A Py

"

UNCLASSIFIED
CURITY CLASSIFICATION OF THIS PAGE

Form Approved
REPORT DOCUMENTATION PAGE OMB N 0704-0188
1a. REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS
UNCLASSIFIED N/A
s — —
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION / AVAILABILITY OF REPORT
N/A _,_____4 Approved for public release; distribution
2b. DECLASSIFICATION / DOWNGRADING SCHEDULE unlimited.
4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)
TISL 5481-2 RADC-TR-87-240
‘ 62. NAME OF PERFORMING ORGANIZATION 6b. ?;FICE ,SYILIIIB)OL 7a. NAME OF MONITORING ORGANIZATION
If applicable,
The University of Kansas PP Rome Air Development Center (DCCD)
6c. ADDRESS (Gity, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Telecommunications and Information Sciences Lab
224 Nichols Hall - Campus West
Lawrence KS 66045

Griffiss AFB NY 13441-5700

8a. NAME OF FUNDING / SPONSORING 8b. OFFICE SYMBOL | 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)
Rome Air Development Center DCCD F30602-81-C-0205
8. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT
Griffiss AFB NY 13441-5700 ELEMENT NO.] NO. NO ACCESSION NO.
62702F 4519 61 P4

1. TITLE (Include Security Classification)
EVALUATION OF HARDWARE ARCHITECTURES FOR HF ANTENNA ARRAYS

e ——————————————
12. PERSONAL AUTHOR(S)

fR. K. Balasubramaniam, Victor Frost, Roger Spohn, Ryan Moateg, Stephen 1
13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) [1S. PAGE COUNT
Final rrROM _May 86 yo May 87 January 1988 218

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP HF Adaptive Arrays
25 02 HF Channel Simulation
2 05 HF Communication Systems

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

A variety of hardware architectures can be used for the implementation of HF adaptive
signal processing algorithms. The purpose of this study is to evaluate various hardware
structures, enumerate their advantages and disadvantages relative to the HF adaptive array
problem, and to recommend the architectures best suited to the adaptive HF array systems.
The hardware structures are compared based upon complexity which is determined by issues
such as computational bounds, input requirements and characteristics of hardware structures.
This evaluation is performed in a hierarchical manner. Application of general micro-
processor technology is considered first. Integrated circuits tailored for digital signal
processing applications is investigated next. Finally VLSI signal processing technology
is considered. Included here are Systolic and Wavefront architectures. ~ /

Yoo

20 DISTRIBUTION / AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
OuncLassiFiepunNumiTED &I same As RPT. [OTIC USERS UNCLASSIFIED
22a. NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) | 22¢. OFFICE SYMBOL
Peter J. Ritchie (315) 330-3224 RADC (DCCD)
DD Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THiS PAGE

e . N 00 o Y VR 05 \ - A 1-* 1 ", AN T, -,}5‘:“\‘-- \;‘\1 G 3
sttt et 0‘:'1\..5\.; '\r ity ISR PACY " IR, et
R B R e
X IER YIS ML YR WO L) URUAI U) Sy) ‘ X X
. .’ m,ﬂ.‘ ¥ 3’1‘\', ooyt B «.\,F l‘l.h‘, h"g'i’g- ‘0!?.(".0'!':'!.bﬁ.t’!.%!’:.g':'!\...‘ .‘g'.l.:‘ PR ".’!. \ '."..‘.'....l "

") .- ‘ X W
1?.:%...1..:‘5':%

ORI,

WAL
.:..’Q:l'::" (]

i Va4,
M
R

o’;:"s

XN
‘:':".c
()

N
RN

TABLE OF CONTENTS

1.0 Introduction...............-.........................-...1
2.0 Hardware Architectures-.acoouooooooc0000000000000000000006
2.1 General purpose microprocessor architecture.cesecesss®

2.2 Digital signal processor (DSP) architectur@eeccseceee8

2.3 VLSI architecture......................a............9

2.3.1 Systolic array architectuUreececescsccecssssssld

203.2 Wavefront array architectuteooooa0000000000021

2.3.2.1 Matrix data flow language-.......o;29

2.3.3 Timing analysis of systolic and
wavefront array architectuUre ecceceeeecesscscosss 3l

2.3.3.1 Timing analysis of systolic

ArraySeececcecccsccsoscsooscssccensosocscssoce

2.3.3.2 Timing analysis of wavefront

AITr3YSeeesecosvscevsccoecnososcscnocsssacse

2,3.4 Implementation considerations of Array
Processor SYSLEeMSeessssscssssncssocsssscoccse 3/

oTiC

cCoPY
INSPECTED

,«,,, R N O N p‘ Wi
’t .l ;’| Ii:‘i :".5"; .1, ‘1‘.' O ' ' ‘.‘ ..|‘| I "

n
‘l |'i:t bt LGN i o
Nrec " RN 1'.'9 'c' .:t"' l'u :Q ..\',

?
,;’ ¥ ;,,l,,-;hnu (]
5 5“',.} A0 B ‘ l 0.) 5.‘ “O.‘ ..‘ h‘i. X W . . |" |. .‘ ..

Ty Sap Vv el K8 B 2B V2 Yok WaB éa® ¢a) $aB V.8 a0 ¢ U P, $. 0.0 0t 00" L9 40" "0 S SR e ol 0,0 00

2.3.1‘01 Host computet‘.................-....37
2.3.4.,2 Interface SysteMecesessscesossssssosl’
2.3.4.3 Connection networkKeeseoeoooeossossooel9

2.3."04 Pl‘OCéSSOI’.‘ 8!‘1'8)'5..-.........-....o.39

2.4 Chapter SUMMArYececocessossosscosssoscsscsssscccssnscsssdd

3.0 Hardware Architectures for LMS AlgorithMeceesvoecoococeassb2

3.1 LMS algorichm.o00000.000l.ool.otooo.o'ooo.c'cco..o.l‘z

3.2 Loading analysf{Seeeccesscsscccscscssscsccsosscanscscccnoseil

3.2.1 Input requirementsB8eccecesccsssccssccccnscceseb?

3.2.1.1 HF channel requirementSeecsocecesssss8 “Mﬁ?
3.2,1.2 System considerationseesecscccosecsesl “

IN
o

uﬁﬂﬁv

3.2.2 Execucion Time budgets...................'..54
3.2.3 Computational 1°ad1ng..............".......SS

3.2.4 Memory requirementSeccscccecscorcsssssccscaossdd

3.3 Microprocessor architecture implementation..cecosees57

.59

3.3.1 1Initial assessment on the complexity.

3.3.1.1 Execution Time budgetsSeeeececssoseesd9

3.3.1.2 Computational loading.eesseescesssesbd?

3.3.2 1Implementation considerationsSececcessceccesssb3

3.4 DSP architecture implementatioNeccececsccsccosccseeell

- 31 -
s ‘,I-:;‘vy ';'l':‘) "6¢ W, l“dj_‘i # OO 0 0 ' I - ' e -' ~Anmw
S S‘J, R ‘F.@’ "A_ A ~.“, Q}}'\ ‘::"l:":: "...‘: *Q | " "..“;‘) f.:j‘. . ~" W . M‘v
oo < t’l'ﬂ’n n ‘ b ‘n‘ Ja .’0‘. 59 l' oﬁ.\
: DAL y HO‘O . |‘| 0 ... oy . '
N .’.",‘-‘."‘v; W . a o' WA o .'t‘.'o’ AN ' Wyt ' l' ‘n'

LTI L NP RN N N RN RN O O O T O N R O N T O N O K XX A T T W UK AT WY YO UV
.":‘::;I:,.
SR
.
'q"i
3.4.1 1Initial assessment on the complexityesceoeoeel0 N ,yﬂ
L
Py l:l_:"
3.4.1.1 Execution Time budgets.........-...70 .Q.. :,"q':
LRSI
3.4.1.2 Computational loadingeececessocccees?2 A e
ﬁbﬁ\.
v.‘"‘tii
3.4,2 1Implementation considerationSecececsscecvreces?3 *.ﬂw
h.""
3.5 VLSI architecture.............-........-...........74 “.‘..l.:,.
"‘
\f ¢|
3.6 Chapter summary....................................77 .““
“t."l.u
L
‘
4,0 Hardware Architectures for ¢—-LMS algorithMececcesecceoess8l a“
.':‘ M
I.nﬂ,r
4.1 c-LMS algotithm..............-.................o...83 ."l."‘
) l'l.\
4.2 Loading analysis of the c¢c-LMS algorithBesesvocesees90 :h?-i
Cat }."
‘\'-.,
4.2.1 Input requirements......................o...91 Z 0 N
4.2.,2 Execution Time budgets........-........-o...9l :’l:::'
4.2.3 Computational loading.......................94 F‘F’.
R}
4.2.4 Memory requirements.....................o...96 * ' ...
e
.C"Q.l
4,3 Microprocessor architecture implementati{oNecsceceessd6 PA
s N
?’ "‘:
4.3.1 1Initfal assessment on the complexXityeesesses96 ﬂ;«&&
' et
B‘W“%
4,3.1.1 Execution Time budgets.........-...96 ‘
1. i
4.3.1.2 Computational loading..............99 :u:. rz\.‘.
4.4 DSP architecture 1mplementation...............-...100 \’n
SatNa
4.4.1 Initial assessment on the complexityeeees..l01
4.,4,1.1 Execution time budgetSecescecsssssslOl
4.4.1.2 Computational loading.............103
- Aii -
T 00 D R R R IR,
QP) a, ‘\ .‘e'. .'a‘" "’; ',:‘ !".7: I,‘ u'g 4.) (-C”‘ A "'a‘" v \f o «.‘ \‘_x‘.‘_x’f,-.:l,'a.' '.ﬁs' DAL RNy
«f 4,5\! hgl‘ ‘.'l’ (! |" “' ‘ "‘«- "-}‘-‘\&- N ; '.'\. S
~'u’ ""h"! H'.v:u.!o. Wy c.!m-......h .0."! ARSI W

evew v AT AR AN N A R RA R YN XU YN T UL WL Y PO AUWOWOY R RA T

4.4,2 Implementation considerations..ccecsccss
4.5 vLSI architecture....'....‘....................

4,5.1 Algorithm considerationseeecececcsccsssccs

4.5.2 Architectural considerationSecececceccsceces

4.5.2.1 Speed variation .c.ceccceccense

4.5.2.2 Clock skew..............'..l...
4.5.3 Systolic array - Design Acececcccsccsscsne

4.,5.3.1 Technologlcal considerations -
Design A.........Qll‘..........

4.,5.4 Systolic array - Design Bieeeeoocesccesne

4,5.4,1 Technological considerations -
Design B-o.o.oooooooooc.ooooooo

4.,5.5 1Interface to Array processor SySte€Mees..
4.5.5.1 Design A - Systolic array
system ParameterSececcceccsccesssce
4,5.5.2 Systolic design B system
parameterst...."l........'.Q..

4-5.6 Summary for VLSI desigﬂoooooooooooo.oa.o

4.6 Chapter SUMMArY e oo e ececccccecocssossososscscvsssscssccsoe

5.0 Hardware Architectures for update covariance

algorithm......-...........o....................-...

5.1 Update covariance algorithm.icescesecscoscccscce

- jv -

RERSENND) "’a' .’ " "‘ "'o' W '0"‘0 |‘ ol! 0'0 e l.‘
‘\g \ ‘,;;s. l. . 4 q‘
A RN ..0 '.'jl“. "‘ '|.

*

e
4‘«U 0 a
. ﬂs‘ﬂ.ﬁﬂ

t\. 0 ""k{\." -\’-_'('

NC DO q
! O’au@l’m‘o ," .|. X .‘\ Xt Np" Ity .!'l.|.

...104
seolll

.O'lll‘

...116

..OllG

eeoll?

...118

...127

...131

I..l38

.s. 140

eseld3
..‘l“l‘
..0145

..I147

ees 150

1

4% §02° %"

1}
O ORI
’l‘ 4 ‘.:,

‘1! 4y

5. ¥y

) . " j M

X |" g‘ l‘ |
" ca'cn
."Ay i " 0‘

I'Q O

\ Q
Uin'hh
" RS

Loading analysis.....-.-..-..................---..153

5.2.1 TInput requirementsSesscesscsssecscscscsoscscsecssalil
5.2.2 Execution Time budgetsBecessessosersocreosseeelldl
5.2.3 Computational loadingeecsseccescoscosvoceseseel5?
5.2.4 Memory requirementScecescesccsosssosssssssosld9

Microprocessor architecture implementationeecssesesl59
53,1 1Initial assessment on the complexityeeseceesl39

5.3.1.1 Execution Time budgets.-..........lGO

5.3.1.2 Computational 108d1ngnooooaooootool6a
DSP architecture implementation...................165

5.4.1 1Initial assessment of the
ComplexitYocooonooo-oooooo-conooooooo.ooooc166
S.4.1.1 Exepution Time budgets.oooooooooool66

5-4.102 Computational loadingocoooooooouool68
5.4.2 Implementation CO“Siderations..;.uooocoooc-169
VLSI architecture...o-oooo'oooo-o-oooooooooo.ooooo178

5.5.1 Algorithm considerationB8ecescsceccccscveccessl?8
5.5.2 Wavefront array design.oo'ooooooo.oooooonoo180

5.5.2.1 Wavefront array design for
function 'A'......................182

55,2.2 Wavefront array design for
function 'B'coooaoooo.ooocon.o.ooolsg

5.5.2.3 Wavefront array decign for
function 'Mﬂt'.oooocoonooo.o.o.-.ols9

A $Q)Q‘ﬁ'"“’ TN Pvr i 'k,'-*;:-,
i'

‘ l" s'. K Q.t'::t'g i)

I

!‘\.
- ﬂj\

m"-.ll
o

L]
X
£
e

0

N U R R R R A N N T O I N O R T S A X T " 84”0ty 0y 0ty "y
(]
()
Vg
t
%‘l'l\!e

o
'\'c".u 1

l' \'.,

5.5.3 System parameterSOOQOio.oo.ooooo..o'ouooo.o194 ‘.'|'.

3:6-.\.
k\}:‘

5.503.1 HOS'\'.;..-----.......-.n-uo.oo......1914

5.5.3.2 Wavefront array bus

bandwidth..'......'...............195 %.’

N

N,

5.5.3.3 Buffer.......'....................196 ‘b

5.5.4 Architectural considerationSeeesccescscsceeesld6

5.5.4.1 Speed Variationaooooooovoac'ooo000196

5.5.4.2 Clock SkeWeceoeooasescscsocssooseeld9

5.6 Chapter summary.o.o..o'o!l.t.oo.-ooc.o..tooc901100202

g 6.0 Conclusions and recommendationNSesseecoscosccsoscsscsesesseesl0l

ReferenceSO.oooocoooolooboooll..o.oo..to.l.o.o.o.00000000000209

A AT O Q.\ V&Y T N A SR Tn M T L
;,¢.¢ :H:\:N. a;} Wf e 3& S SONANS A i :_ el

‘s) ’ . . -"' - o,
& ﬂ AR
: Y l‘ \‘ KA '."';‘ ‘i‘ N ‘.' XN ﬁ.:'s TR -\.’fx(\' oy

k. KR .'\ . ‘,lag.b l (AN MU .

s i‘ ‘s“ i' ‘t‘t"’ NN
"""A“ ﬂ' z;\vt: ﬁ

b
LIST OF FIGURES Fe
oS!
l:.-“*-
et
-.:'x.i:‘
2.1 Assembly code to compute complex multiply- o °
add on the microptocessor MC68020.00-o-otcooooooouoc.7 ;J',; -
\-"\."_
2,2 Assembly code to compute complex multiply- gﬁ» 5
add on the DSP Chip LM 32900.-0o.u..o.oooocoo-..oo.o10 ‘.i
rdG
A AN
\I ¢
2.3 Speedup by advanced architecture with N S
processors Working Concurrently [S]locoooooooo.-oootl3 ‘ﬁf.ﬁ'
.{
2.4(a) The conventional processor [8]eccceeeceesssosecensesld ..QQ;
Wash,
Z.A(b) A systolic processor array [8]-..0.-c'ostnoooooo..o.15 ..':!::
. . &
2,5 Inner product step processor [7]eeeeccececccscencseel5 .‘w:‘
' ﬂhﬁfﬁ
2.6 Multiplication of a vector by a band matrix ;Q&w‘
with p='2 and q=3 [7]...oooo.oooooo.ooo-aooooooo..onola ""“‘Q
‘-".'x
2.7 Linearly connected network for matrix- ’“‘.
vector multiplication [7]000........0oooooooooooooola g2 .
AL
2.8 First seven steps of the matrix-vector) ﬁ%
multiplication algorithm [7]00oooooooooooo.oo.oo.ooclg 'f.
. g
LY
2.9 Various systolic array configurations [8]eceeecccesss22 X ;‘
TR
2.10 WAP Configuration [10].--........o.-................zs ‘»'\'::;‘f:'
'h.:-i'.‘
2.11 Interprocessor handshaking scheme [ll]ecececsccncessds ngyw
N
W)
2.12 Array processor system configuration [9)ecsecececsess38 *“:’
o0
. PJ
o,
ool
3.1 LMS-controlled Adaptive Atra)’ SYStem........-.....--'43 1; .".‘.i
ATy
3-2 MSE Performance Surfaceoooooo-o.--ooocuooooooc.oootol’6 O
3.3 Partitioning of LMS algorithm for hardware
tealization............-o........................-..49
3.4 Feedback loop and lower limit on arithmetic
speed [15]....‘...’......l..'........'............‘.49
3-5 Reference loop...o.....-............................52
3.6 General structure of LMS algorithm....-........-....58
3.7 Operations performed in one of the sections
of figure 3.6....0...0.00-‘ooo.oc.o-o‘oooooooo'ao.-oss
- vii -

s 5 G T SR i, "- AL Vs q ;
Wy Y '“'.t'n '@ LD Q Ny ‘\"-«"!. .,ﬁv‘..‘-y-‘n” a L N Ty \‘\. -

!‘i s' DML : R I \\.a \ ~ y
PR e e e

2) t ' "‘u.

'=‘v i DANCA AR t\’ M e 'zo",t ey ‘:.' .)J!\' b s"’*\"‘t ! !".l‘- e .'.J!'n'. e n'-

4o ard Al ot e raroiat Fat 82 FRTNAN vaY ()" det gas et Fa" e ® 0 8y 0 Gp o AT #a¥ ba" 0% 0<% $a® 00t et G 50" Sa® 0y 05", 020 K0S Bt &6 “2a?™

MR s
S
)..\{"u.’
s
)
.r; v
alee
3.8 Microprocessor system design of LMS N, ,'.
algorithm...‘.......Q.“.l.....I.'.....I....Q...ll..64 :‘
f
~v
3.9 Task scheduling using microprocessor "‘."';'
architecture for LMS algorithmiceeseccecsocosoascsesesebd?/ ._,».,-"
. %
DAY
‘ Ly
| S,
4,1 Narrowband signal-aligned array systeMececesscccscsecs84 a.f
4.2 Partitioning of ¢-LMS algorithm for AN
hardware l‘ealization-....-.-........................92 :_-:;:;::
T
4.3 DSP architecture system design of the c¢c-LMS Rl
algorithm-oooonooooo-.nooooo.oooo-.no--ooooo-oo....105 '::_,d;:::'-‘
SN
4ob Partitioning of the 'Mat' function of the .
c-LMS algorithm to be computed in DSP Q:r.;]
architecture SysSteMesossescessessccsscsosscscsscoseell? F:._;
)
'.""..
4.5 Task scheduling using DSP architecture for ;\'::::5
C-LMS algorithm‘.......‘.'.....I..........l.......llog .‘l.-.\
4,6(a) Type of processor used in Systolic array #1 ,:.:":ti'
(design A)..................‘.0..'l.......‘..‘.....120 :":‘.:..'
HASGY!.
4.6(b) Type of processor used in Systolic array #2 .t‘::: ;
(deSign A)..'.I.......'.......'.......l.......l....120 ﬂ‘.‘m
ol
4.7 Systolic array configuration to compute 'Mat'’ e
function of the c¢-LMS algorithm (design A)eceeeeesal22 A
-::}'\
4,8 Systolic array implementation of 'Mat' :.,:'
function of the c¢-LMS algorithm (design A).veseeessl23 . ‘
. S Ly
4.9 Example gate rates {ZZ]eeeecs.coeucecsssoscsessscnansslld ‘:-‘::';T'
e
4,10(a) Type of processor used In Systolic array #1 :-::f}t
RS
(design B)'l.'..l...l....‘...ll......O.......C.".O133 F-\::-\:\-k.
4.10(b) Type of processor used in Systolic array #2 NFATY
(design B)....l..................Q....'.".l.l.....133 .‘t{:"
R,
RO
4.11 Systolic array implementation of 'Mat' :-:."_-'_:"_::
function for the c-LMS algorithm (design B)i.cesossa.l3é -}::.._.
b.12 Complex multiplication-additioneecceeescesvenoceececalldb G :~
" <
4.13 Interface system for custom VLSI chips [l2].4sceeessldrl
- vijij -

i

e]

SO A AT, S A
n‘::";"ﬂ" o DN BnRutlan oty
R
£)

P p) Yo e e i, W
; o m~ e
¢ § AN An ey e 'F "'ﬁ?f-f Lo AR s RSy
“‘O.‘A.)’-"!))’f NG (e 3 ‘.‘ba‘i.. M ‘y"&nﬁl AT e ™ of
; ;*'\‘.'t""."..f&"._t rj':.,l?'.;’q,"_g:‘!;:ltp \ Vo b Pt S, A ¥ m = 'y)

)
L4 48

'.f.t I

40
OO
REATLAN

)

Hn'o\ !l o
"G KN QQ‘Q';,O. Vo I
2,8 ‘“‘Ol

1 ,‘s“;tt’. O
“ﬂ%ﬁ!‘

“
\J I‘l Q' o) ." ..' (U
o WY, :‘ \ s“ QUNRN

Partitioning of update covarlance algorithm
for hardware realizationeieccecececccecscscscsoccccsscscsonseldéd

DSP implementation of the update
covariance algorithm....--.................-......-170

Partitioning of the functions of the update
covariance algorithm to DSP chipSeesescsoseseal?72, 173

Function scheduling diagram in the DSP
architecture environment for the update
Covariance algorithm..oooocoonoll.0..0....000.'.000175

Wavefront array to compute function 'A'.eeeeseseesslB8é

Matrix data flow language program for
function 'A'.........Q..'.l...I....................lss

Wavefront array to compute function 'Mat'..eceeeseeol90

Matrix data flow language program for
‘Mat‘ functionoo.c'.-o.ootoooooulo.o...o..o.l.‘...l192

H-tree clock distribution network for
square arrays [ll]......................-.o........ZOO

Clock skew Vs N [11]....-..........................200

:l"‘ .':'::!‘ﬂ. .". \. '

“. ‘\‘ ‘.' W

-

.s’ Y o' "'t'":..‘.’

WO n‘ l' N

.‘. o .‘J,"l.!'a ?" "\‘.i '\‘% A

SRRt rh o *

et

|. e Pg‘\;\: . xk\ yﬁ‘& 3$-. :‘:‘é:?vz \ﬁ\-

"-.-w.

._‘f,.'(“'}::i::'\ \in

SR R

D st R Tt a8t g et gt e i avh gt atRtabRtatatala vt v et $aU $a2 1k 4 20 $ 00 5 0 R A" 0 8 1% Y 1% 1 e A AR A -k A Y

Ta

v_w
1 .,{\
P
,u'f
e
Pal

o
]
[v
J

.
>,

"V’
<

DA AN
2T YA
o
T
LIST OF TABLES PR
:)_:f,;-f‘-'
W]
RN
RN VAN
1.1 Complexity of the adaptive o
algorithms considered for Studyeeceesscsceoosososnoocsssel
2.1 Computation functions and desired
VLSI Structures [8]..'.............‘.......'.‘......23
3.1 Convergence properties of LMS algorithm {1l)iveeeeeea52
3.2 Computational complexity of LMS algorithmececeesosesd6
3.3 Assessment on complexity of LMS algorithm
using microprocessor architecturecescecsecscsccsesasbdl
3.4 Timing summary of microprocessor
architecture implementation of LMS
algorithm.....’l..Ql.l...'.......'0...0....0..."..'68
3.5 Processor utilization for the
microprocessor architecture consideration
of the LMS algorithmececosceocecosccscccscoscssonassosssb8
3.6 Assessment on complexity of LMS algorithm
using DSP architecturesceceesesocosssosososcssosesossell
3.7 Timing summary of DSP architecture
implementation of LMS algorithmMeceeoecsoscsncesscossel)d
3.8 List of compute—-bound and input-output
bound functions belonging to LMS algorithmMececeeeeses?8
3.9 Execution times required for LMS algorithm
using microprocessor architectureesecesessoosescceose8l
3.10 Execution times required for LMS algorithm
using DSP architectureOC.IOOOCOO...'...l.lt...ll...l82
4.1 Computational complexity of the c¢-LMS
algorithm..................-........................95
4,2 Assegssment on complexity of ¢-LMS algorithm
using microprocessor architecturescssssscecsosrncssed8
4,3 Assessment on complexity of c-LMS algorithm \!V
using DSP architecture.sscesicescsscscscccosncscocsssscseel02 wi
\\
¥
X ‘!:"l

%5, O it b k , DN A A PNIATININ A 3&; S e 2l ity o '
SR st
R e §" N -Hﬁ....

L’:"\ ALY ".l..I- AN

:1!.. ‘.| " ."’.

uuu x4

OO SRR A WU R U 4 X X UU AN RN ORIV AR A APV TR Y A UL WU DR U IR W RN (s "g’l‘

i, d)

4.4 Timing summary of DSP architecture
implementation of c¢-LMS algorithm..................lll

4,5 Processor utilization for the DSP
architecture consideration of c¢-LMS

algorithm-uoo.o'.o.‘.o.o'oou..olo.o.o.‘t..oo."l..o112

4,6 List of compute-bound and input-output
bound operations belonging to c¢—LMS
algorithm..........-...............................115

4,7 Systolic array system design summary for
c—-LMS algorithm..................-......--.........146

5.1 Computational complexity of the update
covariance algorithmMeceaceeseesescosoccsossosnscsecsseecll8

5.2 Assessment on complexity of update
covariance algorithm using microprocessor
architectuUr@eecesescscossccossossoscessossescsssacscscseelbl

5.3 Assessment on complexity of update
covariance algorithm using DSP architectureecesseceeselb?

5.4 Timing summary of DSP architecture
implementation of update covariance
s, algorithm.....-.--....................--...-.......176

5.5 Processor utilization for the DSP
‘ architecture consideration of the update
W covariance algorithm--.................-.......o...176

5.6 List of compute-bound and input—output
bound functions belonging to update
covariance algorithm-.............................-181

5.7 Summary of VLSI architecture parameters for
update covariance algorithm........................197

Cteale by

: 6.1 Complexity of the adaptive algorithms for
A the various hardware architectures consideredecece..205

6.2 Time/iteration achieved by the system
architectures developed for the best suited
architecture......-........................--...o..206

- Xi -
REATe0 ‘! O il tas T Wty ISR -.' \"" \."\."'\"". W N '\.' .
‘ W as W z' l.'.lq n‘::: .‘ " .. Hj::iﬁ‘g.l " $ \Ji\r "r\ ’“\.’\f .r . -r.'r‘.r J\E\:f{: L ::;‘\-'
) a.t. %l#'o,:’! it ", A b \ ,!.‘,::.'\ o N "a DA .r‘v" e \{
S04 ¥ M) oh“ B ‘q'l "l"‘ Ny o'b."" 2O .ﬁ:{ . 'l. (ot v'!' AW

7

oL 5

ad

-
-~

o -,

A 0

e

T T N S O R N T N T L PN SO O YO O O R RO RO KO T TOT IO K PN TR K P A R T WO ~.';"'~.‘

i
o
1.0 INTRODUCTION ;g&%
Conventional antenna receiving systems are susceptible to :.ﬁﬁ’
performance degradation due to the presence of undesired noise ‘!!&
signals (deliberate or natural) that enter the system. Exten- ﬁféﬁ
sive research has been conducted 1in the area of adaptive i$§§
antenna arrays as a means of compensating for the inevitable fftv
presence of these interference signals. éj;g
Adaptive arrays can provide a vital element of flexibility 'éﬁg
to a communication system. They can respond to changes in the "tf
interference environment by steering nulls and reducing aﬁé&
sidelobes 1in the directions of the interferences, while main- ﬁﬁﬁl
taining an acceptabie level of response in the direction of the : jg'
j desired signal. These features make adaptive arrays systems i;:g
very attractive for applications in which the environment is ﬁ\;ﬁ
changing or unknown. o
. The heart of the adaptive array system is the controlling :%$§
algorithm. It determines not only the method that is used to aigs
adapt, but also the speed of adaptation. The focus of this :;;
study 1is to evaluate the various hardware archi?ectures that ;ﬁg
can be used for implementation of the adaptive control algo- ;%ﬁ&
rithms. | .%
’ . . . ' R,
Three adaptive control algorithms have been considered for 3 J§5
hardware evaluation. These algorithms comprise a fairly repre- Uﬁ'&

sentative set of adaptive algorithms in general. These algo-

rithms are:
1. Least Mean Square Algorithm

2. Constrained LMS Algorithm

DO HORX O ‘4';) ‘;{_ ALY "‘_"'-‘\'\."-. *-.\-'\,\.-.,-_-\
i ""n‘,‘l‘ .‘c KON f V;‘\ t{t - d‘ AN AT AN LS
.‘- . h‘ Q:. ‘ .’. “ .). ‘..'..‘ \' ‘- M .‘\‘F .NJ\ '\-j' '. *\) "-*\ oY

U \,
*m"vﬂﬁﬂ“ N” R %mﬁ\.m“w! A A T

AN NN IS IS AN SN AR KA R YN R NN U N WL S Y WO ST OO OO I O N Y Y R

3. Update Covariance Algorithm

The hardware structures considered are the general purpose
microprocessor architecture, the digital signal processor
architecture and the VLSI architecture. These hardware struc-
ture comparisons are based on complexity. The complexity of the
hardware structure 1is determined by considering the computat-
ional bounds, input requirements and characteristics of the
architecture. The computational bounds of the algorithms
studied here is shown in table 1.1.

This study 1is concerned with the evaluation of a
communication system operating in the HF frequency band. The HF
band, which spans the 3-30 MHz range, is commonly used in
military communication systems, and has been modeled as a
slowly varying channel. It has been determined that the HF
channel can be considered stationary for times in the order of
100ms. Thus, an adaptive algorithm must complete a convergence
(obtain a set of optimum weights) during this period. The
average number of iterations required by the adaptive algorithm
for a convergence has been determined by previous simulation
studies [1]. These previous simulation results guided the input
requirement for each algorithm. Since the computational time
per iteration is small, fixed-point impliementation is
considered. The architectural analysis in this study is
focussed on 36 antenna elements.

The first section of this report is devoted to the hardware
architectures used in the evaluation of the adaptive algo-

rithms. The characteristics of the architectures are

_,.N o N'(.'&". A%
!

N "'ﬁ"‘:‘ a“

an c"': '. ,a QORI ".’:'
|\| ‘.! (l . . ll'
a’.‘.s’ .s':‘l »n’. ::n ,czi.‘ 'nc A"‘l'
AUNDEONCS il T

S:.l l.\'

RN

*\f\
.

" ' Y“' <

ﬁ'.-...
'2:-'-"!,3'.

’o..'o'.'«"‘

:’J g-i‘.

R
°

'e'q,.v.;a.

)

§!

"‘ L
%”a"’.

AU LA LN 0 fa® .1 SaB Sat §, % Jo¢ a0 ¢
T O O O R R S KSR TN AR O SWNS U AR U V) U .". !‘

Table 1.1 Complexity of the adaptive algorithms considered for study $?0Q

Complex Multiply

Algorithm

LMS

Complex Adds

————

Memory

2N 2N + 1 2N + 1

a
c~-LMS N‘# 2N Nz+ 3N N + 3N

update 3.5N"+ 4.5 N 2N+ 2N N+ 2N

covariance

h z.; . F)
22

R R B A AGTCSOOGOOOO OO

L ey

SR LN A S Weral 9% Wy 47y %9070, (Y
s A B LE RSP NN OO0
"A“":t?::‘@:f‘““t ‘3!"':““:'3":*'{~.‘:’ii‘:’l?:’ WA

(ol .l#oh LN
'.u’.-.ﬁ':ﬂ‘&‘g: :‘!‘:’:’:"?:‘- e, ";:!o':!o':?u':'.l’:’t'o.

highlighted. The Mc68020 (general purpose microprocessor) and
LM32900 (digital signal ©processor) were chosen for the
architectural analysis.

In the following sections the feasibility of the hardware
structures for each of the algorithms 1s examined in detail. o
Presented 1Iis a 1loading analysis procedure which aids 1in
determining an initial estimate on the computational loading,
hence, the complexity of the algorithm. Possible system design
architectures are provided for feasible hardware structures.

The time/iteration achieved and the memory requirements for the

data storage for these system design architectures is deter-

mined.

The LMS algorithm was considered first. As the LMS
algorithm did not possess any compute bound operations, the :—
VLSI computing structure was not suitable. The DSP

architecture was the best suited, for the complexity of the
algorithm using DSP architecture was found to be much 1lower

than the complexity using the microprocessor architecture. The

c~-LMS algorithm was considered next. The complexity in imple-
mentation of the algorithm using the microprocessor was too
high and therefore not feasible. The Systolic architecture was
determined to be better suited than the Wavefront architecture Aht
for the compute bound operations involved. Again, in this case
the DSP architecture was the architecture of choice. Finally,
the update covariance algorithm was considered. The complexity a0
of the Wavefront architecture was high and therefore not

feasible. The DSP architecture is once again the recommended

N ._A.(x'\,‘"z-.,v’f}. &5 BN OBRSSINIAS)) ‘ o " .(.-‘(. ---------- SRR .“-

S) Mn);!ghl in \nﬂ- - .\\\\x*_ “,.
LN u‘ A*.’o ,‘1‘.". !',‘\H ‘ ’ }n\.ﬂ' n‘ $ e T \;E”\\:.

A ‘_‘

‘ v. " ‘.
’. '.‘. ‘.‘)

.
.
|
e o D l‘b v “k "h"l ‘\‘. “i»"’a " .h

architecture.

The final section presents recommendations on the hardware

structures best suited for the adaptive control algorithms,

H‘ Q) l
l' C
i.g 0"0‘..l'|

g’ .) .ﬂ q’ ‘;' ‘,' .

"ln .h
’..l".l':;‘
i

. U
" A ..n:)

‘... 'I
i
‘ .' "‘
.) .‘l .‘.

.
'.l‘o‘b"':'
..u\..

‘ﬁﬁN

.“: oN
)

!“

.Q
"' .'

"'t"»'.

2.0 HARDWARE ARCHITECTURES

This chapter introduces the various hardware architectures
used for implementation of HF adaptive antenna signal proces-
sing algorithms. The hardware architectures considered for this
study are the general purpose microprocessor architecture,
digital signal processor (DSP) architecture and VLSI architec-
ture. The characteristics of these architectures are discussed

in this chapter.

2.1 General purpose microprocessor architecture

One of the computations often encountered in signal proces-
sing algorithms is the multiply~-add. This computation is
denoted as AB + C -> C, which implies that the new value of ¢
is obtained by the addition of the old value of C and the
product of the two quantities A and B. The general purpose
microprocessor architecture’s arithmetic 1logic unit (ALU) is
not optimized to this computation. As we are dealing with
complex quantities, we are interested in complex muitiply and
add.

The Mc 68020 microprocessor [2] was chosen for the anal-
ysis. The characteristics of this microprocessor are:
1) cycle time of 60ns
2) multiply to add time ratio of 6:1
3) performs a compiex multiply-add at the rate of 0.5 MOPS

(figure 2.1)
From figure 2.1 it can be seen that the mulitiply to add time

ratio is 7:1. This analysis uses an averaged ratio of 6:1. The

- 6 -

I AR RN ARBASA SN DA OGN IOLOL KRNI LA WE A AN O N VO e e ¥ M W e e
R Mty it a0 ot W Y e it el Bt b et 0oy .."‘ e, i P P LN
P SO OEOBONUCOOUNIOL OO N v S UAY) 3 W i W A Y '

; :s N I?:,.o','ﬁ.'o.e‘n W V"?"’:r"'.é:':::::"' ..t (,_.r ..:: n.;.l. 0 N a._.;\.?”?:q- ol .Ff,” [y
$ »

O
A ,3#2."..‘.. 4
~ ¥ -

LA/
'ii:;.l:gh
AR

Wy 0'04
Ayt
-@\“_\.‘3.@.

Bl Vot o 0 O
24 :*v',:"fo".r'"f:"f: WAL ! RN Ny 'l:!' W ':‘:"‘0"

o

e

23
>,

ry.."'

e

=
S

T

U A/

J

\

a (M

Figure 2.1 Assembly code to perform complex multiply-add
computation on the Mc 68020 microprocessor

The computation involves the product of complex operand A
{moved in from memory location pointed by address register Al
to data registers DO and Dl1) and complex operand B (present in

memory location pointed to by address register AQ). The result nnt s

operand AB is present in data registers D2 and D3. The final n¢$$

addition is performed to get the new value of C by peforming QQN&%

AB + C -> C, where the old value of operand C is stored in hﬁﬂ&%

data registers D6 and DT. 'fﬂh

code cycles (worst case)
move <Al+ > DO 1
move <Al > D1 7
move DO, D2 3
move D1, D3 3
mul <AQ0+ > D2 48
mul <A0 > D3 48
sub D3, D2 7
move. DO, D3 3
move D1, D4 3
mul <AO0 > D3 48
mul <-A0 > D4 49
add D4, D3 7
add D2, D6 7
add D3, D7 7
-7 -
vt 'v N \uat AN 1*\';::.:

ERXT U0 | NN O DI
o e ’n’ ’a KIAK AR ;"«‘ I‘H‘
.".\ ,:\ : X ‘ ‘Q ' Q‘ 'l\.‘ “l i.) Q‘ "l ..0 .I |' ‘.0‘..

W ’o %) n. .'n..,o.

Ry

0
o
A ,’; ,’n ,".,‘ .‘a ,.\ ,‘ ., e ‘ .,0 .‘l u o ‘l,:'q,} u e |' ,h .‘0 0 g.,' S .\l .:‘c O ,,:II.‘A

a""h' '

R U O U T O R N X T N N RN UK PN UV Y ON U m“mmmmmmmavwl(s

add operation indicated in figure 2.1 has the destination of
the result as the register, but on few occasions we used the
add operation in which the destination of the result was a
memory location which consumes 10 cycles, providing a multiply
to add ratio of 5:1. Thus we averaged the two to obtain the
multiply to add time ratio of 6:1.

The number of cycles the microprocessor takes to perform an
instruction is 1indicated for the worst and the best case [2].
For this analysis, the worst case was determined when the
microprocessor required 247 cycles to perform the 8 operations

to provide a computational rate of 0.5 MOPS (see figure 2.1).

2.2 Digital signal processor (DSP) architecture

The digital signal processor’s arithmetic 1logic unit is
optimized to perform the multiply add operation. Every instruc-
tion in the digital signal processor takes a fixed number of
cycles and does not vary as 1in microprocessor architecture.
Another characteristic of the DSP architecture is that the time
taken to perform an addition is on the same order as the time
taken to perform a multiplication.

The DSP chosen for the analysis was the LM 32900 [3]. The
processor’s three-level pipelined architecture allows the
overlapping of instruction fetching, decoding and execution,
such that all three operations occur 1in a 100ns cycle. In
addition the execution of most instructions is only one cycle
long. The pipeline extends to four levels, the fourth level

being the accumulation operation for the multiply and add or

Lnu»t,'“. ‘h WY .o o
"§’J ﬂ.’nbg’:'ﬁ ’l'l ' ‘a‘k ..;.
,:0 ,.’a :" "“‘ “'.b “ .' :': '..I". ‘: ."h' .":. k. |." & $\-
H 0

R e oa‘\w AN Tl
RN ””!‘o"‘\ NNANERN w'; " D'q o .‘0 l,.” o‘l “‘“"“I.

“w

multiply and subtract instructions. Consequently, (from [3]) a

multiplication-accumulation will likewise take, in effect, only

one machine cycle when followed by another. Two operands are

fetched, multiplied, and scaled 1in one machine cycle; the

accumulation occurs in the next cycle, but when followed by

another multiplication-accumulation it occurs at the same time

as the next multiplication. Thus if a sum of products is to be

calculated and there are 32 products, the sum of 32 products

would be available in 33 cycles (n+1,

where n is the number of

products). Program 1is written to perform the compliex multiply

add computation (see figure 2.2). The result of our analysis

show the DSP chip chosen has a computational capacity of 5.7

MOPS and requires 14 cycles to perform the 8 operations for a

complex multiply add.

2.3 VLSI architecture

There are three primary reasons why general purpose unip-

rocessor computers, especially microcomputers, met with

have
limited
[(4].

major

success for high-speed signal processing applications

First it has previously been shown [26], [27] that the

computational requirements for many important reat-time

signal processing tasks can be reduced to a common set of basic
matrix operations. These matrix operations involve a variety of

elementary operations such as multiplication, vector rotation,

and trigonometric functions which general purpose uniprocessors

are not efficient 1in calculating. Secondly, general purpose

computer architectures provide only cumbersome address

s U 9 A T ey
OONLAONOGH J

‘l.; .i' $ "’Q, ﬂ" ll."tv::i’. l‘:l‘g ~d
) -"."’. AN x‘..i';l‘.'"v 0'|'.l‘.‘l".0.|l|' X
LALLM TMT Y y
BUISKN f‘a':‘:‘t'a}'a."u"f'aatgu‘.‘v.:‘vii'l.:h" !

v e 000 Ko S RER
et ety e '...k‘
OBGY el ity '::::'l'.h'. o E:\\:'\ R
R e R e T A XA R)
Jo'.‘t".'a'!'n"'c".'“’.'n':'n"h'!'n‘:‘s':'-‘!'-‘:'o‘!‘n‘!‘u‘t‘.‘!‘o‘!’n. ,

e

A - A

Y, 0 ‘
e R)

TR P
AWt
.\M "
S
SRy
N“'
A ¢
& R
@
o
8.1!52)';'1

vty

R
T
RS

2 A R N R T U U L N WU UL N ML W RUPS R &R Vet 8 et i a o < b 0ah Cal valk k- a) Vol igh ¢

»

e g

r
-
o X

}:.
Ks

=8
=
o

=

S

Figure 2.2 Assembly code to compute a complex multiply-

- add on the DSP chip LM 32900

move rd >> acch 1 move the contents of register
r4 to accumulator high

move r5 >> aeccl 1 move the contents of register
r5 to accumulator low

mula (rO+1)(rl+l) multiply the contents of the address

3 pointed by rQ and rl and post inc

them and add to the contents of the
accumulator

muls (r0-1) rl multiply and sub

move acch >> r4 1 move the contents of the accumulator
high to register r4 (real part)

move acel > 5 1 move the contents of the accumulator

low to register r5 (real part)

move r6 >> acch 1 move the contents of the register
ré to the accumulator high
move r7 >> accl 1 move the contents of the register
r7 to the accumulator low
mula (r0+1)(rl-1) multiply and add
3
mula (rO0+1)(rl+2) multiply and add
move acch >> r6 1 move the contents of the accumulator
high to register r6 (imaginary part)
move acel > r7 1 move the contents of the accumulator

low to register r7 (imaginary part)

- 10 -
SR 1“: TR "““’“*\z::xﬁ-»
' "..l'. .l: ‘u’ ‘ ' . l'.n ::.‘ '.".. \J l' ‘\ 9.5, % !‘ 4 ..~ "3\“ \.‘

T R N U N N U U VU WU R A PN POl A Y U NG RN P AN LA UN LY VY UW U APUAP RIS S At gl "alia aVs 4*s 3% """.‘ |;’l

Yy
s

)

arithmetic for data structures, such as circular buffers " that .‘:'::I
occur frequently in high-speed signal processing applications. %
And lastly signal processing algorithms exhibit a substantial \v'::
amount of parallelism that is not effectively exploited in a ’::
, . . , a':':':':
uniprocessor system. These signal processing algorithms are .,:..E:::::::
extremely computation intensive requiring on the order of Naor "“.
quultiplications for each set of date. Clearly, orders of :?;::
magnitude 1increases 1in computation rate are required for real *::j‘rzz_,
time implementation of these advanced algorithms. :"i"-::"
Despite the tremendous growth in digital integrated cir- ::‘?{:
cuits over the last decade, one cannot simply look to further ::::':'
advances in device fabrication to satisfy high computation "'!':
need. It has been concluded [5] that barring any unseen :::.;::E!;Ef
breakthroughs in signal processor implementation technologies, :.?.::'E
the orders of magnitude throughput gains necessary for real ..'.'
time computation of signal processing algorithms must come from | "':'s:;
architectural advances, i.e., the efficient utilization of
parallelism in computation. "'
The most straightforward approach to parallel signal :FF
processing architectures is to connect a number of CPUs to a
common bus. However, performance 1improves linearly with the ;%
number of processors only up to the point that bus contention R::;
problems become the limitations. Minsky’s famous conjecture is, A ﬁ;
that for a broad range of algorithms, the conflict between N TN
processors for access to shared resources along the common bus E:;::"
1imits the performance improvement to TogyN. Modern "supercom- E;{E?:
puter” designers have utilized a number of parallel-processing 'l".':

- 11 -

..#‘V >t .x_.(,s_.ﬁ o .',\.(5 «.j: .r o ._::.:’\ N
. \'J\\- o

\ Il
wh ﬁ.“.‘\-

'."l"l.‘

0'-0‘;‘1'!5‘!‘ |‘lg5|l|lgi‘
_0’ .|" 9
0 ’,: :1:“‘0""":':’ \
“i n N

L

‘M.’ f'uz"h's"
L “’ .1
f

b ‘l \v“])‘
R
‘

\ R N R O R N O O N T e AN NN W TN W AR NV RN R RN N NN N Valy "!"0"‘""'."0""]

V)]
A
®
stratagems to 1improve on this state of affairs and are vty
e
[st
achieving performance improvements commensurate with Amdahl’'s Q-,.::.:
Oy
law: namely, N/log,N. »-’
This traditional design of parallel computer languages “jn
A
suffers from heavy supervisory overhead incurred by pindt .o"n}f
) 9,59
A
synchronization, communication, and scheduliing tasks. These vl
R
severely hamper the throughput rate which is critical to real :.-:;.:;:-
N:‘;q'*."
time signal processing. These problems led to the development ?,-:_.::;"_
Ve
of special purpose systems, Systolic and Wavefront, which yield :"'-";*-’
a perfectly efficient performance improvement factor of N. This ".:':::.‘e
iy l""‘i!
is shown in figure 2.3 "*:"5“',3
BN
Of all the parallel architectures, Systolic and Wavefront -5-15"
architectures are the most promising. They provide a ::'.‘,'
b
combination of characteristics for utilizing VLSI/VHSIC tech- “'%:
SONGAN
nology for real time signal processing. The modular parallelism R he
with throughput directly proportional to the number of cells, C-}.* :{
l.ﬁ
simple control, synchronous data flow, and local interconnects, :,-‘. ‘::
N R,
provides the sufficient versatility for implementing the matrix \W:
MV
operations needed for signal processing applications. ™ ;.ﬁ:
o} '.‘
In the next section Systolic and Wavefront VLSI computing N ’é.":
B
structures are introduced. The timing analysis for the above s "
architectures are also briefly considered. In the final sec- 'TjI'_'::"‘
tion, the nature of interface required by the Systolic or :*::ﬁ“l
RN
."‘-“
wavefront array to be integrated into a 1larger system is A
», 4
presented. _ ::‘:'.C‘;i:‘\- !
RS
RyEhAG)
.-.‘,\ju.
Modn!
a0
»
P,
- 12 - ‘gq

v" o

LNk ’c A v g
S o t‘ ,‘p AARR) |‘ 0'1";!."|) X .'.Q'
l

NN han q't"l, %Jvr"’:hdh \ ..‘N o :ﬂ\'; NN V":\'
1:.1’ :’ ’;"A‘” *0"’.'“ :'.:":":':I:.‘):’:"l' e .“ ‘lﬁ..' 'ﬁ?‘ ' l‘ % $.“

LA ' 'a' u’.‘ﬂ.'s".‘a' b"‘s‘ e 'l".““l' y A'

l.' .‘l .‘I

. v - 'Y % . - N 2 2% $a? 0 Bt oV ot S 0’ $a" Be? PR TN
“x.‘il.i‘:.riviv.l.v.-‘n‘v.,‘-".'..‘. 90 0 G40 PV Go $a¥ §20 th’ 82t 8" Bg* b ...".

-

YOON, £PFICIENeCY
WYITOLIC AARA YY)

NIRYY COMMCTURE
(TYPICAL BUS LI TED
WAL TIPROCESIONS)

KoV
1 L .

UG OF PACCIIIONS. N

Figure 2.3 Speedup by advanced architecture with N \ '&o‘\'.g:
processors working concurrently [5] et

- 13 -

I *"‘"«.s"'s"'«.v.-."\-'s-\
. X J'MJ'-?«‘\\
'\. -4\'_4.\-\. "&a':.‘,!

'-
AN k’"' W l:'a' *‘u\'c.i'u 'c.t’n!'n. e 4* RN

TR R R AN TR U FY R PO WG R S RO R R O T O RO T RTRTRITURURY

2.3.1 Systolic array architecture
VLSI processing structures are suitable for implementing
'compute - bound’ algorithms rather than ’input/output - bound’
computation. In a compute bound algorithm, the number of
computing operations is targer than the total number of input
and output elements. Otherwise, the algorithm is input/output
bound. Any attempt to speed up an input/bound computation must
rely on an increase in memory bandwidth. Memory bandwidth can
be increased by the use of either fast components (which could
be expensive) or interleaved memories (which could create
complicated memory management problems). Also the input/output
bound problems are not suitable for VLSI because VLSI packaging
fi must be constrained within a 1limited number of input/output
i pins. A VLSI device must balance its computation burden with

the 1input/output bandwidth. Speeding up a compute bound

-

computation, however may be accomplished in a relatively simple

e

i and inexpensive manner, that 1is, by the Systolic/Wavefront
i approach.
This subsection overviews the basic principle of Systolic
architectures [6]. A Systolic system consists of a set of
; interconnected cells, each capable of performing some simple
operation. Information in a Systolic system flows between cells
in a pipelined fashion, and communication with the outside
world occurs only at the "boundary cells"”
The basic principle of a Systolic array is illustrated 1in
figure 2.4. By replacing a single processing element with an

array of Processing elements (PE's), higher computation

Seano N Y N A TR R e T A ONIRG S LA
BRI e‘. !’g‘i“' ..:" 'u’ 'n“ n’.‘t' 'n‘ 0'.'0: :'.. |‘ ¥ N ~ -“'» o) '\,._\‘ '\: o -_.,: M ::' RN : N “',.:‘x “:.
T ~"’~ i l .
) n 1“')‘ " 1".":". “. .. "’ . : ' h.' .’:".‘ ~ "’ '. . . R{- ,\f\ &Jﬁ\f‘.""¢\; > .\‘.\q#'- :.\.n
\'. Q‘a I‘n l.o l‘g LN ‘l','l (X ‘ .. l'. |"‘D‘.,| |.I .‘. ..“." I. " .' X " e ‘. n R " " \ .

650t
Memory R

PE $":-"'~'3

Figure 2.4(a) The conventional processor (8]

«"i‘:,l"

c.""

Memory

.".‘“
Yot
".‘.32‘.'.-
°

o 940 §.
PE| PE| PE| PE| PE| PE "',"‘
'

d Qlt
Figure 2.4(b) A systolic processor array (8] S

N "
A YRR
C<=-C + AB ,\’.N‘
Y b
\ l W
C —

B — —— B

>
'.q
7,:‘
!"’

N,
Figure 2.5 "Inner product step processor” (7] NG

N
- 15 - St

.'\"“J'\‘
N AT N B N A AR A N
’ - f.r./w-r C T I e
DERRIANTAD (A f)) ‘- et e e T A e
A v(‘ R 5, ‘, 4, '.:‘h..’ " \ o W ,' \4;_‘."_.4’\ AN AL s BOAYADEAY
R g' lh‘ L5 3 Q"' '3“"‘.} “|" ' . '. \f / ‘.N‘-\ N\(\N:: '.:. by -'..-. o “'J"
YA, N A . :
. u’ & ,"4*?\' ' ‘.-a. !, ‘l|ll0i.‘ ',' ~ WM' ey

throughput can be achieved without increasing memory bandwidth.

Suppose that input/output bandwidth between a host and a
special purpose system is 10 million bytes/sec. Assuming that
at least 2 bytes are read from or written to the host for each
operation, the max imum rate will be only 5 million
operations/sec. (figure 2.4(a)), no matter how fast the special
purpose system can operate. The Systolic processor array in
figure 2.4(b) will result in 30 MOPS performance with the same
input/output bandwidth and assumptions. This approach ensures
that once a data item is transferred out of the memory it will
be used effectively at each cell.

The basic processing cell used in construction of
Systolic arithmetic arrays, is the so-called "inner product
step processor” (figure 2.5), the processor performs the
operation C <- C + AB (the new value of C is the sum of the
old value of C and the product of A and B) and has three
registers Ra, Rb, and Rc. Each register has two connections,
one for input and one for output. A basic time unit is
defined in terms of the operation of this processor. During
every time unit interval, the processor shifts in data on its
input lines denoted by A,B, and C into registers Ra, Rb, and
Rc, respectively. The processor computes Rc<-Rc + RaRb; and
makes the input values for Ra and Rb together with the new
value of Rc available as output on the output 1ines denoted by
A, B, and C, respectively. All outputs are latched and the
logic is clocked so that when one processor is connected to

another, the changing output of one during a unit time

o ;':‘:'\ ,::9.,0
! HH e
h,ﬁoﬂ)lz“‘ a't'g.\.’.

'''''

ARG

~a

, f,ig" :

)

L 3~

o gn SR S »
ARSEEEEd

N T T I A s,
“\‘ \\}\. e \ hy

interval will not interfere with the input to another during

this time interval.
Illustrated below [7] is the construction of a Systolic
array for the multiplication of a matrix A= (a'}) with a

vector X = (x, y ereeaXp {T. The elements in the product Y =

(y, R 7)Tcan be computed by the following recurrence.

y’ = o
.‘t"l) - .LK) + a:. X
yb ylv LK K
(nri)
Matrix A is a n * n band matrix with bandwidth w = p + q - 1.

(figure 2.6, where p = 2 and q = 3). The above recurrence can
be evaluated by pipelining the x and y through w 1linearly
connected processors. As illustrated in figure 2.7 , the Sys-
tolic array is made up of 4 processors as w = 4,

The general scheme of a pipelining algorithm can be viewed
as follows: the Yo which are initially zero, move to the
left, while the X, , move to the right. The aj} move downf
A1l the moves are synchronized. It turns out that each y is

a .

able to accumulate all its terms, namely, Xg-z r AL

L2
Xt » QL0 X Qoo vt Xig , before it leaves the
network. Figure 2.8 illustrates the first seven steps of the
algorithm.

The algorithm is now explained in detail. Assume that the

IO
RORAEOD a’"""" R0 ..‘o,““ B .. .c R
A A ANNC X it .q, l. .ro
L RO S h.v. .o ' W .l .o .u'\c,t. o
"' W, : :' "' a,‘ :' :"‘n' o 0 l..O, .'0" sl o‘ ‘ 'u'

ORI v"- "N .‘I.g_l,n o A 5'5,.0,')

"'::* !

0" 0'0 o '

I'q ."
YUY

l'.

l."o :

4 .|

ViR ok o L adETatETaty Vi 2 B3 g s g8 gF3 gia IR K W W TS VO N Myt Ut 0 e TaV e et .“'.."‘

.l'::l'. 0

h"ﬁ"
[J
' ::"l V!
OQ' .l
I 'g.fu'l f‘l
—_ et
— — — \ frtad,
_ - DU RO
. v, Y l.g ‘5‘0 ‘l
ay 9y ! ."l‘.l "5‘
| Wi XS l
i q ay ay dy 0 2 1 ®
| ay ayp 9y 9u AR 3
=
Q47 443 des Gas Te '
dsy
0 .
A x y

Figure 2.6 Multiplication of a vector by band matrix
vith p=2 and q=3 (7]

-».153
Ny L
'l:": ..0 (] :
." 6‘3.0’.‘1
... iy (% :5
%) |l R

."'1 h’

| o “ i 'i:-';.‘.
! I
i a53 e :
i l
| en : C ey i
i {
l [22] ay J
l ”
| -
l ay 2 P
K\ e
-~ rd 1
I > a4 -7 I i
I \\\ Pid \ 1
I ~ ' 1
= = =! b= Y1 mmmm
f IS ! 'S — — —

Figure 2.7 Linearly connected network for matrix-vector
multiplication {7]

) :. y. v l H‘, .
b'q 'l “ 4
': X :'0";! W t:..’ ."‘\ G) ’l.

" \‘ n' a' l'g "l' ';,. ‘..

M;

N RSOGO TR TN P2] WIS TORA WRIWRI SR S W o) gt grg g i o) " w7 R R l'l!'
2. 4. b M » Y N 1Y . h Y ¥ o

l‘
'.' !
‘F 'l'!‘ '1'
a;" Q"'!."
‘0
v, '\
) '!..
,:‘m
)
P ~‘o
$a'oﬁ
STEP . i'e:l:o.p‘?,'.f
NUMBER CONFIGURATION COMMENTS .|’.‘|'.‘;‘:!.
lol;l ‘
LXK
Iz
= — = = ! ¥\ 15 ied into the fourth
0 == b = - processor initialized at 0. .':.;‘ '.'."
""Q.l"’
x, is fed into the first .
. - — Y| e— processor while), is moved c'
1 — — — . left one place. (From now
x on the x; and ¥, keep moving ﬂ'h\
! nght anJ left, rspecuvely) ‘
- -— o P -— Yy| @1y enters the second ‘ ' .0
-] a processor where y, 18 0
- ——r — 11 — — updatedy‘-y‘ "Hxl
& Thus v, = ay,x,.
- dy2 and av entes the first
= IR bt e and third processors.
3 —_— %2 —_] % | - respespectively.
| = 5 Vi = ayx *ayax,
and y; =ay 5.
N — Vil — — *3| y is output.
4 —i T2 [— | I | ¥y ey X tanx,
= 5 ¥y may Xy
C—— .\1 — —)'3 o ¥a .allxl +¢::x1 +°UXJ'
3 — 43 | — —| 4 | = ¥y =ay Xy + agaky
5)
) nd = = i Yaf 5y is output.
6 U o =i ™ | —| % | »n T h *ayxy 4y
X x Yo ®ayy Xy

Figure 2.8 First seven steps of the matrix-vector
multiplication algorithm [7]

- 19 -
) q 0 q)
N TR Ry i x"‘;') .l\, "a' n\ ...: 0 .' .:s‘\l .; :: I..\ 4 “.:. l.\“' .' \& Q&
3 14* l 0 \ !
ﬂ .'f.,o‘,ff’* :" t' Yty o"."o \' q k ‘:a ! iy .0'0"‘»\.,
RDARENEN) ‘,c ;‘ ' Loy, ‘n.“n AN '.t " l U.' | ‘.’. .' AATOS AR Q'. ‘q.l o. nihh

processors are numbered by integers 1,2, .. , w from the 1left-
end processor to the right-end processor. Each processor has
three registers Ra, Rx and Ry, which will hold entries in A, x
and y, respectively. 1Initially, all registers contain zeros.

Each step of the algorithm consists of the following operations

(for odd-numbered time steps, only odd-numbered processors are O]
activated, and for even-numbered time steps, only even-numbered ;?ﬁ&
ity
processors are activated): g’g}i:
et
1 .Shift- L) ".'
Ra gets a new element in the band of matrix A. gﬁ&ﬁ
.Q‘ l.q'l
Rx gets the contents of register Rx from the left ﬁjﬁ
: NI
- neighboring node. (The Rx in processor 1 gets ’“rf
a new component of x) Ry gets the contents of }%ﬁ@
gt !
register Ry from the right neighboring node. éﬁﬁ}
‘;";".
2. Multiply and Add. h.‘..
Ry <- Ry + Ra Rx G
O
R
oty
QRN

Using the type inner product step processor, we notice in

the above example the three shift operations can be done simul-
taneously. Suppose the bandwidth of A is w. It is readily seen
that after w units of time the components of the product y = Ax
start shifting out from the left-end processor at the rate of
one output every two units of time. Therefore, using this
network all the n components of y can be computed in 2n+w time
units. This can be compared to the O(wn) time needed for the
sequential algorithm on a uniprocessor.

A1l the moves in the Systolic array are synchronized and

,.‘t:.:‘:‘_’"; ﬁ'.." o l.'ﬁ "Kr ‘T) POV

] AN) wiaple Byt y ety
‘ ORI AN MSEN L A OO MW I M A K N heY
s :’!’i‘ ’:”'" ",‘|>-,.’\"‘:”"’.‘w"'t"’i"'t":.l:.‘ .": o, .':"':':.:‘.‘:"'".‘::::.". ¥
RONGA LM AR A "":‘l AONON i ,V:'n q‘.‘.“l:"
AN 2 '*?:’%’i‘*‘w‘"'..-"!i!"t!"l?“‘:!'..t"‘.D"t!"‘b". IR

data is clocked into each cell with reference to a global

clock. As with all synchronized systems, the Systolic array b

suffers from the problem of clock skew. °
VLSI Systolic arrays can assume many different structures ‘

for different compute-bound algorithms. Figure 2.9 ([8] shows

various Systolic array configurations. Their potential

application in performing those computations is listed in Table

a5
n

SR

2.1 [8].

Py

2.3.2 Wavefront array architecture

Since data movements are controlled by global timing
reference beats 1in the Systolic array, speed variations in PY
computations will cause the array to be clocked at the rate of
the slowest computation thereby introducing extra delays.

A simple solution [9],[10] to the above mentioned problem
is to have data movements 1in an asynchronous fashion. This
permits a self-timed or asynchronous distributed control
approach to the design of VLSI structures. This concept is the
basis for Wavefront VLSI computing structures. Most of the X
algorithms to be 1mplemented 1in VLSI structures involve
repeated application of relatively simple operations with e
regular localized data flow in a homogenous computing network. |
The recursive nature of the algorithm, in conjunction with the .
localized data dependency, points to a continuously advancing
wave of data and computational activity. The computational }3;:.:'&
sequence starts with one element and propagates through the %\“_“

prccesccr array, closely resembling a physical wave phenomenon,

0 40
St T 1Tt
1)‘n X ‘a‘ et 'Qi

R #s‘ o
e ""' :5;""" i":t ""0 '::'r‘ ,::.‘Eﬁ',:?o:t"' ,1".0

SN "i h ML T e i
! ';,,u o ‘« D iy "u t’!"t,‘l“t G ' l.l’o."!.

B I I AV L R VY RV

(@) One-dimensional linear array

I

T

IR

; .l‘aib’
AGAN
.:‘.':‘.1
I"‘z‘.‘d

?ﬂﬂﬂ“

L
% :‘v' 0'.‘ t

At
‘! ".‘. .(

i,
i
's'._t l'i 3

() Two-dimensional square array
(c) Two-dimensional hexagonal array
1 |
r
l
@ Y tree (e) Triangular array
Figure 2.9 Various systolic array configuratiohs (8]

- 22 -
At 10 AT T 0T 1 4T A (e 00 87, 8 5 %, 1%, 0% 0% W
TN W ‘\'.'t'.'t'.'\‘.:\‘.'n'.'u‘.'n'.'0‘.:5';'“.‘3‘.’&'.' Wt 3 e
R A A A SN AR NS h""@:‘. oy
Mol ai.\'.\‘:'n‘:‘s':‘u'. A‘:’c'.'u'.'ﬂ,'u'. W, o'.:c 3 '..u‘. ittty
SF -‘h‘.'i’)\'-’\',‘-\‘%’.‘l".) .l' .‘t' 'Al't’.‘l’;‘ \A ‘.‘\’o.l' \'Q'." t‘n'.‘n‘\. . \

T Y O N O O T IR LY UVLY U UG AL VN TR N N WV ' Q

Table 2.1 Computation functions and desired VLSI structures [8] ‘r@“"."

Processor array structure Computation functions

1-D lincar arrays : Fir-filter. convolution. discrete Fourier transform (DFT), soiution of
triangular lincar systems. carry pipclining. cartesian product, odd-
even (ransponation sort, real-lime prionty queue, pipeline arithmetic
units.

2-D squarc arrays Dynamic programming for opumal parenthsxzauon. grzph algomhms
_involving adjacency matrices.

2-D hexagonal ar'mys Matrix arithmetic (matrix multiplication. L-U dcconiposiz'xon by Gaus-
sian elimination without pivoting. QR-factorzation). transitive
closure, pattern match, DFT, relaiional database operations.

Trees . Searching algorithms (queries on nearest neighbor. rank. eic.. systolic
‘ search tree), parallel function evaluation, recurrence evaluation.
Trianguiar arrays ' Inversion of trianguiar matrix, formal language recognilion.'
- 23 -
e R N L ST S Tt T
DOUOLIURE QNG N N 7 ¥ . ~‘ AR SR ity
' '_“!"‘y“?x“l‘.’:‘i‘:*‘"'.| l‘ ‘ :“h..' “"" l“ ‘ 'J. “ 0 -‘, l‘){' J“ "J\.‘.‘" Nﬁ!\l‘\ LY \J' o
oAl ’, " Q. . ' od, i 4) \- -\,h\
N T R ,.’1'3:" s":t"‘o' " ‘.!" ,, "Wﬂ. ‘. '-, W "'f" S e
EENIAIN -'-l'..‘ﬂ,c o W git! - RIS '!». N

S iad lan 4% BaB " " ad’ 0o 1ab Bib 618 0l Y0 Rad 12870, 8001800 R0 10 0,0 0.0 '8 8" 42 20 0% 89 244 IR 4000 0% 8°0'8') 2% 29
z « 198 % L} » 5% %0 n'h g4, [N N 8.8 1.9% "h‘

l'.".
0

(see Figure 2.10). A Wavefront process consists of three steps: q%'
(1) the algorithms are expressed in terms of a sequence of Jﬁpﬁmf
recursions; (2) each recursion is mapped to a corresponding t ';ﬂ
Wavefront; and (3) the Wavefronts are successively pipelined hY fﬂm
through a Wavefront configuration. '

A1l algorithms that have locality (local data-dependent and
local control flow) and recursivity (in a recursive algorithm,
all processors do nearly identical tasks, and each processor
repeats a fixed set of tasks on sequentially available data)

will exhibit this wave phenomenon. The main advantages of

Wavefront concept are:

1. The Wavefront notion drastically reduces the complexity in
the description of parallel algorithms. The mechanism provided
for this description is a special-purpose Wavefront-oriented
language. Rather than requiring a program for each processor
in the array, this language allows the programmer to address

an entire front of processors.

2. The Wavefront notion leads to a Wavefront based
architecture which preserves Hygens’s principle and ensures
that the Wavefronts never intersect. Therefore a Wavefront
architecture can provide asynchronous waiting capability and
consequently can cope with timing uncertainties, such as
local clocking, random delay in communications, and

fluctuations of computing times.

- 24 -
J"QVQ’}R§’.C"I *‘ "'.‘ - .. ” "’V‘V’V"FQ“ ﬁ ?\ "\(.‘i_,.\\-\\'\\)\. "F
B R :‘..-.~..-.":: e I iy R
SRR x.’ ‘v‘f nl .g' (% 2 t \ | t..
rt :s“" NN “ ‘f‘ “.:' :v: '," f,nfs",c.':'!..'l,.",l. O ..:.,:.'.:‘ ool '.!,". e "0:\.0 .:::.ﬂ'. "o""

R T I MY S L I L e e L T TR ra L e | A R W MO N RN M 1§ %) MR W O VRN Y " ol ¥

- MEMORY MOOULES
PROGRAM
CODE
MOR N2 A [N o
il I & ['\31' o Nw
A RN s N PR
. ‘r/ P r/ . ’-/ 7
s/ s -'/ oA
3 i . ,
Q“\ “:/1 ". ban "/
Al o "./ iy K
Y v 4 PR
>/ S y; FERRN
3 . .1(PR 4 y > 7
A 4 ’ A
-g‘ \' 4 . 4 b z ’ /,/
.
Q .’ ’ .
X QQS}X."' ’.// L’ 7/ R ’ / .\ ‘
= ’: ‘l / ‘1 / ’\.b
g ’ /7 ', s Y .- JRN
: r / ‘7 4f . ‘r " / /
w o/ . . L'
Z {2z 47 Rad ,
s A ¢« 7/ ’, 7 '1/
s . L’
y e / . 7 2
w4 R ‘ LA
- 2/ Y .’ N
Y P4) e
le P - ’
- / L /7 . / o i
! 7 &\\r
FIRST WAVE = == o QQ'L‘\'
SECOND WAVE -+ cceea *

Figure 2.10 wap configuration [10]

.
.-.‘ _v‘

B I e A e T))

SHOR0N Wata, w‘t‘s’o’ |

\,.f‘ 'm“.‘\ “f:"un"’o' t"s"s 0.‘ it on ": ' l| "‘ .\'l
! . :
B (AR ‘i .‘ (A ;. .Q '

N NaNhe
-' t’ e |' A

!
M, } 0y ot
: m’s raln ! o DR ‘.m e u‘ " ‘t"‘o‘ W "‘u’. e " .' Mabatiahiohtet '\"" AN .u. X d"(‘ w S’

-'~'~

N ~ oL RN N g

- '\.1\\\.;\; \\'-\\ RS G
ﬂk_a o .::._\._ .\"-(.q\\,,.:..,..'(N

s
e

S0

£

]
2

Xy
e

%
-

Here an example of the concept of computational Wavefront

is given using matrix multiplication. The topology of the
matrix multiplication algorithm can be mapped onto the square N
* N matrix array of the Wavefront Array Processor (WAP), as 1in
Figure 2.10. Successive pipelining of the Wavefronts through
the computational array will accomplish the computation of all
recursions.

Let A and B be NxN matrices, define C as the product of
A and B, i.e., C = AxB. Clearly, C is a NxN matrix also. The
matrix A can be decomposed into columns A and matrix B into
rows B , and the matrix C can be formed as,

C=A * By +Ap * By + cei.t Ay X By

where the product A, X B: is termed "outer product”. The

r

matrix multiplication can then be carried out in N recursions

(each executing one outer product).

+

). (k) *

c AF~ By

There will be N sets of computational "Wavefronts"”

involved, one for each recursion. More explicitly,

) (k) 9 (k)
CL& = CL} + ai b&

for k = 1,2,....,N. For simplicity, let

it \ . LW, N
O, N ‘?‘ W .l’u ‘!‘-0';'.‘9.0:,0:', \‘q.‘
AR Gﬁt'x:i‘;i’g.&‘;:l AN
SO0 l’a's’s"'» i..‘

1 l- L] - L) L]
: AR AT
ISR LR M S

-,“" 'er 3 >

5 T
s
> i .F\ -0

SN

AN
) My N,

> Y et
ﬁm.@

TN

TNy
PSR LLDLEN Y
l\".f-r-".
AT, PO
PR AN LR N

ALV LG

v - '™ o .- L W W AR A TS LI T Y S
;"‘Iﬁ?\”x‘ MSEAOSLLINS ‘E‘-’F\-"'- M ANt LN
! . ~

LS
PR Y
e Y9 LN
?ﬁb¢'m”dﬁﬁ

2

]
L)
‘.;r
2,
&{"1’

v "y ‘-'
-
e
s

v
oAl
”

'._‘.(.‘.'
1.'."
T N

® LAY

W T
J,:.\,\

ia* vy - T T T T St VRS TR (LW PO P TSR T] © 010 a0 Bav Sat Ba 0 Aot 'Gut Rab Fut §a8 Rt
ek P Tor AAA LR S R AU R a0 a0 8 5" e g g aly oigolav tp' 0 A 4

The computational Wavefront for the first recursion in
matrix multiplication is now examined further. Suppose that
the registers of all the processing elements (PE’s) are
initially set to zero:

e) .
c.. = O , for all (i,j)
V1
The entries of A are stored in the memory modules to the left
(in columns), and those of B in the memory modules on the top

(in rows). The process starts with PE(1,1) and

is computed. The computational activity then propagates to the

neighboring PE’s (1,2) and (2,1), which will execute:

) (v?

and

w) (o)
C = C + a b

t Zi 21
The next front of activity will be at PE’s (3,1),(2,2) and
(1,3), thus creating a computation Wavefront traveling down
the processor array. Once the Wavefront sweeps through all the
cells, the first recursion is complete. As the first wave

propagates, an identical second recursion can be executed in

o 4’ - - \ - . - - " -, hh" K‘. ‘. — .
» N 3 » ."\ 3,: :.:,:.":;:.:x:.m (N :.: '; .l.. "l‘. “‘Q..' .ﬂ“ ‘ « :: ,ﬂ")‘ o ~‘5.~ O :.‘ "_ .. ,.‘ _'\. ."3(:: ; “lf‘ -I‘ i\&
RRTIARN o.‘a’;:x:l'c‘b'o'*:u,‘;&" v "o v.l o:‘:t c,‘ 0.0."! W ::::‘. ; ‘. ::. "' " N nt \ Lo
S U 'n ""' b 2-".' 0N & e 'n KA e ST R \ ' -‘. A' X O O O X C'x o‘- l"‘“c WY, u\ ot -"- W% "0 “

",1" 0

parallel by pipelining a second Wavefront immediately after
the first one. For example the (1,1) processor will execute
(2))
C = C“ + a‘z- b?—'
R
Rl
b
) *x b + * b + x b o
c.- "= a. - a. S o+ ... a- . TTRITR
¢} | '(} [y l‘)_ K K:) :l':?\:g%’
e":‘
and so on. N
The pipelining of the Wavefronts are implemented in a QF i:
i "'l.
highly asynchronous .ashion [11]. The processors in the array “kﬁ
ST
7 must wait for a primary Wavefront (of data), then perform the kl_%ﬁ
®
computation it calls for and, finally, act as a secondary ;Jﬂﬁm
) “:'-':EM
source of new Wavefronts. For example operations (cn_) and .,::?,‘::
\ o
(czt)) will not be executed until PE’s (1,2) and (2,1) DU
®
confirm receipt of (a\‘ , b) and (az' » by) 3;?3
MLV
raspectiveiy. For the same reason, in the next front of the ﬁ%};ﬂ
\-'._J'“\
wave, cells (1,3), (2,2) and (1,3) will be involved. PE (2,2) RO
')
for example, has to wait until PE’'s (1,2) and (2,1) flow their qxjﬁ
::TJ'V&',N
data, by, and a,, , respectively. Only after the arrival of ?Eﬁ@i,
MCICNES
that data will the (2,2) cell execute its own operation (czg)) LY
(e)
= °22) + a, b‘l and activate its own successors, PEs (2,3) \.*a‘
IR
and (3,2). Q:&Q:
N 0
One of the main advantages of the Wavefront array processor \im

l ‘ A l ' ' '.b
v' L‘ "Q.‘"‘.‘ ". \' ¢ " ~
- 5 “o O "1 ".n by \.‘,' '.n‘\.v W

R '-:"-".2'.;

oy i Wy $\
“Wwwhwwmﬁu %Mﬁ’

N T RN LAY USRIV R IO AN UAT U USE AP T MTTLLT YO PO UK FOU IR ATV ¢y " ¢ Ma= fa®at)g’ TR g o4 a8 g", EYHR Wb a8 *.4 440, "at, gt

. L viey . : ".\;;.-1
is the flexibility in programming. afggﬁ
A
2.3.2.1 Matrix Data Flow language "fﬁ:‘
This section explains a Wavefront-oriented language for E?:h$§
programming the WAP. This Wavefront language is tailored toward iﬁkﬁgg
the description of computational Waverronts and corresponding %ﬂﬂﬁ‘
data flow for a large class of algorithms. Since matrix algo- ;#qu
rithms are typical of this class the lTanguage is named Matrix Q‘:@%
Data Flow Language (MDFL)[10]. oL
There are two approaches to programming the WAP: (1) a ‘““Nws

local approach describing the actions of each processing
element, and (2) a global approach describing the actions of
each Wavefront. To allow the user to program the WAP in both
these fashions, two versions of MDFL are present: global and
Tocal MDFL.

Here a brief introduction to the programming methodology of
Wavefront array processors 1is given using MDFL. The most
straightforward method of programming the WAP is to specify the
actions of each Wavefront at each of its (2n -1) positions
(fronts), (see Figure 2.10). Nevertheless, because of the
regularity and recursivity in almost all matrix algorithms one
can assume the following.

1) Space Invariance:

In a particular kind of processor the tasks performed by

a Wavefront must be identical at all (2n-1) Wavefronts.
2) Time Invariance:

Recursions are identical.

29

g
’,\’3,‘ 3, : Py

- - L]
PR LR Oy T T e U N T W >
R A g A S At -_.-,.-\1
.0 l.n' ..1 "‘l V‘b" N:S‘ w _,- RVAIRIASARARESES REASANA _,,-\.j-.;\. ny
. :.\. AOARE A SAS RN \‘«,\‘_-‘_{:x-'-\.{x “ ‘
- -. . .
'u'. ..‘:"“ -.0 .'A loly’ R A T AR R \ e N

0y ",)
\{’ KWy \-: "l'g t“.l l v 'g‘l"‘

¢ \

AR ;l. (] l‘;
U NN .i\ Ny h’:"“\‘ 1) :\ o: :::"" X , v
EREIIVCLNE RN ;‘ |' l‘ o'-'t'a nn .nh.h. 18700,

T N T T N R I R T IR T T R T R R R O O R T O e

Y

Accordingly, global MDFL provides two repetitive i’::t’.

Yo i

constructs, the space repetitive constructs, ::':,'::

Nl

WHILE WAVEFRONT IN ARRAY DO -'

BEGIN (TASK T> END b

QUM

\} .’ "

so that task T is repeated at all fronts, and the time ':',:::::j

Qg‘i.o.l:;

repetitive construct oot
TARRR

REPEAT <ONE RECURSION> UNTIL TERMINATED i, ..M

I3 ‘b"f‘

so that the same recursion is repeated. }:‘,A‘}::.g'

NG

The REPEAT construct 1is inherently concurrent in that b

Wit 4'

successive Wavefronts are pipelined through the array. As soon t‘“,:,‘:g

".‘.'e‘*{‘;

as the kth Wavefront 1is propagated, the (1,1) processor ::::::;3:}

Nl

initiates the (k+1)st Wavefront. ' .

S8 A

To allow for more than one Wavefront per recursion, the ‘q ‘é’

complete global MDFL program will have the syntax %’%

Sind

BEGIN eI

SET COUNT < »>; v

REPEAT e

< TASKS A >; “.',.'?‘:'._

WHILE WAVEFRONT IN ARRAY DO ol

BEGIN R

< TASKS B>; e

END; R

WHILE WAVEFRONT IN ARRAY DO e

BEGIN D)

< TASKS C »>; ":.q:?:

END; XIRRN

< TASKS D >; b

N DECREMENT COUNT; , R

UNTIL TERMINATED; e

ENDPROGRAM. Rty

."0..'0‘

Each recursion will execute the instructions within the .:’::t":‘

REPEAT .. UNTIL construct. The number of recursions is set by 'J

SO

SET COUNT. In this example, a recursion consists of two Wavef- ES :\::

WX

ronts. At the start, tasks A are performed only at the (1,1) &&

e

iy

x"

- 30 - ." U
N

-!l

fﬁ;;:s‘i’\';"”x" LR f*.'l i": ‘s h.g l.,l.l. ‘:l‘.b‘.nb ‘b 0 ..‘. ' e ¢ i\ AN :
Nk DO : :v;.':,t:.o\':~',| ".o.. ' .:& \ o "n I \ . ?
" ’.-’ :"‘. "‘. “: :‘: ’:" ';'.':' ::.’:::':::‘::. A'n. o' ‘:: :.. by ..0' :40:"" X l’v " : ".‘ MM. 1 5’0!:350 WO

at) a"S o't pt4 8t ‘28 28 +*0 BYE 2" n*x 298 ath ava asB AV RVA o0 ath Jin wVA gVE Aih o0h ot U ats a¥h aFh ot oig o¥h oW

gty
o
processor. The first Wavefront of each recursion will perform ﬁﬁ%&
tasks B at each of its (2n-1) fronts. The second wave will 3§§§
execute tasks C in each of these fronts immediately after tasks ma:é
B have been concluded. When the count becomes zero, TERMINATED a&%&
is set and a ’'phase’ of identical recursions is over. gﬁ%g
The corresponding 1ocal MDFL program for interior proces- S
sors will be ggﬁf:
REPEAT : n':.’o".
< TASKS B » DR
UNT;LT'?:gaISA;ED; g 2 v,
| | e
where B and C are the compiled versions of B and C. The conver- ;:ﬂfﬂ-
sion of global program to local version is fairly easy. ﬂh é
MDFL notion makes it possible to program an array of ijﬁag
asynchronous processors in a simplistic fashion using the MDFL dﬁé%
language which are modular and easy to follow.) %$&
B
) 2.3.3 Timing analysis of Systolic and Wavefront array architec- é%ﬁﬁ
ture R
The timing framework [11] is a very critical issue in %¢.
designing the system especially when one considers large scale .ﬁi%ﬁ
computational tasks. Two opposite timing schemes come to mind, 0 5$¥
namely the synchronous and the asynchronous timing approaches. 'T':
The Systolic array is an example of a totally synchronous ,)"é
system, and Wavefront array is an example of an asynchronous ?Eb'ﬁ

timing system.

- 31 -
----- B R S 7,
IADADRD T) 2 N NS, *v- ‘)“ ‘ "o o _..“v!} .(.".’_-, T, LY
O e s.i!% .4 !"" !Q.’ ..l LA NS SNy PR N e
B L IERTRORINOR: N ‘.,.‘ll“' ;"a.,a. . u"'o “*\4*«. AR -.**- \w e e s
%) N Jigﬁ \ ﬂ ‘I‘ .l.|'t' 08 'ﬁ\‘\'; '\l.| Y \“ \ \- 'yf
AR AR

KRN Aty 'H‘ NN l‘u‘n o.l"'lo I TN

P S R T TN O TR S TR W WL IO S N N L T I R O R T R O R R o O R O O A A R IR I

2.3.3.1 Timing analysis of Systolic arrays

As the Systolic array is wholly synchronous, it requires
global clock distribution. Therefore, different processing
elements receive clock signals by different paths. The elements
may not receive clocking events at the same time.
Synchronization failure can result from these clock skews.
These synchronization failures can be avoided by lowering clock
rates and by adding delay to «circuits, thereby slowing the
computation. Unless operating at possibly unacceptable reduced
speeds, very large systems controlled by global clocks can be
difficult to implement because of the inevitable problem of
clock skews and delays.

Also, because of the strict synchronized timing, all of the
PEs except some special peripheral elements must be performing
the same task 1in unison. There is no room for multitasking,
even if the tasks are serial and not interwoven one 1into the
other.

The "clock skew"” phenomenon arises due to three factors:

1) The resistance/capacitance (RC) of the global clock
distribution line;

The 1line capacitance plays a dominant role in the line
delay. In fact, when the signal of interest 1is the <clocking
signal, it will, in many cases create disastrous
synchronization problems, particularly if the clock traversed a
large distance on the chip. This could commonly occur in a
large VLSI chip. The resistance too, is dependent on the length

of the 1line. Due to constraints involved in thé layout of the

- 32 -

.D' 0 |l Rl \.I . ‘.'N -‘V. RN AL A
.‘0'. X ., l‘:' ..I :'o ey e _,.w.__\:‘-‘.j-y SRt
.u. o:'g‘i Wt .‘l ..t'..i A AN

R ROl NOSINRA

X
.': ,' :.
N '.‘

D) 'o
::.":w:-«:. i
.' ' ozﬁ o “
:1: "-""

l'|'l‘| Wy '0‘
Wiy
Ersiey

LI

7)

VLSI chip, a major factor 1in 1line resistance is the
distribution of the material of which the 1ine is made. As the
resistance of diffusion is on the order of 100 times that of
metal, the length of diffusion paths in the clock line is the

predominant factor in that l1ine’s time constant.

2) The unequal clock paths to various PEs in the array;

The clock skew due to unequal clock path lengths to the PEs
may become potentially hazardous. To eliminate this skew
contributor for a square array for example, a H-tree clocking
network is often used. A H-tree is implemented by placing the
global clock generator at the root of a binary distribution
tree. A1l the processing elements are at the various levels of
the tree as children of preceding nodes. Every node represents
a processor; this ensures that all clock paths are of equal
length to each processor. This clock distribution scheme

appears to be optimal for square arrays.

3) The variance of values of the gate thresholid voltage;

The PE gate receives and generates the global clock signal
to the interior of the PE, thus serving as a buffer between the
global clock distribution network and the local clock
distribution paths. The uncertainty of the threshold voltage of
this gate which arises due to fabrication phenomenon

contributes to the clock skew.

K Ly
SNDOIRS et ! A "b" ! ’c' ‘:‘*‘ il l:! v ~‘ o.' WY, ‘!’ﬂ"l‘ 'l"‘ﬁ J. 0'- 3 .'c'- W, 8, 0‘

00220 N0V Pab R V2 b A0 Vo) N Py Vol Aok fab B3 }?}\g}

wJOLA
a&ﬁ#i

R

«:‘ i

'."

- 33 -~
OIS oy "».'-.'-.‘ R RN SN A A
D '*:'i":;’:' 1"‘ ..l’ '.f.s.l ‘ 'g .‘; sfn;)r- ?vé '%_'?':“\ \"‘*\‘5.& :%\"\ ‘,-..:\.:_\"\
. _-vw!'o x.-. x‘.-s.-.-,.
:a“‘ """o i ¢1 ‘.‘ ‘.".t" ") T *‘

2.3.3.2 Timing analysis of Wavefront arrays

The self-timed asynchronous [11] scheme of the Wavefront

array can be costly in terms of extra hardware and delay in

each cell. It has the advantage however, that the time required ety
for a communication event between two cells is independent of é@%g
the size of the entire processor array. An advantage that self- &ﬁﬁ&
timed systems often enjoy, in addition to the absence of clock- _Ey'f
skew problems, is a performance advantage that results from ?%éﬁ
each cell being able to start computing as soon as its inputs Bﬂfﬁ
are ready and to make its outputs available as soon as it is ‘;ﬁg
finished computing. This allows the array to take advantage of gﬁ?&
variations 1in component speed or data dependent conditions ifﬁf&
allowing faster computation. As data transfer is asynchronous, ngf
multi-tasking, where cells in array perform different kinds of E jﬂ
operation is possible in Wavefront arrays. gsﬁg
The Wavefront arrays employ a handshaking protocol to g;,‘
transfer data between the adjacent PEs. The protocol ensures 'égﬁ
the regularity and continuity of the flow of information kf&w
through the processor array. This calls for additional number ﬂiég
of input and output signal lines for each PE element, thereby ﬁiﬁ
increasing complexity and hardware cost. $%Tb
The global clock of the synchronous scheme is now replaced i?ﬁﬁ

by the data-sent and data-used l1ines which establish an exc- E& \
hange of information between the adjacent processors with g:SF
regards to data transmission timing. This handshaking operation Qﬂh‘
is shown in Figure 2.11. The transfer of data in the basic ggff
model from PE(i) to PE(j) calls for PE(i) to apply the 3%:‘
’y

»;zs

R

VY, .\ l‘i' '\

A ‘)\' Ty tgh 1,8 4y () '. LIS
RO ‘9"‘ (S ..' Ui .i L) .\’
) O
B A R A e , o
i 4 AT IS IR \
N bi"{l‘-"—'-‘\‘A!l'\?‘l'a‘. b ™ " . O V) DA) | Fe.8 !

|::::‘.'
&

X B

b ‘."i‘t'n? ;‘:‘;'.;'

Qe
Y
SR

Figure 2.11 Interprocessor handshaking scheme (11}
Pe('?..,& “— PE (})
| t
) i
I Data Sent | Daa
! ! T] P Data Transf
R gy o B Buffe | oamol Flip Flop
T P T cX
| LJ !
! ! Data Ready
!]
! e e Akl
| !
| | -
] ' Q
! |
[} !
— (& {7
| S Data Processed
| 1 N
i I
| . N PR
| 1
- 15 -
n L) e Lt ” - 7y L B I R s r Y R AN R NG W W,
\ "“/._l:,:“n’y:I'stl'q.t'g'l"‘i’g.l' ’b’q“'..l.:" '&0 'Q.IQ‘ % ..C’“.. "‘." O n :"';Jw ?: $“' "‘?"N "%\
SR A \,t::r:::‘;::',:::,‘p.\.' '°':"f"'5':°.':""""‘$' ‘%:'}‘t':'::':::".‘:&"' : .,‘:.' e }‘Jg-\s'_. AR)

IANIRKS

A3l W Ve

)
R AR
v L)

W n".:" y

' XA
.‘.’-‘!’."S',‘,h V.t ;‘s‘.h‘!h'.‘»\'.‘.Jl‘!’u"h.. LR AT

R A

ALY M PUEH M
QV’Q ‘17“5'

7

PR

R T R T T W S N I I U R U R R O R O o R O R O O T O oo ¥

appropriate data to the interprocessor data bus and a pulse
generated on the data-sent control 1line. The width of that
pulse, t(1) must be agareater than the data setup time of the
data input buffer of PE(j). After the pulse has been generated,
PE(i) can turn to the next task of the recursion. The negative
edge of the data-sent pulse enters the data into the data input
buffer of PE(j) and also toggles the data transfer control flip
flop, thereby notifying PE(j) of the availability of data. In
general, PE(J) will be waiting for that data and will
immediately execute a Fetch instruction. In the worst case, the
time lost in this transaction is, T(pe(j)) + d(ff), where d(ff)
is the input to output delay involved in toggling the data
control transfer flip flop (see Figure 2.11). Upon completion
of the data fetch, PE(j) 1issues a data processed pulse of
duration t(2). t(2) must be larger than the clock pulse width
required by the flip flop transition. This involves a time
delay of d(ff) + d(p), where d(p) is the propagation delay of
the interprocessor flagging signal.

It is to be noted that not much time is lost in handshaking
process, as after a FLOW has been executed, PE(i) is implemen-
ting its next task concurrently with the FETCH executed by
PE(j). By the time PE(i) has to carry out the next FLOW to
PE(j), the Data-Used signal will have already been set, and
there is no waiting 1involved. The timing penalty for this
situation is, at worst, t(2) + d(ff). This penalty is paid only
once, and does not multiply by the number of recursions, nor by

the number of FLOW(FETCH) tasks, provided they are not

- 36 -

¥, l'q

)
“!;“lus

N AT AN "‘p‘-..'\ vy V}.‘. N L -. ~C v__\ ¢
S Sy h <\k NN
:"u },so'» o «‘h‘ *.:,"".,. #:’;.‘ i S ‘*‘"

0

. '\ |] (\"V\
0 q 9 . l 0
’! n'k. i‘!'b‘s“t"’!"‘!m‘. '0‘.’."

%*7_ Hv
4‘4 *‘1’

.:" l".f:!. o .2' \k\k .'ﬂf\ M

EERNENENE MRS) 1,
" v" B &‘

x"'
>

SRR I T A L T I E o LA LT TR LR UL AR AU RS O AR JON TR RN AU O RS WO ‘oo’

y '&-""""fl A
u .i
-
consecutive. ".':'.::-::‘
':‘:S%::
r;v :
2.3.4 Implementation considerations of Array processor systems "»'-'
Figure 2.12 [12] depicts a possible overall array processor '?::é:h:;
\) Wty
system configuration. The design considerations for the major .::':.'::?::ﬁ
‘.ﬂ. U
components are described in detail below. Lty
B
e
2.3.4.1 Host computer Ak
sl
The host computer should: provide batch data storage, eLe
A
management and formatting, determine and schedule program that .@égr
|'M’|.t'.
controls the interface system and connection network, and : '::'::.’:'
P
generate and 1load object codes to the PE’s. The host selected m
should be capable of interfacing with the high speed array :.'::;?:'l:é
(3% 0 g".
. R 1 Ay,
processor units which have a high input/output bandwidth. :':::::,::?.:
'.I
ANty
-2
2.3.4.2 Interface system ;‘:{:{
The interface system consists of buffer memory and the ; ""f
f)
control unit. The interface system, connected to the host, via h"
X5
the host bus, has the functions of downloading data and up . ‘:}'.
L]
loading data. Based on the schedule program, the control wunit ‘
o
G
monitors the interface system and array processor. The ""'B')C:"
’ TR P ERA]
interface system should also furnish an adequate hardware '%, .if
e
. RS
support for many common data management operations. In addition ‘-?ﬁ:%,
IS a1
2 O01s
to handling bus protocols, the interface system generates A
\(]
addresses for buffer memory accesses, controls the 1loading of 3;_':-
Ay g N
the buffer memory, and schedules and monitors the computations j"'c“ 2
o« g
carried out by the PE array. e "‘ ‘
|~ ‘I“:
) X ‘::I
' q'.‘
- 37 - J 0:::::.’:
N‘.."."
1";\""0. "a't'u' "" ! l " "iﬁ\ X‘ﬂ 3 %. “ﬂ" er"hh‘ ".\'}"v(*“n"}: 0
‘*"‘“':’ "“'.' '.\o u:::‘:‘lo ' %ﬁ ". " I ""' o o l'w'ﬂ'f" 'l.’
‘ "v«” "" ':"“ Ha s .ua""-,n' \Nﬁ“h 'l).h.io"c‘"‘". by A'-'b LA XX =t PR K e BN

-

TS A X}

R Ry PO R R P U N T o RO O O R O R R W IR O U G oSO o O O Y X | 9'!

P - - - = . e A W

‘
]
]
]
'
’
]
1
[}
'

surFsRst ¢ ! R CONTROLLER

Figure 2.12 Array processor system configuration [9]

‘0 “‘
M
i" l“ 5.0 l

'6' 0" '}

i R I@C"‘
b 'o‘ '\‘.' X "\ .=
R

u'uu‘

R
Y
AR

-

- 38 -

AN RO A
ﬂ%*ﬁ:ﬁ’i SRR

o \{"» QR ‘.0 DTN NI

I T IR TP T AR TSR TUPCT W T S S W | R JAOFCTSRTNR TON 7 T P PO O T RO Va g% gte pte gy

These memory units are used as buffers between the low
bandwidth host bus and the special high bandwidth buses in the
interface system. By holding data that are to be used
repeatedly by the Systolic arrays in this memory, the arrays
can proceed with high speed, without consuming much host-bus

bandwidth.

2.3.4.3 Connection network

Connection networks provide a set of mappings between
processors and memory modules which accommodate certain common
global communication needs. Incorporating certain structured
interconnections may significantly enhance the speed perfor-

mance of the processor arrays.

2.3.4.4 Processor arrays

Processor arrays consist of the PEs in a particular arran-
gement to solve the specific algorithm. When the problem is
decomposed into many subproblems, each of these subproblems can
be run in parallel 1in different processor arrays. In this
manner the connection network can be used to facilitate the
data pipelining between the arrays, and thereby increasing the

overall processing speed by one more order of magnitude.

2.4 Chapter summary
In this chapter we presented three different hardware
architectures 1) the general purpose microprocessor architec-

ture, 2) the digital signal processor (DSP) architecture and 3)

—39_

" : ,,,.,,..,.}._, ""“'.r""w‘ RN
ey """‘x'a\':'t‘:’ 3 R Yt c'kn"'b' |’ l‘ ,(0’-&*& TN .
IR (X . n.u np LR 0,' ,.., ~,~m& L .,
RN :;“ia": l,t‘t.‘szl‘, l\‘i ‘.:\ :l..: .\ W) :\..\.‘lt 0.0 D.! :} .' |0 'i o 4.
LT AN Tt WYy
TN O TSN J ' n'& FULAN "o QA 's’ l'o "‘0&"0.‘ i . h' 0 "n"'\‘ 't X .0‘ Wty -" -‘l

(RS AU U T U U

the VLSI architecture.

The microprocessor architecture does not have 1its arith-
metic logic unit optimized to the multipiy-add computation
which is often encountered in signal processing algorithms. The
microprocessor chosen for analysis was a Mc 68020 which has a
cycle time of 60ns and performs a complex multiply-add
operation at the rate of 0.5 MOPS. The digital signal processor
architecture has its arithmetic logic unit (ALU) optimized to
compute multiply-add operation. The DSP chosen for analysis was
a LM 32900 which has a <cycle time of 100ns and performs a
complex multiply-add operation at the rate of 5.7 MOPS. An
important difference between these two architectures is the
ratio of the multiply to add time. In the microprocessor
chosen, the multiply to add time ratio is on an average 6:1,
but in the digital signal processor, a muitiply takes the same
time as an add. Thus, if the algorithm considered has many
isolated additions to be performed, then the microprocessor
architecture will be more suited than the DSP architecture.

Next the characteristics of the VLSI architectures,
specifically Systolic and Wavefront architectures were
discussed. It was observed that VLSI architectures are suited
for compute bound operations rather than input-output bound
operations. Also presented was a timing analysis for the two
VLSI architectures. Systolic architectures operate in a
synchronized manner and thus suffer from clock skew problems.
The Wavefront architecture is free from clock skew problems as

it is self-timed but requires extra hardware.

{\\ f 1 !'g 5.; ‘.‘ 'g. .'. I‘.. N ‘l' ‘l ‘Q' .\' Q' ‘0 r 4\‘1 LS, -. ‘o "11"‘- -

~H\t PO ‘.0|l

it (LR 4 | U l.

Ha’ o\i l nh ' 00
." ‘- t’b‘ lu.l!‘ v,‘ “,' ‘t.' ‘..l.‘ o

)Jt w? -."

IARW)

\k& ‘ / 7)’\":}*5"'& :J."u'r‘\" 1"!“ s ::: «*,A..(
SCAN

:
”a"s‘a'i "a.;.l.’\!'h. DY o .. 5 ; ' 9 AT It .\.\‘. X A e KT e

0ag Yo Wal (ot Sak Vab 2l Pp0 Opd "ol Sl "al taVaiab Vat o at, ‘gl

For implementation of HF adaptive antenna signal processing

chapters evaluate the architectures

algorithms the following

considered in this chapter.

. ".:7 4

L)
"o

a_=_9

- 41 -
Sneiairate, \.on \5}\ A A
g “\ ' ' |.' ¥ ¥ . n‘(- ‘(n.'(‘\' \.
N . :z‘ '\' "; ::l: ‘n'l;! 5 :::0:": . .':. .& h \ o) ‘\"\- -\'?.\?'
R O AIAN l\' r' Y “l.“ X ..| '. ‘h"‘b Jo.\'l "l \' NPy

Gy odn TR s d avs a¥) Aem ety tal tau Bt Vgt 0 gat Qv Bet Bt 5.8 Gt 0ot gt 9ub 2a0%20% 0V 0% A% 8% 0% 0 8% Ve 4 0 A% Y, D "0 Ral e g v -q 9 g o

-} "’
':"v.:'.:
3.0 HARDWARE ARCHITECTURES FOR LMS ALGORITHM ﬁﬁg%;
The purpose of this chapter 1is to discuss the various E%?ﬁ”
A
hardware 1implementations of the (MS algorithm, to study the 2 ;'
feasibility of these architectures, and to recommend suitable §£?q:
configurations. We present a brief introduction to the LMS %E%é;
‘ algorithm in section 3.1 and indicate the equations that are to bf“:ﬂ
be solved by the hardware implementation. An initial 1loading 5{%%;
analysis procedure 1is provided for the LMS algorithm. Section :;&ﬁi
: 3.2 provides a method for the analysis to determine an 1initial ;d;?ﬁ
estimate on the computational 1loading required by different 3%%&%
functions constituting the algorithm. The loading analysis s gz%%&
then performed for various hardware architectures. The hardware ¢&%.!
2 architectures considered are the general purpose microproces- gg;fg
E sor, the digital signal processor and the VLSI architecture and gg%&:
; are discussed in sections 3.3, 3.4 and 3.5 respectively. A "*ﬁ;‘
i summary discussing the feasibility of these architectures and a %g%gg
4: recommended architecture is discussed in section 3.6. 'E:-_g":
: OO
' o
z 3.1 LMS algorithm r_:
? The discussion of the LMS algorithm [13] begins with an ?¢2%&
explanation of the Mean Square Error (MSE) performance 'i.%w
} criterion. The LMS controlled adaptive array system is shown in
Z Figure 3.1 and will be used to present the concept behind the
: MSE performance criterion. In the adaptation process the weight
5 vector of the linear combiner is adjusted so as to cause the
| output y(k) to agree as closely as possible with the desired
response signal, d(k). For the present, the desired signal is
2
- 42 -
l(,"‘3;::\,*.‘,::::: h ':.‘ :':'lu',“: ".s ‘.‘. ; '..‘ “" :& E..- “;:i n,,-.-\.iﬁ;- A \E\: if-_.}""" ;E”:‘ﬁ.;.;
B A '::"::Z" e R K .,..ﬁ.::,..,,..g..“ T

. I L U U NN U NU N UM U AR WU A 52" et a8 000 a3 a0 a0 a0 A M 400 2% a A 2% a1 at a0 At 2T ot N cY) "“'..'ﬂ‘ '}
B L T M. - 4 . Rk -
. A $;
| '\'- W
) ".'
| o‘l

- A\ 1)
Figure 3.1 LMS-controlled Adaptive Array System :""":""'

."_"l\.x P ‘
Seasor Array Beam-forming Network VAN AN

x;06)

() n6

i
!
|
: X4 (k)
1

NG

) \ |'| ‘5
4 R
Reference -
Generator WhLTREY,

b
- 43 - ‘V\

T CNr e ‘ -.» " ,' TN
: s .}:! ‘) “. !g'k‘ "0 ’. ‘i" “ ." .Q '. Q‘) ‘H\((\(‘)\ { u‘ .r "A,'u'x (l, - ‘- ﬁ(ﬂ '(z::gf * { f y IJIN,--,""*
¥ l

\-,.'.\si\':"'h O
Ky 1‘._(‘ P AP .F.b.-.r-r
r' “ Q.‘ l.‘! \ (“ ,“-\ P’~

l.. "

/\f- f
"(&f .-f ‘f

30N, '\"‘l'. o

PN J'”-""
us\e.‘a‘ .r .-N

\
"‘ MUAZCR M) 'u' l‘ |‘ t'sl‘-l’ s \u'.' AtA a.n'.' " v‘l e e u' L,

,ﬁ,\

available. An error signal is expressed as
e(k) = d(k) - y(k) (3.1)
where y(k) is the linear combination of the input samples ¥X(k)
and the weights W(k).
T
e(k) = d(k) - W X(k) (3.2)
The subscript 'k’ from the weight vector is removed because, in
this discuséion, the weights are not adjusted. The instan-
taneous squared error is obtained by squaring equation (3.2)
2 2 T T T
e (k) =d (k) - 2d(k) X (k) W+ W X(k) X (k) W (3.3)

Assuming statistical stationarity for e(k), d(k) and X(k), the
expected value of equation (3.3) provides the MSE as

2 2 T T T
Ele (k)]= E[d (kK)]J+ W E[X(k)X (k)] W= 2 E[d(k) X (k)] W (3.4)
This equation represents the mean square error as a function of
the weights.

Equation 3.4 can be expressed in a more convenient form as
follows. Let matrix R be defined as the ’input correlation
matrix.

;
R = E[X(K) X (K)] (3.5)

The main diagonal terms of R are the mean square of the input
components. The cross terms are the cross correlation among the
input components. Let column vector P be defined as the cross
correlation between the desired response and the sensor element

output, i.e.,

- 44 -
N T T T e g L L T P LT T R I TR I P T TR
/ (o Ny AT A T AT A T e T T T N N LN N
T, My &Vgﬁ?\"ﬁ.}'x‘ Sl \.i\.}-sﬁ' S T T N
s N R Y A AT
; W LR S LA A A .,,\\‘,\,\,\.‘,
\ 5 TR A A N N R S SN X o

®
DR
(k) X (k)-1 j\ ,0"\
1 i ‘sgz
P = E . (3.6) L*“:ﬁ» W
i"; :: 4
' EAM
d(k) X (k) "
' I
N 4 ,E:':::': .:u
)
Letting the mean square error be designated as '’ a ' equation "-".‘-'::"'
R
(3.4) can be expressed as """"'
R 43Ty
MSE = £ = WRW-2PW+E (K)] (3.7) ."0':;:;:'::':
Nt
The mean square error ’& ' is precisely a positive quadratic ,,ﬁ,.;:gi;:;
h :'I.‘l
function of the weights. The vertical axis represents """'.‘.
, , '.5';'..""
the mean square error and the horizontal axis the values of the) .'.;" .
) 1
weights. The error function results in a bowl shaped surface. .:;':::““
4
This paraboloid is called the ’performance surface’. It
contains no local minima and for two weights is shown in ;;'.,:',:,::;
SN A M
Figure 3.2. '.',:E:'.:?'::‘::‘,
"‘ l‘|‘§‘|'i
UAOK)
The point at the bottom of the bowl, when projected onto """
3 I » . * -‘P"‘ A
the weight-vector plane, gives the optimal weight vector, W. The N "“
L0 ,
LMS algorithm attempts to estimate this optimum weight vector. P",
X
The LMS algorithm is an implementation of the method of the ""
T,
steepest descent. Using this method, the updated weight vector y ':.Sg:?::
*]
.) I' (XN
is equal to the past weight vector plus a change that is N '::::2‘:
it
prjoportional to the negative gradient. This is expressed as: v
W(k+1) = W(k) -4V (3.8) "v.,.,‘,
where_M is the gain constant which regulates the stability and .;:q"..,
speed of adaptation and ¥ is the estimated gradient of the
i
mean square error performance surface. Assume that A4 has %':::‘":::
Ny o‘h
been chosen such that proper performance specifications are ' ::":::
‘ W ...‘.ix
met. Updating the weights can be thought of as descending » .
L
ey
¢ 9
- 45 - .3;.'::..':5.
'l‘\‘l‘|.'0‘|‘t
la -(' """"" L2 ol I N Y * 1‘:‘
n "“ ‘q ‘\ 'n ‘- " 'i ‘i T .'
: \'(gt‘g G".ltt’ ‘h:' -" ﬁ"(' i‘:ﬂ: '(' o \:?»} J“'.;' .\,“:\::'f\ ﬁ;
R e S R R R S
! ~' % t'?"’wmiws’l_rl" KR u."’- ORISR0 .o".ﬂ.t.!. AL SRR

Figure 3.2 MSE Performance Surface

lMS:.

/

\ i3 -
//\/\./ v ./ /.

LA

ST N T 7 "
e

/S S S AN A
[T T 7 R T
sl /S /S S/

s : A " TN NN - ‘. N
T)
l' i‘ I I ¥ -’,\ Al "n R) A
:‘t'u: »:a:‘c Y . .'. ' ') MO ‘-’(;xu'y',-.(\(,.:\-?- W O ”f f,f"ﬁ -\"‘
9} vty ’n\ u'. 'l’ W ‘- ANA MR) ”'. 4 S T ™ A ".l."I!.‘ Ty ... g _... L7 ‘, Tyl

i, {
’ a,‘.‘ "

a6y 8 g .mu'.;*'w'\x-.u'
ﬂs&h

*’9‘-5?'

. "',‘r
along the aforementioned performance surface in an attempt to J*a;ﬁ
I \
reach the ’'bottom of the bowl’. By using the square of a N ;vg
'N"' \
single error sample instead of the MSE the LMS algorithm ';
mU)
estimates the gradient as, Ay,
A
q& 3
,~ % *V£§§
Vv = - 2 e(k) X (k) (3.9)
- '.' 4 .'
v,
Replacing for ¥ in equation (3.8), yields the LMS algorithm &Ma&%
{ *ﬂx‘v .‘
equation as O
@
)
x *ig&
W(k+1) = W(k) + 2 X e(k) X (k) (3.10) »::;;,‘:3.:;
!
- é é
. . i‘g'n'u
As the weight changes in each iteration are based on imper- Py
‘o
fect gradient estimates, the adaptive process does not follow .ﬂﬁ
h
),
the true 1line of steepest descent on the performance surface. R&?‘
. . O 'l .'|
Realization of the above algorithm wusing various hardware e
" ’l'.'iq
architectures is the main purpose of this chapter. *ﬁ%ﬁ@f
(XL
i'z::’:::.::;
.l."l .‘l
’\ﬁp'

3.2 Loading analysis
The l1oading analysis involves determining four basic system
parameters [14],
1. Input requirements
2. Function execution time budgets
3. Computational loading estimate

4. Memory requirements

'3.2.1 Input requirements

The LMS algorithm implementation involves solving equation

- 47 -
"
.~ - - “a
;x‘wl.n-m’) h‘,!,i,l..ol;l’ . \- (\\
4 T‘ 3 N :. : : :1‘0:3 .‘ :,ﬁ ::i'...."‘ :"‘.“ \ . ‘4 ‘l.. .\'l'.# .: "'..'... ! “
’ (
AN \)' Ll ' i R K] i : i!“; ‘ 2 :‘ ' A ‘»‘\‘, n"ﬁ’ ﬂ 'l’.‘ S‘e.,l!.,l!..l’..l‘_.‘ity.lng.!!‘ lf“ h ’ih.. J' ﬂ... :::.E\ LY "'.\ i'. “.“h < \‘ |' .'. .' ". ‘.\‘.‘ ".

Lo
(3.10) to update the weights. The equation is broken down into :;/',{‘5::'
manageable functions as indicated in Figure 3.3. ‘%/V‘%’
As can be seen from the Figure 3.3, the algorithm functions h"f
have been partitioned into a forward loop and a feedback loop. .,. :'::::t
The computations required in the feedback loop must be _"' 'a’,:‘c::':‘.
completed before the next input sample is applied to the loop. """"
In other words, the processing performed for the current input ﬁ?"’l":?
must be completed before the next input sample is processed. .‘s:‘

In general if the adaptive algorithm constituted of “’:::‘-'l‘
computations [15], O1 through oM in the forward loop and OM+1 "‘:.:qé:;:
to O in the feedback loop, then the structure of the adaptive '4:’:::":"'::'
algom-:hm would be as shown in Figure 3.4. As each computation ‘:"‘"
introduces a latency of ¢j for the j-th computation, it is :%'3"‘“‘:..,‘
necessary for the sum of these latencies to be less than the ::EE::'EE,E:,E‘
sample period Ts. This sampling period, Ts, is dictated by ‘:::’:"':’
constraints imposed by the HF channel characteristics and the 3&»”
nature of the system in which the LMS algorithm is ’é;”‘.
incorporated. These constraints establish a minimum S
computation time for the hardware. The sample period Ts for '::";:'3"5:‘
the LMS algorithm is obtained as follows. A '
S

: [
3.2.1.1 HF channel requirements ::,."‘E.:".ﬁ?
The adaptation process consists of the computation and :?‘:,:.:'.::é:'g
update of the weights until the optimal weights are obtained. R
This gives the minimum mean square error. The objective has to %:’:l:';i{
been to move on the bowl shaped performance surface towards the ;‘mﬁ
'bottom of the bowl'. There is an important property of this "':M!.‘
X ‘;!igig
\

- as - s.'.:;';‘-b"
SR
b ";:P'z":'f:'i.?. s S e e EERmat

‘ (\ -’
"" R -.!‘. o ":w. YIRS """ 4" N Rgaey

r §¥,

9 r o 2 g l
'ti"‘v" y o W3, t’l‘t' #"' " W ‘

5o Vol 28 Sa0 0ol tal vad sab /al Aat Pyl \Wmnvmn.‘m.}v.

Pty ;
t__*

o'

".1l l""
Figurs 33 Partitioning of LMS algorithm for hardwars reallzation

Input nats Vg
v * Output
' 10 >
[T,]
O, 0, O3 |10,
[Tsl (T (%3l [Tl
Latency consiraint
T
O0,: WXk = Y 3
1 T. stS = 1073 p ‘l'; ‘.i
02: Y-dk) = ' =t ¢ o.#nn
03: #'l - whete A =)
G: ¢ X'w=8

03: W) + B = W(k+])

Figure 3.4 Feedback loop and lower limit on arithmetic speed [15]

:‘rm____d 9 Oy
g 4 mj—"—’

Omen Oyt
[fewd [fasd]
‘ T
LATENCY CONSTRANT I T)" S ¢,
Jue

Ty« EXECUTION TIWE FOR OPERATION 0
=
| i'\.

- A AL rwg
ALY ¥
‘f'"',""‘.t\ l‘.!‘l“i‘l ;‘v'bg'.l.\ |' l Nt 4 G M n" LX) k- O ,p"Q-)f 0
RAN SR AR N .‘! 1Y R " ?u}'l. S’h$, ﬁx\-'c‘th- Wy “30 $q?._

Y, -’ G) z", a‘ «‘a ;;a’ \g.\»'w "“i“.‘ Ql. "l s ’ %
‘) . l‘u J‘. l' ' 0w b’ “ 'l " 1,V 0 .'o"'."‘ GtAALRIUAL .H‘ "'."' "" W

- 49 -

b :) "' L"‘
.?..'l‘."\'- “ "y)

Y T R T N L R R o O D TRy T AT O T O S O YOS LYol RO TR """’;w’lmn
) ..'9‘
(]
Kb 'l.,!
®
. R ARN M
performance surface in adaptive signal processing that is to be v*;éﬂﬁ
i)
noted. If the 1incoming signals are stationary and have gﬁ;& 3
. \.'f\f. \
invariant statistical properties, then the performance surface '
remains fixed and rigid in the cordinate system. The adaptation °;;; $
Yt Y
) '. ¢
process starts at some point on the performance surface and J ﬁﬁ,
W
moves towards the ’bottom of the bowl’ i.e., the neighborhood SN
K n
of the minimum mean square error and stays there. Once these k{j' {
B ﬁ’.ﬂ.
A..F L .-
optimal weights are determined they need not be changed as the Sﬂ_cwﬂ
. . h#-&:‘.::
performance surface is fixed. Py
If the signals are not stationary, then the situation &jmﬁﬁ
digtiat
changes [16]. If the statistical properties of the signals hﬁ%&&
W\ 'Otﬂ.g't
| U
change slowly, then the performance surface is slowly moving in L h:f
. . : . TEIE
its co-ordinate system. Now the adaptation process consists of gﬁ-;ﬁﬁ
BapR
not only moving downhill along the performance surface towards R:
L
. L .)) &
the minimum, but also tracking the minimum as it moves about in KA

the co-ordinate system.

We are concerned with the signals whose statistical
properties slowly vary. In fact, it has been determined that
the HF channel can be considered stationary for times in the
order of 100 ms. This implies that the incoming signals can be
considered stationary i.e., they have invariant statistical
properties for 100ms. During the next 100ms the signals are
again considered stationary, but the statistical properties
have changed with respect to the previous 100 ms. This means
that the performance surface has shifted, and thus the adap-
tation process is to converge to a new set of optimum weights

as the minimum has changed.

R
- 50 - O'\‘l n.

.h W
N‘\N“ .$ﬁ 5* (\ﬁﬁ
H g§§§§§g&

RN RN A 3 o
B R e ~:-.- N e N -~ﬂ~
VK Q ‘ .t «
% .-?.‘.*2", s o A :' :'\ 'h"'
4 !

1 " "
-uuvmﬂ' A PVF..&ﬂuﬁuh'wM

IR I UNE W RUR IR UK TR U AN Y XD $°2.65” B ™ O RK EA XY

The process of obtaining a set of optimum weights is
considered as one convergence. The number of iterations of the
LMS algorithm needed for one convergence is a function of the
channel considerations and has been determined by simulation

studies [1], (see Table 3.1).

3.2.1.2 System considerations

The adaptive antenna array studied here is incorporated in
a direct sequence spread spectrum (DSSS) system. The LMS algo-
rithm can be easily implemented in a DSSS system as discussed
by Compton [17]. The probiem here is the derivation of the
reference signal d(k). The reference signal wused 1in the LMS
algorithm must satisfy the following criteria

1. The reference signal must be highly correlated with the

desired signal at the array output.

The reference signal must be uncorrelated with any
interference signal components appearing at the array
output.

The reference signal generation 1loop is shown in Figure
3.5. A locally generated PN sequence is mixed with the array
oqtput signal. It is assumed that this is the same PN sequence
used to spread the information signal, and that 1its phase is
coherent with the phase of the received PN sequence. The mixing
operation strips the PN code from the desired information
signal. Next the signal is 1low-pass filtered over the data
bandwidth. The limiter then removes any amplitude modulation

present. Now the local PN sequence is applied to the limiter

b ’s’ K I‘Q‘ i‘ N
a3y '
AU v"‘a i.“ﬁ' " h‘.a.‘l‘-n!.‘!‘:: .s., \.,n"

R S
,‘9 1 :.‘w:nn' anhtd :... ‘\'.:“t‘ o ‘v"\‘ & R
4 it M) .‘| “I\ \....
ol o v..c.. '.v"- R o," 3 '-\.N"

.l
) |' '..ﬂ

wﬂﬁh.h.. %k\ Q&ﬁ|jﬁﬂJnv

Table 3.1 Convergence properties of LMS algorithm [1] ;:"'S- '

Number of itsrations required o ,
£ / ¥
for one convergencs o,

2R
Mean l . ""

c::.v
LMS Algorithm 547 171 m'ov.‘w
. "‘iﬂ'

Figure 3.5 Reference loop

“y ¥
Pd

PN
1y
2, o
prLsd

5 R
e
5%

array BW = Ry, a ()
oumt b /‘\/\7\'. . ' .,4 '.‘

o
—
d
*n

VA
(@)

PN ‘ 0
generator

refarsnce AW
L4] .
signal NG
a8

- - o3
52 :,,\ ()

. BONUORNY ¥ P e PR A W T N 3PV Py W by O
o ’:s‘,'A:,S:’nd \ "A‘ ’3’&"\ AN iy x"\v"'\.{n. AR ‘r ;3'&. hahes %" i*‘ N :Q
e C» cn ” 'al.u‘: Q't.;\::.?l . 0‘ A:& '*-(“’ % ""__{‘ e SR Y \‘?“ ¢ N
" "” ‘ 'a‘ ‘t ;"’ '! "‘ ‘ws"s' talet ‘!0 21l i!‘ AL : LA .l o'":' LN A"-L $.50. 000,000 L)

RSN R4 9"‘; 'o ‘s l

output to respread the data.
For this discussion the system design parame'>rs are as

follows.

Modulation scheme BPSK

Data rate 300 bits/sec

Processing gain 31
The processing gain of 31 implies that the chip rate is 9300
chips/sec. The reference 1loop unit 1integrates the received
array output Y(k), over a period duration of one bit (= 3.3
ms). As there are 31 chips/bit, this reference 1loop unit is
provided with 31 values of Y(k) every 3.3 ms. This leads to 31
iterations of the LMS algorithm per 3.3ms as every iteration
produces a hew value of Y(k). Thus 9300 iterations of the LMS
algorithm are to be carried out in 1sec or 930 iterations 1in
100ms.

As previously shown the HF channel characteristic imposes
the need for one convergence to be obtained in 100ms. Table 3.1
shows that the LMS algorithm needs 550 +/- 175 iterations per
convergence which gives a maximum of 725 iterations per conver-
gence. A design of 930 iterations of the LMS algorithm in 100
ms meets both the HF channel constraint of 725 iterations/100
ms and the system considerations constraint cf 930
iterations/100 ms. An upper bound is now set on the sample
period (or time per iteration) for the LMS algorithm
= 100ms/930 = 107.5 _Ms

This implies that the hardware implementing the LMS algorithm

must perform one iteration in 107.5 M s,

- 53 -
-, iy L3 LI "4 L
.‘.o' b ':: o i Vs Ty N " v o V“S'::.r:?”'f:f:;:p
i (
tf;; "‘ ’u .t:, v‘, :-'Nm ';v *;‘,'n'. 4 '.‘i'i'l‘ u,.a. :'" i::.‘l.":' ' "“- 0’ Q3 u f

I by '
W " X 0 Yttt t.‘ G .l ‘l".l" o ‘5.' W'l

g‘ - “?‘l?‘!!h‘..‘l‘. ! 'I,\ e ak‘ WU ‘\..

-

3.2.2 Execution time budgets

A
._,.'s,,%.
RS
Once the input requirements are determined, we know that ;31.
el
the functions constituting the algorithm have to be calculated -hKFf
®
once every 107.5 A s. Thus a portion of this iteration time is :R?%$
.1-.4'
to be allocated to each function of the algorithm. To allocate ﬁl#ﬁg
I ".'
the time budget to each function, we have to determine the -.ﬁmﬁ
[)
number of real operations required by each function. Note i&’gﬂ
AN
that an add operation is equivalent to a subtract cperation in ?ﬁ&i
s
this discussion, sc all subtract operations are referred as NN
@
add operations. One complex addition requires 2 real adds, so %ﬁﬁﬁ
1Y ‘O‘g‘
in total requires 2 real operations. One complex gﬁg&’
ity
. : . . AR
multiplication reguires 4 real multiplies and 2 real adds, ﬁﬂéﬁ
giving a total of 6 real operations. The following summarizes .f?fg
I|'I"'
the requirement for each function (see figure 3.3). \ ﬁ&%,
iy
'...'!.:E
T ®
1) Y=W X(k) (0) .
1 Y 0
. , . QO]
This function constitutes 36 complex multiplications and Mﬁm
N
35 complex additions and thus requires (36%6) + (35%2 RN
= 286 real operations. \é? A
t‘*\“w
. ¥ Ao !
2) e =Y - d(k) (0) ,::&.v,l
. . . 2 \:s]
This function involves a complex subtraction and thus LA
L)
requires 2 real operations. TN
«"ﬁ.{'\::‘
3) e’ = e M (o) ,«5\}?
:“:&f\"\i
This function requ1res 2 real multiplications aS/“ T
)
a real quantity. EQE?i
* i
4)yB=e7 X (k) (0O) LR
4 :.al"?'.:i',
This function consists of 36 complex multipiications. dﬁﬁf
®
4%§§
et}
- 54 - Lf, o
v\

) R} < . s v "
sa:’ i:c‘*s: "‘o'v.':: R .:t‘u:'“t:."'o '. ‘ ' ‘ : ra :\‘.{ﬁf‘*}\ \ \"‘:"'
I '~.-:;. G AT, SRR
R TR SRR

0 al0 ath a0 a8 s 0 all als "alt" 102 0a VM $ ¥ J0 hrgab

A T O T U U LN AT IS ORI U R A Lo VP DO O SUYRIURT R KOO KN MR N -

x
To obtain X involves 36 real subtractions. Thus this

function requires (36%6) + 36 = 252 real operations.
5) W =W(k) + 8B (0)
5
This function consists of 36 complex subtractions and

thus requires (36%2) = 72 real adds.

These observations are tabulated in Table 3.2. The Table
also indicates that the LMS algorithm requires 2N complex
mulitiplications and 2N +1 complex additions. Once the number of
computations required by each function 1is determined, then
execution time can be budgeted to each function. This procedure
is illustrated later for the various hardware architecture

considered.

3.2.3 Computational loading

Once the time budget 1is determined, the computational
loading offered by each function is easily obtained by dividing
the number of real operations required by the function by the

time budget allocated to that function.

3.2.4 Memory requirements

An initial estimate on the memory requirement of the LMS
algorithm can be determined as follows. The algorithm requires
2N+1 complex words of storage. X and W each require N words of
storage and d(k) requires one word of storage. Because storage

of intermediate results is necessary, the memory requirement

- 55 -_
N
L T e ol N,
> o W -"'J. h O ,. -‘ W My W
\,;m.,n ,.,.:,':t ,.I‘“\.‘\.::.*.:.":.‘:.' o Mw..‘-\ Y, Iﬂ\"ﬁ"-.?\."‘ e T ~. -\ S o~ \ s Cnn .;. -' _,, _;\'_\ -s',::.ﬁ:“\
. .o n

|i..
NN Algt_‘s l l. l
.'t\'a’ 'a"y" " ‘ .
T

s ":-f;“*r*uw R
.".".. .‘ ..'.’" .".h':ﬁ.c::‘e& '...; .‘l ‘!ﬁ » .n t~". \ \.Nk H. V'. :.‘ ’ .:"’.

NDOBOSIR0S "s"' | l‘nuh..!‘-.u'o.lu Aot

AR

- PR e e -, e

APy o o S o e o v o Sy i e YY) 2 S XA P g brx 07, A) o > g
. s A e P P v 2, -
Wﬁ.ﬂmm. ® SSTCNNID] RN @ bR A ,ﬁ......ﬂm.m.w“n W s @ e @ Oty
- a2 B ’ U'r A-.-'f 4~,ﬁ“ K - \ ' \-.au -\ . ¥ 4 -.A-- A-_..--- W. o ‘-vnu- o o - f!ﬂn’.)) .
RELAA .Y.-N P o IE XX AR o o =B S L YC-C I VA IR A R A ...rpuv M-.u.J-. ae\,..--;

e
" sjn
Cal
BTN
[W W)

-
2y
Sty

(3
Complex

- 56 -
i
A

"n, T
o]
"

144
vy

Multiply
144

Real

(2)
Real
286
216
72
\
&
A LA

Computational complexity of LMS algorithm

operations

b 4
)
b

I
|
|

‘. »

H}ﬁ .

() ‘l.. '.‘
) ..l'ﬁ,\‘

Y

(1)
Functions
Y
e
e 4
B
v
4
. ..":"

~
¥,
Y

Table 3.2
¥

U
R\

A.'i
Wl
(ﬂl

\J
’l

D
b <
»
X j‘t’!

oy
ROy
Yy

i
i

yer
AJ

P fadiiaiag BRI s A ity S R Y - @ &5 o K v A
A e e e B g [RREN OO N B XN E N OGS A S, P X A

.- N Y Y N O R RO T T W N N O Y AL MY YO YO W RSO YO O PO YO AN I A W """"";:;.ﬁ;"‘:i:'
": ":. 'l.'v

RN

®

for data depends on the hardware architecture considered. A 3%5
"\ t';:c‘:'

:o,:"t

[}) ', L]

. . .:.;'1,::.!::;

The general structure for the LMS algorithm is as shown ;h..
SIS

in Figure 3.6. The input signals from the N antenna elements ﬁ%ﬂﬁsg
Q!

are directed to N parallel sections. Note the update of weight ﬂ%ﬁ
UM

oy

of one antenna element is independent of the update of weight HEREN
X RN

of another antenna element. Each of these sections initially :ébikf
, , _ RO

performs the multiplication of the weight with the input hﬂ%ﬁﬁ
AXe 'l,i‘t

signal. Then later perform the weight update when the e”(k) ﬁﬂi.t
. . RO

is obtained as shown in Figure 3.6. Each section can be .:ﬁ$¥$
|.. ."I‘

allocated to a separate ’'processor’ or depending on the #%ggﬂ
'l

U K

computational capacity of the processor a few of the sections e
L] I}F 'I
can be coupled and placed on a single processor (see Figure ;ﬁﬁ?xx
:: '~|

3.7). oo,
B

®
ity
3.3 Microprocessor Architecture impliementation 5&, f
e

. Dt

The general purpose microprocessor architecture will now be “?g%

boSt

ARG

evaluated for the LMS algorithm. The microprocessor chosen is
Mc 68020 [2], state of the art 32-bit microprocessor, which has
a cycle time of 60ns.

The execution time budgets of each function of the algo-
rithm, and computational 1loading offered by each function is
now determined. This also determines the complexity of the
algorithm with respect to the microprocessor architecture. The
complexity is given as the number of chips needed to implement

the algorithm.

”‘u"‘t“{"‘. ':
W :‘" STy
AOAGAGAOO0LON

\J
) (] ()
: .‘*"‘*‘?"c‘t’o."r:‘
L)

RN OO
RAERC MO X 0 X

A A Y IR A S TN O R N A T R RO NN R oo 5 9% 2’2 @ et 2™ Y RS ARE ST ht §Y ‘B8 Jatt .w‘.a

%w

- J‘a‘

o",a
Figure 3.6 General structure of LMS algorithm : ::‘c..‘

mmmm e mm e e : .'

'l 'l
Weigh ! ""l
‘ W] xl Upd,ax: 4 & ."v"
, l . ®
[}

et o)
R e et e I R - (N ﬂ..
WA
+ 'l'ﬂ::::::;
(- e W e - = -)
Anteana 2 | : l:' ‘,':,:
W, X, K Update F— Desired sl
| 2 2 |
i

Signal -
! Section 2 '.l';p -4,
- l{ l o)

- ad > = o w - o - 1 Error

_&
. — Calculation ety
W. X Weigh Il ey '. "?
3 ™3
| []
! e,

L}
-------------- - ;g;..l

(M Q"
0 (] 'l'

N .
1..?.'1::

é‘j‘T %..:.:é"

‘t:u‘::
\)
Ny ot

g_.

b Complsx conjuga

X0

W, k+1)
W0 | ynir | i

y < 2 me(k)
element ! Eeh?:y 2 - :

S

oo e’ A
£ o
ol

Py

YRR,

QXX

D7

s
o

-
o
,:".

X,

el T St

- 58 -~ \’.‘I‘:‘ l'|‘l

s ot e : Wil l'?::.'l
t'.‘ ‘.' " s‘. o' et L .'0

s ' N f ‘l.y" '!l. '0 Y
't' NYNH " vy .‘.o:l', y "“::' e ':t",' ".h‘...'. u\.ﬁ,:'b W "‘.G"

“h ‘! AN *i ey

‘. s ; " ht :0. " ..l "

) !\ 0‘5! .’.I
' H

. "‘ »‘, AN ’a’

- - {} b
3.3.1 Initial assessment on the Complexity L?ﬁ&ﬁ
..'.:""."',
The complexity of the hardware implementing the algorithm lﬁﬁﬁaﬂ
. e
is a function of °
IARANE
1) the number of operations the algorithm needs for an [ﬁw,
A
iteration - computational bounds gd?ﬁi
PR
2) the time allocated for the iteration - input
\J \ A N

‘;-.
-

"’(i s ‘-5
S
“'%
-y .

requirements

3) the hardware architecture implementing the algorithm - fO)
o
. X IR
architecture considerations Py
| | | . Sadudey
wWhen these issues are taken into consideration, then one ¢ﬁﬂﬁ
Bttty
can obtain an estimate on the number of chips (microprocessors)) \é?ﬁt
P aNA S
needed by the system implementing the algorithm. The complexity "5L:
of the system implementing the algorithm is indicated here as ?ﬁﬁ%@
Lty
the number of chips needed to construct the system. Loading ‘2§ﬁ$
Wiy
analysis of the algorithm in the microprocessor architecture ' ®
=R
environment is now performed. Iyt -
ey
‘0:)'"'0""‘
R
U D
3.3.1.1 Execution time budgets "
~ 1‘ "" W
The time budget allocated to each function is determined <¢mf'$
DR
next. Certain factors play a role in determining the complexity ﬁ '"&
g y
of the system for the microprocessor architecture. These fac- e
G
tors are: Tty
phatonid
I' .\ d & d
1. the ratio of time needed to do a multiply operation and *f\ﬂ¢t

the time needed to do an add operation.
2. the speed of the microprocessor with regard to LMS
algorithm (millions of operations per second, MOPS).

The summary of the discussion which follows is shown in

59

S W MR
‘: v l.",,i.‘_ gt b“". |'.' "'.’... ...&‘..'

‘._!" l‘«vs', !‘.’ "t ‘.l "-l‘ " o ,l"". ’l‘. 'P,."\‘. %0 “ I“ .‘Q" .‘l..“.”t.i.l

d PPN IR UM ATSE AT M TLIS T W TLAS T PLA TUIE TUNE PLIE YOIV PLN T PO TOIE TON TN A PO U AWK AR MK K AU UK Y v‘v.~'.-

battvitet

o

Table 3.3. The first column of Table 3.3 contains partitioning .::.EE::.E':':::

of the algorithm. It can be noticed that few functions are ‘::E‘:s::.':ﬁ':

coupled as a single task. Functions O and O are coupled :;:":::E:
together for convenience tg form tassk2T2 . Thegreason for :: ‘:
combining functions B= e X and W= W(k)+B to form task T is gg‘ss
that these functions need not be done in sucession but cag be 35;::::'
interleaved. Once B =e/ X* (k) is done for antenna element %':':‘:EE':::?
'i', then the weight can be updated at once by performing W = :§§'§:§:

W (k) + B . Processor cycles can be saved as the 9’::':3::
intermediate result is still in the register. 'E.::}l{::;':é

The second column of Table 3.3 indicates the number of real ::EEEEE.:‘:':‘::

operations each of the tasks needs. Column 3 and column 4 of "':
Table 3.3 indicate the number of real multiplies and number of f:'*:
real adds each of the tasks requires. The Mc 68020 microproces- E'?:

sor chosen has a multiplication to addition ratio of 6 : 1. ":3

Thus the effective number of operations column is obtained by :,;ﬁ:':
(number of multiplications) * 6 + (number of additions) x 1. ::’:;:E:::

The effective number of operations for each task represents the - ':':f
task in terms of adds. These then provide the true complexity .::.E':':'.é‘::

of the task when implemented in the microprocessor. ‘::::::

A portion of the sampling time 107.5M4s is allocated to ".‘

- perform each task T through T and is given under the S:'B\'
? 'execution time bud;et’ co]umn.3The time distributed to each SES":E:
q task is proportional to the effective number of operations of r‘.::"’:
that particular task. For example, for task T1 the time .'iz.;':,:gi

budget is obtained as '.:':'.l:‘::::g':
Y Ul
®

wh

Ve

B L e]
R e R B e : BT
: A A AN T T A RtV !

N O T LA RN L AR R Y TPV WU MO VU VU LRI TR A A A A N U AU LN U R Y O o o e oo oy "40;‘;";“!
) §

W
O

¢
!u‘: R
Lttt
®
"'.') ¢
[O]
i
L8 “ ‘|‘:;
5D
RCdushy
PRSI
g. it
i] | e
Low : TR
| i i . ‘Q.m
l 1)]] ..
I~ o 0] -t o~ ' &) .. "|
1 @D e e e 1 Ay
18z ! o
| 2% | : i
i ! ! Tt stet
[— i 1
- i i rorPios
W WY ".4
L E a e
el
I @m0 @ lg’|:|'! :
I =20 iS T & ! ;"l“. 5
1 A Iwe | o - 1 ."'..)
INEDO Iin N 1 y AN
g @ax | ' 0"'0 I""
' cgv ! 1 '.‘: "|'(
E © H E A 0 A
: | : -
RGN
L 37l oo | R
I~ [~ & ety
BRI g s RONGOU
tivm 38 v 0 <+ IO
p Faxge “a tatyieyhi
i i] 9.‘.!."!,"!
g 1 I U ..‘.. ".".
= b i ! ottt
T { §2 | i e
E { 23 | : SRR
— o RAPEK)
® g I ee | f 'f, .%l'.:ﬁe
b~ 1® < I Wbyl ct
“u>3 TN @ 1O m 2 t 5.'5‘,
xz o ieva 18 S i B
1 [TI) 1 — — 1 ‘|' ﬁ"‘
- 2 : '3 ' : ! ".. .'f
>3 LA ‘ Vi
> i i i ®
Te ! !] TR . .
- ! ~ o i J)
i3 i~ $%i3 ~ g | R
g a2 |7 X | - H .) 'Q:".g
1~ i] L ' ‘
v 9 1 1 I 0y W
S | i i Sudioh
§a 0t
o | { ! WG
o | > 1 |
sy } - 1 1
Qo i a i i
E & i~ -t]
@ 16 i | N 1
@ | [E BRI g ~ 1}
¢ o 1 U 3 | e - |
N | x| 1
@ 9 | i I
< 3
! @ | i
~ i § 1 i
Lae} | -t | |
I - i
o 1~ [Y- ~ ~ 1
ond [-] o~ t
2 I~ ®©OU I« el i
] | -)
b 1 @< o | |
i ! 1
{ o | |
- L]
i § & & &
I - | |
| -~ ot 1 X - K]
|t © im « @ |
I~ € e o 1
1 3 1B = |
i [1 i
1 t 1
1 ' l
- 61 -
oAt W T T B E e N A B Vo i 1y Py 1Y N ¥
A 'a"’:;'r'ﬁg_’i’ ’ts '\‘;‘i‘:’\ &2 ":‘l..’ﬂ‘qvl. l.‘.l\ l'.:.‘a’.":.. .C‘g".' O..:."‘l..':i
Dl 'z‘a‘A‘a‘t’ﬁ-’?a'q-'-':'l'v.'ﬁ"‘-‘:ﬁ""o"r:"-o“&' AR
NGO ‘q".‘l‘j AAGANAON oy, 0‘.!‘

L0
ATt U
ey ?‘;‘_)‘,'!@\‘f': ,g’!!'!ll._'t‘h WO .-,_'_0“.0.'.'!." (.'_l'. ‘|.|‘ X

[N EPL] W T SPCISPLI SR WU WL WAT ST WU MU T WL W G WL WU S U WU WU U WO VU TR RO TR O TS ’ ¥,

) .'o"
S
“uh‘

)
W]
(1006) x 107.5 Ms .-.:,.;:;
______ = 52,39 M s '.:5'5.':
(2064) Ariirle
.'l':‘l'
(X ‘.|
.:w";
3.3.1.2 Computational loading g M::
Ao
Once the execution time budget for each task is obtained hﬁfﬂ
)
N
then one can determine the computational loading each task i
IR
demands. Loading demands are indicated in the computational ﬁ'gﬁr
', Q‘.’
loading column of Table 3.3. The entries in this column are ':ﬁﬁ
Tl
obtained by dividing the unweighted number of operations i 6
. T
(entries in column 2 of Table 3.3) by the execution time Jé%%
AN
‘ budget. This gives the number of operations/ sec needed to ﬁﬂb
NN
! perform that particular task. For example for task T , the ":“
"y 1 - . v
B N . . . N fr‘)
4 estimated computational loading is obtained as ‘ '-;.,
) A
okt :a?
) Y

286/52.39 M.s = 5.46 MOPS.

é‘sg
F c'f;
Once the computational loading offered by a task is ﬁg$§
s)
determined, then the number of chips needed to perform this :
TP
task is determined. The number of chips needed for each task Hpig
T . ~N '
o is determined by obtaining the speed of one chip with regard ol
. h, Ao
to the LMS algorithm. It can be observed from Table 3.3 that tasks Q“;é
ol RCINA
5 T and T put together consume the major portion of the R

:

o iteration time. The operations needed to perform task T and A
o 1 "::’i v
} task T thus constitute the 'operation mix’ for the LMS e
3 RIYRYH
algorithm. A complex multiply and add is the basic operation ﬂﬁm
¥ .‘l'
that is being repeated to perform task T and T . The ég ﬁ
1 3 s
'operation mix’' for the LMS algorithm constitutes a complex ;
S
_5# \
- 62 - o
R
':i bsi .l.| NN W "--\-
S A
' ‘ "g I l O ", .
L :vv‘ oK “ l’ ‘J‘ N ""‘!n. :f:':ﬂ‘ hhy! '.t".n‘.‘.o'.\:'.\.;.".., .l!‘.o',:’!". "&0" o ” ' N""‘

TR N R TUECR PR PRI IR TUR TER TR X D N TR W s WIWR WU W WU WU WU WL WX NI CIIN AN T R RO ALN

[

it

[¥ A ()

®
multiply and add which involves 8 operations (4 multiplies and 3ﬁﬁﬁﬂ
L
g :
4 adds). The Mc 68020 microprocessor performs these 8 {ﬁsi,%
: ;"::\ A
operations at the rate of 0.5 MOPS,. 'g&
Using this information the number of microprocessors &h$¢§'
(A "‘.".‘
needed for a task can be determined. The number of hﬁ‘ ﬁﬁ
. e
microprocessors for task T is obtained as R
| T
5.46 / 0.5 = 11 microprocessors. !JQ&&%
8 850 8t :
Q.‘ W
Similarly task T requires 11 microprocessors and task T Qﬂ'?&

2 3 19,918,
requires 12 microprocessors. As tasks T through T are 1‘3,%_
1 8 iy
performed in sequence, the same 12 microprocessors can be used ?%k%w
) .I’ ‘6‘.(
for the tasks leading to an initial estimate of the 'Q@&k
4 X M

complexity of the LMS algorithm to be 12. L d

As the complexity is low, a system can be designed and its
performance studied. Through further analysis it can be deter-
mined if the time involved in the communication of data between
chips introduces additional computational capacity for the LMS
algorithm, and thereby require more chips to implement the
algorithm. As storage of intermediate results occur the memory

requirement for data storage depends on the implementation.

3.3.2 Implementation considerations

It has been determined that the LMS algorithm needs 12
microprocessors, One possible arran-
gement of the microprocessors for implementation of the algo-
rithm is shown in Figure 3.8. We have used 13 instead of 12

microprocessors for the ease of distribution of tasks. With the

- 63 -
ay
e 0y 1- e AR T ‘\
:a\. ".:v .‘,:,;p :;:.:::‘:;'p .,o,:' ;:.». .":b Q ",."-...' '-.: .:“ W’-p: bt ‘\Q'Q&‘ i"& VR ,,, ~§. \"n,
[\ i.t !u‘q "I ..C . iy \‘
ue:‘::t‘y Q’q Wy ;0 '\o J t"‘t' Ol‘u l' :':i‘q... o l-"’; .‘". El‘g'\‘\. Q.k:.’b Y .\ \ ‘.!.. fatetnt !‘

J
.I. ' i |” O. | 5.. l‘l‘ . .‘t “ ' "..I

LR Y

X ‘.;;“f'f\;

Y

XY X
@

Figurs 3.8 Microprocessor syswem dasign of LMS ugorithm

X, &)
X &) Microprocessar
X0 #
@ : —
X oK) Microprocessor
X0 . #2
X1(k) —~
X400 “———4 Microprocessor
X0 [L #3
X g &)
w0\ ——
1 Microprocessor
X . (k)
]
Xy . n Vicopmosemst 81
X) S | Microprocessor g
X @ 43
xm(k) N
X0 7 .\ﬁcrop;:eeuor
X, W
xua) . DcdndISinll
Xm&)f Microprocessor G -
X400 13
xnm . 'A“ddu is placed o
Xpyk) Microprocessor §<+
X s
X,
X6 7 Micro;:;cesm
Xy ()
Xy ®
s/ Microprocessor
:n“’ #10
)
»
X400 :“h:h:wm o
o N
X, &) 7 Microprocessor :
n (-}
X 00 #11
o -
Xyy®)
Xy / Microprocessor
.2
X o)
- 64 -

ORI ot J 5
RARIARR A o 1 W
W)

WES IO, NN (] ! A { ;

: . ne o Al k‘ RNt Mgt Ty AR
s R
R R R R R e SR

PR 't.-'lf Y .n“! ‘

A AT R T AR T T Al
&*sﬁﬁ\;\}\:\.ﬁ s’:\:
SRS ANENAG AL
- 4 ~“ ’1_“ L

e

.‘4
<
2
y ¥
LoLA
k
by

KU R WL LR U VO Wl O W0 "f!." "
R
AR
e
- 92 %)9, ..‘
algorithm partitioned into various functions, the job now is to 'ﬂ%&
'“".l‘
allocate the various functions among the 13 microprocessors. #~' 4&
il
Microprocessors numbered #1 through #12 perform similar 'L“.
o . . AT
operations. The additions and multiplications mentioned here E;&ﬂﬁﬁ
1
, AR
are complex operations. Each complex quantity is represented $$k$¢
't"s O‘\
as 16 + 16j i.e., 16 bits for real and 16 bits for imaginary. -
At the beginning the signal samples from antenna elements :Vqﬁ$
TN, 'l.t.:
1,2,and 3 are directed to processor #1, the signal samples %ﬁ“’f
Py it
XK
from antenna elements 4,5, and 6 are directed to processor #2 PS
‘ S
| and so on, so each processor numbered #1 through #12 gets ﬁ&ﬁﬁ?
! 'C‘ \""C g‘Gi
; three input samples. At the beginning, each of the processors, 'haz;ﬁ
Q.l
{ #1 through #12, perform three mu]tip]ication and three

additions. Processor #1 performs Z: w' x_ , processor #2
performs .55 W X_ and so on.1;; o;tai; Y= wT X, the
output of %h: 121 pr;cessors are to be added, which is 11
additions. Eleven additions done sequentially takes 9.84 Ms.
To reduce the time needed for this computation, processor #2
adds the partial results from processor #1 and partial results

form processor #3 to its partial result, to obtain

9 3 6 9
S W X = FHOW X + Z WX o+ W X
izt i i i=3 i iz7 i

i i=4 i i

Simultaneously processors #5, #8, and #11 perform similar

18
operations to produce partial results Z‘ W X , f{ w X,
36 i=10 i i=19 i

and 22 W X respectively. Now processors #2,#5,#8 and
i=28 {1 i
#11 direct their outputs to processor #13 which adds this

data to produce Y(k). This way the time spent on the 11

A
SRR
- 65 -
............ K -.5,\.:,:-“'
DOUBEOIRO0 T, O Oil Vo6 O) RS, N A '\-W SRR ATAG IS
h q’ ;5: ‘ l:l : ‘: : ::: L,";,: !" ’..C "~" ‘:0 'C."!:::%:::.ﬁ ."..i.. "% -S"Q‘ .ﬂ -“.,'-'.&v(‘,‘ \ ": ._3“: ;;: !
¥ b .o,".. Wty m :.':-. l. "m.. Yot .‘v.}n X !'.:.:'..!.‘.i.'p‘.p ..h..‘!' LN (o

90 "‘ ! ‘i '3 " .0 . || 3. |‘ .|" ". .‘Q '.‘ OO

additions needed is only 5.64 Ms,

Next, Task T is performed on processor #13 to obtain the
error signa]ze'(k). This signal is broadcast to processors #1
through #12. Once this is done, the 12 processors perform task

x

T to update the weights. Note that as task T requires X ,
3 3

processor #1 through #12 perform the complex conjugate of X
XK

to obtain X while task T is being performed in processor
#13. Notice that equal timezwas required by both x* and T2
When operated in this environment, the code can be written
for each of the tasks and the time taken by each function is
obtained. The task time scheduling [8] is shown in Figure 3.9.
From this Figure the time taken for an iteration and the idle
portion of the iteration time can be determined. The iteration
time obtained is 107.4 Ms which is in the order of the
iteration time of 107.5 _ As imposed by the HF constraints and

the system constraints.

The time taken for each task in the system and the

computational loading/chip for these tasks are given in Table

3.4. The tasks T and T were used to benchmark the
1 3
microprocessor to have computational capacity of 0.5 MOPS.

While computing task T the average loading/microprocessor is
3
0.57 MOPS, implying that the microprocessors in the system are

used efficiently. But while computing T , the speed of the
i
microprocessor is onily 0.41 MOPS as time is spent on passing

intermediate data among the microprocessors.

The reason that the speed of microprocessor is (0.57 MOPS)

ARSI AGARBAEANK J q R N A A N DR P TRy
OO OO DO A R DR O"‘ AL AN \L\.‘ -:m‘:‘:

S otntial ‘o"t.":~'~:3'~:-'~%»'°'..~$.‘ X ~ AN ‘9‘* :

s :'t’:”(’:'«’,‘t’:’\’:'l’:'i’:‘&"':’:‘0‘“0’:‘0"’":‘1’| DAY . e b‘o"‘a NS "t ot b
SN R I R L i e d ®, o‘!’u': 3 o'!'.k '1‘,}.'1'.. Ui 0N N b DR S 2 ':5'

R AL IR U PRSPV IR RN AT KAV AN LN UNL Y U VL LYl t U W % W R LW YO MU AN "‘

[y '.‘
Figure 3.9 Task scheduling using microprocessor M n'
architecture for LMS algorithm . aw

N
: ':h"‘.:"::
RO
49.86 ms 53.1 Mms Wt

N
X7 s

A T, ¢l x|

===

B T, IT, | X | ¢
T

1'5 'vl.t:;:
ping:
) "l
i
[]

e Q'.';O'Q‘

R
c ¢ el T {
47.58 pms 53.22 ms 60.42 s 107.4 ps

%\:}:‘:‘::l

: i gt

¢ : represents idle ﬁ:‘:.:::‘:':“:
U

A : for processors #1, #3, #4, #6, #7, #9, %10, $12 PR

B : for processors #2, #5, #8, #11 SR

C : for processor #13 ottt

3o

TP
e
.’r-‘z%,‘
XX o

LSy

¥ ky
g
1
»

4

e
Ry ..“’w

v
- v tgm W - P cem - LR I R,
v AW e PR T 0T Y Rt At I R I TV ST NS N e AN ¢ - o W W J‘_.‘f w 7.",_-‘...(\.!’_4'\-._-\ LR
OO UK g ,ﬂ"' .r,:w .("\-l‘.'-('.’w.-f-.” A LR NGNS &i\. O e v PRt *

o 0 () - > R N A
Ce R i‘\}'l () .'..I " M) " ot N BN A o MO LO NN R LAY
‘ *"3*!‘:"f"‘\h':'f’:"“;‘:‘::":‘. A 1'::9.'1':‘\' St NI N AL NI AV e A Y e T
N L WA D W 0N |‘i".0“‘.|‘. R IV o o™ d , o 5 » o _-\»_ o A

LA AT st .\I5,B|‘l|l|¢“gil’..lg‘li. (A J‘ 0". LA -. LA SO W N

vt R D e N NI C B A ot N X K : SO e P R S K SO U X K

EIE K] Io b, A, | oo ‘Ao ¥ah ¥

o e

04 aThe st g gt 0

x :..4 F0.0% et 7 't.' WM '.-“.-

Table 3.4 Timing summary of microprocessor architecture
implementation of LMS algorithm

| |

Tasks Execution Computational |
Time (js) loading/chip |

|

Task T, 53.22 0.41 {
Task T, 7.2 | 0.55]
I

Task T3 46.98 0.57 g
I |

»,‘,,l (505
"‘\i -\"l '

AW :a"'
L) LY) ‘1.!' ‘l '
e -*': X -,.

stk
'3.‘ :.""'

Processors Processor Idle
utilization Time (As)
#1, #3, #4, #6 91 % | 9.6
#7, #9, #10 #12]
$2,%5,48 & #11 93 X 7.32
#13 10 % 96.84
!
- 68 -

Table 3.5 Processor Utilization for the microprocessor
architecture consideration of LMS algorithm

§-‘1' .'..-r" -!.. .'\--'.
i .-."-' >

LA L P 1'15
- %;B. &i&%

10760

»
i

N
s
|'. Q‘Q |.|

b, ﬂ
::' (XM

PR VLA TCAT VO IO TN POl R

N R R R AR R R RO R R RN P RTINS R TR N 1N RN WUWA VOV

more than the capacity obtained earlier (0.5 MOPS)

advantage is taken of the availability of 256-byte on

instruction cache 1in Mc68020.

algorithm can be written as loops, time is spent in

the necessary instructions only once as from the on-chip cache.

This leads to savings in processor cycles which increases the
speed of the microprocessor. The timing summary takes this
savings into account.

The chip wutilization [8] in the 13 microprocessor system

can be determined. Table 3.5 shows the utilization or

busy time of

processor is idle per iteration 1is also indicated in

table, and is determined from Figure 3.9.

sors the mean utilization of the overall system is found as
(107.4)13 - (9.6)8 - (7.32)4 - 96.84 =

(107.4)13

85.5%

which indicates that microprocessor for

system. designed

algorithm has high utilization of the microprocessors used.
The microprocessor design requires 98 words of storage

where each word (except /‘4/) corresponds to 32-bits of real

and 32-bits of imaginary. X and W each require N words of

is that
chip
Since most of the code in LMS

fetching

fraction

a processor in the system. The amount of time a
this

Using the 13 proces-

LMS

o
. CANDNg
storage and d(k) requires one word of storage, and the rest j{hvn
R SN
. . LA LLN
are for intermediate data storage. As each word corresponds to T
-._:u‘*. -_‘:n
» . - -}. » .‘
8 bytes of memory, the microprocessor system requires 780 i
oy
bytes of data memory. SN
B§ﬁ$
AT
ity :
. . . ’ o !
An evaluation of the LMS algorithm using general purpose ”ﬁ'.
:'3-':5-‘} 3
&fn *‘, \]
- 69 -
N
RNty
I
'aﬂ'u\‘
- R AT N R AL s Ny Y iy AV ..- f
Al f‘«,«'.j‘ Tl he AT '\"'\. \':.". 'F_.' "\.\, \. \.”\ T _ Yy '&" ML LRI
::'l::’:':' o bf‘,\'h?dﬁ o i‘-s. W\Sg d,' AT ’\‘,u ‘,-." o \,}'«.‘,\ AR AN o - ?\ Al ';\:':A.:,\.“\ N ‘; X:.
u,o'.u‘:, Wy Lt _,a"\" \'-"\;‘»‘*,,\".(’\‘ m,n_r\,ﬁj hes "v-r‘""‘“\\"“
unt%ﬁﬁﬁﬂhﬁﬁwﬂw h.ﬁ.?ﬁ,‘ud Nt R A O A NI In Ry

; R N T R R S U R S T R R R o o R S e T R T e T T oo L X """4
: et
* f lx
’: !d&"‘~ (]
Y @
b microprocessor architecture has now been completed. An T: \':
T - .l~ X
assessment of the complexity of the system implementing the :Eﬁ_‘,-
P
. .) o,
algorithm was discussed and it was determined that the e
[]
& complexity of the algorithm using microprocessor architecture :_",h' 3
‘3, . s .)).‘t
i is 12. A system architecture was then developed for this “:'.:::::-:
b
i . .) i
: algorithm using 13 microprocessors and iteration time of 107.4 PR
]
;: s was obtained. The architecture allows the system to perform “'_’, ’_:-3
: NN
5'(. :".'.“-}"
‘: 931 iterations during 100ms and required 780 bytes of data R
» ‘.}“-, i
L [el
L storage. N
e '.‘.
: :;.r ':::
K} 3.4 DSP Architecture 'c,u’l‘:q'*
e .1'0"{
‘0 . , . . . ") 3
‘ In this section, the digital signal processor (DSP) "h '
» ®
- architecture is evaluated for the LMS algorithm. The DSP chosen Qﬁﬁﬁ:
!. LR
Z for this analysis was LM32900 [3] which has a cycle time of ;_;:
§ SOSON
£ AANSY
0 100ns. A
o
" S
0 N
o 3.4.1 Initial Assessment on the Complexity ALY
K) s S
I . . . , Gty
ﬁ‘, The complexity 1is given as the number of DSP chips and BLLLSA
' [)
;‘. takes into account the following issues. I:;.‘-‘.j:
() . -.'- }
29 .)) [58 Y
j: 1) the computations the algorithm requires per iteration ;:';:ﬁ.\‘
K] f\.-ﬁ."’i.,
) 2) time allocated for one iteration il
L J
A 3) the characteristics of the DSP architecture ;\‘,ﬁ‘ X\
/ A
. :."\\.
, .i\ Q
~ R
3.4.1.1 Execution time budgets AN
o,
" A summary of the DSP analysis is given in Table 3.6. The Ty
X :':".r:‘:'-'
;c first four columns of Table 3.6 are the same as that of Table :'_.:.(,:.-.:
3.3. The time taken to perform an addition is the same as the PR
®
v RN
W L
:: - 70 - ::::F\
:.‘ N\‘ .' "
5 N
1.:‘ W "'.ﬁ:;n ‘,,‘:&:.)\:.ﬁ:{*)":-;:::.:'.:-:g:-: ::' :::.:-'_
D) LY P e A
o' Aty N e P I o, o
AN RS

.v# wwa praiere s
AR LNCE
e y

A 4 a;vv

PP, hﬂ
fifil-\f.-n- -4

YOWRAYR LN

-

WOV W

t
1 LS 196 yze 081 (Al vt nk Asey —~
~
1 s Lo y 4 z Y YL oasey '
1 Ls 1°05 98z 42 Y1 982 'L asey
(SdONH) (sv) sppy AtdranH | suoyiexado
sdjy> Bugpeoy 138png suorjerado jo 1eay 183y 13y | suojiduny
.Y Isquny | Teuopleindwo) auy) 33qwnu 3A§31923)%
(9) () (9) (<) (v) (c)) (V)

3In1333jyoaw Jsq Buysn
wyiyro81e SH Jo Kypxe(dwod uo IUdussassy 9°¢ arqey

N U I U PO R U U U WO W P W L U W W W M WU VW S N W T T ST

') ’.‘,
3
Y
Q ;'53
e
time needed to perform a multiplication for DSP chips. The FrV&E
AMLXIN
effective number of operations column (column 5 of Table 3.6) frgéf
30400
is then simply the sum of the number of additivns and mul- e Eo'
[
tiplications needed for that particular task. The procedure for g?’}#
"‘, O ‘t
allocating time budgets 1is similar to that done for microp- ' ,é&,
o 5:
rocessor architecture consideration and is indicated in column Pl L0
6 of Table 3.6. ";ng;
’ ' v .
Falt
::l.:::
VAN
3.4.1.2 Computational loading S
®
The computational loading, as previously shown is obtained xgg;Q
Aty
A w
by dividing the unweighted number of operations (entries 1in / -ﬂ
AT
column 2 of Table 3.6) by the execution time budget. For g&ﬂk..
@
example, the computational loading demanded by task T is Iﬂ\ﬂﬁ
1). N
286/50.1 _Ms = 5.7 MOPS i
PO]
The computational loading demanded by other functions is deter- 2.
q:.-\‘.a.
mined 1in the similar way and is indicated in column 7 of Table k:\gﬁ’
ity
3.6. ‘|b¥;
The speed of the DSP is determined by the time required to ®
PRIy
. - ‘\- ‘
perform the ’operation mix’ of the LMS algorithm. As stated, jka‘
vﬁ?ﬁk
the operation mix constitutes the operations needed to perform quﬁs,
AT
one complex multiplication and complex addition. The DSP per- .~,3h
forms the needed 8 operations (4 multiplications and 4 :::'.ji':Z::_:_':
Fd
NN
additions) for a complex multiplication and a complex addition J:H{§I
ROV
in 1.4Ms. This results in a speed of the DSP of 5.7 MOPS. The _
N
program written for this application 1is 1in straight line N;hﬁ\k
NN,
coding. If the code for the 'operation mix’' is written in 1loop ﬁﬁﬁ#¥3
IO Y
@
o
8
- 7p - RO
\’\."t"?.
K. §
f‘:f».‘ \

Lhe

Tl ey
EULE A
"”n't"

¥
AN
)

DX

% M)

Q‘Qv;l
AL M)
¥

i‘.. U(Y.
R

AR [Wy
' ACAOH0
"oty e,

1M
O
LRI,

N N T R T R R R PR I W W AU R U N U U R 0 L L T T XTI RY

e

Aoty

®

form, then the DSP operates at a speed much lower than 4.2 MOPS. %M 3%:

S

This results because loops introduce additional overhead by way ﬁgﬁ}J
,".;_\

of Test/Branch instructions where as straight line coding does Al :”

. 3 . . - .' v

not. A disadvantage with straight l1ine coding is that it uses anny

R

more instruction memory space. On the otherhand, it reduces the ? k{%
¢ L)

')

complexity by increasing the speed of operation. The advantage & M

YUY

with loop coding 1is that less memory space is needed but the ,ﬁﬁﬁ
)

complexity increases. The number of DSP chips needed for this _~%‘

Ke ﬁm

ab 4 '

application when using 1loop coding is 2. The LM32900 can **l
address 64k of instruction memory. As the straight line coding ':;\
) ‘H'Q

for LMS algorithm does not consume so much memory the straight 'ﬁ%ﬁﬁi

i

line coding method is adopted here. The resulting estimate on j‘ﬁ?‘

W%

the number of DSP’s needed is one with straight line coding.
As the complexity is low, a system design can be developed.
By writing the software we can determine if the time per

iteration obtained is within 107.5,/*5.

3.4.2 Implementation considerations

As only one DSP chip is needed for implementation, the
input samples from all the N antenna elements are directed to
the DSP chip. The operation of the LMS aigorithm is obvious
in this environment. The algorithm need not be partitioned as
all the tasks involved operate in the same DSP chip. The DSP
chip operates task T1 , T2 and T3 in succession. The timing

resulted from this design is indicated in Table 3.7. The

overall time required for one iteration is 105.8/‘3, which is

);IQ \2 NN “. .-..I\ v“‘ *
R R R T A

. ' \)
'.‘ 'n"‘b“‘ ‘ ..‘,'\:"l \. '.i‘ .| X . ' . ‘ |‘

\ "
. A 0 W |‘ \: *"’\
ot " *‘ RO ":'l'n o‘. ‘l“‘l’»l‘a l' "4 el "' ! "‘« " " \ A

IQI‘

i) i,
ot l'kl"

TN p &' B'a B¢a 47 872 A%, 4% g C WAV Rk e 12l ¥ 4 $8 1 BT R e Y a A

Al ity 0.- Wy
l "é‘:}‘

E less than the constraint of 107.5M¢s. The loading of the chip
while performing tasks T1 and T3 is 5.68 MOPS and 5.97 MOPS ‘i\ﬁﬁ
respectively. Eg ‘ ":
The utilization factor is 100% as only one DSP chip is used. k‘ '5
Note that, unlike in microprocessor design, the time needed to 'ﬁ."':‘
perform X* is also included in iteration time, whereas in ﬁﬁ*ﬁ

e

e

b 3
microprocessor design, the time spent to perform X is

»

s
(3
0“:
\)

absorbed by task T
2

-

The memory requirement for data is 2N+1 complex words. X
and W each need N complex words of storage and d requires one
complex word storage. As each complex word requires 4 bytes

oA this design requires 294 bytes of data storage (2 bytes 1is
added for storage of a real word).

In this section the suitability of the DSP architecture
to the LMS algorithm has been analyzed. The initial assessment
d of the complexity of the algorithm using DSP architecture was
” found to be one. As the complexity is low we proposed a system

design for 36 antenna elements. The system design completed an

B e 4
PR

iteration in 105.8 M s which resulted in 945 iterations in

oAy

P-‘Q‘.“ -

100ms. The design required 294 bytes of data storage.

3.5 VLSI architecture
X Design consideration for the VLSI computing structure was

considered next. The VLSI computing structures considered are

P

both Systolic and Wavefront [6],[10]. A key attribute of VLSI

R W

. AN

- 74 -

oy

'."‘-';,f-i'

t».ﬁ""'"'a‘ u’ »’,l‘) A e,
‘, R ".o'.ﬂ"»
i !

lll,! o L4 PP L L S

' ".o"' st o"‘o l .0 ." "'\- \'l‘ -"I :f' 'V; NN AT AT I o i ik
A e

. W v,i ,0 q \ q | L. ‘r. .(- A o - N

L "'-""' 'h 'a .‘\. U ‘4@5&’.’%:'»:'.-? e

R R R R A R R T A T R R R R N O N A R O N N N W R R R U ML U R U N AN N NN AN U N KU LN L XL Y U

Table 3.7 Timing summary of DSP architecture
implementation of LMS algorithm
| I
Tasks Execution | Computational |
Time (&s) | loading/chip |
I l
Task T, 50.3 | 5.68 |
| I
Task T, 1.3 | 3.0 |
I |
Task '1‘3 54.2 | 5.97 |
g | |
i I I
- 75 -
IO IO e M OO S SO S S O W A AN o W T T o L e e P o M *" AT A -
R h‘.l' *‘al o) 0 S e "" "'.X"i"“‘ (" ol ": ~ .'.' AT
‘ "I‘ ‘I’ %‘, '»' 'hs‘ ::"'Jf ..".. :.'::':0 :':;?:t:".."k c'l .'\'.‘I‘t. “N:::..:.‘c .l Y, ‘h \ ‘. "“-‘:\- \. '*"’ enagas
e “ Wy .'4',- . K08 'u' KUVINS '_|.,4 s','c':‘n Y, .C'V'c!::of::lﬁl!.“ aaleat .0 W .O. '\ sy

Bt

computing structures 1is their suitability to implement
'compute-bound’ rather than ’'input/output bound’ computations.
The compute bound computations in the LMS algorithm need to be
identified first. The tasks are examined to determine the
nature of VLSI suitability.

T
a) Y = W X(k)

This task is an inner vector-vector multipiication and the
result 1is a scalar. As can be seen, this operation needs O(N)
multiply-add steps whereas it requires O(N) input/output
elements. The ability to access data from memory repeatedly in
the computing structure is a consideration when the order 1is
the same. The reason for the improved performance of compute-
bound operations using Systolic or Wavefront computing arrays
is the ability of repeated use of input data accessed. Once an
input data is accessed from memory by the array, it is used on
many processors of the Systolic or Wavefront array. The input
data spends more time on computations rather than in accessing
of input data. This advantage cannot be used in input-output
bound operations such as this task, because a data once brought
from memory and operated in one processor of the
Systolic/Wavefront array has no more use. For example, when the
first element of 'W’' and the first element of X are brought
from storage and multiplied, these data cannot be used again.
Therefore this task is input-output bound and is unsuitable for

VLSI computing structures.

x
b) B = & X (k)

- 76 -

BN N N
:':o“’:;“.‘" :v'c‘ X .:‘o .‘u‘q p 0 e ﬁ:\."\-} :g\
' " niph AT W "
0,' 's' ".A:"‘"" " o o '. "" .‘r'.. |l.|'l "l'.‘!' o ::t .

RN '.‘. N‘"‘». NN "'.'!'.0. el

.)
This task 1is scalar-vector product and the result is a 'b'

¥
' (.l'
vector. Again this task is input-output bound because the total H‘?ﬁ?#
s, y
. { o Y. ,‘.,
number of input and output elements is 2N+1, whereas the task = .'
, . . Yy ey,
needs N multiplications. This makes it unsuitable for VLSI ~q%§h$
otine
computing structures. :.:g.‘.:::::::
00
.-‘.l I l
MBI
c) W= W(k) + 8 "\'-.
This computation is a vector-vector addition and the result zS
. -lw 1 P
is also a vector. The total number of input-output elements "Zh
1‘.
needed 1is 3N and the total number of computations needed is N ﬂw'
ﬁ
adds. This task is input-output bound which makes it unsuitable 2 .ji
) ;Il‘
ORI
for VLSI computing structures. : ‘ﬂ:'
:'o':::";z:"::
The summary of VLSI suitability is provided in Table 3.8. %ﬁ$§ﬁ%
P 0 0 Fy,
SOUSOU)
Since there are no compute-bound operations it can be concluded i '.
. . s
that VLSI computing structures are unsuitable for LMS algo- ,‘ﬁhi :
rithm Ky, ‘\' :
' o ~::’"
-r"' 'l‘

3.6 Chapter summary

An analysis was performed on the hardware realization of
the LMS algorithm. Used were general purpose microprocessor
architecture, digital signal processor architecture and VLSI
architecture. The LMS algorithm was operating in a DSSS system
using BPSK modulation scheme with a bit rate of 300 bits/sec
and a processing gain of 31.

The DSP architecture was determined to be the best suited

in the HF environment. The complexity is much lower than using

- 77 -
L RE LVIRE et ¥ B y R R G
PR RN e I o e S, "S-" i NIRRT
AN n |‘c, \'H ,ln. . X .:‘0 w ..:l. et -.v,\.-. .p.a"‘.r"'.r"ﬁ".-“' e
I v‘»“wa. ‘-- »“;:«; s £

-\ \ <>
Ol e I \
o 0' ’X :“o. oty L e iy \ R ol b(

NN N I K KA XN Yy "B h 03 aV0 870 a'd ey gt 2 0 2%8 0°0.8% n’0 878 2 2% 2"8 2" %8 278 't ahg s $4v 0 Ha¥ o802 Patalst, ,_ C @at
> ::"l'
el
«' ‘.‘.-.l.u
' @
NGy
R
() U
R i
R
¢ .
frubnrnl
' |
00) '.l.

Table 3.8 List of compute-bound and Input-output bound ::..‘l.a'izi
) functions belonging to LMS algorithm P ...u::“ﬂ:"o:
:.‘l:;'l.‘.'l.
’.i“.{l:l, K]
W M NN
Functions | Type of Number of Number of input- Operation .
operation computations | output elements bound ety ‘0‘ '0
|) rj"
Y inner vector o(N) o(N) input-output ’/‘M _
product \ :. \
) h o' 3
B scalar-vector N 2.1 input-output 504
product
'} vector-vector N N input-output
addition
AT
o)
"""s
& i\' ":
Al
P4 o,) l_
A * .'l "l
-\'.N*
oy f\“
- 78 - : A
0

N AN
. ;J,t.‘\‘,\’

RN RN RN Yy o NN
AN ”v AN ORIC)
_«‘ N W) . " U '.04,-) ' .u'l.o O,o l.o

NI 0.,-..'. N 0..»." O A OR PR PO Y n.;t \,-~-2:§J" -Z'. TS "{T.\\-
i R ARy SR
<‘ ‘, “‘"b‘.l .i.y M) %08, l':.l'.“ 2%, 075 A% % \ “‘m

v h .
o 0) ‘o,\s‘ .o‘. \:' ..g'.

I O O R R R O RO R TR K TR NN R A O PO I T OA, PUWU E TWRUWCWVWNPU WU WY ' ‘I

.r"w.,::,
the microprocessor architecture. The VLSI computing structures "O"‘l.u‘
.
were unsuitable for the reasons noted. \ "
.eh
S
.lt‘":":'v
A few observations should be noted regarding the A
]
microprocessor design and the DSP design of LMS algorithnm. :\v]
d 1
" '|,
Table 3.9 and Table 3.10 provide the execution times required 0::5;“‘.?‘::%
.l‘g‘l .'("
O
for the LMS algorithm in the wicroprocessor system design, and Py
the DSP system design, respectively. The execution times were "‘.‘ 1",
‘.'
lf,
broken down into transfer instructions, arithmetic .‘::,.:s:?
LAty
instructions, branch instructions and miscellaneous '5"!&'
®
instructions. Note that a larger portion of time was spent on 't::':l;":?
)
multiply instructions by the microprocessor system) .:..;::'g
™)
(= 73,92 uys) than the time spent on multiply operations by the]
L
¢ DSP system (= 25.4 us). There are two reasons for this. ;"““n:
. el
3 vy,
- First, the microprocessor system does 32-bit multiplication (\‘;i‘
3 &, 3 K.
: iy
whereas the DSP system does 16-bit multiplication. Secondly, in Rttt
.
DSP chip, the execution of successive mwmultiply—accumulate ﬁ"“j’;
instructions allows parallel operations of multiplier and ':I:‘O::.:
ety
accumulator (DSP architecture is optimized to multiply-add 0]
Baby "w
operation). This allows a new multiply-accumulate instruction NASASAY
Q.%ﬁ-)
v ki
: to be executed every cycle which saves time on multiply V‘\E N
? | :’:\::y %
instructions. N N

Another observation shown 1in Table 3.10 1is that the
add/subtract instruction consumes a larger portion of the total el
execution time (27.6%) in the DSP system design, than in the -~

microprocessor system design which is 15.5%. The reason 1is 'j.-"‘-',.'

mnnmamg s AT
NN L P P P A M o e Y e L
R N OO T nlh (el *ﬂ*\ % AL A oA RN A RS A
v‘t‘nh;u' ',.,::: “‘ \‘ :u ‘.::': 0 w Y " «.'ﬂ"\' > AR \.‘., "\. j:"‘\"' ‘_ \'\ \.*‘ ':_-. \Q}N _&:’,bi\;\'}::\:-.';-
>) U
s ‘ : c |l,.3,. “!' " 0 0‘.". .‘. W l‘. \.‘F\‘ \.i\ '_\'_ \.'-....\.5\ AN
Ll B o

it R t‘l\'n.t't % t‘»‘s“'&’m‘ "o.": l‘:'n ! Aptihv RSN

v

- 80 -
o AN A J' . ‘\' - .. !\J\f\." .p\,,- o .—- .r .vr ‘\1;. o el A AT _.‘
o Par ‘l: il“;‘\'! ‘N ;l:',O'”' ..c"‘ .'~5§ "'j" N h N .n{. -(' -:;-I' o~ < EACAE
RRREREN NN) '\'.'s" IR ' ’ :.p .’c' l’ } ey . -
. ! s v e e
. ety .’ o. x ‘..i‘.. . ,..l'.. " ‘\n ,.I:‘ i i Tt iy

R A O ||u|
!)r_"'t’..\la“\“" l‘\“ “ﬂ’ l‘ t‘ ""ﬂ.'.k'

T R I I O o O OO UG, L s TG L 1 M W PP N 0"! 'll"l
} :ﬁ

||l|
DSP chip consumes the same order of time as that of a d&'ﬁf

that in any 1isolated addition required by the algorithm, the

multiplication, whereas the microprocessor consumes only 1/6 of

('.:
the time required for the multiplication. s

OGN

. b X]

20t 0.8 120 00 ' UR.8"0,8 2. UL AL PP RSN ELIQ AV 75 ¥ F 3
n
L

‘et e

DK

"‘u{’.‘n”'x‘t‘

q:‘l o

p o,

R
]

)
Table 3.9 Execution times required for LMS algorithm c:':é"
using microprocessor architecture

Operation Time(ms) Percent

transfer from °
memory 9.12 8.5 | R

o
-‘.:'l:ﬂ‘.:‘!

transfer U
3.1 | o

reg to reg 3.36

transfer to
memory 1.8 1.7

v“ \
add/subtract 16.68 | 15.5 2

multiply 73.92 68.8 :%: , é ‘
S
test/branch | 2.52 2.4 SO

Total 107.4 | 100

H‘?:C-.- gy \
|)
C’*] nw,
R

IR S
SRt

X

4

5
Ny

L

- 81 -

et | 1 ST A NS T A N
Ea 3 { UL) » FAERS) '~
. :‘G.':'.‘sl:'! gty g‘.‘.'l'\‘b{.’i‘ g ‘\f,. "".: Lt .F‘;_-f._ KN
SrindeRudniniio! Lt P s
R AANAT S AT e (UL R AT IR SN
ST, va.t,’l’..i'hi ..I’..\ '.\‘"’ O < YA f‘;\.*’_ o
) .‘x‘.‘i".'n‘,i.*‘» I‘g‘.!__‘,, t.; l'i,big) o W3 N h ol

PSP ST YRR TUNY TEIK SO TRl AT TIE T YOI FOI IR W Tul TP M WU WL WU WU I WU WU RU WL WU N WL, FLI O R ORI RS R .','..

s

Table 3.10 Execution times required for LMS algorithm ﬂ?ﬁgﬂf o
using DSP architecture 1‘:.:|.. W
X)

Operation Time(m8) Percent

A e
-
5)
e

transfer from
memory 0.8 0.76

transfer | |
reg to reg | 28 26.46

i

transfer to
memory

2
55

11.2 | 10.59 ity

b

add/subtract 29.2 | 27.6 e

3
N

Py
)

multiply 25.2 24

F oV oS
:r';;'{,‘v» 5
}W o
DA
A

=

miscellaneous 11.2 -10.59

Total 105.8 100 A

v a_*

7.2
s
il

PR

& 1.‘('
LI

i
P
r)
e

Sy

Pl
«
v '

T,

','.'.'.-
@S
["'ﬂ -
. .

"l P

b ‘l"l
g
i)

oy
® 5

ey
N3OSN
-“ 'ﬂ ‘;. \"\ .;- “
WA AR
‘f#\s#t

N

L
&
-

. " Qe

R 3 ()
Pty 0"':'!'\’!"'0'“0 7
BURIOT OGO
Loty 1,4‘\! 1Y '..i’"l) 00 I.|.
o t.‘,' ﬂ..a‘\’hl” "0 .’ " :\';“,‘ '.Q

A §
W by ¢
B IR AP i"’\‘m’l’:’\‘

L *.ﬂx.- - '. .“." - -'.V’)I -

b o \j~3\55¥3(~}\jﬂﬂ:)~*\J~f\

y A A S AN SRG LAt

n' ¥ 0 \"ﬂl '\J.:"h »

A A et
((RoCH W 0
) '.‘30.?4'.‘,\'.3“ ‘l’u‘l'»'i‘:si':t:..!l'.!.':? .‘

vab tab v i § R TN RN TNV YU taatav Lt AL B R VAVEA PN Fal Tl ARa SRA R R 0/

4.0 HARDWARE ARCHITECTURES FOR CONSTRAINED LMS ALGORITHM

This chapter discusses various hardware architecture
implementations of the constrained LMS (c-LMS) algorithm, the
feasibility of these architectures, and recommends suitable
architectures. A brief introduction to the c-LMS algorithm and
the equations that are to be solved by the hardware implemen-
tation are given in section 4.1. In section 4.2, an initial
loading analysis procedure 1is derived for the c-LMS algorithm.
The lcading analysis provides a method to determine an initial
estimate on the computational locading required by the different
functions that constitute the algorithm. The loading analysis
is performed for various hardware architectures once the
initial estimation 1is determined. The hardware architectures
considered were the general purpose microprocessor, the digital
signal processor and the VLSI architecture. They are discussed
in sections 4.3, 4.4 and 4.5 respectively. In section 4.6 a
summary discusses the feasibility of these architectures and a

recommended architecture for the HF application.

4.1 c-LMS algorithm

A The c-LMS algorithm [18] 1ikc the LMS algorithm uses a
gradient approach to obtain the optimum weights. This algorithm é:xi§§
requires that the arrival angle of the desired signal be known :vﬂ,v;
apriori. The adaptive array system model, which will be used to
explain the operation of the c-LMS algorithm, was presented in
[18] and 1is shown 1in Figure 4.1. Although the hardware

implementation deals with narrowband signals, the original ‘ °

- 83 - \.‘-’\‘

OAAY \

e i AAIA
4) |" '.| Q'i ¥

M .a X 1'{).‘.;‘\.1“ "‘:'

At et

R

e

tem
Figurs 4.1 Narrowband Signal-sligned array sys

b

\/

N

SN

w/

K WX a‘ .l, ’Oj‘. ."
. H

“ Q...Q) g'l ‘Q .'l '0

0"‘0’. o"‘u':‘a‘.'

’i 2 e e e 0 At g 4ae 0afad g UaY o Battat Et 2 at et e R RTINS ?“,KR
L J
broadband processor model will be used in this discussion. The :ﬁé&g
model consists of N elements and J taps per element. Narrowband ?ﬁmﬂ%
signals are used and a simplified model results. This model ".":J"
will be described later. Also shown in Figure 4.1 is an i&gﬁz
"equivalent processor” which aids in the understanding of how %ﬁ%ﬁ:
the c-LMS operates. R
From Figure 4.1, it 1is evident that the c~LMS processor gggqﬁ
contains a component known as a spatial correction filter. This 'S@jﬁ
component performs a task that is regarded as preprocessing. &i“&ﬁ
The spatial correction filter guarantees that the communication géxﬁgﬁ
signal component is identical at each element output. The éh;%%
delays can be caliculated from the array geometry and the Hﬁﬁ;
arrival angle of the desired signal. ;éggf
From the desired signal’s point, the processors in Figure ﬁ$}é§
4.1 are equivalent. Each adaptive weight 1in the eqguivalent Eﬁ}:"
processor 1is equal to the sum of the weights in the verticail g:'z .:;:
column above it. With these values, the signal components at 'igﬂg
the respective processor outputs are identical. By assignhing a e
value to these equivalent weights, a desired frequency response §'2§§
in the look direction is selected. This process introduces J é;‘_ﬂ'
cqnstraint conditions. Since there are N x J - J degrees of L*&‘m
freedoﬁ this can be used to minimize the non-look direction g;?:*'
noise power. Minimizing non-look direction noise power is ?&Lﬁq
equivalent to minimizing total output power. Regardless of how rﬁkgi

the weights are adjusted the constraints guarantee that the
response in the 1ook direction will not be degraded. The

equation for the optimum constrained weight solution will be

- 85 -
()
. 0"
e)
O g 2P] - "' v I)').-(- ‘J"I‘.-" A
ARROEEO! ,x ;,,1,,13.,...,,.,1“. .o. ',. .” "V- .r . ,'-{‘.\ .gf\ e YA ASASAS ARG
DA RN \ e L) ’j,l|!|l " " ¢ (}.',‘{...ﬁ'(
A “‘ o" v" v‘ \ -."*.N -,1"\. W S LA C AN
‘ ‘i"u‘t QI “,. I': l‘.::.i"!’.bﬂ‘ |'lt * .'..” .‘ 7 ,ft 'V' W o ",&(‘

! SN 2, i‘ it ‘-"“-"'"..'A'!‘tl'l'!‘l"\'.‘.' t’.' \' 0‘. o'.‘l‘. R IR e, b ﬂn.o"!t (ARN .I'~|‘o. '

ML 70 N

TN PUTU PUSU YU PSR R AN A AR KA NAX Y VR 47,V a (k" T Y LY TRV O RK T X * 0% 05" 0. 0]
'.n o

X

i ;

presented next. ;""'
The expected value of the array output power is given by ‘ 1&@

2 T T T RO

Ely (k)] = E{W X(k) X (k) Wl = W R W (4.1) ®
- - - - - =XX - it

Define a J-dimensional vector that guarantees the desired :v.:.n,b

. i
frequency response and represents the summed weight values of '&5-!!.-1.'.,

the j vertical columns as ﬁb@?p
v

f = (4.2) Bttt

f .
N E-."" +
_— -l 7 »

The weights in the jth vertidal column must sum to the

selected number f'. This constraint condition can be expressed

as o:,.s';l::;:;

'y
C W = f_ y J = 1,2, ... N (4.3) |'.’::,..':‘:

where C is a NJ-dimensional vector consisting of all zero and ﬁﬁ”fi

J R
N ones given by ﬂ““”*
\5&'#

: T s
¢ (00 ..0..00..0..1 .. 1 ..00..0..00.. 0] (4.4) ""."?
i N N N N N ."\
A constraint matrix can then be defined that satisfies all \'.’u"- ‘::2
equations given by (4.3) as °

c = fc ¢ c1 (4.5) RN
- 1 2 J B

The full set of constraints can then be written as

- ss - S

‘s m, BSOS ‘i & Y o s o ‘J‘ ! '-(\, PO V'_% C R W o
NS ,’:.” W .‘t:.go‘ A “:‘\ .') oo o .\,- -:§‘- ?" > .X‘"S-t? : »: ‘.\‘.: :R,:‘.: *‘g&'h‘ ‘\‘:}\}: N
ooyt R ‘, \ “' '

: ‘.m.mw ﬁ.u&ﬁ\ﬂuhruﬁﬂaﬂ#QP '\ n\\c;} ﬁ'f &!Nﬁﬁhgwh..gt

C W = f

Although it seems 1like a complicated process, the constraint
matrix C guarantees that the sum of the weights in the vertical
columns is equal to the weights in the equivalent

processor. The constrained optimization problem statement can
T
now be formulated. The array output power, W R W , must be
- =xx - T
minimized subject to the constraint condition C WwW=+f°.

The optimum weight vector is found by using the techniques

of LaGrange multipliers. A cost function, similar in purpose to

':":;'l:::l (]

the MSE function of the LMS algorithm, 1is formed by
concatenating the constraint equation with a J-dimensional
vector of undetermined LaGrange multipliers /l . This cost
function is then minimized with respect to the weights, i.e

L]

T T
Cost(W) =1/2W R W + A [C W - f] (4.7)
- -xx - - - - -
(a factor of 1/2 is added to simplify the arithmetic)

Once again, notice that the cost function 1is a quadratic
function of the weights. It is known that the gradient of this
function is zero at the minimum point. The optimum weights are
then found by finding the gradient of the function and setting
it equal to zero.

The gradient of the cost function is found by differen-

tiating with respect to the weights.

= R W + C A (4.8)
cost =-XX - -

Setting this result equal to zero yields the optimal weight

Ly ...
g

- 87 - .. ‘0‘.:'
O'q 0‘\' 1
EEEROACINBOE 3’0:.\qu : 0' 2V M) \. . AR 'ﬂ\."\ .1\‘ ' '
RN AR AANA .i.g W, 0’. ‘;,l'. .'i' .t l' ' {\\ \"h ". J\' "J" ‘-'.'l
5"’-'4” ‘3'. &’:‘&‘?I.q.i't: Q‘ ;‘0', e .i l"‘l .‘ §~ .O , ‘(: Y .1\ .’* .
DICICIREI " DODURN MR 3
A “»‘f St LAY 2 ",0"»?',1, M ‘ ‘t't ',a '.'".l"o Ml "‘.‘".l. s ‘n"':i"u. I\ l.o'l.o.l,n " Eh SIS

#N
ﬁ
"‘!!n'\m

solution. OV

R + C A = 0 &":::':’t':'a
-XX - - - (4.9) A '.‘l:g":o'!

-1]
W = - R c A ittty
opt -XX - - St

The LaGrange multipliers are found by realizing that the Wd??”

optimal weight solution must satisfy the constraint conditicn.

R
T T -1 e ‘Sg,o,;

cC W =f=¢ [-R ¢ A TR
- opt - - -Xx - - 3%b$ﬂ
(4.10) LR

T -1 -1 °

A =-[CcCR ¢c1 f R
- - -xx - - ol

The optimum constrained weight vector can now be expressed as

-1 T -1 -1 ®
' W R c [C R Cc] f (4.11) i
: -opt -XX - - -XxX - -

As in the LMS algorithm, this algorithm uses the Method of

Steepest Descent. This method states that the new weight vector - ®
. y

Wl ot
is equal to the previous weight vector plus a change proport- .g.%::‘
e

ional to the negative gradient. :hgﬁ
\ ()
W(k+1) = w(k) - M

‘7;ost O

:ryﬂﬁ

In this case, the weight update equation is N
‘-J. '.'

W(k+1) = W(k) ~ ML R Wk) +¢c Ak) 1 (4.12) SR
-XX - - - []

The updated weight must satisfy the constraint condition, and
is written as

T T
f=C Wkt) =C [WK) - AR WK) +C AKI 1 (4.13)

The LaGrange multipliers,)\(k), are then given by

- 88 -

':f" ‘O” 3 "'u' |‘ v tof AN “M‘ﬂ" 'P":*.{’
~ f o '(f "v
.‘. .‘ o ("’l l’ (0 ."."') 's .|' ‘\ ‘l : Mi\' ~.

l",‘ﬂf‘tl‘uf‘ (AN ;' ‘«‘l“."i. ‘c‘ l..‘.:'{‘g.“' “\‘"‘ W, l" 0' ’l’~ .t “D .0

Q}.i q t ’l' t.“
y 4, ‘- 1 ¥, ' 0
¢ ."u‘ ‘. o \’ ’n‘ O !'»'!': s

A sh,u,‘ho,‘s) a‘s.,»‘b.'n.n,'b.h"‘\ ‘.. .|'t.. & .\ ‘q ‘Q' | | |‘
' Al '. !‘ Q " ‘ (N Q." “" '.:.J. . .‘ '

VTR AN TSI U AT WS LSRR wop 4 @ R e At AW B At Y HT VAT At

T -1 T T -1 T
A(k) = -[C €] ¢ R W(k) - 1 [C C1 [f-C W(k)] (4.14)

and the iterative relation for the update equation is expressed

as
T -1 T T -
W(k) - A[I-C(C € € 1R Wk)+ c(c ©

W(k+1)

T
[f -C W(k)] (4.15)

For the sake of convenience, two definitions are made. Define

T -1

p =c (c ¢y f (4.16)
and P matrix as
T -1 T

P = I-Cc(C C) ¢ (4.17)

where I is the identity matrix. The update equation can then be
rewritten as

W(k+1) = P [W(k) - MR Wk)l + f

-xX - -
The covariance matrix Rxx is unknown, however, so an
approximation of Rxx at the kth iteration, X(k)XT(k), is used.
Recognizing the fact that XT(k) W(k) = y(k)? th; final update
equation becomes

W(k+1) = P [W(k) ~ A y(k) x(k)] + B

The constrained LMS algorithm requires a spatial correction
filter to compensate for the misalignment of the sensor
elements. A method proposed by Takao et. al., [19] merges the
misalignment compensation and the weight computation into a

single process. The direction of arrival of the communication
- 89 -

a ‘.‘. .\.

\
u"‘t |‘ . . .::::\.

MMM i

\o‘\' |

"_' ."

@
§~‘ “«
!

l

'...v.?o

.

*.\, '.-

‘t |‘l |

~

o \
by .,\ .‘.s’ . .nt n; ioh U, e
0 ‘A'» OUS RN J- AOROA AR AR 1" RSN -‘..I s .'t'«. :..\ b, 0 l. "4 l' et c.l‘t \ ot'.u‘?‘-

signal is used to generate a directional constraint to govern

the weights,
The directional constraint is provided as
T jflt Jny Jiw
cC = (e , © -)
where /1, is the phase of the desired signal at senscr element
'i’, We can then rewrite the expressions for the P matrix and

/3 vector using this constraint equation

P =I-(C C)/N

B =¢c /N

and the weight update equation is

b 4
W(k+1) = P [W(k) - My(k) X (k)] + B

From this discussion it can be noticed that P and/a can be
calculated from the directional information. Thus the
calculation of the P matrix and /3 vector is not included in
the hardware impliementing the c-LMS algorithm. These
quantities can be found prior to the first iteration of the

a1gorithm and they do not change later.

4.2 Loading analysis of the c-LMS algorithm

The 1loading analysis ([14] is now performed for the c-LMS

algorithm.

- 90 -

A *,' "Wy "t
: iy
SN t . :‘i‘:'

“ ‘l {l ’! '. ‘."
. i' " “.. |' q. “’ ...
X

P
!'” ”’““"" ""' "*""'.‘ .".‘Ml.'i \'\(\' \ﬂ' .:".o Wy

PGS
N RIS O _
3 !.“:. ’l."' "v, .::. :, "t. ..::.‘o ‘ns'uu,:' .:.. ..u'n,t .’.' M ‘\ .' p-""\ ‘(,\K't e ;Wﬁ\? fﬁ: \’\ : YN
\ A

! -
N
t'lvu

A

-
4

. . B - . . . 1~ " . L) ¥, LR
- T S rd AT g el bl NP WY XA R, 2 al Vab 2k ratitalks 9, Vol Saf 528 Y2} 0o «nf L . WO Ca™ W O
IR RN 3 ;) 8 iad.

o,
R,
e
[Kh "
4.2.1 Input requirements ol i
s
The ¢c~-LMS algorithm 1involves solving the equations to ! ".;,"'
o, ()
. AAOA
update the weights. The equations are broken down into 2 "‘
" * "
manageable functions as indicated in Figure 4.2. ':?1!::??
Note that the quantities P and /8 depend only on the 'o::::“::::e
Hn
steering delays and the number of antenna elements. These BRI
Oy
quantities can be calculated from directional information and “ ,"é,
knowledge of the number of antenna elements present in the % .‘,0
A
array. Thus P and ﬂremain fixed. The c-LMS algorithm considers
WL W !‘
these quantities as constant coefficients and are present in :2:“:" "
(ﬁs‘ri‘n
memory before the first iteration of the algorithm begins. ::y:::‘:‘:’:
TR
As can be seen from Figure 4.2, the functions into which SMES '
7"__’_- Sy
the algorithm has been partitioned can only be operated in \\‘-"
{
, , . Vetp ey
sequence. The next iteration of the algorithm cannot be per- a‘é‘:::‘:‘.:t::::;
Y
ity
formed until the weights have been updated by the previous ; ’
iteration. Thus, the algorithm has an input-output latency and :ﬁ:.
:",:-.'(' ;
time must be determined to allocate to this Jlatency. The y:j.x::_,('
'M,
average number of iterations of the algorithm needed for one ~ '"
0"'.“:‘
convergence has been determined by simulation studies [1] to be et {$
".
1155. Using the HF channel constraint, that the signals can be ‘.,'.‘\
considered stationary for 100ms, imposes the condition that the .
TR AR T
set of optimum weights should be obtained 1in the period “"::.:'.:
iy
100ms/1155 = 86 A s. Thus the input signals arrive at intervals ':;f"ui"'.:‘
I"‘.' ‘
of 86 As. P
'i' 0
il
ORI 3
: '-'-s.ﬁ:?\.
4.2.2 Execution time budgets : o
"y
RN

A portion of this iteration time (86 A4s) is to be allocated

- 91 - L0

- ARG TR R Rr Ty M .2'"-.

Rt T "" f‘ o 0 " 4 :";".'. ... :s W “:"\ R g '\&S}'S & W
Sty “'.‘.' X “":"n- ":'::..":‘:.'i::'":":":c "t'u.". :"":' \ l.:‘ " '\‘ 'o" ‘\‘. 3.:%
. - . a’ i'. »', Wy ﬂ.. .‘i O '.'i'. \"i h 4 ,.0 0 .c' .l' K .‘l y,,l l.. c, 0. (8K “l.‘ K o" ‘\ ¥

Pigure 4.2 Partitioning of ¢-LMS algorithm for
hardware realization

b

-

5

?:M

)
::: 0.2::: '?l.‘:- l e 0\‘\\.!\"0\.!'; SN, '0\ AP

’ ; 3 ™
D """:‘*:‘.' o ::; “::. o) :' Y \""'.'\ \ .') 0. \"\\\"' 3 V‘.r\:
ORI H'" vH I:\ N, \"‘
A {"“f"\d‘."i"' Vo »l l‘b QoMY "\.'?‘. ﬁ .. 5‘" "

|'.
0:‘ '. ..“.

RO AR WY, 4'
L by ,‘(""“B.%‘i “ \’

T L R U M R W N R U U WL 2% atd a) ah e i atn (tatolat 0a¥ Bi0 a0 00 Bat Byt NN TR AN N RG] M ™

to each function of the algorithm. To allocate the execution
time budget for each function, the number of real operations
required by each function must be known. An analysis 1is done
for 36 antenna elements. Note that an add operation is
equivalent to a subtract operation in this analysis, so all
subtract operations are referred as add operations.

T
1) Y = W X(k)

This function involves 36 complex multiplications and 35

complex additions and thus requires (36 *x 6) + (35 x 2) St
I‘.‘Q.q

= 286 real operations which comprises 144 real
multiplies and 142 real adds.
2) B = Uy
This function requires 2 real multiplications as AMis a
real quantity.

x
3) C =B X (k)

In addition to the 36 complex multiplications this
function requires 36 complex subtractions to obtain X*
In total this function requires (36 6) + 36 = 252 real
operations, 144 real multiplies and 108 real adds.

4) D=W-C
This function requires 36 complex subtractions and
therefore requires (36 x 2) = 72 real adds.

5) Mat = P D

2
This function requires 36 complex multiplications and 36

)
RN

i

XL

I'd

s

*x 35 complex additions. This function requires (36 x 6) +
2

(36 x 35 x 2) = 10296 real operations which comprises

'
AP

z

- 93 -

- i vt .*,» . TR Ty _‘. G
RIS, a,t’l, Ky ’v, ‘l.“ KT, WietteN -{' g, u".,_-t"‘ -f‘-,, \, w. -‘. N R Pyt Y
St “\’u :‘ e l"’q') ..l‘.."c,lt, .C.' ‘o".‘ o ‘.ﬂ- AN .'-uk (KX " J\"\,‘-“‘ o

v SO

. ;l h.n,' 0.! 'o. ol ’! ; v
R W ,.‘:"h '*:".-'w':‘- ‘-. “:h "“‘ ':"‘c. .n'!n. i) .‘.-."0 N ﬁ"?::'

ST, \n‘u‘)’a'n W e

ERCENNE ™ MRS BER] '\ ~w i R e]
e v, :,» 0,‘.!) .’J"' ":"‘ ’r"- "" " %) .rQ“ o RGN
KT N g ‘ .

KRN e '-..'o,.’l,uno kt X

W

«al) ol 3ol 439 Vo) ¥al xaf e}

5184 real multiplies 5112 real adds.
6) E = Mat +/3
This function requires 36 complex additions which

comprises 36 *x 2 = 72 real adds.

These observations are tabulated in Table 4.1. The Table
2

4.1 also shows that the c¢c-LMS algorithm requires N + 2N
complex multiplications and N2+ 3N complex additions. Once the
number of computations required by each function is determined,
then we have to allocate time uudget to each function. Time
budgets will be discussed later for the various hardware

architectures considered.

4.2.3 Computational loading

When the time budget is known the computational loading
offered by each function is easily determined. Computational
loading 1is obtained by dividing the number of real operations
required for the function by the time budget allocated to that

function.

4.2.4 Memory requirements
An initial estimate on the memory requirement of the c-LMS

algorithm can be determined as follows. The algorithm requires
2

N + 3N complex words of storage. X, W and ﬂ each require N

2
complex words of storage and P requires N complex words of

storage. Because storage of intermediate results are necessary,

the memory requirement varies with hardware architecture

" e
'.’ iy a'. o'
'l‘g. .' 0'.'5‘..!

~.\ 'ﬂ'
0’ IS 'a' .s'y W 1‘ l','o', A ‘..::‘::":: .::‘ ‘ 5O

J%%oﬂ\g‘mh“

’; l'- % C'

LTIV 2N O AR S U]
| S0 I e e .
LU S T
> LIS

L

jey
'

hJ
v

240,
Pl
>

>
v 73
4,,1':\‘;#]
)
o
P Vad,

M
"

'i

‘." »)

z“
s t‘

T T T N R T O XS O OO OO I OO IR
Table 4.1 Computational complexity of c¢c-LMS algorithm
| | |- | -
(1) (2) | (3) P (4) | (5) | (6) |
Functions | Real | Real | Real | Complex | Complex |
| operations [Multiply | Adds | Multiply [Add |
| —-| E—_—_ ——|
Y 286 | 144 | 142 | N I N |
| I l I
i A R R R AR
C 252 144 | 108 | N [|
| I | I
D 72 - | 72 | - | N |
| T
| Mat 10296 | 5184 | 5184 | N | N |
I | | |
BE 72 - | 72 | - | N |
{ { f ! | |
-- - |
- 95 -

l‘t 0 (]
LS ‘a" r,‘) "i ‘.i“'! Vb

»
AR

:, : 4\ -\.y.
;'l.q‘t 0 G.Q

!-\‘ 'u‘

-\p. a
"ft“.':"

'\t
\..»"-:!a.,-':' ». c" \

\1‘-,;" -: . '.-\"Q{w.'\"'\y ‘,\, ::\.j* "\.*
-. \J\ N) .s"_.s{{

J“q\-ﬂ“u‘

"

‘.
11."'

ot

‘

A

]

I'g
Sy
e
IJ.‘

I
'S
'l

B g
N5
)

&

x
e
x
rE

R Y
Y '."\." N
SRR
* (\' o '. PO
+ AN

ooyt ae X e 34 el P v FTR S vy . ’ S v B . . - Yy 2 ~
L NI NS R RURERU NN i at) et Sa o't 2’0" a") 12" ata", R T O T R IR TR Y ROUTONY,

considered,

4.3 Microprocessor Architecture Implementation

The evaluation of general purpose microprocessor architec-
ture is now considered for the <¢-LMS algorithm. The microp-
rocessor used is a Mc 68020 (2], state-of-the~art 32-bit mic-

roprocessor, which has a cycle time of 60 ns.

RrT=r

4.3.1 Initial Assessment on the Complexity
The following issues were considered 1in determining the
complexity of the hardware implementing the algorithm:
1) the number of operations the algorithm needs for

f, an iteration -- computational bounds
i’ 2) the time ailocated for the iteration -- input
" requirements
o 3) the hardware architecture implementing the algorithm --

architecture considerations

The complexity of the system 1implementing the algorithm is

expressed in terms of the number of chips needed by the system.

4.3.1.1 Execution Time budgets
v How the time budget 1is allocated to each function is
i explained now. Due to the microprocessor, architecture factors
that play a role in determining the complexity of the system
: are:
1) the ratio of the time needed for a multiply operation

and for an add operation

- 96 -

Wb
r*wwwrm
¢ \
4. ;’A,' LN '!, ,!.. l.,' : ‘ 2Ty
\

" , s -r‘ ;4" ‘§; v ""‘-Q" . AT I AT AN "‘\"“»‘”-\“
R G

RO t"‘s"ft"?t'v\t'ah ':.' by .h‘.h X ?.' ‘.:'.‘?h 0K h‘.

NS
-;63

o

v

e
2=

TR

X

2
A

5

v,
7

)|

RTINS T TR TR LR TS O R T TR o' o VB a8 n b Al Lat®’ 298" s00 oD a2 20 2% 208" 150’ 20 R" 20 o .uu..;-v.-‘
O

2) the speed of the microprocessor with regard to c-LMS
algorithm given in millions of operations per second.
The summary of the following discussion is shown in Table
4.2. The first column of Table 4.2 contains partitioning of the
algorithm. It can be seen that a few functions are coupled as a
single task. Note that functions C and D are coupled together
as one task because these two functions can be performed on an
element by element basis. That is, instead of computing C for
all 36 elements and then computing D for the 36 elements, the
two operations can be interleaved. For the same reason,
functions Mat and E are combined as one task.
The second column of Table 4.2 shows the number of real
operations each of the tasks need . Coiumn 3 and column 4 of
Table 4.2 indicate the number of real multiplies and real adds

each of the tasks require . The microprocessor chosen has a

multiplication to addition time ratio of 6 : 1. Thus the
'effective number of operations’ column is obtained by perfor-
ming (number of real multiplies) * 6 + (number of adds) x 1 for
each task. When implemented in the microprocessor the effective
number of operations for each task represents the task in terms
of adds. This shows the true complexity of the task.

A portion of the sampling time (86 As) is allocated to
each task according to its ’effective number of operations’

Thus the ’'time budget’ column in Table 4.2 is obtained for each

task by
- 97 -

[4 \ [} 9§ 00 ? “1" ('J” 1,. f-r '(. ’\’-\»n_l-'\ . .‘-"‘\J. '-.’v_-."; {\'.P TP, ',{":\::\$\'ﬂ
. aun i 1 (L AN .) » 2) d
R e "’9‘ ""‘."”"" X "‘ 1:. Q0 ' v“vr f "/‘&:J“":- A ~. AT DN NN N NN N

LT ‘ SEX) wovb 0)i., f\. ARV LT RS ANE N TR Sl AT AT NN)
-, ’, Lruun l| o, '\\n'- ‘\v,(, o el (M s "'»&--’ LN 7"\#“‘(""\"{"’{”&" ,F\‘P%;,\';\r

e W ‘ 0y WSl A

[\? s' \’“4“’ "' o’ \'!'s': \"‘t‘- A ‘!t‘c \'.t AR 6'0‘!'0 0'0) o l. N

VUV Y VR OACIN UG O OGO TR :; X

':ul.‘

(8)
Number of
chips

7
Computational

loading
(HOPS)

"c
Lm’m'

(6)

Time

Budget
(M8)

(5)
Effective number
of operations

[}
[}
i
I
[}
1
]
1
|
)
I
1
1
]
t
1
1
4
[}
1
t
t
i
|
i
:
)
I
]
|
1
|
|
|
:
1
1
1
!
[}
1
|
]
|
[}
1
i
|
|
1
|
:
]
]
1
]
]
1
|
|
|

plexity of c-LMS algorithm
ure
(4)
Real
Adds

using microprocessor architect
Hultiply

=
L X

-
i

ol
rd,
iz

-

operations
§ 2
pi

Assessment on com

Table 4.2
Functions

‘ ’\ A fv } l' * * W

':\;:AM'.’ ’.:’.1 o 'a\ ":: '.." N N‘."\ N R “\ 2 " N "\ﬁ“‘"\
ek :’ ‘ﬁ" A »"' AN ‘a" a\. NG W ‘o e RSN

-". '.i~ St ’»* l’ l' \'5 3 \‘. Q' |‘ 'i' W I' Y i’c‘l‘ i’ t‘- I'QJ AN A nhetle .'I l.‘". L) Mo\ <

|‘5

. DG
R T N R L LT W L LT L0 N LAY LRTU R UM USRS a3 a9 8 Vel 9 s

(effective number of operations of that task) * 86/s

(total number of ’'effective number
number of operations’ for the algorithm)

For example, for task T the time budget is obtained by
(1006) * 86M s 1 = 2.26 A s
(38350)
The execution time budgets for the other tasks are indicated 1in 'Qﬁng
column 6 of Table 4.2. Eﬁ%ﬁi
i
4.3.1.2 Computational loading ﬂnw;}
The entries in the computational loading column of Table i%&ﬁ%
4.2 are obtained by dividing the unweighted number of ﬁ%&ﬁ:
operations (entries in column 1) by the ' time budget’ for ,.:;
that task. For example, for task T the estimated computa- ‘Q:ﬁ
tional loading is obtained as: 1 ﬁwﬁh
286/2.26 s = 126.55 MOPS. "1'1"
To determine the number of chips needed for each task, we ﬁr;%ﬁ
have to obtain the speed of one microprocessor chip. It can be 'ﬁé?%
observed from Table 4.2 that Task T consumes the major .#éq.
portion of the iteration time. The ;asic operation needed to .ﬁgﬁy
perform this task is a 'complex multiply and complex add’. ?ﬁﬂhﬁ
This can be seen in the operation Mat performed for the ’'i’' th ‘ﬁﬁ%ﬁ
element. The 'i’th row of Mat is multiplied by column vector ,dﬁ%ﬁ
D. Thirty-six complex multiplications and additions result, Q‘\bé
so the basic operation is repeated 36 times. Thus, the speed ;Eg£§
of the microprocessor will depend on the time the (§§§$
microprocessor takes to complete this basic operation. In the : %#Qw
.
. .‘

o'"t’

An OGN0, |l| 50 ' . UM "\x“""" O .\f'l,_ »,! \'ﬂl_"'s:\-
It g‘ "'?.’ 2t \Q' o ﬁ:g o ,:"::,: ‘(. ‘:.‘ ‘Q. % ?:\' N ‘q\"‘? \ﬁ -‘A\";:_\"& “J-\' :,‘- \
' \ o)

) U (1 W 3!

LA ﬂ o 3
;«.'. ' h ‘U
AL »““‘“ h¢¥ .h! @33. e “@#hﬁfﬂ,..) &..fk

‘19’\51\51,4\' !,I

‘ﬂ&
PGS
:éi“m S

/ v
u . "'.. ‘ . IR R N

N .18 2%, 28 2V A\ RA A" Tp o gV ke w¥H . 2VH 2t %D 27 At A oA 2"D a8 %0 0% 0" |.~|.~s".~’o't"!."l‘b‘!."“ WL W W ".'.'1‘;";'
|'l|.\

RS
worst case the microprocessor performs this operation at a ..:|:::
speed of 0.5 MOPS. ::':'::ESEE':

Using these computations, the number of chips for a task §:::§::;::
can be determined. The number of chips for task T is obtained 3y ,cf
1 e

as: s ::t:..::':.,
126.55/0.5 = 254 chips. R

Task T needs 134 chips, task T needs 281 chips and task T "' 'gf
needs 555 chips. Note that as tgese tasks are operated in * '.""::.‘:%;
sequence, the c-LMS algorithm needs 281 chips. .t:;i:
As stated previously the complexity of the architecture is .E:':::‘;E;E"'::
determined by the number of microprocessor chips required by .E;E:E;E:ig};
the algorithm. Using the general purpose microprocessor ::‘:
architecture the complexity of the c~LMS algorithm is 281. In '::::‘:':::':‘:::
summary the complexity of the <c¢~LMS wusing microprocessor '::E;:i:,:é:‘i
architecture is very high. To distribute the above tasks among ':‘.:':::"::
281 chips and to co-ordinate the movement of intermediate "'si.:..:"l.::;
results leads to a very complilex system. Data communication :'.:.:E:,E':::;
among 281 chips will also introduce data overhead which was not '.::.'.:
included 1in the execution time budgets. More general more than :l::‘.t'::""ig's‘:':
281 microprocessors will be needed to bring an iteration time %m&
to 86 M s because this overhead consumes extra time. For these e “:
reasons, the microprocessor architecture is not suitable for » '-‘
the c-LMS algorithm. Rits a

'-ﬁ);a
4.4 DSP architecture implementation ;%‘;_ﬂ "‘

In this section, the digital signal processor (DSP) '.;:.,::‘-
architecture is evaluated for the c¢-LMS algorithm. The DSP E—‘ .':

- 100 -
N RESIROARINSD B DD S - O . :\(\. / ‘-— Wy Wy W 7 v, W, o »(--4- -
B e e R o
N 4‘ ',..’.\" ,‘" ..‘ " " .. '. ¥, " 4 N h y { ((‘.-“(nt 1\(-\: .
NURTR Sy) ‘36”’* &’tw"‘ 5 '." o % ¢ 4% SOG4 N R)
SRS AR Al N e g A S) Q. z A MA
. AR \‘!“-“,'ﬂ:‘zh'; A‘?‘h"‘h‘!*o“ & .‘l'!h‘!.‘t‘!‘l“&v “ 5% 0’!”0 v'?:'ﬁg ,!‘O.J ¢ -‘N " W n. Il

B R R R R TN TR UT UV US W A U LU N Y T R T N U R U YUY K‘\m‘?‘.ﬁ\)?‘nwv'w‘wu

chosen for this analysis is the LM32900 [3] which has a cycle

time of t00ns.

o
4.4.1 Initial Assessment on the Complexity 'Qﬁ&ﬁ
ity

. 08
An initial assessment on the complexity of the algorithm ﬁ&%&
G
Wittt

employing DSP architecture is performed as follows.

4.4.1.1 Execution Time budgets

Table 4.3 shows the summary of the following discussion,
The first four columns are filled in as>they are in Table 4.2,
The time taken to perform an addition and a multiplication on a
DSP chip is the same. So the ’effective number of operations’
column (column 5 of Table 4.3) is the sum of additions and

multiplications needed by that particular task.

The procedure for determining time budgets for DSP
3"
architecture is the same as 4.3.1.1 and is indicated 1in Table ,%?ﬁ%
1)
. ""l
ohgtalet

4.3. "
'.I"ll.-*
It can be seen that the time budget for the various tasks -

QTN
obtained using microprocessor and the DSP, is more or less the *‘ tettig

same though the characteristics of the two architectures are
different. A task comprising of only addition/subtraction
will be allocated lesser time in the microprocessor
implementation than in the DSP implementation. This results
because in the DSP chip an isolated addition or a subtraction
consumes the same order of time as a multiplication. For

example, if the operation D = W - C (this operation has only

- 101 -

.
v t’.o‘t'v".o' X "\ v'h'in
< ‘\ .\.AQ . l Q ‘.\ 00 ".

I '*\

b ogl q\ ﬂ \ *
’ e ‘.':::,‘. ‘o ,0 XK .‘.Q".O '.

o 0: |
o, .;,s. A |° |'\ .l. g.n\ .‘t|| Q‘ i
ﬁf&ﬁn"“nmn”vwﬁﬂmﬂmhﬂﬁlmntnc“ mnmﬂm“ﬁ\h- ! aﬁ LRI m\ﬂ&n

Table 4.3 Assessment on complexity of c-LHS algorithm

T A I O T R T T O A O A R T X R O RN R W R OO ,X'}‘-K'.F" ",gd

l*

.
K]
.l '.0 .:\'q.f

Vi
)

ll
1 i ! l
! !] "0
1 u; : 1
[} [}
]] 1 .
1 - e ™ e
= - u'c
| o B 1] ‘.‘...
{725 : D
[[] .I‘:":‘l
1 [}]
| -: lI }
1 |
] = ! | ':!‘"
' 5 ! [l.l‘!
1 -— ' "a) 1
] - 1M~ [al ™~
| o B~ |]
] o N A A
| D |8 N o~ N
1 QUVe L] - -
|~ & @ X | !
1 Q O w |]
| O] \
] 1 1
1 L} 1
| t t
1 i [}
| -~] 1
v 1~ g ~ 1
g8y id 2 2
V—S{IN o -~ -
! '
i i
o] [} 1
('] [} 1
P-a [} 1
B S |]
30 i [}
[l i i
- 1 t
L] t @ |
> 1 0 o™~ ~ -2
VN~ @ (-] o~ el
ot Dy 1N ™ (=2
(1) 1 - |
t [} 1]
] et o \ |
[} L] [} [}
1] | !
1 1]
1 1]
[}] 1
] - 1 i
1 [BB, 1 (=] < |
I~ v | T [--} @ |
[- R - -
[] w ot
] 1 [}
] | {
[} [} t
1 | \
] 2 :
£ P < | by
1
3 M el N D - o + A
T} ~ Qi | P - -t x_. .
o [T~ B] - vy - A
- =X 1] > o B i
- t | o> 1]
F)) I = 1 t 1 =
i i g1 i B X 0a 3
i
- -} 3: t 1 ! w
Be ! |
- | < 1 «a
a ~ 61w ™ < 0 > S R - J
N et M | D N
w 1 S W 1N [(=]
c | ¥ &) - |
£ 1 N i
" ! ! |
3 -
' | -— o~ o
: : = e 2
] [}
i] \
: ' :
-]]
' [| - L] -~ <+
1 Q | e b= B B
1 - 1 '
|~ - (1 K E 0
R 7] (] 2]] [z
1 e [| o] o
| > 1 e B = B
t [] \
[} 1 [}
t] t
- 102 -

vh.l DO ke 2~ 0 \"-H}

y..o u.o.o- LA "Qn" -&.?M

“.i"‘h" " »u .' "."%' "' 0’«"'0 ".'.i a,""“ ", ‘Q.l‘ ::' L2 " N "'g" ” .h;' ‘\}\'\ ':(: AN
SO i "\.

(i .:\.l KaX) 0.\’

‘
e " Nl 'u"' R m" ROG "l l"'c".ﬁ oy v'm_ .l.l.i l. H.o't.o N

BRI NG WL RS R EX EA VTR VL OB AN U X Y RN Kt RN PO IO RO WO N R RO '..{!“

t,t
subtractions) were not included in task T , i.e., operations C :‘::E,::::::t
= B X* and D = W - C were performed in seguence, the time Eﬁa:::
budgets allocated to operation D in the two implementations ""::”“
considered would differ. The time budget calculation for the D ‘:::?‘E::E:
operation will allocate 0.84 s in the DSP architecture but ‘:{E:.,Hégs
only 0.0027 As in the microprocessor architecture. 53!!:3!.’“!‘

R
' e
4.4.1.2 Computational loading ..M.:::":::
The ’computational 1loading’ column is shown in Table 4.3. ‘M“
The entries in this column are obtained by dividing the .§§:}§§§§§:{
unweighted number of operations (entries in column 1) by the :E,:Egi:;%:.:.
'estimated time’ allocated to that task. One interesting aspect '.!'m'l
that can be noted is that the DSP architecture provides equal .,Ef
loading to all the tasks involved in the algorithm, whereas the ‘.‘M’u..,
microprocessor architecture provides unequal loading among the
tasks. ::?:":"
As noted previously the speed of the DSP chip with regard ‘N: "“
to the c¢-LMS algorithm can be determined by the time it takes g "'
to compute a 'complex multiply and add ’'. The DSP chip needs EE;:EE'*:@
1.4 Hs to complete the required 8 operations, hence the speed '::::!{:'lgc
of the DSP chip is 5.7 MOPS. .
Now the number of chips (hence complexity of system) needed ::::';‘::::':-‘?:'.
by each task can be determined. The number of chips needed for :3‘:‘:.:'::5..!,;
task T is 127.7/5.7 = 23 chips. The tasks T through T , all TR
need 2:13 chips. Note that these tasks operate ?n sequence? and .::'%.:.'
the c-LMS algorithm needs 23 chips. The complexity of the ':é:':::‘,':s
system is 23 DSP chips for the c-LMS algorithm. el
\.“l.;’l"|
S
COPTOs
- 103 - N,
DR 21":|
S AT
B "%'55:5

!!!;)

N " v | | "y
! b ‘l; .l 3 ; b, Y Ki .'h. ||. () !n '. ... '.l |‘0‘q.l .. ". .'.0 ." |. Wt '0...0. () .. ". .. '

oy 303 iate 3% s i 4 4ia Ta’ 2% 2ta”3¥a A0a ATt Tk ab 42b V4700 2 0 0 aTE oW A AR LAY AN, Qato* ot at" (Vaan - (ha g0 g
L2 AR AY, A\ 0 !

'."':::'
]
5- ..l'l
[4
Because the complexity of the DSP architecture is moderate, '%"6;3:
LR
a system design can be studied. Through an analysis, it can be .,c.':::'
LS
determined if the time involved in the communication of data N
e
between chips introduces additional computational capacity for u{.;:..:;;.:i
|'|" ".
s ek
the c-LMS algorithm. Additional computationai capacity would ,::::3520:::*
e
require more chips. R
e
e
4.4.2 Implementation considerations E%:::::;::‘JF
i,
One possible arrangement of the 23 chips is shown in Figure Bttt
[
4.3 (DSP chips are numbered from #1 to #26). Twenty-six DSP .}:.‘“,!;.;‘
.“e’! !
chips have been used instead of 23 for ease of distributing the :::fa:f,‘;.:;t?
i
tasks. Previously the algorithm was divided into various tasks, KRR
4
and now the various tasks must be allocated among the 26 DSP ,l.::'o.:::"'
OGN
chips. ":3:323232'926‘.
e
(} U YO8
Each complex quantity is represented as 16 + 16j, i.e., !:"""'
16 bits for both real and imaginary parts. DSP chips numbered !.'.." "
O t" "eA
#1 through #24 (except DSP chips numbered #4, #8, #12, #16, ::::2:23:;';:
s \) L)
#20 and #24) are grouped as set #1 and the DSP chips numbered e
#4, #8, #$12, #16, #20 and #24 grouped as set #2. Initially 18 .;,.:E:.?:E:::
: 0oy o
DSP chips (belonging to set #1) are provided a pair of input .::E:::;;":s::_
Q008000
O OO
signal samples from the 36 antenna elements. Each of these 18 b ""
DSP chips perform Z: W X , two complex multiplication *::Q::i::
i=1t i Ti :‘Q:g:.'a
additions. To obtain Y= W X (task T) the results are added -;\
1]
from these 18 DSP chips. This job is assigned to chips #25 and -‘*;;
#26. DSP chip #25 performs additions of the results from chips NN
e i
'
;ﬁ . \

- 104 -

DR -.‘ '.'. AR
R R :;,:: ~‘='~:-m EO .«-?r
K5 ""' "‘o"‘:"‘: D c.":.":.‘::.'.c.), o_‘ W, ".0':‘:".:3‘ O ‘::..'

\ lq\'.‘

Flgurs 43 DSP wchitsctars systam desigm
of the el MS agorithm

lopaz
laput
X, ® ._l X 500
= —FE—
xzan —— x;om
e X, 00
o R e o <
X, 6 X,,®)
X,.&) "
x,&) PE #3 PE 819 < n ‘l'. ’z
X k) xz‘&) o ‘.':' “"5‘
) \0'““.'& U
'(' “. .D'.
| I:"a '.s.: '.*
== e v —< g
X, 0 X
Xy o 2s
| PE #5 PE o1
X 400 X, 00
X, .00
X ~ 7
” | PE #6 PE #18
X) X.000
° PE #28 PE #26
X, 0
5 29
xxmen ” PE #1 (_<x .
3
Xn&)
>~ PE# PE #20 ——
X,,0
Xp® 1
° | PE #9 PE @21 —< < 't‘ \’,‘
X, 00 o :: 3
0‘.‘0:"1
X, &) X
1 PE #10 p—— n -
X (00 . — o e
X o k) X0
n PE sl e
u -
| PE o2 PE s —<
PE - Prossssisg
(DSP chip)
a:::::"::ﬁ
- 105 - ".'|.. :"':‘
W}
....... A .
N AN s \-\-r Nt W
R »e"«’u, v" R *" "u‘».u'u '» .c. "'o".t." .‘! W. o 2" .01' -s-"\.'.} ."-\.,*".
SRR Satvg! f,t,.: w a‘..::) ,o .o‘, ooty :’:. “o ?Q: Nh «:.."‘ :‘.‘. ".. \ Ao
IR ‘i’ o, ’a*"a'.'t‘. P "n 5‘4 Wy |' t’o W W, ‘H O A

numbered #1 through #12 (except #4, #8 and #12) to obtain Z}
1=1
W X . Similarly chip #26 performs additions of results from

i
chips numbered #13 through #24 (except #16, #20 and #24). Note

that when the results from chip #25 and chip #26 are added, Y
T
= W X. Thus chips #25 and chip #26 exchange data and add to

obtain Y. Meanwhile DSP chips belonging to set #1 perform the

complex conjugate of X (input signal samples). Next each DSP
chip (#25 and #26) performs MY to obtain B. DSP chip #25
broadcasts B to chips #1 through #12 (except #4,#8 and #12),
and DSP chip #26 broadcasts B to chips #13 through #24 (except
#16, 20 and 24). Now DSP chips belonging to set #1 have the
necessary data to begin task T . After the completion of task
T each of the DSP chips be]onging to set #1 provides 2
cgmplex entries of the vector D (this vector has in total 36
complex entries).

At this instant tasks T , T and T are completed and the
remaining task to be pelforied is % . This is the most
computationally intensive task of t:e algorithm. Up to this
point the DSP chips belonging to set #2 were idle. Now these
chips compute T . The Mat operation is a matrix-vector
multiplication :nd is partitioned as shown in Figure 4.4. The
reason for partitioning the Mat operation in this manner will
be discussed later. For the Mat function, DSP chips numbered
#1 through #12 and DSP chip #25 are assignea to perform one
half of the computations involved (648 complex

multiplications additions). DSP chips numbered #13 though #24

- 106 -
BERNSOR DA OOBOANONOB ﬂ'*n- - ¥ B - VN R AW N
ORI A AT UAE A R AR AN N It B bt By D)
Sy !giaih‘;::‘l ‘:‘5:;“?1 o "'l"“.'::l.:‘!*l‘:. "0‘.}' " ..:Q.':Q:.:.:::.:':::‘:::::::':.:..‘:‘;:
: LRI Y JOJOA M W) 0 OO OO L)
O N A A A AR A A AL A A R M S
SR s "-Y’)“’a.',fi'?:"‘:'k:a:"!'z‘!i:“.:'|::.\::.‘?:“':‘l...l:'.l'.‘l' byoy

bttt |

DO

[
o
SRl
S

)

-"&‘,;"—' Wy
Vet
AR
®
h gy
0,000.4% ¢
O‘Qzl?:.ﬂez!ii
l:"‘i:gl'l“;; (
() '.((R
S e
‘::!:“:'Q'O'

S

'

@
- ‘li(‘vg ‘ti,
) 0N

" ‘;'0::‘.

O
k ¢
. ‘ ..l‘
@
'.I‘.;il' S
:::'..l’g’.':

BAONRIND
‘Q?"l‘ ’\‘ 'll (] ()
USRI UITO RS

¥ 3ot a’ﬂ!‘f‘-p

._.,‘.5'"‘7.“ H

Figure 4.4 Partitioning of the 'Mat’ function of the ¢-LMS
algorithm to be computed in DSP architecture system

First row of P

1C]

¥ 36
1
* computed by
¢ PE #1 . PE s02
° & PE #38
in 19
18" row of P D = 1 panes
[]
»
P D / %
36 6l | meeemmme -~ B S
\Emmof? D
16 1 1C]
% '
. 1
compated by
* PE #13 . PE 424
. & PE 926
in 18 passes
3 rwof P D
1C]
% %
1
- 107 -

AR

GOty
l“".l.l 0)
SONADE DS
QOO l'l ot
h ,"1!3:',";. :a" IRRIOK

H:"N:o'.!:l"l, W
R R A

\ W .N "
(o) , .:t L)
R R R R R o Lo D DR M ST NS

\. y
RN

T R L T L AL AT LS A Gty AL \'\'"\-."'i'.{ﬁf
R S Tt Rodatavis '\\T‘}'\‘ Xl I NI AN A M
) . i Ry v, W LS A 2

"
v ‘ d

SEAATON T T T T T Y W LS R R O T O T S U W A R o w0 ':‘";‘O‘o

B NOEN I RICRR WU IEN S0 ST WK MR WX SR SN W A LR RO MO N M e T T R R R R S R R W R

and DSP chip #26 perform the other half of the computations.
The task T is performed in a pipeline manner. Initially DSP
chips #1 tﬁrough #12 perform the 36 complex multiplications
additions involved in the multiplication of one row of Mat and

D vector (each DSP chip performs 3 complex multiplication

additions). The partial results are provided to DSP chip #25

which performs the 13 complex additions (including the

addition of 8) to obtain the first element of the weight
vector. Meanwhile DSP chips #1 through #12 perform the next
set of 36 complex multiplication additions invoived for the
next row of Mat. Thus after 18 such passes the task T is
completed as DSP chips numbered #13 to #24 and chip #26
perform similar operations.

The task time scheduling [8] is shown in Figure 4.5. From
this Figure the time taken for an iteration can be determined
as well as the portion of the iteration time the DSP chips in
the system are idle. The iteration time obtained was 83.9 M s.
This time was less than the iteration time of 86 Ms imposed by
the HF constraints. The reason for pipelining 36 complex
multiplication-additions (performed by 12 DSP chips) and 13
complex additions (performed by one DSP chip) is that each of
the 12 chips requires 3 complex multiplication additions which
needs 3.8 _Ms., The 13 complex additions performed by a single
chip needs 3Ms. As the times required by the two operations (3 RO
complex multiplication-addition and 13 complex additions) are N YL,

of the same order, the pipelining will f3§ﬁ?&
ale

)
"‘ .“‘ ‘

IO AR
‘ ‘::t:: H’Ht .‘:," ’.:'\.:" t:"".‘.‘:c:‘

DK
. \J
[“ \ o,‘ .,s "

() !
s W) Vet " % ...‘ .‘
" ‘0) |\ .. |. !' ‘.. .I _’ ". “h) .\' ..' .. “".’.)

- o gat 1® * Gt fab gav jat $2° fa® Gut Uy’ -'n., '..
Y ; : TN PPN R TUR L TR PO SR R AR Iy I
T R LN TSI TR TR T W I TN M LT WU W . '|“.'

's- '
: d

Ayt
"'»' ::- X
0"; 't‘t’v

Figure 45 Task scheduling using DSP architecturs for c.LMS algorithm

13 ps Ty 09 As ':' 0
J / / TR
Set #1 |T,[X" ¢ Ty | O Te ¢
Set #2 Te)
Set #3 (P[[Ti o) r'ra Ts

TN \\ \

1S3 Slps 6l ps 125 jos 155 pes 839 ms

¢ - indicates that the processor is idle

set #¥1 - includes processors #1-#3, #5-%7, #9-#11
$13-815, #17-419, #21-323
set #2 - 1includes processors #4, #8, #12, #16, %20, #24
set #3 - includes processors #25 & #26 I

- 109 -

i;%;lp’ .‘
)

. 's‘n‘r&wa'l,o'%')‘i‘
Jraa e g’,;~t.h.
* e Y
'. .,

X . ot
0 ‘ n Yy '- \ ‘n
n’. o'..::,‘-‘ o .,' '.' "'.:" X "'-":MM_ ,f-,,{ - ..;-.;L
; 1 0 %
’ a"’:."‘." t:"ﬂ, u' :"’:.“Q: 'A' ‘\‘ "....ﬁ. ‘!‘ c.l'v .l‘..“ ,l'lx) l'. t'a Wy ‘K

SRR TR TR TR U A PR R RS A YER LN THUNUSAY I GO P TRV YA AN 070 40 07 40 Jot 0 008 a¥ M40 Uatube’

be effective in reducing the waiting period. As determined

earlier, task T requires 18 passes leading to 71.4 AMs.
4

The time taken for each task in the system and the
computational loading/chip for these tasks are given in Table
4.4, Though the DSP chip is tuned to the operations (complex
multiply and add) performed by the computationally intensive
task T , the loading per chip was only 5.3 MOPS instead of
the fu11 capacity of 5.7 MOPS. This resulted because time was
consumed in distributing the D vector entries to the various
DSP chips involved in computation. While performing task T ,
the l1ocading/chip is at full capacity of 5.7 MOPS as the :
computations involved are complex multiply-add. The c-LMS
implementation leads to a tightly coupled system. This created
communication overhead and more than the 23 chips were needed
to bring the iteration time within 86 As.

For the system wusing 26 chips, the processor utilization
[8] can be determined. Table 4.5 shows the utilization or
fraction busy time and the idle time that each DSP chip used in

the system. The overall processor utilization of the 26 chip

system is found to be

26(83.9) - 18(9.2) - 6(15.3) - 2(22.5)
26(83.9)
The processor utilization is high enough to conclude that the

DSP chips are effectively used.

The memory needed for data storage by the c¢c-LMS algorithm,

- 110 -
W LW ‘. N MR - -)-' ‘J-... -“- f‘ ‘.h. *- -q‘- - -. '4'"‘J".""J"-"'-"-‘[v“"""'."-".I"J"..".{“.N\' ‘\-I]
‘h, APt [b AT -\-.-.\\.\ A A A A ALY,
?:‘0 \ﬁ\-‘bf*ih‘ S *‘\ q,'l ')' f-\. } J: "\,"\'H*-.'\-, < ‘.'r-\,;.. *' ‘.\“\‘:\.‘ SR N _\::‘\ \ "\-':'{‘\'.\
: '2.'.! o ‘-"- \«*.-"
A U

‘0 " » ¥ { '\
St ',l’ét‘:?s' :Iﬂ.'c .t.i?c.,l?o. : ,J._ Yot} i!:') P A an vt

R T T Sy LNt TPt Pt TCTTTLI L PO TUN YK P00 AL TUN PO RO YO YO WO W s PURUXUW UV U VR LW UN UV T ':gi’.\‘

u"‘

Table 4.4 Timing summary of DSP architecture
implementation of c-LMS algorithm

Tasks Execution Computational
Time (As) loading/chip
Task T, 5.1 .11
Task T, 1.0 2.0
Task Ty 2.8 5.7
Task T, 75.0 5.3
l
- 111 -
N)
o € o CaSa™ P P L Lt S \1 3
0y ‘)"” ""x’ ‘a":o"::"c "" iy .' .0"(0 '.l' .0::: by ". :0 o ||:‘ V'p' o :&&jﬁ.‘;ﬁ;&\":‘:ﬁ: :‘f,:’;:i}-'\:: "::\:,’,\ \}\' ::.‘ : ‘_: - : :
o Qm 4)1 ,3':‘,;50'.‘ X ‘ ;:: .\' "0.13\': |.\:.|=: N ‘_ i\f'_’w oy ""-.r‘\"":"':'-"' .'; i\ \ 3_;.(:\-(::_ -F.\. ~
PN ""i"'x"-: : 4 : ‘: l“ ‘:: XN ."l.‘-' ' "‘\:'.::.‘i.-.!.".l. «’. ql .’g‘- D AT S A ". & A L)

. =3
PR TR AR WO TR WU WU WU WU P RY TR WL WU W WU UM U N N WL R IR M W PG IOY Y ‘J..‘O.Q

Table 4.5 Processor Utilization for the D3P i) N
architecture consideration of c-LMS algorithm AR

Processors Processor Idle
utilization Time (ms) | uf u,

set #1 89 X 9.2
set #2 82 % 15.3

set #3 73 % 22.5 ..

set #1 - includes processors $1-%3, #5-%7, #9-311 t
$13-415, #17-%19, #21-323 OO

set #2 - includes processors #4, #8, #12, #16, $20, #24

set #3 - includes processors #25 & #26 N "_

o

SO W

X
»
-,

- 112 - o‘..c.:.n

AT ¥ s G 0, 1 Py xp I A T
' :;m‘,.*w:.‘i ‘;.,’a M "'.. u'v 'i o ",f" ol ‘\,&-.(" o _;- % j.' o J: ,sﬁ' A
R r':"’“'." o ":; Iy a“ ' ! ’ \ Xy l '.'f I .0... DY N
s - z | BROGOOUM
Lt RORONONI ‘.!".‘ "-L il l‘-’o‘ OO IO v,

N OO
'EN

3,
\;i

e e e i 3 L e el A a s By g0 AR BYR RCAATRE R b fh Py B8 Bab o gt

implemented in the system, is 6100 bytes (note that each

complex word is represented as 16 bits real and 16 bits
2

imaginary). P needs N complex words of storage, PBand W

each needs N complex words of storage. As complex words
requires 4 bytes of storage, the data require (N 2+ 3N) x 4 =
(362 + 3 x 36) *x 4 = 5616 bytes. The remaining 484 bytes are
needed for intermediate result storage.

The c¢-LMS algorithm using DSP architecture has now been

evaluated. The complexity of the system implementing the algo-
rithm was assessed and found to be 23. A system architecture

was developed for this algorithm using 26 DSP chips, and the

iteration time was derived as 83.9 /#s. The system performs

1194 iterations during 100 ms and required 5.5 Kbytes of data

storage.

4.5 VLSI architecture

In this section VLSI architecture is evaluated for the c-

LMS algorithm. Here a different approach than that followed for

the microprocessor architecture and the DSP architecture 1is

used. This is because not all functions car be implemented on

the VLSI computing structure. Section 4.5.1 identifies the

functions that can be implemented, and it is observed that only

Mat function can be implemented on VLSI computing structures.

Section 4.5.2 discusses issues regarding the architectures

considered for the Mat function and discusses why Systolic

architecture [6] is better suited for the Mat function than the

Wwavefront architecture [10]. Presented are here two Systolic

¥ ' Wi 0
e 'r.‘q\;, «',4:‘ w.\‘ezi::‘l‘ o '\'. 5‘. \"‘0‘ .: ’. ' " ..' 0::‘.::::'
IR () Q U) ‘. |. X "
Y " 4 BONOGIRY Ie)
A X "':': :“ e ::.'. "t" t"‘o"' "a' ’t‘. W) i‘ l‘.'l"'.

.“' "H N
0.“‘"‘:0 c"' %

o NAT Y% #atova adaiavy atl it aih g"

yg “‘-‘ﬁ.‘-i»

N——
VU, gt LE AN

1]
.._\A'. 'a‘ 'a
Sl 2

EPRR NI AN P U IO IR IR R AT O R O T T U T T O R T N T U T e O Y T R T oy

array designs which possess all the properties of VLSI
computing structures. The functions of processor that are to be
custom made and are involved in the Systolic array are deter-
mined. Also the issue of whether the Systolic architecture can
be impiemented, is evaluated taking into account the present
technology. These issues considered for the two designs are
presented in sections 4.5.3 and 4.5.4. Finally, the VLSI
computing structure must be incorporated into a larger system
and the various important parameters of this system are
discussed 1in section 4.5.5. A summary of the the discussion on
VLSI architecture consideration for the c-{MS 1is provided in

section 4.5.6.

4.5.1 Algorithm considerations

To determine 1if the algorithm 1is suitable for VLSI
computation, we have to first identify the compute bound
operations in the c-LMS algorithm.

The following analysis holds for any number of antenna
elements (N). From Table 4.6, we can infer that the Mat
function is the only compute bound operation that can be
implemented on a VLSI computing structure. This is because the
elements of D once accessed can be used for each of the row of
P and D multipliication, i.e., D is used to multiply the first
row of P and D and D is used to multiply the second row of P
and D and so on. Thus, this operation can be considered to be
compute~bound and therefore can be 1implemented 1in VLSI

computing structures.

- 114 -
X\
RN LN o, s '\.-“.»
:’\' :i' .i:\ b.. » b“ 0 |! 'u, "‘l:g' A " 5 “ X ":.,“\: _.'k %:1}: ’1(. 5\}'&- I’f\. \-',,-J -\ \."t‘_\.: y
’;a""'“ ‘:‘""’i"e XN i" “ “a h"! H‘ " '\- PG N Y \.~'~$ b
v ,; ‘1 é“t i' ‘|| ‘ . Q .0" .‘-\.(- ., A
R A KRR ORI xQﬁﬁw‘ SR ?ﬁ.f}.?ﬁﬁ WSS

Table 4.6 List of compute-bound and Input-output bound
functions belonging to c-LMS algorithm
Functions | Type of Number of Number of input- Operation
operation computations | output eleaents bound |
Y= v'x inner vector O(N) O(N) input-output
product
|
C«3Bx" scalar-vector N 22N+1 input-output
product
D = ¥-C vector-vector N 3N input-output
subtraction
Mat = P D matrix-vector O(N‘) O(N‘) compute bound
product
E = Mat +8 | vector-vector N N input-output
addition
I !
- 115 -

-

P . D pa) oy Vo
ey AKX "‘\WS&N N ,,'S._-.,_ :: -',}r

e
4%,
!
' @
h
WD
A
W
>
@
t
m
@
4
S [
",
o
S
N
SRR
e
®
b
Ly
S
~ N\
:*~'~§I
) ‘&\ N
t N
NS
,\;\
3

-‘ +

’9' 3K 'H’ Byt

The Mat operation is the most computational intensive of

the tasks involved in the c¢-LMS algorithm. It required 10368
real operations and it consumed 85 % (71.4 ,/4 s of the 83.9
AMs) of the iteration time for the DSP architecture implemen-
tation. By implementing this task on VLSI structure, the time
spent on this task could be reduced to a large extent, thus,
reducing the burden on the processor performing the input-

output bound tasks of the c¢c-LMS algorithm.

4.5.2 Architectural considerations

As noted previously the VLSI architectures considered for
the c-LMS algorithm are the Systolic and the Wavefront. The
primary difference between the two architectures is that the
Systolic array is a synchronous computing structure whereas the
Wavefront array is a self-timed computing structure. Each
architecture has advantages and disadvantages so which is
better depends on the task which is to be implemented. The main
issues for consideration 1in choosing the better suited

architecture are:

4.5.2.1 Speed variation

A Wavefront array enjoys a performance advantage in that
results from each processor of the array are able to start
computing as soon as the inputs are ready and the ocutput is
available as soon as computation is finished. Thus, 1if dif-
ferent kinds of computations are taking place in the computing

array, i.e., speed variations in computations exist, then the

‘ W
p “' N.» t"o *.' :'
¢

Gttty o
) o's'u "o.\v'* "' “.::\".b ,o:‘.v" :z.l '.:: "':

i) @.‘.- Wﬁg _
LSOO
"’ ::‘ \’ ' O" \\.:z.::::::e ."l. .l'c oy &“I A Y

n‘nn n. t, k.‘i"i.

.o"\\"n"\t .'

T T T T T T R R T T R T T OO YO IO PO PO PO T W RO X L™

‘.0" .;

l'b.‘l.!'o

I'I '
data-dependence property of Wavefront arrays will have an f¢k¢¢

‘Qw
m 2

advantage. This advantage will seldom exist in regular arrays

where each processor performs the same kind of computation. The

task of the c~LMS algorithm implemented in a VLSI structure is Rs‘ "w
) g Q.Q

the matrix-vector prcduct (Mat = P D). This task needs a a?&'u "
) |.l'l."|\"

regular array 1i.e., the same kind of computation is performed
in all the processors; - multiply~-add/subtract. Remember that

the handshaking operation between communicating cells in a

Wavefront array requires 1increased design complexity and
hardware cost. This means from the speed variation of
computations issue, Systolic arrays are better suited than

Wavefront arrays to the Mat operation.

4.5.2.2 Clock skew

When different processors receive clock signals by dif-
ferent paths, they may not receive clocking events at the same
time, potentially causing synchronization failure. These
synchronization errors, due to clock skews can be avoided by
lowering clock rates and/or by adding delay to the circuits,
thereby slowing the computation. The Wavefront array is free
from clock skew problems as it is an asynchronous system, but
the Systolic array suffers from the clock skew problems. The
Wavefront array implementation 1is advantageous only when the
clock skew is high enough to degrade the speed performance of
the Systolic array implementation. For example, if a processor

has a clock cycle of 100ns when operating separately, but when

integrated 1into a Systolic array had to be clocked at 150ns

A T A AR o AT
RGO ﬂ." LS TGRS N

R W 'n"'v’ t. ht' : "' NN NV' "-.P"-s. *.’.Q’n"s N '\-"*-“ RGN
Y

W iy
“‘ "u ,'. s :Q‘."'.. .‘ I :ﬁ.:t.::h‘ |' .||l'. N '\- 2% ,f -ﬂ.g 1 \$
1

\‘4 \'a |‘ O'\ “l" 'l' h. 1. ' ! I»‘ 0; & »"h‘"",' ! " l.n‘l a! u"."‘. g .c. i D.c o

I IY R Y LT RSUROL ITA T | I LGS FO Y T ML N VIS S VLA U R AN AT R AL RS A PO e .|'

(due to a clock skew of 50ns), then the speed performance is
degraded. Clock skews céuse problems only for very large Sys-
tolic arrays [20] and particularly in arrays which have speed
| variation. As will be shown later the array for this analysis
has 72 processors and is a regular array (no speed variations),
so clock skew is not an issue. If there are no problems due to
clock skews, then Systolic arrays are better than the Wavefront
arrays because of the required extra hardware for handshaking
between communicating processors.

For the reasons shown, Systolic arrays are better suited
for this analysis. One of the key attributes of VLSI computing
structures is their simplicity and regularity [6]. Simplicity
implies that the processors making up the array must be perfor-
ming simple operations and regularity implies that the proces-
sors comprising the array perform similar operations.
Regularity condition is crucial. In synchronous systems, such
as Systolic arrays, if processors in the array perform dif-
ferent kinds of operations, then the array will be clocked at
the rate of the slowest computation, thereby degrading speed
performance.

Presented here are two Systolic array designs, A and B,
which possess all the key attributes of VLSI computing struc-

ture.

4.5.3 Systolic Array - Design A
The matrix-vector product 1is found by repetitious mul-

tiplication of a row of P matrix with the column vector D. As

- 118 -

R ' 'i -"(,‘~

|

sl '.o il R ol gty
Shrgthoy sty éﬂ ity
.0' p' o '.s:b." ,:'0 '. o e :. ..

‘\-

N

W ‘l) \.. ‘ ..' I 0) .“:' ?. ‘.'." ..‘ .:I .~

‘a W .-. ,t". % ,o' ', 'p. A .0* .o ‘ ',0,'.%',0. ,o ‘.o A ‘l. 0:'..,’.6

v
‘u'

o
::oE:'

-
“r. xz

there are 36 rows in P, the basic process has to be repeatéd 36 .

|
O\ 'i‘q l' 0‘

times. Each entry of the matrix P and the column vector D is a .kﬁwa
".l'.'}
complex quantity. Note that the basic operation 1involves 36 ﬁ%ﬁﬁ@;
‘:Q"Ql.'l
I'l'
complex multiplications and additions. In Design A two separate {w.
A0
Tinear Systolic arrays (#1 and #2) are used because complex ”@ﬁ@i
CRNENYY
. a s , s . , G
multiplication and addition is needed to be implemented. The Q&ﬁ$n
'l l'l ‘l‘-‘
two Systolic arrays interact to derive the matrix-vector iy
A S Al
. , n
product. Systolic array #1 consists of processors of type-1, ”'y##
O ”.
and Systolic array #2 consists of processors of type-2. *ﬁ::
P A
The type-1 processor configuration is shown in Figure = '
.‘ '
4.6(a). This processor has three input registers. These yw
l
registers store the three inputs V , U , and W . \ifﬁ'
in in in bttt
When the three registers are filled with the required inputs, V‘
O |;.
the processor performs either of the two operations W = ,.:':“::';?.%::‘::
out N ‘|.I "l'.
=W +V U orw =W -V U [21] (according to AR
, . , . , , "
in in in out in in in Mottt
the control provided) i.e., either a multiply-add or - g'
te
multiply-subtract. Once the processor performs either of these Jﬁ$&§
'I.'\"'lf
operations the output is available on the W line. The gﬁgmﬁg
out QIGHGIN
processor also provides U which is the unchanged version —_—— 1
out emadt
of U . At every tick of the clock, the processor shifts the 5&&&;;
in %\qﬁﬁ
three inputs into the input registers; computes multiply-add aﬁ%%ﬁ'
: X \
or multiply-subtract; and makes the output available. This o

— .

one tick of the clock is denoted as the 'unit time’ of the
array.

The type-2 processor configuration is shown in Figure
4.6(b). This processor also has 3 input registers but it

performs only one operation multiply-add. So during a 'unit

- 119 -

o e P TR 1 .r
) ‘(\“ WO RN
"\-. \"\“‘\.‘“‘.)\f‘\ f\\“" Wi " 3
N \'x&‘,?v
)

ST X

W

", | l
9 GG ‘

a'a z ! ettt l'l ‘n‘u'u‘

,nu

RS- S ¥
RS i‘t,; ["A.t’!»'f&vi,s "-‘ ¥ ",)‘: “’ :‘. '\lﬁ .’Q ":.. ."“ . ‘. : y ~ ‘l
: ! g \ | h"ﬁ (N b, I. y‘l.“ "\‘ | l'

S

‘-

e
5

X

i

o

4

il
555 ®

.‘

SN

Z,
*.
o

@
Figurs 4.6(a) Type of processor used in Systolic array #1 (Design A) " WO

Uin P ..‘g

&
o+

> Wou1 e "‘

"‘ TH .\. .
" G‘
il
Q‘ ". i

Figurs 4.6(b) Type of processor used in Systolic array #2 (Design A) ' .;.;:. q
R AN
Uin .':'.::'. o

O\R))
Type O J{ :"::':?:%

Y ——— ®

"!
Win ——— + > Vom "\.‘“’

ot

c
:-"
:‘.‘

B
3" -.,"

k

u"\"'\ l 4

- 120 -

s 2 -~ .
RRCAOEK RODOUONERHRNG e St TN o
S 'i " ’“ i ‘i,’:-.*:ia':'f:'s .. ',. .:v l‘. ‘|:I "l|! .0 0‘0 “‘ \’\\, &'&":\‘V\‘"N \"“-"‘.: 3" ‘.'\-‘;‘i _,,.": ',\:5. .“: '\3‘)
' N ::.n RRAGAY RN,
Ty ’, \uﬂﬂhtnh ")‘:“ .". l"e', '.“.. .‘l .: ::h‘ \' Nt > 4,. '{: o :.r \.‘ N ,‘.\ _‘a ,_
) U . ‘

- . s -{'\. ,
YR
A

~"

h. 9,V 1L |.I. '0 n.l .l (U h

I T T T T S P R N T S S R T N R T R O T WO VW OO WOV T vC onorong

3:" A
IM:':'A

®
. gy
time' this processor shifts the 3 inputs; computes W = W N."L
out in ﬁ 0 ',.:
+ Vv U : and makes output available. A “,,:::
in in R
How the two Systolic arrays interact and perform the comp- C‘;’,;y.»:r."‘
lex matrix-vector mulitiplication, is now explained (Figure 'c',
4.7). To aid clarification, subscript I denotes an imaginary '}? n',:':a
component and subscript R denotes a real component. The real PGACATN
SRRy,

e

components of the P matrix are stored in matrix P , and the ?_‘4:.;:;-,-_"
R LA
imaginary components of the P matrix are stored in matrix P . ﬁ:“ﬁ)
1 SONA
PI is supplied to array #1 and PR is supplied to array #2. The 1'::,‘:".:.::::;::
DN
D column vector is also separated into real D and imaginary ",:.éi'!::'aj
R) .l‘«
D vectors. D and D are applied in succession to both the g{,}})

I R I

. . ®

arrays as shown in Figure 4.8. Note that the two arrays t,.i,’.'.l.i
&) ..':.U'"\
interact and the output of array #1 is provided to array #2 &‘:}:}:?::.::
ettt
and vice versa. ".ﬁ"::';':
It is important to understand the system operation. Array :E-’“i_. .
O,
#1 consists of 36 processors of type-1 arranged in a pipelined ;'(h
Shhy
fashion. Array #2 consists of 36 processors of type-2 arranged 4'3:&'\
. . ,) ®
in a pipelined fashion. As noted the corresponding processors ';:&:;\;

)

in each array interact, i.e., the first processor of array #1 ""'\::":::'.t
W, (W'
interacts with the first processor of array #2, the second .".' W Yy
, . ®
processor of array #1 interacts with the second processor of R
“q'::"’.l"\;.:

array #2, and so on. In the matrix-vector product each pair of :-:--‘77:’_2
- :\-,-.n,.

interacting processors is responsible for the 36 complex :'_;_,\";\.
multiplications and additions (basic operation) required for E::::t
the muiltiplication of one row of P with the column vector of &*'\.
A0 N

RSN
D. There are 36 rows of matrix P and the 36 pairs of bty
@
whJ X A
I
T
)
- 121 - e
.. ..' '. ‘I‘.'
\“;.‘m,;;pu,a ;;\ '." i n‘,.! A H ' L9 QLI Y ; \:“\'}.ﬁ_\\%",.‘yﬂ ~l‘_"l \"-\"?‘k\".’f:'-}‘..’:- \‘_-.f».’.-(--a\!‘:-,‘-{,‘-f\r}_, "1'::"‘\-‘.:* 'f\.ﬂ\f\-‘-
S S e T T Y]
\

: A, T ahd
& l.’l v DL (M) OO0 , CL S \ ‘. \'.
Frd 2 XA R ..5'.”{!.03%&.‘. KOO

!
EA4Y
ENS

EAN WA NN, NN A .-f\(-\.r__-r LSRR S A
e AR S BRI A S A R

o)
WS SN, o Cn oy Ls L

Figure 4.7 Systolic uray configuration to compute "Mat’ function
of the c-LMS slgorithm for Desiga A

Amy 1 Pa Amy 2
- 122 -
'V‘\J‘ Lg%] "q’\ "'l*‘! _“‘\f\-.,'\(_ \-‘-\'.N:.‘: “,‘) v e R :
R SRR
d ‘\.\ N’f\i._" .:: N .’ \ ug\\ o 'f'(
h Y \ LN

RANVLOLN N 3PN

RN N TR R RER LKL S OW /R AW UW LW S U L U U U URT AT RA LTS St ARVAS S 0 h A a LR

Figure 4.8 Systolic army implementation of the "™™at’ function
of the c-LMS algorithm for Design A

7
D!ﬁ
Dy
e
DY
D,
Aray #1 Amy #91
r=- ';J" =1 r-
|v1. [! v,
w !
PPl « |PdPLa 41—y (PP PPy
! .
1
:wh Uou | :W-
T T T
v Uiy ! Vi
’ w__ | 1
(PrsslPiss|- - {BUPr L,y oo [PrselPrss]- - [B[PL
" | >
|
:Wh Upn | :w.
du L
) 4 | 1
1 . 1 |
| . | |
1 ¢ i]
I ¢ J !
| J‘ f !
1 u. 1 u.
Vi - | :v" -
-’ / w J
RsadPerd* + [BsyfPis. 1 w36 |-y (BeasPead - P Px.x]"‘*'
[il 1
|\V-u 1 W

- 123 -

' - e AT
X, I ‘A‘ it 3 s ' ot

: :\n" e u,i.o" !) c".a" a: .0" ':::"c I Mg < "\"-

Coat 0 t‘l. s "g !" I';ll‘l.‘.l. ‘ o 'l \- o '\
o T v."o v. .!. Nty el

P U I U UV T N NU N R L NG R MW UL R G L R N U S T Mo M W N T T e S et A .‘l"i.;'l“
RSty
J..tl "'
‘ ®
interacting processors are sufficient to complete the matrix- S
s
vector product. For this reason, each row of the matrix P is ’£v¢¢
EA
sent to a pair of interacting processors. The real components fh :q&
L
of that row are provided to array #2 and the imaginary Q&¢¢§
o (
s ¢
conponents of that row is provided to array #1 (Figure 4.8). ﬂi;; f
l’..‘f. N
To facilitate complex multiplication and addition, each element f¢h *:
]
of matrix P that 1s provided to the processors in both arrays AN
~‘:~.":~::~.
is repeated (Figure 4.9). For example, the real part of P, is ;?Y@g:'
/\::'.-F"'p\
el

sent twice to the first processor in array #2 and the imaginary

v
A
b

part of Pj; is sent twice to the first processor in array #l. . _7§§

The P matrix input to the processors of both the arrays #1 hg%:bi
and #2 are provided 1in a skewed arrangement. The first 3&5&&:
processor of both arrays receive P matrix components during the .;”ﬁg
first tick of the global clock; the second processor of both k‘.&g‘:ﬁﬁ
the arrays receive P matrix components only during the second !ff,res
tick of the global clock. To implement this arrangement, the P Efjkfif
matrix elements provided to the second processor of the two ‘£§§ﬁ:f
arrays are delayed by a time unit. Correspondingly, the P ;@%*#‘
matrix elements provided to the third processors of both the 'v

arrays are delayed by two time units and so on.
The complex multiplication-addition performed by the first

pair of processors 1is explained. During the first time unit

-

the type-1 processor of array #1 1) obtains the inputs P ¢

implies imaginary part of Pll)’ Dy and Win (initially this is

”

zero); 2) computes W,,, = Wy, + P, D;; and 3) makes

-124-~

O \, "y L Y AP Y SRS AN et T T
.f-.‘r'»"‘:‘ﬁ' iyttt ?‘I."-.“('I:"f? PN AN, <
LRI) .)t“"'. «f e ‘I"f'f"f"'.(".'-‘f" -

E) ‘.‘.‘..‘ﬂ "' (N ‘."‘n“h"\r \p ¥ ey
N AR L e D e o e
o R DR DA LA ARy L D

v

L
(S

. cata . aih ped axg AL X A
RN PR I S WP TP TR, A AR -4, T WY R A M U b it And' 0,04 -

4- "‘f
)
o
Qy*‘:
(]
W,
N
available W to the first processor of array #2, and D is NN 3ﬂ
out 1 OIS
available to second processor of array #1. During this same _,..
il
time unit the first processor of array #2 1) obtains the ®
ARG
inputs P , D and W (initially this is zero); 2) it
11 1 in i,
) 1,F,
computes W = W + P D ; and 3) makes available W to saﬁgq;
. out in 111 ‘ out N
the first processor of array #1 and D available to second :
) REah,
: processor of array #2. Thus, at the end of first time unit, P {5&;
$ 11 NS
’ D 1is available at the output of first processor of array #1 jkﬁff'
1 R
and P D is available at the output of first processor of o PS
11 1 R
array #2. During the second time unit, the first processor of ﬁ&$§$
(S AR
/ / L
array #1 performs W - P D , (note that W = P D s aﬁmmﬁ
in 11 1 in 11 1 il
obtained from first processor in array #2), and thus obtains e
. s s , , N
; the real part P D -P D of the complex multiplication. g??ﬂﬁ
: 11 111 Al
: During the same time unit the first processor in array #2 ?ﬁ%ﬁﬁi
¢ s P4 . . ‘.'_ ! A.
‘ performs W + P D , (note that W = P D 1is obtained ®
in 11 1 in 11 1 G
¢ from the first processor in array #1), and thus the imaginary .'.:f
b Vo
e AN
: part P D + P D 7 of the complex multiplication is e "
* 111 11 1 TR
: obtained. The operations performed during the next two time ®
WX 'Q'l' '
units will result in one complex multiplication and addition bﬁﬁﬁﬁ}
- il
7/ 7 7/ / . ﬁﬁfﬁ
(P +P°) +D)+ (P +P” XD +D7). This is s
11 11 1 1 21 21 2 2 Wyt
performed every two time units by the pair of processors. Note
‘ ' NN
: that the processors of the array #1 perform multiply-add and ‘Eﬁv}
! Jedtgt
\ multiply-subtract alternatively. Because the outputs are o 4@
L g
AL ¥y
pipelined, during a time unit, many processors of the array ‘v’.
":-' > .1"
are active and interact in a similar manner. It can be easily ;5&?:
. PR
. seen how the matrix-vector product is obtained. ;}ﬁﬁh:
s :-I:\\‘.‘\".‘(
The number of time units needed by the matrix-vector p:
"l..";!":,
'i"“l“.:‘l::"
.'".'."'l.
-125-/-126- k:.;:.:‘,;::.“;‘
A
N ":"‘t
By N " Y o - (M “.:f N "_(l'-".- AT O) ‘-’\:-f‘ N SO N ‘f;‘: -'i-:;."\::\'
B e A N i 3:\ R
e LD 0 0 ' JU ! LRI YN, LGS i
B R R R AR L RN A GNP NSRS

R T PR N T T LT YO Ry O o T O R KR M AR IR 1a® §aF B2 2t 92" 02" $2® 92" 02" 827 02" 2% $s' B B’ b h."
o

()

e

a'ls

®
« A
product operating 1in the VLSI computing structure can be ‘gg::':::::}
UK
JOOOKA
computed. The time unit is the clock period of the global clock n“:::::g:}
A
when the processors of the array are clocked. There are 36 - ""
A
pairs of processors which implies 36 stages of pipelining. Each ...'..:
LA
L : . . el
pair needs to perform 36 complex multiplication—-addition 1i.e., l:c'cf:' "
.":."‘ ‘
0
72 time units, and each complex multiplication-addition ““"
CAATN
consumes two time units. It can be seen that as the first row , AN
St
. o . L L
of processors finish the 36 complex multiplication-additions '“\-f.
WL
assigned to them, at every time unit, the successive pairs "'
A v
complete their assigned task. Thus after 72 time units, there " % ﬁ:
) At
is one output obtained for every time unit. Therefore the iy
1 B
. number of time units "C"’“.
x -_'.,‘u.;‘:'
! = 36 + (72-1) = 107 time units. ,5;;;523:;
| e,
; The speedup figure achieved by using this Systolic array f'_;z_‘f .:
S
instead of performing the Mat operation on a uniprocessor is ‘&.“
PR
) AR
= 4 % 36 / 107 = 48.45 'f'
Wt
2 !
since matrix-vector product requires 36 complex multiplication ""'v-"?
, '\;‘.H.
: additions, and each complex multiplication addition requires 4 WO
N
i time units in a uniprocessor. Mﬂ
. R
: 4.5.3.1 Technology Considerations - Design A }}}_’-‘L :
4 o
3 The number of processors needed for the VLSI computing ;:_'.‘j;:‘;ﬁ
structure and the interconnections among them has been deter- -':_‘;-é‘
iy
mined. Also needed is the time unit and the number of proces- ::Nf\
,:'-‘.’u":ﬁ
sors that can be incorporated into a chip taking into ‘:::
@
7 TN
d L%y ﬁ‘\.:‘
N
- 127 - by ::.";.
0::"“""
FIE O,
v’ «,,x‘, i’ &'q l.i ('l ‘30‘"!,"!‘ . L¥e ¥ ” A " o .0 '." ‘.‘g .. .‘I .~ .!“' f" '“‘"Q"'.,"\:”'l ,"-.":..N}‘-*‘v ":*‘\v" .'.‘:'.‘:::*:(:';‘:J':" ‘:'-"-;
ff I N):‘; ':;lf 9,.::.,! y n .". »W}},ﬂ, .':I" s J f,' N .'f ’ f;:.\':_:.:f_: :-:_.b.,:'_. ‘< ’._:\‘

C
o

W
bty :hh'r et] W) s"‘-. LA AR,
2" "’h N .'z 5 :‘t :‘:‘5;‘& ’s':.ls ::::E:"l'!‘r’"d ‘o’- "t"’:,":'l..‘:"‘g"o" “.'I "f *\r ’ Mgty ﬁ"

R e
/)y l. % -F
l)‘ b

consideration the technological constraints.

The time taken by the processor in performing the operation
multiply-add or multiply-subtract determines the time unit.
Assumed is the time taken by the processor to perform an

addition which 1is the same as the time taken to perform a

subtraction. Thus, the time unit 1is the time taken by the ﬁ‘“
processor to 1l1oad the inputs, perform multiply-add (and JfJ%Q
rounding), store the outputs and adjust for the clock skew. As ﬁ“@@”é
previously determined the array does not posses severe problems . kl;”

W LA
due to clock skews, thus this clock skew will be a small frac- 2 f?@‘
l v

-."c.

tion of the multiply-add or mulitiply-subtract time and 1is not
an 1issue. A complex word has been represented as 16-bits
integer for real and 16-bits integer for imaginary. Thus all
multiplications and additions performed involve 16-bit
operands. The present technology aliows this operands shift,
multiply-add and makes output available in 75 to 100ns (for

example, TRW VLSI chip TDC1043 performs a 16-bit multiply-add *v
t

and outputs in 100ns). For this design, the time unit chosen
was 100ns which is feasible with present technology. The time VE{%”&
unit fixes the time taken by the matrix-vector product in the N
VLSI structure as 107 *x 100ns = 10.7 Ms.

Remember that the 26-chip. DSP system needed 71.4 /Qs to
perform this matrix-vector product whereas the VLSI structure

designed consumes only 10.7 M s. This is a considerable saving

and lessens the burden on the hardware performing the remaining

operations of the c-LMS algorithm. The complexity of the Sys- '”3§¢
}_!*‘ * -
. . . SN
tolic array can be determined when the number of chips needed °
BNASaN
WA
.":'?-:’-'1.“
- 128 - _;'-('-::‘ e
RAGRN
e PP SN LR x - . -""‘}-“N‘.‘
e \ﬁi‘t TR ‘l.“ ' \;O' N \. '\I"\F\ \ o N ..,{ NI SRR ._,.-:.‘_-. ~ \‘,__ “"1\\-('\ POANA
\.k ‘|"‘ ‘7. ." S ‘\\\\ e \‘*.\u \)“\.", \"‘F \‘.l\
M 'h, o",\ o MG -.p a'\"‘.-.s-,\-,._', _a‘\.,_, '-\xs.\}w\\. '
° i‘..'"“ .\“' 'Q‘ 'l"’ . .;“b"‘ 0 h‘lﬂ. l“' "In nh '\ 'Il‘“- n\ \r.‘ C O Rt Y M e () .‘!n w .

by array #1 and #2 is known.

First, the number of 2-input gates required by array #1
are figured. A k-bit adder/subtracter requires 20k 2~-input gates
and a k-bit multiplier requires 20.k2 2-input gates [12]. Each
processor of array #1 is of type-t1 and requires one
: multiplier, one adder, and one subtracter; all of them perform
16-bit computations. Therefore the number of 2-input gates

required by a type-1 processor is

2
=20 . 16 + 20 *x 16 + 20 * 16 = 5760.

As there are 36 type-1 processors in array #1 the gate count is
= 36 x 5760 = 207360.
The sample rate is defined as the rate at which the
multiplier-adder/subtracter structure is capable of accepting
data. The time unit of 100 ns implies that the processor
accepts the input data every 100ns, thus, the sample rate of
the processor is 10 MHz (1/100ns). The gate rate is defined as
the product of the number of 2-input gates required by the
array and the sample rate. The gate rate provides the measure
of the amount of computation that is performed on a given
chip. Figure 4.9 [22] provides the gate rate achieved by
various materials. Notice that an upperlimit exists on the
number of transitions of gates/sec that can occur in a chip -
1012 transitions/sec/chip. The gate rate achieved by array #1
is

6 12
= 207360 x 10 x 10 = 2.07 x 10 transitions/sec

The maximum number of transitions/sec that can occur on a

- 129 -

RBREEAR ntu.uzu.ml¢¢"

. ¢
L \(‘\ “’"“. t‘ LY ‘t’ l‘.l. lﬁb..l O l..‘l.g
BRI

bl
U .l
i.“ 50.’,.." W) . .]) .
) bt
e r“) '.' "’ L . 1’».‘\' > ’1:‘ A l' ‘;" 'ul.‘a"'c’ DAO Ot

;hﬂm.

“J‘ '*\. - LSy N}\.‘x' ‘ '\Q
< ‘\I N, Y uf
iﬁ@t-ﬁ\ \“ﬂf""*

“‘;“‘. i l'g
"-. "
b...:'i “’

!';

-L.

"‘"-.""\ S

A‘an .9

PRI UWISW AN ANR N GNRAU R R RN RN AN AN TG R AR A R O IO AT AT

o &

R ;

Figure 4.9 Example gate rates [22]

. "
4 ol
| GHz : & | :

GaAs '749\ : "o"""

100 MHz L A
HIGH DENSITY BIPOLAR [Ngo e

GATE SPEED
Q\
o
-
2

10 MHz ’7% WAV

100 1K 10K 100K G
GATES/CHIP o

‘ LN

N SN

Y oSN

A 3 .

‘ ~ d
1) v

g ROION

g]

) R

- 130 -

" A - AL
Y e -.‘\,.ﬁ.".-.(-.r-rf.
P RN, WO ln

,_¢,~.~ , (a PN \f\f.-"-’\(‘

o ‘-J‘\ '
A Y

;ﬂ,}:“t‘,"q o ” ’:’.:t’ ':y W \,‘ 0 !. ') , ..'0
kI v’ w p ',: *‘t '.

la‘,ﬁ’ N i ,)
"

Nt W
TN ”'i'a t’ "q " i:::" :“‘5.‘;:’:':"‘" ! ’Hh".t o l'*:: '::"

2 . TR
chip is 10'~, therefore array #1 needs LN

C12 12 ~»:~§
=2.07 %10 /10 = 2.07 = 3 chips. ;

In short 12 processors of type-1 have been placed in one chip.
By performing similar calculations, array #2 has a gate

12 12 \h.“
rate of 1.96 * 10 . The technology constraint of 10 \

transitions/sec/chip results in 'yﬂwm
..Q' ..i .|‘6

12 12

= 1.96 * 10 / 10 1.96 = 2 chips.

Three chips for array #2 are used, to reduce the number of pins
per chip. This 1implies that 12 processors of type-2 are
included in one chip. A total of 6 chips, 3 chips each by
Systolic array #1 and Systolic array #2 were used to implement
the Mat function. The primary disadvantage of Systolic arrays
is the need for large number of input-output pins [8]. The
number of input-output pins needed by each chip is 608 pins.
This number implies a large chip, if this is not feasible, for

implementation then more of chips are needed.

4.5.4 Systolic array -Design B

Design-A calls for two one dimensional Systolic arrays, and
in design B a two dimensional array is considered. Design-B
requires less number of pins per chip which was the desired
result. P matrix elements do not change during the iteration of
the c-LMS algorithm and this advantage can be used. Instead of
accessing the elements of the P matrix from the memory in
Design-B, the P matrix-elements are stored in memory of each

processor performing the multiply-add/subtract operation as 1in

]

- 131 -

-

2oL

5

ﬁ

» pw L] L™
.) o ,.s“‘ SORN 'y ‘ 3 ;,‘,!h‘, ‘, ;ﬁ. Ay :‘“' "l’. .h‘,. . . l. .§'0 " :‘ "".&::: '.:i: *‘ * &*% i\-
: :) ’:-“‘ ‘:.: "‘0 e qu o "" “0‘ AN . BT
N LR LAY \ \ oty l . v &‘ h"\'
RN :'\‘o\::'.* I, A" 0. «". Wy 0’ e t " t "t X ':'t v 0’«.‘:5 v m‘».t'c ‘ NCRG NN SN, X

PRSI WL WAL W WA TG WU W7 W, WAL W S U WU WU U MU L WU WU NG T o R O W S R I o RS W T Y I

[J
{23],(24]. o :::?::E:
K) ;
The Systolic array uses two types of processors, type-1 i
(4
and type-2. Type-1 processor configuration is shown in Figure AR

@
4.10(a). This processor has three input latches for the &amﬂé
W) v'"u \

inputs V ,» U and W . Depending on the control given the s“a:”

in in in ﬂﬁ

processor shifts in these inputs performs W = W + V Sﬁu.

out in in .
(U) orw =W -V (U) and makes data available as G
in out in in in p; ﬂf
W . Note the input (U) is not a operand but an address it
out in o \g:t‘.
to the operand which resides in the processor. The processor gphjﬁ

- receives the address as U and decodes it inside the iﬁﬁm
in N .i:|‘t'|
processor to obtain the operand and uses this operand in the Q$?W{
b ’.". Q"'.«
< muitiply-add or multiply-subtract operation. The processor O
@

also sends out U and V unchanged and is made available on ;anﬁ

in in AT

the output line U and V . Thus, during a time unit, the ?%:ﬁﬁ
X ',
out out ﬁv&mf

processor shifts in the data, computes a multiply-add or a st

L
multiply-subtract and makes available the output data. Type-2 5Q}z”
ey

processor configuration is shown in Figure 4.10(b). This ﬁ%xf

Y W

processor is similar to type-1 processor except that it can ? *tﬁ

@
B perform only operation W = W + VvV (U) (Qﬁ%k
f out in in in bt '«:‘
: (multiply-add). Y 'ﬂ@
LA
- The Systolic array configuration using the two types of k B
- : e
ki processors is shown in Figure 4.11. It contains 36 type-1 ey
- et
processors as the first column and 36 type-2 processors as the Y k%?

! ke
second column. Each row of processors (consisting of one type-1 DS A

processor and one type-2 processor) is responsible for 36

&)

o

complex multiplication-addition. (basic operation) These are

PR
G

?l
.

. necessary for the multiplication of one row of P matrix with

20

%

25

- 132 -

-t f v
é' S
PSS

RO NN “n .0 p DLY)

IR A n-.hu.c &
e ey "' et ‘:: u‘.':,. “:'. " ." ‘t ":o"'.' POy .c ‘nl. ::: '..:‘
e ’.:r ! KN s‘»‘;’ “ ’o’ o‘ 'u' 0 0'.‘| b‘ o l'.

b !‘
(A, ,0 ") ',)
714 38,0103 u'i.o.i 0 Tegtialy ‘.l Gttt ’.l ittt

\%‘ \ '\v}\' ‘-(") J‘
. \."\." \"\"\
s ‘fs“'\. '."\"\'_C

o ‘."\
:'.:.- .‘:"‘n\

e

'«
o

‘1" 2
;‘{

2

T PO AR U e W P U W T U R G TR Ny VRN LIS N T X OO R TR AN NN AR

-,

o ‘(' “
:a. -‘.:;

Figure 4.10(a) Type of processor used in Systolic array #1 (Design B)

Via Un :Eg

Type 1
U

,r,
J1

v}:}v i.s
ot Vo

AN n"‘t’
.

ey Wo

Figurs 4.10(b) Typs of processor used in Systolic array #2 (Design B)

Type I ¥a Uin

o —A L Ve

|

v°|ll UOI!

el

- -

- 133 -

S

- Y

‘.ﬁ"u‘ TV)y ! “i A "l ‘l ‘\. ..‘ .'.’. A f N')’ o, W, ' ~mr 0 ‘f "-F . -

, HH g ON‘ t" c"c’c o 0 |’0 o.o 'l 'l.
"l:;:_' s.‘:; : :’ 9& 't.» ':’.:: . ."i‘ ':| |.|.0 1 .a' ‘..h.. j:: .‘ ".:::" O .. hfi 0 .:'Q‘E'\ ‘ﬁ. ﬁ" '\' .‘

by SO Rl "' ., R, v."-." W ."t."e. RO AR Rl 'u"u"«‘"f'.-. .02"- R

R LR LS TR N W o] Ly g, ,‘~n‘»,"‘, 2 "

Figurs 4.11 Systolic uray implementstion of the ‘Mat’ function
of the c-LMS algorithm for Design B

D’. address "
Dl address Dl addra:

--i \l:_--—J: \L_;/ offmp:n
#1 #IME ' tow of P

Real part of

—T 36m row of P

|
i
1
t
|
|
|
i
i
1
|
!
|
!
1
I
!
|
|
I
|
{
t
1
|
|
!

S S, X

ES

7

L

bt ;"‘-'.""" N :‘:‘A"‘o u‘ o l‘. ﬁ..'.' lW‘ e ‘... \"{E Sy, “.VQ.*» Dty ,

.‘-' .° Y \’ ‘u‘ ‘o‘ '&6 ' 0 . § 0 Q |ﬂ
‘ "’ \ " '.‘ ‘ ..‘ ' N ""l'. “ | t‘. ‘... .'l & J ’::t..b\ 0‘.""- ":’

o't "' o ‘a"'\ a‘ ‘.’ .l. ‘A' \‘ u’ ;‘ Q) "‘ .'. JOL S R e :'.‘0

l’

- e o sat o ¥h ath ot OB O TR T YD ¥,
R R R R R TR AR UK A X AN AR R AN RN K. X ') gt WX UREXUNW TV re) '.Q..'Q...“;

AN

oy
:':“::;Mo %

Wl

the D vector. The operation of the first row of processors in 13&?@&
performing a complex multiplication-addition is now explained. ‘ ?ﬁ?ﬁ
The real components of the first row of the matrix P are stored f”h';w
in the type-2 processor of the first row of the Systolic array.
The imaginary components of the first row of the P matrix are

stored 1in the type-1 processor of first row of the Systolic

" 9, '.I "I'."V'

array. Similarly, the other rows of the P matrix are stored 1in u“ﬁkﬁ&
ol

corresponding rows of the Systolic array. _&ﬁgﬁg
) "‘*‘l.

During the first time unit, data is provided to the type-2 . "“

. . , TR

processor only and is delayed by a time unit to the type-1 H"mg

"
processor. This makes the computation of the (Figure 4.12)

complex multiplication-addition possible. To illustrate,
consider how a complex multiplication-addition is performed by
two processors. Let the complex quantities to be multiplied be
o< f—J;O(/ and B+ J—ﬂ’, and their product added to) rd—f ’
During the first time unit, only processor type-2 is operating
as type-1 processor has its inputs lagged by one time unit.
During the first time unit the type-2 processor shifts in <X,
the address of the operand /3 , and K'. The type-2 processor
then performs K'TC*/B and sends the addition to type-1i
processor; the type-2 processor also <ands =%, and the address
to processor in the second row.

During the second time unit, both processors of first row
operate. The type-~-2 processor shifts in 0(: the address of/3
and 5'/; computes 5’/f°*’/3 and makes y'r“76 available to
type-1 processor. During the same time unit, type-1 processor

/
1) shifts in %, the address of 3 and ¥ ro{83 (from processor

- 135 -

N Y N S M R
S o
U N e R A Yy) Ux) l'. 0) 2%
NI . l‘g:ln_ e l'.ﬁﬂ‘)’l.‘.ﬁﬂ'ﬁ"..\ ~‘| " ‘. e ", ‘.0 ..' “. ..‘h‘. S)
fe] .'x*“_fx”»'\“.,’".‘O'v.l‘12'\’!’J‘:!C.l!‘..cfl‘n'.":‘-‘\h"l!“'.\"'!'.:"I AN

ATy ATy ANy
BRI et

Figure 4.12 Complex multiplication-addition hLises

o addresst P')
& addrest g°) 4'.«:« 3
‘ stres B) Ry

" c‘-}é};xi .
Type I JL J’ l Type I . “";:‘. ‘:i

«— B8 ! e f";‘n‘

T
+ .

l l l l ::‘

)
- 136 - ".:.,.l.

‘l',.\’\"\\'\'\-"\‘\ ‘---
S

'\E\h X ‘ ‘“\"' "\._\3:{:&&
"s:"o"' ". o o 't:' At n

.' l‘,‘t' :
": Oy

. ‘ \.
) :.::‘ H":' ‘:ki\'::.%ﬂ ﬁ

AR 'u"n'n' Sty

ERANECN ERNSK] o,

AT N AR A -"l 'c."s. o"u' ‘.:* e k A
RN : ;'!‘.t'pb".!’ \¢ |l|t. \';l,. b‘

A A ,(‘A + |! n" ,‘ .‘6) l'a [} 'i‘ ‘ "‘.‘ Q‘l '. .‘ 0' \

') '1', 5' " ‘! 3. I.‘ ". .’ .’l‘.ll,l.

g SR vARR" A0o §Y, 3.8 b fa8 2% 2 rodarabaate”atis c'h - 2R av.g0 0.4 gt gt
I A R O U K R AN LY IR LR UL IPELS CO7Uy L, < [R Y RN RA U 4 (] A o . ‘Q"' UA]

type-2), 2) computes b"l—d‘lg""(?/(this processor performs) '§"ﬁ
multiply-add and multiply-subtract alternatively), and 3) E;;é;
stores in memory. Note that the resulting quantity is the " ’:
real component of the complex multiplication-addition. Eggﬁﬁ:

Yet to be configured is the imaginary component. During Sfxfﬁa
the third time unit, the type-2 processor begins the next : *-:ﬂ
complex multiplication addition but the type-1 processor still 6:(??2
operates on the previous complex multiplication-addition; the E'*:EE
imaginary component has yet to beobtained. During this time unit "‘a%ﬁ
the type-1 processor shifts in <A, the address of/3'; and ’?Eﬁkﬁ
from type-2 processor; computes Jflq d\'ﬁ “Xﬁl ; and stores :'.C’«. -..__:
this in memory. The imaginary component is now configured. *‘“*

Thirty-six operands are stored in each processor. The 36 7i§§Qf

,
X
[
5%
-";f.:

o
PICILE
s
.;"I

{":
S

operands in each processor have 36 different addresses. These .~

v A
W&
‘g

same set of addresses are used by every other processor, which
constitute the Systolic array, to store their respective 36 “¢\1§
operands. With this arrangement the address can be pipelined
through the Systolic array. It can be seen that when the D
vector elements and the address of the P matrix elements are .
pipelined through the Systolic array, the complex mul- f&ﬁ?
tiplication addition of other rows are possible.

The number of time units needed by the matrix-vector
product operating in the VLSI computing structure can now be
determined. The first complex multiplication-addition takes 3
time units but subsequent complex multiplication addition
requires only 2 time units. Then required are 2(36) + 1 time

units for the first row of processors of the Systolic array to

- 137 -

-) A A A A A A A A
B R R Ry
. o3 Ay VT3 Wy A, (IO K] NN * h)) et)) K

R AR L O XU RO |‘l‘y\“l" 0 ‘) N) '\::S o Tt v)
A A A A AT D R

-
it
S R TR R e Ol

R N N R N N N T RN Y T T N N T R U R R N W VL RO E VR W WO W v e S WU W P R = Pav .0 ¢ T WL

.'l ln'l'
. . . L . AR
‘ complete the 36 compiex multiplication-addition. The remaining ;w&‘ﬁ
; A
35 rows require another 35 time units to finish their LA

: I Pne
K operations. In total, the number of time units for the matrix- *4'.~
vector operation is sy e
¢ “ﬁ

_ . . S AN
= 2(36) + 1 + 35 = 108 time units. 'ﬁﬁk 4

. 0

The speedup achieved by using this Systolic array instead of

_ _ ‘ . TR
b operating the matrix-vector product on a uniprocessor is ﬁ_A

v .f..
o 2 !*

iy

= 4 x 36 108 = 48. e
/ oty
This result occurs because the matrix-vector product reguires r W:’
2 n ‘.‘O‘q
36 complex multiplication additions and each complex gkﬁﬁk
. L . | | e
multiplication addition requires 4 time units. Qﬂﬁ$$
-
. . P
% 4.5.4.1 Technology Considerations - Design B { ab&
\": % :
;? The number of processors heeded for the VLSI computing w“Wh
i} .
, structure has been determined for the matrix-vector product. < .,
0 N
K The time unit and the number of processors need to be QEﬁ@:
:
" configured that can be incorporated into a chip realizing the tﬁ:’
B YA
technological constraints. A,.'
, ¥
At .
The time taken by the processor in performing multiply-add f'»ﬁk
X or multiply-subtract operation, determines the time unit. thrﬁ
» \
Assumed 1is that the time taken by the processor to perform an N ’W
. ' ‘
addition is the same as the time taken to perform a subtrac- %Q@Q-
\J
. cL . .) RO
tion. Thus the time unit 1s the time 1) needed to shift in the ;T7ﬁ3
[A
; inputs, 2) decode the address supplied to obtain the one of the .Vb.
) _\:‘. W)
3 operands, 3) perform multiply-add and store the outputs. A ﬁ}ﬁk
'!t _\-"“.;- \]
Q complex word has been represented as 16-bit integer for real fﬁgﬁ'
' °
' ", N)
PR
- 138 - o ""
EATN
LN

i
. RRRON u.\w"‘ "'!" Rt e f %Ny %\"U ST,
() |‘=’

) l

1y ’ t
il
SRR e, t‘.a o '!.p 3 u'uf" A

T TP T RO T I PO T R AR TR WU SO WX TR PO O ST WU WA W W W W vaia® 02 ale? 002", tat e bt b

and 16-bit integer for imaginary. Thus, all muitiplications and
additions performed involve 16-bit operands. The present tech-
nology allows the operations to be performed by the processor
in 200ns. This time unit of 200ns fixes the time taken by the
matrix-vector product in the VLSI computing structure as

= 108 % 200ns = 21.4/s.

The number of chips needed by the Systolic array designed
can be determined for an idea of the number of processors that
can be squeezed into a single chip. A k-bit storage requires 8k
2-input gates. Each row of processors of the Systolic array
requires 2 multipliers, 2 adders, a subtracter, and storage for
72 operands (36 real and 36 imaginary components of a row of P
matrix). So each row required

2
= 2.20.16 + 3. 20.16 + 72 .8.16 = 20416 gates

As there are 36 rows of processors in the Systolic array,

% %'
N

required were

Y 4t

A3

.

= 36 x 20416 = 734976 gates.

Not included are the gates required by the decoder and other .

R

control necessary. So the above estimate is doubled, which N
Ny
gives the number of 2-input gates needed by the Systolic array :
N
= 2 % 734976 = 1469952 gates. o~
1:.:

The sample rate, the rate at which the multiplier-

adder/subtracter is capable of accepting data is 5Mhz(1/200ns).

":'- D

The gate rate then achieved by the Systolic array design is

-~
’l
o

»gﬁgxp\
"I-:V)'I'l
L

@

[

A
b

by

6 12
= 1469952 x 5§ x 10 = 7.3 x 10 transitions/sec.

Pd
[
L

2l

Py
£
7
({'

A
7

A A

2%,
%

=

Py

*

ﬂ\-\ J
: ~

P P PG CY T T T L g T L P S e e R I T S S S AL T

.";," Wt Pl ‘,.:}x"u’:‘{’n’\f&} e e A T s

4 OO, |...u. N ,(,,’,,,-_‘ X . A - - o R OO CA -
Qi R A LMt : e L

NSO AN KA o a e

R T R T T T N MW "1 R'aTe "G AYekat) rew + 't aa AVn 850 490 $¥2. 0 0.t ‘§.6 Pab Bat T gat g

Systolic array

The resulting number of chips required by the

was

12 12
= 7.3 x 10 / 10 = 8 chips

As there are 36 rows of the Systolic array, to distribute the

computational 1load evenly among the chips, 9 chips for

implementation were used. Implied is that 4 rows (4 processors

of Systolic array are

of type-1 and 4 processors of type-2)

implemented on a single chip.

A1l data entering and leaving the chip require 16 pins each

and the address of the operands residing inside the processors

require 6 pins (address requires 6-bits to fetch one from 36

‘l

e
X

,' operands stored 1in each processor). The design contains 216

L g
z

§ pins per chip (the DSP chip LM32900 has 172 pins). The chip o
appears feasible for implementation with present technology. it
The VLSI computing structure has now been designed for the @

et

Tl

only compute-bound operation of the ¢c-LMS algorithm, Mat =P D.

ést

S
5

?‘ Known 1is the time taken by this operation using the Systolic

2
2%

array, the number of chips needed by the array and the number

25
-

¥

<
-~
&,

of data pins needed by each chip. Integration of this Systolic

4

¢ array in an array processing system is the next step.

4.5.5 Interface to Array Processor Systems

w A e i -
R

-

The Systolic array is interfaced [12]), [11] to a host as 3&5&%
f]

shown 1in Figure 4.13. The functions of each block is discussed L4
. .I ('
briefly QSq;i

1) Host: The host provides commands and data to the Systolic fﬁ%ﬁk
"-

Do WA

> o
-

-
)

v ‘ r' Tl R 1 Y MY AV 8) . »

0’0 Yy
::' A?'“ "‘"’:'zm'i"h 80 o'i. '” .. ‘;.b 0'5 W n ﬁ‘ o '{.'\‘ ' ﬂc‘ .h'f&'f‘ AJ'\,‘_:*\ ﬁ: A\-'.
K0! Q‘Q, M t..‘ N D.v O ||:‘ u:‘.Q‘i.\:t.g‘.“.l.'. .." |:| ;'l‘._ '.'o‘.:o“‘ 1'. A . ‘

RARCRERAN) i o’m‘l A

R R R R I N N IR NN RN U TR URUN U UY U U UV LY WUV DO TR RN RAARN VLA

Figurs 4.3 Interfacs system for custom VLS] chips (12]

Host
processor

< Host bus>

Interface system

08 “l
'ﬂ l|':"."
S0

} 1/

! 1
! |
! 1
! {
! I
! !
! 1
!]
! 1
!)
!)
| < High speed busJ\ |
! 1
! 1
i I
! |
| 1
! 1
! i
! 1
! I
!]
! |

Systolic Systolic
processor processor
handler handler
S R £ :
Systolic
ureys

OO

- 141 -

"""" e
RERISORORLTD OO0 On "fq‘ - '\f\ _-__\.___.\f B
R e i
R “’,'7\‘ ‘0 e ‘.'.‘.l:‘v '5‘ ¢ MR AN

,.
ib‘.’o "'\ '::':‘I " ‘ \ Q" .ul g o'l iu Pt 7’ ’ s &0

‘J'A-*, t',t
G

S vy hy wa it TP P P AT T IR IR, U R R UG e, *a 2 wTh Tt aty o¥piat ety "'."""‘“"

processor. The host does all the input-output bound
operations of the c-LMS algorithm and sends data (D vector)
to the Systolic processor to perform the matrix-vector
product. It receives the result provided by the Systolic
processor (Mat vector). The host then proceeds to complete
the remaining operations of the c-LMS algorithm. Discussed
later will be how a lower bound on the computational
capacity of the host can be determined.

2) Interface processor: The interface processor transfers data

and commands to the Systolic array from the host and

transfers result from the Systolic processor to the host.

3) Systolic processor handler: This processor serves as an
interface between the special high-bandwidth bus and a
Systolic array. It generates address for the buffer memory
accesses and run-time control signals for the Systolic
array.

4) Buffer Memory: These memory units are used as buffers
between the low-bandwidth host bus and the special high
bandwidth buses in the interface system. By holding data
that are to be used repeatedly by the Systolic arrays, the
arrays can proceed with high speed without consuming much
host-bus bandwidth, We can determine the storage |
requirement for our system.

§) High-bandwidth bus: The input/output of Systolic arrays is

usually much higher than host bus because Systolic array §% \
[‘| \J
consists of many processors requiring data at the same t;vmxki
o "."f ¥
instant at a high rate. ‘*éaif‘
W {3
* ¥ a.‘
f-: i\). d.'c
Ay
- 142 - & ; *
| Sy
NS W
S ’ . .) . - e . ERA N
oA P S vy e By Ta e Ty T LS VR Tt e A e T i e AT S S NN TN e S e e e e e
RN Rl "},V»iﬁwﬁ‘;;if’-}’*{*.’-'«5?;-;~'$~’.£'?:«-5:5’- R S S A A
U AR Bl e TR : o N

) ; FA AT AT EAC NN
b iy il) TSR T, . AT ER e L OR RS e A N N A TSN
RIOROACE HASXRNCAS flgtaty ety b gty ol .! R AL A o P o "").mf S e,

4. 4¥. O ol A

N

' X
$:.l :' |';::‘:‘
’ nJ‘ I:" ’

The parameters that are required for the Systolic array
system are the host computational capacity, the storage (buff-
er) requirement, and the bandwidth of the Systolic array bus.

The host functions include sending commands to the Systolic
array and performing the input-output bound operations for the
c-LMS algorithm. The input-output bound operations to be per-
formed by the host are

T
X

Y=

Y
*
X

moo W<
wun
IEW®

ct

o

and rcquire in total 648 real operations (290 real mul-

a

tiplications and 394 real adds). The time allocated to these

648 operations determine a lower bound on the computational

capacity of the host.

4.5.5.1 Design A Systolic array system parameters

The time taken to perform the matrix-vector product in the

Systolic array was found to be 10.7 M s. The iteration time

for the c-LMS algorithm was found to be 86 K s. Thus the host

has 75.3 /“ s to perform the remaining 648 real operations. fFor

the host this results in computational capacity of 8.6 MOPS.

The bandwidth of the Systolic bus is determined as follows.

In design A, two separate interacting 1linear Systolic arrays

are used. First the bandwidth required by array #1 needs to be

determined. At the peak instant (when all the processors of

array #1 are operating) this array inputs 73 words and outputs

A AN T BT N S Iy L R A f w;‘

Ty [}
‘av' ““l!’.l
DRSO

h hatat gt k
n':‘a 'o‘.'n .'o 3
|" (XK

| ' ‘) ') " "!

DOOO0MRN
""‘..3‘ i‘i
n\' l‘
._ ﬂ

o
ﬂ|
AN h .:hﬁk‘f|&

|') "5
"”"‘I‘ ’o!‘i. l“_ '. ¥ ¢ 48 ., i “. [) g"'

O P TR, m:w%

'

T t

ﬂﬁr.Ju
@

36 words (each word is 16 bits or 2 bytes wide). The need for
73 words comes from: 1) P matrix imaginary components require
36 words (one by each processor), 2) D vector requires 1 word,
and 3) the input from the other array (array #2) requires 36
words. Thirty-six words come from each processor to the array
#2. Thus, every 100 ns (time unit as discussed earlier), array
#1 uses the bus for 109 words thereby requiring 109 x 2/100ns =
2180 Mbytes/sec. Array #2 operates in a similar way so it also
requires 2180 Mbytes/sec of bus bandwidth. As both array #1 and
array #2 operate simultaneously the bus bandwidth required is **WP$“
4360 Mbytes/sec. The resulting bandwidth 1is enormous because

many parallel buses are used. The buffer capacity can now be

' [

determined. The buffer is used to store P matrix, D vector and ﬁ"}ﬁgﬁ
())

it

the result Mat requiring 5328 bytes. ;&&ghw
0. it

l(l"llé

. .

4.5.5.2 Systolic design B system parameters -f?:ﬁgﬁ

S R

- ‘l

The Systolic array in design B requires 21.6 /QS to perform l'wgﬂﬁ

¥, “.‘Q‘

the matrix-vector product. This leaves 64.4 As of the X k%hﬁ

iteration time for the host to perform the remaining 648 ﬂ%vlg‘
.0

'

operations. The computational capacity of host is fixed at \ "".;:'

10.06 MOPS.
The bandwidth required for the Systolic bus will be 1less

than that required by design A because the P matrix resides

inside the Systolic processors. The Systolic array inputs 38.75 X h?‘*~
word, 36 words required as input of intermediate results, 2 5?;:54
words for the D vector, and 6 bits each for the 2 address \&_\.; ‘
buses. The array also outputs 36 words. Thus the Systolic array Eﬁg&‘
T

4 W

- 144 - .:"a‘:".:.:-s.':::'?';z

" o.o::

h. ,».s,t.b, O .o, OO e o .¢-v~-'w' W, o W
ARVROB0N A ,a. ¥y .“. iw \ - \. ""\.") -.v-\,,
x., u. , ; | l. -\ ALY oy
i i, ‘Q““' Ay ."' “...’ 5_ \'(\'!.~ x\. 1"(»3'
QOB W ’ﬂ. AL ".',.a'.,o e 0:. ..i: \, N . . .c e
0 LS * ‘ .

NI NI | LS
BN 5? |t,'0, AN .i ‘Qi‘.‘ﬁ‘.\

RS TO Mt (R RO TG R N AT R O UG A TR R VUG TR RN SRR

uses 74.75 words every 200 ns (time unit). This means that the
array requires 74.75 x 2/200 ns = 373.75 Mbytes/sec bandwidth
bus. The buffer requirement is only for D and Mat vectors which

requires 288 bytes of memory.

4.5.6 Summary for VLSI design

First the algorithm was examined and the operations that
could be implemented on a VLSI computing structure were iden-
tified. The only compute-bound operation present was the
matrix-vector product (Mat = P D) and it was considered for
implementation. Two VLSI architectures, Systolic and Wavefront,
were considered for the VLSI computing structure. Due to speed
variations and clock skew factors the Systolic architecture is
better suited to this problem.

Two Systolic array designs for the 'Mat’ operation were
examined. A Table comparing the parameters of the two designs
is shown in Table 4.7. Each desigh had some advantages and
disadvantages and the choice depended on the resources
available.

The advantages of design A over design B were:

1) Takes less time to perform the ’'Mat’ operation. Design A
took 10.7 X s and Design B took 21.6 Ms, Design A reduced
the burden on the Host performing the remaining operations
(8.6 MOPS)

2) Required a simple chip to be fabricated. The chip performed
simple functions l1ike multiply-add and multiply-subtract.

The chip in design B had to perform additional functions

- 145 -

l)l . I"I.\ . l ..
G0N ,‘,n. ,s‘,c
Jg b‘.’t“ O‘g l‘.)‘ l'. . ‘ ‘...:‘ ‘.0 ’..".

EOaan e AR ‘ﬁ

"..“. *l’ ':5“ 3t ~
5 h.)) "O) "b.. l‘. i.. ‘.‘ Q0 '." o .. ‘ ’ '. .'. ..l.\‘l..ﬂ.“. .l .\. ..‘. .‘. .. "l .. l‘.‘l..:.'.}!.‘ .|' 0.

by
e
()

Sl

s
o"
é@“

e, J"
"'-. -.(;n

‘H

-» ‘J\

M~ ,\1
1 .

%@%'@N

’l

) 7
AP l‘| l:p’
“Q

kk‘t‘ul'c W,

"' ::‘ 0
] Wk (0 ’Q|"'~(:(
RS
' - . -
; 's.".:;s::\:
cgg‘o?:::."':ﬁ
AN
::::u‘:“o"'ﬁ
g

)
.l' ." it
Wy

‘2
.w .0"‘

R T A RO T O o TP T WV WU RIS R XK I RO K IR I O O
N

Table 4.7 Systolic array system design summary for c¢-LMS algorithm

load

Systolic bus
bandwidth

4360 Mbytes/sec 373.75 Mbytes/sec

"3'5:‘
A
h"

S

puffer memory 5328 byties 288 bytes

| I I
| Design A | Design B !
I | |
| T |
Number of | 72 | 72 |
processors | | |
| | |
N Computational | 20 MoPS ! 10 MOPS |
' capacity/chip | | |
I | I
number of chips | 6 | 9
| | I
number of data | 608 | 216 |
pins/chip | | |
I | |
Time Taken for | 10.7 ps | 21.6 Mms |
Mat operation | | [
: | | |
Speedup factor | 48.5 | 48]
. | I |
! Host computational | 8.6 MOPS | 10.06 MOPS |
| I I
I I I
| | I
I I |
I I !
| | |
I I |
{ I |

) y ,.) 5
: ,’\‘,is‘,‘ ;g‘ ., i'a‘l'q ‘\ , ' "' " ‘..\.|‘. l‘l ..“ .:‘l. PSS . \q'r‘\ \ \ O ~'\} : { -'\ \ .{‘
Aot gttt it u un Wiy \ H\Q,'\ \ BAY
LR h:\iq‘ LIRS e ‘\ l‘, : : W . l .. t“ l‘l . .. ' ". ' l. .I“ l ' $ “ "- ' "‘ \ s (
v QU , O '1. "Og ot 1 Z‘ - ..
KONGRSR UAR NN AN W \’h "o _q. ",,]X m" ,l' "‘ O fl: I.' X :'l $: N G N o " e II

such as decoding of address to obtain the operands and

storing 72 bytes in each processor.

The advantages of design B over design A were:

1) Each chip required fewer pins for input/output of data than
that required by each pin of design A.

2) The Systolic bus bandwidth required was far less than that
required by design A, because P matrix is stored inside the
processors.

The Systolic design had interrelated system parameters. To
reduce the bandwidth of the Systolic bus, a slower PE was
needed. This means the time taken to compute Mat operation
increased which 1in turn, increased the computational capacity

of the host.

U"' J ..i:.‘.

4.6 Chapter summary
o \"‘\"
In this chapter various hardware architecture implemen- ﬂ&', n

tation were considered for the c-LMS algorithm. Evaluations of '

,) ‘i‘g’n e
hardware architecture were performed to determine the %

suitability of the c-LMS algorithm for general purpose microp-
rocessor, Digital signal processor and custom designed VLSI
processors.

The general purpose architecture was found not suitable for
the c-LMS algorithm. This was concluded because the general
purpose microprocessor architecture’s arithmetic unit was not
tailored to optimize the multiply-add operation found commonly

in signal processing algorithms. Too many chips were needed

- 147 -
e A a 0 ol A S A S LS A R R G S A i,
ROCORNOL " “n (0 \» W.h!.:m l‘s \, l, 'g, \ ‘* wm ™ ." \., $ 3 i _'(_:‘u_',‘;" \.“’-\.“'s N T _.,._'_.__ N _:
G R "'-‘*""A % s N A NN
: y A i l (X . () . Q o PR as Co X : o
k '“‘ N W 1“ %”.“) l“ ‘| "' h] ‘. “" Y '.l(:: ':: i '.J...l.a' ‘..l), ..' 2 ‘!":‘ .' N .\-“\v. ’). 'ﬁ A

I N S R at Wb cad Tad ¢aB Ca0 Ta B val cay gl ‘2R iaW tal 8,420 Oul a8 Vad dah Taf vaig wnl i d wel uy) Vel Ml cal?

B
“:'.'o
- o
(281) to implement the algorithm. 53$Q¢
Py W,
The digital signal processor architecture has its arith- bﬁrhﬁ
oy
o
metic unit tailored to perform the multiply~add operation. The 'V"V"
DSP chip chosen for analysis performed complex multiply-add at ?Jﬂ%ﬁ
.,
‘ Q.' .‘5
the rate of 5.7 MOPS. This resulted in a moderate complexity of 3:§&ﬁ
. v
23 for the DSP architecture implementing the c¢—-LMS algorithm. ittt
An architecture for the c-LMS algorithm 1in a 26 DSP chip ':»-:
e
environment was developed and it was found that an iteration §%§)
SO
took 83.9 As to provide 1194 iterations during the period of SN0
100ms. This ensured, on a average, one convergence per 100ms ? }V!
D !"
when the HF channel was stationary. x:ﬂ‘
ql'gli
Next two VLSI architectures, Systolic and Wavefront, were "ﬁ
considered. Due to the 1lack of speed variations and clock éﬁ “‘
skews, the Systolic architecture was better suited than the Qirﬁ\
QRO
Wavefront architecture for the only compute bound operation “h
'Mat’ (matrix-vector product) in the c¢-LMS algorithm. Two }ﬁi

Systolic array designs were developed for the matrix-vector
product. Simple functions were needed by the custom VLSI
processors designed for the regular Systolic arrays. This
resulted in a simple processor design. Another positive
attribute was low numbered chips, 6-9 were needed to compute
Mat operation. The main problems encountered in both designs
were the need for large number of pins/chip, and high Systolic
bus bandwidth.

These analysis led to the conclusion that the DSP architec-
ture is best suited for the c-LMS algorithm. With the advent of

more powerful DSP processors, the complexity of the DSP

- 148 -

R RROO0 g ()]
" : JRON R Ot '.o"p:\s,‘,b'*.), .\'h e l. y ‘ .l t ‘:"s' .‘ '.'l'. t‘ X "
. K R ‘
N o ‘. “' ’ .‘ ..:‘.
..'. I'. “5 WY, h"

......

ﬂfﬁp‘

b ' ." o .'::l'..o

o.i'o l' %, b‘ O'o Wl

0t 0
AR 4' ﬁ’ n'
%2
!v .0 ‘0"‘.’.‘."‘ ‘ ‘.;’.. ":‘. ..|'
m ‘. t'. W

-ﬁ"v.

ey .1'l.|

ﬁi‘é. <Y

o iy RUOOGOGN

R IIG W N WO G b & bt T el &0 0l 0 8l Tab fab S d 7at VAl et gt Nat Cab b Rt el el oY RN tat ato gt gV, gt "'

architecture will be further reduced.

.':-"‘-'.!
[J

aﬁ;wn‘
| : '!‘“:::

o \.
['h !la

- 149 - P A
fq%;&'

0 - J‘
oY '\' “" .r\'r :INJ‘

o, W
\ QR%QPNE'\ N R A ”a ‘%:qntha
s‘c 'v.l",‘»l \ e % ‘f(' NI , o Lt Q‘"

:) »
W0 ,A ,» v, .v, .9‘.; Sy 1 !'
"‘x‘f "i:\’ a‘ 1"‘\ “ ‘:'\ ' .‘
\ ‘ l ||
} :' !!' '

T S I T L PO TP T R SO T P TS O T R TR O PO PO T TN R T W S0 ¥ W YO WA W S N W o o W o ™ s M e W ::::3:3:
R
. . E

. .'.
5.0 HARDWARE ARCHITECTURES FOR UPDATE COVARIANCE ALGORITHM e
DGyt

The purpose of this chapter is to discuss the various '-233
‘LQHQf

l-ardware architecture implementations for the Update covariance ®
4

algorithm, to study the feasibility of these architectures, and .;;;EE;;E:E:!
, e

to recommend suitable architectures. 1In section 5.1 a brief TRYX '

introduction to the Update covariance algorithm 1is presented.

The algorithm that 1is to be implemented by the hardware is g&géz
discussec. Section 5.2 presents an initial loading analysis for g?§¢ﬁ
the Update covariance algorithm. This analysis provides a 5"=F‘
method for determining an initial estimate on the computational gﬁgﬁ;
loading required by different functions which constitute the a&g&g
algorithm. The 1loading analysis 1is performed for various mﬁf‘
?5 hardware architectures. The hardware architectures considered *gﬁgg
2 were the general purpose microprocessor, the digital signal :jﬁh&
3 processor and the VLSI architecture and are discussed in sec- : &;h
. tions summary discussing the feasibility of these architectures sﬁggﬁ
: and a recommended architecture is discussed in section 5.6. 5 'ﬁ%
A
O
. . ".'
5.1 Update covariance algorithm
Both the LMS and constrained LMS algorithms circumvent pyﬁ'
computational problems associated with the direct calculation .N‘
of a set of weights by using effective estimates. The simpler ,ﬂ@ﬂ&
calculations that result allow them to frequently update the "»ﬂ%
weights in order to compensate for the time-varying environ-
ment. Recursive processors such as the Update Covariance algo- EHEE:
rithm [(25], can also be used to avoid these computational ﬁké&;
difficulties. These algorithms recursively perform matrix ?Fﬁ::ﬁ
} oy
- 150 -

l.tl .‘|

Q"l’.i‘l'hl:||‘l‘i h'.\ ';.‘ ‘dn.l

.:'. "..l.‘lv 0 Qi...‘| ‘ o

A T Y TN T8 * dat gad $at et 10 SAY. 02 02Vate’ o t2 " 00", A
I T P T R T U W0 W W U NP L W N WU sl) J UV, Wi A W W .

+ ot Dot ."u..‘.

1

inversion so that direct matrix inversion is never required. ;ﬂ?f
Although they also avoid direct matrix inversion, recursive
processors represent a significant departure from the algo-
rithms previously discussed. g&}

The optimum weight solution given by Weiner-Hopf can be N
expressed as

W = R P

-opt -XX -
The Update Covariance algorithm estimates the sample covariance
matrix rather than rely on gradient methods that asymptotically
approach an optimal solution. For stationary environments these
recursive procedures compute the best possible selection of
weights (based on least-squares fit to the data received) at
each sampling instant, while in contrast the LMS method is only
asymptotically optimal.

The operation of this algorithm can be described as a
series of complex computations solely intended to calculate the
optimal weight solution. As the name implies, the Update
Covariance algorithm uses the sample covariance estimate, R, to
summarize the effect of de-emphasizing the past data. The new
sample covariance matrix estimate is given by

X T
R (k+1) = AR (k) + X (k+1) X (k+1) (5.1)
-XX -XX - -
The new estimate is equal to the new computed value
X*(k+1) XT(k+1) plus the past estimate scaled by a factor of

aﬁ.cﬁis a number between 0 and 1 that is used to determine the

significance of past data. The inverse estimate then becomes

- 151 -
~ n t"\ I U a; -\,‘* » \ LS ’.\;.'\' _‘-’_\',\"_'-'_‘-;“-".'. .
X { S G N AT, Sy n‘ﬂ"d‘l‘f- !"-_ '-."" N N A AT N T
'.s’- R .:, I S n» ‘-.-‘.;&ﬁ*qq,‘;gf-\.»ﬂ«. 17 TR SRRt ‘é\"::\.';-\.‘:\":'-':x{\‘;
! \-,sv g X *1 . V'G t.‘ x > . ,(\ -('\.('_. ,\ ",)-'*' <o N AN s
S i) PN P
‘ it 6‘ "z"’ fy ‘\a “s) 0’*&" ‘A 0 'u"ﬁ‘. QG 0 N P, '0 »’- D L Alad e

1000 Vol 1uQ Sed at tad vat al mad ‘v ¥ raver

892%0" " 072 9% 8% 0'g A% 0%

-1 x T -1
R (k+1) = 1/4 [R (k) + 1/X X (k+1) X (k+1)] (5.2)
-XX -XX - -

Note that calculating the inverse in this manner however, would

require matrix inversion, which is due to its complexity is a

procedure to be avoided. Therefore, it is useful to invoke the

following matrix identity

‘ -1 xT -1 -1 xT *T -1
[P +M Q@ M] = P-PM (MPM + Q] M P (5.3)

This identity is applied to equation 5.2 to obtain R (k+1)

-XX

in the form

- -1 X T -1

N R (k) X (k+1) X (k+1) R (k)

; -1 -1 -XX -XX .

' R (k+1) = 1/x [R (k) - -——==—~——mm] (5.4)
-XX - XX T -1 *

KA+ X (k+1) R (k) X (k+1)

kN
o

% The optimum weight solution can then be found by utilizing the

wWeiner-Hopf equation

A-1
W = R P
-opt -XX -

Multiplying both sides of equation 5.4 by the vector P vyijelds

the Update Covariance weight Update equation.

-1 x T
R (k) X (k+t1) X (k+1) W(k)

W(k+1) = 1/0 [W(K) = ==—==—m=mmmmmmom oo 1 (5.5)

-
A+ X (k#1) R (K) X (k+1)
) Cex -

\ : : . : S
; Thus the hardware implementing the Update Covariance algorithm RHAhE
N

has to follow these two steps:

1. Estimate the inverse sample covariance using equation 5.4 T

Vgl GO0 Vg ¥ W) 1
' "‘.':‘ " ”‘: " "‘a" .'" .“ ?‘ % W\W;
". . ‘ " ‘, &. b
; SR
o ‘1“'!". Y “ci""“‘ ".'.

[} l’ !.
P '. "

R TR N U UL OO U UN UV USIANR UL W QUM TR 8 G G e 0 87 2 .8 0. 2R AN =g " At ouE o Sav e v et Ravy

2, Calculate weight solution using equation 5.5

5.2 Loading Analysis

The 1oading analysis [14] was performed for the update

-
et
4.‘:‘:'.5;' < :

[
-7 7

Ar &k &
R
ﬂ'&‘;-

covariance algorithm. This 1includes determining the input

l"
.
>

requirements, execution time budgets, computational loading and

memory requirement for the update convariance algorithm.

5.2.1 Input requirements

The Update covariance algorithm implementation involves Wﬁﬁ?w
solving the equations to update the covariance matrix and then
form the optimum weights. The algorithm are decomposed into
manageable functions and are indicated in Figure 5.1. As seen
in Figure 5.1, the update covariance aigorithm exhibits paral-
lelism which can be exploited to reduce the computational
burden. Still during every iteration the covariance matrix, the
weights have to be updated. This gives the algorithm a input-
output latency and the time allocated to this latency needs to
be determined. The adaptation process of obtaining a new set of
’optimum weights’ and the covariance matrix was considered as
one convergence. The average number of iterations that the

algorithm needs for one convergence, determined by simulation

studies (1], 1is 26. Using the HF channel constraint, that the

RS
, AT
signals can be considered stationary for 100ms, imposes the ot .‘
. . . : . SNEN
condition that the set of optimum weights and covariance matrix gﬁ W
o
O
should be obtained during this period. This makes the ite-.ation k&i¢
\ 4
. . _ AAL Y
time for the Update covariance algorithm 3.8 ms. P
:-\."\ ot ::
A
Y \U‘ 3
'N (M
- 183 - _\.;:;’:.. ::
u
'\W\ J
; o N g T L g A L T P o e I e P Gt AN i T A I I R R N N AN A
BRI R A M e R s “Jkﬂt¢‘f”f' ?j‘*t*'”'f\¢"‘\i‘ o ‘*\$\¢\'?¢?$§“5§\ oo
O hy, , . A Y A AR A AL R -\
A AN l’:"ﬁ:":'." : RN N r oy \“‘--‘.-’"J“ R NP A A A ~
RN O oy

T T s R T T T R T T T O NN RN ‘Oo"l;"c' ';:;
'-_','hf +

]

Mty
@

A

Figure 5.1 Partitioning of Update covariance algorithm
for hardware realization

'. N '
N ."-‘.“c-:“v.
¢ v
B u-";\ l‘;(b
PN 3
i - - ‘)‘{ ' A
[[l e A ' ANGHN
| ! N Al
"\'\ oy, 5
I | P a8 0a8 ¢ .
Ingm -1 ! ey
! AT { .
] A X Denor R <X ."g .‘l"l‘» 2
! : ' ' Pt
s, t [)“(’)"?.l?:} ¢
' ! : “':VV‘
i' I ! N34 P Py
h ’ A3
: T e
t : SET #1! .\'ffs' NNy
L] | e e - - - - - ‘ _______ - °
g ofiti il i il il ke - ':»‘,i :!;‘ﬂ:f 4
¥ ! ! o1
i } VN | ;
i ! . ; :
g , B E AWarob |
3 ! !
i [
! '
g ! SET &2 |
» e o e = o o 2 im e e - = am = - - - e e o = - > ie - = o = - -
£ ll -
; A=R__& X k+D)
<
D - XD A + & T -
; esom B = X"k+) Ru(k)
A De T
} C = A (VDenom) D = X'k+)) W
! Mat = C B E=CD
! -
; R et R - Mag W(k+D) = 1 (wi) -]
i
‘
3
5
i
" RS
" N N
YRS
! - SRS
[RERIRTN
; RN
g AT, 2 -‘
358
. DR
; - 154 -
+ .' ‘ |‘
Ny QTITN v, I LR RS L T PO Lt R L L R R R N A O R Rt Sy Vi ST Nl AP S s i i Rty e TR JASRDAS
"s‘.:’g::‘b:.'l:"a:: - '0' /) .f:'_f::'".,;zﬁ.y . {_,: :; ._; .‘-f.,‘-; "-I(‘"j‘ \::: -_j_).:\,'; -,: ‘_: ‘-J:'\-:.:‘-F”‘:\:-\F"--"‘:‘-':"'_'-: - -..::-. ’\.._: ,,-:::"'(n:):é:,:,.‘ A
EAM X L . iyt .. A o S AN NN RN N AL O R O R N At S
DAY ‘ljl"' i) " WA d ; L) -"'\"! "'{\ Y A A NN A N N AN AT NN T NN ':‘.\fn"\
i\"‘ '.‘ “ “‘.'. "a) ". "] f W, Py byt &, "&Jq‘ L {& N,(-f,, J ‘p‘ AL R S AN ~ .\f'\.. .,-5"! 'pj\-"»"‘-"‘-."'-', - ..:‘_.'5,‘- AN
‘-":’.?"'“-'"‘-“,:: &?u"?‘:'#a .:'Q,:'Q’o‘lfs‘l’ \".!"Q:::fi, e..‘.ﬂ. : » :' ’ Ay ')l . 'F MAS AR NS, AN, A A » : iy v

R N X RN RO FUT RS R RZVRA AN OV WA LS UMW U PW UM (U W R W WO AN PR ERT A “"0‘;"'0

P

®
L . | G
The input requirement of the system implementing the update y

N

. . AN
covariance algorithm has now been determined with a sampling 3%&;«»

5
Ve s!

period of 1/3.8 ms. Although the algorithm requires more T e
PN a0
computations than the c-LMS algorithm, the parallelism ;ﬁ'jﬁ&
AN
exhibited by the update covariance algorithm and its gggﬁ%&
RS
: W WO

requirement of 26 iterations for a convergence, reduces the P
" .!"
complexity of the system. ﬁt »*
) l.,
R

5.2.2 Execution Time budgets

l"..‘l'!
Once the input requirements are determined, the functions fﬁ i
) o.l,o,"c (]
constituting the algorithm have to be calculated once every 3.8 '*m J
m
ms. The time budget to be allocated to each function can be .
determined by finding the number of real operations required by “#“\
'o. W
each function. The following summarizes the regquirement for é\qk
ey
each function: ;
OO
. . O '
-1 X Rt ahﬁ
1) A =R (k) X (k+1) 23'21!
-XX - el
2 ®
This function requires 36 complex multiplications and 36 x ;fw“,;
35 complex additions. To obtain X , 36 real subtractions ﬁ%ﬁﬁ%
2 $k._l\"
are required. Therefore, this function requires (36 x 6) }E-ﬁ%
®
+ (36 x 35 x 2) + 36 = 10332 real operations which is RedCes
n, ‘A) i.\
composed of 5184 real multiplies and 5148 real adds. i&g&%\
T SR
. AN
2) Denom = X (k+1) A + X
. s
This function requires 36 complex multiplications and 35 X
T .*’i ..l
complex additions to perform X (k+1) A. The final addition Eﬁ%ﬁgg
N N -
with Xrequires one real add as X is a real quantity.
TR
ERANG N
AYNION
")."\. \‘ 1
- 155 - b g
PN
N el

oL A T N P ke ‘y““" AR S s R AN
B R R L >f‘ R “"w R e
\) ’ : ﬁ ,z Wy AN LA '(.

N \ "“"““ ; i o s‘.’s" " ':'l k:l’ B‘:‘ﬁ ‘\'{"‘ % (4 Y‘ 0 s o': ! \' '

C AOALH l.l.io \ (X | h‘l BV, 080, S als , 2 X

z'vlg\i gty
RN ﬁ""“‘ .0.'!'.1‘:1‘ i

Therefore this function requires (36 x 6) + (35 x 2) + 1
287 real operations which is composed of 144 real
multiplies and 143 real adds.
3) C = A/Denom

First 1/Denom is obtained. It requires 2 real
multiplications, 2 real divisions (considered equivalent
to muitiplication), and 1 real addition; that gives a
total of 5 real operations. Later 1/Denom is multiplied
with A to obtain C and this operation requires 36 complex
multiplications. This means this operation requires (36 x
6) + 5 = 221 real operations which is composed of 148 real
multiplies and 73 real adds.

T -1

= X (k+1) R (k)
-XX

This function is a vector-matrix multiplication and
2
requires 36 compiex multiplications and 35 * 36 complex
2
additions. This results in (36 * 6) + 2 (36 x 35) = 10296

real operations which is composed of 5184 real multiplies
and 5112 real adds.

5) Mat = C x B
2
This function requires 36 complex multiplications which
2 .
gives (36 x 6) = 7776 real operations which is composed

of 5184 real multiplies and 5112 real adds.

-1
6) R = 1/ [R (k) - Mat]
-XX
-1 2
[R (k) - Mat] requires 36 complex subtractions and later
~XX
as each member of the matrix has to be multiplied with the

s“ "’k n."

@ ﬂ ' ﬂﬂ
REARR s “.-‘\n.. X '. 0
." 5' & n" h"w %’ s'm‘; 3‘..1 AN i'h'l’ " A'lw\'l !"lk‘

T RE e *&*:

“ V;\ 'f\\"'\\'\

"‘o"‘i.‘“ ‘-\M.‘ *' \'h -'0"

T L T KT R T A T R PR R U ORPUR W RO R R R O TO A RO RO SN S O %

real quantity &, this operation requires 2 x 362 real
multiplies. Thus this function requires (362 x 2) + (2 %
362) = 5184 real operations consisting of 2592 real
multiplies and 2592 real adds.

T
7) D=X W

This function is similar to function Y and requires 286
real operations.

8) E=C *xD
This function requires 36 complex multiplications and in

total requires (36 * 6) = 216 real operations consisting

of 144 real mulitiplies and 72 real adds.

9) W= 1/ [W- E]
The operation (W - E) requires 36 complex subtractions.
Later each member of the vector has to be mu]tip]iedAwith
the real quantity X ; this operation requires 2 * 36 real
multiplies. This function’s total is (36 x 2) + (2 * 36)
= 286 real operations consisting of 144 real multiplies
and 142 real adds.

These observitions are tabulated in Table 5.1. The Table also
2
indicates that the Update covariance algorithm requires 3.5 N
2
+ 4.5 N complex multiplications and 2N + 2N complex additions.

5§.2.3 Computational loading

The coumputational 1loading 1is obtained by dividing the

number of real operations required by the function by the time

- 157 -

..... sy
T L UL '\"k.-’
¥ n‘b LSO Hh") N -."\I'"w SN 'sv.-\.\,.s.
.:c e ':.k:.».m.a...'. .‘,..m'n .i.‘,'.u."ﬂ:u :‘un fo,.“.o‘.:,h '. t.,. ‘\' :‘ o Nl ‘-" J‘{:{: ._\“\.j " :;';5
N af'.';*‘v:‘,a?b.vv:.3:“o‘:‘o " " n.» ,'.o e ,o.159 e '.' e .n,.. . o~

oyttt ey '

SN RGO ‘ 0N, ~' l"l. 6’\ "l Wy 5. 0|I|'.Q " " “I .. "lt:"".'p'.‘ “:‘“'0. 2":?[' "."0'..!.#'.'0. y. :‘I l‘-‘lo o |. -' N.

........

PN HERE N RIS JOUIER RIC PRI UATU Y UM LY USCMTY o WK w00 M YO SE O TOR ZUCROT SR TOR N e o R O o R KO P TR ';"‘l
J

Table 5.1 Computational complexity of Update Covariance Algorithm

Real
Adds

Real
Multiply

Real
operations

Functions Complex

Multiply

N
¥

10322
287
221

10296

7776

5184

286

216

144

5148
143
73

5112

2592

2582
142
72
72

5184
144
148
5184
5184
2592
144
144
72

Denom

P

Mat

Y

Z2Z2Z2Z2Z222Z22Z
N
N

N
[N)

o
1121 1122
»
, 7 =3
4??
%‘

- 158 - R,

T ACANIOLG «~\~‘,,‘, "‘l"“ T Tl o f-'.' >
e A:» o “u‘ nh W, h“":s..:o::: :. N a‘, .u " .‘.“" W((d‘ ~.ﬂ’ : % . 'FQ";‘V:"(_\ ; & "‘Pi .
) 0 ’ ' y 'i'l H. thy .:,' l & ; .:l: ' ﬂ. 0‘ y""ﬂ. n. -.‘.'- "'\. \:’,n-"';y ol

tl:‘0' o‘h " \.o\\'a A I OO 0"‘50... '.‘" Ky S

N l “, "“ "'

‘ . b Vb 0. e " q ety et 2t
TR N T R NN WL W U UN U L RO AU U TR VT A T AT KR CU ek phalebldaielddey 4‘“

':: o’
. '(‘.‘0'.' Y,
budget allocated to that function. Computational 1loading 1s 5rq4*
Qo
discussed in later sections. ,”ﬁﬁw
|’k|‘.'='.:;="
af AL
®
N Y,) '.I '
5.2.4 Memory Requirements sﬁg@ﬂ
QO RN
oo
An initial estimate on the memory requirement of the update E?ékﬁ
2 i" l’
. . . . alatl
covariance algorithm can be obtained. The algorithm requires N
. a" 00
+ 2N complex words of storage. X and W each require N complex ?. w&
- 1 2 b) 8
words of storage and R requires N complex words of storage. L'#&ﬁ
. . ittt
Note that because storage of intermediate resuits are °
. v Y ¥ |'I‘
necessary the memory requirement depends on the hardware §3$%§$
M
OO
architecture considered. ":::évé""a
nhhhe
@
. . . 8? WA
5.3 Microprocessor Architecture Implementation . : ﬁﬁ':
O T
OO M0
In this section the general purpose microprocessor 'é£k§$
'. '.‘ 3 %‘
O
architecture was evaluated for the Update covariance algorithm. ;
"' fab’ q
The microprocessor used was MC 68020 [2], state of the art 32- {ﬁ‘
|\'|
bit microprocessor, which has a cycle time of 60 ns. ﬁ“'ﬁ
\'0‘! 'af"t
@
| ‘.‘li.‘%'..
5.3.1 Initial Assessment on the Complexity {?$ﬁ§
Ly et
&
The complexity of the hardware implementing the algorithm 7*‘2

is a function of
1) the number of operations the algorithm needs for
an iteration, i.e., computational bounds
2) the time allocated for the iteration, i.e., input

requirements

.A‘ 4 & { :

:‘-‘,‘\R

! A
AN ,.M

3) the architecture implementing the algorithm, i.e.

architecture considerations.

}if.ﬁ.\::'w

""" RN T IR
ey Wy ‘; \l :;b Vv n K’ O l‘.}# 0 ’ Q"‘ '1\‘4‘\.' T _)_«.'_\. R .J\}\f_
" b 9 l . !. ‘\'
N S ' ‘» s'l y’i ‘ ;‘0 g, " Q.. 'il g "lA' . n .l

R TR R R R T R Y wn01;,1;0\'_".'3n¢mmv3mvﬁmﬁﬁ¥ui
‘ &&

iy
R

o
wWhen all these issues are taken into consideration, an estimate .Jﬁﬁg
on the number of chips (microprocessors) needed by the system .
implementing the algorithm can be obtained. The complexity of
the system implementing the algorithm 1is indicated as the
number of chips needed by the system. The loading analysis of

the algorithm in the microprocessor architecture environment

can be performed.

5.3.1.1 Execution Time budgets
Factors that play a role in determining the complexity of
the system due to the microprocessor architecture are:
1) the ratio between the time needed to do a multiply

? operation and an add operation

| 2) with regard to update covariance algorithm the speed

; of the microprocessor given in miliions of operations

4{ per second.

.; Table 5.2 provides a summary of the following discussion. The
first column shows the partitioned algorithm. The second column
gives the number of real operations for each function and the
third and fourth columns gives the required number of real

multiplies and real additions for each function.

|

The microprocessor chosen has a multiplication and addition
time ratio of 6 : 1. The effective number of operations column
is obtained by performing (number of real multiplies) *x 6 +
(number of real adds) for each function. The effective number “
'; of operations for each function represents the function in E:f‘::\
j terms of adds. These provide the true complexity of the ﬁa%fi
\3&:4
- 160 - ";: 0

. w J
LR R e U T ATy R T U 37 VO Wy ."l. USR] 'h R ! A T N7 ‘V"m" AV et ",-{.—‘,,-‘Qp‘_p",p\(,;-N.(\.J- BRSNS
I N R RN S R S R XM O O P) 9. % LR A Y S¥ o, T H Tt A) e
RN R DNy ?:,n: N v":'":':':‘;‘:"'."'.‘::":':':':’:':’;‘:"':"':’:‘:%’:. .,:::,.:.,::, $“’ .‘.,:g;:}r"f' ":“:\-r a0 ...:: ..)_‘: o
s R R

.5 RAPLEAE Il]) LI - D ath iy Bt . DL MR N L 30 Y

’ (X M 4

ROSYOAOSOBOOUNORX))

y OOOOOONC I OCOR) LA M) s

LI ‘.’,'u‘)a',’s"-;t’.'n'.'\‘.ft'h'u',l'o!l‘a’i’n‘l’o?“:'ﬁ.t?‘.lh Lttt ah

U R N

&

AN

R

%

3o Bta 8% A% 8¢

LAFN

PUUULN

o R
= 2 o N

| SRSy @ s s @S #u..w.ow! L5 @ Tt LA s
o > X S e ” A x i) X%y
SRR, b m.....h..o.. Ll [RENIEN

At =l To g N RS 1l ol e G T FVN,N,{H. ..bh.gﬁwv. L 585D

lll TlIlllill||||l|lll||lll.||||Illlll|||ll|||l||lll
I ZE° 0 Sy'o y0S L L 12! M
1 LSt 0 4: 9€6 (43 121 91¢ 4
| ¢E°0 6°0 9001 (A A1 142! 98¢ a
[A¢ 9L"9 PLIL O lAAL: 2! t4: Y4 69T 122 8 xxy
11 9b° g T4 B § 969¢€E 2652 | 2R 8 9LLL BAL)
€1 V-9 19°1 9TZ9¢ T118 ve1s 96701 g
11 6E°6S 1r0°0 196 tEL R 12¢ 9
| A kL9 9Zvo- 0 L00Y EvTy vet L8t wouad
A1 LL-9 ves| 1 9E09¢€ 8ris pets 2ze01 v
{SdOR) (sw)
sdyiyo buypeoy yabpng suotjeaado jo SppY Ktdyatnm suoyjeiado
Jo 1aqunpn Teuorieindwo)d awyy requnu 8Ajlcazja Teay Teay 1esy suoyjoung
(8) (L) (9) {s) (v) (€) () (v

#1n3o0931yd1v 10389001doiojw bugsn
wyjtiobye edueyivao) a3ewpdn jo A3yxaydwoo uo jJuswssessy T°S e1qel

161 -

%]

4-2'_
e
&

0

"V
o~
S

gy Vo
" "

o,
AN NN

»
M
b
L5 l'!.l.l l‘!‘

)
)

R
<
‘:

0
X

.
o ¥y
O

»

3
'.' \
o

U

of
)

)

l’.'n'..‘

o
...’..Q:..(.

NG
d

(]
i
tahat

$
I'.',
‘a'

e
R

OV NTACKRD
}ﬂ??} X
OO
A0S

¥ 4y ‘!".' ". 1 "

"jg'_'n‘,'s‘.h ;,'!‘a

aﬁc%;
WO
R

4

A

%
i

S

function when implemented 1in the microprocessor. This 1is
indicated in column 5 of Table 5.2.

Because the algorithm exhibits parallelism, there are two
sets of processors implementing the algorithm. It can be seen
from Figure 5.1 that functions A, Denom, C, Mat and Rxx operate
with one set of processors (set #1) and functions B, D, E and W
operate with another set of processors (set #2). Notice that
for the set #1 processors to operate Mat function, they need B
vector (the result of B function) from the set #2 processors.
Similarly for the set #2 processors to operate function E, they
need the C vector (the result of the C function) from the set
#1 processors. Thus, there exists a data exchange between the
two sets of processors.

One iteration of the Update covariance algorithm can be
thought of as taking place in two phases. During the first
phase functions A, Denom and C take place on set #1 processors,
during the same instant, function B operates on set #2 proces-
sors. At the end of phase one, the two sets of processors
exchaige data, i.e., set #1 provides C vector to set #2 and set
#2 provides B vector to set #1. During the second phase, set #1
processors operate functions Mat and Rxx. During the same
instant, set #2 processors operate functions D, E and W. It can
be seen from Table 5.2 that set #1 processors compute in total
89844 operations (see column 5 of Table 5.2) and set #2 proces-
sors compute in total 38662 operations. Thus, as set #1 proces-
sors compute more number of operations than those computed by

set #2, the execution time budgets are dictated by the set #1

N BN Y A I L L R N N R P R L A
5, - ,5\(‘ N, “':0 = .(\ ﬁ. NG :: ‘; 'f N -f.\ﬂ'-'_\f-. RSN FROASEREAR N ‘;.‘_\‘\\- S
\"'\ M N 'y.',. S e T R R R L
‘ «.y\ . .w‘ a P B B T e T e £ R,
¥))'f) '\f >, .;4‘.'- Ly £ d‘,'f " f’-’,‘:'l“ .N‘.\J'\ Y u}'

= o
o

b

v

. S
2,

)’

v
%2

cr
f‘:'

&I

g

DT T ST S T TOR TS T ST SOk SR T WK T IR W W W R R S WU 0 WP WU BRI SROW M PO AR AR St As ws
SAPLT N AP :

processors.
During phase one, set #1 processors compute 38004

operations (functions A, Denom and C) and during phase two,

. . (, ‘r
computes 51840 operations (Mat, Rxx). The total time for an ﬂ#ﬂﬁﬁ

N

iteration is 3.8 ms. The time is divided between the two phases

proportional to the number of operations needed. This results

A
in phase one assigned (38004)/89844 = {1.61 ms and phase two 'ﬁf ﬁ:
el
assigned (51840)/89844 = 2,19 ms. Once the time allocated to ::2::3:
Rk
each phase 1is determined, then the execution time budgets of ; PS

vt
each function constituting the phase can be obtained. Each fﬁ#“ﬂ
function of phase one is then allocated a portion of 1.61 ms.

Function A is allocated (36036/38004) x 1,61 ms = 1.524 ms,

|)
. . / ;:f.:.‘i:l‘l
function Denom is allocated (1007/38004) x 1.61 ms = .0426 ms A
and function C is allocated (961/38004) * 1.61 ms = 0.041 ms.

Similarly functions constituting phase two are allocated a
portion of time 2.19 ms. Function Mat is allocated
(33696/51840) * 2.19 ms = 1.425 ms, and function Rxx is
allocated (18144/51840) *x 2,19 ms = 0.7674 ms.

Time has to be allocated also to the functions performed by
set #2 processors. As stated earlier, the 1.61 ms is allocated
to phase one. During this phase, set #2 processors operate only
function B. Thus function B has a execution time budget of 1.61
ms. Allocated to phase two is 2.19 ms and during this phase,
set #2 processors operate functions D, E and W, a total of 2446
operations. Thus, function D is allocated (1006/2446) * 2,19 ms
= 0.9 ms, function E is allocated (936/2446) x 2.19 ms = 0.84

ms8 and function W is allocated (504/2446) x 2.19 ms = 0.45 ms.

- 163 -

) R 1, ¢
AN -.’»'f.»’*i’s'f5;»"51'*}:3\""'?'«

SANY PSRN Ny N 50 Gl K Ty "IN 0, WLRY & y A
AN TS :l.l' w.‘t, % VY\}.‘:\{- :l:. \=:||l h e ‘ ¥ 71:""5"'3'{ \ W 0 \}.'_\\'@;E
e 4 5 3”i"'.9:’:'.‘5.::.’-':"'.‘:ﬁ‘:’:‘f‘:‘:‘\:“1 |:'..‘.. \,»"-v yf D:\‘::p. |= » ."..‘ ..:l.‘..l':. W \& '.k A ::"‘\' f\'.n\ !
R R S e e vt s o RN S

AN AAK WL L

fa da AV Bva $'s 8V A0 84§08 8'0 272 8D N'R 00 0’0 ' 8 5 800 0" 9. b L 0'9 ¥ FC R B g0 QN §.F G 9.4 * R0 gon ga¥ §av ¥ad o .

.' 'y '.' s,

i,
o.' 'o'

®
5.3.1.2 Computational loading %.
The entries of the computationail loading column of Table “&::

5.2 is obtained by dividing the unweighted number of operations ;;.&

(entries in column 2) by the 'time budget' for that function, Qﬁ;.
For examplie, for function A the estimated computational loading :;;:a

is obtained as et
10322/1.524ms = 6.77 MOPS. R
To determine the number of chips needed for each function, ﬁ%i,j
the speed of one chip with regard to the update covariance mﬁhﬁ
algorithm must be obtained. As can be seen from column two from Etﬁé?
Table 5.2, functions A and B constitute the major portion of ﬁ&?“;
: the computations involved. The basic operation needed to per- ;&h.A
i: form these functions is a 'complex multiply and complex add’. ;?iééi
| The speed of the microprocessor with respect to Update ;;ﬁi#
covariance algorithm will thus depend on the time the microp- ﬁggt{
rocessor takes to complete this basic operation. The microp- 2§jfﬁ
rocessor performs this computation at a speed of 0.5 MOPS. : ‘é.::,::.'
Using these computations the number of microprocessors hﬁ% 5
) needed for each function can be determined. For example, the %ﬁw,ﬂ
{ minimum number of microprocessors needed by function A is Ef&Q';
; 6.77/0.5 = 14 microprocessors. v §§§k¢
i The number of microprocessors required by other functions is Eﬁ%;&:
{Z indicated in the last column of Table 5.2. Remember that ggigr
' functions A, Denom, C, Mat and Rxx operate on set #1 proces- iﬁﬁif
T sors. Which means the number of processors (or microprocessors) ﬁ;é%’
;i required by the set #1 will be determined by the function (Eﬁ%ﬁi
: operating on set #1) which requires the largest number of zi?ﬁk'

- 164 -
('f » LS Ul N ‘Vl".l" St TR N TR
T e G S

X

SANINIY .
»:g?a.h""“:. fn‘ll‘t ,,q,.l k ’ \‘ il
"y A .l;".

P, ! “r N
1 d' ((w "\"- .
MR t': a’- Wy v." 2 M‘a it \" 'ﬁ Ch a.ﬁ ﬁ‘f& £t ;: .\f’x;n".';f.;:x

microprocessors. It is seen that functions A, Denom and Rxx
require 14 microprocessors each set #1 contains 14 microproces-
sors. Now we have to determine the number of processors
required by set #2. The functions operated on set #2 are B, D,
E and W and it can be seen that function B requires the largest
number of microprocessors, which 1is 13. Therefore set #2
consists of 13 microprocessors. Because total microprocessors
required by the Update covariance algorithms is the sum of
microprocessors required by set #1 and set #2, the minimum
number of microprocessors required by Update covariance é1go-
rithm is 27.

As noted previously the complexity of the architecture is
determined by the number of chips required by the algorithm.
The complexity of the Update covariance algorithm using the
general microprocessor architecture was found to be 27. The
complexity is high when compared to the following analysis of
the DSP architecture. Data communication among the 27 chips
introduces data overhead which was not included in the
execution time budgets. It can be seen that more than 27
processors will be needed to bring the iteration time to 3.8
ms. Due to the high complexity (when compared to DSP chip) the
microprocessor architecture is not considered favorable for

impiementation of the update covariance algorithm.
5.4 DSP architecture implementation
In this section the digital signal processors (DSP)

architecture is evaluated for the update covariance aigorithm.

- 165 -

" - -‘ ‘*"
- ,‘s‘:“usﬂ,a. YOty ‘h..\l‘c] .'. l..)‘\I\"q. JC* .-‘l \ 'P\ \.‘*‘
‘\ $ AL \.l"l.‘ 1.\.3‘\.0." " " ‘f‘ & Pty '\: ’ ~T
» ,.\’; t‘.‘l‘..t 0 Q‘l 2,0 ,.0) "'
, » Wy W4 AL 0 g\, t l " ety
‘h,’,.\ sttt I XN Baatad 0 ':‘ o "
; ottt e t‘u‘.t.t‘ .A. l.‘ h‘ Aty "‘"

S

AT

,
2,
SRR
AN
ll'.‘

RN

“1 &

v‘, ’,
LI §

Id

P
>,
.

t
>
L
ey
-

b
|]

5 5 X5,

AY
.
a

4

' -‘”

i)!:

Y
>4 l';i. .

» "
{;(’
Tatalara

v
s
I‘:’
Py

» l"

=
s
o]

P
[
?..‘

“':“
&

)

»
.3

=
&'

>

S

ol
%
2

aN

4

-?x.? -
7
2

’

The DSP chip chosen for this analysis was the LM32900 [3] which ﬁ?éﬂ&g

e

. > }

has a cycle time of 100ns. . j}k e
e

' .
5.4.1 Initial Assessment of the Complexity %h s.
l.u
An 1initial assessment of the complexity of the update ﬂﬂm ﬂ’
o

convariance algorithm employing DSP architecture can be .hh..
configured, as was done with the microprocessor architecture g¢§¥h :
T
evaluation. The complexity is determined by the number of DSP oy 0

chips and takes into account the following issues.
1) the computations the algorithm requires per iteration
2) time allocated for one iteration

3) the characteristics of the DSP architecture

5.4.1.1 Execution Time budgets

Table 5.3 gives a summary of the discussion which follows.
The first four columns are filled as they were 1in Table 5.2.
The time needed to perform an addition is the same as a mul-
tiplication for the DSP chip. This means the ’effective number
of operations’ column (column 5 of Table 5.3) is simply the sum
of the number of additions and multiplications needed by that
particular task.

The procedure in allocating the time budget is similar to
that done for the microprocessor architecture. Two sets of
processors, set #1 and set #2 operate in parallel to perform an
iteration of update covariance algorithm in 3.8 ms. Functions
A, Denom and C require 10830 operations, and functions Mat and

Rxx require 12960 operations. Thus, the time allocated to phase

- 166 -

’
,t"tt i, ‘s' i !

\Mn’;l’ "5 ', ‘("'"ﬂ‘\,‘- “v;-"" Mo aS ¢ '\,,. ‘J'"N AT T T R TR A T

: e NN o
R s
B R R R 2y "-* S ...e-..e'...n',ea...u.. T T

< $a® fut ga?

»

TR T A e R T o Ml W N

NN N

R U X R M

ST

sdyyo
3O 1aqunpN
(8)

(SdOH)
bujpeor

1euofyeindwo)d
(¢)

ar-o 4 A1
69°0 91¢
76°0 98¢
88’0 vets
[4 240 ! oLLL
EL°T 96201
StE0°0 17¢
SP0°0 L8T
S9°1 cCEOT
(sw)
jabpng suotjerado 3o
dWIL aaqunu U>«UOQUUH
(9) (s)

wyjjiob1e eoueiaeaoc) ejepdn jo

. 2
a.mmmwwf

T Tt 55 ’ 3 hﬂﬂ\ A o T

i R RERE

P A R
LA A

- e:»ag.mﬂw
. W.- RASSAED A

P A s

4 L A A¢ M
L byl 91 3
(A A |24 98¢ a
14:4°14 Z6ST yeIS XXy
7652 v81s 9LLL e
(4 9 8] vei1s 96201] !
£L gp1 122 B ~ S,
321 22 L87 wouag 0 MWWW
8Y 1S 2187 ZTEO0T v .
||| ! SR
NP
sppv Kydyarnu suoyjesedo ”Annﬁﬂ
1eay Te%d 1eoy suotjdoung fe.uw :
LA N1 SR LA N AL PO
IS
--‘vN\
T
I
oy
o
o

ein3Ide3jyoie 4sa buysn
A3yxetdwoo uo juswssessy €' @yqel

L UL e o N P N N Y

¥

one is (10830/23790) *x 3.8 ms = 1.73 ms, and the time allocated

to phase two is (12960/23790) * 3.8 ms = 2.07 ms. The execution

time budgets of functions A, De om and C are allocated a por-

tion of 1.73 ms. Thus, function A is allocated (10322/10830) * NR§
[)

M 1.73 ms = 1.65 ms, function Denom is allocated (287/10830) x

N 1.73 ms 0.045 ms, and function C is allocated (221/10830) x

ms = 0.035 ms.

Execution time budgets for functions Mat and Rxx are

Thus function Mat is allocated

allocated a portion of 2.07 ms.

-
P

(7776/12860) * 2.07 ms = 1.242 ms, and function Rxx is ::g::‘.':::
L)
R
:.l’.‘i':\
lQ:'.:Q:\:t

Fa).

Dy

-

allocated (5184/12960) *x 2.07 ms = 0.848 ms. Because the set #2

-l

perform function B during phase one function B has

o’

processors

During phase two the set

an execution time budget of 1.73 ms.

I
- r4 ‘

#2 processors operate functions D, E and W. This means that the

e e e e k)

time budgets for function D are (286/646) x 2.07 ms = 0.92 ms,

for function E are (216/646) * 2.07 ms = 0.69 ms and for

function W are (144/6464) * 2.07 ms = 0.46 ms.

5.4.1.2 Computational loading

The computational loading demanded by function A is

10322/1.65ms = 6.26 MOPS.

The computational loading demanded by other functions is deter-

! mined in the similar way and is indicated in column 7 of Table R

5.3.

The number of chips required by the algorithm can now be Jbﬁv

[
; determined. As noted earlier, the speed of the DSP chip can be

determined by the time it takes to complete a compliex multiply

B ~“*&¢*" :

0
KRR : 0 ‘t‘ 'A"’."’ "“' '5‘. o) u"‘
i "‘th‘ﬂ 05;#nﬁﬂhﬂ&?u%

'-. N

o
\\\\\ .‘.‘\..N .‘«.‘h..ﬁ*'o‘ M L A .b. '0

"I‘& .. .\-'. -\ (. " N -;' .J.:‘h-"“p-"‘-- :_
\.‘ - '\r o 'y " :} .-".- .r g AT

R R 0T R U L T W A M R TR RN R A R T R R SR W Ny s rmrsormyso 8,0 028 528" 48,720 "1‘.‘&".‘5.;.‘ ||’;:."
R > is B PAE J 4

il
0 V'a s

and add. The DSP chip requires 1.4 s to complete the required 8 gﬁ%ﬁw
v e
operations, that makes the speed of the DSP chip with regard to b “ﬁ.k;

the Update covariance algorithm is 5.7 MOPS. Using this infor- e
mation the number of chips required for function A is 2. It has ;, oy
been found that set #1 processors require 2 chips and set #2 Ewﬁf.f
processors require 2 chips; in total the algorithm demands 4 “3§hﬂ}
DSP chips.

Though the number of operations invoived 1in the update
covariance algorithm is large when compared to the LMS and the
c-LMS algorithm, due to parallelism present, the complexity of

the algorithm using DSP architecture has been shown to be low,

4. The low complexity led to the design of a system architec-

. . . , . RN
ture. This system architecture aids in determining whether ANt
o
o,
. L
communication overhead is present. This enables one to detemine Ly
\J

L

|3

e

if the complexity of the algorithm is increased by the addit-

ional computational capacity introduced by the communication

-
Yy
-

..:J‘";?
; 1—%&

overhead. The memory requirement for data storage 1is next *-;ﬁﬁ
1
Ly
determined. The data storage requirement depends on the system .'J'
FAr R A
architecture designed. Qﬁgg
et
p:&&gb
.&%& ;
By A
5.4.2 Implementation considerations R
It has been determined that the update covariance algorithm ffa
'~
A

needs 4 DSP chips for a design using 36 antenna elements. One

possible arrangement of the DSP chips is shown in Figure 5.2. Mo
: . N '—’ :vj.v’ u
With the algorithm partitioned into various functions, the job tjﬁgﬁ,
A
. , . . . ?: o ’:‘g ‘
now is to allocate the various functions among the 4 DSP chips. AP ATND
AL
fa) l» o ‘,\ (,'\- '~
The partitioning and allocation of the algorithm in this '*'“;
T AN
N
R,
- - .‘y‘.‘f..f" y
169 SN
LY : -%u _'5’ ,
NCAGS LAY
Cp et . e R
N R e GON TR \ I e e Nl e S e ’ AR e
o
Bty l‘:‘,t'. A &a".' G x::"-y"\"-.'\"{' R A s AN AT AT T
A OO RO N R R G R S A S PO AT I TN N M AT NG

P I T T T R T O T T o T N R W S S TR T W WU W W W WA N N l‘..“"“ "’""‘ _‘ 0%.0% QO)

i
oK

Figure 52 DSP implementation of the Update Covariance algorithm N

nm e
l | | |

8 SET #1 SET #2

]
[}
\
[}
[}
4
[}
[}
2

M

Y ™M |

B o[[G

P

PE
#4

[

SM - Shared Memory
‘ PM - Private Memory
PM PE - Processing Element

(DSP chip)

2
p=
2}

. v
LT ol O

LA

Rl S .
“
L]
'y)
<
/s

1’ - 170 -

o .. .': W’-.'h'.u
' s ‘\ .Ql |
i s’ ’ l X l‘ % . .
~ AN ..i .‘. 18%,0

\ ‘\ -‘\n
~-.f"~ ""; i -\"-\."

l' ‘.l"'. .‘
"\.
lt“"ﬂ' W 'll .t"“..‘l l'l ".:, \.F

NG UL UL N NUNU N U NG U Y

environment is shown in Figure 5.3. Each complex quantiﬁy is

represented as 16 + 16j i.e., 16 bits for real and 16 bits for
imaginary. To start the algorithm a copy of the input samples X
was provided to each DSP chip. Note that DSP chips #1 and #2
belong to set #1 and DSP chips #3 and #4 belong to set #2. The
functions A, Denom and C were each broken down into two equal
parts as shown in Figure 5.3 and DSP chips #1 and #2 compute
each part. If necessary DSP chips #1 and #2 exchange data to
compute a function. During this same period while chips #1 and
chips #2 are computing, functions A, Denom and C, chips #3 and
#4 compute function B. Because two chips are allocated to this
function, the computational 1locading is divided equally among
the two chips.(Figure 5.3) Remember the complete B vector is
obtained only when the intermediate results obtained from chip
#3 and chip #4 is added. This operation is performed by chip #3
and chip #4, this means both chips now posses a copy of the B
vector. Phase one operations are now over.

The two sets of processors now exchange the data, C vector
and B vector. No CPU cycles are lost in this data exchange as
the data that are to be exchanged are placed in common memory
to both the sets of processors. The phase two operations now
begin. Chips #1 and #2 perform Mat and Rxx, and the

computations are divided equally among the two chips. (Figure

o o d e wagtg |

5.3) At the instant the covariance matrix is updated, chips #3
and #4 perform the functions D, E and W to update the weights.
The functions are divided among the two chips as shown in

Figure 5.3.

, &“ “-. sg&. "-“-* '.'\.
'."“' ﬁ‘%’ \ft ?

" RO
"" D T ety

*

" .‘. ‘}o..’:?) ,| % .’» -.:i‘

BONCA ' | 0 ‘ Q‘ ‘1
a 6 b 4‘ e ,

"’ 'i"; “v |'0'l.a t' 'y ‘: .::l‘ ‘f.

PR T T SR BRI GRS T U Wy WU NN Y KX SR T WSO KT ROR TOUTAN RV RN UN VW N U U W XU 18 0% %9 &% vl.'uq‘lo
i

Figure 5.3 Partitioning of the functions of the update “\:"".
covariance algorithm to DSP chips t_v‘%”‘

Rk X’ [ac] =D PE #| I,
ixl

a /
o Nl

b rw— #* LA
. _ \) [:bclm > PE B ..:f

X A ac + £ ——>PE #| ..
(Deuom:l-_-a ! bjm‘ ¢ / ‘l..:‘.w
: ' RENRARS

t
2
v @

c.,
o
‘r')‘ %

——> PE #l

Chid
- .
.
[y
-

Y]
LA

-
-l
L X o

0
i
]

0o, P »
LI
¥
|
o f
3
Ma } Ml
L9y L9y
-
5
o

-_ Ry

:,<

—> PE#

FI
- e
: :. Py

B 0
Fay \\Q* NSO ‘n‘\ \"

3 : |)‘; Wy A.|. .'l"‘l’g |$..’ ‘ ‘I’v‘l.

\" M r a.f Cav

AT AN O 1 o

M"\-‘" \‘-“* s ‘.”x‘* o
"'l" 2

O Ay
‘ 0‘.‘ ' "' l‘ l" |“""‘||..

0

Pigure 5.3 (cont.)

X,T v ac —=D>PE #3
. Catlnl, {_c] 7

2
Aty
- 173 - Zals \
o
s
I"I

!5 W ‘!'g‘i. \ ’. .‘"Q "Q.

R .!'.‘.0" e
\" i, 0 ,:A’: i‘y,l" j .‘,l’kh'g.l'h!'.‘t‘gl‘. t‘g.l" 0 '.. ‘.‘I'“Q'g\‘l‘l ‘\ >, ! ‘~ !|. “‘ "L !' ". U '.‘“ \ a‘. A0

.......

.‘_ ~“~ AR T - \ * \ % 1% e\ -"i

s :"’t';;.ﬂ, ln’ 0"‘\’ 6)0‘ . ';.H uu '~ il '“'ﬁ i‘d\S s 1&:\\. Ny \‘?\ R\‘% -.\'\'\‘ o)
s 4"

N \N §\

CHUNLIU NGV WU NI RU NN UL R R W R R0 TU WL WA WU N R 0 WM RN K W N N T M e T T P e .'q‘,

b ‘ "E
Now the code is written for each of the functions. The time :3%?

taken by each function when operated 1in this environment is h;%ﬁ

determined with the aid of the function time scheduling (see ,ggﬁé

Figure 5.4). The iteration time obtained is 2.65 ms which is é?é%

less than the iteration time of 3.8 ms imposed by the HF %g%%
constraints. The time taken for each function in the system and . ﬂkﬁ

the computational loading/chip for these functions are given in ﬁ)ﬁﬁ

Table 5.4. Some results can be observed from this table. The y;afi

time taken by each function is less than that obtained from E";i

gg execution time budgets analysis. This results because 1in the 1%5
§ loading analysis, the functions required somewhere between one fﬁkﬁ
:E and two chips to compute. In the system described previously 2 ﬁ¥%ﬁ

chips were used for each function, thereby, as more computat-

N
> rd
&

f":—
v
[
e

ional power is available, the time taken by the functions are

_"4',,1
Y Dt
S A

iy
Pots
[

less than that obtained in the initial loading analysis.

:’ The operation which was used to determine the speed of a E‘.{;
?: DSP chip for the update covariance algorithm, was a ’complex Eﬁa?é
multiply and add’. This provided a speed of 5.7 MOPS per chip. ;';'
%ﬁ As functions A and B use this basic operation repeatedly, the EE?:.
;E DSP chips operate at near full speed while computing these tﬁ%ﬁ.
b e
“‘ functions. Mat function requires only complex multiply and """‘"-f'
%E involves no complex add, therefore the speed of the DSP chip g%-r‘
;§ while computing this function is 5.99 MOPS. Note that while fﬁ%;i
A computing Rxx the chips operates at 2.5 MOPS. The chips :Ei'f
ii operates at this speed because this function requires isolated }”{‘*
;% subtractions, and as in a DSP chip, a subtraction requires the éjj&ﬁ
\ same amount of time as a multiplication. This reduces the ???“s
- 174 - e B
S
e e e
BN .‘uh. |,\.,|";“ ,%t .,“o“:“.“. .‘o. .;\p‘ihi::l'.“ .»‘.o ..M.." 0 *- ‘- ,“—, " _f.-,,,‘& S Ay ‘,

Figure 54 Function scheduling diagram in the DSP
architecture eavironment for the Update
covariance algorithm

Denom
0.0268 ms ¢
0.0237 ms
/ 2855 ms
A |/ Mat R
09164 ms \]" 0.6483 ms 1037 ms PE #1 .ob.-
A W v R ’E 2 *-'-‘.;:r.-
09164 ms 0.6483 ms 1037 ms

%h

B PE #3 |I':$Q.“¢
09078 ms - rﬂ' 1.6115 ms

o

ﬁ.
osogs /\ﬂ s \ | ;ﬁ o PE #4 ' :;0..|
0.0%9 m./ D / K W ‘

0.0266 ms 0.029 ms
E
0.0182 ms

O — ide

- 175 -

"'Ms ig"lalﬂﬂlg

3

A, w‘*’“‘}-.dffvﬂ "'-r (J':)a‘ >
= ‘., v,\’_ R 'c‘, n‘, ;”; z.n.‘.z ,‘o,,aﬁ ",. ‘:. :" ..n'l ,."O.o:f' x\.
S R

* 3
c' () 0‘ <
AL AN l’.u\) '-‘-' "i‘ Y l'. ‘0'.‘ ‘ & ' " . .' -.. W 1‘ . l AL l.'

x;\:é

Zl
.3

ﬁ?
o

‘—‘;.

3

i
el
S

Table 5.4 Timing summary of DSP architecture implementation ®
of Update covariance algorithm \uc A

Execution
Time (ms)

Functions Computational

loading/chip

A
Denom
C
B
Mat
Rxx

0.9164
0.0268
.0237
.9075
.6483
.037

.0266
.0182
.029

5.63
5.35
4.767
5.673
5.99
2.5
5.375
5.934
2.5

OCOoOOHOOO

%
o
-

(%
0
Table 5.5 Processor Utilization for the DSP architecture e S R
consideration of Update covariance algorithm R

Idle
Time (ms)

Processor
utilization

Processors

100 %

7
il
Ay

$1 & 42

& % ¥ 7
J";":
.¢ .

7
#Qﬂ?
AT

E—?
2

#3 & #4 37 % 1.674

..s
LA
A

I
I
|
I
| -
|
I
|
I

-

-
o
»

lh\
Y

- 176 -

B ‘1;",3 LN ‘W WY) "~ ¥ > v

e

B T R A S e . 3 AR "\s\ R AN RN TN Y \
e N T R e e et
S »;;'*'fn'f':m"“:t'l;.'!:;'\:vxl.o'\:.’U:;'t.."::‘t:&"::".o DRI 2, “tp'ﬁ‘.:i' " .,3‘\ o b RIS IC AT Y

B R N O R LR N SO ‘Mxlh M

AT AT MU SO IRIUNEN I OO U U D S

iy abaag. ab Sadaradatal el tad gl o Vol Nak il el tad Tad fah Wl tgh ded LD LB RO GRS 1820 Wa B ita 00 20 808 o ‘!FWW“"'{"X)’)\\Q:_‘

*N)

R

) []
performance of the DSP system. As the most combutatioﬁa]]y gaﬁﬁsx
intensive functions, A and B are operated at near full speed, (* “@ﬁ
it can be said that the chips in the system are used effic- ;'Ja'bﬁ
jently. In fact we can determine the chip utilization [8] in as&ggff
the 4 chip system. Table 5.5 shows the utilization or fraction a§3$$2ﬁ
busy time and the idle time of each chip used. The chips #1 and “w:“é%
#2 perform similar activities and are operational the whole Egggiif
iteration time. This resulted as chips #1 and #2 perform the ?Eigg;:
functions A, Denom, C, Mat and Rxx which dictated the execution :Tdmifj
time budgets as discussed earlier. Therefore, chips #1 and #2 ?ﬁﬁé&g
operated at 100 % wutilization. Chips #3 and #4 perform %?ﬁi%ﬁ%
functions B, D, E, and W which are in total less computationa- ! .;
11y intensive that the functions operated by chips #1 and #2. jj*$§{
This can be noticed in Figure 5.4 where the chips #3 and #4 are Sé%%ﬁyw
idle 1.674 ms of total iteration time of 2.665 ms. This means gr;:ai
chips #3 and #4 operate only at (2.655 - 1.674)/2.655 = 0.37 or Eﬁégé;:
37 % utilization. The overall processor utilization of the 4 E;&;?;:

chip system is found to be

4(2.655) - 2(1.674)
4(2.655)
The data memory needed by the update covariance algorithm

when implemented in this system is 12.1 Kbytes (each

)
complex word is represented as 16 bits real and 16 bits :f
imaginary). Mat and Rxx each requires N2 complex words of %Eﬁ&ﬁ%_
storage, X requires 144 complex words :f storage (remember a Eéﬁ;ghﬁ
copy of X is provided to each chip), X requires 72 complex f,-?_-':"

» @

DRRORRIRONONON) 1
. ‘.“\ “,':V“.A" ‘.l’ ‘.’ “.‘.‘.ﬁ.%ﬁ.
'

‘,' .,.:: :‘.';‘ 'Q '9 .‘"..‘ l‘ "'.'l‘ ..'l‘.

R ’s' l’ X 't’. ey

RACY I PO M PL A% P 0 1Y

.....

‘i l W
b o 0 “ l .
S| ’: ’ ‘z:s v" ".‘ H'.:p" 'l‘ 0"' 0
3 0 A l
’»f’f&"‘.‘ﬂ)‘- A ! ‘ ‘ ¥ "). .l" () \ .’"'

NIRRT LI LI AN LN LY UH IR UN URE RV RV KW R R o e ¥ ‘.. 9020 08" bl 1% fab e ® “. >y b e >

words, A, W and E each requires 36 complex words, C requires
72 complex words cf storage and B requires 108 complex words
of storage.

In summary, an evaluation of the update covariance algo-
rithm using DSP architecture has been performed. The complexity
of the algorithm was determined to be 4. A system architecture
employing 4 DSP chips was designhed and the resulting iteration
time was 2.655 ms. The system performed 37 iterations during
100ms, ensuring on an average one convergence during this
period. The data storage requirement was determined to be 12.1

Kbytes.

5.5 VLSI Architecture

This analysis starts with the identification of the compute
bound operations. One of the compute bound operations to be
impiemented in a VLSI computing structure 1is a outer-vector
product. The Wavefront architecture was found to be more
suitable than the Systolic architecture for this outer-vector
product. Next the Wavefront array design is presented for the
compute-bound operations belonging to the update covariance

algorithm. Finally the reasons for the selection of Wavefront

architecture for the update covariance algorithm are presented.

5.5.1 Algorithm considerations
To aid in identifying the compute bound opertions, the

algorithm is broken down into the following operations.

- 178 -

... AP '~'~c~r AN

f‘
£ ;‘! "0 'I‘ "“ ' u' '3. .‘.. .'l‘ .' |N .i ‘l':::'

R
X ¥

AR AN
R
ﬁb et
Dl
. Ay
N

®

way i.‘ v"

'5::"""

ﬂ‘

N e a. e RN RN RY N W W W LY
B L N A T R LR R R R U D O A AT R Y NN FOU O, KV K) 3 ate ath e¥8'a" 2 A a1 ale" 100 et A¥ 0eY) AN yR Y "\."H‘!

-1 x T -1 "51'.'
1. A= R (K) X (k+1); B = X (k+1) R (k) N

LV)
o

Each function is a vector-matrix multiplication and the result

®

: R
is a vector. Each function needs O(N) multiply-add steps and ptilas
2 >N

, . Wi

requires O(N) input/output elements. When the order is the o ﬁﬁé
W . .I.‘

same, then we have to consider if the data once accessed from ' e
BT N
g memory can be used many times in the computing structure. It %é%;:f
T X)l‘,&. : i
: can be seen for the A function that the elements of X once i?JQiQ
: -1 * T

accessed can be used for each of the row of Rxx(k) and X °
[A,
v multiplication. It can be seen for function B that the tﬁﬁ%ﬁw
‘ T NN
SN
’ elements of X once accessed can be used for each of the hé;ﬁﬁﬁ

. -1 T o 'a s

column of Rxx(k) and X multiplication. Thus the functions A

)
« v el
: and B can be considered to be compute-bound and therefore can ﬁjﬁjq
; :"-:‘(\"' W
R . R PAC
be implemented in VLSI computing structures. 3&§@ﬁ§
T T 'l.‘;.*a“‘.a-
L J
2. Denom = X (k+t1) A ; D = X (k+1) W(k) ROANLY,
LIRS AY |
Each function is a inner-vector product and the result is a :ﬁ%ﬁf
; AL
E scalar. Each function needs O(N) input-output elements and ﬁﬁ%%'%
®
O(N) multiply~add steps. It can be seen that. data once Tﬁg,'ﬁ'
‘ accessed from memory has no more further use. Therefore these Lvi,,
]
functions are not suitable for VLSI computing structures. Eﬁb’ﬁh
®
3. C = A (1/Denom) ; E=CD §§E§¥‘
&))
Each function is a scalar-vector product and the result is a }b:igh
A S N
vector. Each function requires N multiply steps and 2N+1 §ﬁ3ﬂkl
®
input-output elements. Therefore these functions are not SRR,
IR
! v P
suitable for VLSI computing structures. v?ﬁﬁk:
L) ‘f Y

5. Mat = C B

S s O Sy
NAUAARANY Qi a o e fa s
: 0 fl'.::u*:’:‘;’l':‘\:“ (‘-*‘-i',\}\ﬁ'-:\:ﬁ'.\::'.
R ,n’q.;‘ RN e e

B D) . .] K
o ‘.‘a"b‘: \\.t'\‘:'\.' O X 0l ‘ln ALY

2 A%

IR RTCRI L CPLICTY W AU R R, (AR R AT TR W A O & Oy W)

O .
Wl
."0:.'!:."'.’!':’!
Wb L) ,’i
o..,o,:.c,\t, A
~‘\’- l‘\’l'\!)

h BN . od) \, A ..".ﬁ\v_'-,\ ‘. ol \

This function is a outer-vector product and the result is a
2
matrix. This function needs O(N) input-output elements and
2

O(N) multiply steps. This function is compute bound as both
the vectors once accessed can be reused until the computations

are completed.

-1
Y
6. Rxx = [Rxx(k) - Mat]
2
This function is matrix-matrix subtraction and requires 3 N

2
input-output elements and N subtractions. This means that

this function is input-output bound and is not suitable for
VLSI computing structures.

7. w'= [W(K) - E]

This function is a vector-vector subtraction and requires 3N
input-output elements and N subtract steps. This function is a

input-output bound operation.

The discussion performed is summarized in Table 5.6. Thus
the VLSI computing structures for the compute bound operations

A, B and Mat are designed in the next section.

5.5.2 Wavefront Array Design
As previously determined the Wavefront architecture [10]
was chosen for the Update covariance algorithm. The important
Wavefront array system parameters to be determined in this
section are:
1) arrangements of the PE's to compute each
compute-bound operation

2) computational capacity of the PE

- 180 -

W W N . TR N AN P RN N L N N L M W R, e e, A" A" ™ e "4~ e w P » m m e
Al G B B N N L A
Q.."" |~.. ’~ ’\nﬁ'\. '("’ﬂ}".'\'(" *.-.\-.". *.v‘f_-x-\‘f.-\'.".v_-\:.‘."-‘.-\.
OOOLOGOK) » a D R . . A e N N
.“.‘ L 'l'l'. W _1".-,'4' L 2 A I A S RV AP A o MR 5
O AGROSOAON i L N e AL G IR W SRR
st et e B i M P R UL R
datatedalatety Chwi L Pl WY ‘ .LR;LI‘_ P LT D N DN W BV I RaTont ST e SR

) | 4

h
)

v
BAAR S

'.- ‘:'_-“;‘J -" o7
LA NS
n"'.-
» .
Ay

® S

!

Il

oy
g

LS
.I .i

WAL
2y *x

‘s

L]

¥
[}

LS

P4

List of compute-bound and Input-output bound
functions belonging to Updats covariance algorithm

Functions Type of
operation

Number of
computations

Number of input- Operation
output elements bound

vector-matrix O(N")
product

inner vector
product
scalar-vector
product
vector-matrix
product
outer vector
product
matrix-matrix
subtraction
inner vector
-product
scalar-vector
product
vector-vector
subtraction

O(Nt) compute

O(N) O(N) input-output

N 2N+1 input-output

o(N*) o(N?>) compute

o(N") o) compute

r

* 3N input-output

I
I
!
I
|
I
I
I
I
I
I
I
I
I
I
N I
[

input-output|
[
input-output/
I

input-output|

— — i —— S i A ——— — ——— . — ——— SOt S St S St

i

y-

rot o
L3

111

P4
o

O

-‘c‘&

%5
~d

AL 00
=

-
Lo

2

L

220
2
=,

D S, 30, 40, 4Ty Via Wy AT 8% i R0 hiedy L) b .‘ mun XY I] ,‘\\Al,_ AR IS e LV . " “ ul,}l.‘(l';l.;.x- ~\' 5’ :
v ’:".“‘:“i'a"’Jf‘I‘,"a',‘\'n‘.a'.'t';’A‘g‘l'.'ﬁ'.’l'|:0';.I‘|.t'.'l‘|'l’|.l' .|'| "l‘\'l'“ $ Lo {)'\ " o O ...' S (\ ity ".‘I"
R Ry s o
H i 3 . . 4
PRI "'.,‘»’_I' ":"‘\.s":!*“:‘lt L rey "' RN g 9.".'1?.‘.,. Wa _']‘ oJ$) ,s!ig"'.o"fs'l‘.v',‘!«

Ve

g
() (\ ! ()
UATDRKRR AT TR \?\'u‘p‘n':’t‘-. !"’&,« AN "'c.).' a““&'-‘ﬁ.‘i.;

~ v’ N 0, 0 . Y 28a% fat X a8 ¥)o ¥ Bt TR 'oqi
t'.:!!!c.':f

R

0
'l. M

0 l@:‘k’:

-~ ‘-

The characteristics of the PE to be used in the Wavefront a¢£¢“

Y]

() .'l |‘l

array are analyzed now. The PE has an architecture consisting bﬂ&%ﬁ
(RS}

,".:‘.. U :0 '

A4

3) bandwidth of the Wavefront array bus

4) host computational capacity

5) buffer size

of an internal program memory, a control unit, an ALU, and a

set of registers [10]. Time must be determined by the various piﬂgﬁ
instructions performed by the PE. For the update covariance ﬁﬁw;f
algorithm, the PE has very few instructions to perform - mul- .4&‘
tiply, add, fetch, flow and transfer (register to register). &gﬁéﬂ
The fetch operation fetches a data element from a neighboring gﬁ?ﬂ%
PE or from a memory module via handshaking procedures.’The flow ﬁ&{
operation sends a data element from a PE to either 1its neigh- ’$7
boring PE or the memory module. The clock period for the PE is ?%{

30ns. The allocation of the G

chosen to be 30ns i.e., T(pe)

number of c¢ycles needed for the different instructions per- ;‘5‘
o

formed by the PE, is determined by the number of cycles taken t:
(.,

to perform similar instructions by the 32-bit microprocessor Mc b“’
. }

‘ 68020, and are: §\
i Instructions cycles time(A s))
K Multiply 28 0.84 %:

Add 7 0.21 g
Transfer 3 0.09
Fetch/Flow 4 0.12) S\
The Wavefront array design to compute the compute bound "
A9
functions A, B and Mat is presented next. ' TRy, LT

RN
L)
5

GG

S

L]

5.5.2.1 wavefront array design for function ’A’ Ef“¢wg
Byl

The arrangement of the PE’'s performing the function A is N @9.

®
o NP AN
L)y E:;:l

ORI ST OUOOOUTN00] Q 0 FvaE 0y ™, N L G T B Oy *,
N R I N R T R N A LA u::,i Ao PR ORI
I SRR Qi'a't.g'i‘ A M) '“0 Q..' ..‘..‘l. Q K (!.: O ‘.I
B T R
B U GUI R LGSO AR MY 19, ¢ 00 0% (RN ‘\:.‘ 0,
SOARODAUEOCDAEERL DN \’.ﬂt";fc‘:ﬁt_\:‘,|?'.f|i:[|?:'.u'.!n'?'::'.!t!.!n‘:“u!.,ﬂ:',nf., PN DX O e O

shown in Figure 5.5. A linear array of 36 PE's is needed to
compute the function A when the number of antenna elements N =
36. The matrix-vector product can be decomposed into 36 vector-
vector products; each vector-vector product is the mul-
tiplication of a row of the matrix Rxx and the vector x*. There
are 36 PE's and each PE 1is responsible for a vector-vector
product. Each vector-vector product constitutes 36 complex
multiplication and addition. The matrix Rxx is broken down into
rows and one row is provided to each PE. The x* vector is
provided to the first PE only and the elements of this vector
are passed from PE to PE in a pipelined fashion. The capability
of reusing this vector x*(the vector is accessed from memory
only once) is the reason for the speedup (when compared to
operation of function A on a uniprocessor) achieved by the VLSI
structure. Each element of the vectors is a complex quantity.
The real and imaginary components are represented by 16 bits.
When an element is supplied to a PE the real component is
provided first followed by the imaginary component. These
elements are stored in memory modules and are provided to the
PE whenever the PE requires them.

Remember that Wavefront array 1is an asynchronous system
where a PE obtains the operands from neighboring PE's through
handshaking procedures. Also the Wavefront arrays behave like a
data flow machine in that once the operands are fetched by a
PE, it at once begins its operations on the data obtained. The
operations to be performed by each PE, to compute function A,

is coded in Matrix Data Flow Language (MDFL) (see Figure 5.6).

- 183 -

' -
".."_'u'.”-'."'o""o".u’) sih i" R0 ‘ ! .'I' W
N g 'n by l, '.

PN gl

I.O
) ',o"c"o

;J! :6 »vﬁ‘;ig"l
RO

'0 Q't

RS ¥y N
s ,,c...‘u.':s..‘o) 0.!:..
)‘ .C‘ .’e‘.%‘"g

l" o‘| l. '.C. ' .|'|.|’l.. 'l‘.:'l.%.. Wit

oheid

L ! l A “I st l. .‘ .‘ ‘|'. 0‘, l’, l' l.. W |.| h‘ k' \' .I ‘ h‘. ":‘".0., .0t '

13, 720 saf o0 tal vy Ol Syl Pul U el) 0 |

SR

A h
':.-o'o,,

2 '!‘. 0
.‘c "!:' ‘

. { . _’\‘ .y _,\. _,)».*
v ."-!2:'3."‘-'..

|’1

Fa%s 42 3ip ATe 50 0 07 0 04 R fet Ua) Hed

TRNIWY ""‘A'::" .'.
0,;:‘,4:'«
u'.,l'

.
'~::'~-~'¢

«\’:s\

Figure 55 Wavefront array to compute
function 'A’

PROGRAM o
MEMORY ;

1\

/ 7
Rlx Rlx L . RLJRL 1, PE 4

R"JJRL16 NN R’LJR!.],f PE |

<N

/]

7 ’ T, .
%) PP I 'RJ.JE‘.!J 1 PE v

l.‘*
l:'é:: DU

O
. .

7 .
[/ < e
Rx:JRxJJ' + o Rag Ry g PE v
\‘l' l
- 136 - .'v"-,
-‘,..
.
) “'“x*’ KRR l‘.u WAV Addg P ,o.' 00 O ‘-f’ OGO 0000) .;\’.{h \" ’3‘.;';‘"
A "‘*‘ v o"v'),."" "v"'*-',o"'s""'.'!"vﬁ:'v.'r':-‘ w5 -‘3':-." 4:' }’ "":5:‘:
L "‘L;“’,{J"\‘:":‘) S ‘-‘p’u"t' :v"p". "‘: "‘ "u" t' .l”'i' ‘t' by "a}:uzi'c,ﬁ'o: c" n' a' l':..\‘o

o
%
%
<
e
<=
o
'.
<
.‘.
-~
.‘
-
-.;.
-
‘e o
= 3
=
.
s’
v
=

o.n.o‘

\
S o'. l‘ 'c R

"l. ¥ “
:E."',-’.t:i:!

e
O
AN

Figure 5.6 Matrix data flov language program for function A) [
'.."‘.'.'.'."t

.0:“0"..0‘.2*

BEGIN MR,
SET COUNT 36; sy
REPEAT et

VHILE VAVEFRONT IN ARRAY DO

| BEGIN AT
FETCH B UP; B

FETCH A LEFT; e 2

FLOV B DOWN; Atk
TSR A,R1; (TSR implies transfer))\:§ e o

TSR B,R2; P

MULT A,B,R3;) °
END; s
|.;:‘“:
VHILE VAVEFRONT IN ARRAY DO Tttty
BEGIN 4 thy ..:,':
FETCH B UP; o ‘,‘%,

FETCH A LEFT; i
FLOV B DOWN; A

MULT A,B,R4;

SUB R3,R4,R3; it
ADD C,R3,C; { real part in C register) ::v::;?:":::::
ADD R1,32,R1; 3 ety
ADD C1,R1,C1; { imaginary part in Cl register) T) .
END; Ny a':é‘:.\:
DECREMENT COUNT; SR
UNTIL TERMINATED; .:% X
Y “G
BEGIN :»., ‘.\
SET COUNT 1;
REPEAT
VHILE VAVEFRONT IN ARRAY DO
BEGIN
FETCH A UP;
FLOW C LEFT;
FLOV C1 RIGHT;
FLOW A DOWN;
END;

DECREMENT COUNT;
UNTIL TERMINATED;

END PROGRAM.
- 135 -
T RO S S T A O e RN S 3
St ety ety iy e A
e e ,*?w a: "ﬁz‘v':‘m "“." :‘.-"' :'i:‘ RS !:v “3‘ R e R e AR SRig

RO "’ -.i’ah, "n' X ..t) ?n.!!#‘!t... .o.i.o-"'.. St) VTt teatant!

. . NPT 3 R IR KA R SR/ ORI e A g _al ¥, - ; (KRN -|-<Q~,.|“.n“-"“‘,“'."
IR

'. Syt
oy oy
'|.|I.'I"Y
" '..|".
s 9% 4 1%

Notice that 36 recursions are involved. Each recursion consists
of two Wavefronts which pass through each PE. Each PE is res-
ponsible to complete 36 complex multiplication and addition. In
every recursion, a PE computes one complex multiplication and
addition. The registers in the PE are first initialized to

zero. During the first Wavefront of a recursion, a PE 1)

" Ba® Va¥ a¢
:"’
O

fetches the two real components, one belonging to matrix Rxx

and the other belonging to vector Xf 2) sends the real
* . . .

component of X to the next PE in the pipeline, 3) stores the Pty

. . SV
two operands in temporary registers and 4) performs a mul- m&g@&:

4’.‘:‘«‘;‘0‘ *.'(
t'g:t’.:i'::l’l

tiplication of the two operands. A complex multiply-add "

requires 4 real multiplies and 4 real adds/subtracts. During
the second Wavefront of the recursion the PE then performs the
remaining 3 real multiplies and 4 real adds/subtracts when it

fetches the imaginary components of the matrix Rxx and vector Xf

The time taken by the Wavefront array to perform the

function A can be now determined. The first Wavefront of the

®
recursion requires 46 cycles and is found to be ?’ﬁ%ﬁ&
] W)
\ .‘ 1) “.
instructions number of cycles o
2 fetches 8
1 flow 4
2 transfer 6
1 multiply 28
46
""" Q :'
.".‘. ‘.‘.’.':
The time taken by the PE to perform the first Wavefront is 46 x ’,.:§§
~at
T(pe) = 46 x 30ns = 1.38 Ms. The time taken to perform the :; :::;‘.
A o
second Wavefront of the recursion is found to be Biﬁ:q&
LS 1%
@
"':“ ’.':';én
AN
- 186 - :'"::"'::'."::‘
R
':.0 q.l|:.0':.1
L ’~’J;‘,',:,';‘.‘; bt R R R A '."|l. L A AR '?QJJ‘?\;"H&' "('.;".:'(:"'{J'-{_R'-;":::w{\' :
RRAAIONIOt ')‘1"‘?.'4‘ ;){’1‘l.,‘l.pgl.g’&"""}J.‘".‘""A‘ ..G.,‘l.“l.l‘ '..l'|.l'g. (% Q\:"C.“O ‘:’ A .) 3 .‘_’\J‘__ N \N‘ Q‘
‘ e e et T e et e ettty L OO e ‘ N
IRUNIARN H"" OO0 A A PR ‘%::!::s:::!ﬁs‘:’s:'ﬂ o~

N QU

",
it 0 (N
D NSO S R A RN

T N T R R N R o s oo,

instructions number of cycles
2 fetches 8
1 flow 4
3 multiplies 84
4 adds 28
124

The time taken by the PE to perform the second Wavefront is 124
* 30ns = 3.72 MHMs. Thus the total time required by a PE to
perform one recursion (involves one complex multiplication . and
addition) is 5.1fs. Each PE then has a computational capacity
of 1.6 MOPS (performs 8 operations in 5.1 Ms). In general, if
a recursion requires K{mult}, K{add}, K{fetch}, K{flow} and
K{transfer} cycles, the the PE would require an execution time
of:
[K{mult} + K{add} + K{flow} + K{fetch} + K{transfer}] * T(pe).
At the end of 36 recursions the results of the 36 complex
multiplication and addition performed by each PE resides in the
registers C and C1 (see Figure 5.6). The 36 complex quantities
residing in the 36 PE’'s are the resultant vector. This resul-
tant vector is sent to the buffer so that the host can access
it to perform further functions of the update covariance algo-
rithm. This caused one more recursion to be passed through each
PE as shown in Figure 5.6. During this Wavefront, each PE flows
the contents of the registers C and Ct to the buffer. This
Wavefront needs 16 cycles which requires 8 x T(pe) = 16 x 30 =
0.48 Ms. A dummy fetch is included, since one of the
requirements for the Wavefront language is that every Wavefront

computation should be preceded by a fetch [10].

- 187 -

b5 Ll’g ﬁ" .»’ ‘,i ﬂ'u *t? ‘j.’ﬂ, AA 1,l§ E‘.i
ol

A
"'ﬁ'o "l,*'

l
{u 'p fp t‘o
v w .

.’ '.’
Al
oz:“:o w ‘\0 ' 'l' ""' ‘n:::: e v" 'a;: $ "' .‘“'.". e l" ': L

LY

0.8 vat ol I|~|l|";:;';$.?l‘~‘:
\

AT

1%2.Wa. 8%}

P
@
:",;".*'
-~
! \
“’-'-

\-g&ﬂ
[]

WS v

.t*',y

a.;v'

0'.’..0.0 I'

So% 5 St |

oTaley
S

G

ol o
@ XX
-y

_/,,
o 4
1:}4;{?
2RL LRI EL S

.O“OQ.Q

]
? "'O“L
DN
bAEARNS

o
ol o3 .'~ RN J' f"f}': ?-' '4-;_ A T
e S

)
G c.t..»...t..."'.-'.. '

ot (ERANREAENERY i LW NANUPURVPU RNV PUYU WO WU YOO R AR TOI AN A KO T P W ¥ $'g 8%

Once the time taken to perform a recursion 1is known, time
required by the Wavefront array to complete the computations
required by the function A can be figured. The reason for
breaking the recursion into two Wavefronts becomes apparent.
These two Wavefronts 1introduce one more 1level of pipelining
which increase the speedup factor. When the second Wavefront
of the first recursion is operating on the first PE of the
array, the first Wavefront of the =same recursion will be
operating on the second PE. The first PE takes 36 * (execution
time for one recursion) to complete the 36 complex
multiplication and addition assigned to it. Once the first PE
finishes its computations, the remaining 35 PE's will finish
their computations when the second Wavefront of the 36th
recursion passes through the 35 PE's. Notice that the second
Wavefront takes more time than the first Wavefront. At this
instant, the 36 recursions are performed by each PE and the
results are in the registers of each PE. One more recursion 1is
needed to send the data out and this requires 36 Wavefronts.
Thus the total time required to perform the function A is

= 36 (execution time/recursion) + 35 (execution time

for the second Wavefront) + 36 (execution time required

to send the data out)

= 36 (5.1) + 35(3.72) + 36(0.48) = 331.08 us ..

In general the above expression can be written for any number

of antenna elements, N, as

- 188 -

htnlaen
5%&%&

K] "'.‘
l"‘l'g. l:
..-,:.%

-'ﬂﬁ:

X]

N MNP a T e o T e e O N e et R T
e ir", n . ,\, . ,v" \. r\)":.;\.i-) K.. '(‘ ‘,:. A J\..._'.\- Ay a‘.;\ AT A L .r\."‘ _\ S "
" ‘t ;'f' ' -gn . M"P A “ AT *'i"" A Y .s't-,.\ ~ ~
k \.n s X4 ro '\ ‘, 6'| ; ,\ R ‘1\.‘-.-\¢‘.. PO ;&J‘\.((g .,\ ,1\ 0y ; \
) O‘ .‘) ’ ‘ ' . ' ' (" 00 ,-.3" " ‘,A\,l) '\ ¥ "\.") ‘F ‘Y‘¢\ ‘p\
DR UAIARY "' A ‘e"* LIRS L h‘"h" I IOt W W WA ST TN,

2 mat B2l 82° v Ba” Sa’ $a”. Fa® 0u'ale’
‘aup’, U WO WL WU -

= N(execution time/recursion) + (N-1) (execution time ‘for
second Wavefront) + N (execution time required to send the
data out).
If the recursion was not split into two Wavefronts, it can be
seen that the time required to compute function A is (36 * S5.1) +
(35 * 5,1) + (36 * 0.48) = 379.38 us . By introducing one more
level of pipelining by dividing the recursion into two Wavefront,
as performed in our analysis, the time 1is reduced for the

execution of function A.

5.5.2.2 Wavefront array design for function ‘B’

Function B 1is similar to function A as it also involves a
matrix vector product. A linear array of 36 PE's is required for
performing 36 complex multiplications and additions. Each column
of matrix Rxx 1s provided to each PE and the vector xT is
provided to the first PE only. The procedure in determining the
time taken to compute function B is similar to that performed for
function A, thus the time taken by the Wavefront array to compute

function B is 331.08 us .

5.5.2.3 Wavefront array design for function 'Mat'

The Mat function 1is a outer-vector product resulting in a
matrix. A square array of 36 * 36 PE's 1s required {(for N = 36)
as shown in Figure 5.7. The 36 elements of the C vector are sent
to the 36 PE's belonging to the first row of the square array
(i.e., one element/PE). Similarly the 36 elements of B vector
are sent to the 36 PE's belonging to the first column of the

square array (i.e., one element/PE). Notice th_. the

- 189 -

' " L ‘\'('\,-‘ .
3 D e T A A G AN
R R e 2
R R R e A

Wy ¥

272°0's 0'p 08 8% W ;,. ORI
SLNNON
R

!
R

15
s.0%
o

TN

h:h
frestn

3
Q‘.
O
e
(K

P -
OO NN
ettty

Pigure 5.7 Wavefront array to compute fuaction Mat’ %.n,:.
) o]
hiv il

PROGRAM B/ Bl B 7 1 r Wel
MEMORY L 1 =l R o
B 1 B 1 B X

14

7
TS

P s
7/ e
o A

Ve 4 Ve ¢

', PE k& ~» PE k- .

1

c,|C,

7

C,lC, . “PE . PE k.

1
\
\
N
\

.

N < ———-9 - - - .
\
S
\
>
AN
'
@
G

n\
L
[«
@
L
o
\
~
tr
3
)
\
.q\
™
AN
T,
I
\
;g\
\
A
3 .’ - :.""'
i
rs
s &

N\
AN
L,

/ 7 ? ;
> > > "%&
p . % AN

g
- -

RO NSRRI sty
R O AR K T e
N o 2 4,) A A y l'.' Pg¥ 1.5 0,99, (M
roah T G0 B 0 N e T e d g Waghlegh ph et iy e 0 e hi Ty
L R I sttt

o
‘('
vl

‘E‘.::\-i:.‘{- :
LAy
«a '& 1’ aX X

elements of the vector B and C are accessed only once for the , ‘ﬁxf
0 1

computation of Mat in this array. This increases the speedup, Esﬁ%§?
ittty

when compared to this function operated on a uniprocessor. Sﬁﬁ&h
“

[Nl Ol Sd

The code written in MDFL and stored in each PE to perform e
. :::&::\. !z‘
the Mat operation is shown 1in Figure 5.8. The Mat function §43$ ‘
o f.\‘)
requires 36 x 36 complex multiplications and as there are 1296 j%ﬁr V
ity

PE's each PE has the task of computing one complex mul- ' e

a
]
o
-

tiplication. This means that one recursion 1is sufficient for

N & 8,

2 .
WA
s
g &
el

this purpose. (see Figure 5.8) The recursion is broken down Eéﬁ?ng
into two Wavefronts. During the first wavefront, the PE fetches ‘ R:;W
the two real components, stores them, flows the two real . %Qgﬁg
components to neighboring PE’s (down and right) and performs a ‘ﬁﬁwdmﬁ
real multiplication. During the second wavefront, the PE per- ;ﬁmi;w
forms the remaining 3 real multipliies and 2 real adds/subtracts '%Eﬂkil

L]
l‘-‘l
[s

N s
to complete the complex multiplication. Lol
Iainis
VLM LA
The time taken by a recursion can be determined as follows. ,w“,:[~
. ,\“'-‘.\:
The first Wavefront requires 50 cyclies as shown. ::\:j:f'\
NS
instructions cycles Z‘:"*\s.}:-j:'.
2 fetches 8 N HeSe
2 flows 8 .
2 transfer 6
1 multiply 28
50

Thus the first Wavefront requires 50 * T(pe)= 50 * 30ns= 1.5

Ms The second Wavefront requires 114 cycles as shown.

instructions cycles
2 fetches 8
2 flows 8
3 multiplies 84
2 add/subtract 14
- 191 -
- S
= y - \ s , Lo e e T e RIS " .-\\- '.
S R Ot R R O R D OO OINORON g'l.' 2 ..|:| AN ool . ; . ")\ N, 0 s \%ﬁn_f.‘(_‘"\“ -:‘ \51\;\.
RRTLICIEI T P Ml N Mo M) \’n.l ne ..\".0 CRACAN PN 3 l' LRI X L, o . \"N <O n“',‘ Q_ﬁ\q\ y._f_ LY |:
e b ' ' L

' \) AN
Wty) SOOAOAGAOICINIT0
R R R A IR RS AN

R R R R N R]

(]
S

T I T S O I W R U R R R S M M R S R N N O I OT Y oM

Figure 5.8 Matrix data flow language program for Mat function

BEGIN
SET COUNT 1;
REPEAT;
WVHILE WAVEFRONT IN ARRAY DO
BEGIN
FETCH B UP;
FETCH A LEFT;
FLOV A RIGHT;
FLOW B DOWN;
TSR A,R1;
TSR B,R2;
MULT A,B,R3;
END;

WHILE VAVEFRONT IN ARRAY DO

BEGIN

FETCH B UP;

FETCH A LEFT;

FLOV A RIGHT;

FLOV B DOWN;

MULT A,B,Ré4;

SUB R3,R4,C;

MULT R1,A,R1;

MULT R2,B,R2;
aDD R1,R2,C1;
END;

DECREMENT COUNT;
UNTIL TERMINATED;

BEGIN
SET COUNT 36;
REPEAT
VHILE VAVEFRONT IN ARRAY DO
BEGIN
FETCH A RIGHT;
FETCE B DOWN;
FLOV C LEFT;
FLOV C1l UP;
TSR A, C;
TSR B, CIl;
END;
DECREMENT COUNT
UNTIL TERMINATED
END PROGRAM.

- 192 -

OAOAGAA] LG o, 3 ») g AT LA ST AT AT AT AT A N A A
1% at '.o" ! .‘l"') " '_u'.}' N \’\"\‘5} WA
>~
3 Ve, DAL) 0) / / A
i e e el . AT "'-";ﬁ.m' NN

Nl oty .n'.:t‘u'.‘ v ity o A
e R 3 NN

'-:o'.::-.sg'.‘-

"("-(f"r_
. &1"4'(’
Y “‘xl‘& ('&
Slen

’
Y
‘
%5

oy

5

)

8 t;‘v e
& / "

:-(‘“"fi'-f‘\'_

“
X

5,
ﬁﬁ{?
]

5

Thus the second Wavefront requires 114 x 30ns = 3.42 Ms.

At the end of this recursion, one complex multiplication ?QF& v
has been completed by all the PE’'s; the result of this complex Rxﬁﬁéq
multiplication is stored in the registers C (real) and Ci éﬁ Tﬁ;
(imaginary). This data (the result) 1is shifted and brought N Y
outside the Wavefront array. This required N recursions to be fﬁtww
passed through the array which regquired (2N-1) time units. huﬁﬁg
During each Wavefront, the PE gets the contents of register C %ﬁ‘ﬁL
from the cell to its right and the contents of register C1 from ﬂ@gﬁé
the cell below and stores them. It also sends the contents of *ﬁ.

its registers to the 1left PE and the PE above. The real
components of the Mat matrix then comes from the 36 PE’'s of the
first column and the imaginary components come from the 36 Pe’s

of the first row. This Wavefront requires 22 cyclies as shown.

instructions cycles

2 fetches 8

2 flows 8

2 transfers 6
22

This Wavefront requires 22 x T(pe) = 22 * 30ns = 0.66 Ms,The

total time required by this Wwavefront array to compute Mat RN

function is as foilows.

(execution time/recursion) + 70 x (execution
time for second Wavefront) + 71 x (execution
time/Wavefront to send the data out)

(1.5 + 3.42) + 70 x (3.42) + 71 * (0.66)
291.18 M s.

Total time

In general for any N the total time is given as

- 193 ~

NESOOUDIOCLN AN
470 et Ay ATy i l
'I»«i’:‘«,‘.a l l

s .:'a b "" "' o.-’a. .'?"

W u, 'nu“ H ,0 S
LR s e ’ O '
A‘ 1, NSRRI l‘ 1 lqt g...‘*q.l

i

O
RERERILRR o.' (O m .,l,. '.2.2.,-\,1:.. ‘..o

'1 Al '|""'$: h't

.\,ﬁ.l\. KX

1¢¥ﬁ
= (1.5 + 3.42) + (2N-2) x (3.42) + (2N-1)%(0.66) :M';:"-
, "?
) _
5.5.3 System parameters E% '
A * \ ')
The Wavefront array is interfaced to a host [9],[12]. The AN }
parameters of this array processor system will be discussed. : ’
:‘:..::':‘.::..
I‘.‘I::‘l'::l::‘
e
5.5.3.1 Host -&@ﬁﬁ
The host performs the input-bound operations belonging to . WQW
. . . it
the Update covariance algorithm. The input-output bound $Q&§f
!, .o,.,v" 3
functions require 6338 operations as shown. ﬁ?&ﬁ%ﬁ
N 088
input-output bound functions operations Lot :@
Denom 287 c&ﬁﬁyﬁ
c 221 S, £\
RxX 5184 o::.n':,a‘i,ijt
v 216 o
w 144 - & t.
D 286 o
“““““ N A
6338 s '!?qf
BEh LKLY
"""" RN
r:\' . '::t:
Compute bound functions A and B are computed in parallel and “"‘”
Y) 1
require 331.08 /*s, Mat function requires 291.18 Hs, thus the E§q3§§
total time required by the compute bound operations is 622 p¢s. :2\¢E$
) I' WY
The iteration time for the Update covariance algorithm is &.8 AT
. . . N
ms. The input-output operations must be performed in 3.16 ms ?ﬂ&%ﬁ
)
. . Nl
which then requires a host of computational capacity of 2 MOPS. §aﬁﬁ§§
' o
Remember, as the host is interfaced with the high speed array)
processor units, a host is chosen not only with a computational
capacity of 2.0 MOPS, but also with a host bus that does not
form a bottleneck while transferring data to and from the
Wavefront arrays.
- 194 -

: ; t:}:-' NN 'g,!...o:::n' 0 .v.:.o.")
AROIEAGAG OOGOOMUR OGO MY
ey ‘.'\‘?"J:.t‘!'\‘:’\’:‘a".‘;‘!‘i".t‘!. o y

*

R O O O O A CS GG AANCAGASAAINICNA bt U ¥ ¢ ¥ 9.4 o ";’
oyt G dante it b bt d il bt b gt nt ettt gt R4 \ iy o
P O OGO I A AN N SR AU "' GG ::. DO R 5D) \J 3
RN 4‘,~:"v!,‘,::ot, Bttt f.‘va,“t.‘.:.“:,..o. A .s..l‘:::’.‘: "‘l:'o 0 oy & Q \ 'l::\ (M
Lo 37, A L) {
. ’)
) a. y

AR DA N '-‘\".:'. .“l:,\‘t:.' v

T O e O Y A A O A DN U A TR AU D TRV DR T TG RONUTONCAS
5.5.3.2 Wavefront array bus bandwidth

Three Wavefront arrays were selected to find the compute
bound functions. These Wavefront arrays were then connected to
a Wavefront bus which carries the input and output data for the
wavefront arrays. The Wavefront arrays consume data at a very
high rate which results in a large bandwidth for the Wavefront v“

‘A'.'c'

bus. The number of words consumed and supplied by an array is s

0‘ .'

easier to be determined for the Systolic array than for the
Wavefront array. This results because in Systolic arrays each
PE consumes data with respect to a time reference, whereas in
wavefront array each PE consumes data whenever the data is
available. Here, the worst case situation is determined. During

the worst case, at the peak instant, the linear array computing

function A consumes 37 words : the 36 PE’'s consume 36 words of
Rxx and the first PE consumes one word of X*. As PE's require 4
cycles or 120 ns to fetch a word, the Wavefront needs 37%2=74
bytes to be fetched in 120ns. The Wavefront array needs 616
Mbytes/sec bus bandwidth. Function B operates similariy to
function A and it also needs 616 Mbytes/sec bus bandwidth.

The Mat function consumes only 2 words per Wavefront, but
while the data stored in the registers of the PE’'s are brought
out, the Mat function outputs at the peak instant (worst case)
72 bytes in 120 ns (36 words out of first row and 36 words out
of first column). The Wavefront array computing Mat function
requires 600 Mbytes/sec.

As the Wavefront arrays computing function A and B operate

in parallel, the bandwidth required of the bus is doubled to

- 195 -

.. - -{v v} ‘.
' ’.‘ 0y 'A" 5V \‘g |‘ t’ l'q"‘a H':"' " “' ":p.‘ N "\‘ { V‘%; 1.""' .\ 'c:. ?\-‘ M M

n, ~ .,l l‘ W ’)?‘b A ~. |‘..|. '. .||.:|‘I ‘, Vot .‘
, ! . '..‘ i‘ Q,lu«h Mgn'loi"Og Q'l. “. \:. .i. ‘. '::ﬂ :

{
)
SO .“"” Q8 ’ :u o’n‘.'t'; a’n‘ 'iu t Wit o’t‘:'l‘n i“u‘l'rh.l 'av’l' _lt"-.'n" "\ o"‘c "

......

P NI UM LA LAY URY U LR LA ORI U TR
A 9. a0 el val, ¥ ¢, R
PNt tgl e BB GA ML QL S fal tah A ;F}v

v, ."4\"
AT
1232 Mbytes/sec. The Mat function is computed separately and Rootyn!
®
requires only 600 Mbytes/sec to fix the bandwidth of the Wavef- E V.ﬁ
g ¢
ettt
ront array bus to be 1232 Mbytes/sec. t?%??
b
vy O8]
Jyﬁ&
5.5 ”
.5.3.3 Bu (el
Buffer 9%*&%
» . ‘.
The buffer is required to store the data provided to the $ﬁﬁ§§
NGO
Wavefront arrays and the data received ¢rom the Wavefront 'Eéhmi
arrays. The buffer has to allocate N complex words each for xT fﬁ;ST
* . Wi
X, A, B and C. The buffer also has to allocate ~ complex words ﬁb Ny
O
for Rxx and Mat. In total the buffer requires 11088 bytes (for !'ﬁh
@
N=36) where each complex word requires 4 bytes. mbh
et 0
- 0':‘%"'1:"v
A summary of the various parameters discussed for the $ﬁ§ﬁ$
iy
Wavefront architecture is shown in Table 5.7. whﬁ
®
P ‘ | ‘ - ‘
. .0:'.0 .‘::
5.5.4 Architectural considerations 'ﬁﬁﬁﬁg
e,
. . . 0 '
Justification will be given for choosing Wavefront $¥h'
. .
architecture over the Systolic architecture for the update ‘ﬁ%$$
- . CARIOON
. SR
covariance algorithm. It will be shown that the Mat operation $§§&%
)
(outer-vector) product was the reason to choose Wavefront é *at
@
architecture. The issues considered in deciding on the suitable 3$§§E
g alay'e
architecture follows. ;ﬁ@ﬂ@
, t‘:'::z':‘:";
':‘25‘:‘.:’:
.
5§.5.4.1 Speed Variation w
?‘0’ .l’:‘
. l
A Wavefront array enjoys the performance advantage that ?wa§
;
results from each PE of the array being able to start computing m
as soon as 1its 1inputs are ready and to make its output gﬂkx

available as soon as it is finished computing. If different

4;1 “i ,‘lt‘ y' ‘l ' ARAE S,
e N SR
Vi 1'1 "‘:’k ':"'. W

s! N . K ‘i' | .f\:
: .\ c s‘ “‘ .l‘\h‘l“i' .“:'. l:.i‘\::cﬁ:&‘.'.l'\ l N, :“' ! l'. "'Q h.:"ﬁ

oY, 47 &' -
_f;‘* .,f ;3?‘;‘5‘

UN LY PPy

88, 8%, B%s 8% A% ‘B'a 87 Mg $% 4%,

o gb. 8% k's @

Table 5.7 Summary of VLSI architecture parameters for
Update covariance algorithm
— - e
| Functions
Parameters | | -
| A | B | Mat
| e R | ==
Number of PE’s | 36 | 36 | 1296
| I | |
| computational | | |
capacity/PE | 1.6 MOPS | 1.6 MOPS | 1.6 MOPS
I | I
time/iteration | 331 mus | 331 As | 291 fs
I | I
| speedup factor | 18.5 | 18.5 | 18.5
| I I I
wavefront array|) [
Bandwidth(peak | 616 Mb/sec | 616 Mb/sec| 600 Mb/sec
I | I
| I- |
Array Processor System Requirements
Host computational capacity 2.16 MOPS

Bandwidth of wavefront array bus

Buffer memory required

1232 Mb/sec
11088 bytes

- 197 -

DS
RN
J]j,!.

DM
;‘:.0 "’x'v'c A A

‘Q "
"t ‘u’ 't’w:t‘ '6“":' .0 0,0
,’“ o,)0 ". '..:," "Iabq‘

.‘-.v..gtnolq('

h"’

llin
’ []
SO

A AN
"':!:a.t

l’ '."l

.l'\o"'t"

G

?:m

R R TN R R LN LY A A N U R R A U U D T O T T R N D O S o S N T R T e ST o
.‘%l"‘q‘“
i
iy’ |‘l,|]

AR

kinds of computations are taking place in the computing array, .)
i i.e., speed variations 1in computations exist, then the data- gﬁ.‘“
dependence property of Wavefront arrays will be an advantage. ufﬁhv
This advantage is used in the Update covariance algorithm when ' ;h
two different computation (Wavefronts) were pipeiined for every N%if?é
recursion. These two computations require different speeds ‘ﬁyﬁﬁm
(need different execution times) and if operated on a Systolic l ‘h““
array, then the array will be clocked at the rate of the wg;&“

slowest operation. Let us compare the time taken for the 362 3¢$
complex multiplications performed for the Mat operation by the ?
Systolic and the Wavefront arrays. Note that 1in the ';:}gé:
asynchronous scheme, (Wavefront) fiow and fetch are separate E MVN‘
tasks; 1in a synchronous array (Systolic) with a two phase %“v
clock, they may be combined into one task [11] that involves a (5&f *
simultaneocous flow to left and fetch from right, or flow down ‘%y%

and fetch from up. This combination is clearly an attribute and !
is taken into consideration 1in the synchronous (Systolic) jgz;'
model. When the Mat operation takes place in the Systoilic é?ﬁﬁ%;
array, there exists no speed variation and in each time unit 1 e
the PE’s perform a complex multiplication. The Systolic array ‘&p.ﬁk
requires (2 N -1) x*x (execution time/complex mu]tiplication) = r&%@%;
(71 x (1.26 + 3.18)) = 315.24 Ms. The time of 315.24 Ms is - ;i
for the 36 complex multiplications and the result is still in ..E:‘::.:.\.'
the PE registers. In the Wavefront this 36 complex mul- j*;wnf
tiplications due to speed variations require only 244.32 Hs a Hﬁk"ﬁ
savings of 71 Ms over the Systolic implementation. Also note ;2$af
that though handshaking procedures [11] are used in exchanging ;ﬁ%&g&

U ()
- 198 -

RS 'j‘;’a, st ‘-. i "g";:.::;:::.s:?.:::.::: ..~:. '::- ’::'5".3" ‘ AR SE‘*’ ' ,;.‘ RN
' SRROOHOICEISI SRR IR ,uo‘o,u' o) h. by . \ G:'!'"HO) o'u "&

data between PE’s, no time is lost in doing so. This results

because after a 'flow’ has been executed by a PE, it starts
implementing its next task concurrently with the 'fetch’
executed by the neighboring PE, hence no waiting.

Thus from the speed variation issue the Wavefront array is

more suited than the Systolic array for the Mat operation.

5.5.4.2 Clock skew

The Systolic array is an example of a totally synchronous
system and therefore suffers from clock skew. The clock skew
phenomenon arises from three factors [11]
1. the RC of the global distribution network
2. the variance in values of gate threshold voltage (Vt)

of the PE gate
3. unequal clock paths to various PE’'s in the array
when different PE’s receive clock signals by different paths,
they may not receive clocking events at the same time, potent-
jally causing synchronization failure. To eliminate the clock
skew due to unequal clock paths, the PE’s of the square array
use a H-tree clock distribution network [11] (Figure 5.9)., If
the H-tree is complete, then the clock skew is due to the R,C
and VvVt and it increases as O(Na); where N is given by the
relation

q = logzN

and where q is the number of levels of the network. The Mat
operation employs an array of 1296 PE’s (36 by 36). Now for a

square array of 1296 PE’s, there are 6 levels, therefore, the

- 199 -

'L Bad

e
b 5 1

RS . Sa 3 cp Wy gia Ala B e Bin ATe $ra 270 A% 300 0 BT 000 80 8V Ha 800 000 8 0,000 K00, 070 0 B 0" 08 0t .0 40 RV o..-’.’- .ﬂ.
l
l .:.H.n

's
'

Figure 5.9 H-tree clock distribution network *;ﬂ" W
for square arrays {11) '!."'

ETe
I

‘t'. 0"‘0‘.‘
" ‘| 6

..i

‘: o
O

Figure 5.10 Clock skew vs N [11]

SKEX (NSEC)
%8, ‘. adadas .-A".J_u.u aalas a
- -
es. 3
-« E
e00. b o
s b :.
o 3
3 3
’ s -
] 3
100, b o
: 3 0.2 ¢}
sy 3 : 3
3 4
8.8 b =
3 3
.8 b o
< -
04 000€+ 00 Srerrrrey yrrrrer
. 000400 20.8 40.8 0.8 8.4
N
"I ']
W)
PO XX
A ¢::'||:::\
~
- 200 - ":-':v"
l"'fl'f A
'| . . ' !

LA - J
w-\-\ "‘w&m&r ,}u ‘; -r.yr i;f:ﬁt& 3
w{'

':n sttty

g g B P Sig Ty Fy 0'? 1y
BN ‘. ‘ ‘., ‘5 :L‘ i:‘ fl‘ﬁ “‘ ’i’*". H'O A0 :‘.'
») : r'* ’a'v’ ’p lp(. .. N ot g
v'.l 4‘\.V . N N R '.

B o O
o "'lo"' X0 -'i':' 0 ""fn!i"‘ '. g \'0.:' v‘l.n‘ b' 0.0 (X v" 0"‘0" (T

T R R N R H AL TN AR T ENCYLNY WU v v, WU O R OO OO R T Uy

clock skew increases as 0(64%*3), It has been determined by
simulation [11] that the clock skew is a function of N and is
shown (for different values of metal content (r) of clock
distribution path) in Figure 5.10. It can be seen for N=64 the
clock skew is about 100 ns. The clock skew in the 1296 PE array
will be higher than this as the H-tree is not complete (needs
4096 PE’s for a complete H-tree for level 6). In the best case,
the PE in the Systolic array will be clocking at clock period
of T(ck), where T(ck) - T(pe) = T{(skew). The <clock period in
the array is T(ck) = 30 + 100 = 130ns which increases the time
required to compute the 36 complex multiplication needed, from
315.24 Ms to 1.36 nms.

One way the clock skew can be reduced is by partitioning
the problem and using a smaller array. For example, if a square
array of 18 by 18 PE’s is used, then the clock skew is reduced
considerably. But the price paid is in increased time for Mat
operation computation; the speed up has therefore been reduced
by 0.75. This 1is easily seen as the square array has to be
traversed four times to complete the 36 complex multiplication
on a 18 by 18 square array. Remember that the time taken to
get the results stored in the registers of PE's out of the
array will increase. Also the PE's will require more registers
as 4 complex words of the result are stored.

Due to the noted results, the Wavefront array was
considered more favorable than the Systolic array for the Mat
operation; hence the Update covariance algorithm.

The Wavefront design has interrelated system parameters. If

- 201 -

0
+ by :“
(e IS T
IR RN
LRl ”!‘a-?‘:.‘btl«‘ :

. L A LPN]

NN

.Li<’|;lghyl.|g‘lr’.i
PRI XS :\73“ USR]
1

3. 004,0 | AR U (X vy I. BN
AN
OO KK] U i) § el Y
DUILOCOOOCN L XL RIOOL MR DY
U U e A R L A A MO R TOOAR Y Y
St el l':fl‘:',:'.'i'a'.t‘:ft':!‘."o'

YL U DY TN ", g
AN

)
"'.. .' \)

!.::!.:...ll'!'!"

¥ ‘."l" I‘i‘.‘)
PO

A
ol il
LRI
R

] (}
by .w- N
':"'.5:'?*‘:“5
N
|.~ |'(
4‘.5!»!' .
]
NGRS
SOAAIMN
R

(]
RO

‘i"'@'of':i' %
)]
fh$%¢d§

3o 0k o atR A atE mtY i ave a YRRt ulE et eV ate oA a2 a B atE a8 ah 0 8 s 8 a1 s M 4% 0852 08° V2% 04" BR°0 pat oo ga> griodie

e

)
the bandwidth of the Wavefront bus needs to be lowered, a e
i
slower PE is needed. This increases the computation time of the ..‘l' .,:::;
ot
compute bound operations which, in turn, leads to a need for a :n".‘&-f‘
ot
host with a computational capacity of more than 2 MOPS. o
)
Oty it
"‘I'::O':.I'
s
t."l".(
5.6 Chapter summary :N.':::"::‘f
o S
In this chapter hardware evaluations were performed to g
3 :\’ o :
' determine the suitability of the Update covariance algorithm . \%
s o, h
for general purpose microprocessor architecture, Digital signal @i‘*"»ﬁ
Eal)
processor architecture and the VLSI architecture. ®
|"|‘;,.t'
The following isssues were considered while evaluating the .::':1:::':‘5
J
l‘:‘!:ﬁ‘:’l:
various architectures: .!'Vto'.':|;'
land :t'!l.."f
’ 1) the computational complexity of the Update covariance o o
(RN N
QAN
2) the input requirements - the input samples arrive every ;'.l‘::',:i:"
1 ':lg::l'.a:"
3.8 ms kl'q.t'{,l:
. XN
3) the characteristics of the architecture .
e
Considering these points, complexity was obtained for each :-.
e
architecture. A complexity of 27 for the microprocessor .o.:':.lj
Sty
architecture and 4 for the DSP architecture was found. More RO
\
Aty
chips were needed by the microprocessor architecture because .",::::::
0..
B the microprocessor architecture needs 16 Ms to compute a %.é:%::
3) ' . At
- complex multiply-add, and the DSP architecture requires only v‘.
,\\\) AN
AR TR
1.4 Ms. Next an architecture was developed for the update ‘%‘5\}\::\
- *“;\‘it\
Ly Agay
covariance algorithm in a 4 DSP chip environment. It was found [ﬁ*{%ﬁl&
SORE AN
that the iteration took 2.655 ms to provide 37 iterations -z ,,.
p gttt
. 3 . ' ‘.
during the period of 100ms. This ensured, on a average, at ,‘.:,:.i:::
Brialind
least one convergence per 100ms. Due to the requirement of :;:0"":’
]
o-.r‘.u-.o
Yot
'gb'.‘l
- 202 - k:"'o‘::‘s
¢ QM
..:::‘a.c
)
.40

S [00 . .
., Fin ;:.":*f"‘ﬁ"" U0 ;.!'t.i .“ 5N i AL

W R s. ;
SN Arh’n’a .s. ;' 0. ey ; v 3) N ..
) U Q ')‘ '. { Q LAY,
1 RO ?"':""""’*:og:. Wy N ')..l QQ. EF v Do e e _). 1

z.‘gla

¥, .. .
"’a'! X .’0. i"‘a ""’ “ 0’\ A

..-h

\l
‘,‘l

)'l

- -4, PR o . R Bl e Al . . fav
RN R TR UNERIE WA N W R N U M YOd TUR ORI R AN SO SN S s Sa- fov da? iy TR

storage of intermediate results, this environment required 12.1
Kbytes of data storage.

Next, two VLSI architectures, Systolic and Wavefront, were
considered for the Update covariance algorithm. One of the
compute bound operations was an outer vector product, demanding
a square array of 1296 PE’s (using 36 antenna elements). Due to
clock skew and speed variation factors, the Wavefront array was
considered a better suited architecture than the Systolic for
the outer vector product, hence, the Update covariance algo-
rithm. The number of PE’'s that could be placed on a single chip
is limited by the present technology. A PE with a clock cycle
of 30 ns was used which established the requirement of 0.622
/”s to compute the compute bound operations. This result meant
that the Wavefront bus had to have a bandwidth of 1232
Mbytes/sec, and a host computational capacity of 2 MOPS. The
result is a very high complexity for the VLSI architecture
design.

It can be firmly concluded ffom the analysis, the DSP
architecture is best suited for the update covariance algo-

rithm.

- 203 -

XA

DOSMRNX XX IR0 IR
' \’ » A’- »,, 4' K) “l) . . ' ‘ ;‘\ ::l :‘\ |: . ‘::.'t: ..0 l s
N h

) O ﬁ ﬂ \f '] v‘v
LIRSS l ol ﬁlh
’4 '..' :' Ny H o0 "o" r" (M "‘. ."'::“. X ol ". .Q. .!".t l‘ \ "

.
c" v, X O ' ‘ ""‘ P, ‘v‘ .Q' .b‘ .!h.i .l:"l .0‘ ". .' "' |'.“ o .. .|i' .’. ") .|' ’.‘

VNN R T U AL AU IS ZY ‘g 408 AtR AR ALAabR alEva i o lRw Rat i L (a® $aV §.0 0.8 ub B8 LA'RIR 8" (N 1 4%

6.0 CONCLUSIONS AND RECOMMENDATIONS

A feasibility study was performed to determine the
suitability of the HF adaptive control algorithms for the
general purpose microprocessor architecture, the Digital signal
processor architecture and the VLSI architecture. The
complexity of the adaptive algorithms considered for study of
the various hardware architectures is indicated in Table 6.1.
The digital signal processor architecture has been shown to be
the best suited architecture for the adaptive algorithms that
were considered. The reason being that the sum-of-products
computations dominated in the algorithms considered for study,
and arithmetic units, performing the basic function AX + Y -> Y
are best suited, such as present in DSP architecture.

For adaptive algorithms, feedback exists from the output
back to the input that requires the total input-to-output delay
be less than one sample period. This total latency constraint
(determined by previous simulation studies) causes a cascaded
(pipelined) chain of processors to be unsuitable for adaptive
algorithms. System architectures were developed for the
feasible hardware structures and the analysis indicates that a
parallel configuration (in contrast to cascade configuration)
allows multiprocessing by providing the output within one
sample period. For the adaptive algorithms considered the
time/iteration achieved by the best suited architecture is
shown in Table 6.2. The reason for developing system architec-
tures for the best suited technology is to determine whether

the time involved in the communication of data between

- 204 -

DO A O ICOR Q0 Wey ﬂ Rl \
o ‘e“.‘»‘ T o"'.v:‘:"‘ P.) t"‘t .':‘n . .:: "‘ o "":"“

;]

,-‘,>j|v'1",$;’t"l. .1;0, 'l\'l.’l

RGN 1" KK ..a'.' X ‘, “::::.\. ‘0
e ’nl'i'.’ ~:‘l|‘ 'l;". .'I.‘l H. .b‘.‘

AN X

]

o v
Py 8
§$555s
2Ll

%

AL FELLS
R
wolel

Date
.

oy

= AT
4,

T OTY
R TV R R N R R M T WO NS X O X W R NN My Y

Table §.1 Complexity of the adaptive algorithms for the
architectures considered

various hardware

| |

| | Architectures

| Algorithm | [!

| | microprocessor | pse | VLSI

| | | | -

| Las | 12 | 1 | -not applicable-

| ! | |

| c~Las | 281 | 23 | 6 - 9 (custom chips)

i | | | + 10 MOPS (host)

| ! | |

| Update covariance| 27 | 4] - high -

| | | |

! | I f -=
- 205 -

™
’ L 0 0 e B Y i
SR e
2 D 4
AR AN ‘h‘-"l..'.“‘l..“n'!‘?"'s‘..‘\".‘\.,'\“-.\“JI"-'!‘!‘!’!‘\'&“-{U ?h‘!l.‘ (Nl

W Cu s

A\) " LS, R Fi i WA

'!.i.\’..‘ R e A AN o
4

B N
o
..a o 50

O AN X)

f
|
|
|
|
I
I
I
|
|
I

R L LN Ry R R e G RN L I et o Lo E "

AN ST NIRRT LN TR T I NI T A s LA R T T A n U

..":%-"h"“-::"::’n':'a"'n‘:';::'o"‘u' AR AR '::.:"::‘ o .:'.9 W N PNl gt a’-."'!.f‘."'\.SN RN
f R \) »

Ly

-.“'&" X
z
ey

AV
®
WaaiRhtY
l‘|| :r""":
\v_p .
0‘..!.“‘."
."Rr '-}.:”
NS
e
: f&?ﬁ
AR
L
N)
. 0

e
NN
i,

o
o

&
Ll

<y
&

ol J
i

« 'Y
=)
AR
(."‘.
[4

Pae B
a,

o,

&

4

Z

FETENU YN AN Wod W0 L WK

Data memory
requirement

Time/{iteration
system design

chips used for
system design

Number of DSP

107.5 ms
A4S
3.8 wms

HF constraints
86

Time/iteration

o

Initial assessment
on the number of

DSP chips

L
o
d
=]
]
o
]
o
ol
£
Q
-
L]
°
[
]
jvond
]
"]
&
")
®
a
[
=
P
12
]
LY
o
o
Q.
Q
-
L d
>
©
il

Algorithm

':"'%"'-""' A
r Iﬂtwa

L]
v
15
3
e}
Q
[
e
-l
£
2]
L
<
E
[
e
]
>
w
o
£
I
>
a2
o
[
>
]
-t
£
3]
L]
<
]
el
»
[]
L
[]
»
-l
N
o
]
-y
(3]
~
-]
o
-4
a2
9
(]

Yo G \:‘ ..t.t OO
*$'§'V |'0 Vilyh . ‘ h I .
R ."5 .n..'c'.s. o ‘u.. .u.. ..0-
“'a '. ‘.‘1|~“’t"':'. . ..6|. * .’ .. .
‘a » kb-,‘q"'.' y"‘.. R0 ‘.I‘. l " ‘

processors introduces additional computational capacity for the

algorithms that further increases the complexity. Note that the
LMS algorithm requires a loosely coupled system as the update
of one weight is independent of the update of another, whereas
the c-LMS algorithm results in a tightly coupled system because
of large communication overhead due to passing of intermediate
data.

The c-LMS algorithm was the most complex algorithm to
implement. Though both the update covariance and the c-LMS
algorithm have the computational complexity of O(N2); due to
the presence of parallelism among functions and the requirement
of fewer iterations to converge (by the update covariance
algorithm) makes the c-LMS algorithm more complex. The DSP
architecture was a better choice because of the nature of the
complex interface between the host and the Systolic array, and
the requirement of large number of pins needed by the chips in
the Systolic array. The VLSI computing str cture 1is a better
choice as the number of antenna elements in the adaptive array
increase. For example, when the number of antenna elements
increases to 64, 70 DSP chips are required to compute the
bottleneck operation, matrix-vector product, to obtain an
output every sampling period. The Systolic array requires only
between 12 to 16 custom VLSI chips, each chip performing simple
operations.

Linear code was used whenever ©possible in the system
architecture to increase speed. A fixed point implementation

, (as time per recursion is small) providing 16 bits each for the

- 207 -

- o - OV
- Y Q ‘* 4‘2_ :&h_ K} ’\Qw .ﬂ ' 0 "I Wy “} ‘O '."‘.\"g ' * *\&
" e & My a ‘ :t ~h

e ‘a -‘a’-

N

I‘ l.‘\g

e
\I 0
\I s H u'u Y

A .)
Q'O 1. .C‘i.‘ ‘. k‘ ql. AL A . A .n"'$.n’. "

1 r,\“ ‘ ‘.ﬂ ’,

"gﬁﬂ\ X

x ”x

"la'*. l.c ; ‘ ~

g 'S‘N '*; " f f -~ f'a X ot *2
eﬁf

AJOA ."‘,.»

R Y R R R Y I R o e R o S A O O O e O T SO O O O O OO O W XL

L

-
o

o o d
3
-
sl

L]

I and Q channels (dynamic range of 96 db). In this study fixed

g
ot)
-
£l
-’
o
-

e
e
VT
s
el

o~
)

point implementation with truncation was used. This results in

T e T

<,

«
oy

!
<

8
2
e,
-

(2

L3¢

numerical problems [28]. With the advent of faster floating-
point DSP chips [29], and to avoid numerical problems the

floating-point DSP processors is recommended.

R S R

Al
; LA
S o

- 208 - e

"". ' * m X " W ‘ ﬁ' s 5,*“ “‘)‘ "'-‘ U w (\ N ‘-"-."u\",-.‘.-\.’-

!' " 0" \(E-‘“ o :~:" "‘.- '_'-‘-’- ‘-.._*- SN
.|':'|.: ‘| C':.l':'i':: i "-$ M "p«:: ~ e -\ \H f'_ .’i\’ .»
WU "!%'I‘n't'c O cﬁ NOX 0'. a WA 50, W <

N
lo'q ' “""::'I.. I":O':' v ::

'%w vﬁd
4‘ -' (0N

REFERENCES ':: R,

)
(1] Darin S. Haegert, "Adaptive Algorithms for HF Antenna . |¢b&
Arrays,” M.S. project report, Dept. of Electrical and |h£ mﬂ%
Computer Engineering, 1984. &'”

(2] "MC68020 32-bit Microproccessor User’'s Manual," Prentice
Hall, Inc., Englewood Cliffs, N.J, 1984.

{3] M. Schwartz, J. Schiappacasse, and G. Baskerville,
"Signal Processor's Multiple Memory Buses Shuttle Data
Swiftly," Electronic Design, Feb 20, 1986.

(4] H. Ahmed, J. Delosme, and M. Morf, "Highly Concurrent
Computing Structures for Matrix Arithmetic and Signal
Processing," IEEE Computer, Jan 1982.

(5] H. Whitehouse, J. Speiser, and K. Bromley, "Signal
Processing Applications of Concurrent Array Processor
- Technology,” VLSI and Modern Signal Processing, S.Y.

Kung et al. eds., Prentice-Hall, Inc., Englewood Cliffs,
1985.

(6] H.T. Kung, "Why Systolic Architectures,” IEEE Computer,
Jan 1982.

[7] C. Mead, and L. Conway, Introduction to VLSI Systems,
Addison-Wesley publishing Company, Chapter on ‘ Uy
'Algorithms for VLSI Processor Arrays’', by H.T Kung, and b '&5?*1

RO
C.E. Leiserson. gt
[] ®
(8] K. Hwang, and F.A. Briggs, Computer Architecture and ﬁa mqﬂ
Parallel Processing, McGraw-Hill Book Company, 1984. Hﬁh
! 'ﬂw
¢
(9] S.Y. Kung, "VLSI Array Processors," IEEE, ASSP “ﬂﬁ§§§§
: Magazine, July 1985. AN
. . » e
(10] S.Y. Kung, K.S. Arun, R.J. Gal-ezer, and D.V. Bhaskar ' LTy
Rao, "Wavefront Array Processor: Language, ?%:&»i‘
Architecture, and Applications,” IEEE Transactions on ;gﬁ‘ﬁﬁg
Computers, Nov 1982. y;ﬁ%kyz;
uJ ‘rﬁ‘*\'
(11] S.Y. Kung, and R.J. Gal-ezer, "Synchronous versus -
Asynchronous Computation in Very Large Scale Integrated rg\'m.ﬁ
(VLSI) Array Processors,” SPIE Vol 341, Real time signal BN 0&{
processing V, 1982. ?ﬂ?‘l‘ﬁ
PR
{12] A.L. Fisher, and H.T. Kung, "Special-Purpose VLSI ;\% o

- 209 -

R U, 'M}
|' Qb‘. \“‘("n Qs 1?\(

‘.\. £ n\-\'*(a2
¥
'~§:‘:‘n !z‘ ‘w‘-.:‘l e "':?o v'l'o X "m 2 |!l.t!'.o. Ot A '.:'

(13}

(14]

(15]

(161

(17]

(18]

(191

(20]

{21]

f22]

{23]

[24]

[25]

I;'

B T N I AN AN
o 'ﬁ"#l" : » ‘\ z.‘ AN "“‘f ‘Q"“Q

Ad Ok
"::' :::::::

Architectures: General Discussions and a Case Study,”
VLSI and Modern Signal Processing, S.Y. Kung et al.,
Editors. Prentice-Hall Inc., 1985.

B. Widrow, P. Mantey, L. Griffiths, and B. Goode,
"Adaptive Antenna Systems," Proceedings of the IEEE,
Vol. 55, Dec. 1967.

B.A. Bowen and W.R. Brown, Systems Design- Volume II of
VLSI Systems Design for Digital Signal Processing,
Prentice-Hall, Inc., 1985.

V.B. Lawrence, and S.K. Tewksbury, "Multiprocessor
Implementation of Adapative Digital Filters," IEEE
Transactions on Communications, June 1983.

B. Widrow, S.D. Stearns, Adaptive Signal Processing,
Prentice-Hall, Inc., 1985.

R.T. Compton Jr., "An Adaptive Array in a Spread
Spectrum Communication System," Proceedings of the IEEE,
March 1978.

O.L. Frost III, "An Algorithm for Linearly Constrained
Adaptive Array Processors," Proceedings of the IEEE,
August. 1972.

K. Takao, M. Fujita, and T. Nishi, "An Adaptive Antenna
Array Under Directional Constraint," IEEE Transactions
on Antennas and Propagation, Sept 1976.

A.L. Fisher, and H.T. Kung, "Synchronizing large VLSI
processor arrays,' ACM, 1983.

R. Schreiber, and P.J. Kuekes, "Systolic Linear Algebra
Machines in Digital Signal Processing,” VLSI and Modern

Signal Processing, S$.Y. Kung et al., eds. Prentice-Hall, 3{ qﬁ#
Inc., 1985.

\.I“.l
E.E. Swartzlande, Jr., VLSI Signal Processing Systems, bmhﬁm"

Kluwer Academic Publishers, 1986.

A.V. Kulkarni, and D.W.L. Yen, "Systolic Processing and
an Implementation for Signal and Image Processing,” IEEE
Transactions on Computers, Vol. C-31, No. 10, Oct 1982.

J. Blackmer, G. Frank, and P. Kuekes, "A 200 Million
Operations per Second (MOPS) Systolic Processor,” SPIE A
Vol. 298, Real Time Signal Processing IV, 1981. d? 1w
R.A. Monzingo, and T.W. Miller, Introduction to
Adaptive Arrays, John Wiley and Sons, N.Y., 1980.

- 210 -

v :.’ .0.“;?‘ 'b:"‘s’ Q"‘, " ({’\‘ [f ;(’ ;:':.:;i-: .‘. |.'| ﬁ; . l‘,y ¥y Y .;: :‘li{;:\.“ x'*'\""u:.
sc AL (0 S ls A » ()
R R R S R

¥) ii’
ity 5*;“3 t 'v‘

ROARNANRNAT* AR /A .;‘

"I"\ |'.

|‘t" l'.‘o' ‘
{26] S.Y.Kung, "VLSI Array Processor for Signal Processing," al
presented at the Conf. Advanced Res. in Integrated
circuits, M.I1.T., Cambridge, Jan 28-30, 1980 Nﬁh

(27) J.M.Speiser and H.J. Whitehouse, "Architectures for Real @
Time Matrix Operations,”" in Proc. GOMAC, Nov. 1980. R

{28] T.Thong and B.Liu, "Fixed-pt Fast Fourier Transform ininde
Error Analysis,"” IEEE Trans. Acoust., Speech, Signal V%ﬂww
Processing, vol. ASSP-24, pp. 563-573, Dec. 1976. NN

{29) Amnon Aliphas and Joel A.Feldman, "The Versatility of "f'ﬁ'

B dan iy
Digital Signal Processing Chips," IEEE Spectrum, June && "
1987.

. .
- 211 - ~.::'3::3>:'2'

u ‘n‘i‘;a'li

.'»..M' o ‘.,. S fw;;c-x;a:\« SRR '\:3;-:

R e ;’,,\' o 4\ |‘ I’q “'.:‘ (X ‘
h“' ,‘:"‘ a";mu a h"t’ I" ," 'p" '0

P (Y . ‘

% .l, \‘ ..A i ‘s’ s"'t' o‘n‘ IR o .':tt'. s':‘t' "\ ‘\‘.. n‘. ‘3‘.‘.‘0 »"‘s‘. u::‘n‘. W n'\."‘

RN ‘5%

