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airbags in cushioning the landings of airdrop platforms can be improved by
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::g 1. IntRODUCTION
*xj
N In recent years the Army has devoted considerable attention to the use of
;;3. pneumatic devices (airbags) in reducing the landing shock of various
'f:: . air-delivery systems. A number of different designs have been investigated
;*:E experimentally by Nykvist!, Patterson? and others. The fundamental theory was
(:' preserted first by Browning?®, then extended bv Esgar and Morgan“.
X ;ﬁ The present report describes a preliminary study of possible systems for
ig automatic control in the course of a platform landing cushioned by a simple,
:53 cylindrical airbag. The original impetus for the study was a discussion
® between Dr. C.K. Lee and the author, in which Dr. Lee mentioned that small
.’;: motors are now available that have response times in the millisecond range.
,Etﬁ The possibility of using such a motor to drive a device for opening and
':g: closing the vent of an airbag led to the investigation reported here.
( A
pon? The basic theory of airbags is reviewed in the next section and put into a

dimensionless form slightly different from (but wholly equivalent to) that of

el

2007,

Browning®. The resulting nonlinear system of three ordinary differential

PR
»
L o §

equations cannot in general be integrated exactly. However, Section 3

%

P

H . . . . .
«ﬁ} describes two solutions in closed form that can be obtained under certain
I. ]
.%i‘ assumptions about the vent area. Several other plausible control systems are
5 .
e discussed in Section 4, and Section 5 presents the results of numerical
) . .
°® solutions, comparing the performances of these control systems. The results
N . . . .
;jhj are discussed and conclusions presented in Sections 6 and 7.
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2. BASIC AIRBAG EQUATIONS

This section is closely related to the analyses given by Browning?® and

Esgar and Morgan®. The context and basic assumptions are described below.

a. The load, W, is descending steadily beneath a parachute and is
attached to the top of a plane platform, dropping vertically and oriented
horizontally, during the entire impact process. The initial velocity of

descent is Vo.

b. BAn airbag in the form of a cylinder with a vertical axis and
horizontal end surfaces is attached to the underside of the platform. The
airbag has height H and cross-sectional area AB and initially contains air at

atmospheric pressure, p_,. There is a vent to the atmosphere with area A,,.

c. At time t = 0 the lower face of the bag makes contact with the ground.
Thereafter, the bag preserves always the same cross-section area, AB, but the

volume decreases as the platform descends.

d. The pressure, p, and mass-density p, of the air in the bag are related
by the ideal gas law,
p/py = (0/0,)Y (1)
where p, is the density of air at atmospheric pressure and y is the ratio of

the specific heats, specifically y = 1.4 for air.

With these assumptions the equations of motion can be written as a system

of three nonlinear ordinary differential equations in

Y height of platform above ground

\

velocity (positive upward)

p = mass density of air in bag

namely
dy/dt = Vv (2)
dv/dt = g [-1 + (D+Rg)/W] (3)
Apd(py)/dt = -C A,p.q (4)




vc“c
@
o
Ay
)
KON
,nz,.. where
)
e g acceleration of gravity
2508 D = canopy drag
- . .
atz Rg = force transmitted to platform from airbag
}:3 q = speed of air flow from vent
'S
’”f* C, = vent flow coefficient
\ 2
.;) further
""‘:' i 2
T D = 3p A VC, (5)
vg:: A, = drag area of canopy (6)
8
e Cp = drag coefficient of canopy (7)
$} . Ry = (p-pylAg (7)
5o q? = Jov? + S (8)
n.‘.\'
&:ﬁ
oy Equation (8) is Bernoulli's law for the flow of air out the vent or
'l' orifice. Jo¢ is a constant that affects the definition of the flow upstream of
&, . R . .
}Qﬁ the vent in Bernoulli's 'aw, and S has a form which depends on the pressure in
’¢:v the bag. Let
e J(y-1
:\j P. = critical pressure = pgll + (y-1)/21Y/ 'Y ) ~ 1.893 P, (9)
( ! Then
o S = [2v/(y-1)] [(p/e) - (Py/pg)] if p < pg (10)
-0 = (vp./p ) (p/p )Y/ Y1) if p > p (11)
. "
- Equation (2) is merely the definition of velocity, conservation of
158Y
.\} platform momentum is embodied in Equation (3), and Equation (4) expresses
:f conservation of air-mass in the bag. Collectively they are, when combined
5%8 with Equations (1) and (5) to (11), a system of three nonlinear, ordinary
At
® differential equations for the three functions y, V and p. The initial
%S
VAN conditions are
A"
0
2528 = = = - =
Yo at t 0, v H, V Vo and p Pa-
¢
L
The equations can be put in dimensionless form by defining
‘ﬁ;: ¥i1 = yY/H, %2 = V/Vo, x3 = p/p4, t = TH/Vo
N ai = p AL/, a2z = gH/Vo?, a3 = 2yp /[(y-1)p Vo?]
lt;: % = Pe/Py
.‘-- as = 0 A Vo?Cph/(2W), as = Jo
it n=e/e, Q- a/Vo ¢ = By/Ag.
i
Wl
fl -3-
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which leads to the system of equations

. dxi/d4T = X2 (12) :

R dx2/dT = azFy (13)
::::. dx3/dT = -(x2x3 + QC_0)/x1 (14)
:\ where

N no=xsY, aw = [1+ (y-1)/2)17 (/) (15),(16)
" Fg = -1+ asx2? + ai1(n-1) (17)
el 0 = [asx2? + a30]? (18)
E.‘f o = (n/x3)-1 n < ae (19)
o = (v-1)(n/au 27 ¢1/Y) Nz o (20)

and the initial conditions are

g
::*':: X1 = 1, X2 = -1, X3 = 1 at T =0 (21)
v'\h'v

o
"';C" Typical values for the physical constants in the analysis are listed in
!J Table 1 and the corresponding dimensionless parameters g (J =1,...,6) are
-: given in Table 2.
‘_‘-‘:(
Nl
TABLE 1
. N —

{

M - Typical Vaiues for Physical Constants

e
e

<.
::' H initial height of platform 3 ft
Wy v, initial velocity of platform 30 ft/s

i AB cross sectional area of bag 10 ft?

; W weight of platform and load 1000 1bs
N 1 air pressure 2117 1b/ft?
'-jw o mass density of air .002 1b s?/ft"
\_,:-:. g acceleration of gravity 32.2 ft/s
Ay AC drag area of canopy 1000 ft?

." Av cross-sectional area of vent 1 ft?
X
ke

‘—f.y

‘-’,‘\ TABLE 2

- —_—

A

"'j' Typical Dimensionless Parameter Values

®
Ij:'.j o, = 21.17
T a, = .1073
- a, = 8233 |
:.‘ a, = 1.893
. (15 = .9C9
;‘ a, * 90 J,
0
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bc
Lt
®
A
Sl
WA
::#: 1f the airbag has any effect, we may assume that
L8 |
i l:‘(ll © 1 and }x:| <1
- -~ trnroughout most of the motion because Cp < 1, as << au, and it is plausible to
.-:;: neglect the term in (17) that contains as, although some inaccuracy can result
I
;: near T = 0. A similar argument causes us to neglect the term in (18) that
Ny
e involves as, although the accuracy may be questionable near T = 0, especially
L)
N since the value of J¢ is not well-specified beyond saying that Jo = 0(1).
&8
s
v
'3? The remainder of this paper will be based on the equations (12) to (1l6),
[\ ‘%
N the modified equations (17) and (18),
- Fg = -1+ ai(n - 1) (22)
- 1
NN Q = (0ao)? (23)
NN and (19) to (21).
X
By e
o With these approximations, the equations involve three dimensionless

7}
)
LS
.
.

parameters, ai, oz and as. We can see at a glance that model tests of the

A
[
D
.
LN

platform-airbag system will encounter scaling problems unless the model tests

f
el
RN

are carried out in a suitable, artificial atmosphere. For, if a; is to be the

same for model and prototype, we must have VH_% the same, but ai implies that

S

V must be the same for model and prototype if both are tested in the same

2

medium.

TRREL

>
=t

The energy possessed by the platform can be found by observing that the
potential energy is Wy and the kinetic energy is Wv?/(2g). Then
c

i

{total energy)/{(initial energy)
(202x1 + xz2)/(2a2 + 1) (24)

1l

R "'_‘)
L e e P

The purpose of the airbag is to decelerate the platform so its vertical

vl B

. 8 K .I’ .1’ . .\'

‘- o

velocity is zero when the platform strikes the ground, i.e., X1 = x2 = 0 at

[

same time, T¢. The airbag has, therefore, to completely dissipate the initial

-~
>+ A

energy.
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:ﬁ:¢ 3. SOLUTIONS FOR SPECIAL CASES
>
{ ¢
S In general the system of equations is nonlinear and cannot be solved
}:} exactly in closed form. However, in certain special cases exact or
ol
- approximate solutions can be found, and it is convenient to describe these
N

!:) here.

b, It is instructive first to think qualitatively about the behavior of the
' system. For this purpose, hodograph plots of three more or less typical cases

are shown in Figure 1. All start, of course, from the initial point, x1 = 1,

A X2 = -1. The path Py is the trajectory followed in an ideal case where the
e
:&; system reaches the point x1 = x2 = 0 at time, T¢, possibly under the action of
2 .
;5¢ﬁ some type of control system. A case where the bag is vented too freely, and
o the platfcrm crashes into the ground, i.e., X2 < 0 when x) = 0, exhibits a
o . . . .
TRr trajectory like P_. Contrarily, P, shows a path when the bag is not vented
0
Yt enough, and the platform bounces off the bag, i.e., X2 = 0 when x1 > 0.
! 1’,:1
-
‘( I
o
o Xy
.
.:t' X,

B
1‘_

TR R R R LLX
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Figure 1: Hodographs for platform-landings in three typical Cases:
Optimal Venting, P,, Overventing, P_, Underventing, P_.
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190
:z; The first special case is that in which ¢ = 0, i.e., the vent is closed.
)
( W An exact solution is obtainable in implicit form in this case,
AN £(x1) = (1 + 2az(lvan) (1-x1) + 2aa2(y-1)71 (1-x,17Y)}
o i -~ -
.~:¢f X2 = ~f3(x1) X3 = X1 1 no=x1 ¥ (29)
;*}' 1
q..’ —l
1.3 T(x1) = f f72(u)du
»)
o x?
A
\ﬁt This solution resembles that of the trajectory P, in Figure 1 if it is
A . C e .
A followed long enough. The above solution loses validity when the function
(. . f(xi1) = 0, i.e., when X2 = 0. The values of x1 and T at which this occurs
Q'AS depend only on ai, az and y, not on as.
N
=
A An important special case is obtained if we demand that the g-force, Fg,
._ be held constant from some time (say To > 0) until the final time Tg. For the
R moment we ignore what happens for 0 £ T < To.
s
oy
RS
# If
( x:{To) = b1 > 0, x2(Te) = b2 < 0, (30)
. f} it is easily verified that the following functions not only satisfy the thre:
n’:
o equations of motion but also the end conditions, X1 = X2 = 0 at T = Tg:
¥ “Il
e T¢ = To - 2bi/bz, Fg = bz2?/(2baz) (31)
D ' X1 = D1 + b2(T-To) + dazF (T-To)? (32)
BN
-c:, X2 = b2 + a:F(T-To) (33)
i .t‘
oS xa = {1+ (1+Fg)/an)t/Y, 0= xs) (34),(35)
>
o ¢ = ~x2x3/Q (36)
-,
and Q is given by (18) and (19) or (20). This solution has constant values
W,
; ‘ : for Fg, x:, n and Q, quadratic time-dependence of xi1, and linear time
:, dependence for x2 and ¢. Also ¢ = 0 at T = Tf. In effect, Equation (36)
S
ﬁdﬁ . describes the time-dependence of vent-opening that is needed in order teo
Y
PY obtain this motion.
T
-
‘;ia It is clear that, if this motion can be obtained in practice, it is an
"ﬁ? optimum solution to the problem, at least for T¢ £ T € Tf. In the next
r section we shall discuss some aspects of this question.
N
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4. CONTROL SYSTEMS

»
g
24

All of the control systems studied in this report use ¢ (the vent-area

ratio) as the control variable. For simplicity in studying the action of the

.;'"’—‘%.Q{.-ﬁ

»

control, we shall also assume that Cv = 1 in Equation (14), a condition that
causes some loss of generality if C, depends on the state of the system but

not otherwise.

v,
b,
o The control systems that have been studied or used in the past are as
-,
! follows:
A
::: (i) The constant vent opening,
\"
O o = o,
\
L Y is probably the simplest system. It involves only a single parameter, ¢,
®
o
:a (ii) The blow-off patch has the vent remaining closed until the pressure
jQ{ first attains a certain value, ng, at which time the patch blows off
",
b (instantaneously) and the vent area jumps to its fully open value, ¢c' and
( ! remains at that value for the rest of the landing, i.e.,
* ¢ =0 T < Ty
- ® =9 T > Tg (37)
\ -
L, n(Tg) = ng
:2 Thus control depends on two parameters, Ng and bc
_-:
-“ .
i:} Another control system, not previously examined nor used, but apparently
:; worth investigation, is implicit in the solution of equations (30) to (36).
A q
L This solution is optimal for To £ T £ Tg¢, but the problem is in determining
108 when to start using the control law (36) which causes the system to follow
f o !
0 this solution. This suggests that we use a two-stage system, in which the
AL g
1 s
ft first stage controls ¢ so that Fg is brought quickly from its initial value
VQ‘ (Fg = -1) to the value given by (31). When Fg attains that value, the second
' stage begins, in which ¢ simply follows the control law (36). This requires
that in the first stage the system must sense Fg, x: and x2 and switch when
(31) is satisfied, 1.e.,
° Fy = x2?/(2x102) (38)
i
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X1 aad X2 can be calculated by sensing Fg and performing numerical integration

of (12) and (13), so that only Fq really has to be acquired.

However, another question is whether this control system can respond
quickly enough so that ¢ will be set "instantaneously" (i.e. in negligible
time) to the value demanded by (36). Alternatively, can ¢ be controlled in
the first stage so that it will both (a) pressurize the bag enough to cause
(31) to be satisfied at some To and (b) have the value demanded by (36) at
that Te?

It is not clear whether these difficulties can be surmounted in practice
without making the system distastefully complicated. Aiso, when this system
is in the second stage, the automatic control is of open loop type, i.e., it

makes no use of information about F_ or any of the stated variables. The same

is true of the constant vent openinZ. The blow-off patch is affected by the
system state only to the extent of being actuated when n is large enough. To
some degree, therefore, these systems all share the usual shortcomings of open
loop control, in particular they may not function well if subject to unknown

or random fluctuations of input.

Accordingly, an entirely different control system was investigated in this
study. Since measurements of Fg are the easiest ones to obtain, the system

was defined by

D¢ = Png - P = Pz(Fg‘r), r = P1/P; (39)

and
d¢/dT = D¢ if D¢ >0or ¢ >0 (39)
=CifD¢§0and¢=O (39)

where the parameters P; and P; have to be chosen so that the system is brought
to x1 = Xz = 0. This system is conceptually very simple; the vent is opened

or closed at a rate proportional to Fg-r.
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5. NUMERICAL ANALYSIS OF LANDINGS WITH CONTROLS

In order to investigate the behavior of the control systems described in
Section 4, a computer program was written that carries out the numerical
integration of the differential equation systems (12) to (16) and (19) to
(23). This program is listed in Appendix A. It consists of a main program,
MAIN, which reads the physical parameters, forms the dimensionless quantities
a1, a2, a3, and

Qs = N,
and invokes the IMSL routine DVERK to do the numerical integration. After
completing the solution, MAIN writes the results for xi1, x2, X3,

Xe = ¢
and Fg in file 7 and the derivatives, dxj/dT (j =1,...,4), in file 8.

The routine DVERK uses a Range-Kutta integration scheme which requires
that the user furnish a subroutine, FCN, for evaluating each dxj/dT, given the
values of the time and all the x.. The control system is modelled by a set of

]
instructions in this subroutine which define xu = ¢ or dx./dT = d¢/4T.

We adopted the parameters given in Table 2 as a standard condition and for
this condition explored the behavior of the three control systems described
earlier, recalling that the objectives are to bring the system from the
initial point

x1 =1, x2 = -1, x3 =1
to the final point
X1 = x2 =0
and to do so as smoothly as possible in the sense that the maximum of Fg

duaring the motion should be as small as possible.

The simplest control system is that with constant vent opening,
Xe = ¢ = ¢,
or
dx./dT = 0 and Xu(0) = .-

With this single parameter it was impossible to attain the final point

X1 = X2 = 0. The "best" results (best in the sense described below) were

_10_
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found from a series of trials to be at xu. = ¢C = 0.019. For this case the

behavior of xi1 and x2 is shown in Figure 2 and that of F_ in Figure 3.

g

1.0
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]
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Figure 2: Dimensionless Height, X,, and Velocity, X,, as functions of
dimensionless time, T, for the standard condition and constant
vent opening, @ = 0.019.
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Figure 3: G-force or dimensionless acceleration, Fg, as a function of
dimensionless time, T, for the standard condition and constant
vent opening, @ = 0.019.
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:x: The system has x2 * 0 when 1.0 < T < 1.5, but %1 =~ .36 at that time.

X
{ After almost coming to rest the system gradually resumes its descent until it
: Y strikes the ground (i.e., x1 = 0) with velocity x2 = -.18 at time T =~ 4.1.
'zag During this second phase of the landing, the pressure of the air in the bag is
p”\ not great enough to equilibrate the load, so Fg is slightly negative. 1If

X = ¢c > 0.019, i.e., the vent is opened wider than the optimal value, the

: 3& load strikes the ground earlier and with higher velocity. For example, if
.ﬁiﬁ ¢, = 0.025, the load lands when T = 2.17 with x2 = -.25. On the other hand if
b ‘
oy 4 ¢c < 0.019, the vent 1s narrower than the optimal value, the load bounces off
3

A‘ J
i the bag and accuracy of Equations (18) to (20) is thereafter doubtful.

O Moreover, the maximum Fg values are higher in this case than the others.

Rl \! Y

*x: For example

e

W

N = .015 = 1
;;\: ¢c 15 causes max Fg 6
P ¢. = .019 causes max F, = 14

® g
;xﬁu ¢, = .025 causes max Fg = 9
ABAN
v

N To summarize, this simple control cannot steer this system to the origin.
(4*4 At best it will land this system with velocity x2 = ~-.18 and max Fg = 14.
!." R
h
ﬂga\ The blow-off patch control system was examined next. Control now depends
1
N\ on twc parameters
ﬁ|. X
! ng = blow-off pressure (in atmospheres)
:) ¢ . = dimensionless vent area.
1S c
NS Y
i -‘\.
‘Wi A number of cases were run for various values of these two parameters.

']

: f: The results were qualitatively like those for the previous constant vent

.;_ control, in that the system could not be steered to the point x1 = x2 = 0 by
:;:: the control. Instead the system attained x2 = 0 at height %1, (i.e. it paused
\>" s ~ . ~ .
,u:- at height x:) and then eventually attained xi = 0 at a velocity x2, Jjust as
e
v for the constant vent case. The "best" results are listed in Table 3.
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", TABLE 3
X
'l.‘n
( Ovtimal Results for Blow-Off Patch
o g ® 1 2 g :
2% 1.3 .019 .40 -.18 14 4.4
b 1.5 .200 .44 -.19 14 4.6
'\ 1.8 .023 .47 -.22 16 4.4
el .
:¢“; . %X, is the value of x; at which x, = 0 (height of pausing).
,$”5 %, is the value of x, at which x, = 0 (velocity at landing).
N F is the maximum value of ﬁg
1S
"rie\
::?H The feedback control system (39) displayed behavior quite different from
v,
,::- the other two controls. Many different pairs of values for P: and P2 were
O
" found that would steer the system to x1 = x2 = 0. For example, Table 4 shows
5;1 three such sets of values and the principal properties of the trajectories
':}: that they produced. Figure 4 shows graphs of x, and xz as functions of T for
LR
Tt the case P1 = 1.02, P2 = .2, and the functions xs, Fg and ¢ are depicted in
? ‘: Figures 5, 6 and 7. The results were qualitatively similar for the other
e cases listed in Table 4.
“
N
!' )
".\:: TABLE 4
. .1
:) Computed Results for Feedback Control Law
\'
:r"-t" P P F M d¢/dT G T
.r':s:; 1 2 g ¢ £ £
g
K .50 0.1 9.3 4 -.027 4.8 1.95
.‘ ! 1.02 0.2 8.1 6 -.024 4.9 1.93
F,“_’} . 2.08 0.4 7.4 8 -.026 5.1 1.90
{2 4.16 0.8 6.4 9 -.027 5.2 1.90
'S
.’\l‘ ~
_i:: F is the maximum value of F .
i M> is the number of local mafima of F in 0 £ T = T,
!L_ d¢/dT is the approximate slope of ¢ ngar T =T
éf is the approximate constant value of éf near T = Tf
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The principal feature of these results is the oscillation in F_, x3 and ¢,

an osci.lation which is mildly discernible also in the plot of x: :ut not of
X1. A perturbation analysis of the differential-equation system is done in
Appendix B to show the origins of this behavior. However, it is clear that
the Fg values obtained with this control are much lower than with either of
the other controls. A practical question is whether the control system can
respond quickly enough to enforce the control law during an oscillation of

this type.

1.0
]
4
0.5 Pa
i HEIGHT, X,
-
~ \
°.0 7—
-
N
-.5
=
- / UELOC!TV‘ x.
-‘0. T 1 T L3 Ll ¥ LS 1 L 11 L S L§ T 7
.9 .5 1.9 1.5 2.0
TINE, T

Figure 4: Dimensionless Height, X,, and Velocity, X, as Functions of
Dimensionless Time, T, for the Standard Condition,
Feedback Control with P, = 1.02, P, = 0.20 and T 2 1.0.
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Figure 5a: Dimensionless Air Density in Bag, X,, as a Function of
Dimensionless Time, T, for the Standard Condition,
Feedback Control with P, = 1.02, P, = 0.20 and T £ 1.0.
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Figure 5b: Dimensionless Air Density in Bag, X,, as a Function of
Dimensionless Time, T, for the Standard Condition,
Feedback Control with P, = 1.02, P, = 0.20 and T 2 1.0.
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Figure 6b:
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G-force as a Function of Dimensionless Time, T, for the
Standard Condition, Feedback Control with P, = 1.02,
P, = 0.20 and T £ 1.0.
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G-force as a Function of Dimensionless Time, T, for the
Standard Condition, Feedback Control with P, = 1.02,
P, = 0.20 and T 2 1.0.
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Figure 7b:
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Dimensionless Vent Opening, ¢, as a Function of
Dimensionless Time, T, for the Standard Condition,
Feedback Control with P, = 1.02, P, = 0.20 and T £ 1.0.
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Dimensionless Vent Opening, ¢, as a Function of
Dimensionless Time, T, for the Standard Condition,
Feedback Control with P, = 1.02, P, = 0.20 and T 2 1.0.




W T A T T O O S T AT B A P IR U PR T S
g ’ raxy

6. DISCUSSION

The solution obtained in Appendix B agrees quite well with that obtained
by the computer program of Appendix A. Superficially, the solutions for xs3
and Fg have the form of damped oscillations about constant values with periods
that decrease as T - Te., and this is exactly what is seen in Figures 5 and 6.
It is readily verified that the asymptotic values

x3 ~ C3 = 1.195
Fg ~ P1/Pz = 5
agree well with these Figures. Similarly, the asymptotic result
d¢/dT ~ -ang°c3/qo = -.0260
conforms closely to the estimates in Table 4, which were obtained graphically

from Figure 7.

To assess the quantitative agreement, we refer to Table 5, which shows the
local maxima »f x3 and A3 and their times of occurrence, T;. Two comparisons
are relevant. First, if the solution (B.26) is correct,

A (1n T - In Ty) o= o2m

Ti-y/Ty T e
and we see from Table 5 that successive ratios of 1, agree very well with this
estimate. Second, the maxima shoula satisfy

*

In ABi =R + (v-3/2) In T4
and so

d(lnABi)/dln‘ti = v - (3/2) = 1.40.
The points of Table 5 give a value approximately = 1.50, hence there is a

small discrepancy in this comparison.
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TABLE %
Gsciliation Extremes for Feedback Control Law
T = T - T A lnA-. Al
IS SN ST SR SUUE LA L S St A O

265 1.665 1.296 099 -2.31 510

645 1.285 1.298 065 -2.73 251

940 .990 1.303 044 -3.12 -.010
1.17¢C . 760 1.288 030 -3.51 -.274
1.240 .590 1.297 020 -3.91 -.528
1.475 455 1.319
1.5%85 . 345 1.302
1.665 265 -

Two possible sources of error in the estimate of Appendix B are these:

(i) The series expansions involved in obtaining Equations (B.10), (B.11)

L

and (B.12) are not extremely accurate.

(ii) The estimate (B.23) is only a moderately accurate approximation to

the solution of (B.22).

It is questionable whether the effort involved in improving these

approximations is worth the trouble.
Several other comments can be made about this solution.

(a) The differential equation (B.25) has a singularity at 1t = 0, T = Tf
that casts doubt upon the correctness of the limiting behavior of the

solution, (B.2€), 2¢ ™ = Tf.

(b) The fact that Fg° = P1/P; furnishes a fairly accurate solution of
(B.22) suggests that the zero-th order solutions are not very sensitive to the
values of Pi1 and P: separately, but only to the ratio of P:1/P2, a conclusion
supported by the numerical results in Table 4. However, the perturbation
solution (B.27) depends strongly on A, which depends on a and so is influenced

by P: alorne (see (B.20)). As P: increases, X increases and the sclutions




oscillate more rapidly, a result that is confirmed by the values of M in

Table 4.

(c) A valid question about this control system is whether the control

mechanism can change the vent opening fast enough to keep up with the changes

in Fg. We have
{d9/aT| £ |ddo/dT| + {dao/aT|
and
d¢o/dT = -.026. Also, from (B.20)
|dao/aT| = |ada| < alas|
and from the computations, Figure 5, we see that |A3[ £ 0.1
Hence
|de/dT| ¢ .026 + 6.37 x .01 = .090.
Thus

dA,/dT = VoAgH ! d¢/dr < 9 ft?/s
This ratiher crude estimate implies that the system must be able to change the
vent area at a rate of .009 ft?/ms in order to control the air bag in the
manner assumed by the analysis. It is not known whether this is an attainable
rate because much depends on the shape of the vent, but for any specified vent

geometry (e.g., rectangular), it should be possible to decide the question.

(d) We see from Table 4 that, as Pi and P; increase but remain in almost
the same proportion, the maximum Fg decreases noticeably. This suggests that
the most effective control is obtained with P1/P:z = 5 and P: as large as
possible. However, as mentioned under (b), the oscillation becomes more rapid
as P2 increases. When P2 1is increased, the oscillation eventually becomes so
quick that the control system cannot keep up with it, and the present analysis
becomes inaccurate. A more perceptive analysis, in which the effect of
control system response is modelled both theoretically and numerically, would
shed valuable light on the practical improvement that might be attained with a

control system of this general type.

(e} The parameter, A, that determines the frequency of the perturbation
oscillation, is rather large, eg., A ~ 24.5 >> 1 in the example of Appendix B.

We see from (B.26) that the size of X depends on go (i.e., ultimately as), a,

I

and . While go =~ 24.7 is fairly large, a/b ~ 23.8 is almost as large, and
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> the largeness of \ results about equally from both. In fact a is fairly large
because a; is so, and b is rather small because a: is. Thus all three

- 1

parameters a1, a2 and a3 in the combination 0.10.210.32 have substantial
influence on A.

Concerning the two open~loop control systems, little further comment is
needed, except to remark that the numerical integration subroutine, DVERK,
experienced some convergence difficulty with the discontinuity that occurs for
the blow-off patch. The results for these computations are less accurate than
for the other control systems although not sufficiently so to alter the main
conclusions.
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7. CONCLUSIONS AND RECOMMENDATIONS

The results of this preliminary study of airbag control systems are as

follows:

(1) Neither of the open loop systems performed in a wholly satisfactory
way for two reasons. They did not bring the system to the desired end point,

and the maximum G-force was very high.

(ii) The feedback system with vent-rate proportional to the G-force was
better on both counts than either open-loop system. For many pairs of values
of P: and P2 it brought the system to the end point and did so with a maximum

G-force much smaller than either open loop control.

(111) A number of questions remain about this particular control system.
It would be desirable to eliminate the oscillation or at least reduce its
frequency if that can be done without seriously increasing Fg or degrading its
ability to attain the desired end point. Also, we need to clarify the
behavior near T = Tf, and it would be desirable to conduct stability studies
of this control system, i.e., how it responds to either deterministic or

random errors in the inputs or environment.

(iv) The results encourage us to think that closed-loop control systems
in general have much to offer in improving air-bag performance. BAlthough the
closed-loop system studied in this report is a plausible one that may be
realizable in practice, there are many other possibilities. For example the
control law

d¢/4dT = -pP1 + Png - Padipt'
may alsc bc realizable and, if the parameters are chosen well, have fewer

undesirable side effects than the law studied here.

(v) Concerning the computer program, the values of the control
parameters, P1 and P:, were found by manual trial~and-error in the present
study. It is possible to include in the program a subroutine for nonlinear
optimization, which will carry out this process “automatically". For example,

the ncrnlinear least-squares solver NL2SOL has a number of attractive features
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for a study of this kind. However, even the best of these subroutines can
fail if the optimal solution is not unique, so much caution is required in

their use.

We recommend, therefore, that further study of both open and closed-loop
control systems be undertaken, with emphasis on the latter. 1In particular,
further study of the present control algorithm is justified, as sketched under
(iil) abouve. Otner contyrcl laws ought also to be examined. If a substantial
investigation is undertaken, the computer program of Appendix A should first

be enhanced by inclusion of a carefully chosen nonlinear optimization

subroutine.
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APPENDIX A: Computer Programs
The following pages contain listings with comments of the three elements

needed to carry out the computations described in Section 5. These elements

are presently stored in the file
BAG * FF.
on the UNIVAC 1106 at the U.S. Army Natick Research, LCevelopment and

Engineering Center. The elements are

M, the main program

FNI, the subroutine, FCN, called by DVERK
D, a typical data set.

M is listed below followed by FNI and D.

the output for the constant vent-opening control system in Figures 2 and 3.

The data in D is that which produced

PROGRAM FOR AIRBAG CONTROL

This program calculates the motion of a platform during a landing
cushioned by an airbag with an automatic control system. It is based on the
system of dimensionless equations in the report "A Preliminary Study of

Control Systems for Platform Landings Cushioned by Airbags" by E.W. Ross.

The main program, given below, reads in the physical quantities, converts
them to dimensionless parameters and then calls the IMSL subroutine DVERK,
which does numerical integration of the differential equation system, using a
The subroutine DVERK call the user-supplied subroutine
The

Runge-Kutta procedure.
FCN, which calculates the derivatives, given the function values.

instructions which define the control system are embedded in this subroutine.
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PA,RHOA,GM
AB

VO

TOL
NTS
TI, TF
YI

CpP

DRV
GF

Ot

n— ,
BOSING ¥ 00
- ot !!.h_"s‘,’.i‘,.‘_!,:?\ ‘.! s l,!"!!!lt' .::I.".I. ]

QO

0

DEFINITIONS OF PRINCIPAL QUANTITIES:

pressure, mass-density and gamma for air
cross-sectional area of airbag
acceleration of gravity

weight of platform, load and bag

velocity of platform at first contact
height of platform at first contact

number of variables in vector X (usually 4)
accuracy threshold for DVERK

number of time steps in the integration
initial and final time

array of initial values of the variables Y

array of integer variables for information recording
and imposing certain conditions.

array of control and information paramaters
array of main variables, as follows:
Y(1) = dimensionless height

Y(2)

Il

dimensionless velocity
Y(3) = dimensionless density

Y(4)

dimensionless vent area (control variable)
array of derivatives of Y

G-force (i.e., acceleration in G-units)

The calculated values of the Y's and GF are written to file no. 7 and
DRV's are written to file no. 8. A typical set of input data for use with
this program is in the element D in this file. The program graph in this file

can be used to cause Tektronix plotting of the results stored in file 7.
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COMPILER (DIAG=3)
EXTERNAL FCN
COMMON /A/ GM,AL(4),LAM(5),GF,CP(5)DRV(4)
REAL YI(4),Y(4),C(24),WKV(10,10)
xxxx*x READ IN PHYSICAL AND OTHER DATA *****
READ (5,30) PA,RHOA,GM
READ (5,30) AB,G,W,UO,H
READ (5,30) N,TOL,NTS
BEAD (5.30) TI,TF,(YI(J),J=1,4)
READ (5,30) (LAM(K),K-1,5)

READ

(5,30) (CP(J),J=1,5)

»xxx* CALCULATE THE ARRAY AL (ALPHA) OF DIMENSICNLESS PARAMETERS
AL(1)=PA*AB/W
AL(2)=G*H/U0/U0
AL(3)=2*GM*PA/(GM-1)/RHOA/UO/UO

AL(4)
WRITE
IND=1
T=TI
DO 10
10 Y{(

=(1+GM-1)/2)**(GM/(GM~1))
(6,40) (AL(K),K=1,4)

J=1,N
J)=YI{J)

DT=(TF-T)/NTS
***x%* MATN LOOP FOR NUMERICAL INTERATION

DO 20

I=1,NTS

TS=TI=I*DT
CALL DVERK (N,FCN,T,Y,TS,TOL,IND,C,10,WKV,IER)
WRITE (7,40) T, (Y(J),J=1,4),GF,CP(4)
WRITE (8,50) T, (DRV(J),J=1,4)
20 CONTINUE
x*xx** END OF MAIN LOOP
30 FORMAT ()
40 FORMAT (7E9.4)
50 FORMAT (F6.4,7E9.4)

END

L SRS

b 5 - . n A )
WO 112‘1'. RO \‘:'. 18 54,85, 0) l‘!* %
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SUBROUTINE FCN

This subroutine is called by DVERK to evaluate the derivatives (DY) of the
variables, given their values and those of the paramameters. The control
instructions, starting at line 23, are for the particular feedback control
system studied in the report, which involves the derivative of the vent area,
Y(4). For a different control system, a different set of instructions may
have to be written and perhaps even inserted at a different point in the
program.

COMPILER (DIAG=3)

SUBROUTINE FCN (N,T,Y,DY)

REAL Y(N),DY(N)

COMMON /A/ GM,AL(4),LAM(5),GF,CP(5),DRV(4)
DY (1)=Y(2)

IF (Y(3).LT. 0.0) WRITE (6,20) T,(Y(J),J=1,4)
PR=Y(3)**GM

FD=LAM(1)*Y(2)**2

BR=AL(1)*(PR-1.)

GF=-1.+FD+BR

DY(2)=AL(2)*GF

LAM(S5)=0

AA=AL(3)*(PR/Y(3)-1.)

AP=AL(3)*(GM~-1)/2

IF (PR.GTAL(4)) AA=AP*(PR/AL(4))**(1-1/GM)
IF (PR.GTAL(4)) LAM(5)=1

IF (AA.LT. 5.E-8) AA=0.
Q=SORT(LAM(2)*Y(2)**2+AA)
DY(3)=-(Y(2)*Y(3)+Q*Y(4))Y(1)

.
XA
E

PR

*xxx* THE FOLI.CWING TINSTRUCTIONS EXTERT CONTROL
D4=CP(2)*GF-CP(1)
DY(4)=D4
IF ((D4.LT.0.0).AND.(Y(4).LE.0.0)) DY(4)=0.0
DO 10 J=1,4

10 DRV(J)=DY(J)
RETURN

20 FORMAT (5E9.4)
END

'1
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Ax**X* DATA SET D ****x
2117.,.002,1.4
10.,32.2,1000.,30.,3.
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APPENDIX B: Perturbation Analysis

This appendix presents a perturbation solution of the motion equations
with feedback control. This analysis is motivated primarily by the observed
results of the computations and secondarily by the exact, optimal solution in

Section 3 for Fg = constant.

The basic set of.equations is (12) to (15),(19),(22).(23) with Cv = 1 and

the control law (39). The equations are then

ax'/4aT = %2 ; dx2/dT = a2Fg (B.1,2)
d(xix3) = =-Q0¢ ; d¢/4ar = Png - P (B.3,4)
0 = asf(xs¥"l-1)% (B.5)
Fy= -1+ a(xs¥"1-1). (B.6)

We are assuming that the vent is open and the flow through it is subsonic,
hence this approximate solution is not valid initially, when the vent is
closed. Figures 5 and 6 show that for T 2 0.3 the variables xa and Fg
oscillate with decreasing amplitude about constant values, and this is the

beharior that we seek to explain from the above equations.

We assume that

. b) 5
xj = xj + Aj J 1,2,3 (B.7)

= = 0

o, = o+ B, Fg = Fg® + 4. (B.8,9)

The gquantities Aj, A¢, bp are assumed to be perturbations of the zero-th order
Q

quantities x. ¢o, F_°, respectively, with Aj << xj°. Series expansions of

37 g
(B.5) and (B.6) lead to
Q = go{l + gils) (B.10)
qo = aa?{(x:)Y 7111, qu = Ay -1)(x3%)Y"2/(x:°)Y 11 (B.11)
0 - o y-1 _ 0 y-1
Fg = a1l (x3 ) -1]-1 , AF = a1y (%3 ) Asz. (B.12)

Equation (B.12) shows that Fg° is constant if x3° is so. Since we

expect to obtain a solution such that x® and F_ oscillate about constant

values, we assume )

x30 = C3 = constant (B.13)
and so

Fg® = ai(Ca¥71-1)-1. (B.14)
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Then (B.1l) and (B.2) imply
x1° = b(T-T¢)? , x2° = 2b(T-T¢) (B.15)
b = %ango (B.16)
Equations (B.3) and (B.4) become, using (B.12)
df(x1° + A1)(C3 + 43))}/dT = -q°(1 + q283) ($o+4,)
d(¢° + 8,)/AT = P2[F,° + au y csY tas)-Py.

The zero-order terms lead to

Csx2® = -qodo (B.17)

d¢o/dT = PngO - P1 (B.18)
and the first order terms to

d(x1°A3)/dT = -C3 dp,/4AT - qo[A¢ + g1¢olh3] (B.19)

db,/dT = ads , a = Paaxy Ca¥ 1. (B.20)

Equations (B.17) and (B.15) imply

¢° = -2bCa(T-T¢)/qo (B.21)
and (B.18) becomes
PngO - P1 + 2bCa/go = O. (B.22)

Since Fgo and gqo all depend on Cs, this is a transcendental equation for

Cs and has to be solved by trial and error.

However, we see from (B.1l) that go involves the parameter as which is
very large for the present set of parameters, see Table 2. This implies that
go >> 1 and suggests that we attempt to solve (B.22) by neglecting the last
term, which leads to

Fg° = pl/pP2. (B.23)

For all the values of P1 and P2 in Table 4, i.e. those values for which

X1= X2 = 0 at T = Tf, we have

9 >
Fq 5.
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This implies via (B.14), (B.11) and (B.16)
x3® = Cs = |1 + (1+Fg°)/m]1/Y = 1.195
gs ~ 24.7, d4: ¥ 2.43 and b = .268,
and we can verify that the last term in (B.22) does not greatly affect the

estimate (B.23).

These results are now used to solve (B.19) and (B.20). We can eliminate
Ao by differentiating (B.19) and substituting (B.20), obtaining
d?(x1%A3)/dT7? + qogi190dA3/dT + C3 AA2/dAT + a qolds + qogiAadeéoe/dT = O. ;

With the aid of (B.2), (B.7) and (B.12) we find
C3dA2/4T = uAs, u = a1a2yCsY.
From (B.21)
qogi1d¢e/dT = -2bv, v = Caqg:.

Finally, if we define

u = x1%43 (B.24)
and use (B.15) we get

d%u - 2 vi~ldu + (A%+2v)t%u = 0 (B.25)

dr? dt

where
T = Tf -Tz20
Ac = {(aqe *+ u}/b. (B.26)

The numerical values of these quantities are in this case
v = 2.30, u = 4.08
and, for the case where P; = .2, line 2 of Table 2,
a = 6.37, A = 24.5.

A general solution of this equation is
u = AT(V+%) cos(B ln 1 - 8)
B = {AZ + 2v - (1+2v)7/4}F = A + o(x" 1)

where A and S are the arbitrary amplitude and phase.

The solution for Az is -ound from (B.24) and (B.15)
Ay = Ari[v-(3/2)] cos(B ln 1 - 8). (B.27)
Also AF and dd®/dT can be found from (B.12) and (B.20}.
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}: APPENDIX C: List of Symbels
o
A,nl Arbitrary constant in perturbation solution
w3
e AB,AV Cross-section areas of airbag and vent
Jhs
:** AC Drag area of canopy
1 a Parameter in perturbation analysis, see (B.20)
in b Parameter in perturbation analysis, see (B.16)
.'»
}: Cp Parachute drag coefficient
-
AN C, Vent flow coefficient

»
A

Constant density value in perturbation analysis, see (B.13)

—~
&

~ D Canopy drag, see Equation (3)
fz Fg G-force or dimensionless acceleration, see Equation (17)
- g Acceleration of gravity

:‘ H Height of airbag
4:' Je Constant in air-flow definition, see Equation (8)

E: M Number of oscillations (local maxima) of Fg in Table 4
52 p Pressure of air in airbag

Cof

Constants in feedback control system, see Equation (39)

-
av;
-
o
N}

. Pa Standard atmospheric pressure
i: P Critical (sonic) pressure in vent
;; 0 Dimensionless air-speed in vent
- q Air-speed in vent
- do,q1 Constants in perturbation of Q, see (B.11)
Eﬂ Rp Reaction (lift) of the airbag on platform, Equation (3)
.::' r P1/P2
= S Variable in the vent air-speed, Equation (8)
,.. t Time
; : T Dimensionless time
: ! T¢ Time at which platform strikes ground
j'ﬁ To Initial time for optimal solution
!: u Variable in perturbation, see (B.24)
f:: v Platform velocity of descent
,a: Vo Initial platform velocity
4:; W Weight of platform and load
" X1,X2,X3 Dimensionless height, velocity and density
$ ®:1?,%x2%,%3° Zero-order perturbations in xi1,x2,X3, see (B.7)
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Y . . . .
jxf 1% Height of platform above ground during landing
\-I
by a3 ,a:.. Qe Dimensionless parameters
!-~~ 3 Constant in perturbation solution, see (B.27)
$ Y Ratio of specific heats of air
o
o)
uﬁ 1:,82,03,8p,8, Perturbations of solution, see (B.8), (B.9)
"
‘: n Dimensionless pressure of air in bag
', i Ng Pressure at which blow-off patch is activated
"y . .
2 n Ccritical, sonic pressure in vent

’-
0

N

::Q 6] Energy of platform

hlﬂ\ )\ Large parameter in perturbation oscillation, see (B.26)
: u Constant in perturbation analysis

:fﬁ v Constant in perturbation analysis

: < o) Mass density of air in bag

;LJT o4 Mass density of air at standard atmospheric conditions
o o} Dimensionless variable in vent flow, see Equations (18), (19)
1’f1 1 Tf—T, see (B.26)

:Eﬁ o Dimensionless vent area, control variable

:&; o Constant vent opening

’ o Zero-th order perturbation in vent opening, see (B.8)
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