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1.0 INTRODUCTION

Conventional antenna receiving systems are susceptible to

performance degradation due to the presence of undesired noise

signals (deliberate or natural) that enter the system. Exten-

sive research has been conducted in the area of adaptive

antenna arrays as a means of compensating for the inevitable

presence of these interference signals.

Adaptive arrays can provide a vital element of flexibility

to a communication system. They can respond to changes in the

interference environment by steering nulls and reducing

sidelobes in the directions of the interferences, while main-

taining an acceptable level of response in the direction of the

desired signal. These features make adaptive arrays systems

very attractive for applications in which the environment is

changing or unknown.

The heart of the adaptive array system is the controlling

algorithm. It determines not only the method that is used to

adapt, but also the speed of adaptation. The focus of this

study is to evaluate the various hardware architectures that

can be used for implementation of the adaptive control algo-

rithms.

Three adaptive control algorithms have been considered for

hardware evaluation. These algorithms comprise a fairly repre-

sentative set of adaptive algorithms in general. These algo-

rithms are:

1. Least Mean Square Algorithm

2. Constrained LMS Algorithm

- %- 0I



3. Update Covariance Algorithm

The hardware structures considered are the general purpose

microprocessor architecture, the digital signal processor

architecture and the VLSI architecture. These hardware struc-

ture comparisons are based on complexity. The complexity of the

hardware structure is determined by considering the computat-

ional bounds, input requirements and characteristics of the

architecture. The computational bounds of the algorithms

studied here is shown in table 1.1.

This study is concerned with the evaluation of a

communication system operating in the HF frequency band. The HF

band, which spans the 3-30 MHz range, is commonly used in

military communication systems, and has been modeled as a

slowly varying channel. It has been determined that the HF

channel can be considered stationary for times in the order of

lOOms. Thus, an adaptive algorithm must complete a convergence

(obtain a set of optimum weights) during this period. The

average number of iterations required by the adaptive algorithm

for a convergence has been determined by previous simulation

studies E1]. These previous simulation results guided the input

requirement for each algorithm. Since the computational time

per iteration is small, fixed-point implementation is

considered. The architectural analysis in this study is

focussed on 36 antenna elements.

The first section of this report is devoted to the hardware

architectures used in the evaluation of the adaptive algo-

rithms. The characteristics of the architectures are

-2-
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Table 1.1 Complexity of the adaptive algorithms considered for study

------------ I------------------I--------------I----------
IAlgorithm IComplex Multiply IComplex Adds jMemory
------------ I------------------I---------------I-----------
ILMS I2N I 2N + 1 2N + 1

Ic-LMS N + ~2N N N+3N N + 3N

Update I 3.5N+ 4.5 N I 2N +2N N + 2N S
Icovariance I
-------- I------------------I--------------I----------

-3-
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highlighted. The Mc68020 (general purpose microprocessor) and

LM32900 (digital signal processor) were chosen for the

architectural analysis.

In the following sections the feasibility of the hardware
S

structures for each of the algorithms is examined in detail.

Presented is a loading analysis procedure which aids in

determining an initial estimate on the computational loading,

hence, the complexity of the algorithm. Possible system design

architectures are provided for feasible hardware structures.

The time/iteration achieved and the memory requirements for the

data storage for these system design architectures is deter-

mined.

The LMS algorithm was considered first. As the LMS

algorithm did not possess any compute bound operations, the

VLSI computing structure was not suitable. The DSP

architecture was the best suited, for the complexity of the

algorithm using DSP architecture was found to be much lower

than the complexity using the microprocessor architecture. The

c-LMS algorithm was considered next. The complexity in imple-

mentation of the algorithm using the microprocessor was too

high and therefore not feasible. The Systolic architecture was

determined to be better suited than the Wavefront architecture

for the compute bound operations involved. Again, in this case

the DSP architecture was the architecture of choice. Finally,

the update covariance algorithm was considered. The complexity

of the Wavefront architecture was high and therefore not

feasible. The DSP architecture is once again the recommended

-4-



architecture.

The final section presents recommendations on the hardware

structures best suited for the adaptive control algorithms.

-5
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2.0 HARDWARE ARCHITECTURES

This chapter introduces the various hardware architectures

used for implementation of HF adaptive antenna signal proces-

sing algorithms. The hardware architectures considered for this

study are the general purpose microprocessor architecture,

digital signal processor (DSP) architecture and VLSI architec-

ture. The characteristics of these architectures are discussed

in this chapter.

2.1 General purpose microprocessor architecture

One of the computations often encountered in signal proces-

sing algorithms is the multiply-add. This computation is

denoted as AB + C -> C, which implies that the new value of C

is obtained by the addition of the old value of C and the

product of the two quantities A and B. The general purpose

microprocessor architecture's arithmetic logic unit (ALU) is

not optimized to this computation. As we are dealing with

complex quantities, we are interested in complex multiply and

add.

The Mc 68020 microprocessor (2] was chosen for the anal-

ysis. The characteristics of this microprocessor are:

1) cycle time of 60ns

2) multiply to add time ratio of 6:1

3) performs a complex multiply-add at the rate of 0.5 MOPS

(figure 2.1)

From figure 2.1 it can be seen that the multiply to add time

ratio is 7:1. This analysis uses an averaged ratio of 6:1. The

-6-



a

Figure 2.1 Assembly code to perform complex multiply-add
computation on the Mc 68020 microprocessor

The computation involves the product of complex operand A
(moved in from memory location pointed by address register Al
to data registers DO and D1) and complex operand B (present in
memom" location pointed to by address register AO). The result
operand AB is present in data registers D2 and D3. The final
addition is performed to get the new value of C by peforming
AB + C -> C, where the old value of operand C is stored in
data registers D6 and D7.

code cycles (worst case)

move <AI+ > DO 7
move <Al > D1 7

move DO, D2 3
move DO, D3 3

mul <AO+ > D2 48
mul <AO > D3 48
sub D3, D2 7

move. DO, D3 3
move Dl, D4 3
mul <AO > D3 48
mul <-AO > D4 49
add D4, D3 7

add D2, D6 7
add D3, D7 7

I
I

S
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add operation indicated in figure 2.1 has the destination of

the result as the register, but on few occasions we used the

add operation in which the destination of the result was a

memory location which consumes 10 cycles, providing a multiply

to add ratio of 5:1. Thus we averaged the two to obtain the

multiply to add time ratio of 6:1.

The number of cycles the microprocessor takes to perform an

instruction is indicated for the worst and the best case [2).

For this analysis, the worst case was determined when the

microprocessor required 247 cycles to perform the 8 operations

to provide a computational rate of 0.5 MOPS (see figure 2.1).

2.2 Digital signal processor (DSP) architecture

The digital signal processor's arithmetic logic unit is

optimized to perform the multiply add operation. Every instruc-

tion in the digital signal processor takes a fixed number of

cycles and does not vary as in microprocessor architecture.

Another characteristic of the DSP architecture is that the time

taken to perform an addition is on the same order as the time

taken to perform a multiplication.

The DSP chosen for the analysis was the LM 32900 [3]. The

processor's three-level pipelined architecture allows the

overlapping of instruction fetching, decoding and execution,

such that all three operations occur in a lOOns cycle. In

addition the execution of most instructions is only one cycle

long. The pipeline extends to four levels, the fourth level

being the accumulation operation for the multiply and add or

-8-



multiply and subtract instructions. Consequently, (from [3]) Q

multiplication-accumulation will likewise take, in effect, only

one machine cycle when followed by another. Two operands are •

fetched, multiplied, and scaled in one machine cycle; the

accumulation occurs in the next cycle, but when followed by

another multiplication-accumulation it occurs at the same time

as the next multiplication. Thus if a sum of products is to be

calculated and there are 32 products, the sum of 32 products

would be available in 33 cycles (n+1, where n is the number of

products). Program is written to perform the complex multiply

add computation (see figure 2.2). The result of our analysis

show the DSP chip chosen has a computational capacity of 5.7

MOPS and requires 14 cycles to perform the 8 operations for a

complex multiply add.

2.3 VLSI architecture

There are three primary reasons why general purpose unip-

rocessor computers, especially microcomputers, have met with

limited success for high-speed signal processing applications

[4]. First it has previously been shown [26], [27) that the

major computational requirements for many important real-time

signal processing tasks can be reduced to a common set of basic

matrix operations. These matrix operations involve a variety of

elementary operations such as multiplication, vector rotation,

and trigonometric functions which general purpose uniprocessors

are not efficient in calculating. Secondly, general purpose

computer architectures provide only cumbersome address _

-9-
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P
Figure 2.2 Assembly code to compute a complex multiply-

add on the DSP chip LM 32900

0

move r4 >> acch 1 move the contents of register
r4 to accumulator high

move r5 >> accl 1 move the contents of register
r5 to accumulator low

mula (rO+I)(rl+l) multiply the contents of the address
3 pointed by rO and rl and post inc

them and add to the contents of the
accumulator

muls (rO-1) rl multiply and sub
move acch >> r4 1 move the contents of the accumulator

high to register r4 (real part )
move accl >> r5 1 move the contents of the accumulator

low to register r5 (real part )

move r6 >> acch 1 move the contents of the register
r6 to the accumulator high

move r7 >> accl 1 move the contents of the register
r7 to the accumulator low

mula (rO+1)(rl-l) multiply and add

mula (rO+1)(rl+2) multiply and add
move acch >> r6 1 move the contents of the accumulator

high to register r6 (imaginary part)
move accl >> r7 1 move the contents of the accumulator

low to register r7 (imaginary part)
10
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arithmetic for data structures, such as circular buffers that

occur frequently in high-speed signal processing applications.

And lastly signal processing algorithms exhibit a substantial V

amount of parallelism that is not effectively exploited in a

uniprocessor system. These signal processing algorithms are

extremely computation intensive requiring on the order of N or

N'multiplications for each set of date. Clearly, orders of

magnitude increases in computation rate are required for real

time implementation of these advanced algorithms.

Despite the tremendous growth in digital integrated cir-

cuits over the last decade, one cannot simply look to further

advances in device fabrication to satisfy high computation

need. It has been concluded [5] that barring any unseen

breakthroughs in signal processor implementation technologies,

the orders of magnitude throughput gains necessary for real

time computation of signal processing algorithms must come from

architectural advances, i.e., the efficient utilization of

parallelism in computation. S

The most straightforward approach to parallel signal

processing architectures is to connect a number of CPUs to a

common bus. However, performance improves linearly with the

number of processors only up to the point that bus contention

problems become the limitations. Minsky's famous conjecture is,

that for a broad range of algorithms, the conflict between N
W%

processors for access to shared resources along the common bus -.?% v

limits the performance improvement to log2N. Modern "supercom-

puter" designers have utilized a number of parallel-processing
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stratagems to improve on this state of affairs and are

achieving performance improvements commensurate with Amdahl's

law: namely, N/log2ZN.

This traditional design of parallel computer languages

suffers from heavy supervisory overhead incurred by

synchronization, communication, and scheduling tasks. These

severely hamper the throughput rate which is critical to real

time signal processing. These problems led to the development...

of special purpose systems, Systolic and Wavefront, which yield

a perfectly efficient performance improvement factor of N. This

is shown in figure 2.3

Of all the parallel architectures, Systolic and Wavefront

architectures are the most promising. They provide a

combination of characteristics for utilizing VLSI/VHSIC tech-

nology for real time signal processing. The modular parallelism

with throughput directly proportional to the number of cells,

simple control, synchronous data flow, and local interconnects,

provides the sufficient versatility for implementing the matrix

operations needed for signal processing applications.

In the next section Systolic and Wavefront VLSI computing

structures are introduced. The timing analysis for the above

architectures are also briefly considered. In the final sec-

tion, the nature of interface required by the Systolic or

Wavefront array to be integrated into a larger system is

presented.

"12
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2.3.1 Systolic array architecture

VLSI processing structures are suitable for implementing

compute - bound' algorithms rather than 'input/output - bound'

computation. In a compute bound algorithm, the number of

computing operations is larger than the total number of input

and output elements. Otherwise, the algorithm is input/output

bound. Any attempt to speed up an input/bound computation must

rely on an increase in memory bandwidth. Memory bandwidth can

be increased by the use of either fast components (which could

be expensive) or interleaved memories (which could create

complicated memory management problems). Also the input/output

bound problems are not suitable for VLSI because VLSI packaging

must be constrained within a limited number of input/output

pins. A VLSI device must balance its computation burden with

the input/output bandwidth. Speeding up a compute bound

computation, however may be accomplished in a relatively simple

and inexpensive manner, that is, by the Systolic/Wavefront

approach.

This subsection overviews the basic principle of Systolic

architectures [6]. A Systolic system consists of a set of

interconnected cells, each capable of performing some simple

operation. Information in a Systolic system flows between cells

in a pipelined fashion, and communication with the outside

world occurs only at the "boundary cells".

The basic principle of a Systolic array is illustrated in

figure 2.4. By replacing a single processing element with an

array of Processing elements (PE's), higher computation

- 14-
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throughput can be achieved without increasing memory bandwidth.

Suppose that input/output bandwidth between a host and a

special purpose system is 10 million bytes/sec. Assuming that

at least 2 bytes are read from or written to the host for each'"

operation, the maximum rate will be only 5 million

operations/sec. (figure 2.4(a)), no matter how fast the special

purpose system can operate. The Systolic processor array in

figure 2.4(b) will result in 30 MOPS performance with the same

input/output bandwidth and assumptions. This approach ensures

that once a data item is transferred out of the memory it will

be used effectively at each cell.

The basic processing cell used in construction of

Systolic arithmetic arrays, is the so-called "inner product

step processor" (figure 2.5), the processor performs the

operation C <- C + AB (the new value of C is the sum of the

old value of C and the product of A and B) and has three

registers Ra, Rb, and Rc. Each register has two connections,

one for input and one for output. A basic time unit is

defined in terms of the operation of this processor. During

every time unit interval, the processor shifts in data on its

input lines denoted by A,B, and C into registers Ra, Rb, and

Rc, respectively. The processor computes Rc<-Rc + RaRb; and

makes the input values for Ra and Rb together with the new

value of Rc available as output on the output lines denoted by

A, B, and C, respectively. All outputs are latched and the

logic is clocked so that when one processor is connected to

another, the changing output of one during a unit time

- 16 -



interval will not interfere with the input to another durilg

this time interval.

Illustrated below [7] is the construction of a Systolic

array for the multiplication of a matrix A=(aLj ) with a

vector X = (xi . . . . ... Xn ). The elements in the product Y =

(Y . . . . . .., Yr ) can be computed by the following recurrence.

Lt = 0

y .. :.) ya.&) + a., x
UL

Y y.
L

Matrix A is a n * n band matrix with bandwidth w = p + q - 1.

(figure 2.6, where p = 2 and q = 3). The above recurrence can

be evaluated by pipelining the x and y through w linearly

connected processors. As illustrated in figure 2.7 , the Sys-

tolic array is made up of 4 processors as w = 4.

The general scheme of a pipelining algorithm can be viewed

as follows: the yL , which are initially zero, move to the

left, while the x, , move to the right. The a move down.

All the moves are synchronized. It turns out that each y is

able to accumulate all its terms, namely, ct, 2 X ,aL, -

XL 'L XL , (1, L+1 X-i 1 before it leaves the

network. Figure 2.8 illustrates the first seven steps of the

algorithm.

The algorithm is now explained in detail. Assume that the

S17
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processors are numbered by integers 1,2, .. , w from the left-

end processor to the right-end processor. Each processor has '
three registers Ra, Rx and Ry, which will hold entries in A, x

and y, respectively. Initially, all registers contain zeros.

Each step of the algorithm consists of the following operations

( for odd-numbered time steps, only odd-numbered processors are

activated, and for even-numbered time steps, only even-numbered

processors are activated):

1.Shift. S

Ra gets a new element in the band of matrix A.

Rx gets the contents of register Rx from the left

neighboring node. (The Rx in processor 1 gets

a new component of x) Ry gets the contents of

register Ry from the right neighboring node.

2. Multiply and Add.

Ry <- Ry + Ra Rx

Using the type inner product step processor, we notice in

the above example the three shift operations can be done simul-

taneously. Suppose the bandwidth of A is w. It is readily seen

that after w units of time the components of the product y = Ax

start shifting out from the left-end processor at the rate of

one output every two units of time. Therefore, using this

network all the n components of y can be computed in 2n+w time

units. This can be compared to the O(wn) time needed for the

sequential algorithm on a uniprocessor.

All the moves in the Systolic array are synchronized and

-20



data is clocked into each cell with reference to a global

clock. As with all synchronized systems, the Systolic array

suffers from the problem of clock skew.

VLSI Systolic arrays can assume many different structures

for different compute-bound algorithms. Figure 2.9 (8] shows

various Systolic array configurations. Their potential

application in performing those computations is listed in Table

2.1 (8].

2.3.2 Wavefront array architecture

Since data movements are controlled by global timing

reference beats in the Systolic array, speed variations in

computations will cause the array to be clocked at the rate of

the slowest computation thereby introducing extra delays.

A simple solution [9],(10] to the above mentioned problem

is to have data movements in an asynchronous fashion. This

permits a self-timed or asynchronous distributed control

approach to the design of VLSI structures. This concept is the

basis for Wavefront VLSI computing structures. Most of the

algorithms to be implemented in VLSI structures involve

repeated application of relatively simple operations with

regular localized data flow in a homogenous computing network.

The recursive nature of the algorithm, in conjunction with the '
localized data dependency, points to a continuously advancing

wave of data and computational activity. The computational

sequence starts with one element and propagates through the

prccesccr array, closely resembling a physical wave phenomenon,

- 21 -
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Figure 2.9 Various systolic array configurations [81
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Table 2.1 Computation functions and desired VLSI structures (8]

Processor 2rray structure Computation functions

1-0 lincar arrays Fir-flicr. convolution. discrete Fourier transform (DFT), solution of
triangular linczr systems. carry pipclining. cartcsian product, odd-
even transportation sort, real-time priority queue, pipeline arithmetic
units.

1-D square arrays Dynamic programming for optimal parenthesization, graphl algorithms
involving adjacency matrices.

2-D hczagonal arrays Matrix arithmectic (mztrix multipficatiort. L-U decomrposition by Gaus-
sian elimination without pivoting. QR-faciorization). transitive

closure, pattern match. DFT. relational database operations.
Tree Searching algorithms (queries on nearest neighbor. rajn. etc.. systolicI

search tree), parallel function evaluation. recurrence evaluation.
Triangular arrays Inversion of triangular matrix. formal language recognition.

-23-
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(see Figure 2.10). A Wavefront process consists of three steps:

(1) the algorithms are expressed in terms of a sequence of

recursions; (2) each recursion is mapped to a corresponding

Wavefront; and (3) the Wavefronts are successively pipelined

through a Wavefront configuration.

All algorithms that have locality (local data-dependent and

local control flow) and recursivity (in a recursive algorithm,

all processors do nearly identical tasks, and each processor

repeats a fixed set of tasks on sequentially available data)

will exhibit this wave phenomenon. The main advantages of

Wavefront concept are:

1. The Wavefront notion drastically reduces the complexity in

the description of parallel algorithms. The mechanism provided

for this description is a special-purpose Wavefront-oriented

language. Rather than requiring a program for each processor

in the array, this language allows the programmer to address

an entire front of processors.

2. The Wavefront notion leads to a Wavefront based .4

architecture which preserves Hygens's principle and ensures

that the Wavefronts never intersect. Therefore a Wavefront

architecture can provide asynchronous waiting capability and

consequently can cope with timing uncertainties, such as

local clocking, random delay in communications, and

fluctuations of computing times.

- 24 -
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Here an example of the concept of computational Wavefront -Vw..

is given using matrix multiplication. The topology of the

matrix multiplication algorithm can be mapped onto the square N

* N matrix array of the Wavefront Array Processor (WAP), as in

Figure 2.10. Successive pipelining of the Wavefronts through

the computational array will accomplish the computation of all

recursions.

Let A and B be NxN matrices, define C as the product of

A and B, i.e., C = AxB. Clearly, C is a NxN matrix also. The

matrix A can be decomposed into columns A and matrix B into

rows B , and the matrix C can be formed as,

C A1 * BI O B ++............... +AN * BN

where the product Al * B' is termed "outer product". The .;.'

matrix multiplication can then be carried out in N recursions

(each executing one outer product).

C I) = C + A *B

There will be N sets of computational "Wavefronts"

involved, one for each recursion. More explicitly,

(CO C(k - ) + >  )P, '.,
- a t  b.

for k 1,2 ..... ,N. For simplicity, let A
a. a. , bi -

N X ,-; ,2
'%4.,



The computational Wavefront for the first recursion in

matrix multiplication is now examined further. Suppose that

the registers of all the processing elements (PE's) are

initially set to zero:

c. = , for all (i,j)

The entries of A are stored in the memory modules to the left

(in columns), and those of B in the memory modules on the top

(in rows). The process starts with PE(1,1) and

c = c + a b

is computed. The computational activity then propagates to the

neighboring PE's (1,2) and (2,1), which will execute:

~(U)
C = C + a b N

and

C C + a2 b 1

The next front of activity will be at PE's (3,1),(2,2) and

(1,3), thus creating a computation Wavefront traveling down N
the processor array. Once the Wavefront sweeps through all the

cells, the first recursion is complete. As the first wave % l

propagates, an identical second recursion can be executed in

- 27-
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parallel by pipelining a second Wavefront immediately after

the first one. For example the (1,1) processor will execute

C cl + a b11  -_

C a * b + a- * b2. +... + a * b. j

and so on.

The pipelining of the Wavefronts are implemented in a

highly asynchronous ashion [11]. The processors in the array

must wait for a primary Wavefront (of data), then perform the
9

computation it calls for and, finally, act as a secondary

source of new Wavefronts. For example operations (c(1
') ) and

(c71  ) will not be executed until PE's (1,2) and (2,1)

confirm receipt of (aq1 , b,_ ) and (az1 , bit )

respectively. For the same reason, in the next front of the

wave, cells (1,3), (2,2) and (1,3) will be involved. PE (2,2)

for example, has to wait until PE's (1,2) and (2,1) flow their

data, b,1  and a2. , respectively. Only after the arrival of

that data will the (2,2) cell execute its own operation (c 2z)

Lv)
: 2 c + az bL and activate its own successors, PEs (2,3)

and (3,2).

One of the main advantages of the Wavefront array processor

-28-
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is the flexibility in programming.

2.3.2.1 Matrix Data Flow language

This section explains a Wavefront-oriented language for

programming the WAP. This Wavefront language is tailored toward

the description of computational Wavefronts and corresponding

data flow for a large class of algorithms. Since matrix algo-

rithms are typical of this class the language is named Matrix

Data Flow Language (MDFL)[10]. P 0

There are two approaches to programming the WAP: (1) a

local approach describing the actions of each processing

element, and (2) a global approach describing the actions of

each Wavefront. To allow the user to program the WAP in both

these fashions, two versions of MDFL are present: global and

local MDFL.

Here a brief introduction to the programming methodology of

Wavefront array processors is given using MDFL. The most

straightforward method of programming the WAP is to specify the 0

actions of each Wavefront at each of its (2n -1) positions

(fronts), (see Figure 2.10). Nevertheless, because of the

regularity and recursivity in almost all matrix algorithms one

can assume the following.

1) Space Invariance:

In a particular kind of processor the tasks performed by

a Wavefront must be identical at all (2n-1) Wavefronts.

2) Time Invariance:

Recursions are identical.

-29-



Accordingly, global MDFL provides two repetitive

constructs, the space repetitive constructs,

WHILE WAVEFRONT IN ARRAY DO

BEGIN <TASK T> END

so that task T is repeated at all fronts, and the time

repetitive construct

REPEAT <ONE RECURSION> UNTIL TERMINATED

so that the same recursion is repeated.

The REPEAT construct is inherently concurrent in that

successive Wavefronts are pipelined through the array. As soon

as the kth Wavefront is propagated, the (1,1) processor

initiates the (k+l)st Wavefront.

To allow for more than one Wavefront per recursion, the

complete global MDFL program will have the syntax

BEGIN
SET COUNT < >;
REPEAT

< TASKS A >;
WHILE WAVEFRONT IN ARRAY DO

BEGIN
< TASKS B>;

END;
WHILE WAVEFRONT IN ARRAY DO

BEGIN
< TASKS C >;

END;
< TASKS D >;
DECREMENT COUNT;

UNTIL TERMINATED;
ENDPROGRAM.

Each recursion will execute the instructions within the

REPEAT .. UNTIL construct. The number of recursions is set by

SET COUNT. In this example, a recursion consists of two Wavef-

ronts. At the start, tasks A are performed only at the (1,1)
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processor. The first Wavefront of each recursion will perform

tasks B at each of its (2n-1) fronts. The second wave will

execute tasks C in each of these fronts immediately after tasks

B have been concluded. When the count becomes zero, TERMINATED

is set and a 'phase' of identical recursions is over.

The corresponding local MDFL program for interior proces-

sors will be

REPEAT
< TASKS B >
< TASKS C>

UNTIL TERMINATED;

where B and C are the compiled versions of B and C. The conver-

sion of global program to local version is fairly easy.

MDFL notion makes it possible to program an array of

asynchronous processors in a simplistic fashion using the MDFL

language which are modular and easy to follow.

2.3.3 Timing analysis of Systolic and Wavefront array architec-

ture

The timing framework [11] is a very critical issue in

designing the system especially when one considers large scale

computational tasks. Two opposite timing schemes come to mind,

namely the synchronous and the asynchronous timing approaches.

The Systolic array is an example of a totally synchronous

system, and Wavefront array is an example of an asynchronous

timing system.
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2.3.3.1 Timing analysis of Systolic arrays

As the Systolic array is wholly synchronous, it requires

global clock distribution. Therefore, different processing

elements receive clock signals by different paths. The elements

may not receive clocking events at the same time.

Synchronization failure can result from these clock skews.

These synchronization failures can be avoided by lowering clock

rates and by adding delay to circuits, thereby slowing the

computation. Unless operating at possibly unacceptable reduced

speeds, very large systems controlled by global clocks can be

difficult to implement because of the inevitable problem of

clock skews and delays.

Also, because of the strict synchronized timing, all of the

PEs except some special peripheral elements must be performing

the same task in unison. There is no room for multitasking,

even if the tasks are serial and not interwoven one into the

other.

The "clock skew" phenomenon arises due to three factors: S
1) The resistance/capacitance (RC) of the global clock

distribution line;

The line capacitance plays a dominant role in the line

delay. In fact, when the signal of interest is the clocking

signal, it will, in many cases create disastrous

synchronization problems, particularly if the clock traversed a S

large distance on the chip. This could commonly occur in a

large VLSI chip. The resistance too, is dependent on the length

of the line. Due to constraints involved in the layout of the
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VLSI chip, a major factor in line resistance is the

distribution of the material of which the line is made. As the

resistance of diffusion is on the order of 100 times that of

metal, the length of diffusion paths in the clock line is the

predominant factor in that line's time constant.

2) The unequal clock paths to various PEs in the array;

The clock skew due to unequal clock path lengths to the PEs

may become potentially hazardous. To eliminate this skew

contributor for a square array for example, a H-tree clocking

network is often used. A H-tree is implemented by placing the

global clock generator at the root of a binary distribution

tree. All the processing elements are at the various levels of

the tree as children of preceding nodes. Every node represents

a processor; this ensures that all clock paths are of equal

length to each processor. This clock distribution scheme

appears to be optimal for square arrays.

3) The variance of values of the gate threshold voltage;

The PE gate receives and generates the global clock signal b/

to the interior of the PE, thus serving as a buffer between the

global clock distribution network and the local clock

distribution paths. The uncertainty of the threshold voltage of

this gate which arises due to fabrication phenomenon

contributes to the clock skew.

-33- 1
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2.3.3.2 Timing analysis of Wavefront arrays

The self-timed asynchronous (11) scheme of the Wavefront

array can be costly in terms of extra hardware and delay in

each cell. It has the advantage however, that the time required

for a communication event between two cells is independent of

the size of the entire processor array. An advantage that self-

timed systems often enjoy, in addition to the absence of clock-

skew problems, is a performance advantage that results from

each cell being able to start computing as soon as its inputs

are ready and to make its outputs available as soon as it is

finished computing. This allows the array to take advantage of

variations in component speed or data dependent conditions

allowing faster computation. As data transfer is asynchronous,

multi-tasking, where cells in array perform different kinds of

operation is possible in Wavefront arrays.

The Wavefront arrays employ a handshaking protocol to

transfer data between the adjacent PEs. The protocol ensures

the regularity and continuity of the flow of information

through the processor array. This calls for additional number

of input and output signal lines for each PE element, thereby

increasing complexity and hardware cost.

The global clock of the synchronous scheme is now replaced

by the data-sent and data-used lines which establish an exc-

hange of information between the adjacent processors with

regards to data transmission timing. This handshaking operation

is shown in Figure 2.11. The transfer of data in the basic

model from PE(i) to PE(j) calls for PE(i) to apply the

-34

V i.'*.



Pis=r 2.11 Inerprocessor hjandshing scheme (11]

D~a. Sam+I
I f Da Data Trnsf at

T dcK Control Flip Flop

Dam Read

d If

-35-

4R



V.f

appropriate data to the interprocessor data bus and a pulse KK

generated on the data-sent control line. The width of that

pulse, t(1) must be greater than the data setup time of the

data input buffer of PE(j). After the pulse has been generated,

PE(i) can turn to the next task of the recursion. The negative

edge of the data-sent pulse enters the data into the data input

buffer of PE(j) and also toggles the data transfer control flip

flop, thereby notifying PE(j) of the availability of data. In

general, PE(j) will be waiting for that data and will

immediately execute a Fetch instruction. In the worst case, the

time lost in this transaction is, T(pe(j)) + d(ff), where d(ff)

is the input to output delay involved in toggling the data

control transfer flip flop (see Figure 2.11). Upon completion

of the data fetch, PE(j) issues a data processed pulse of

duration t(2). t(2) must be larger than the clock pulse width

required by the flip flop transition. This involves a time

delay of d(ff) + d(p), where d(p) is the propagation delay of

the interprocessor flagging signal.

It is to be noted that not much time is lost in handshaking

process, as after a FLOW has been executed, PE(i) is implemen-

ting its next task concurrently with the FETCH executed by

PE(j). By the time PE(i) has to carry out the next FLOW to

PE(j), the Data-Used signal will have already been set, and

there is no waiting involved. The timing penalty for this

situation is, at worst, t(2) + d(ff). This penalty is paid only

once, and does not multiply by the number of recursions, nor by

the number of FLOW(FETCH) tasks, provided they are not

-36-
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consecutive.

2.3.4 Implementation considerations of Array processor systems

Figure 2.12 [12] depicts a possible overall array processor

system configuration. The design considerations for the major

components are described in detail below.

2.3.4.1 Host computer

The host computer should: provide batch data storage,

management and formatting, determine and schedule program that

controls the interface system and connection network, and

generate and load object codes to the PE's. The host selected

should be capable of interfacing with the high speed array

processor units which have a high input/output bandwidth.

9

2.3.4.2 Interface system

The interface system consists of buffer memory and the .
control unit. The interface system, connected to the host, via

the host bus, has the functions of downloading data and up

loading data. Based on the schedule program, the control unit

monitors the interface system and array processor. The

interface system should also furnish an adequate hardware

support for many common data management operations. In addition

to handling bus protocols, the interface system generates

addresses for buffer memory accesses, controls the loading of

the buffer memory, and schedules and monitors the computations K

carried out by the PE array.

7- -
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Figure 2.12 Array processor system configuration [91
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These memory units are used as buffers between the low

bandwidth host bus and the special high bandwidth buses in the
interface system. By holding data that are to be used

repeatedly by the Systolic arrays in this memory, the arrays

can proceed with high speed, without consuming much host-bus

bandwidth.

2.3.4.3 Connection network

Connection networks provide a set of mappings between

processors and memory modules which accommodate certain common

global communication needs. Incorporating certain structured

interconnections may significantly enhance the speed perfor-

mance of the processor arrays.

2.3.4.4 Processor arrays

Processor arrays consist of the PEs in a particular arran-

gement to solve the specific algorithm. When the problem is Ill

decomposed into many subproblems, each of these subproblems can

be run in parallel in different processor arrays. In this

manner the connection network can be used to facilitate the

data pipelining between the arrays, and thereby increasing the

overall processing speed by one more order of magnitude.

2.4 Chapter summary

In this chapter we presented three different hardware
O.. '.A

architectures 1) the general purpose microprocessor architec- .

ture, 2) the digital signal processor (DSP) architecture and 3)
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the VLSI architecture.

The microprocessor architecture does not have its arith-

metic logic unit optimized to the multiply-add computation

which is often encountered in signal processing algorithms. The

microprocessor chosen for analysis was a Mc 68020 which has a

cycle time of 60ns and performs a complex multiply-add

operation at the rate of 0.5 MOPS. The digital signal processor

architecture has its arithmetic logic unit (ALU) optimized to

compute multiply-add operation. The DSP chosen for analysis was

a LM 32900 which has a cycle time of 100ns and performs a

complex multiply-add operation at the rate of 5.7 MOPS. An

important difference between these two architectures is the

ratio of the multiply to add time. In the microprocessor

chosen, the multiply to add time ratio is on an average 6:1,

but in the digital signal processor, a multiply takes the same

time as an add. Thus, if the algorithm considered has many

isolated additions to be performed, then the microprocessor

architecture will be more suited than the DSP architecture.

Next the characteristics of the VLSI architectures,

specifically Systolic and Wavefront architectures were

discussed. It was observed that VLSI architectures are suited

for compute bound operations rather than input-output bound

operations. Also presented was a timing analysis for the two

VLSI architectures. Systolic architectures operate in a -

synchronized manner and thus suffer from clock skew problems.

The Wavefront architecture is free from clock skew problems as

it is self-timed but requires extra hardware.
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3.0 HARDWARE ARCHITECTURES FOR LMS ALGORITHM ..

The purpose of this chapter is to discuss the various

hardware implementations of the LMS algorithm, to study the

feasibility of these architectures, and to recommend suitable

configurations. We present a brief introduction to the LMS

algorithm in section 3.1 and indicate the equations that are to S

be solved by the hardware implementation. An initial loading

analysis procedure is provided for the LMS algorithm. Section

3.2 provides a method for the analysis to determine an initial

estimate on the computational loading required by different

functions constituting the algorithm. The loading analysis is

then performed for various hardware architectures. The hardware

architectures considered are the general purpose microproces- '-d-.

sor, the digital signal processor and the VLSI architecture and

are discussed in sections 3.3, 3.4 and 3.5 respectively. A A*

summary discussing the feasibility of these architectures and a

recommended architecture is discussed in section 3.6. 't ..

3.1 LMS algorithm

The discussion of the LMS algorithm [13] begins with an

explanation of the Mean Square Error (MSE) performance

criterion. The LMS controlled adaptive array system is shown in W'. = .

Figure 3.1 and will be used to present the concept behind the

MSE performance criterion. In the adaptation process the weight

vector of the linear combiner is adjusted so as to cause the

output y(k) to agree as closely as possible with the desired V

response signal, d(k). For the present, the desired signal is

-42-



Pigure 3.1 LMS-conzrolled Adaptive Amry System

Sensor Am7y Beam-forming Network

IN> XN(k) I VI
<0

4-4

. %

A A - r'

-jierk



i

available. An error signal is expressed as

e(k) = d(k) - y(k) (3.1)

where y(k) is the linear combination of the input sampleq Y(k) S

and the weights W(k).

T

e(k) = d(k) - W X(k) (3.2)

The subscript 'k' from the weight vector is removed because, in

this discussion, the weights are not adjusted. The instan-

taneous squared error is obtained by squaring equation (3.2) 5

2 2 T T T
e (k) = d (k) - 2 d(k) X (k) W + W X(k) X (k) W (3.3)

Assuming statistical stationarity for e(k), d(k) and X(k), the

expected value of equation (3.3 ) provides the MSE as

2 2 T T T
E[e (k)]= E[d (k)]+ W E[X(k)X (k)] W- 2 E[d(k) X (k)] W (3.4)

This equation represents the mean square error as a function of

the weights.

Equation 3.4 can be expressed in a more convenient form as

follows. Let matrix R be defined as the 'input correlation

matrix.

T 0
R = E[X(k) X (k)J (3.5)

The main diagonal terms of R are the mean square of the input

components. The cross terms are the cross correlation among the

input components. Let column vector P be defined as the cross

correlation between the desired response and the sensor element

output, i.e.,
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(k) X (k)

p E (3.6)

d(k) X (k) 0
N

Letting the mean square error be designated as ' ' equation

(3.4) can be expressed as

MSE = = W R W - 2 P W + Ed (k)] (3.7)

The mean square error '' is precisely a positive quadratic

function of the weights. The vertical axis represents

the mean square error and the horizontal axis the values of the

weights. The error function results in a bowl shaped surface.

This paraboloid is called the 'performance surface'. It

contains no local minima and for two weights is shown in

Figure 3.2.

The point at the bottom of the bowl, when projected onto

the weight-vector plane, gives the optimal weight vector W. The

LMS algorithm attempts to estimate this optimum weight vector.

The LMS algorithm is an implementation of the method of the

steepest descent. Using this method, the updated weight vector

is equal to the past weight vector plus a change that is

proportional to the negative gradient. This is expressed as:

W(k+1) = W(k) -/4V (3.8)

where,,4is the gain constant which regulates the stability and

speed of adaptation and V is the estimated gradient of the

mean square error performance surface. Assume that A has

been chosen such that proper performance specifications are

met. Updating the weights can be thought of as descending

- 45 -
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along the aforementioned performance surface in an attempt to

reach the 'bottom of the bowl'. By using the square of a

single error sample instead of the MSE the LMS algorithm

estimates the gradient as,

*-

= - 2 e(k) X (k) (3.9)

Replacing for Vin equation (3.8), yields the LMS algorithm

equation as NS
W(k+1) = W(k) + 2/"e(k) X (k) (3.10)

As the weight changes in each iteration are based on imper-

fect gradient estimates, the adaptive process does not follow

the true line of steepest descent on the performance surface.

Realization of the above algorithm using various hardware

architectures is the main purpose of this chapter.

3.2 Loading analysis

The loading analysis involves determining four basic system

parameters [14],

1. Input requirements

2. Function execution time budgets

3. Computational loading estimate

4. Memory requirements 0

3.2.1 Input requirements

The LMS algorithm implementation involves solving equation
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(3.10) to update the weights. The equation is broken down into

manageable functions as indicated in Figure 3.3. ,, ,'

As can be seen from the Figure 3.3, the algorithm functions 3

have been partitioned into a forward loop and a feedback loop.

The computations required in the feedback loop must be

completed before the next input sample is applied to the loop.

In other words, the processing performed for the current input

must be completed before the next input sample is processed.

In general if the adaptive algorithm constituted of

computations (15], 0 through 0 in the forward loop and 0
1 M M+1

to 0 in the feedback loop, then the structure of the adaptive
M+N

algorithm would be as shown in Figure 3.4. As each computation

introduces a latency of Tj for the j-th computation, it is

necessary for the sum of these latencies to be less than the

sample period ts. This sampling period, Cs, is dictated by

constraints imposed by the HF channel characteristics and the

nature of the system in which the LMS algorithm is

incorporated. These constraints establish a minimum

computation time for the hardware. The sample period -s for

the LMS algorithm is obtained as follows.

3.2.1.1 HF channel requirements

The adaptation process consists of the computation and

update of the weights until the optimal weights are obtained.

This gives the minimum mean square error. The objective has to

been to move on the bowl shaped performance surface towards the

'bottom of the bowl'. There is an important property of this &

- 48 -
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performance surface in adaptive signal processing that is to be

noted. If the incoming signals are stationary and have

invariant statistical properties, then the performance surface

remains fixed and rigid in the cordinate system. The adaptation

process starts at some point on the performance surface and

moves towards the 'bottom of the bowl' i.e., the neighborhood

of the minimum mean square error and stays there. Once these

optimal weights are determined they need not be changed as the

performance surface is fixed.

If the signals are not stationary, then the situation

changes [16]. If the statistical properties of the signals

change slowly, then the performance surface is slowly moving in

its co-ordinate system. Now the adaptation process consists of

not only movinq downhill along the performance surface towards

the minimum, but also tracking the minimum as it moves about in

the co-ordinate system. '.

We are concerned with the signals whose statistical

properties slowly vary. In fact, it has been determined that

the HF channel can be considered stationary for times in the

order of 100 ms. This implies that the incoming signals can be

considered stationary i.e., they have invariant statistical

properties for 100ms. During the next 100ms the signals are

again considered stationary, but the statistical properties

have changed with respect to the previous 100 ms. This means

that the performance surface has shifted, and thus the adap-

tation process is to converge to a new set of optimum weights ,
as the minimum has changed."'
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The process of obtaining a set of optimum weights is

considered as one convergence. The number of iterations of the SAW

LMS algorithm needed for one convergence is a function of the -

channel considerations and has been determined by simulation

studies [1], (see Table 3.1).

3.2.1.2 System considerations

The adaptive antenna array studied here is incorporated in

a direct sequence spread spectrum (DSSS) system. The LMS algo-

rithm can be easily implemented in a DSSS system as discussed

by Compton (17]. The problem here is the derivation of the

reference signal d(k). The reference signal used in the LMS

algorithm must satisfy the following criteria

1. The reference signal must be highly correlated with the

desired signal at the array output.

2. The reference signal must be uncorrelated with any

interference signal components appearing at the array

output.

The reference signal generation loop is shown in Figure

3.5. A locally generated PN sequence is mixed with the array

output signal. It is assumed that this is the same PN sequence

used to spread the information signal, and that its phase is

coherent with the phase of the received PN sequence. The mixing

operation strips the PN code from the desired information I

signal. Next the signal is low-pass filtered over the data

bandwidth. The limiter then removes any amplitude modulation

present. Now the local PN sequence is applied to the limiter

-51-
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Table 3.1 Convergence properties of LMS algorithm [11

Number of it.rations required
for one convergence

Mean "

LMS Algorithm 547 171

Figure 3.5 Reference loop -

aray w b a (t) 0

output____ I" , " LPF <

PN

generator Limiter I

refermeac
signal
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output to respread the data. '.

For this discussion the system design parame.-,rs are as

follows.

Modulation scheme BPSK

Data rate 300 bits/sec

Processing gain 31

The processing gain of 31 implies that the chip rate is 9300

chips/sec. The reference loop unit integrates the received

array output Y(k), over a period duration of one bit (= 3.3 9

ms). As there are 31 chips/bit, this reference loop unit is

provided with 31 values of Y(k) every 3.3 ms. This leads to 31

iterations of the LMS algorithm per 3.3ms as every iteration

produces a new value of Y(k). Thus 9300 iterations of the LMS

algorithm are to be carried out in Isec or 930 iterations in

looms.

As previously shown the HF channel characteristic imposes

the need for one convergence to be obtained in lOOms. Table 3.1

shows that the LMS algorithm needs 550 +/- 175 iterations per

convergence which gives a maximum of 725 iterations per conver-

gence. A design of 930 iterations of the LMS algorithm in 100 161

ms meets both the HF channel constraint of 725 iterations/100

ms and the system considerations constraint of 930 Vol "

iterations/100 ms. An upper bound is now set on the sample

period (or time per iteration) for the LMS algorithm

- 100ms/930 = 107.5 yAs

This implies that the hardware implementing the LMS algorithm 'I:..
must perform one iteration in 107.5 s.
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3.2.2 Execution time budgets

Once the input requirements are determined, we know that

the functions constituting the algorithm have to be calculated

once every 107.5,A s. Thus a portion of this iteration time is

to be allocated to each function of the algorithm. To allocate

the time budget to each function, we have to determine the

number of real operations required by each function. Note

that an add operation is equivalent to a subtract operation in

this discussion, so all subtract operations are referred as

add operations. One complex addition requires 2 real adds, so

in total requires 2 real operations. One complex

multiplication requires 4 real multiplies and 2 real adds,

giving a total of 6 real operations. The following summarizes

the requirement for each function (see figure 3.3).

T 0
1) Y = W X(k) (0 )

This function constitutes 36 complex multiplications and

35 complex additions and thus requires (36*6) + (35*2

= 286 real operations.

2) e = Y- d(k) (0
2

This function involves a complex subtraction and thus .

requires 2 real operations.

3) e e (0 ) 

This function requires 2 real multiplications as/'Ais

a real quantity.

4) B = e" X (k) (0 )
4

This function consists of 36 complex multiplications.
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To obtain X involves 36 real subtractions. Thus this

function requires (36*6) + 36 : 252 real operations.

5) W = W(k) + B (0 ) -
5

This function consists of 36 complex subtractions and

thus requires (36*2) = 72 real adds.

These observations are tabulated in Table 3.2. The Table

also indicates that the LMS algorithm requires 2N complex

multiplications and 2N +1 complex additions. Once the number of 0

computations required by each function is determined, then

execution time can be budgeted to each function. This procedure

is illustrated later for the various hardware architecture

considered.

3.2.3 Computational loading

Once the time budget is determined, the computational

loading offered by each function is easily obtained by dividing

the number of real operations required by the function by the

time budget allocated to that function.

3.2.4 Memory requirements 0

An initial estimate on the memory requirement of the LMS

algorithm can be determined as follows. The algorithm requires ,,
i

2N+1 complex words of storage. X and W each require N words of

storage and d(k) requires one word of storage. Because storage

of intermediate results is necessary, the memory requirement

-55 1
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Table 3.2 Computational complexity of LMS algorithm .

-- - -- - - - --- -- -- - -- - - - - - -- -- - - --- --- - ----- ---
(() (2) (3) (4) (5) (6) I -

Functions Real Real Real Complex Complex
operations Multiply Adds Multiply Add

------- I-------------- ----------- -------------------- IQ4
Y 286 144 142 N N I

e 2 2 -2 - - .

B 216 144 108 N - -

w 72 72 - N
--------------------------------------------------------------- I
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for data depends on the hardware architecture considered.

The general structure for the LMS algorithm is as shown

in Figure 3.6. The input signals from the N antenna elements

are directed to N parallel sections. Note the update of weight

of one antenna element is independent of the update of weight

of another antenna element. Each of these sections initially

performs the multiplication of the weight with the input

signal. Then later perform the weight update when the e'(k)

is obtained as shown in Figure 3.6. Each section can be

allocated to a separate 'processor' or depending on the

computational capacity of the processor a few of the sections

can be coupled and placed on a single processor (see Figure

3.7).

3.3 Microprocessor Architecture implementation

The general purpose microprocessor architecture will now be

evaluated for the LMS algorithm. The microprocessor chosen is

Mc 68020 [2], state of the art 32-bit microprocessor, which has

a cycle time of 6Ons.

The execution time budgets of each function of the algo-

rithm, and computational loading offered by each function is

now determined. This also determines the complexity of the

algorithm with respect to the microprocessor architecture. The

complexity is given as the number of chips needed to implement

the algorithm.
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3.3.1 Initial assessment on the Complexity

The complexity of the hardware implementing the algorithm

is a function of

1) the number of operations the algorithm needs for an

iteration - computational bounds

2) the time allocated for the iteration - input

requirements

3) the hardware architecture implementing the algorithm -

architecture considerations

When these issues are taken into consideration, then one

can obtain an estimate on the number of chips (microprocessors)

needed by the system implementing the algorithm. The complexity

of the system implementing the algorithm is indicated here as

the number of chips needed to construct the system. Loading

analysis of the algorithm in the microprocessor architecture

environment is now performed.

3.3.1.1 Execution time budgets

The time budget allocated to each function is determined

next. Certain factors play a role in determining the complexity

of the system for the microprocessor architecture. These fac-

tors are:
I. the ratio of time needed to do a multiply operation and

the time needed to do an add operation.

2. the speed of the microprocessor with regard to LMS

algorithm (millions of operations per second, MOPS).

The summary of the discussion which follows is shown in
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Table 3.3. The first column of Table 3.3 contains partitioning

of the algorithm. It can be noticed that few functions are

coupled as a single tasK. Functions 0 and 0 are coupled
2 3 6

together for convenience to form task T . The reason for
* 2combining functions B= e X and W= W(k)+B to form task T is wp,

3that these functions need not be done in sucession but can be

interleaved. Once B =e- X (k) is done for antenna element

'i', then the weight can be updated at once by performing W

W (k) + B . Processor cycles can be saved as the

intermediate result is still in the register.

The second column of Table 3.3 indicates the number of real

operations each of the tasks needs. Column 3 and column 4 of

Table 3.3 indicate the number of real multiplies and number of

real adds each of the tasks requires. The Mc 68020 microproces-

sor chosen has a multiplication to addition ratio of 6 1.

Thus the effective number of operations column is obtained by

(number of multiplications ) * 6 + (number of additions) * 1.

The effective number of operations for each task represents the

task in terms of adds. These then provide the true complexity

of the task when implemented in the microprocessor.

A portion of the sampling time 107.5/s is allocated to

perform each task T through T and is given under the
1 3

'execution time budget' column. The time distributed to each N

task is proportional to the effective number of operations of W1

that particular task. For example, for task T the timeIIbudget 
is obtained 

as
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(1006) * 107.5 /4s
--- 52. 39, s

(2064)

3.3.1.2 Computational loading
Once the execution time budget for each task is obtained

then one can determine the computational loading each task

demands. Loading demands are indicated in the computational

loading column of Table 3.3. The entries in this column are

obtained by dividing the unweighted number of operations

(entries in column 2 of Table 3.3) by the execution time

budget. This gives the number of operations/ sec needed to

perform that particular task. For example for task T , the

estimated computational loading is obtained as

286/52.391's = 5.46 MOPS.

Once the computational loading offered by a task is

determined, then the number of chips needed to perform this

task is determined. The number of chips needed for each task

is determined by obtaining the speed of one chip with regard

to the LMS algorithm. It can be observed from Table 3.3 that tasks

T and T put together consume the major portion of the
1 3
iteration time. The operations needed to perform task T and

task T thus constitute the 'operation mix' for the LMS
3

algorithm. A complex multiply and add is the basic operation

that is being repeated to perform task T and T , The
1 3

'operation mix' for the LMS algorithm constitutes a complex
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multiply and add which involves 8 operations (4 multiplies and

4 adds). The Mc 68020 microprocessor performs these 8

operations at the rate of 0.5 MOPS.

Using this information the number of microprocessors

needed for a task can be determined. The number of

microprocessors for task T is obtained as
1

5.46 / 0.5 11 microprocessors.

Similarly task T requires 11 microprocessors and task T
2 3

requires 12 microprocessors. As tasks T through T are -
1 3

performed in sequence, the same 12 microprocessors can be used

for the tasks leading to an initial estimate of the

complexity of the LMS algorithm to be 12. S

As the complexity is low, a system can be designed and its

performance studied. Through further analysis it can be deter-

mined if the time involved in the communication of data between

chips introduces additional computational capacity for the LMS

algorithm, and thereby require more chips to implement the

algorithm. As storage of intermediate results occur the memory 0

requirement for data storage depends on the implementation.

3.3.2 Implementation considerations 0

It has been determined that the LMS algorithm needs 12

microprocessors. One possible arran-

gement of the microprocessors for implementation of the algo-

rithm is shown in Figure 3.8. We have used 13 instead of 12

microprocessors for the ease of distribution of tasks. With the
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algorithm partitioned into various functions, the job now is to

allocate the various functions among the 13 microprocessors.

Microprocessors numbered 01 through #12 perform similar

operations. The additions and multiplications mentioned here

are complex operations. Each complex quantity is represented

as 16 + 16j i.e., 16 bits for real and 16 bits for imaginary.

At the beginning the signal samples from antenna elements

1,2,and 3 are directed to processor #1, the signal samples

from antenna elements 4,5, and 6 are directed to processor #2

and so on, so each processor numbered #1 through #12 gets

three input samples. At the beginning, each of the processors,

#1 through #12, perform three multiplication and three

additions. Processor #1 performs W X , processor #2
6 i i T

performs z W X and so on. To obtain Y= W X, the
i=4 i i

output of the 12 processors are to be added, which is 11 0

additions. Eleven additions done sequentially takes 9.84. .

To reduce the time needed for this computation, processor #2

adds the partial results from processor #1 and partial results

form processor #3 to its partial result, to obtain

9 3 6 9
W Xw x + Z x + x

i=I i i i=3 i i i=4 i i i=7 i i 7 '

Simultaneously processors #5, #8, and #11 perform similar
18 27

operations to produce partial results Z W X , X W X
36 10 i i i=i9 i i

andi8 X respectively. Now processors #2,#5,#8 and

#11 direct their outputs to processor #13 which adds this

data to produce Y(k). This way the time spent on the 11
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0

additions needed is only 5.64 /4s.

Next, Task T is performed on processor #13 to obtain the
2

error signal e'(k). This signal is broadcast to processors #1

through #12. Once this is done, the 12 processors perform task Y

T to update the weights. Note that as task T requires X
3 3 .

processor #1 through #12 perform the complex conjugate of X

to obtain X while task T is being performed in processor
2 *

#13. Notice that equal time was required by both X and T
2

When operated in this environment, the code can be written S

for each of the tasks and the time taken by each function is

obtained. The task time scheduling [8] is shown in Figure 3.9.

From this Figure the time taken for an iteration and the idle S

portion of the iteration time can be determined. The iteration

time obtained is 107.4,A4s which is in the order of the

iteration time of 107.5/4s imposed by the HF constraints and 0

the system constraints.

The time taken for each task in the system and the

computational loading/chip for these tasks are given in Table

3.4. The tasks T and T were used to benchmark the
1 3

microprocessor to have computational capacity of 0.5 MOPS.

While computing task T the average loading/microprocessor is
3

0.57 MOPS, implying that the microprocessors in the system are

used efficiently. But while computing T the speed of the
1 '

microprocessor is only 0.41 MOPS as time is spent on passing

intermediate data among the microprocessors.

The reason that the speed of microprocessor is (0.57 MOPS) .A
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Figure 3.9 Task scheduling using microprocessor
architecture for L.MS algorithm
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Table 3.4 Timing summary of microprocessor architecture
implementation of LMS algorithm

--- - ---------- ------------ I
ITasks Execution IComputational

I I Time ()&s) Iloading/chip
-------- ------------ --------------- I
ITask T1  53.22 I 0.41

ITask T. 7.2 I 0.55

ITask T I 46.98 I 0.57

-----.------- ---------------

Table 3.5 Processor Utilization for the microprocessor
architecture consideration of LMS algorithm

I------------- ----------------------
Processors f Processor IIdle

I utilization Time (ks)
---------- -------------- ,..------------
I#1, #3, #4, #61 91 % I 9.6 I
V #, #9, #10 #121

I#2,#5,#8 & #111 93 % 7.32

I #13 I 10% X 96.84
-------- --------- ---- ------------
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more than the capacity obtained earlier (0.5 MOPS) is that

advantage is taken of the availability of 256-byte on chip

instruction cache in Mc68020. Since most of the code in LMS

algorithm can be written as loops, time is spent in fetching

the necessary instructions only once as from the on-chip cache.

This leads to savings in processor cycles which increases the

speed of the microprocessor. The timing summary takes this

savings into account.

The chip utilization [8] in the 13 microprocessor system

can be determined. Table 3.5 shows the utilization or fraction

busy time of a processor in the system. The amount of time a

processor is idle per iteration is also indicated in this

table, and is determined from Figure 3.9. Using the 13 proces-

sors the mean utilization of the overall system is found as

(107.4)13 - (9.6)8 - (7.32)4 - 96.84 = 85.5%

(107.4)13

which indicates that microprocessor system designed for LMS

algorithm has high utilization of the microprocessors used.

The microprocessor design requires 98 words of storage

where each word (except A) corresponds to 32-bits of real

and 32-bits of imaginary. X and W each require N words of

storage and d(k) requires one word of storage, and the rest ,.

are for intermediate data storage. As each word corresponds to

8 bytes of memory, the microprocessor system requires 780

bytes of data memory.

An evaluation of the LMS algorithm using general purpose
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microprocessor architecture has now been completed. An

assessment of the complexity of the system implementing the

algorithm was discussed and it was determined that the

complexity of the algorithm using microprocessor architecture

is 12. A system architecture was then developed for this

algorithm using 13 microprocessors and iteration time of 107.4

s was obtained. The architecture allows the system to perform

931 iterations during 100ms and required 780 bytes of data

storage.

3.4 DSP Architecture

In this section, the digital signal processor (DSP)

architecture is evaluated for the LMS algorithm. The DSP chosen

for this analysis was LM32900 [3] which has a cycle time of

lOns.

3.4.1 Initial Assessment on the Complexity , .

The complexity is given as the number of DSP chips and ;."'

takes into account the following issues. .,

1) the computations the algorithm requires per iteration"

2) time allocaced for one iteration

3) the characteristics of the DSP architecture i'w "

j 3.4.1.1 Execution time budgets

A summary of the DSP analysis is gi/en in Table 3.6. The ,.-.,

first four columns of Table 3.6 are the same as that of Table -'.,,. V %

3..The compextye is gerrn adteonme of" De chis and"'".--
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time needed to perform a multiplication for DSP chips. The

effective number of operations column (column 5 of Table 3.6)

is then simply the sum of the number of additiv,,i and mul- '

tiplications needed for that particular 
task. The procedure for •

allocating time budgets is similar to that done for microp-

rocessor architecture consideration and is indicated in column

6 of Table 3.6.

3.4.1.2 Computational loading

The computational loading, as previously shown is obtained .

by dividing the unweighted number of operations ( entries in

column 2 of Table 3.6) by the execution time budget. For

example, the computational loading demanded by task T is

286/50.1,4s = 5.7 MOPS

The computational loading demanded by other functions is deter-

mined in the similar way and is indicated in column 7 of Table

3.6.

The speed of the DSP is determined by the time required to •

perform the 'operation mix' of the LMS algorithm. As stated,

the operation mix constitutes the operations needed to perform

one complex multiplication and complex addition. The DSP per- 0

forms the needed 8 operations (4 multiplications and 4

additions) for a complex multiplication and a complex addition

in 1.4,s. This results in a speed of the DSP of 5.7 MOPS. The 9

program written for this application is in straight line

coding. If the code for the 'operation mix is written in loop *%
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form, then the DSP operates at a speed much lower than 4.2 MOPS.

This results because loops introduce additional overhead by way-_

of Test/Branch instructions where as straight line coding does

not. A disadvantage with straight line coding is that it uses

more instruction memory space. On the otherhand, it reduces the

complexity by increasing the speed of operation. The advantage

with loop coding is that less memory space is needed but the

complexity increases. The number of DSP chips needed for this

application when using loop coding is 2. The LM32900 can

address 64k of instruction memory. As the straight line coding

for LMS algorithm does not consume so much memory the straight

line coding method is adopted here. The resulting estimate on

the number of DSP's needed is one with straight line coding.

As the complexity is low, a system design can be developed.

By writing the software we can determine if the time per

iteration obtained is within 107.5A1s.

3.4.2 Implementation considerations

As only one DSP chip is needed for implementation, the

input samples from all the N antenna elements are directed to

the DSP chip. The operation of the LMS algorithm is obvious

in this environment. The algorithm need not be partitioned as

all the tasks involved operate in the same DSP chip. The DSP

chip operates task T , T and T in succession. The timing
1 2 3

resulted from this design is indicated in Table 3.7. The

overall time required for one iteration is 105.8 s, which is a
-73 -
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less than the constraint of 107.5,k s. The loading of the chip

while performing tasks T and T is 5.68 MOPS and 5.97 MOPS

1 3
respectively.

The utilization factor is 100% as only one DSP chip is used.

Note that, unlike in microprocessor design, the time needed to

perform X is also included in iteration time, whereas in

microprocessor design, the time spent to perform X is

absorbed by task T
2

The memory requirement for data is 2N+1 complex words. X

and W each need N complex words of storage and d requires one

complex word storage. As each complex word requires 4 bytes

this design requires 294 bytes of data storage (2 bytes is

added for storage of a real word).

In this section the suitability of the DSP architecture

to the LMS algorithm has been analyzed. The initial assessment

of the complexity of the algorithm using DSP architecture was

found to be one. As the complexity is low we proposed a system

design for 36 antenna elements. The system design completed an

iteration in 105.8-A4 s which resulted in 945 iterations in

lOOms. The design required 294 bytes of data storage.

3.5 VLSI architecture

Design consideration for the VLSI computing structure was

considered next. The VLSI computing structures considered are F

both Systolic and Wavefront [6],[10]. A key attribute of VLSI

P
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Table 3.7 Timing summary of DSP architecture
implementation of LMS algorithm

-------------------------------------
Tasks Execution Computational I

Time (Ats) loading/chip I
-------- ------------ ---------------
Task T, 50.3 5.68 I

Task T 1.3 3.0

Task T 54.2 5.97 I

------------ I--------------------------
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computing structures is their suitability to implement

'compute-bound' rather than 'input/output bound' computations.

The compute bound computations in the LMS algorithm need to be

identified first. The tasks are examined to determine the

nature of VLSI suitability.

T

a) Y = W X(k)

This task is an inner vector-vector multiplication and the

result is a scalar. As can be seen, this operation needs O(N)

multiply-add steps whereas it requires O(N) input/output 0

elements. The ability to access data from memory repeatedly in

the computing structure is a consideration when the order is

he same. The reason for the improved performance of compute-

bound operations using Systolic or Wavefront computing arrays

is the ability of repeated use of input data accessed. Once an

input data is accessed from memory by the array, it is used on S

many processors of the Systolic or Wavefront array. The input

data spends more time on computations rather than in accessing

of input data. This advantage cannot be used in input-output

bound operations such as this task, because a data once brought

from memory and operated in one processor of the

Systolic/Wavefront array has no more use. For example, when the -

first element of 'W' and the first element of X are brought

from storage and multiplied, these data cannot be used again.

Therefore this task is input-output bound and is unsuitable for

VLSI computing structures.

b) B = e X (k)
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This task is scalar-vector product and the result is a

vector. Again this task is input-output bound because the total

number of input and output elements is 2N+1, whereas the task

needs N multiplications. This makes it unsuitable for VLSI

computing structures.

c) W = W(k) + B

This computation is a vector-vector addition and the result

is also a vector. The total number of input-output elements

needed is 3N and the total number of computations needed is N

adds. This task is input-output bound which makes it unsuitable

for VLSI computing structures.

The summary of VLSI suitability is provided in Table 3.8.

Since there are no compute-bound operations it can be concluded -

that VLSI computing structures are unsuitable for LMS algo-

rithm.

3.6 Chapter summary

An analysis was performed on the hardware realization of

the LMS algorithm. Used were general purpose microprocessor S

architecture, digital signal processor architecture and VLSI

architecture. The LMS algorithm was operating in a DSSS system

using BPSK modulation scheme with a bit rate of 300 bits/sec

and a processing gain of 31.

The DSP architecture was determined to be the best suited

in the HF environment. The complexity is much lower than using

- 77 -



Table 3.8 List of compute-bound and Input-output bound

functions belonging to LHS algorithm

Functions IType of INumber of INumber of input- IOperation
Ioperation Icomputations Ioutput elements Ibound

y inner vector I 0(N) I 0(N) Iinput-output I
product III

B I scalar-vectorl N I 2N*a1 I input-output I
Iproduct II I9

I vector-vectorl N I 3N Iinput-outputj
Iaddition III

-IN
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the microprocessor architecture. The VLSI computing structures

were unsuitable for the reasons noted.

A few observations should be noted regarding the

microprocessor design and the DSP design of LMS algorithm.

Table 3.9 and Table 3. 10 provide the execution times required

for the LMS algorithm in the microprocessor system design, and

the DSP system design, respectively. The execution times were

broken down into transfer instructions, arithmetic

instructions, branch instructions and miscellaneous

instructions. Note that a larger portion of time was spent on

multiply instructions by the microprocessor system

( 73.92 vs ) than the time spent on multiply operations by the

DSP system (= 25.4 Ps ). There are two reasons for this.

First, the microprocessor system does 32-bit multiplication

whereas the DSP system does 16-bit multiplication. Secondly, in

DSP chip, the execution of successive multiply-accumulate

instructions allows parallel operations of multiplier and

accumulator (DSP architecture is optimized to multiply-add

operation). This allows a new multiply-accumulate instruction

to be executed every cycle which saves time on multiply

instructions.

Another observation shown in Table 3.10 is that the

add/subtract instruction consumes a larger portion of the total

execution time (27.6%) in the DSP system design, than in the

microprocessor system design which is 15. 5%. The reason is

-79-
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that in any isolated addition required by the algorithm, the

DSP chip consumes the same order of time as that of a

multiplication, whereas the microprocessor consumes only 1/6 of

the time required for the multiplication.
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Table 3.9 Execution times required for LMS algorithm
using microprocessor architecture

---------- --------------- ------------- I
Operation Time(Aks) Percent
--------- --------------- ------------- I
transfer from
memory 9.12 8.5

transfer I '
reg to reg 3.36 3.1

transfer to I
memory I1.8 i1.7 I

add/subtract 16.68 15.5

multiply 73.92 68.8 I

test/branch 2.52 2.4

------------ ------------- ----------- UN%
Total I 107.4 I 100

% .

N
'," ... %',

, .;...

V..-' _
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Table 3.10 Execution times required for LMS algorithm
using DSP architecture

--------- --------------- -------------
IOperation I Time(A~is) jPercent
---------- --------------- -------------
Itransfer from
Imemory I 0.8 I 0.76

Itransfer I
jreg to reg I 28 I 26.46

Itransfer to
Imemory I 11.2 I 10.59

add/subtract I 29.2 I 27.6 I*
multiply 25.2 I 24

Imiscellaneous I 11.2 I 10.59

----------- --------------- I -------
Total I 105.8 I 100 I,
-------- I----------------------

. .. 
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4.0 HARDWARE ARCHITECTURES FOR CONSTRAINED LMS ALGORITHM

This chapter discusses various hardware architecture

implementations of the constrained LMS (c-LMS) algorithm, the

feasibility of these architectures, and recommends suitable

architectures. A brief introduction to the c-LMS algorithm and a
the equations that are to be solved by the hardware implemen-

tation are given in section 4.1. In section 4.2, an initial

loading analysis procedure is derived for the c-LMS algorithm.

The loading analysis provides a method to determine an initial

estimate on the computational loading required by the different

functions that constitute the algorithm. The loading analysis

is performed for various hardware architectures once the

initial estimation is determined. The hardware architectures

considered were the general purpose microprocessor, the digital

signal processor and the VLSI architecture. They are discussed

in sections 4.3, 4.4 and 4.5 respectively. In section 4.6 a

summary discusses the feasibility of these architectures and a

recommended architecture for the HF application.

4.1I c-LMS algorithm

The c-LMS algorithm [18] likc the LMS algorithm uses a

gradient approach to obtain the optimum weights. This algorithm .-N.'

requires that the arrival angle of the desired signal be known

apriori. The adaptive array system model, which will be used to

explain the operation of the c-LMS algorithm, was presented in

[18] and is shown in Figure 4.1. Although the hardware

implementation deals with narrowband signals, the original
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broadband processor model will be used in this discussion. The

model consists of N elements and J taps per element. Narrowband

signals are used and a simplified model results. This model

will be described later. Also shown in Figure 4.1 is an

"equivalent processor" which aids in the understanding of how

the c-LMS operates.

From Figure 4.1, it is evident that the c-LMS processor

contains a component known as a spatial correction filter. This

component performs a task that is regarded as preprocessing.

The spatial correction filter guarantees that the communication

signal component is identical at each element output. The

delays can be calculated from the array geometry and the

arrival angle of the desired signal.

From the desired signal's point, the processors in Figure

4.1 are equivalent. Each adaptive weight in the equivalent

processor is equal to the sum of the weights in the vertical

column above it. With these values, the signal components at

the respective processor outputs are identical. By assigning a

value to these equivalent weights, a desired frequency response

in the look direction is selected. This process introduces J

constraint conditions. Since there are N x J - J degrees of

freedom this can be used to minimize the non-look direction

noise power. Minimizing non-look direction noise power is

equivalent to minimizing total output power. Regardless of how

the weights are adjusted the constraints guarantee that the

response in the look direction will not be degraded. The

equation for the optimum constrained weight solution will be
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presented next.

The expected value of the array output power is given by

2 T T T
ECy (k)] E[W X(k) X (k) W1 = W R W (4.1) •

-xx

Define a J-dimensional vector that guarantees the desired

frequency response and represents the summed weight values of

the j vertical columns as

f

f
2

f (4.2)

f S

N

The weights in the jth vertical column must sum to the

selected number f . This constraint condition can be expressedj S

as

T
C W f , j = 1,2, ... N (4.3)
- -j

where C is a NJ-dimensional vector consisting of all zero and

N ones given by

T S
C [00 .. 0 .. 00 .. 0 .. 11 .. 1 .. 00 .. 0 .. 00 .. 0) (4.4)

j N N N N N

A constraint matrix can then be defined that satisfies all j

equations given by (4.3) as S

C = [C C .... C) (4.5)
1 2 j . R '

The full set of constraints can then be written as ,
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T
C W f

Although it seems like a complicated process, the constraint

matrix C guarantees that the sum of the weights in the vertical

columns is equal to the weights in the equivalent

processor. The constrained optimization problem statement can
T

now be formulated. The array output power, W R W , must be
- -xx - T

minimized subject to the constraint condition C W = f.

The optimum weight vector is found by using the techniques

of LaGrange multipliers. A cost function, similar in purpose to

the MSE function of the LMS algorithm, is formed by

concatenating the constraint equation with a J-dimensional

vector of undetermined LaGrange multipliers A . This cost

function is then minimized with respect to the weights, i.e.,

T T .5
Cost(W) = 1/2 W R W + [C w - f ] (4.7)

- -xx .. - -

C a factor of 1/2 is added to simplify the arithmetic)

Once again, notice that the cost function is a quadratic ,

function of the weights. It is known that the gradient of this

function is zero at the minimum point. The optimum weights are

then found by finding the gradient of the function and setting

it equal to zero.

The gradient of the cost function is found by differen-

tiating with respect to the weights. •

= R W + C (4.8)
cost -xx

Setting this result equal to zero yields the optimal weight
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solution.

R W + C A = 0
-xx - - - (4.9)

W R C
opt -xx - -

The LaGrange multipliers are found by realizing that the

optimal weight solution must satisfy the constraint condition.

T T R -1 CC W = f= C - R C A]
- opt - - -xx - -

(4.10)
T -1 -1 fA =-(C R C

- -xx - -

The optimum constrained weight vector can now be expressed as

-1 T -1 -1 0

W R C C R C f (4.11)
-opt -xx - - -xx - -

As in the LMS algorithm, this algorithm uses the Method of

Steepest Descent. This method states that the new weight vector 0

is equal to the previous weight vector plus a change proport-

ional to the negative gradient.

W(k+1) = w(k) - V0
cost

In this case, the weight update equation is

W(k+1) W(k) -A R W(k) + C A(k) ] (4.12)

-xx - - -

The updated weight must satisfy the constraint condition, and

is written as

T T 0

f = C W(k+1) C [W(k) -/4 [R W(k) + C A(k)] ] (4.13)
. ... ..-- xx - - -

The LaGrange multipliers, ,N(k), are then given by

0
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0

T -1 T T -1 T
.A(k) = -[C C) C R W(k) - 1/,__ [C C] (f-C W(k)] (4.14)

.. ..--xx- ....
and the iterative relation for the update equation is expressed

as
T -1 T T -1

W(k+l) = W(k) -E[I - C (C C) C J R W(k) + C (C C)
- - -- - -xx - -- dT

[f - C W(k)] (4.15)

For the sake of convenience, two definitions are made. Define

T -1

=c (C C) f (4.16)

and P matrix as
T -1 T

P = -C (C C) C (4.17)

where I is the identity matrix. The update equation can then be

rewritten as

W(k+1) = P [W(k) -,A* R W(k)] + f8
- - - -xx -

The covariance matrix Rxx is unknown, however, so an
T

approximation of Rxx at the kth iteration, X(k)X (k), is used.
T - -

Recognizing the fact that X (k) W(k) = y(k), the final update

equation becomes

W(k+l) = P (W(k) - /R y(k) X(k)] + A

The constrained LMS algorithm requires a spatial correction

filter to compensate for the misalignment of the sensor . '.

elements. A method proposed by Takao et. al., [19) merges the

misalignment compensation and the weight computation into a

single process. The direction of arrival of the communication
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signal is used to generate a directional constraint to govern

the weights.

The directional constraint is provided as

C (e ,e

wheredAis the phase of the desired signal at senscr element

'i'. We can then rewrite the expressions for the P matrix and

A vector using this constraint equation

* T S
P = I - (C C )IN

/3 = C IN

and the weight update equation is

W(k+l) = P [W(k) - ,ky(k) X (k)] +

From this discussion it can be noticed that P and! 8 can be

calculated from the directional information. Thus the

calculation of the P matrix and /3 vector is not included in

the hardware implementing the c-LMS algorithm. These

quantities can be found prior to the first iteration of the

algorithm and they do not change later.

4.2 Loading analysis of the c-LMS algorithm

The loading analysis [14] is now performed for the c-LMS

algorithm.
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4.2.1 Input requirements

The c-LMS algorithm involves solving the equations to

update the weights. The equations are broken down into

manageable functions as indicated in Figure 4.2.

Note that the quantities P and A depend only on the

steering delays and the number of antenna elements. These

quantities can be calculated from directional information and

knowledge of the number of antenna elements present in the

array. Thus P and dremain fixed. The c-LMS algorithm considers

these quantities as constant coefficients and are present in

memory before the first iteration of the algorithm begins.

As can be seen from Figure 4.2, the functions into which

the algorithm has been partitioned can only be operated in

sequence. The next iteration of the algorithm cannot be per-

formed until the weights have been updated by the previous

iteration. Thus, the algorithm has an input-output latency and

time must be determined to allocate to this latency. The

average number of iterations of the algorithm needed for one

convergence has been determined by simulation studies (1] to be

1155. Using the HF channel constraint, that the signals can be

considered stationary for 100ms, imposes the condition that the

set of optimum weights should be obtained in the period

100ms/1155 = 86 As. Thus the input signals arrive at intervals

of 86 /Is.

4.2.2 Execution time budgets

A portion of this iteration time (86/4s) is to be allocated

- 91 -

- A* _. . _ '4 , . _ AI. S "A-



Figure 4.2 Partitioning of c-LMS algorithm for
hardware realization

Y-W X J
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Mat - P D
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to each function of the algorithm. To allocate the execution

time budget for each function, the number of real operations

required by each function must be known. An analysis is done

for 36 antenna elements. Note that an add operation is

equivalent to a subtract operation in this analysis, so all

subtract operations are referred as add operations. W-

T p.-
1) Y = W X(k)

This function involves 36 complex multiplications and 35

complex additions and thus requires (36 * 6) + (35 * 2) 0

= 286 real operations which comprises 144 real

multiplies and 142 real adds.

2) B =,A4 Y

This function requires 2 real multiplications as /4is a

real quantity.

3) C = B X (k)

In addition to the 36 complex multiplications this

function requires 36 complex subtractions to obtain X .

In total this function requires (36 "' 6) + 36 = 252 real

operations, 144 real multiplies and 108 real adds.

4) D = W - C

This function requires 36 complex subtractions and

therefore requires (36 * 2) = 72 real adds.

5) Mat = P D %
2

This function requires 36 complex multiplications and 36

35 complex additions. This function requires (36 * 6) +

2 N
(36 * 35 * 2) = 10296 real operations which comprises

-93 -
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5184 real multiplies 5112 real adds.

6) E Mat .

This function requires 36 complex additions which

comprises 36 * 2 = 72 real adds. %

These observations are tabulated in Table 4.1. The Table

4.1 also shows that the c-LMS algorithm requires N + 2N
2

complex multiplications and N + 3N complex additions. Once the

number of computations required by each function is determined,

then we have to allocate time Judget to each function. Time

budgets will be discussed later for the various hardware

architectures considered.

4.2.3 Computational loading

When the time budget is known the computational loading

offered by each function is easily determined. Computational VA

loading is obtained by dividing the number of real operations .

required for the function by the time budget allocated to that

function.

4.2.4 Memory requirements

An initial estimate on the memory requirement of the c-LMS

algorithm can be determined as follows. The algorithm requires
2

N + 3N complex words of storage. X, W and, 6 each require N
2

complex words of storage and P requires N complex words of

storage. Because storage of intermediate results are necessary, ,..

the memory requirement varies with hardware architecture
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0

Table 4.1 Computational complexity of c-LMS algorithm S

----------------- --------- ----------- ---------- ---------- I
I (1) I (2) 1 (3) (4) I (5) 1 (6) I'

I Functions IReal IReal I Real IComplex IComplex
operations Multiply Adds Multiply (Add 0

------------ -------- ----------- ---------- ---------- I
I Y 1286 144 11421 N IN I

I B I 2 I 2 III

C I 252 144 I 108 NI

I D I 72 I - 72 I N

Mat 10296 I5184 15184 N IN I

E 72 I 72 I N I S

------------------------------------------------------------ I

% .-
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considered.

4.3 Microprocessor Architecture Implementation

The evaluation of general purpose microprocessor architec-

ture is now considered for the c-LMS algorithm. The microp-

rocessor used is a Mc 68020 (2), state-of-the-art 32-bit mic-

roprocessor, which has a cycle time of 60 ns.

4.3.1 Initial Assessment on the Complexity

The following issues were considered in determining the

complexity of the hardware implementing the algorithm:

1) the number of operations the algorithm needs for

an iteration -- computational bounds

2) the time ailocated for the iteration -- input

requirements

3) the hardware architecture implementing the algorithm --

architecture considerations

The complexity of the system implementing the algorithm is

expressed in terms of the number of chips needed by the system.

4.3.1.1 Execution Time budgets

How the time budget is allocated to each function is

explained now. Due to the microprocessor, architecture factors

that play a role in determining the complexity of the system

are:

1) the ratio of the time needed for a multiply operation

and for an add operation
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2) the speed of the microprocessor with regard to c-LMS ,v/i

algorithm given in millions of operations per second.

The summary of the following discussion is shown in Table

4.2. The first column of Table 4.2 contains partitioning of the

algorithm. It can be seen that a few functions are coupled as a

single task. Note that functions C and D are coupled together

as one task because these two functions can be performed on an

element by element basis. That is, instead of computing C for

all 36 elements and then computing D for the 36 elements, the

two operations can be interleaved. For the same reason,

functions Mat and E are combined as one task.

The second column of Table 4.2 shows the number of real

operations each of the tasks need . Column 3 and column 4 of

Table 4.2 indicate the number of real multiplies and real adds

each of the tasks require . The microprocessor chosen has a

multiplication to addition time ratio of 6 1. Thus the

'effective number of operations' column is obtained by perfor-

ming (number of real multiplies) * 6 + (number of adds) * I for

each task. When implemented in the microprocessor the effective

number of operations for each task represents the task in terms

of adds. This shows the true complexity of the task.

A portion of the sampling time (86 14s) is allocated to

each task according to its 'effective number of operations'.

Thus the 'time budget' column in Table 4.2 is obtained for each

task by

-97 - 0
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(effective number of operations of that task) * 86/4s

( total number of 'effective number
number of operations' for the algorithm)

For example, for task T the time budget is obtained by

(1006) * 86/is = 2.26IV s

(38350)

The execution time budgets for the other tasks are indicated in

column 6 of Table 4.2.

4.3.1.2 Computational loading

The entries in the computational loading column of Table

4.2 are obtained by dividing the unweighted number of

operations (entries in column 1) by the ' time budget' for

that task. For example, for task T the estimated computa-
1

tional loading is obtained as:

286/2.26As = 126.55 MOPS.

To determine the number of chips needed for each task, we

have to obtain the speed of one microprocessor chip. It can be

observed from Table 4.2 that Task T consumes the major
4

portion of the iteration time. The basic operation needed to

perform this task is a 'complex multiply and complex add'.

This can be seen in the operation Mat performed for the 'i' th

element. The 'i'th row of Mat is multiplied by column vector

D. Thirty-six complex multiplications and additions result,

so the basic operation is repeated 36 times. Thus, the speed

of the microprocessor will depend on the time the

microprocessor takes to complete this basic operation. In the 5
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0

worst case the microprocessor performs this operation at a

speed of 0.5 MOPS.

Using these computations, the number of chips for a task

can be determined. The number of chips for task T is obtained
1

as:

126.55/0.5 = 254 chips.

Task T needs 134 chips, task T needs 281 chips and task T
2 3 4

needs 255 chips. Note that as these tasks are operated in

sequence, the c-LMS algorithm needs 281 chips.
0

As stated previously the complexity of the architecture is

determined by the number of microprocessor chips required by

the algorithm. Using the general purpose microprocessor

architecture the complexity of the c-LMS algorithm is 281. In

summary the complexity of the c-LMS using microprocessor

architecture is very high. To distribute the above tasks among

281 chips and to co-ordinate the movement of intermediate

results leads to a very complex system. Data communication

among 281 chips will also introduce data overhead which was not

included in the execution time budgets. More general more than

281 microprocessors will be needed to bring an iteration time

to 86A s because this overhead consumes extra time. For these

reasons, the microprocessor architecture is not suitable for

the c-LMS algorithm.

4.4 DSP architecture implementation

In this section, the digital signal processor (DSP)

architecture is evaluated for the c-LMS algorithm. The DSP

-100-
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chosen for this analysis is the LM32900 (3] which has a cycle

time of lOOns.

4.4.1 Initial Assessment on the Complexity

An initial assessment on the complexity of the algorithm

employing DSP architecture is performed as follows.

4.4.1.1 Execution Time budgets

Table 4.3 shows the summary of the following discussion.

The first four columns are filled in as they are in Table 4.2.

The time taken to perform an addition and a multiplication on a

DSP chip is the same. So the 'effective number of operations'

column (column 5 of Table 4.3) is the sum of additions and

multiplications needed by that particular task.

The procedure for determining time budgets for DSP

architecture is the same as 4.3.1.1 and is indicated in Table

4.3.

It can be seen that the time budget for the various tasks

obtained using microprocessor and the DSP, is more or less the

same though the characteristics of the two architectures are

different. A task comprising of only addition/subtraction

will be allocated lesser time in the microprocessor

implementation than in the DSP implementation. This results

because in the DSP chip an isolated addition or a subtraction

consumes the same order of time as a multiplication. For

example, if the operation D = W - C (this operation has only

- 101 -
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subtractions) were not included in task T , i.e., operations C
* 3

= B X and D = W - C were performed in sequence, the time

budgets allocated to operation D in the two implementations

considered would differ. The time budget calculation for the D

operation will allocate 0.84,As in the DSP architecture but

only 0.0027 A4s in the microprocessor architecture.

4.4.1.2 Computational loading

The 'computational loading' column is shown in Table 4.3.

The entries in this column are obtained by dividing the

unweighted number of operations (entries in column 1) by the

'estimated time' allocated to that task. One interesting aspect

that can be noted is that the DSP architecture provides equal

loading to all the tasks involved in the algorithm, whereas the

microprocessor architecture provides unequal loading among the

tasks.

As noted previously the speed of the DSP chip with regard

to the c-LMS algorithm can be determined by the time it takes

to compute a 'complex multiply and add '. The DSP chip needs

1.4 )4s to complete the required 8 operations, hence the speed

of the DSP chip is 5.7 MOPS.

Now the number of chips (hence complexity of system) needed

by each task can be determined. The number of chips needed for

task T is 127.7/5.7 = 23 chips. The tasks T through T , all
1 2 4

need 23 chips. Note that these tasks operate in sequence, and

the c-LMS algorithm needs 23 chips. The complexity of the

system is 23 DSP chips for the c-LMS algorithm.
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Because the complexity of the DSP architecture is moderate,

a system design can be studied. Through an analysis, it can be

determined if the time involved in the communication of data

between chips introduces additional computational capacity for

the c-LMS algorithm. Additional computational capacity would

require more chips.

4.4.2 Implementation considerations

One possible arrangement of the 23 chips is shown in Figure

4.3 (DSP chips are numbered from #1 to #26). Twenty-six DSP

chips have been used instead of 23 for ease of distributing the

tasks. Previously the algorithm was divided into various tasks,

and now the various tasks must be allocated among the 26 DSP

chips.

Each complex quantity is represented as 16 + 16j, i.e.,

16 bits for both real and imaginary parts. DSP chips numbered

#1 through #24 (except DSP chips numbered #4, #8, #12, #16,

#20 and *24) are grouped as set #1 and the DSP chips numbered

*4, *8, *12, *16, *20 and #24 grouped as set #2. Initially 18

DSP chips (belonging to set #1) are provided a pair of input

signal samples from the 36 antenna elements. Each of these 18
2 -

DSP chips perform W X , two complex multiplication
i=1 i Ti

additions. To obtain Y= W X (task T ) the results are added

from these 18 DSP chips. This job is assigned to chips #25 and

*26. DSP chip #25 performs additions of the results from chips
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18
numbered #1 through #12 (except #4, $8 and #12) to obtain

i=I

W X . Similarly chip #26 performs additions of results from
ii

chips numbered #13 through #24 (except #16, #20 and #24). Note

that when the results from chip #25 and chip $26 are added, Y
T

= W X. Thus chips #25 and chip #26 exchange data and add to

obtain Y. Meanwhile DSP chips belonging to set #1 perform the

complex conjugate of X (input signal samples). Next each DSP

chip (#25 and #26) performs /4Y to obtain B. DSP chip #25

broadcasts B to chips #1 through #12 (except #4,#8 and #12),

and DSP chip #26 broadcasts B to chips #13 through #24 (except

#16, 20 and 24). Now DSP chips belonging to set #1 have the

necessary data to begin task T . After the completion of task •
3N

T each of the DSP chips belonging to set #1 provides 2
3

complex entries of the vector D (this vector has in total 36

complex entries).

At this instant tasks T , T and T are completed and the
1 2 3

remaining task to be performed is T . This is the most
4 0

computationally intensive task of the algorithm. Up to this

point the DSP chips belonging to set #2 were idle. Now these

chips compute T . The Mat operation is a matrix-vector
4 0

multiplication and is partitioned as shown in Figure 4.4. The

reason for partitioning the Mat operation in this manner will

be discussed later. For the Mat function, DSP chips numbered

#1 through #12 and DSP chip #25 are assigned to perform one

half of the computations involved ( 648 complex

multiplications additions). DSP chips numbered #13 though #24

- 106 - "I

MRm



gue 4A Partitioning of the 'Mat' futncd of the c-LM
algorithm to be Computed in DSP achitecture system

Firnt ow ofP D]N
I

co spat by
PE Ot PE *L2

A PE #25

1s rw of P D/ E D
P D 36

19th MW ofl pp

3dI- I---

36 3 P D DN
]0

.uDMpu sby
A12 PE AAS

th inwu~ IS VI
36 rowof P D-

36 3

-107-

: =" : =' =- G ' I, - •



and DSP chip #26 perform the other half of the computations.

The task T is performed in a pipeline manner. Initially DSP
4

chips #1 through #12 perform the 36 complex multiplications
6

additions involved in the multiplication of one row of Mat and

D vector (each DSP chip performs 3 complex multiplication

additions). The partial results are provided to DSP chip #25

which performs the 13 complex additions (including the

addition of ) to obtain the first element of the weight

vector. Meanwhile DSP chips #1 through #12 perform the next

set of 36 complex multiplication additions involved for the

next row of Mat. Thus after 18 such passes the task T is
4

completed as DSP chips numbered #13 to #24 and chip #26

perform similar operations.

The task time scheduling [8] is shown in Figure 4.5. From

this Figure the time taken for an iteration can be determined

as well as the portion of the iteration time the DSP chips in

the system are idle. The iteration time obtained was 83.9 ,/ s.

This time was less than the iteration time of 86, ks imposed by

the HF constraints. The reason for pipelining 36 complex

multiplication-additions (performed by 12 DSP chips) and 13

complex additions (performed by one DSP chip) is that each of

the 12 chips requires 3 complex multiplication additions which

needs 3.8 )is. The 13 complex additions performed by a single

chip needs 3/4s. As the times required by the two operations (3

complex multiplication-addition and 13 complex additions) are ..% .. }

of the same order, the pipelining will
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be effective in reducing the waiting period. As determined

earlier, task T requires 18 passes leading to 71.4 /is.4

The time taken for each task in the system and the

computational loading/chip for these tasks are given in Table

4.4. Though the DSP chip is tuned to the operations (complex

multiply and add) performed by the computationally intensive

task T , the loading per chip was only 5.3 MOPS instead of
4

the full capacity of 5.7 MOPS. This resulted because time was

consumed in distributing the D vector entries to the various

DSP chips involved in computation. While performing task T ,

3
the loading/chip is at full capacity of 5.7 MOPS as the

computations involved are complex multiply-add. The c-LMS

implementation leads to a tightly coupled system. This created

communication overhead and more than the 23 chips were needed

to bring the iteration time within 86 ofs.

For the system using 26 chips, the processor utilization

[8] can be determined. Table 4.5 shows the utilization or

fraction busy time and the idle time that each DSP chip used in

the system. The overall processor utilization of the 26 chip

system is found to be

26(83.9) - 18(9.2) - 6(15.3) - 2(22.5)

= 86 %
26(83.9)

The processor utilization is high enough to conclude that the

DSP chips are effectively used.

The memory needed for data storage by the c-LMS algorithm,
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Table .4.4 Timing summary of DSP architecture
implementation of c-LHS algorithm

ITasks IExecution IComputationalI
I I Time (Ass) jloading/chip I

ITask T, 5.1 I 3.11

ITask Tz 1.0 I 2.0

ITask T,, 2.8 I 5.7I

ITask T4  75.0 I 5.3I

04
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Table 4.5 Processor Utilization for the DSP
architecture consideration of c-LMS algorithm

- --- -- -- ....---- I-------
Processors I Processor jIdle

I I utilization! Time (^Is)
-I ------ ------ -------1 --------

I set #1 I 89Z x 9.2

I set#2 j 82 Z I 15.3

I set #3 I 73Z X 22.5
- -------- ---- ------ -- ------ - --

set #1 - includes processors #1-43, #5-47, #9-411
#13-415, #17-419, #21-#23

set #2 - includes processors #4, #8, #12, #16, #20, #24

set #3 - includes processors #25 & #26

0
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implemented in the system, is 6100 bytes (note that each

complex word is represented as 16 bits real and 16 bits
2 "-_1

imaginary). P needs N complex words of storage, X, ,6and W

each needs N complex words of storage. As complex words
2

requires 4 bytes of storage, the data require (N + 3N) * 4 =
2

(36 + 3 * 36) * 4 = 5616 bytes. The remaining 484 bytes are

needed for intermediate result storage.

The c-LMS algorithm using DSP architecture has now been

evaluated. The complexity of the system implementing the algo- 0

rithm was assessed and found to be 23. A system architecture

was developed for this algorithm using 26 DSP chips, and the

iteration time was derived as 83.9 Avs. The system performs

1194 iterations during 100 ms and required 5.5 Kbytes of data

storage.Y\.

4.5 VLSI architecture

In this section VLSI architecture is evaluated for the c-

LMS algorithm. Here a different approach than that followed for

the microprocessor architecture and the DSP architecture is

used. This is because not all functions car be implemented on

the VLSI computing structure. Section 4.5.1 identifies the

functions that can be implemented, and it is observed that only

Mat function can be implemented on VLSI computing structures.

Section 4.5.2 discusses issues regarding the architectures •

considered for the Mat function and discusses why Systolic

architecture [6] is better suited for the Mat function than the

Wavefront architecture [10). Presented are here two Systolic S
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array designs which possess all the properties of VLSI

computing structures. The functions of processor that are to be

custom made and are involved in the Systolic array are deter-

mined. Also the issue of whether the Systolic architecture can

be implemented, is evaluated taking into account the present

technology. These issues considered for the two designs are

presented in sections 4.5.3 and 4.5.4. Finally, the VLSI

computing structure must be incorporated into a larger system

and the various important parameters of this system are

discussed in section 4.5.5. A summary of the the discussion on

VLSI architecture consideration for the c-LMS is provided in

section 4.5.6.

4.5.1 Algorithm considerations

To determine if the algorithm is suitable for VLSI

computation, we have to first identify the compute bound

operations in the c-LMS algorithm.

The following analysis holds for any number of antenna

elements (N). From Table 4.6, we can infer that the Mat

function is the only compute bound operation that can be

implemented on a VLSI computing structure. This is because the

elements of D once accessed can be used for each of the row of

P and D multiplication, i.e., D is used to multiply the first

row of P and D and D is used to multiply the second row of P

and D and so on. Thus, this operation can be considered to be

compute-bound and therefore can be implemented in VLSI

computing structures.
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Table 4.6 List of compute-bound and Input-output bound
functions belonging to c-LMS algorithm

--- -- I---..----- I------- - ---- *...--- .-.-.--
Functions IType of INumber of INumber of input- IOperation

Ioperation Icomputations Ioutput elements Ibound

Y- x inner vector O (N) O (N) Iinput-output
Iproduct I

IC -B X I scalar-vectorl N 2N4.1 Iinput-output
product

D . V-C Ivector-vectorl N I 3N4 input-outputI
Isubtraction I

Mat -P D I matrix-vector I O(N') I (N-) I compute bound I
Iproduct I

E . Mat .pI vector-vectorl N I 3N4 input-output
laddition I.

I----I----------------I------------- ------

0
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The Mat operation is the most computational intensive of

the tasks involved in the c-LMS algorithm. It required 10368

real operations and it consumed 85 % (71.4 /11 s of the 83.9

,4 s) of the iteration time for the DSP architecture implemen-

tation. By implementing this task on VLSI structure, the time

spent on this task could be reduced to a large extent, thus,

reducing the burden on the processor performing the input-

output bound tasks of the c-LMS algorithm.

* 4.5.2 Architectural considerations

As noted previously the VLSI architectures considered for

the c-LMS algorithm are the Systolic and the Wavefront. The

primary difference between the two architectures is that the

Systolic array is a synchronous computing structure whereas the

Wavefront array is a self-timed computing structure. Each

architecture has advantages and disadvantages so which is

better depends on the task which is to be implemented. The main

issues for consideration in choosing the better suited

architecture are:

4.5.2.1 Speed variation

A Wavefront array enjoys a performance advantage in that -=

results from each processor of the array are able to start

computing as soon as the inputs are ready and the output is

available as soon as computation is finished. Thus, if dif-

ferent kinds of computations are taking place in the computing

array, i.e., speed variations in computations exist, then the
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data-dependence property of Wavefront arrays will have an

advantage. This advantage will seldom exist in regular arrays

where each processor performs the same kind of computation. The I S

task of the c-LMS algorithm implemented in a VLSI structure is

the matrix-vector prcduct (Mat P D). This task needs a

regular array i.e., the same kind of computation is performed

in all the processors; - multiply-add/subtract. Remember that

the handshaking operation between communicating cells in a

Wavefront array requires increased design complexity and •

hardware cost. This means from the speed variation of

computations issue, Systolic arrays are better suited than

Wavefront arrays to the Mat operation.

4.5.2.2 Clock skew

When different processors receive clock signals by dif- •

ferent paths, they may not receive clocking events at the same

time, potentially causing synchronization failure. These

synchronization errors, due to clock skews can be avoided by

lowering clock rates and/or by adding delay to the circuits,

thereby slowing the computation. The Wavefront array is free

from clock skew problems as it is an asynchronous system, but 0

the Systolic array suffers from the clock skew problems. The

Wavefront array implementation is advantageous only when the

clock skew is high enough to degrade the speed performance of

the Systolic array implementation. For example, if a processor

has a clock cycle of lOOns when operating separately, but when %%

integrated into a Systolic array had to be clocked at 150ns •
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0
(due to a clock skew of 5Ons), then the speed performance is

degraded. Clock skews cause problems only for very large Sys-

tolic arrays (20] and particularly in arrays which have speed

variation. As will be shown later the array for this analysis

has 72 processors and is a regular array (no speed variations),

so clock skew is not an issue. If there are no problems due to

clock skews, then Systolic arrays are better than the Wavefront

arrays because of the required extra hardware for handshaking

between communicating processors.

For the reasons shown, Systolic arrays are better suited

for this analysis. One of the key attributes of VLSI computing

structures is their simplicity and regularity (6]. Simplicity

implies that the processors making up the array must be perfor-

ming simple operations and regularity implies that the proces-

sors comprising the array perform similar operations.

Regularity condition is crucial. In synchronous systems, such

as Systolic arrays, if processors in the array perform dif-

ferent kinds of operations, then the array will be clocked at

the rate of the slowest computation, thereby degrading speed

performance.

Presented here are two Systolic array designs, A and B,

which possess all the key attributes of VLSI computing struc-

ture.

4.5.3 Systolic Array - Design A

The matrix-vector product is found by repetitious mul-

tiplication of a row of P matrix with the column vector D. As
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there are 36 rows in P, the basic process has to be repeated 36 S

times. Each entry of the matrix P and the column vector D is a

complex quantity. Note that the basic operation involves 36

complex multiplications and additions. In Design A two separate S

linear Systolic arrays (#1 and #2) are used because complex

multiplication and addition is needed to be implemented. The

two Systolic arrays interact to derive the matrix-vector

product. Systolic array #1 consists of processors of type-i,

and Systolic array #2 consists of processors of type-2.

The type-1 processor configuration is shown in Figure

4.6(a). This processor has three input registers. These

registers store the three inputs V , U , and W .
in in in

When the three registers are filled with the required inputs,

the processor performs either of the two operations W -

out
= W + V U or W W - V U (21] (according to

in in in out in in in
the control provided) i.e., either a multiply-add or ,

multiply-subtract. Once the processor performs either of these

operations the output is available on the W line. The
out

processor also provides U which is the unchanged version
out

of U . At every tick of the clock, the processor shifts the
in

three inputs into the input registers; computes multiply-add

or multiply-subtract; and makes the output available. This S

one tick of the clock is denoted as the 'unit time' of the

array.

The type-2 processor configuration is shown in Figure

4.6(b). This processor also has 3 input registers but it

performs only one operation multiply-add. So during a 'unit S
-119-
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0

Rgnre 4.6(s) Type of processor used in Systol array #1 (Design A)

Type I

V.__

woul

Win + oot

RFgure 4.6(b) Type of processor used in Systolic array 42 (Design A)

Uin
Type I1

we'll
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S

time' this processor shifts the 3 inputs; computes W = W
out in

+ V U ; and makes output available.
in in

How the two Systolic arrays interact and perform the comp- -

lex matrix-vector multiplication, is now explained (Figure

4.7). To aid clarification, subscript I denotes an imaginary

component and subscript R denotes a real component. The real

components of the P matrix are stored in matrix P , and the
R

imaginary components of the P matrix are stored in matrix P .

I
P is supplied to array #1 and P is supplied to array #2. The

I R
D column vector is also separated into real D and imaginary

R
D vectors. D and D are applied in succession to both the

I R I
arrays as shown in Figure 4.8. Note that the two arrays

interact and the output of array #1 is provided to array #2

and vice versa.

It is important to understand the system operation. Array

#1 consists of 36 processors of type-1 arranged in a pipelined

fashion. Array #2 consists of 36 processors of type-2 arranged

in a pipelined fashion. As noted the corresponding processors

in each array interact, i.e., the first processor of array #1

interacts with the first processor of array #2, the second

processor of array #1 interacts with the second processor of

array #2, and so on. In the matrix-vector product each pair of ".-
interacting processors is responsible for the 36 complex -

multiplications and additions (basic operation) required for

the multiplication of one row of P with the column vector of

D. There are 36 rows of matrix P and the 36 pairs of
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Figur 4.7 Systolic amy configundton to compute MsI~ function
of the c.LMS algorithm for Desiin A
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interacting processors are sufficient to complete the matrix- e

vector product. For this reason, each row of the matrix P is

sent to a pair of interacting processors. The real components -r

of that row are provided to array #2 and the imaginary ,

components of that row is provided to array #1 (Figure 4. 8). ,.

To facilitate complex multiplication and addition, each element

of matrix P that is provided to the processors in both arrays

is repeated (Figure 4.9). For example, the real part of PI1 is

sent twice to the first processor in array #2 and the imaginary

part of PI1 is sent twice to the first processor in array #1.

The P matrix input to the processors of both the arrays #1

and #2 are provided in a skewed arrangement. The first

processor of both arrays receive P matrix components during the S

first tick of the global clock; the second processor of both

the arrays receive P matrix components only during the second

tick of the global clock. To implement this arrangement, the P

matrix elements provided to the second processor of the two

arrays are delayed by a time unit. Correspondingly, the P

matrix elements provided to the third processors of both the 0

arrays are delayed by two time units and so on.

The complex multiplication-addition performed by the first

pair of processors is explained. During the first time unit .

the type-I processor of array #1 1) obtains the inputs P I I

implies imaginary part of P1 1 ), D1 and Win (initially this is

zero); 2) computes Wout = Win + P11 D; and 3) makes

%.%

.7' .7 .iq
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available W to the first processor of array #2, and D is
out 1

available to second processor of array #1. During this same

time unit the first processor of array #2 1) obtains the

inputs P , D and W (initially this is zero); 2)
11 1 in

computes W = W + P D ; and 3) makes available W to
out in 11 1 out

the first processor of array #1 and D available to second

processor of array #2. Thus, at the end of first time unit, PlI.

D is available at the output of first processor of array #1 -

1
and P D is available at the output of first processor of

11 1

array #2. During the second time unit, the first processor of
/ /

array #1 performs W - P D , (note that W = P D is
in 11 1 in 11 1

obtained from first processor in array #2), and thus obtains

the real part P D - P D of the complex multiplication.
Duigtesm 11  1 1

During the same time unit the first processor in array #2
de

performs W + P D , (note that W P D is obtained
in 11 1 in 11 1

from the first processor in array #1), and thus the imaginary
%

part P D + P D of the complex multiplication is

obtained. The operations performed during the next two time

units will result in one complex multiplication and addition I
(p + p )(D + D ) + (P + P / )(D + D /). This is

11 11 1 1 21 21 2 2
performed every two time units by the pair of processors. Note

that the processors of the array #1 perform multiply-add and

multiply-subtract alternatively. Because the outputs are

pipelined, during a time unit, many processors of the array 0

are active and interact in a similar manner. It can be easily -. 4

seen how the matrix-vector product is obtained.

The number of time units needed by the matrix-vector
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product operating in the VLSI computing structure can be

computed. The time unit is the clock period of the global clock

when the processors of the array are clocked. There are 36

pairs of processors which implies 36 stages of pipelining. Each

pair needs to perform 36 complex multiplication-addition i.e.,

72 time units, and each complex multiplication-addition

consumes two time units. It can be seen that as the first row

of processors finish the 36 complex multiplication-additions

assigned to them, at every time unit, the successive pairs -

complete their assigned task. Thus after 72 time units, there

is one output obtained for every time unit. Therefore the

number of time units

= 36 + (72-1) = 107 time units. A

The speedup figure achieved by using this Systolic array

instead of performing the Mat operation on a uniprocessor is

2
= 4 * 36 / 107 = 48.45

2

since matrix-vector product requires 36 complex multiplication

additions, and each complex multiplication addition requires 4

time units in a uniprocessor.

4.5.3.1 Technology Considerations - Design A

The number of processors needed for the VLSI computing ,.

structure and the interconnections among them has been deter-

mined. Also needed is the time unit and the number of proces- -

sors that can be incorporated into a chip taking into
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NI.

consideration the technological constraints.

The time taken by the processor in performing the operation

multiply-add or multiply-subtract determines the time unit.

Assumed is the time taken by the processor to perform an

addition which is the same as the time taken to perform a

subtraction. Thus, the time unit is the time taken by the

processor to load the inputs, perform multiply-add (and

rounding), store the outputs and adjust for the clock skew. As

previously determined the array does not posses severe problems

due to clock skews, thus this clock skew will be a small frac-

tion of the multiply-add or multiply-subtract time and is not

an issue. A complex word has been represented as 16-bits

integer for real and 16-bits integer for imaginary. Thus all

multiplications and additions performed involve 16-bit

operands. The present technology allows this operands shift, 0

multiply-add and makes output available in 75 to 100ns (for

example, TRW VLSI chip TDC1043 performs a 16-bit multiply-add

and outputs in 100ns). For this design, the time unit chosen

was 1OOns which is feasible with present technology. The time

unit fixes the time taken by the matrix-vector product in the

VLSI structure as 107 * lOOns = 10.7 kfs. •

Remember that the 26-chip. DSP system needed 71.4 '4s to

perform this matrix-vector product whereas the VLSI structure

designed consumes only 10.7 A4 s. This is a considerable saving

and lessens the burden on the hardware performing the remaining

operations of the c-LMS algorithm. The complexity of the Sys- ,.;S

tolic array can be determined when the number of chips needed
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0

by array #1 and #2 is known.

First, the number of 2-input gates required by array #1

are figured. A k-bit adder/subtracter requires 20k 2-input gates
2

and a k-bit multiplier requires 20.k 2-input gates [12]. Each

processor of array #1 is of type-i and requires one

multiplier, one adder, and one subtracter; all of them perform

16-bit computations. Therefore the number of 2-input gates

required by a type-1 processor is

2
= 20 . 16 + 20 * 16 + 20 * 16 = 5760.

As there are 36 type-1 processors in array #1 the gate count is

= 36 * 5760 = 207360.

The sample rate is defined as the rate at which the

multiplier-adder/subtracter structure is capable of accepting

data. The time unit of 100 ns implies that the processor

accepts the input data every iOns, thus, the sample rate of

the processor is 10 MHz (1/lOOns). The gate rate is defined as JR

the product of the number of 2-input gates required by the 
N4

array and the sample rate. The gate rate provides the measure

of the amount of computation that is performed on a given

chip. Figure 4.9 [22] provides the gate rate achieved by

various materials. Notice that an upperlimit exists on the

number of transitions of gates/sec that can occur in a chip -
12

10 transitions/sec/chip. The gate rate achieved by array #1
is S

6 12
207360 * 10 * 10 = 2.07 * 10 transitions/sec

The maximum number of transitions/sec that can occur on a
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.- % , -' ' ".



Figure 4.9 Example gate rates (221
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chip is 10 therefore array #1 needs

12 12
= 2.07 * 10 / 10 = 2.07 3 chips.

In short 12 processors of type-1 have been placed in one chip.

By performing similar calculations, array #2 has a gate
12 12

rate of 1.96 * 10 . The technology constraint of 10

transitions/sec/chip results in

12 12
1.96 * 10 / 10 = 1.96 = 2 chips.

Three chips for array #2 are used, to reduce the number of pins

per chip. This implies that 12 processors of type-2 are

included in one chip. A total of 6 chips, 3 chips each by

Systolic array #1 and Systolic array #2 were used to implement

the Mat function. The primary disadvantage of Systolic arrays

is the need for large number of input-output pins [8]. The

number of input-output pins needed by each chip is 608 pins. -

This number implies a large chip, if this is not feasible, for

implementation then more of chips are needed.

4.5.4 Systolic array -Design B

Design-A calls for two one dimensional Systolic arrays, and

in design B a two dimensional array is considered. Design-B

requires less number of pins per chip which was the desired

result. P matrix elements do not change during the iteration of

the c-LMS algorithm and this advantage can be used. Instead of

accessing the elements of the P matrix from the memory in

Design-B, the P matrix-elements are stored in memory of each

processor performing the multiply-add/subtract operation as in
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[23],[24].

The Systolic array uses two types of processors, type-1

and type-2. Type-1 processor configuration is shown in Figure

4.10(a). This processor has three input latches for the

inputs V , U and W . Depending on the control given the
in in in

processor shifts in these inputs performs W = W + V
out in in

(U ) or W = W - V (U ) and makes data available as
in out in in in

W . Note the input (U ) is not a operand but an address
out in

to the operand which resides in the processor. The processor

receives the address as U and decodes it inside the
in

processor to obtain the operand and uses this operand in the

multiply-add or multiply-subtract operation. The processor

also sends out U and V unchanged and is made available on
in in

the output line U and V Thus, during a time unit, the
out out

processor shifts in the data, computes a multiply-add or a

multiply-subtract and makes available the output data. Type-2

processor configuration is shown in Figure 4.10(b). This

processor is similar to type-1 processor except that it can

perform only operation W = W + V (U )
out in in in

(multiply-add).

The Systolic array configuration using the two types of

processors is shown in Figure 4.11. It contains 36 type-1

processors as the first column and 36 type-2 processors as the

second column. Each row of processors (consisting of one type-1

processor and one type-2 processor) is responsible for 36

complex multiplication-addition. (basic operation) These are

necessary for the multiplication of one row of P matrix with

-132-
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Figure 4.10(a) Type of processor uused in Systolic umy #1 (Design B)
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the D vector. The operation of the first row of processors in

performing a complex multiplication-addition is now explained.

The real components of the first row of the matrix P are stored

in the type-2 processor of the first row of the Systolic array.

The imaginary components of the first row of the P matrix are

stored in the type-1 processor of first row of the Systolic

array. Similarly, the other rows of the P matrix are stored in

corresponding rows of the Systolic array.

During the first time unit, data is provided to the type-2

processor only and is delayed by a time unit to the type-1

processor. This makes the computation of the (Figure 4.12)

complex multiplication-addition possible. To illustrate,

consider how a complex multiplication-addition is performed by

two processors. Let the complex quantities to be multiplied be

o and A and their product added to ' F -

During the first time unit, only processor type-2 is operating Sz

as type-1 processor has its inputs lagged by one time unit.

During the first time unit the type-2 processor shifts in /

the address of the operand /3 , and • The type-2 processor

then performs TOY' and sends the addition to type-1

processor; the type-2 processor also -,ands '/ and the address

to processor in the second row. Z 0

During the second time unit, both processors of first row

operate. The type-2 processor shifts in O, the address of/S

and computes & /3 and makes '* '*-"/3 available to ",..

type-I processor. During the same time unit, type-1 processor .

1) shifts in p" the address of/3 and tO/, (from processor
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Figure 4.12 Complex multiplicaton-addition
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type-2), 2) computes +- this processor performs

multiply-add and multiply-subtract alternatively), and 3) Ne

stores in memory. Note that the resulting quantity is the

real component of the complex multiplication-addition.

Yet to be configured is the imaginary component. During

the third time unit, the type-2 processor begins the next

complex multiplication addition but the type-1 processor still

operates on the previous complex multiplication-addition; the

imaginary component has yetto beobtained. During this time unit

the type-1 processor shifts in oI, the address of/ 3 ", and

from type-2 processor; computes 4 and stores

this in memory. The imaginary component is now configured.

Thirty-six operands are stored in each processor. The 36

operands in each processor have 36 different addresses. These

same set of addresses are used by every other processor, which

constitute the Systolic array, to store their respective 36 'A

operands. With this arrangement the address can be pipelined

through the Systolic array. It can be seen that when the D

vector elements and the address of the P matrix elements are

pipelined through the Systolic array, the complex mul-

tiplication addition of other rows are possible.

The number of time units needed by the matrix-vector

product operating in the VLSI computing structure can now beA..%.

determined. The first complex multiplication-addition takes 3

time units but subsequent complex multiplication addition

requires only 2 time units. Then required are 2(36) + I time

units for the first row of processors of the Systolic array to
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complete the 36 complex multiplication-addition. The remaining

35 rows require another 35 time units to finish their

operations. In total, the number of time units for the matrix-

vector operation is

2(36) + 1 + 35 = 108 time units.

The speedup achieved by using this Systolic array instead of

operating the matrix-vector product on a uniprocessor is

2
- 4 * 36 / 108 = 48.

This result occurs because the matrix-vector product requires
2

36 complex multiplication additions and each complex

multiplication addition requires 4 time units.

4.5.4.1 Technology Considerations - Design B

The number of processors needed for the VLSI computing

structure has been determined for the matrix-vector product.

The time unit and the number of processors need to be

configured that can be incorporated into a chip realizing the

technological constraints. 5

The time taken by the processor in performing multiply-add

or multiply-subtract operation, determines the time unit.

Assumed is that the time taken by the processor to perform an

addition is the same as the time taken to perform a subtrac-

tion. Thus the time unit is the time 1) needed to shift in the

inputs, 2) decode the address supplied to obtain the one of the 10

operands, 3) perform multiply-add and store the outputs. A

complex word has been represented as 16-bit integer for real

- 138 -

] N'@-



and 16-bit integer for imaginary. Thus, all multiplications and

additions performed involve 16-bit operands. The present tech-

nology allows the operations to be performed by the processor 0

in 200ns. This time unit of 200ns fixes the time taken by the

matrix-vector product in the VLSI computing structure as

- 108 * 200ns = 214 s. .

The number of chips needed by the Systolic array designed *.-; .

can be determined for an idea of the number of processors that

can be squeezed into a single chip. A k-bit storage requires 8k

2-input gates. Each row of processors of the Systolic array

requires 2 multipliers, 2 adders, a subtracter, and storage for

72 operands (36 real and 36 imaginary components of a row of P

matrix). So each row required

2
= 2.20.16 + 3. 20.16 + 72 .8.16 = 20416 gates

As there are 36 rows of processors in the Systolic array,

required were

- 36 * 20416 = 734976 gates.

Not included are the gates required by the decoder and other .

control necessary. So the above estimate is doubled, which

gives the number of 2-input gates needed by the Systolic array

2 * 734976 = 1469952 gates. "

The sample rate, the rate at which the multiplier-

adder/subtracter is capable of accepting data is 5Mhz(1/200ns).

The gate rate then achieved by the Systolic array design is

6 12
= 1469952 * 5 * 10 7.3 * 10 transitions/sec.
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The resulting number of chips required by the Systolic array

was

12 12
=7.3 * 10 /10 =8 chips 0

As there are 36 rows of the Systolic array, to distribute the

computational load evenly among the chips, 9 chips for

implementation were used. Implied is that 4 rows (4 processors

of type-1 and 4 processors of type-2) of Systolic array are

implemented on a single chip.

All data entering and leaving the chip require 16 pins each

and the address of the operands residing inside the processors

require 6 pins (address requires 6-bits to fetch one from 36

operands stored in each processor). The design contains 216

pins per chip (the DSP chip LM32900 has 172 pins). The chip

appears feasible for implementation with present technology. .. .

The VLSI computing structure has now been designed for the 0

only compute-bound operation of the c-LMS algorithm, Mat =P D.

Known is the time taken by this operation using the Systolic

array, the number of chips needed by the array and the number

of data pins needed by each chip. Integration of this Systolic

array in an array processing system is the next step.

4.5.5 Interface to Array Processor Systems

The Systolic array is interfaced [12], [11) to a host as

shown in Figure 4.13. The functions of each block is discussed

briefly

1) Host: The host provides commands and data to the Systolic
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processor. The host does all the input-output bound

operations of the c-LMS algorithm and sends data (D vector)

to the Systolic processor to perform the matrix-vector

product. It receives the result provided by the Systolic

processor (Mat vector). The host then proceeds to complete

the remaining operations of the c-LMS algorithm. Discussed

later will be how a lower bound on the computational

capacity of the host can be determined.

2) Interface processor: The interface processor transfers data

and commands to the Systolic array from the host and

transfers result from the Systolic processor to the host.

3) Systolic processor handler: This processor serves as an

interface between the special high-bandwidth bus and a

Systolic array. It generates address for the buffer memory

accesses and run-time control signals for the Systolic

array.

4) Buffer Memory: These memory units are used as buffers

between the low-bandwidth host bus and the special high

bandwidth buses in the interface system. By holding data

that are to be used repeatedly by the Systolic arrays, the

arrays can proceed with high speed without consuming much

host-bus bandwidth. We can determine the storage

requirement for our system.

5) High-bandwidth bus: The input/output of Systolic arrays is

usually much higher than host bus because Systolic array

consists of many processors requiring data at the same

instant at a high rate.
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The parameters that are required for the Systolic array

system are the host computational capacity, the storage (buff-

er) requirement, and the bandwidth of the Systolic array bus.

The host functions include sending commands to the Systolic N.
array and performing the input-output bound operations for the

c-LMS algorithm. The input-output bound operations to be per-

formed by the host are

T ~~Y :W X

B = XY
C=BX* 2

D W - C
E Mat +/

and rcquire in total 648 real operations (290 real mul-

tiplications and 394 real adds). The time allocated to these

648 operations determine a lower bound on the computational

capacity of the host.

4.5.5.1 Design A Systolic array system parameters

The time taken to perform the matrix-vector product in the

Systolic array was found to be 10.7 * s. The iteration time

for the c-LMS algorithm was found to be 86 As. Thus the host

has 75.3 /4 s to perform the remaining 648 real operations. For

the host this results in computational capacity of 8.6 MOPS.

The bandwidth of the Systolic bus is determined as follows.

In design A, two separate interacting linear Systolic arrays

are used. First the bandwidth required by array $1 needs to be

determined. At the peak instant (when all the processors of

array #1 are operating) this array inputs 73 words and outputs
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36 words (each word is 16 bits or 2 bytes wide). The need for

73 words comes from: 1) P matrix imaginary components require

36 words (one by each processor), 2) D vector requires I word,

and 3) the input from the other array (array #2) requires 36

words. Thirty-six words come from each processor to the array

#2. Thus, every 100 ns (time unit as discussed earlier), array

#1 uses the bus for 109 words thereby requiring 109 * 2/10Ons

2180 Mbytes/sec. Array #2 operates in a similar way so it also

requires 2180 Mbytes/sec of bus bandwidth. As both array #1 and

array #2 operate simultaneously the bus bandwidth required is

4360 Mbytes/sec. The resulting bandwidth is enormous because

many parallel buses are used. The buffer capacity can now be

determined. The buffer is used to store P matrix, D vector and

the result Mat requiring 5328 bytes.

4.5.5.2 Systolic design B system parameters

The Systolic array in design B requires 21.6 As to perform

the matrix-vector product. This leaves 64.4 /s of the

iteration time for the host to perform the remaining 648

operations. The computational capacity of host is fixed at

10.06 MOPS.

The bandwidth required for the Systolic bus will be less

than that required by design A because the P matrix resides

inside the Systolic processors. The Systolic array inputs 38.75

word, 36 words required as input of intermediate results, 2

words for the D vector, and 6 bits each for the 2 address

buses. The array also outputs 36 words. Thus the Systolic array
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uses 74.75 words every 200 ns (time unit). This means that the

array requires 74.75 * 2/200 ns = 373.75 Mbytes/sec bandwidth

bus. The buffer requirement is only for D and Mat vectors which

requires 288 bytes of memory.

4.5.6 Summary for VLSI design

First the algorithm was examined and the operations that

could be implemented on a VLSI computing structure were iden-

tified. The only compute-bound operation present was the

matrix-vector product (Mat = P D) and it was considered for

implementation. Two VLSI architectures, Systolic and Wavefront,

were considered for the VLSI computing structure. Due to speed

variations and clock skew factors the Systolic architecture is

better suited to this problem.

Two Systolic array designs for the 'Mat' operation were y

examined. A Table comparing the parameters of the two designs

is shown in Table 4.7. Each design had some advantages and

disadvantages and the choice depended on the resources

available.

The advantages of design A over design B were:

1) Takes less time to perform the 'Mat' operation. Design A g

took 10.7)' s and Design B took 21.6 4 s. Design A reduced

the burden on the Host performing the remaining operations

(8.6 MOPS)

2) Required a simple chip to be fabricated. The chip performed

simple functions like multiply-add and multiply-subtract. SI

The chip in design B had to perform additional functions

- 145 -

%



0

S

Table 4.7 Systolic array system design summary for c-LMS algorithm

--------------------------- -------------------I
Design A Design B I

--- -------------------- ------------------- I

Number of 72 72
processors 0

Computational 20 MOPS 10 MOPS _

capacity/chip

number of chips 6 9 -

number of data 608 216 i
pins/chip

Time Taken for 10.7 As 21.6 ,4s
Mat operation

Speedup factor 48.5 48 0

Host computational 8.6 MOPS 10.06 MOPS I
load I
Systolic bus 4360 Mbytes/sec 373.75 Mbytes/sec ,

bandwidth

buffer memory 5328 byLes 288 bytes

------------------ ------------------- I
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such as decoding of address to obtain the operands and

storing 72 bytes in each processor.

The advantages of design B over design A were:

1) Each chip required fewer pins for input/output of data than

that required by each pin of design A.

2) The Systolic bus bandwidth required was far less than that

required by design A, because P matrix is stored inside the

processors.

The Systolic design had interrelated system parameters. To

reduce the bandwidth of the Systolic bus, a slower PE was

needed. This means the time taken to compute Mat operation

increased which in turn, increased the computational capacity

of the host.

4.8 Chapter summary

In this chapter various hardware architecture implemen-

tation were considered for the c-LMS algorithm. Evaluations of

hardware architecture were performed to determine the

suitability of the c-LMS algorithm for general purpose microp-

rocessor, Digital signal processor and custom designed VLSI

processors.

The general purpose architecture was found not suitable for

the c-LMS algorithm. This was concluded because the general

purpose microprocessor architecture's arithmetic unit was not

tailored to optimize the multiply-add operation found commonly

in signal processing algorithms. Too many chips were needed
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(281) to implement the algorithm.

The digital signal processor architecture has its arith-

metic unit tailored to perform the multiply-add operation. The S

DSP chip chosen for analysis performed complex multiply-add at

the rate of 5.7 MOPS. This resulted in a moderate complexity of

23 for the DSP architecture implementing the c-LMS algorithm.

An architecture for the c-LMS algorithm in a 26 DSP chip

environment was developed and it was found that an iteration

took 83.9 As to provide 1194 iterations during the period of

100ms. This ensured, on a average, one convergence per 100ms

when the HF channel was stationary.

Next two VLSI architectures, Systolic and Wavefront, were

considered. Due to the lack of speed variations and clock

skews, the Systolic architecture was better suited than the

Wavefront architecture for the only compute bound operation

'Mat' (matrix-vector product) in the c-LMS algorithm. Two

Systolic array designs were developed for the matrix-vector

product. Simple functions were needed by the custom VLSI S

processors designed for the regular Systolic arrays. This

resulted in a simple processor design. Another positive

attribute was low numbered chips, 6-9 were needed to compute

Mat operation. The main problems encountered in both designs

were the need for large number of pins/chip, and high Systolic

bus bandwidth.

These analysis led to the conclusion that the DSP architec-

ture is best suited for the c-LMS algorithm. With the advent of

more powerful DSP processors, the complexity of the DSP
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architecture will be further reduced.
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5.0 HARDWARE ARCHITECTURES FOR UPDATE COVARIANCE ALGORITHM

The purpose of this chapter is to discuss the various

Iardware architecture implementations for the Update covariance

algorithm, to study the feasibility of these architectures, and

to recommend suitable architectures. In section 5.1 a brief

introduction to the Update covariance algorithm is presented.

The algorithm that is to be implemented by the hardware is

discussed. Section 5.2 presents an initial loading analysis for

the Update covariance algorithm. This analysis provides a

method for determining an initial estimate on the computational

loading required by different functions which constitute the

algorithm. The loading analysis is performed for various

hardware architectures. The hardware architectures considered

were the general purpose microprocessor, the digital signal

processor and the VLSI architecture and are discussed in sec-

tions summary discussing the feasibility of these architectures

and a recommended architecture is discussed in section 5.6.

5.1 Update covariance algorithm

Both the LMS and constrained LMS algorithms circumvent

computational problems associated with the direct calculation

of a set of weights by using effective estimates. The simpler

calculations that result allow them to frequently update the

weights in order to compensate for the time-varying environ-

ment. Recursive processors such as the Update Covariance algo-

rithm [25], can also be used to avoid these computational

difficulties. These algorithms recursively perform matrix
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inversion so that direct matrix inversion is never required.

Although they also avoid direct matrix inversion, recursive

processors represent a significant departure from the algo-

rithms previously discussed.

The optimum weight solution given by Weiner-Hopf can be

expressed as

w R P
-opt -xx

The Update Covariance algorithm estimates the sample covariance

matrix rather than rely on gradient methods that asymptotically

approach an optimal solution. For stationary environments these

recursive procedures compute the best possible selection of

weights (based on least-squares fit to the data received) at

each sampling instant, while in contrast the LMS method is only

asymptotically optimal.

The operation of this algorithm can be described as a .-.

series of complex computations solely intended to calculate the

optimal weight solution. As the name implies, the Update

Covariance algorithm uses the sample covariance estimate, R, to

summarize the effect of de-emphasizing the past data. The new

sample covariance matrix estimate is given by

R (k+1) = R (k) + X (k+1) X (k+1) (5.1)
-XX -XX - -

The new estimate is equal to the new computed value
* T

X (k+1) X (k+1) plus the past estimate scaled by a factor of

d7,c" is a number between 0 and 1 that is used to determine the

significance of past data. The inverse estimate then becomes
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-1 * T -1 . +

R (k+1) = /A [R (k) + 1/O( X (k+1) X (k+1)] (5.2)
-XX -xx

Note that calculating the inverse in this manner however, would

require matrix inversion, which is due to its complexity is a

procedure to be avoided. Therefore, it is useful to invoke the

following matrix identity

-1 *T -1 -1 *T *T -1
[P + M Q M ] = P-P M [M P M + Q1 M P (5.3)

This identity is applied to equation 5.2 to obtain R (k+1)
-Xx

in the form

-1 * T -1

R (k) X (k+1) X (k+1) R (k)
-' -1 -xx - -xx

R (k+1) l /o [R (k)-- ------------------------------ ] (5.4)
-xx -xx T -1 *

C0 + X (k+1) R (k) X (k+1)
---xx -

The optimum weight solution can then be found by utilizing the

Weiner-Hopf equation

A-1
W = R P
-opt -xx -

Multiplying both sides of equation 5.4 by the vector P yields

the Update Covariance weight Update equation.

-1 *T

R (k) X (k+1) X (k+1) W(k)
-xx -.-

W(k+1) = /0( [W(k) - ------------------------------ ] (5.5)
T -1 *

- + X (k+1) R (k) X (k+1)
" - -~~XX -,.

Thus the hardware implementing the Update Covariance algorithm

has to follow these two steps:

1. Estimate the inverse sample covariance using equation 5.4

P, I
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2. Calculate weight solution using equation 5.5

5.2 Loading Analysis

The loading analysis [14] was performed for the update

covariance algorithm. This includes determining the input

requirements, execution time budgets, computational loading and

memory requirement for the update convariance algorithm.

5.2.1 Input requirements

The Update covariance algorithm implementation involves

solving the equations to update the covariance matrix and then

form the optimum weights. The algorithm are decomposed into

manageable functions and are indicated in Figure 5.1. As seen

in Figure 5.1, the update covariance algorithm exhibits paral-

lelism which can be exploited to reduce the computational

burden. Still during every iteration the covariance matrix, the

weights have to be updated. This gives the algorithm a input-

output latency and the time allocated to this latency needs to

be determined. The adaptation process of obtaining a new set of

'optimum weights' and the covariance matrix was considered as

one convergence. The average number of iterations that the

algorithm needs for one convergence, determined by simulation ...

studies (1], is 26. Using the HF channel constraint, that the .•%.\.
signals can be considered stationary for 100ms, imposes the

condition that the set of optimum weights and covariance matrix

should be obtained during this period. This makes the ite- ition

time for the Update covariance algorithm 3.8 ms.

o'•



Figure .1. Partitioning of Update covariance algorithm
for hardwar realization l
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The input requirement of the system implementing the update

covariance algorithm has now been determined with a sampling

period of 1/3.8 ms. Although the algorithm requires more

computations than the c-LMS algorithm, the parallelism

exhibited by the update covariance algorithm and its

requirement of 26 iterations for a convergence, reduces the

complexity of the system.

5.2.2 Execution Time budgets S

Once the input requirements are determined, the functions

constituting the algorithm have to be calculated once every 3.8

ms. The time budget to be allocated to each function can be

determined by finding the number of real operations required by

each function. The following summarizes the requirement for

each function:

-1
1) A = R (k) X (k+1)

-xx -

2
This function requires 36 complex multiplications and 36 *

35 complex additions. To obtain X , 36 real subtractions
2

are required. Therefore, this function requires (36 * 6)

+ (36 * 35 * 2) + 36 = 10332 real operations which is

composed of 5184 real multiplies and 5148 real adds. ON

2) Denom = X (k+1) A +tX

This function requires 36 complex multiplications and 35 -
T

complex additions to perform X (k+1) A. The final addition

with D requires one real add as O( is a real quantity.

- 155 -

K ' %A



Therefore this function requires (36 * 6) + (35 * 2) + 1

287 real operations which is composed of 144 real

multiplies and 143 real adds.

3) C = A/Denom

First 1/Denom is obtained. It requires 2 real

multiplications, 2 real divisions (considered equivalent

to multiplication), and 1 real addition; that gives a

total of 5 real operations. Later 1/Denom is multiplied

with A to obtain C and this operation requires 36 complex

multiplications. This means this operation requires ( 36 *

6) + 5 = 221 real operations which is composed of 148 real

multiplies and 73 real adds.

T -1
4) B = X (k+l) R (k)

-xx

This function is a vector-matrix multiplication and
2 5

requires 36 complex multiplications and 35 * 36 complex
2

additions. This results in (36 * 6) + 2 (36 * 35) = 10296

real operations which is composed of 5184 real multiplies

and 5112 real adds.

5) Mat = C * B
2

This function requires 36 complex multiplications which
2 0

gives ( 36 * 6) 7776 real operations which is composed

of 5184 real multiplies and 5112 real adds.

-1N
6) R 1/0( [R (k) - Mat]

-xx
-1 2

[R (k) - Mat] requires 36 complex subtractions and later
-XX

as each member of the matrix has to be multiplied with the

-156-

9'.. XA ANA



2 S
real quantity (, this operation requires 2 * 36 real

2
multiplies. Thus this function requires (36 * 2) + (2

2
36 ) = 5184 real operations consisting of 2592 real

multiplies and 2592 real adds.

T
7) D = X W

This function is similar to function Y and requires 286

real operations.

8) E = C * D

This function requires 36 complex multiplications and in

total requires ( 36 * 6) = 216 real operations consisting

of 144 real multiplies and 72 real adds.

9) W = 1/o( [W - El

The operation (W - E) requires 36 complex subtractions.

Later each member of the vector has to be multiplied with

the real quantity,.X ; this operation requires 2 * 36 real 0

multiplies. This function's total is ( 36 * 2) + ( 2 * 36)

= 286 real operations consisting of 144 real multiplies

and 142 real adds.

These observations are tabulated in Table 5.1. The Table also
2

indicates that the Update covariance algorithm requires 3.5 N
2 0

+ 4.5 N complex multiplications and 2N + 2N complex additions.

5.2.3 Computational loading

The cumputational loading is obtained by dividing the

number of real operations required by the function by the time
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Table 5.1 Computational complexity of Update Covariance Algorithm 6

------ --l-----.------------- --------- ---------- ------
Functions Real Real Real Complex Complex

operations Multiply Adds Multiply Add
-------- ------------ --- - --------------- ---------- ----------

A 10322 5184 5148 N I N -
Denom 287 144 143 N N
C 221 148 73 N -
B 10296 5184 5112 IN" N

Mat 7776 5184 2592 Nz -
Rxx 5184 2592 2582 N'/2 - I
D 286 144 142 N N
E 216 144 72 N -
W 144 72 72 N /2 -

----------- I ---------------------------- --------- -- I
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budget allocated to that function. Computational loading is

discussed in later sections.

5.2.4 Memory Requirements

An initial estimate on the memory requirement of the update

covariance algorithm can be obtained. The algorithm requires N

+ 2N complex words of storage. X and W each require N complex
-1 2

words of storage and R requires N complex words of storage.
-xx

Note that because storage of intermediate results are

necessary the memory requirement depends on the hardware

architecture considered.

5.3 Microprocessor Architecture Implementation

In this section the general purpose microprocessor

architecture was evaluated for the Update covariance algorithm.

The microprocessor used was MC 68020 [2], state of the art 32-

bit microprocessor, which has a cycle time of 60 ns.

5.3.1 Initial Assessment on the Complexity

The complexity of the hardware implementing the algorithm

is a function of

1) the number of operations the algorithm needs for

an iteration, i.e., computational bounds

2) the time allocated for the iteration, i.e., input

requirements

3) the architecture implementing the algorithm, i.e.,

architecture considerations.
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When all these issues are taken into consideration, an estimate

on the number of chips (microprocessors) needed by the system

implementing the algorithm can be obtained. The complexity of

the system implementing the algorithm is indicated as the

number of chips needed by the system. The loading analysis of

the algorithm in the microprocessor architecture environment

can be performed.

5.3.1.1 Execution Time budgets

Factors that play a role in determining the complexity of

the system due to the microprocessor architecture are:

1) the ratio between the time needed to do a multiply

operation and an add operation

2) with regard to update covariance algorithm the speed

of the microprocessor given in millions of operations

per second.

Table 5.2 provides a summary of the following discussion. The

first column shows the partitioned algorithm. The second column

gives the number of real operations for each function and the

third and fourth columns gives the required number of real

multiplies and real additions for each function.

The microprocessor chosen has a multiplication and addition

time ratio of 6 : 1. The effective number of operations column

is obtained by performing (number of real multiplies) * 6 +

(number of real adds) for each function. The ef'ective number

of operations for each function represents the function in

terms of adds. These provide the true complexity of the
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function when implemented in the microprocessor. This is

indicated in column 5 of Table 5.2.

Because the algorithm exhibits parallelism, there are two

sets of processors implementing the algorithm. It can be seen

from Figure 5.1 that functions A, Denom, C, Mat and Rxx operate

with one set of processors (set #1) and functions B, D, E and W

operate with another set of processors (set #2). Notice that

for the set #1 processors to operate Mat function, they need B

vector (the result of B function) from the set #2 processors.

Similarly for the set #2 processors to operate function E, they

need the C vector (the result of the C function) from the set

#1 processors. Thus, there exists a data exchange between the

two sets of processors.

One iteration of the Update covariance algorithm can be

thought of as taking place in two phases. During the first

phase functions A, Denom and C take place on set #1 processors,

during the same instant, function B operates on set #2 proces-

sors. At the end of phase one, the two sets of processors

exchaige data, i.e., set #1 provides C vector to set #2 and set .

#2 provides B vector to set #1. During the second phase, set #1

processors operate functions Mat and Rxx. During the same

instant, set #2 processors operate functions D, E and W. It can
be seen from Table 5.2 that set #1 processors compute in total

89844 operations (see column 5 of Table 5.2) and set #2 proces-

sors compute in total 38662 operations. Thus, as set #1 proces- k._%.

sors compute more number of operations than those computed by

set #2, the execution time budgets are dictated by the set #1
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LA

processors.

During phase one, set #1 processors compute 38004

operations (functions A, Denom and C) and during phase two,

computes 51840 operations (Mat, Rxx). The total time for an

iteration is 3.8 ms. The time is divided between the two phases

proportional to the number of operations needed. This results

in phase one assigned (38004)/89844 = 1.61 ms and phase two

assigned (51840)/89844 = 2.19 ms. Once the time allocated to

each phase is determined, then the execution time budgets of

each function constituting the phase can be obtained. Each

function of phase one is then allocated a portion of 1.61 ms.

Function A is allocated (36036/38004) * 1.61 ms = 1.524 ms,

function Denom is allocated (1007/38004) * 1.61 ms = .0426 ms

and function C is allocated (961/38004) * 1.61 ms = 0.041 ms.

Similarly functions constituting phase two are allocated a

portion of time 2.19 Ms. Function Mat is allocated

(33696/51840) * 2.19 ms = 1.425 ms, and function Rxx is

allocated (18144/51840) * 2.19 ms = 0.7674 ms.

Time has to be allocated also to the functions performed by

set #2 processors. As stated earlier, the 1.61 ms is allocated

to phase one. During this phase, set #2 processors operate only

function B. Thus function B has a execution time budget of 1.61

ms. Allocated to phase two is 2.19 ms and during this phase,

set 02 processors operate functions D, E and W, a total of 2446

operations. Thus, function D is allocated (1006/2446) * 2.19 ms

= 0.9 ms, function E is allocated (936/2446) * 2.19 ms = 0.84

ms and function W is allocated (504/2446) * 2.19 ms = 0.45 ms.
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5.3.1.2 Computational loading

The entries of the computational loading column of Table

5.2 is obtained by dividing the unweighted number of operations

(entries in column 2) by the 'time budget' for that function.

For example, for function A the estimated computational loading

is obtained as

10322/1.524ms = 6.77 MOPS.

To determine the number of chips needed for each function,

the speed of one chip with regard to the update covariance

algorithm must be obtained. As can be seen from column two from

Table 5.2, functions A and B constitute the major portion of

the computations involved. The basic operation needed to per-
S

form these functions is a 'complex multiply and complex add'.

The speed of the microprocessor with respect to Update

covariance algorithm will thus depend on the time the microp-

rocessor takes to complete this basic operation. The microp-

rocessor performs this computation at a speed of 0.5 MOPS.

Using these computations the number of microprocessors

needed for each function can be determined. For example, the

minimum number of microprocessors needed by function A is

6.77/0.5 = 14 microprocessors.

The number of microprocessors required by other functions is

indicated in the last column of Table 5.2. Remember that

functions A, Denom, C, Mat and Rxx operate on set #1 proces-

sors. Which means the number of processors (or microprocessors)

required by the set #1 will be determined by the function (

operating on set #1) which requires the largest number of
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microprocessors. It is seen that functions A, Denom and Rxx %- 

require 14 microprocessors each set #1 contains 14 microproces-

sors. Now we have to determine the number of processors

required by set #2. The functions operated on set #2 are B, D,

E and W and it can be seen that function B requires the largest

number of microprocessors, which is 13. Therefore set #2

consists of 13 microprocessors. Because total microprocessors

required by the Update covariance algorithms is the sum of

microprocessors required by set #1 and set #2, the minimum

number of microprocessors required by Update covariance algo-

rithm is 27.

As noted previously the complexity of the architecture is

determined by the number of chips required by the algorithm.

The complexity of the Update covariance algorithm using the

general microprocessor architecture was found to be 27. The

complexity is high when compared to the following analysis of

the DSP architecture. Data communication among the 27 chips

introduces data overhead which was not included in the

execution time budgets. It can be seen that more than 27 .

processors will be needed to bring the iteration time to 3.8

ms. Due to the high complexity (when compared to DSP chip) the

microprocessor architecture is not considered favorable for

implementation of the update covariance algorithm. "-

5.4 DSP architecture implementation

In this section the digital signal processors (DSP)

architecture is evaluated for the update covariance algorithm.
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The DSP chip chosen for this analysis was the LM32900 (3] which

has a cycle time of 100ns.

5.4.1 Initial Assessment of the Complexity

An initial assessment of the complexity of the update

convariance algorithm employing DSP architecture can be

configured, as was done with the microprocessor architecture

evaluation. The complexity is determined by the number of DSP

chips and take& into account the following issues.

1) the computations the algorithm requires per iteration

2) time allocated for one iteration

3) the characteristics of the DSP architecture

5.4.1.1 Execution Time budgets

Table 5.3 gives a summary of the discussion which follows.

The first four columns are filled as they were in Table 5.2.

The time needed to perform an addition is the same as a mul- .

tiplication for the DSP chip. This means the 'effective number

of operations' column (column 5 of Table 5.3) is simply the sum

of the number of additions and multiplications needed by that

particular task. *.

The procedure in allocating the time budget is similar to

that done for the microprocessor architecture. Two sets of

processors, set 1I and set #2 operate in parallel to perform an

iteration of update covariance algorithm in 3.8 ms. Functions

A, Denom and C require 10830 operations, and functions Mat and

Rxx require 12960 operations. Thus, the time allocated to phase
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one is (10830/23790) * 3.8 ms 1.73 ms, and the time allocated

to phase two is (12960/23790) * 3.8 ms = 2.07 ms. The execution

time budgets of functions A, De om and C are allocated a por-

tion of 1.73 ms. Thus, function A is allocated (10322/10830) *

1.73 ms 1.65 ms, function Denom is allocated (287/10830) *

1.73 ms = 0.045 ms, and function C is allocated (221/10830) *

1.73 ms = 0.035 ms.

Execution time budgets fo.r functions Mat and Rxx are

allocated a portion of 2.07 ms. Thus function Mat is allocated

(7776/12960) * 2.07 ms = 1.242 ms, and function Rxx is

allocated (5184/12960) * 2.07 ms = 0.848 ms. Because the set #2

processors perform function B during phase one function B has

an execution time budget of 1.73 ms. During phase two the set

#2 processors operate functions D, E and W. This means that the -

time budgets for function D are (286/646) * 2.07 ms = 0.92 ms,

for function E are (216/646) * 2.07 ms = 0.69 ms and for

function W are (144/6464) * 2.07 ms = 0.46 ms.

5.4.1.2 Computational loading

The computational loading demanded by function A is

10322/1.65ms = 6.26 MOPS.

The computational loading demanded by other functions is deter-

mined in the similar way and is indicated in column 7 of Table

5.3.-

The number of chips required by the algorithm can now be

determined. As noted earlier, the speed of the DSP chip can be
.' .- J

determined by the time it takes to complete a complex multiply
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and add. The DSP chip requires 1.4 s to complete the required 8

operations, that makes the speed of the DSP chip with regard to

the Update covariance algorithm is 5.7 MOPS. Using this infor- •

mation the number of chips required for function A is 2. It has

been found that set #1 processors require 2 chips and set #2

processors require 2 chips; in total the algorithm demands 4

DSP chips.

Though the number of operations involved in the update

covariance algorithm is large when compared to the LMS and the

c-LMS algorithm, due to parallelism present, the complexity of

the algorithm using DSP architecture has been shown to be low,

4. The low complexity led to the design of a system architec- ;

ture. This system architecture aids in determining whether

communication overhead is present. This enables one to detemine '-

if the complexity of the algorithm is increased by the addit-

ional computational capacity introduced by the communication

overhead. The memory requirement for data storage is next

determined. The data storage requirement depends on the system

architecture designed.

5.4.2 Implementation considerations

It has been determined that the update covariance algorithm

needs 4 DSP chips for a design using 36 antenna elements. Ore

possible arrangement of the DSP chips is shown in Figure 5.2.

With the algorithm partitioned into various functions, the job

now is to allocate the various functions among the 4 DSP chips.

The partitioning and allocation of the algorithm in this
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Figure 5. DSP implementation of the Update Covariaace algoritm r
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environment is shown in Figure 5.3. Each complex quantity is

represented as 16 + 16j i.e., 16 bits for real and 16 bits for

imaginary. To start the algorithm a copy of the input samples x

was provided to each DSP chip. Note that DSP chips #1 and #2 .

belong to set #1 and DSP chips #3 and $4 belong to set #2. The

functions A, Denom and C were each broken down into two equal

parts as shown in Figure 5.3 and DSP chips #1 and #2 compute

each part. If necessary DSP chips #1 and #2 exchange data to

compute a function. During this same period while chips #1 and

chips #2 are computing, functions A, Denom and C, chips #3 and

$4 compute function B. Because two chips are allocated to this

function, the computational loading is divided equally among

the two chips.(Figure 5.3) Remember the complete B vector is

obtained only when the intermediate results obtained from chip

#3 and chip #4 is added. This operation is performed by chip #3

and chip $4, this means both chips now posses a copy of the B

vector. Phase one operations are now over.

The two sets of processors now exchange the data, C vector

and B vector. No CPU cycles are lost in this data exchange as

the data that are to be exchanged are placed in common memory

to both the sets of processors. The phase two operations now

begin. Chips #1 and #2 perform Mat and Rxx, and the

computations are divided equally among the two chips. (Figure

5.3) At the instant the covariance matrix is updated, chips #3 _

and #4 perform the functions D, E and W to update the weights.

The functions are divided among the two chips as shown in

Figure 5.3.
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Figurie 5.3 putitioning of the functions of the update
covariance algonthm to DOP chips
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Pigu= 5.3 (cont.)
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Now the code is written for each of the functions. The time

taken by each function when operated in this environment is

determined with the aid of the function time scheduling (see S

Figure 5.4). The iteration time obtained is 2.65 ms which is

less than the iteration time of 3.8 ms imposed by the HF

constraints. The time taken for each function in the system and

the computational loading/chip for these functions are given in

Table 5.4. Some results can be observed from this table. The

time taken by each function is less than that obtained from S

execution time budgets analysis. This results because in the

loading analysis, the functions required somewhere between one

and two chips to compute. In the system described previously 2

chips were used for each function, thereby, as more computat-

ional power is available, the time taken by the functions are

less than that obtained in the initial loading analysis.

The operation which was used to determine the speed of a A ,

DSP chip for the update covariance algorithm, was a 'complex

multiply and add'. This provided a speed of 5.7 MOPS per chip.

As functions A and B use this basic operation repeatedly, the

DSP chips operate at near full speed while computing these

functions. Mat function requires only complex multiply and

involves no complex add, therefore the speed of the DSP chip

while computing this function is 5.99 MOPS. Note that while

computing Rxx the chips operates at 2.5 MOPS. The chips

operates at this speed because this function requires isolated

subtractions, and as in a DSP chip, a subtraction requires the

same amount of time as a multiplication. This reduces the
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Table 5.4 Timing summary of DSP architecture implementation
of Update covariance algorithm

-------- ------------I-------------
Functions jExecution IComputational

Time (mns) Iloading/chip
---------- I------------I--------------

A I0.9164 5.63
Denom I0.0268 I 5.35
C I0.0237 I 4.767

I B I0.9075 I 5.673
I Mat I0.6483 I 5.99I
RXX I 1.037 I 2.5 0
0 0.0266 5.375
E I0.0182 j 5.934

I wI 0.029 I 2.5
------------ ------------I-------------

Table 5.5 Processor Utilization for the DSP architecture
consideration of Update covariance algorithm

---------------- --------------------------
I Processors I Processor IIdle

utilization ITime (mns)I
------------ I-------------- -------

# 1 & #2 I 100 %I -I

#3 & #4 I 37 % I 1.674 I

-------------------------------- .~.-

0

NS



performance of the DSP system. As the most computationally

intensive functions, A and B are operated at near full speed,

it can be said that the chips in the system are used effic-

iently. In fact we can determine the chip utilization (8] in

the 4 chip system. Table 5.5 shows the utilization or fraction

busy time and the idle time of each chip used. The chips #1 and

$2 perform similar activities and are operational the whole

iteration time. This resulted as chips $1 and $2 perform the

functions A, Denom, C, Mat and Rxx which dictated the execution

time budgets as discussed earlier. Therefore, chips #1 and #2

operated at 100 % utilization. Chips $3 and #4 perform

functions B, D, E, and W which are in total less computationa- p

lly intensive that the functions operated by chips #1 and #2.

This can be noticed in Figure 5.4 where the chips #3 and #4 are

idle 1.674 ms of total iteration time of 2.665 ms. This means p
-.'. -

chips #3 and #4 operate only at (2.655 - 1.674)/2.655 = 0.37 or

37 % utilization. The overall processor utilization of the 4

chip system is found to be p

4(2.655) - 2(1.674)-- - --- - - -- - - 68%

4(2.655) L
The data memory needed by the update covariance algorithm

when implemented in this system is 12.1 Kbytes (each

complex word is represented as 16 bits real and 16 bits
2

imaginary). Mat and Rxx each requires N complex words of

storage, X requires 144 complex words of storage (remember a
. -=

copy of X is provided to each chip), X requires 72 complex
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words, A, W and E each requires 36 complex words, C requires

72 complex words of storage and B requires 108 complex words

of storage. *- _

In summary, an evaluation of the update covariance algo-

rithm using DSP architecture has been performed. The complexity

of the algorithm was determined to be 4. A system architecture

employing 4 DSP chips was designed and the resulting iteration

time was 2.655 ms. The system performed 37 iterations during

lOOms, ensuring on an average one convergence during this

period. The data storage requirement was determined to be 12.1

Kbytes.

0

5.5 VLSI Architecture

This analysis starts with the identification of the compute

bound operations. One of the compute bound operations to be

implemented in a VLSI computing structure is a outer-vector

product. The Wavefront architecture was found to be more

suitable than the Systolic architecture for this outer-vector

product. Next the Wavefront array design is presented for the

compute-bound operations belonging to the update covariance

algorithm. Finally the reasons for the selection of Wavefront .

architecture for the update covariance algorithm are presented.

5.5.1 Algorithm considerations

To aid in identifying the compute bound opertions, the

algorithm is broken down into the following operations. %.%

V
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-1I * T -1I

1. A = R (k) X (k+1); B X (k+1) R (k)
-xx - - -xx

Each function is a vector-matrix multiplication and the result
2

is a vector. Each function needs O(N ) multiply-add steps and
2

requires O(N ) input/output elements. When the order is the

same, then we have to consider if the data once accessed from

memory can be used many times in the computing structure. It

can be seen for the A function that the elements of X once

accessed can be used for each of the row of Rxx(k) and X

multiplication. It can be seen for function B that the
T

elements of X once accessed can be used for each of the
-1 T

column of Rxx(k) and X multiplication. Thus the functions A

and B can be considered to be compute-bound and therefore can

be implemented in VLSI computing structures.

T T
2. Denom = X (k+1) A • D = X (k+1) W(k)

Each function is a inner-vector product and the result is a '

scalar. Each function needs O(N) input-output elements and

O(N) multiply-add steps. It can be seen that data once

accessed from memory has no more further use. Therefore these

functions are not suitable for VLSI computing structures.

3. C = A (1/Denom) • E = C D

Each function is a scalar-vector product and the result is a

vector. Each function requires N multiply steps and 2N+1

__ 0
input-output elements. Therefore these functions are not 

-

suitable for VLSI computing structures.

5. Mat C B
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This function is a outer-vector product and the result is a .0, Jk
2

matrix. This function needs O(N ) input-output elements and
2 - %

O(N ) multiply steps. This function is compute bound as both

the vectors once accessed can be reused until the computations

are completed.

# -1
6. Rxx = [Rxx(k) - Mat] ,.,

2
This function is matrix-matrix subtraction and requires 3 N -

2
input-output elements and N subtractions. This means that

this function is input-output bound and is not suitable for

VLSI computing structures.

7.w = [W(k) - El

This function is a vector-vector subtraction and requires 3N

input-output elements and N subtract steps. This function is a

input-output bound operation.

The discussion performed is summarized in Table 5.6. Thus

the VLSI computing structures for the compute bound operations -- 'I-

A, B and Mat are designed in the next section. ,'

5.5.2 Wavefront Array Design

As previously determined the Wavefront architecture [10]

was chosen for the Update covariance algorithm. The important

Wavefront array system parameters to be determined in this

section are:

1) arrangements of the PE's to compute each ..

compute-bound operation

2) computational capacity of the PE
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Table 5.6 List of compute-bound and Input-output bound %

functions belonging to Update covariance algorithm

--- ----------
Functions Type of Number of Number of input- Operation I

operation computations output elements bound
----- ------------ *-'---- - -------------------

A I vector-matrixi O(N ) O(N ) compute
I product I

Denom inner vector O(N) O(N) I input-output I
product I I

C I scalar-vectori N I 2N+l I input-outputi I
1 product I 1 I

a I vector-matrix O(N' ) O(N ) compute I
Iproduct 1 II

Mat outer vector O(N, ) O(NC ) compute Iproduct IL

Rxx' I matrix-matrixl N 3N I input-output[
I subtraction I

0 inner vector O(N) 0(N) I input-outputl 5
-product I I

I scalar-vectorj N 2Nl input-output $
I product I

WI vector-vectorl N I 3N I input-output ,
subtraction

- -- -- -- -- - -- -

I %

----------- I-----------I-----------I----.--,..-----.-I



3) bandwidth of the Wavefront array bus

4) host computational capacity

5) buffer size

The characteristics of the PE to be used in the Wavefront

array are analyzed now. The PE has an architecture consisting

of an internal program memory, a control unit, an ALU, and a

set of registers [10]. Time must be determined by the various

instructions performed by the PE. For the update covariance

algorithm, the PE has very few instructions to perform - mul-

tiply, add, fetch, flow and transfer (register to register).

The fetch operation fetches a data element from a neighboring

PE or from a memory module via handshaking procedures. The flow

operation sends a data element from a PE to either its neigh-

boring PE or the memory module. The clock period for the PE is

chosen to be 30ns i.e., T(pe) = 30ns. The allocation of the

number of cycles needed for the different instructions per-

formed by the PE, is determined by the number of cycles taken

to perform similar instructions by the 32-bit microprocessor Mc

68020, and are:

Instructions cycles time(Afs)
Multiply 28 0.84
Add 7 0.21

Transfer 3 0.09 S
Fetch/Flow 4 0.12

The Wavefront array design to compute the compute bound

functions A, B and Mat is presented next.

5.5.2.1 Wavefront array design for function 'A'

The arrangement of the PE's performing the function A is

- 182 -

Nl. I Ia
110 111 111 ;10 1



shown in Figure 5.5. A linear array of 36 PE's is needed to

compute the function A when the number of antenna elements N =

36. The matrix-vector product can be decomposed into 36 vector-

vector products; each vector-vector product is the mul-

tiplication of a row of the matrix Rxx and the vector X . There

are 36 PE's and each PE is responsible for a vector-vector

product. Each vector-vector product constitutes 36 complex

multiplication and addition. The matrix Rxx is broken down into

rows and one row is provided to each PE. The X* vector is

provided to the first PE only and the elements of this vector

are passed from PE to PE in a pipelined fashion. The capability

of reusing this vector X (the vector is accessed from memory

only once) is the reason for the speedup (when compared to

operation of function A on a uniprocessor) achieved by the VLSI

structure. Each element of the vectors is a complex quantity.

The real and imaginary components are represented by 16 bits.

When an element is supplied to a PE the real component is

provided first followed by the imaginary component. These

elements are stored in memory modules and are provided to the

PE whenever the PE requires them.

Remember that Wavefront array is an asynchronous system

where a PE obtains the operands from neighboring PE's through

handshaking procedures. Also the Wavefront arrays behave like a

data flow machine in that once the operands are fetched by a

PE, it at once begins its operations on the data obtained. The

operations to be performed by each PE, to compute function A, i
is coded in Matrix Data Flow Language (MDFL) (see Figure 5.6).
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Figure 5.5 Wavefront array to compute k
fution 'A'
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Figure 5.6 Matrix data flay language program for function A

BEGIN
SET COUNT 36;
REPEAT

WHILE WAVEFRONT IN ARRAY DO
BEGIN
FETCH B UP;
FETCH A LEFT;
FLOW B DOWN;
TSR A, R1; (TSR. implies transfer)
TSR B,R2;
MULT A,B,R3;0

END;

WHILE VAVEFRONT IN ARRAY DO
BEGIN
FETCH B UP;
FETCH A LEFT;
FLOW B DOWN;
MULT A,B,R4;
SUB R3,R4,R3;
ADD C,R3,C; ( real part in C register)
MULT R2,B,R2;
ADD R1,iR2,Rl;
ADD CI,R1,C1; ( imaginary part in C1 register)

END;
DECREMENT COUNT;

UNTIL TERMINATED;

BEGIN
SET COUNT 1;0
REPEAT
WHILE WAVEFRONT IN ARRAY DO

BEGIN
FETCH A UP;
FLOW C LEFT;
FLOW C1 RIGHT;
FLOW A DOWN;

END;
DECREMENT COUNT;

UNTIL TERMINATED;
END PROGRAM.
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Notice that 36 recursions are involved. Each recursion consists

of two Wavefronts which pass through each PE. Each PE is res-

ponsible to complete 36 complex multiplication and addition. In "

every recursion, a PE computes one complex multiplication and

addition. The registers in the PE are first initialized to

zero. During the first Wavefront of a recursion, a PE 1)

fetches the two real components, one belonging to matrix Rxx

and the other belonging to vector X, 2) sends the real

component of X to the next PE in the pipeline, 3) stores the

two operands in temporary registers and 4) performs a mul-

tiplication of the two operands. A complex multiply-add

requires 4 real multiplies and 4 real adds/subtracts. During

the second Wavefront of the recursion the PE then performs the

remaining 3 real multiplies and 4 real adds/subtracts when it

fetches the imaginary components of the matrix Rxx and vector X. 9

The time taken by the Wavefront array to perform the

function A can be now determined. The first Wavefront of the

recursion requires 46 cycles and is found to be

instructions number of cycles
2 fetches 8
I flow 4
2 transfer 6 0
1 multiply 28

46

The time taken by the PE to perform the first Wavefront is 46 * 0

T(pe) = 46 * 30ns = 1.38 t's. The time taken to perform the

second Wavefront of the recursion is found to be
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instructions number of cycles
2 fetches 8
1 flow 4
3 multiplies 84
4 adds 28 d'~

124

The time taken by the PE to perform the second Wavefront is 124

* 30ns 3.72 /4s. Thus the total time required by a PE to 0

perform one recursion (involves one complex multiplication. and

addition) is 5.1)1s. Each PE then has a computational capacity

of 1.6 MOPS (performs 8 operations in 5.1 U s). In general, if S

a recursion requires Kimult}, K(add), K(fetch), K~flow) and

K(transfer) cycles, the the PE would require an execution time

of:

[K~mult} + K{add) + K{flow} + K{fetchl + K{transfer)] * T(pe).

At the end of 36 recursions the results of the 36 complex

multiplication and addition performed by each PE resides in the

registers C and C1 (see Figure 5.6). The 36 complex quantities

residing in the 36 PE's are the resultant vector. This resul-

tant vector is sent to the buffer so that the host can access

it to perform further functions of the update covariance algo-

rithm. This caused one more recursion to be passed through each

PE as shown in Figure 5.6. During this Wavefront, each PE flows

the contents of the registers C and C1 to the buffer. This

Wavefront needs 16 cycles which requires 8 * T(pe) = 16 * 30 =

0.48 4s. A dummy fetch is included, since one of the

requirements for the Wavefront language is that every Wavefront

computation should be preceded by a fetch [10].
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Once the time taken to perform a recursion is known, time

required by the Wavefront array to complete the computations

required by the function A can be figured. The reason for

breaking the recursion into two Wavefronts becomes apparent. 0

These two Wavefronts introduce one more level of pipelining

which increase the speedup factor. When the second Wavefront

of the first recursion is operating on the first PE of the

array, the first Wavefront of the same recursion will be

operating on the second PE. The first PE takes 36 * (execution

time for one recursion) to complete the 36 complex 0

multiplication and addition assigned to it. Once the first PE

finishes its computations, the remaining 35 PE's will finish

their computations when the second Wavefront of the 36th

recursion passes through the 35 PE's. Notice that the second

Wavefront takes more time than the first Wavefront. At this

instant, the 36 recursions are performed by each PE and the

results are in the registers of each PE. One more recursion is

needed to send the data out and this requires 36 Wavefronts.

Thus the total time required to perform the function A is

= 36 (execution time/recursion) + 35 (execution time

for the second Wavefront) + 36 (execution time required

to send the data out)

S

= 36 (5.1) + 35(3.72) + 36(0.48) = 331.08 ps •

In general the above expression can be written for any number

of antenna elements, N, as

188 -

- _-.. .. . . . . . . . . .; .. - - . . .



- N(execution time/recursion) + (N-I) (execution time for

second Wavefront) + N (execution time required to send the

data out).

If the recursion was not split into two Wavefronts, it can be

seen that the time required to compute function A is (36 * 5. +

(35 * 5. 1) + (36 * 0.48) = 379.38 Us . By introducing one more

level of pipelining by dividing the recursion into two Wavefront,

as performed in our analysis, the time is reduced for the

execution of function A.

5.5.2.2 Wavefront array design for function 'B'

Function B is similar to function A as it also involves a

matrix vector product. A linear array of 36 PE's is required for

performing 36 complex multiplications and additions. Each column

of matrix Rxx is provided to each PE and the vector XT is

provided to the first PE only. The procedure in determining the

time taken to compute function B Is similar to that performed for

function A, thus the time taken by the Wavefront array to compute

function B is 331.08 Us

5.5.2.3 Wavefront array design for function 'Mat'

The Mat function is a outer-vector product resulting in a

matrix. A square array of 36 * 36 PE's is required (for N = 36)

as shown in Figure 5.7. The 36 elements of the C vector are sent

to the 36 PE's belonging to the first row of the square array

(i.e., one element/PE). Similarly the 36 elements of B vector

are sent to the 36 PE's belonging to the first column of the

square array (i.e., one elemont/PE). Notice th-. the
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elements of the vector B and C are accessed only once for the

computation of Mat in this array. This increases the speedup,
.

when compared to this function operated on a uniprocessor.

The code written in MDFL and stored in each PE to perform S

the Mat operation is shown in Figure 5.8. The Mat function

requires 36 * 36 complex multiplications and as there are 1296

PE's each PE has the task of computing one complex mul-

tiplication. This means that one recursion is sufficient for

this purpose. (see Figure 5.8) The recursion is broken down

into two Wavefronts. During the first Wavefront, the PE fetches

the two real components, stores them, flows the two real

components to neighboring PE's (down and right) and performs a

real multiplication. During the second Wavefront, the PE per-

forms the remaining 3 real multiplies and 2 real adds/subtracts

to complete the complex multiplication.

The time taken by a recursion can be determined as follows. •

The first Wavefront requires 50 cycles as shown.

instruct ions cycles
2 fetches 8
2 flows 8
2 transfer 6
1 multiply 28

50

Thus the first Wavefront requires 50 * T(pe)= 50 * 30ns= 1.5 4%

Ps The second Wavefront requires 114 cycles as shown.

instructions cycles . .5-S.,

2 fetches 8 '
2 flows 8
3 multiplies 84
2 add/subtract 14 711
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4i

Figure 5.8 Matrix data flow language program for Mat function 
.

BEGIN
SET COUNT 1;
REPEAT;

WHILE WAVEFRONT IN ARRAY DO
BEGIN
FETCH B UP;
FETCH A LEFT; J
FLOW A RIGHT;
FLOW B DOWN;
TSR A,R1;
TSR B,R2;
MULT A,B,R3;
END;

WHILE WAVEFRONT IN ARRAY DO
BEGIN
FETCH B UP;
FETCH A LEFT;w
FLOW A RIGHT;

FLOW B DOWN;
MULT A,B,R4;
SUB R3,R4,C; "
MULT R,A,Rl;
MULT R2,B,R2; %* "
ADD R1,R2,Cl; .'-' 

-

END;
DECREMENT COUNT;
UNTIL TERMINATED;

BEGIN
SET COUNT 36; A-

REPEAT . .,

WHILE WAVEFRONT IN ARRAY DO *b .-V
BEGIN
FETCH A RIGHT; 0
FETCH B DOWN;
FLOW C LEFT;
FLOW C1 UP;
TSR A, C;
TSR B, Cl;

END;
DECREMENT COUNT t.

UNTIL TERMINATED
END PROGRAM.
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Thus the second Wavefront requires 114 * 30ns 3.42 /Ls.

At the end of this recursion, one complex multiplication

has been completed by all the PE's; the result of this complex

multiplication is stored in the registers C (real) and C1

(imaginary). This data (the result) is shifted and brought

outside the Wavefront array. This required N recursions to be

passed through the array which required (2N-1) time units.

During each Wavefront, the PE gets the contents of register C

from the cell to its right and the contents of register C1 from

the cell below and stores them. It also sends the contents of

its registers to the left PE and the PE above. The real

components of the Mat matrix then comes from the 36 PE's of the

first column and the imaginary components come from the 36 Pe's

of the first row. This Wavefront requires 22 cycles as shown. -

instructions cycles
2 fetches 8
2 flows 8
2 transfers 6

22

This Wavefront requires 22 * T(pe) = 22 * 3Ons = 0.66 /4sThe ..

total time required by this Wavefront array to compute Mat y'.-:

function is as follows.

Total time = (execution time/recursion) + 70 * (execution
time for second Wavefront) + 71 * (execution
time/Wavefront to send the data out)

= (1.5 + 3.42) + 70 * (3.42) + 71 * (0.66)
= 291.18 .s.

In general for any N the total time is given as a
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= (1.5 + 3.42) + (2N-2) * (3.42) + (2N-1)*(0.66)

5.5.3 System parameters

The Wavefront array is interfaced to a host [9] [12]. The

parameters of this array processor system will be discussed.

5.5.3.1 Host

The host performs the input-bound operations belonging to

the Update covariance algorithm. The input-output bound

functions require 6338 operations as shown.

input-output bound functions operations
Denom 287
C 221
Rxx 5184
E 216
W 144
D 286

6338

Compute bound functions A and B are computed in parallel and

require 331.08 JAs, Mat function requires 291.18 /s, thus the

total time required by the compute bound operations is 622 ,ps.

The iteration time for the Update covariance algorithm is L.8

ms. The input-output operations must be performed in 3.16 ms

which then requires a host of computational capacity of 2 MOPS.

Remember, as the host is interfaced with the high speed array

processor units, a host is chosen not only with a computational

capacity of 2.0 MOPS, but also with a host bus that does not

form a bottleneck while transferring data to and from the

Wavefront arrays. '~
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5.5.3.2 Wavefront array bus bandwidth 0

Three Wavefront arrays were selected to find the compute

bound functions. These Wavefront arrays were then connected to

a Wavefront bus which carries the input and output data for the

Wavefront arrays. The Wavefront arrays consume data at a very

high rate which results in a large bandwidth for the Wavefront

bus. The number of words consumed and supplied by an array is

easier to be determined for the Systolic array than for the

Wavefront array. This results because in Systolic arrays each

PE consumes data with respect to a time reference, whereas in •

Wavefront array each PE consumes data whenever the data is

available. Here, the worst case situation is determined. During

the worst case, at the peak instant, the linear array computing

function A consumes 37 words : the 36 PE's consume 36 words of

Rxx and the first PE consumes one word of XW . As PE's require 4

cycles or 120 ns to fetch a word, the Wavefront needs 37*2=74

bytes to be fetched in 120ns. The Wavefront array needs 616

Mbytes/sec bus bandwidth. Function B operates similarly to

function A and it also needs 616 Mbytes/sec bus bandwidth.

The Mat function consumes only 2 words per Wavefront, but

while the data stored in the registers of the PE's are brought

out, the Mat function outputs at the peak instant (worst case)

72 bytes in 120 ns (36 words out of first row and 36 words out

of first column). The Wavefront array computing Mat function

requires 600 Mbytes/sec.

As the Wavefront arrays computing function A and B operate

in parallel, the bandwidth required of the bus is doubled to
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1232 Mbytes/sec. The Mat function is computed separately and

requires only 600 Mbytes/sec to fix the bandwidth of the Wavef-

ront array bus to be 1232 Mbytes/sec.

5.5.3.3 Buffer

The buffer is required to store the data provided to the

Wavefront arrays and the data received 7rom the Wavefront

arrays. The buffer has to allocate N complex words each for X,

X A, B and C. The buffer also has to allocate t., complex words

for Rxx and Mat. In total the buffer requires 11088 bytes (for

N=36) where each complex word requires 4 bytes.

A summary of the various parameters discussed for the

Wavefront architecture is shown in Table 5.7.

5.5.4 Architectural considerations

Justification will be given for choosing Wavefront

architecture over the Systolic architecture for the update

covariance algorithm. It will be shown that the Mat operation

(outer-vector) product was the reason to choose Wavefront

architecture. The issues considered in deciding on the suitable

architecture follows.

5.5.4.1 Speed Variation

A Wavefront array enjoys the performance advantage that

results from each PE of the array being able to start computing

as soon as its inputs are ready and to make its output

available as soon as it is finished computing. If different

-
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Table 5.7 Summary of VLSI architecture parameters for
Update covariance algorithm

-------------- ---------------------------------------- I g

I Functions
Parameters I------------I-----------I----------

I IA I B I Mat
--------------- I-------------I----------------------
INumber ofPE'sj 36 I 36 I 1296

Icomputational I I
Icapacity/PE I 1.6 MOPS I 1.6 MOPS I1.6 MOPS

Itime/iteration I 331 u s j 331 .4s s 291 /Us

Ispeedup factor I 18.5 I 18.5 I 18.5 0

1 wavefront, arraylII
I Bandwidth(peak)I 616 Mb/sec 1 616 Mb/secl 600 Mb/secl

------------ -------------- ------------- ----------- I
Array Processor System Requirements

I-----------------------------------------I

Host computational capacity 2.16 MOPS

Bandwidth of wavefront array bus 1232 Mb/sec I S

Buffer memory required 11088 bytes "C

---------------------------------------------------- I
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kinds of computations are taking place in the computing array,

i.e., speed variations in computations exist, then the data-

dependence property of Wavefront arrays will be an advantage.

This advantage is used in the Update covariance algorithm when

two different computation (Wavefronts) were pipelined for every

recursion. These two computations require different speeds

(need different execution times) and if operated on a Systolic

array, then the array will be clocked at the rate of the

slowest operation. Let us compare the time taken for the 362

complex multiplications performed for the Mat operation by the

Systolic and the Wavefront arrays. Note that in the

asynchronous scheme, (Wavefront) flow and fetch are separate

tasks; in a synchronous array (Systolic) with a two phase

clock, they may be combined into one task [11] that involves a

simultaneous flow to left and fetch from right, or flow down

and fetch from up. This combination is clearly an attribute and

is taken into consideration in the synchronous (Systolic)

model. When the Mat operation takes place in the Systolic

array, there exists no speed variation and in each time unit

the PE's perform a complex multiplication. The Systolic array

requires (2 N -1) * (execution time/complex multiplication)

(71 * (1.26 + 3.18)) = 315.24 SEs. The time of 315.24 1Is is

for the 36 complex multiplications and the result is still in

the PE registers. In the Wavefront this 36 complex mul-

tiplications due to speed variations require only 244.32 /s a

savings of 71 Ms over the Systolic implementation. Also note

that though handshaking procedures (11] are used in exchanging
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data between PE's, no time is lost in doing so. This results !

because after a 'flow' has been executed by a PE, it starts

implementing its next task concurrently with the 'fetch'

executed by the neighboring PE, hence no waiting. 0

Thus from the speed variation issue the Wavefront array is

more suited than the Systolic array for the Mat operation.

5.5.4.2 Clock skew

The Systolic array is an example of a totally synchronous

system and therefore suffers from clock skew. The clock skew

phenomenon arises from three factors [11]

1. the RC of the global distribution network

2. the variance in values of gate threshold voltage (Vt)

of the PE gate

3. unequal clock paths to various PE's in the array

When different PE's receive clock signals by different paths,

they may not receive clocking events at the same time, potent-

ially causing synchronization failure. To eliminate the clock

skew due to unequal clock paths, the PE's of the square array

use a H-tree clock distribution network [11] (Figure 5.9). If

the H-tree is complete, then the clock skew is due to the R,C

and Vt and it increases as O(N3 ); where N is given by the

relation

q = log.N Il

and where q is the number of levels of the network. The Mat

operation employs an array of 1296 PE's (36 by 36). Now for a

square array of 1296 PE's, there are 6 levels, therefore, the
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Figure 5.9 H-tree clock distribution network
for square arrays 11
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clock skew increases as 0(64**3). It has been determined by - 0MU

simulation [11] that the clock skew is a function of N and is

shown (for different values of metal content (r) of clock

distribution path) in Figure 5.10. It can be seen for N=64 the

clock skew is about 100 ns. The clock skew in the 1296 PE array

will be higher than this as the H-tree is not complete (needs

4096 PE's for a complete H-tree for level 6). In the best case,

the PE in the Systolic array will be clocking at clock period

of T(ck), where T(ck) - T(pe) = T(skew). The clock period in

the array is T(ck) = 30 + 100 = 130ns which increases the time

required to compute the 36 complex multiplication needed, from

315.24 /Us to 1.36 ms.

One way the clock skew can be reduced is by partitioning

the problem and using a smaller array. For example, if a square

array of 18 by 18 PE's is used, then the clock skew is reduced

considerably. But the price paid is in increased time for Mat

operation computation; the speed up has therefore been reduced

by 0.75. This is easily seen as the square array has to be

traversed four times to complete the 36 complex multiplication

on a 18 by 18 square array. Remember that the time taken to

get the results stored in the registers of PE's out of the

array will increase. Also the PE's will require more registers

as 4 complex words of the result are stored. C

Due to the noted results, the Wavefront array was

considered more favorable than the Systolic array for the Mat

operation; hence the Update covariance algorithm. %

The Wavefront design has interrelated system parameters. If
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the bandwidth of the Wavefront bus needs to be lowered, a S

slower PE is needed. This increases the computation time of the

compute bound operations which, in turn, leads to a need for a

host with a computational capacity of more than 2 MOPS. S

5.6 Chapter summary

In this chapter hardware evaluations were performed to

determine the suitability of the Update covariance algorithm

for general purpose microprocessor architecture, Digital signal

processor architecture and the VLSI architecture.

The following isssues were considered while evaluating the

various architectures:

1) the computational complexity of the Update covariance •

2) the input requirements - the input samples arrive every

3.8 ms

3) the characteristics of the architecture

Considering these points, complexity was obtained for each

architecture. A complexity of 27 for the microprocessor

architecture and 4 for the DSP architecture was found. More

chips were needed by the microprocessor architecture because

the microprocessor architecture needs 16 Rs to compute a

complex multiply-add, and the DSP architecture requires only 0

1.4 j s. Next an architecture was developed for the update K"'
covariance algorithm in a 4 DSP chip environment. It was found ,\ t

that the iteration took 2.655 ms to provide 37 iterations

during the period of lOOms. This ensured, on a average, at

least one convergence per lOOms. Due to the requirement of
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storage of intermediate results, this environment required 12.1

Kbytes of data storage.

Next, two VLSI architectures, Systolic and Wavefront, were
I S

considered for the Update covariance algorithm. One of the '

compute bound operations was an outer vector product, demanding

a square array of 1296 PE's (using 36 antenna elements). Due to

clock skew and speed variation factors, the Wavefront array was

considered a better suited architecture than the Systolic for

the outer vector product, hence, the Update covariance algo-

rithm. The number of PE's that could be placed on a single chip

is limited by the present technology. A PE with a clock cycle

of 30 ns was used which established the requirement of 0.622

/ms to compute the compute bound operations. This result meant

that the Wavefront bus had to have a bandwidth of 1232

Mbytes/sec, and a host computational capacity of 2 MOPS. The

result is a very high complexity for the VLSI architecture

design.

It can be firmly concluded from the analysis, the DSP

architecture is best suited for the update covariance algo-

rithm.

%

2 0
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6.0 CONCLUSIONS AND RECOMMENDATIONS S

A feasibility study was performed to determine the .

suitability of the HF adaptive control algorithms for the .

general purpose microprocessor architecture, the Digital signal 0

processor architecture and the VLSI architecture. The

complexity of the adaptive algorithms considered for study of

the various hardware architectures is indicated in Table 6.1.

The digital signal processor architecture has been shown to be

the best suited architecture for the adaptive algorithms that

were considered. The reason being that the sum-of-products

computations dominated in the algorithms considered for study,

and arithmetic units, performing the basic function AX + Y -> Y

are best suited, such as present in DSP architecture.

For adaptive algorithms, feedback exists from the output

back to the input that requires the total input-to-output delay

be less than one sample period. This total latency constraint

(determined by previous simulation studies) causes a cascaded

(pipelined) chain of processors to be unsuitable for adaptive

algorithms. System architectures were developed for the

feasible hardware structures and the analysis indicates that a

parallel configuration (in contrast to cascade configuration)

allows multiprocessing by providing the output within one

sample period. For the adaptive algorithms considered the

time/iteration achieved by the best suited architecture is

shown in Table 6.2. The reason for developing system architec- 0

tures for the best suited technology is to determine whether W

the time involved in the communication of data between
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Table 6.1 Complexity of the adaptive algorithms for the various hardware
architectures considered 4

----- -- ------------------------------------------------------I
ArchitecturesI

IAlgorithm -- --- ------------------------------------ Ja
microprocessor I DSP VLSI

I------------- ---- -------------------- I------------- -------------------
Las I12 I 1 I -not applicable- I

c-Las I281 I 23 6 - 9 (custom chips)I

1Update covariancel 27 I 4 I -high-

--- ------------ - ---------------- ------------- --------------------- I
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processors introduces additional computational capacity for the

algorithms that further increases the complexity. Note that the

LMS algorithm requires a loosely coupled system as the update

of one weight is independent of the update of another, whereas

the c-LMS algorithm results in a tightly coupled system because

of large communication overhead due to passing of intermediate

data.

The c-LMS algorithm was the most complex algorithm to

implement. Though both the update covariance and the c-LMS

algorithm have the computational complexity of O(N ); due to

the presence of parallelism among functions and the requirement

of fewer iterations to converge (by the update covariance
I 0

algorithm) makes the c-LMS algorithm more complex. The DSP

architecture was a better choice because of the nature of the

complex interface between the host and the Systolic array, and
I S

the requirement of large number of pins needed by the chips in

the Systolic array. The VLSI computing str cture is a better

choice as the number of antenna elements in the adaptive array

increase. For example, when the number of antenna elements

increases to 64, 70 DSP chips are required to compute the

bottleneck operation, matrix-vector product, to obtain an

output every sampling period. The Systolic array requires only

between 12 to 16 custom VLSI chips, each chip performing simple

operations.

Linear code was used whenever possible in the system %

architecture to increase speed. A fixed point implementation

.(as time per recursion is small) providing 16 bits each for the
I S
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I and Q channels (dynamic range of 96 db). In this study fixed

point implementation with truncation was used. This results in

numerical problems [281. With the advent of faster floating-

point DSP chips [29], and to avoid numerical problems the S

floating-point DSP processors is recommended.

b

0

0

0 A

- 208 -

WINV
%0



REFERENCES

(i Darin S. Haegert, "Adaptive Algorithms for HF Antenna
Arrays," M.S. project report, Dept. of Electrical and
Computer Engineering, 1984.

(2] "MC68020 32-bit Microprocessor User's Manual," Prentice
Hall, Inc., Englewood Cliffs, N.J, 1984.

[3] M. Schwartz, J. Schiappacasse, and G. Baskerville,
"Signal Processor's Multiple Memory Buses Shuttle Data
Swiftly," Electronic Design, Feb 20, 1986.

(4] H. Ahmed, J. Delosme, and M. Morf, "Highly Concurrent
Computing Structures for Matrix Arithmetic and Signal
Processing," IEEE Computer, Jan 1982.

(51 H. Whitehouse, J. Speiser, and K. Bromley, "Signal
Processing Applications of Concurrent Array Processor

- Technology," VLSI and Modern Signal Processing, S.Y.
Kung et al. eds., Prentice-Hall, Inc., Englewood Cliffs,
1985.

(6] H.T. Kung, "Why Systolic Architectures," IEEE Computer,
Jan 1982.

(7] C. Mead, and L. Conway, Introduction to VLSI Systems,
Addison-Wesley publishing Company, Chapter on
'Algorithms for VLSI Processor Arrays', by H.T Kung, and
C.E. Leiserson.

(8] K. Hwang, and F.A. Briggs, Computer Architecture and
Parallel Processing, McGraw-Hill Book Company, 1984.

(9] S.Y. Kung, "VLSI Array Processors," IEEE, ASSP
Magazine, July 1985.

[10 S.Y. Kung, K.S. Arun, R.J. Gal-ezer, and D.V. Bhaskar
Rao, "Wavefront Array Processor: Language,
Architecture, and Applications," IEEE Transactions on .
Computers, Nov 1982. .d... h -

(11] S.Y. Kung, and R.J. Gal-ezer, ."Synchronous versus
Asynchronous Computation in Very Large Scale Integrated
(VLSI) Array Processors," SPIE Vol 341, Real time signal
processing V, 1982.

(121 A.L. Fisher, and H.T. Kung, "Special-Purpose VLSI

- 209 -

-~ ~~~~ -k- PIVL~4~Y. .%%V~~



Architectures: General Discussions and a Case Study,"
VLSI and Modern Signal Processing, S.Y. Kung et al.,
Editors. Prentice-Hall Inc., 1985.

[131 B. Widrow, P. Mantey, L. Griffiths, and B. Goode, • •
"Adaptive Antenna Systems," Proceedings of the IEEE,
Vol. 55, Dec. 1967.

(14] B.A. Bowen and W.R. Brown, Systems Design- Volume II of
VLSI Systems Design for Digital Signal Processing,
Prentice-Hall, Inc., 1985.

(151 V.B. Lawrence, and S.K. Tewksbury, "Multiprocessor
Implementation of Adapative Digital Filters," IEEE
Transactions on Communications, June 1983.

[161 B. Widrow, S.D. Stearns, Adaptive Signal Processing, 0 0
Prentice-Hall, Inc., 1985.

(17] R.T. Compton Jr., "An Adaptive Array in a Spread
Spectrum Communication System," Proceedings of the IEEE,
March 1978.

(18] O.L. Frost III, "An Algorithm for Linearly Constrained
Adaptive Array Processors," Proceedings of the IEEE,
August. 1972.

(191 K. Takao, M. Fujita, and T. Nishi, "An Adaptive Antenna
Array Under Directional Constraint," IEEE Transactions
on Antennas and Propagation, Sept 1976.

(20] A.L. Fisher, and H.T. Kung, "Synchronizing large VLSI
processor arrays," ACM, 1983.

(211 R. Schreiber, and P.J. Kuekes, "Systolic Linear Algebra
Machines in Digital Signal Processing," VLSI and Modern
Signal Processing, S.Y. Kung et al., eds. Prentice-Hall,
Inc., 1985.

[221 E.E. Swartzlande, Jr., VLSI Signal Processing Systems,
Kluwer Academic Publishers, 1986. • el

(231 A.V. Kulkarni, and D.W.L. Yen, "Systolic Processing and
an Implementation for Signal and Image Processing," IEEE
Transactions on Computers, Vol. C-31, No. 10, Oct 1982. $.

(241 J. Blackmer, G. Frank, and P..Kuekes, "A 200 Million
Operations per Second (MOPS) Systolic Processor," SPIE
Vol. 298, Real Time Signal Processing IV, 1981.

(25] R.A. Monzingo, and T.W. Miller, Introduction to
Adaptive Arrays, John Wiley and Sons, N.Y., 1980.

- 210 -

N'0 A



(261 S.Y.Kung, "VLSI Array Processor for Signal Processing,"
presented at the Conf. Advanced Res. in Integrated
circuits, M.I.T., Cambridge, Jan 28-30, 1980

(27] J.M.Speiser and H.J. Whitehouse, "Architectures for Real _
Time Matrix Operations," in Proc. GOMAC, Nov. 1980.

[281 T.Thong and B.Liu, "Fixed-pt Fast Fourier Transform
Error Analysis," IEEE Trans. Acoust., Speech, Signal
Processing, vol. ASSP-24, pp. 563-573, Dec. 1976.

(29] Amnon Aliphas and Joel A.Feldman, "The Versatility of
Digital Signal Processing Chips," IEEE Spectrum, June
1987.

21

S
S.

S


