the PCG of the rules
and placing an index on the columns of this storage structure achieves the effect of
making the relevant rules extraction time independent of the rule base size.

" There are two important tradeoffs that relate to rule storage structures. The first N; e
is a time-vs-space tradeoff. Compiled form rule storage structures like the transi-

tive closure of the PCG use more space but permit faster query compilation than
non-compiled storage structures. The other tradeoff is between query compilation

time and update time. Compiled form storage structures take longer to update,
sometimes even an order of magnitude longer as some of our experiments indicated,
than non-compiled storage structures. The choice of rule storage structure must be
dictated by the relative cost of storage versus compilation and by the application ' '

characteristics - whether it is query intensive or update intensive.

* The PCG itself (as opposed to its transitive closure) is not a good choice for query
intensive applications. This is because during query compilation, the transitive clo-
sure of the PCG will have to be computed to extract the relevant rules and this

* can get very time consuming for rules with large PCGs. 0

* The time to extract the relevant rules is very sensitive 1,o the number of rules
extracted. A key to avoiding excessive compilation times is to structure the rules

.- **,
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in such a way that the number of relevant rules for a query is small. Object-

oriented database techniques can prove to very useful here.

" Precompilation of D/KB queries can prove to be very useful. This is especially true

for frequently occurring queries with large R values. The price of precompilation

is that. for precompiled queries, information about referenced relations and rules

must be recorded. During updates. this information is checked to see whether the

update invalidates any compiled query. However, for applications involving few

updates and frequently occurring queries with large R values, this price is well -. .

worth paying.

" Two of the main parameters affecting D/KB query execution time are the ratio of

relevant facts to total number of facts (D0r2/D, 2) and the amount of redundant

work done in the while loop of LFP evaluation. To reduce the amount of redun-

dant work and to restrict the LFP evaluation to the relevant database tuples. the

D/KBMS architecture can use semi-naive LFP evaluation and the generalized "

magic sets optimization strategy.

" There is a tradeoff in using optimization: while optimization restricts LFP eval'ia-

tion to the relevant tuples of the database. work must be done to first determine

these tuple!s. Optimization pays best when the selectivity of the query is low. i.e..

for queries that retrieve only a small fraction of the database. The benefit of t,.,f \

optimization is particularly telling for queries with very low selectivity and very

large base relations. .v
• Relational algebra alone is not a good choice for the DBMS interface, since the LFP

evaluation in this case has to be done via an application program. which introduces k

several inefficiencies. "

* The above inefficiencies cannot be overcome using parallelism alone. While a
parallel relational database machine can certainly speed up table copying and ter-

mination checking, it does not significantly reduce the percentage contribution of

these operations to the while loop execution time. . W, . dk %

* To achieve high performance in D/KB query execution, it is very important thatV ,

the relational algebra interface be augmented with a generalized LFP operator.

* In addition to a general LFP operator. the DBMS interface should include com-
monly occurring special LFP operators. such as transitive closure.

12.4. Future Directions

This section presents several directions for future work based on the lessons learned
from the VLPDF program.
* Since the system configuration. that is. the number of clusters, the number of pro-

cessors. the number of disks. and the size of memory used in a join operation %

affects the performance along with the relation size and selectivities. query optimi-

zation in this multiprocessor environment could be more complicated, and also A

more important. It would be useful to more thoroughly investigate the relative '

behavior of different algorithms with regard to the parameters and derive some

% ',
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heuristics which can be used in the query processing process.

S In our work on transitive closure algorithms, we have not assumed any auxiliary
storage structures such as clustered or non-clustered indices and join indices. All
operations are applied to the original data. Join indices have been shown to JR

improve the performance of join operations. They also improve the performance of
iterative transitive closure algorithms. Further investigation of the relative perfor-
mance improvement of Warren's algorithm resulting from the use of auxiliary data
structure is a worthwhile task. L . ...

* Depth-first and breadth-first algorithms have been explored extensively to solve the
general search and tree traversal problems. Since transitive closure computation is
basically a graph search problem, both depth-first and breadth first algorithms can -'.- ' '
be employed to compute the transitive closure. Warren's algorithm can be viewed

as a depth-first algorithm and iterative algorithms can be viewed as breadth-first
algorithms. This analogy can be useful for further research into the application of
combined breadth-first and depth-first transitive closure computation techniques
as has been suggested in solving other graph search problems. One possible tech-
nique is to apply an iterative algorithm a few number of iterations first to find
most of the tuples in the transitive closure and then switch to the Warren's algo-
rithm to find the few tuples which can be derived only through longer search paths. %

* In general, complete transitive closure is seldom required by applications; a subset
of the transitive closure is adequate for answering many queries. The algorithm to

handle the restricted transitive closure queries is dependent on the restriction cri-
teria. However, general mechanisms for restricting the output of each iteration of
transitive closure operation and terminating the transitive closure computation..'.
after a specified number of iterations are possible. These mechanisms might also
be useful in executing general least fixpoint queries.

* Transitive closure is a data-intensive operation. It is possible to partition the task S

of this very large database processing on to multiple processors and improve the
performance of transitivw closure computation significantly. For iterative algorithms .,
in multipr,,,3ssor environment, the join and union operations in each iteration can
be assigned to a separate processor improving the performance through concurrent .--.

and pipeline processing. For executing Warren's algorithm using multiple proces- S

sors, the search of subgraphs starting from different nodes in the graph can be
assigned to different processor(s). Another potential area for future work is to

design, analyze and evaluate multiprocessor based iterative algorithms and
Warren's algorithm.

* The HYBRIDTC algorithm described in chapter 5 has excellent potential for paral- --

lel transitive closure evaluation, but more work needs to be done. We give some
suggestions below. Each processor or node can work on one or more pairs of buck- ,
ets. The tuples generated at one processor are either processed locally or sent to
other processors. The only synchronization needed is the final termination of the

whole computation.

" .-
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0 Further optimization of this algorithm is worthwhile. One possibility is as follows:
the new tuples generated are not only hashed on the second attribute and inserted
into the corresponding buckets, but also hashed on the first attribute and inserted
into the second relation in the join (RO,k). Thus, more tuples can be generated in S
each iteration, and performance improvement can be expected. However, it is
somewhat difficult to implement in real system since the size of R 0, will change
during processing. Some sophisticated memory management strategy and bucket
overflow techniques have to be developed.

* Query processing and optimization techniques and the system fault tolerance are
very intimately related. Query processing techniques and data storage schemes
depend on the type and frequency of queries asked (i.e., the application). As we
saw in our study, the data storage scheme affects fault tolerance significantly.
Thus, in designing a real system, the designers of query processing software and 0
fault tolerance have to understand the application and devise a storage scheme that
is acceptable from the query processing as well as fault tolerance viewpoint.
Required levels of response time, fault tolerance and reliability are application
dependent.

* Define and evaluate additional fault tolerance and performance parameters. The
availability measure evaluated in this report is the strong availability defined in
section 7.4.2. Evaluating weak availability may give further insight into system

behavior. We also think that the availability measure gives only a part of the
story. Other parts of system behavior are captured by response time measures. To
evaluate the system more thoroughly, additional parameters that combine no-
failure response time and availability could be evaluated. Examples of such meas-
ures are average response time with failures and average system throughput
[Shet87]. Evaluating these parameters may be difficult but required in light of the
previous issue. "

* Soft failures are tolerated using hardware methods such as processor pairing, and
software methods such as transaction management and software reinitialization. ,
Although conceptually these techniques are not difficult to understand, their imple-
mentation may be significantly difficult. We feel these techniques and their effect
on overall system performance should be studied in more detail.

* We studied a data storage scheme that keeps two copies of data. If more copies of
data are kept, more failures can be tolerated in general. This results in higher no-
failure response time for updates but lower no-failure response time for queries.
However, more data will be lost when a failure occurs. This will increase the
recovery time and hence reduce the availability. A more detailed quantitative
study needs to be performed to find out the optimal degree of replication.

* Fault tolerance is achieved by redundancy in hardware and software. Redundancy
means additional resources and overhead. In the future, cost associated with these .
additional resources should be quantified with respect to the benefits of better fault _
tolerance. The types of fault tolerance techniques and the amount of hardware and .6.

data redundancy required should be guided by application needs. P%

% ,
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data redundancy required should be guided by application needs.

0 We found that the time taken to extract the relevant rules can be made indepen-
dent of the total number of rules, but it is still remains very sensitive to the
number of rules extracted. Object-oriented database techniques can prove to be -. _
very useful in reducing the time taken to extract the relevant rules during D/KB
query compilation since they provide efficient structuring of the D/KB. For exam-
ple, a small set of rules can be encapsulated within an object and these rules can be
retrieved whenever the object receives a message representing a query against
them. Encapsulating rules within an object is a way of structuring the rules so
that only the relevant portions of the rule base are processed during compilation.
Of course, much work needs to be done to integrate the concepts of object-oriented
database systems - inheritance, message processing, persistent objects. etc. - with
those of D/KB query and update processing.

* We found that D/KB query compilation can constitute a significant portion of %

D/KB query processing time. Techniques for handling precompiled D/KB queries
need to be integrated into the D/KBMS architecture specification methodology.

Efficient implementation techniques for generalized LFP operators should be inves- irk
tigated. We mention several optimization possibilities below: an LFP operator.
none of which are possible if the interface was just relational algebra:

a. Table copying can be avoided by manipulating buffer pointers.

b. The full set difference operation during termination checking can be avoided.
This is because as soon as a tuple is found that was not computed in the pre-
vious iteration. the termination check can stop.

c. A dynamically adaptable indexing strategy can be designed to speed up the
evaluation of the right hand side of the recursive equations or their
differential. This strategy would dynamic'ally create and drop temporary •
indexes on the base and intermediate derived relations depending on their
relative sizes.

d. The join strategy can be dynamically changed between iterations if necessary.
depending on the sized of the base and intermediate derived relations and the
join selectivities from the previous iterations. 0

* Parallel algorithms for general LFP evaluation can significantly improve D/KB
query execution performance. We list several strategies below:

a. During each iteration, the right hand side of each recursive equation may be
evaluated in parallel.

b. Pipelining and data flow techniques may be used to evaluate the relational =#. N- *

algebra tree corresponding to the right hand side of these equations. - N .

c. Parallel join algorithms may be employed during this evaluation.

J N.,
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