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I1. OWCT•!

The objective of the proposei work is to develop a computer model capable

of predictitvg the distribution of solid particle constituents during the

processing of solid propellants.

2. IMNTODUCTILW

In order to control the propellant burning rate and, hence, the propul-

sive performance of a solid rocket motor, it is essential t, create a desired

particle distribution throughout a solid propellant. It is therefore desir-

able to determine, via computation, the distribution of particulates during

casting of solid rocket fuel. The present program, fundamental in nature,

, J-eared toward initiating, understanding, and modeling the mechanisms that

control the distribution of solid particle constituents during the processing

of a solid propellant.

The propellant casting can be considered as a multiphase flow process

with a dense suspension fluid in creeping motion. In such a case, the shear

resistance (shear lift phenomenon), relaxation pher .menon due to particle-

particle interaction, particle-fluid interaction, and particle-wall inter-

action predominate even though the fluid phase (binders) may be serving the

main function of transporting. Even if we start with a uniform mix of

particles of various sizes, non-uniformity may result from:

(1) particle-f luid interactions alone - small particles due to

shear lift force tend to move away from the wall faster than

large particles.

(2) particle-particle interactions alone - small particles tend to

act as a fluid, exerting a shear lift force on the large par-

ticles. The large particles tend to move away from the wall

faster than the small particles.
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(3) the boundary condition at the wall where the fluid velocity

must be zetu, but the particle velocity may have a finite

valie (slip motion). Thus, particles tend to migrate toward

the center of the passage or away from the wall.

These expected facts[l] are in agreement with observation by Bradfield(2] of

WRE (Weapons Research Establishment).

In treating the present problem of transient flow with solids of various

particle sizes in a liquid suspension, we need to consider:

(1) shear lift phenomenon,

(2) particle-particle interaction,

(3) particle-fluid interactions, and

(4) particle-wall interactions.

The shear lift phenomenon of solid particles in a fluid was formulated by

Saffman[31, studied experimentally by Segr* and Silberberg[4], and correlated

by Soo[5I, including the resultant concentration in steady or depositing

flow[6]. The effect of particle diffusivity was found to be- important. Segrd

and Silberberg[4] particularly identified that in laminar pipe flow of a sus-

pension of neutral buoyancy, the maximum concentration of particles tends to

occur at 2/3 radius from the pipe axis, that is, toward the wall, than toward

the center. Many of these basic relations concerning the distribution of

particulates in a fluid need to be synthesized and formulated for the present

system.

It should be noted that very little work has been done, both experimen-

tally and theoretically, vn dense suspension systems.

3. MATHEMATICAL MDDELING

3.1 Miltiple Velocity Field Model or Multifluid Model

Use of a multiple velocity field model calls for a set of formulations

including continuity and momentum equations of phases, or in the present case,
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components. The continuity equations are

a k 10 U-) -0 (1)

a-(e 2p2.) -+ 
(2)

at' + V e 3P343)" 0 (3)

where 01, pl, Y- refer to the volume fraction, the material density, and the

velocity of the binder; subscripts 2 refer to the aluminum powder and 3 refers

to the ammonium perchlorate powder. For the example of 81 - 0.2352, 02 -

0.1269, and 03 - 0.6379, noting that 81 + 62 + 83 - 1. The momentum equations

are

111 v • (01p1 .U1 JU1 ) - -1VP + V e m + Ij.pj-tj - K12(U1 - -L2)

- K13  1 - u3 ) (4)

S+ V• (ea 8e 2P' 2•.2

at 2P2+U2-U-U2 ) - O2VP + V 2m + 2P292 K21(42 -'- 1)

- K2 3 (1_2 -_4 3 ) (5)

a e3P 3R3

at + v • (8 3 p3 -Ui 3) -- 3VP + v 13m + 'PA3- K3 1 (U3 - R1)

32 (4L3 - 9L2)(6

where P is the pressure, rIm is the shear stress of component 1 in the

mix.ture, _ is the field force per unIt mass on component 1 and may include

that due to the shear lift effect*. K12 is the interfacial momentum transfer

coefficient including drag between phase 2 and phase 1, etc., where

*The magnitude of shear lift here is seen not to be influenced by the rotation
of the particles[3].

II 3



K12 - e 1PlF1 2 , etc.

F1 2 is the inverse relaxation time for momentum transfer from phase 2 to phase

1, etc., and

jp1 lF1 2 - e 2 P 2 F 2 1  or K12 - K2 1

etc. from action and reaction. With correct boundary conditions, Eqs. 1 to 6

are solved for r-n isothermal system to determine the volume fraction and

velocity distribution of phases. Transport properties are needed to determine

T 1 m etc. and Fj 2 etc. F 1 2 , F2 1 , F1 3 , and F 3 1 arise from fluid-particle

interaction. F2 3 or F3 2 arises from particle-particle interaction. These

quantities depend on the properties of materials and operating conditions;

non-Newtonian behaviors are expected for the present syscem.

For given initial conditions, pertinent boundary conditions for the above

equation for flow through a pipe of radius R include

r R, Ulz -

au•)2z

2z -21 r R

au3z3
3z 31 ar R

for the axial velocities, where L2 1 is the interaction length of particle to

fluie, leading to slip motion and L2 1 2K7Au)2 / 21 where is

the relative intensity of motion of phase 2 in 1, and F2 1 can be large for

small particles in a viscous fluid. A limiting case will be

SaU2z/ar - aU 3 z/r - 0.

Since the particulate material finally set in their place by solidification

rather than by deposition, the boundary condition for the volume fraction of

4
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particle@ at the vall is given by [6] (k - 2, 3)

Dku a- IR = ckfk iki

While TIM is defined according to the multiphase formulation, Its

determination for the present system Is complicated because of a dense

suspension. Based on the theory of dense suspensions[7], TIM is expected to

be greater than Ti (pure binder). In general T. of the mixture is strongly

influenced by the perchlorate powder (63% by volume). Unlike the case of a

dilute suspension, T1., T2,, 13, are not readily determined at this time. (In

the case of dilute suspensions of 2 and 3, TIM - TI, T2m I D2 202P 2 , T3 * -

D3me3P3; D2 a is the diffusivity of particles 2 in the mixture. Likewise, D3m

is the ditffutivity of particles 3 in the mixture.) In the present case, it

suffices to say that T2m- 2n2,k where P2. is the viscosity of phase 2 in the

mixture, A2 is the deformation tensor of the motion, of phase 2, and A2% is

related to D2m according to the relation of a dense suspension[ 7 ].

Computations based on the uiltifluid model calls for simultaneous solu-

tion of Eqa. 1 to 6 with pertinent boundary conditions and accurate transport

properties F2 1 , F3 1 , F3 2 and 01M. P2m, 'and u3n. The latter are not readily

computed or measured; often the best ve can menage is the viscosity of the

mixture. The closeness, though different, of the phase velocities also

suggests that the mixture velocity may be suffic.iently representative. Thus,

it leads us to use the relatively simple single velocity field model as

described in the following section.

3.2 Single Velocity Field Model

Summing Eqs. 4, 5, and 6 gives the momentum equation of the mixture as

ap U_ _

W +v V (P U U) + V *

1,2,3

5



VP - V + V • * + P (7)

T while internal action and reactiou for momentum transfer cancel each

other. The mixture density and velocity are defined by

- • ekPk
1,2,3

and

"OI -"1,•, p' (8)

while the field force is given by

1,2,3

for k - 1, 2, 3 as in Section 3.1. For a dense mixture, the velocity

difference (i -U_) s small and the third term on the left side of Eq. 7 can

be neglected.

Equations. 2 and 3 can be modified by considering the continuity equation

of the mixture obtained from suming Eqs. 1, 2, and 3, or

ap a
at

The continuity equation of spccies k (k - 2, 3) can be rewritten as

aPk~ +(

at v • (e V*) -v • kek( -143. (10)

Since pkek(.- Y. -. k, the general flux of phase k, we have

ap +va - -~k v * .• (1.1)
-Pk+ V -V 11at

or

'P~k +U dp k k (2
at -U POk"J -kUm - V *- k -d (12)

In terms of mass fraction ck - ekPk/Pm, Eq. 11 becomes

6



'*u (+p) (13)
atsc

Subtracting the product of €k and Eq. 9 from Eq. 13, and rearranging, we get

a (14)

or

d ck%T -- - • * k " (15)
m

For nearly constant pm, the component continuity equatirin takes the form

d pkek apke. + U V V

d t at oU (Pkek -

Either Eqs. 5 or 6, neglecting inertial forces, pressure gradient, and

assuming equal particle velocities and bivper velocicy approximately equal to

the mixture velocity, gives

j kk + V (pkVk) (17)k1ik

for drift by field forces and diffusion by concentration gradient. This is

because shear resistance in a suspension arises from resistance to transport

of momentum by diffusion. The kinematic viscosity and diffusivity Dko, are

Srelated byU . 1~~km 8 kk vu(8

with the correspondence of (vkm/Fkl) V !k - -Dkm. This correspondence serves

to explain the relation between the diffusion model and the multifluid

mode±. It is noted that the diffusion flux is usually derived in a different

manner[8]. Equation 16 now reduces for nearly constant pm toK 7
Moi

~ Mf I% bi %L Rul~inAM ~



i7
aPkOk + -

+ " ( [V. V (kk) -P ekkPk/Fkl] (19)

which is the diffusion equation.

The diffusion equation renders the continuity equation of phase k

independent of its momentum equation. However, once ek is determined, A can

still be calculated from its momentum equation if it is needed. Often a

knowledge of the distribution of ek is sufficient. Equations 7, 9, and 19 (k

- 2, 3) can be solred for P, 81, 82, 83 and U for the following boundary

conditions:

riaR. -OM0

~pe f
D ak ar - kPk Fk

IR kl

for given initial conditions.

It is recognized that F21, F3 1, F3 2 , Dk- and 1 m still have to be

determined experimentally for accurate prediction.

4. •I WTORT CALCULAYIONS

In the process of forming a solid propellant motor, several different

particulate materials are mixed together with a polymer binder. The batch is

mixed until the mixture becomes uniform and homogeneous. The homogeneous

m~ixture is then passed through a network of pipes and ducts to a mold. As the

mixture flows, the components of the mixture begin to displace relative to one

another by shear motion. This gives rise to non-uniform propellant properties

in the mold and hence the final cured motor.

The ability to calculate partial component separation from a homogeneous

mixture is a crucial feature which must be present in the mathematical model.

In order to investigate and demonstrate that the proposed mathematical model

is capable of simulating this separation phenomena, some exploratory calcula-

8



tions were made for representative situations. The numerical results pre-

sented here were obtained with the COMMIX code[9,10], which was modified to

carry out these calculations.

4.1 Numerical Ibdel

Flow into a 6.35E-3 m (0.25 in) gap between two parallel plates arnd into

an annulus is considered. A two-velocity field model is used to describe the

flow and component distributions. (Component #1 represents the polymer binder

and component #2 represents the particles. The governing equations are

discretized by the finite volume technique. The two-dimensional computational

domain is partitioned into 8 equal parcitions across the gap and 20 along the

flow direction. The overall length modeled (0.0254 m) was long enough so that

the flow would become fully developed. At the entrance, the mixture is

assumed to be homogeneous and have a uniform velocity of 0.01 m/s. The binder

(component #1) is assumed to stick to the wall (vllw - 0), while the particles
' v21I(component #2) are assumed to have a free slip boundary condition \x I a 0.

A semi-implicit time-marching algorithm was used to solve the systw of

equations. By marching in time until all quantities (velocity components and

volume fraction) converged to one part in 100,000, a steady-state solution was

reached.

4.2 Flow Between Parallel Plates

The first problem considered is flow between two parallel plates

separated by 6.35E-3 m (0.25 in). A homogeneous 50-50 mixture (by volume)

enters the gap uniformly with a velocity of 0.(1 m/s. Other characteristics

are shown in Table 1. By the time the flow reaches the exit, a fully

developed situation exists.

Figure 1 shows the fully developed velocity profiles for the binder (vj)

and the particles (v2 ). The differences in the velocity distribution must be

9
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TAL 1 . Flow Between Parallel Plates

Gap 6.35E-3 m (0.25 in)
Inlet velocity v1 = V2  0.01 M/s

Inlet 0l (binder) 0.5

02 (particles) 0.5

•1A = 2 200 Pa-s

Pl P2 1000 kg/m3

K1 2  1.0E8 Pa-s/m2

Re 3.175E-4

entirely due to the different boundary conditions imposed on the 2 components

because the materel~ properties used are the same. This was verified by

running a problem where both components had no slip boundaries and this

yielded the fully developed velocity profile vt shown in Fig. 1 for both

components. For reference, the wall known parabolic velocity profile is also

shown and labeled va in Fig. 1. Note that the velocity distributions of both

the binder and the particles are flatter than the reference case. The par-

ticle velocity is consistently higher than the binder velocity throughlut the

cross-section.

Figure 2 shows the volume fraction distribution of binder (eO) and

particles (82). It is readily apparent that a partial separation of

components has occurred. The particles have a relative maximum concentration

in the center of the gap while the binder is more concentrated near the wall.

It is worth noting that this separation phenomena is due entirely to the

difference in velocity boundary conditions at the wall for the two components.

4.3 Annular Flow

The second problem considered is two-dimensional axisymmetric flow

between two concentric cylindrical surfaces forming an annular region. The

problem characteristics are summarized in Table 2. The inner radius is

11
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TAhIE 2. Flow Into Annulus

Rin 0.01905 m (0.75 in)

Rout 0.0254 m (1.0 in)

Gap 6.35E-3 m (0.25 in)

Inlet velocity vj - v 2  0.01 M/s

01 (binder) 0 .2242

02 (particles) 0.7758

PI m P2 200 Pa-s

p, (binder) 920 kg/m3

P2 (particles) 1950 kg/r 3

KI2  1.OE8 Pa-s/m2

0.01905 m (0.75 in) and the outer radius is 0.0254 (1.0 in). This results in

a 6.35E-3 m (0.25 in) annular gap. Here, we have used a homogeneous mixture

with a higher particle volume fraction (.77) and a material density difference

between the binder (920 kg/m3 ) and particles (1950 kg/m 3 ).

Figure 3 shows the fully developed .elocity profiles. The velocity

distribution when both components have no slip boundary conditions is labeled

v1. This solution is similar to the parallel plates solution except the

central peak velocity occurs nearer the inner surface. The particle velocity

(v 2 ) is consistently higher than the binder velocity (vj) throughout the

cross-section. Due to the higher particle concentration and material density,

the velocity profiles are flatter and maximum velocities less than the

corresponding results for the parallel plates.

The volume fraction distributions are shown in Fig. 4. The particle

volume fractions (e 2 ) show the highest value near the middle and lower near

13
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the walls. The interfacial drag coefficient (K 1 2 = 1.0E8 Pa-s/m2 ) is the same

as used in the parallel plates case. In addition, two other runs were made

with K m 1.0E9 and K - 7.0E10. The results are shown in Fig. 4 where for K

greater than 1.0EK0 the separation becomes very small.

5. DISCUSSION OF IZPE ASU S FOR TRANSPORT PROPURTIRS

The following transport properties are needed for the system with a

binder and 2 different sizes of particles under consideration so that the set

of governing equations with appropriate initial and boundary conditions can be

solved.

(1) P. neods to be measured vs shear rate and time at the processing

temperature. *

(2) 12m and D3m to be measured if possible.

(3) f and -3 shear l1:t force and gravity force, can be computed

(please see Section 5.3).

(4) F2 1 and F3 1 can be estimated (please see Section 5.4).

It is recognized that the transport properties are a function of composi-

tion of materials and time hist:-y. We recommend that the time history and

temperature dependence may be included in some measurements if this can be

conveniently done.

5.1 Viscosity Neasurements

It is recommended that viscosity be measured with the following

compositions, with respect to time and shear rate:

(1) Binder only

(2) Binder + particle 2 (p2) with p2 at 1/3 nominal value.

Binder + p2 with p2 at 2/3 nominal value.

*It is assumed that T is a function of velocity gradient and mixture

viscosity--Non-Newtonian fluid.

16
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Binder + p2 with p2 at full nominal value.

(3) Binder 4 particle 3 (p3) with p3 at 1/3 nominal value.

Binder + p3 with p3 at 2/3 nominal value.

Binder + p3 with p3 at full nominal value.

(4) Binder + p2 + p3, both p2 and p3 at nominal valive.

The viscosity U of a fluid, in general, exhibits shear rate dependence

and can be characterized as follows

m 3ar

where K is an empirical constant and 13W/arl is the shear rate. The exponent

n accounts for various rheological behaviors of the fluid. n - 0 for a

Newtonian fluid; n > 0 for a shear thickening fluid, that is, a viscosity

which increases with shear rate; the reverse is the case of .-t < 0, a shear

thinning fluid. Depending on the shear rates and the particle size, internal

friction or collision, a given fluid may exhibit both ranges of behavior[ll].

For the case of a shear thickening fluid (n - 1)

K-C e2 a2 o
lip p

where CP is a constant (- 1 for spheres having elastic collision), ep is the

volume fraction of particles with radius a[1].

5.2 Diffusivity Measurments

It is recognized that diffusivxzy cannot be obtained by direct measure-

ment. Therefore, this information may be obtained indirectly through densi-

tometry of particle distributions and photoelasticity of stress measurement of

slices from solid propellant specimens. We recommend that these measurements

be made at the compositions as outlined in (1) of viscosity measurements.

Experimental data is needed, but for a shear thickening fluid (n - 1), the

particle diffusivity is given by

S17
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kmc~k(83 0az k k2, 3
SDkm Cd Pk 93 all

where Cd is a coefficient of the order of 10171.

5.3 74eld Foruce 1A and ._3

These include gravity g, and shear lift forces. The former is negligible

for the present case, and the latter has been given analytically for spheres.

It will be determined with semi-empiricism in the course of zomputation by

validation from particle density distributions and shear stress distributions

in the solid propellant if available. It is given for a spherical

particle[3,7] by

) v(AW) 21Wl]11
f kMCl[3(6.46)/4w](pU/~k) [ 2) a

where W is the velocity outside the boundary layer, AW - W - Wk, the velocity

difference between the fluid and the particle, a is the particle radius, and

(aW/3r) Is the shear rate of the layer. The coefficient C1 accounts foi" non-

sphericity. Lifting of larger particles by shear motion of small particles

will be dealt with in a later report.

5.4 Inverse Relaxation Tim

Inverse relaxation times are predictable for spherical particles. For

the present appiication, iteration with empirical coefficients and validation

by final particle density distributions can yield semi-empirical modifications

for predictive purposes. For particle 2, F21 is given by

75 e 2U

F-CF21 " F 2a2- +(p/2"(

where CF is an em•i.rical coefficient, e2 is the volume fraction of particles

2, U is the fluid viscosity, and a is the radius or characteristic dimension

oi: the particle[l].

18



If all the items in Sections 5.1 and 5.2 can be furnished, they will be

most helpful. The order of priority should be

(1) Viscosity measurements.

(2) Densitometry of particle distribution of sliced solid specimens.

(3) Photoelasticity of sliced solid specimens.

The minimum measurement would be flow through a tube and measure the

flowrate and pressure drop, from which the viscosity and non-Newtonian para-

meters can be deduced. We ca proceed with results from Item (1) alone. The

effort toward achieving a realistic computer program will be facilitated or

reduced by ha.ing Item (1) and (2), and more so if Item (3) is available.

6. DISMJSSIONS AND COW ZIONS

A continuum approach to the modeling of a dense suspension has beea taken

as opposed to discrete particle tracking. Within the continuum approach, two

formulations have been identified: the imltifluid model, and the diffusion

model. While the multifluid model is more complete, there are more unknown

coefficients associated with the model and these coefficients need to be

determined. The single velocity diffusion model is computationally more

economical and it involves relatively fewer unknown coefficients than the

multifluid model. Correspondence between the two models has been pointed out.

A crucial feature needed in the mathematical model is the abilitj to

predict partial component separation from a homogeneous mixture. The only way

the single velocity diffusion model can predict partial separation is from the

shear lift field force term. The magnitude of this term must be determined

experimentally. Due to the current lack of detailed and reliable experimental

data, approximations were made for the interaction terms in the multifluid

model. Even in the absence of a shear lift field force, the multifluid model

can predict partial component separation by having different component

velocity boundary conditions at the wall.
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In summary, our preliminary investigation of flow modeling during solid

propellant processing has yielded the following conclusions:

1. Meaningful prediction of concentration distribution of components

can be obtained from computations with a minimal acquisition of

transport properties at the initiating phase. These preliminary

predictions can be used to guide experiments which are urgently

needed to quantify the transport properties and to validate the

mathematical models.

2. Currently, the nultifluid model and the single velocity diffusion

model are viewed as being complementary. While the multifluid model

can be used to gain insight into the underlying individual physical

mechanisms, the diffusion model gives global phenomenological

behavior of the system. The interrelations between the two mathe-

matical models have been clarified. It is anticipated that at a

later date, depending on availability of the needed experimental

data and understanding of physical mechanisms, we shall select ont

of the two models as the reference predictive tool.

I. Validation of computed concentrations can be made by sections of

solidified models or checked by burning rates for uniformity of

pressure.

4. Exploratory calculations have shown the ability of the multifluid

model to compute partial separation of components by boundary

condition differences. More parametric study can be done to g~ve

insight into the sensitivity of the various empirical coefficients.

5. The problem under investigation is important, but very difficult.I The preliminary results from *he present study lays the foundation

for the future work and it appears that useful results can beI ~obtained. 2
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