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Chapter 1

Exploiting replication

1.1 Using replication to enhance availability and
* fault-tolerance in distributed systems

The focus of this chapter is on the use of data replication and replicated
execution to obtain faster response time or fault-tolerance in distributed
programs. These techniques can be critical in determining whether or not a
network-based solution to an application problem will be feasible.

For example, modular expansion and price-performance considerations
argue for the use of distributed systems in factory automation settings. How-
ever, many factories contain devices controlled by dedicated processors that
require realtime response. Any delay imposed on the controllers by the net-
work must be bounded. This is hard to ensure because of possible packet
loss and unpredictable load on remote servers. Consequently, such systems
are forced to replicate or cache data needed by the controllers.

Similarly, distributed execution may be valuable in a factory automation
setting, because it enables applications to take advantage of the enormous
computational resources available in a network. To distribute the execution
of a request over multiple processes, however, it is necessary to replicate

* the data structures used to coordinate their actions. Otherwise, one cannot
ensure that the processes will give consistent behavior. Thus, we need to
understand replication to employ this type of distributed computation.

Fault-tolerance considerations can also motivate the use of replicated
data and execution. In a non-distributed setting a failure rarely affects any-
thing but the user of the crashed program or machine. In a network, the

2effects of a crash can ripple through large numbers of machines. A program



2 K. Birman and T. Joseph

that will survive the failures c' prog;ams with which it interacts must have
access to redundant copies of critical resources and ensure that its state is
never dependent, even indirectly, on information to which only the failed
program had access. It may also be necessary to maintain backup processes
that will take over from a failed process and complete time-critical com-
putations or computations that have acquired mutual exclusion on shared
resources.

-This chapter explores a number of approaches to replication and dis-
tributed consistency issues. The treatment is applicable to a conventional
local area network or a loosely coupled multiprocessor. The programs and
computers in such systems fail benignly, by crashing without sending out
incorrect messages. Processors do not have synchronized docks, hence the
failure of an entire site can thus only be detected unreliably, using time-
outs. Message communication is assumed to be reliable but bursty, because
packets can be lost and may have to be retransmitted. >

S Two major problems that arise in these settings wiIl not be considered
here. The first is network partitioning, where the network splits into sub-
networks between which communication is impaired (for example, if a LAN

.'." bridge fails). Providing replication that spans partitions is a difficult prob-
*' - lem and an active research area. Secondly, we will not look at problems that

place realtime constraints on distributed algorithms or protocols. Realtime
issues are hard to isolate; once they are introduced, the entire system must
often be treated from a realtime perspective. Although our methods are po-
tentially useful in systems for which a realtime constraint leads the designer
to dedicate a computer to some device, we will assume that the realtime
aspects of such problems do not extend beyond the control program itself.

1.2 The tradeoff between shared memory and mes-
sage passing

At the heart of any distributed system lies the problem of transferring infor-
* mation between cooperating processes. Broadly speaking, this can be done

in one of two ways: by permitting the processes to interact with some com-
mon but passive resource or memory, or by supporting message exchange
between them. There are advantages and disadvantages associated with
each approach, hence the most appropriate style of information transfer for

* .a particular problem must be determined by an analysis of the characteris-
tics of that problem. In database systems, the shared memory paradigm is
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the " * - e, and many other systems share this character. In other set-
tings, however, a shared resource might represent a bottleneck that could
be avoided using replication and direct message-based interactions between
the processes using that resource.

This point is important because the approach used to replicate data de-
Vpends strongly on way in which processes will interact. Database replication

techniques, such as were described in Chapter ??, are quite different from
replication for processes that interact directly via message passing.

The focus of this chapter will be on message oriented systems. We start
by identifying a set of characteristics of problems that call for message-based
solutions, as opposed to ones based on shared memory. This characterization
leads to a list of services that a system must address in order to permit
message-based solutions to distributed applications using replicated data.
Next, we look at a number of systems in order to understand how they
address the problems in this list. Finally, we examine a particular model

S for solving these problems in a message-passing environment and a set of
solutions that can be easily understood in terms of this model.

1.3 Consistent distributed behavior in distributed

systems

Shared memory has been studied intensively since distributed computing
systems were first proposed. The dominant problem that must be addressed
here is to ensure that the processes using a shared memory be able to co-
ordinate their access to it so as to achieve "consistent" behavior with re-
spect to one another (a concept that we will look at in more detail below).
Transactional serializability, as discussed in previous chapters, is a widely
accepted solution to this problem. This leads to a natural question: should
all types of distributed consistency be viewed as variant forms of transac-

'- ~ tional consistency, or are there problems that can only be addressed using
other methods? Looking at the factory automation setting, it is not hard
to find problems that fall outside the traditional transactional framework.
Consider the following two examples:

e Build software for monitoring job status and materials inten-
tories. Updates will be done by the warehouses (quantities on

* hand), "cell controllers" (requests for materials and changes in
job status), and from a central management site (changes in
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prices, deliveries from suppliers, chatges in job p'ior. .'s, etc).
Queries will be done from managerial officies throughout the fac-
tory complex.

e Develop software for a cell controller operating a set of drills.
Each drill is independently controlled by a dedicated microproces-
sor. The cell as a whole receives a piece of work to do, together
with a list of locations, sizes and tolerances for the holes to be
drilled. It must efficiently schedule this work among the drills.
Drills can go offline for maintenance or because of bits break-
ing, or come online while the cell is active, hence the scheduling
problem is dynamic. Some drills are better suited to heavy low-
precision work, while others are suitable for lighter high-precision
work. Finally, it is critical that a hole not be drilled twice, even
if a drill bit breaks before it is fully drilled, because this would re-
suit in a very low precision. Instead, an accurate list of partially
drilled holes should be produced for a human technician to check
and redrill manually.

These two problems illustrate very different styles of distributed comput-
ing, and consequently distributed consistency means something different for
each. The former dearly lends itself to a transactional approach. One would
configure the various programs into a "star", with a database at the center,
perhaps replicated for fault-tolerance. Programs throughout the network in-
teract through the database. Transactions are the natural consistency model
for this setting The essential observation to make is that the processes share
data but are independent. By adopting a transactional style of interaction,
they can avoid tripping over one another. Moreover, transactions provide a
simple way to ensure that even if failures occur, the database remains intact
and consistent., Now, consider the second problem. A star configuration seems much less
natural here. The processes in this example need explicit knowledge of one

0 another in order to coordinate their actions on a step-by-step basis. They
need to reconfigure in response to events that can occur unpredictably, and

9 to ensure the consistency of their views of the system state and one-another's
.1 individual states. When a control process comes online after being ofiLine

for a period of time, it will have to be reintergrated into the system, in a
* -consistent way which may have very little to do with its state at the time

of the failure. On the other hand, when a process goes offline, the processes

0).

V.
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that remain online need to ass-,le rtsp3nsibility for finishing any incomplete
work and generating the list of holes to be manually checked. Moreover, it
is not reasonable to talk about "aborting" partially completed work, since
this could result in redrilling a hole.

What should consistency mean in this case? All of the above consid-
erations run contrary to the spirit of a transactional approach, where the
goal is serializability - non interference between processes. A process in
a transactional system is encouraged to run as if in isolation, whereas the
cell controller involves explicit interactions and interdependencies between
processes. Transactions use aborts and rollback to recover from possibly in-
consistent states, but in this example rollback is physically impossible. On
the other hand, although the kind of consistency here may not be transac-
tional, one would not want to go to the extreme of concluding that there
is no meaningful form of consistency that applies in this setting. Certainly,

* there should be a reasonable "explanation" for what each control process is
* ,doing, and this explanation should be in accordance with the cell controller

specification.

This leaves us with two choices. One option is to look at how the trans-

actional model could be extended to cover these new requirements. This

approach has lead to mechanisms like top-level transactions [Liskov83],
mixtures of serializable and non-serializable behaviors [Lynch86,Herlihy86a],
and specialized algorithms for concurrently accessing data structures like B-
tree indexes. The trouble is that these introduce complexity into a model
that was appealing for its simplicity. Moreover, these methods have been
around for some time, and have proved appropriate only for a narrow set of
problems. The second option, pursued here, is to develop a different style
of distributed computation better matched to problems like the ones arising
in a cell controller.

'Top-level transactions are a striking example of how the tradeoff between shared mem-
ory and message passing can lead to complex system structures. A top-level transaction
is essentially a way of sending a message from "within" the scope of an uncommitted
transaction to other transactions running outside that scope. It provides an escape from

Ile the shared memory paradigm into the message passing one. The fact that such a mech-
Sanism is needed within transactional systems is strong evidence that no single approach

addresses all types of distributed system.

.4
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1.4 Tools for building directly distributed soft-
ware

For lack of a better term, let us refer to problems in this class as being di-
rectly distributed, since they involve processes that interact directly with one

,*'. another rather than indirectly through a shared resource. The remainder of
this chapter examines operating system tools for solving directly distributed
problems. Directly distributed applications arise in many settings other than

the factory floor. Consequently, these sorts of tools would apply to any col-
lection of processes that need to closely coordinate their actions and share
data, or tolerate failures.

Transactional "tools" provide for synchronization, data management,
transaction commit, and so forth. Tools for a directly distributed system
would provide analogous mechanisms oriented towards helping the members

of some group of cooperating processes behave in a mutually consistent way.
* Typically, this would include some subset of the following:

Process groups: A way to form an association between a set of processes
for cooperating to solve a problem.

Group communication: A location-transparent way to communicate with
the members of a group or a list of groups and processes. In some sys-
tems, group communication consists only of a way to find some single
member of the named group. In others, communication is broadcast-
oriented 2 and atomic, meaning that all members of the destination
group receive a given message unless a failure occurs, in which case ei-

.4. ther ai the survivors receive it or none does. A problem that must be
addressed is how group communication should work when the group
membership is changing at the time the communication takes place.

,4. Should the broadcast be done before the change, after it, or is it ac-
ceptable for some group members to observe one ordering and some
the other? Should message delivery to an unresponsive destination be
retried indefinitely, or eventually interrupted - with the attendant risk

* that the destination was just experiencing a transient failure and is ac-
tually still operational? We will see that the way in which a system

% 'A group broadcast should not be confused with a hardware broadcast. A group
broadcast provides a way to communicate with all members of some group. It might or
might not make use of hardware facilities for broadcasting to all the machines connected

* . to a local area network. Here, unless we explicitly indicate that we are talking about a
hardware broadcast, &lie term broadcast will always mean broadcast to a group.

A-.

-WA
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resolves these issues can determine the type of problem-as that process
5" groups in the system can be used to solve.

A, Replicated data: A mechanism permitting group members to maintain
replicated data. Most approaches provide a 1-copy consistency prop-
erty, analogous to 1-copy serializability.

Synchronization: Facilities for synchronization of concurrent activities that
interact through shared data or resources.

Distributed execution: Facilities for partitioning the work required to
solve a problem among the members of a process group.

State monitoring mechanisms: Mechanisms for monitoring the state of
the system and the membership of process groups, permitting pro-
cesses to react to the failure of other group members.

. Reconfiguration mechanisms: Facilities with which the system can adapt
dynamically to failures, recoveries, and load changes that impact on
work processing strategies.

Recovery mechanisms: Mechanisms for automating recovery, which could
range from a way to to restart services when a site reboots to facili-
ties for reintegrating a component into an operational system that is
actively engaged in distributed computations.

.yp More will be needed than a set of tools if the intention is to solve real-

. world distributed computing problems. Questions of methodology, efficiency

of the implementation, and scalability must also be addressed. For example,
it is easy to solve database problems using transactions. To be able to say
the same about directly distributed software, one would need to demonstrate
that the tools lead to a natural and intuitive programming style in which
problems can be isolated and solved one by one, in a step-wise fashion. And,

,- it must be easy to establish that the solutions will tolerate the concurrency
* and configuration changes characterizing asynchronous distributed systems.

One problem is that we lack a rigorous statement about what consistent
behavor means in directly distributed settings. In a shared memory setting,
consistent behavior generally means that the accesses made to the data by
client programs are serializable [Bernstein83], and that some invariant holds

9, on the state of programs themselves. In an message-oriented distributed
setting, we don't have a data manager or shared data items, hence the

0%
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serializability constraint is lost. Instead, one would like to say that the
processes in the system, taken as a group, satisfy some set of system-wide
invariants in addition to local ones on their states.

Unfortunately, we are looking at asynchronous systems. When one says
that two actions taken at different locations are in accord with a global
predicate, that statement will have no meaning until it is decided when the
predicate should be evaluated. This temporal dependency is particularly
striking if the notion of consistency changes while the system executes. For

"'I example, consistent behavior in an idle cell controller is quite different from
consistent behavior while work is present. Taking a more extreme exam-
ple, consistent behavior of a distributed program for controlling a nuclear
reaction means one thing during normal operation, but something entirely
different if a cooling pump malfunctions. Since the switch from one rule to
another cannot occur instantaneously, defining consistency rigorously is a
hard problem.

* Distributed systems designers have approached the consistency issue in
several ways. Much theoretical work starts with a rigorous notion of dis-
tributed consistency. However, this work often relies on simplified system
models that may not correspond to real networks. For example, the the-
oretical study of Byzantine agreement establishes limits on the achievable

_ - behavior of a distributed agreement protocol. The failure modes permitted
include malicious behaviors that real systems do not experience, and the
model assumes that all processors share a common clock (so that they can
run in lock-step). The cost of Byzantine agreement turns out to be too high
for any "real" system to pay. Similarly, innumerable papers have presented

*complex protocols to solve distributed problems, remarkably few of which
have ever been implemented. Any practitioner who scans the literature dis-
covers that many of these are in fact not "implementable" because they
make unrealistic assumptions.

At the other extreme, most existing "distributed" operating systems
provide little more than a message-pawsing mechanism, often available only
through a cumbersome and inflexible communication subsystem. Systems
like this simply abandon any rigorous form of consistency in favor of proba-
bilistic behavioral statements. When attempts have been made to formally
specify the behavior of real distributed systems, the results have often in-
cluded so much detail that it becomes hard to separate the abstract behavior
of the system from the implementation and interface it provides. Thus, a
formal specification of a distributed system often includes details of how the
message channels work, how addressing is handled, and so forth. While this

S,- f
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information is of value in designing applications that depend on a precise
characterization of system behavior, high level issues such as "consistency"
are obscured by such a treatment. As we will see, few of the problems in
our list could be solved using a message-passing approach, and a highly
detailed formalism describing exactly how the message-passing mechanism
works offers little help.

An intermediate approach, which will be adopted here, restricts system
behavior in order to simplify the solutions to problems like the ones that
arise in the toolkit. On the one hand, these restrictions must be efficiently
implementable. On the other, it must be possible to talk in abstract terms
about how distributed programs execute in the system, what it means for
them to behave consistently, and how consistency can be achieved. Our dis-
cussion will revolve around a model and associated orthogonality properties:

Model: Given a distributed system, we would like to be able to describe
* its behavior formally in a way that will help establish the correctness

, oe of algorithms run under it. If this requires restrictions on the permis-
wa's-.. sible behavior of the system, we will need to understand how those

restrictions can be enforced and how weak they can be made.

VOrthogonality: Once one begins to make formal statements about the
behavior of a set of tools for building directly distributed software, it
becomes reasonable to ask questions about the extent to which the
tools influence each other. Ideally, one would want tools that operate

completely independently from one another. Otherwise, by extending
the functionality of a system in one way, one would risk breaking the
preexisting code.

a.,. Efficiency is also an important consideration. Nobody will use a set of
.- tools unless it yields programs that perform as well (or better) than software

built using other methods. Moreover, the absolute level of performance
%e - achieved must be good enough to support the kinds of applications likely to

employ direct distribution.

V A final issue relates to questions of scale. Our tools focus on direct
distribution as a problem "in the small". One also needs to compose larger
systems out of components built using these tools, in a way that isolates
the larger-system issues from the implementation of the directly-distributed

components of which it is built. Otherwise, it may be impractical to talk
* about system design and interface issues without simultaneously addressing

implementation details.

4 " a.kill
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1.5 System support for direct interactions be-
tween processes

A variety of systems provide some level of support for direct distribution.
Let us look at how these address the major items in our list of tools.

1.5.1 Basic RPC mechanisms

Most operating systems provide remote procedure calls (BirreU84]. The tech-
nological support for remote procedure calls has advanced rapidly during the
past decade, and sub-millisecond RPC times for inter-site communication
should be common in operating systems in the near future. RPC does not,
however, address any of the problems in the above list. Thus, the program-
mer confronted by a direct distribution problem would be in a very difficult
situation when using a system for which RPC is the primary communica-

* tion mechanism. Short of building a complex application-level mechanism
% to resolve these problems, there would seem to be no way to build directly

distributed software.

'V 1.5.2 Quorum methods

Many systems manage replicated data using quorum -:hemes (see Chapter
* ??). In these, update operations require two phases, while read-only opera-

tions can be done in one phase. An update is transmitted during the first
phase, and then committed in the second phase if a quorum of copies were
updated and aborted otherwise. The abort is needed to avoid an uncertain
outcome if some processes failed just after doing the update but before get-
ting a chance to reply. Consequently, recovering processes must start by
determining the status of uncommitted operations that were underway at
the time of the failure.

Although read operations can be done in one phase, they need to access
a sufficient number of copies to ensure intersection with the writes. In a
fault-tolerant setting, this number must exceed the number of simultaneousfailures that the system is expected to tolerate. 3

'Unless failed process.s never recover, ay fault-tolerant quorum scheme that allows
writes during failures will use a write-quorum size smaller than the total number of pro-
cesses with copies of the replicated data item. Since read quorums must always intersect

* -write quorums, the read quorum size must be larger than the number of simultaneous
failures that the system is designed to tolerate.

4 '.
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Thus, fault-tolerant quorum-based schemes require a complex recovery
mechanism, and execute both reads and updates synchronously.

Do quorum methods offer solutions for the more general set of direct dis-
tribution mechanisms enumerated above? For example, consider the prob-
lem of synchronizing the actions of a set of processes. One might do this

,, , using a token managed with rules like the following:

A set of processes shares exactly one copy of a toker, using op-
erations to pass and request it. If the holder of the token fails, a
pass is done automatically on its behalf. New processes can join
the set dynamically.

Notice first that this problem is hard to solve using remote procedure
calls. Typical RPC implementations detect failures using timeouts. Since

*timeouts can be inaccurate, an agreement protocol is needed to deal with
token holder failures. The reader may want to try and design such a protocol:

L- .- it isn't easy! For example, one could try to inform all operational processes
of each pass, so that they know which process to request the token from.
However, in addition to the inaccuracy of the failure detection mechanism,
the solution must deal with the possibility that the token could be in motion
at the time of a request. Dynamic group membership changes would make
these problems even more complicated.

It would certainly be possible to use quorum methods to update variables
identifying the current token holder and request queue. However, a fault-
tolerant quorum-based token passing algorithm will be costly both in terms
of code required and the performance that it can achieve. Thus, on the one
hand it is hard to see how a non-quorum scheme could be used to solve this
problem, but on the other, it is hard to believe that a quorum solution could
perform at an acceptable level.

Token'passing is just a simple example of the sort of problems that a
directly distributed system would have to solve. In a setting where token
passing is difficult, such systems will surely be impractical to construct.
Some experimental evidence to support this claim exists: many systems
support RPC's and quorum replication methods, but few provide mecha-i nisms like the token passing facility outlined above. For example, the DEC
VAX-Clusters system has a synchronization facility similar to this token

*e mechanism [Kronenberg86]. However, the implementation is complex, and
few application designers could undertake a similar effort.

:lag=
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1.5.3 The, ARGUS system

The ARGUS language extends an RPC mechanism with transactional fea-
tures and persistent data [Liskov83]. ARGUS provides support for recovery
from failure, but not process groups or replicated data. Moreover, ARGUS
uses an abort mechanism that rolls back actions in the event of a failure. This
makes it easy to implement quorum replication methods, and consequently
ARGUS would be a good environment for implementing a quorum-based
token passing mechanism. On the other hand, transactions and rollback
could lead to problems in settings like the factory automation example we
looked at above.

S.

1.5.4 The CAMELOT system

Like ARGUS, CAMELOT is a transaction-based system [Spector88]. The
objective of the project is to achieve the highest possible transactional per-
formance. Quorum replication techniques have been pursued vigorously in
CAMELOT as part of the AVALON language built on top of the system
[Herlihy88]. AVALON focuses on mechanisms for maintaining quorum-based
replicated objects in which quorum sizes change dynamically (Herlihy86b].
This approach works well in settings with frequent communication partition-
ing, site failures and recoveries. The disadvantage is that quorum schemes
are highly synchronous. We will be looking at systems that can solve the
toolkit problems using methods that are asnchronous except when a site

.:-. failure or network partitioning occurs. Such an approach will outperform a
-" quorum scheme provided that these types of failures are rare, which is the

case in most local area networks.

1.5.5 The V system

V is an RPC-based system that places a strong emphasis on performance
aid on system support for forming process groups and broadcasting requests
[Cheriton5J. Recall that this raises the problem of how the group broadcast

* mechanism should work when group membership is changing or processes
fail. Although V makes a "best effort" to deliver messages to all members
of a process group, V gives no absolute guarantees that all receive a given
broadcast, or that messages are received in some consistent order relative to
a membership change.

A V-style broadcast is well suited for some types of directly distributed
applications. If an application is broadcasting to a network resource man-

a-a

'..
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ager, for example to find the mailbox for a user, it may not matter very
much if some processes fail to receive the request. It is easy to program
around the uncertainty, ensuring that behavior is correct in all but the most
improbable scenarios. Thus, when broadcasting mailbox location updates,
it may not matter if some processors miss occasional updates [Lampson86].4: In this example, and in others with a similar character, the V broadcast

primitive is suitable for implementing replication. On the other hand, our
token passing problem is no easier to solve in V than in a standard RPC set-
ting. Similarly, replicated data with a 1-copy behavior constraint is hard to
provide using the standard V broadcast: if an update fails to get through,
or two updates arrive in different orders at different group members, the
copies could end up with inconsistent values. To resolve this, a non-trivial
mechanism would be needed at the application level.

1.5.6 The Linda S/Net

.AT&T has developed an operating system, the Linda S/Net [Carriero86l,
using a different approach to the problem of direct distribution. Linda
is a backplane interconnect that provides a reliable high speed hardware
broadcast facility. Every processor on the bus can broadcast requests that
all other processors will see. Bus contention logic ensures that messages are
delivered without loss in the same order everywhere. The S/Net uses this to
support a form of shared memory based on the idea of a shared collection of
tuples. The operations provided are out (add a tuple to the space), in (read
and remove a tuple) and read (read a tuple without deleting it). A pattern

- matching mechanism is used so that tuples can be extracted selectively by
specifying the values of some fields and just the data types for others. All
processors can resolve each in or out request in the same way by knowing
only the order in which it was read off the network. Token passing would be a
simple problem in Linda, as is the management of replicated data: the whole
tuple space is fully replicated. Linda has been used primarily for building
parallel software for problems ranging from numerical matrix computations

0 to artificial intelligence. Nearly full utilization of the processors is often
cited. On the other hand, the overhead of the full replication scheme can
become significant in some algorithms.

For example, Figures 1.1 and 1.2 illustrate a skeletal solution to the
drilling problem, using Linda tuples to describe the work to be done and
the outcome. Each hole to be drilled is described by a "pending work"
tuple. A drill control processor selects a tuple on which to work, drills the

Se
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NewBatch(hole-list)

/* Load workspace with hole descriptions */
for(each hole in hole-list)

out("lto-do", hole.x, hole.y, ... );

/* Wait for all to be processed */
for(each hole in hole-list)
{

/* in will block until outcome is known */

in("done", hole.x, hole.y, int status);
if(status so MUST-CHECK)

print("Must check hole at ... \n", hole.x, hole.y);

• }

Figure 1.1: Generating work for a cell controller in the Linda-S/Net

hole, and then outputs a tuple describing the outcome.

Linda lacks a failure detection mechanism, so it is not clear how to extend
this solution to generate a list of holes that a technician should recheck if
a control process can crash without generating a MUST-CHECK tuple first.
Likewise, it is hard to see how one could handle dynamic scheduling using
Linda's tuple-matching mechanism.

Despite these limitations, the Linda system points to a possible solution
for the kind of problems we are interested in. The essential observation is
that when all processes in a system execute the same actions in the same
order, distributed consistency is easily achieved. Unfortunately, the Linda

* hardware does not scale to large networks. Moreover, the basic Linda ap-
proach does not scale either: in a network with hundreds or thousands of
nodes, a scheme in which every processor must receive every request would
simply turn the network into a terrible bottleneck. Thus, it is best to view
the Linda S/Net as more of an interesting case study than as a potential

*solution to directly distributed programming in a large loosely coupled net-
work.

6.

6i
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/* A typ.i..al drill controller */
DrillControl()

forever

in("to.do", int x, int y, ... );

/* Position the drill, then make the hole */
Positionlrill(x, y);
outcome - DrillHole(HoleSpecs);

/* Record outcome */
out("done", x, Y. outcome);

S }

Figure 1.2: A control process for a single drill

1.5.7 The HAS system

At IBM, the HAS project explored a related approach to achieving globally
synchronous broadcasts. HAS focused on support for A-common storage,
which is much like the Linda tuple space but defined in terms of abstract

I- operations on a shared memory. Updates are completed within a period
of time bracketed by upper and lower bounds. Unlike Linda, HAS was de-
signed for loosely coupled processors communicating on a high speed token
ring. HAS was therefore built using a collection of message-passing proto-
cols that achieve a strongly ordered atomic delivery property starting from
unreliable message passing between processors with unsynchronized internal
docks [Cristian86,Cristi=n88]. The HAS methodology provides tolerance to

* a wide range of process and communication failure modes, even including
Byzantine failure modes in which processes can behave in arbitrary malicious
ways and experience bizarre clock failures. Unfortunately, the performance
of HAS was poor because the lower bound on update times turns out to be a
surprisingly large number regardless of system load - a substantial fraction
of a second even for a small network of fast machines. Few applications can
tolerate delays this large, and the project was ultimately discontinued.

-0
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1.5.8 The ISIS system

Like Linda and HAS, the ISIS system adopts an approach based on syn-
chronous execution, whereby every process sees the same events in the same
order. However, ISIS seeks good performance in larger local area networks.
ISIS starts with the observation that synchronous execution models offer
strong advantages. Their primary disadvantage is one of cost: without hard-
ware support, a distributed lock-step execution performs poorly. Even with
hardware support, a lock-step style of computation does not scale.

To address this, ISIS pro ides an illusion of synchronous execution, in
much the same sense that transactional serializability provides the illusion
of a sequential transaction execution. Whenever possible, ISIS relaxes syn-
chronization in order to reduce the degree to which processes can delay
one another and to better exploit the parallelism of a distributed environ-
ment. For example, processes are permitted to initiate an operation asyn-

* chronously, by broadcasting a request without pausing to wait for a reply4 .
On the other hand, the system will behave as if such messages were delivered
immediately. Similarly, ISIS delivers broadcasts with common destinations
in the same order everywhere - except when it is possible to infer that the
application does not need such strong ordering. In such cases, ISIS can be
told to relax the delivery ordering rules, which permits it to use a cheaper
broadcast protocol.

ISIS differs from Linda and HAS in providing a message-oriented rather
than a shared memory interface. The basic ISIS facilities include tools for
creating and managing process groups, group broadcast, failure detection
and recovery, distributed execution and synchronization, etc. A Linda-style
replicated tuple space is easy to implement in ISIS, as is 1-copy replicated
data. Moreover, the implementations can readily be customized to address
special requirements of the application program, such as the selection of

'Note the difference between this and an RPC, where such a pause is built in even
if no rey is desired. For example, on the SUN 3 version of ISIS a program that issues
an asynchronous broadcast to 5 destinations would resume executing alter a delay lasting
for a small fraction of a millisecond. The remote mesage deliveries occur within 5-10
milliseconds. With RPC, which has a 10 millisecond round-trip time under UNIX on a
SUN 3, the caller would be delayed by 50 milliseconds, plus any costs associated with

- the group addreuing protocol. Delivery would take as long as 45 milliseconds between
the start of the broadcast and the arrival of the last message. On systems with faster
processors and cheaper RPC costs, the costs here might scale, but the same argument

* could still be made. The point here is that ISIS is sending acknowledgement messages,
just as for the RPC, but concurrently with the continued execution by the sender.

0
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the optimal next hole for a cont-oller to drill. We will be looking at these

mechanisms in more detail below, and then at an example illustrating how
ISIS could be used to solve the drill control problem.

1.6 An execution model for virtual synchrony
One desirable feature of systems like ARGUS, CAMELOT, Linda, HAS and

ISIS is that one can write down a model describing the execution environ-
ment they provide. In the case of ARGUS or CAMELOT the model is
based on nested transactions, and the lowest-level elements axe data items

A. and operations upon them. Models for the latter systems are similar but ori-

ented towards the representation of synchronous executions. Before looking
4% at virtually synchronous algorithms for the tools enumerated earlier, it will

be helpful to start by defining such a model and giving virtual synchrony a
more precise meaning.

The elements of the execution model we will be working with are pro-
cesses, process groups, and broadcast events. Broadcast events include more
than group communication. Point-to-point messages are treated as a broad-
cast to a singleton process-group. Failures are treated as a kind of broadcast
too: a last message from the dying process informing any interested parties
of its demise. Data items are not explicitly represented, although one can
superimpose a higher level on top of this basic model in which operations
and the values of data become explicit.

1.6.1 Modeling a synchronous execution

One way to understand a model is as a formaism for writing down what an
"external observer" might see when watching the system execute from some-
place outside of it. The external observer provides a notion of global time
to relate the actions taken by distinct processes. One defines an execution
to be ninchronous if the external observer can confirm that whenever two
processes observe the same event, they do so at the same instant in time.

0 This is illustrated in Figure 1.3, where time advances from top to bottom.
-,, In a synchronous model it is easy to specify the meaning of an atomic

("all or nothing") broadcast to a process group. At the time at which a
broadcast is delivered, it must be delivered to all current members of the
group. Thus the set of destinations is determined by the event sequence

* (processes joining or leaving the group) that occurred prior to that time.
This does not tell us how to implement such a broadcast, but it -loes give a

0
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Figure 1.3: A synchronous execution. A pair of client processes, identified as
P, and P2 interact with a process group containing three server processes.
Execution advances from top to bottom in a lock-step manner. Several
message exchanges and a failure are shown.

rule for deciding whether a broadcast is a atomic or not. We will be making
use of this rule below.

Among the above systems, Linda comes closest to providing a syn-
chronous execution. However, a genuinely synchronous execution would
be impractical to implement in a local area networking environment. To do
so all the processes would need access to a common clock and to execute at

fixed speeds, neither of which is normally possible.

1.6.2 Modeling a loosely synchronous execution

An execution is said to be loosely mnchronoa if all processes observe events
in the same order. Figure 1.4 illustrates such an execution. An exter-

nal observer who notes the time at which events are executed may see the
same event processed at different times by different processes. However, the
events will still be executed in the same order as they would have been in
a truly synchronous execution. Hence if the system is not a realtime one
(and this is something we assumed at the outset), processes that behaved

• . correctly in a truly synchronous setting should still behave correctly in a

:" loosely synchronous one (Neiger87).
* More formally, for every loosely synchronous execution E, there exists

'pe
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* Figure 1.4: A loosely synchronous execution

an equivalent truly synchronous execution E'. The two executions are equiv-
% ,alent in the following sense. Let Ep be the sequence of events observed by

process p in an execution E. Then El = Ep for all p, i.e. every process
observes the same sequence of events in E and E'. Unless a process has
access to a realtime dock, it cannot distinguish between E and E'. Figure
?? is indistinguishable from Figure 1.3 under this definition.

Any synchronous system is also loosely synchronous. Thus, Linda and
HAS are both loosely synchronous systems; the global event ordering being
imposed by hardware in the former case, and by a software protocol in the
latter.

1.6.3 Modeling a virtually synchronous execution

A virtually sync/ronow execution is related to a loosely synchronous one
in much the same way that a serializable execution is related to a serial

0 one. The characteristic of a virtually synchronous system is that although
an external observer may see cases in which events occur in different orders
at different processes, the processes themselves are unable to detect this.
For example, Figure 1.5 is a copy of Figure 1.4 with the delivery of event

-. a delayed to occur after b at one destination. We would call this execution
virtually synchronous if, after both a and b have terminated, no process in

0 the system can contradict a claim that a executed first everywhere. Evidence
of the order in which operations took place could be explicit in the value of

4. -.
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* Figure 1.5: A virtually synchronous execution

some variable, or it could be reflected in the response to one of the requests
or the actions that a process took after receiving some request.

Recalling the definition of loose synchrony in the previous section, an
execution E is virtually synchronous if there exists some truly synchronous

- execution E' equivalent to E. However, we broaden our notion of equiva,
lence between executions by requiring on'y that EP s EP, for all p. Here
"2:" means that two event sequences are indistinguishable, but not necessar-

ily identical. The determination of which event sequences are distinguishable
depends on the semantics of the individual events in a particular applica-
tion. A formal definition of this sort of equivalence and a theory of virtual
synchony have been developed by Schmuck [Schmuck87j.

Compared to loose synchrony, virtual synchrony puts less restrictions on
system executions. As we will see below, this can be exploited to obtain
more efficient implementations for many distributed systems.

1.7 Comparing virtual synchrony with other mod-
els

1.7.1 Transactional serializability

Is our model really any different than a transactional one? We argue that
virtual synchrony is a substantial generalization of transactional serializabil-
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ity.
Clearly, if a system is serializable, it is virtually synchronous. On the

other hand, a virtually synchronous execution need not be serializable. First,
there is nothing like a transaction in a virtually synchronous system. Con-
sider a pair of processes, executing concurrently, that interchange a series
of messages leading to a dependency of each on the state of the other. In a
transactional setting, this could only occur if each interaction was a separate
top-lev-l transaction - a series of atomic actions with no subsuming trans-
actions .L all. However, transactional work has generally not considered
this case directly, and it is normally not even stated that the serialization

, order for such top-level actions should be the order in which they were ini-
,* tiated. For many concurrency control schemes, such as two-phase locking,

e'.- there is no a-priori reason that this would be the case: a single transaction
might asynchronously initiate two top-level transactions, first T, and then
T2 , which would be serialized in the order T2 followed by T. s

* Virtual synchrony imposes an explicit correctness constraint on sequences
of interactions like this, namely that unless the order is irrelevant, the events
be observed in the order they were initiated, even if they were initiated
asynchronously, and even if order arises through a very indirect dependency
of one action on another. Moreover, virtual synchrony talks about pro-
cess groups and distributed events (broadcasts, failures, group membership
changes, ... ), whereas transactions only address replicated data. In light
of the importance of these mechanisms for the directly distributed tools we

% listed earlier, and the apparent difficulty of layering them on top of trans-
, actions, these are significant differences.

Transactions and virtual synchrony both depend strongly on the seman-
tics of operations. In the case of transactions, this was first observed when
an attempt was made to extend transactional serializability to cover ab-
stract data types [Schwartz84]. Whereas it is easy to talk about concur-
rency control and serializability for transactions that read and write (pos-
sibly replicated) data items, it is much harder to obtain good solutions to
these problems for transactions on abstract data types. In the case of vir-
tual synchrony, the problem arises because the model lacks data items or

any other fixed referent with well-known semantics. One can only decide if
an execution is virtually synchronous if one knows a great deal about how
the system executes. This is an advantage in that the definition is consider-

• 'For example, Ti might block waiting for a lock and then update variable z, while 72
4 acquires its locks and manages to update z before T.

'A;'-,
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.thlv more powerful than any data-oriented one. There are many virtually
synchronous systems that could not be interpreted as synchronous by some-
how making the model knowledgeable about data. On the other hand, the
presense of semantic knowledge makes it hard to talk about correct or effi-
cient system behavior in general terms, without knowing what the system
is doing. As we will see shortly, one can only do this through a detailed
analysis of those algorithms on which a particular system relies.

1.7.2 Virtual synchrony in quorum-based schemes

Earlier, we saw some examples of how a quorum scheme might be used
to obtain consistent behavior in a relatively unstructured setting. Such
an approach can be understood as a form of virtual synchrony. The ba-
sic characteristic of a quorum scheme is its quorum intersection relation,

N. which specifies how large the quorums for each type of operation must be

* [Herlihy86b]. If two operations potentially conflict - that is, if the outcome
of one could be influenced by the outcome of the other - then their quorums
will intersect at one or more processes. One can thus build a partial order on
operations, such that all conflicting operations are totally ordered relative
to one another, while non-conflicting operations are unordered. Since non-
conflicting operations always commute, the executions of a quorum-based
system are indistinguishable from any extension of this order into a total
one. Such a total order can be understood as a description of a synchronous
execution that would have left the system in the same state as it was in after

A. the quorum execution. Thus, a quorum execution is virtually synchronous.

. 1.8 System support fnr virtual synchrony

1.8.1 The ISIS virtually synchronous toolkit

Let us now return to the ISIS system and look more carefully at some of the
virtually synchronous algorithms on which it is based.

1.8.2 Groups and group communication

The lowest level of ISIS provides process groups and three broadcast prim-
itives for group communication, called CBCAST, ABCAST and GBCAST.

* -The primitives were discussed previously, in Chapter ??, and their inte-
gration into a common framework supporting group addressing is covered

.kl
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elsewhere (Birman87a]. We therefore focus on their joint behavior while
omitting implementation details.

In ISIS, a process group is an association between a group address and
some set of members. Membership in a process group has low overhead,
hence it is assumed that processes join and leave groups casually and that
one process may be a member of several groups.

A view of a process group is a list of its members, ordered by the amount
of time they have belonged to the group. ISIS includes tools for determining
the current view of a process group and for being notified of each view change
that occurs. All members see the same sequence of views and changes.

The destination of a broadcast in ISIS is specified as a list of groups.
Group membership changes are synchronized with communication, so that
a given broadcast will be delivered to the members of a group in the same
membership view.

Recall that a broadcast is atomic if it is delivered to all members of each
0 destination group. Here, "all" refers to all the group members listed in the

process group view in which delivery takes place, which might not be the
same as the membership when the broadcast was initiated.6 A tirtually
atomic delivery is one in which all group members that stay operational
receive the message in the same view. The ISIS broadcast primitives are all
virtually atomic. Thus, the recipient of an ISIS broadcast can look at the
"current" group membership (in a virtually synchronous sense) and act on
the assumption that all of the listed processes also received the message. It
may subsequently see some of them fail, perhaps without having acted on
the message.

CBCAST, ABCAST and GBCAST differ in their delivery ordering prop-
erties. Before we review these differences, recall the definition of the poten-
tial causality relation on events, -- , introduced in Chapter ??: e --# e' means
that there may have been a flow of information from event e to event e' along
a chain of local actions linked by message passing.

Let BCAST(a) denote the initiation of broadcast a and DELIVER (a) the
delivery of some a to some destination. All three flavors of broadcast ensure
that if BCAST(a) --, BCAST(b) for broadcasts a and b (abreviated a --+ b),
then DELIVER(a) will precede DELIVER(b) at any common destinations.
In fact, they satisfy an even stronger property, namely that if a --+ b then
even if a and b have no common destinations, b will be delivered only if
a can be delivered too. This ensures that if some subsequent broadcast c

0 'I ISIS, it will be the same or a subset of the initial membership.

.,.
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is done, v" h b -. c, and a and c have common destinations, the system
will be able to respect its delivery order constraints. The ISIS delivery
ordering constraint can be thought of as a FIFO rule based not on the order
in which individual processes transmitted broadcasts, but on the order in
which threads of control did so. Here, a thread of control is any path along
which execution may have proceeded.

CBCAST satisfies exactly the above delivery constraint. If a and b are
concurrent, then CBCAST might deliver a and b in different orders. AB-
CAST provides a delivery order that extends -. so that if a and b are two
concurrent ABCAST's, a delivery order will be picked and respected at all
shared destinations. However, ABCAST and CBCAST are unordered with
respect to each other. GBCAST, in contrast, provides totally ordered de-
livery with respect to all sorts of broadcasts. Thus, if g is a GBCAST and
a is any sort of broadcast then g and a will be delivered in a fixed relative
order to all shared destinations.

A system that uses only ABCAST to transmit broadcasts is loosely syn-
chronous. For this reason, ISIS uses ABCAST as its default protocol when
not told otherwise by the programmer. However, ABCAST is costly. Like
the quorum protocols, it sometimes delays message deliveries in a way that
would be noticeable to the sender. CBCAST is much cheaper, especially
when invoked asynchronously.7 This leads to the question of just when
synchronization can be relaxed in a broadcast algorithm.

9.,

1.8.3 When can synchronization be relaxed?

Let us examine the degree to which some specific algorithms depend on the
ordering characteristics of the broadcasts used for message transmission.
We begin with some examples drawn from a single process group with fixed
membership:

9 ,A shared tuple space, supporting the Linda in, out and read operations.

o A shared token, supporting operations to request it, to pass it, and to
0 determine the current holder.

'The implementation of ISIS is more complex than the earlier discussion of these pro-
tocols made it appear. For reasons of brevity, the associated issues are not discussed here.
However, the reader should be aware that to make effective use of protocols such as these,
a substantial engineering investment is needed. This ranges from the requirement for a
system architecture that imposes low overhead to heuristics for scaling the protocols to

* run in large networks and to avoid thrashing when communication patterns overload the
most costly aspects of the protocols [Birman88].
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* Replicated data. There are two cases: a variable that can be updated

and accessed at will, and a variable that can only be accessed by the

holder of a token (lock) on it. We look only at the second case, as the
first one is essentially the same as for the Linda tuple space.

1.8.4 Shared tuple space

The Linda tuple space requires a very strong, globally observed ordering

*on operations. Except for the read operation, done locally without issuing
a broadcast, all operations change the tuple space. Consequently, they all

potentially conflict with one another. Of course, it is possible to relax the
relative ordering when two operations affect independent tuples. However,
it is unlikely that a system could take advantage of this because it would
be necessary to look at the actual arguments of the operations, and not just
their types.

1.8.5 Shared token

,' The shared token is interesting because it admits a variety of possible imple-
mentations. The most synchronous implementation is the easiest to under-
stand. In this algorithm, both request and pass operations are transmitted

using a globally ordered group broadcast. Members maintain a queue of

pending requests. A token holder wishing to do a pass operation first waits
until at least one request is pending, then broadcasts the pass operation.
On receiving such a broadcast, all processes mark the request at the head
of the queue as having been granted.

What if we wanted to use a cheaper broadcast primitive? Since the algo-

rithm depends on a totally ordered request queue, we cannot use a cheaper

protocol for sending requests without major algorithmic changes. On the
other hand, it might be possible to use a less ordered protocol for trans-
mitting pas operations. This, however, raises a subtle issue. It may be
possible for a request message to reach one group member much earlier (in

* realtime) than some other. If we change the broadcast primitive, such a

sequence could result in a race, where a pas operation arrives at a slow pro-
cess before the request from which it will be satisfied (Figure 1.6). Likewise,

a process about to pass the token could have received a request that has
already been granted, but not have seen the pass message. Clearly, this

would lead to error.

Fortunately, although the situations described above could arise when

4•
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P1  P2 P 3  P 4
P1 holds token initially.

P2 requests the token
.

P" SSPP 1 passes the token...

Has P4 seen the request yet?

* Figure 1.6: A race could develop when using a weakly ordered broadcast

using a totally unordered protocol, or one that is FIFO on a point-to-point
basis, it cannot occur with a CBCAST protocol. To see this, notice that a
process cannot try to pass the token unless it has first requested it and then
received it from some other holder. Let Ri denote the i'th token request to be
satisfied and Pi the pass done by the process that issued Ri. We have RL --+
Pi and Vj < i : Pj --* P. Thus, Vj < i : Rj --* Pi. In other words, when
CBCAST delivers a particular pas message, the destination will always have
received the prior request operations and vice ver a, eliminating the source
of our concern.

This reasoning inspires a further refinement. Why not transmit request
operations using CBCAST as well? The preceding analysis shows that any
process receiving a pas will have received the request to which that pass
corresponds. Thus, the only problem this change would introduce is due to
the lose of a global request ordering: different processes could now receive

* requests in different orders. This means that it will no longer be possible
for each process to determine, in parallel with the others, the new holder
of the token: they would have no basis for making consistent decisions. On
the other hand, the decision could be made by the process about to send a
pass message. If there is no pending request, that process will have to defer
its pass until a request turns up. Given a pass message that indicates the

* - identity of the new holder, all processes can find and remove the correspond-
ing request from their set of pending requests, where it will necessarily be

* .
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* Figure 1.7: A virtually synchronous token-passing algorithm

. found.
Figure 1.7 illustrates this behavior schematically. The darker lines show

the path along with the token is passed, which is precisely the part of the

-. relation used in the above argument.
Thus, a token-passing problem admits a variety of correct solutions.

The cheapest of these, from the point of view of message transmission, is
. ', the third. It depends only on the ordered delivery of messages that relate to

one another under --+. A slight price is paid when a pass operation is done
and there is no pending request: the broadcast corresponding to the pass
must be delayed, and this will have the effect of introducing a delay before
the request can be satisfied when it is finally issued. In the ISIS system,
the benefits of using an asynchronous one-phase protocol to implement the
broadcast. outweigh any delay incurred in this manner.

Token passing is an especially interesting problem because it captures

the essential behavior of any system with a single locus of control that moves
about the system, but remains unique. Many algorithms and applications

have such a structure. Thus, if we can solve token passing efficiently, there

is some hope foi solving a much larger class of problems efficiently as well.

1.8.6 Replicated data with mutual exclusion

The usual reason for implementing tokens is to obtain mutual exclusion on a

shared resource or a replicated data item. In an unconstrained setting, like

11 1 k 111,

11C h ,



28 K. Birman and T. Joseph

the Linda tuple space, we saw that correct behavior may re, -. -t use of
a synchronous broadcast. What if updates are only done by a process that
holds mutual exclusion on the object being updated, in the form of a token
for it?

If Wi' denotes the k'th replicated write done by the i'th process to hold
the token, we will always have Ri --* V10 --* ... W --+ P,. Now, since Pi
denotes the passing of the token to the process that will next obtain it, it
follows that if a process holds a token, then all write operations done by
prior holders precede the pass operation by which the token was obtained.
Thus, if CBCAST is used to transmit write operations, any process holding
the token will also see the most current values of all data guarded by the
token.

It follows that we can obtain 1-copy behavior for a replicated variable
using a token-passing and updating scheme implemented entirely with asyn-
chronous one-phase broadcasts. Any process holding the token will "know"

*' it also possesses an up-to-date state (this kind of knowledge is formalized
in [Taylor88]). Moreover, execution can be done without any delays at all,
reading and writing the local copies of replicated variables without delay -
just as for a non-replicated variable - and leaving the corresponding broad-
casts to complete in the background.

Figure 1.8 illustrates replicated update using token passing in this man-
ner. All the updates occur along the dark lines that highlight the path along
which the token travels, which is exactly the --+ relation used in the above
argument. Although the system has the freedom to delay updates or deliver
them in batches, it can never deliver them out of order or pass a token to a
process that has not yet received some pending updates. The algorithm is
thus executed as if updates occurred instantaneously.

What about an application that uses multiple data items, and multiple
locks? The algorithm described above can yield very complex executions in
such a setting, because of delayed delivery of update messages and deliveries
that can occur in different orders at different sites. Nonetheless, such a
system always has at least one synchronous global execution that would
have yielded the same outcome. To see this, observe that --* for this system
is a set of paths like the one seen in Figure 1.8, each consisting of a sequence
of write and pas operations. These paths cross when a token is passed to
some process p that subsequently receives a second token (Figure 1.9). Such
a situation introduces edges that relate operations in the former path to

• operations in the latter. Similarly, if a process reads a data item, all the
subsequent actions it takes will be ordered after all the previous updates

.@.."
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Pt P2 P3  P4

- ---------------------------- update 1
-- -- ----------------------------.... .... date 2

.................... token passed

-- ----- update 3
- - - - - - - - - - - - - - - - - - ----- ---------------- t----------------------------token passed

------------------ --------------I-----------------------------update 4

* Figure 1.8: A virtually synchronous Replicated update algorithm

to that data item. Although it may be hard to visualize, the resulting --

relation is an acyclic partial order. It can therefore be extended into at least
- one total order, and in general many such orders, each of which describes

a synchronous global execution that would yield the same values in all the
variables as what the processors actually saw.

Thus, although the update algorithm is completely asynchronous and no
process ever delays except while waiting for a token request to be granted,
the execution is indistinguishable from a completely synchronous one such
as would result from using a quorum write [Herlihy86b] for each update.
The performance of our algorithm is much better than that of a synchronous
one, because a synchronous update involves sending messages and then wait-
ing for responses, whereas an asynchronous update ends messages without
stopping to wait for replies. No process is ever delayed in the execution
illustrated by the figure, except when waiting for a token to be passed to it.

A similar analysis can be undertaken for replicated data with local read-
and replicated write-locks, although we will not do this here. The existence
of local read-locks implies that write-locks must be acquired synchronously,
with each process granting the lock based on its local state, and the write-
lock considered to be held only when all processes have granted it. This
leads to an algorithm in which read-locks are acquired locally, write-locks are

• acquired using a synchronous group broadcast, and updates and lock release
are done using asynchronous broadcasts. In a refinement, the breaking of

ft
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P1 PS P3  P4

-~ ~ ~~ ~.... ---------------------- update I

----- ------ ----- updat . .1

---------.......

update 
2.1

..............- , -- ------ - -- "-- -- - - . - updat ,2.

---------------------------------------------------------------- IX------------ update 2.2

* Figure 1.9: Replicated updates with multiple tokens

read-locks after failures can be prevented by asynchronously broadcasting
information about pending read-locks in such a way that any updates that
depend on a read lock are related to the read-lock broadcast under --+. This

method was first proposed by Joseph [Joseph86].

1.8.7 Dealing with failures

The analysis of the preceding section overlooks failures and other dynamic
Vi group membership changes. In many applications one wishes to deal with

such events explicitly, for example by granting the token to the next pend-
ing request in the event that the current holder fails. Recall that group
membership changes must be totally ordered with respect to other events in
order to ensure the virtual atomicity of broadcast delivery. Since ISIS does
this, any broadcast sent in the token or update algorithm will be received
by all members of the group that stay operational, and in the same view of

* the current membership.
In order to pass the token after a failure, we want to implement a rule

like this:

All group members monitor the holder of the token. If the holder

fails, the oldest proces in the group takes over and pases the
* -token on its behaLf.

For this simple rule to work, we need to know two things about the system.

-. ,
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First, the rule depends on the ordering of group members by age, which must
be consistent from member to member. Group views have this property in
ISIS.

Secondly, we need to know that any view change reporting a failure will
be ordered after all broadcasts done by the failed process. This ensures
that if the failed process did a pass before dying, then either no process saw
it happen or all processes saw the broadcast and are already watching the
new holder. That is, if Xp is the i't action taken by p and F, denotes the
event reporting the failure of p, we need Vp, i : -- F. Certainly, in any
synchronous execution a failed process takes no further actions, hence this
condition will also hold for any virtually synchronous execution.

Thus, one could readily implement a fault-tolerant token-passing algo-
rithm in a virtually synchronous environment.

Notice that the failure ordering property links the atomicity of one broad-
cast to the atomicity of a subsequent one. A conventional atomic broadcast
places an all or nothing requirement on broadcast delivery. But, this does

. not rule out the transmission of a broadcast a that will not be delivered
'" anywhere because of a failure, followed by the transmission of a broadcast

b from the same sender that will be delivered. In a virtually synchronous
system, such behavior is not permitted.

1.9 Other virtually synchronous tools

We have seen virtually synchronous solutions to two problems in the list of
tools enumerated at the start of this chapter: replicated data management
and synchronization. Let us briefly address the other problems in the list.

1.9.1 Distributed execution

There are several ways to distribute an execution over a set of sites in a
virtually synchronous setting. The ISIS toolkit supports all of the following:

* Pool of servers: The Linda S/Net illustrates a style of distributed
execution that we call the pool of servers. In this approach, a pool of servers
share a colection of work-description messages, extracting them one at a
time, performing the indicated operation, and then placing a completion
message back into the pool for removal by the process that initiated the
work. The approach is simple and lends itself to environments where the
processes composing a service are loosely coupled and largely independent

. of one another. It can be made fault-tolerant by maintaining some sort of

47
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"work in progress" trace that can be located when a process is observed to
fail. On the other hand, this method of distributed computing is potentially
costly because it relies so heavily on synchronous operations. Were a system
to make heavy use of the tuple space, it might become a bottleneck.

Redundant computation: A redundant computation is one in which
a set of processes perform identical operations on identical data. The ap-
proach was first proposed by Cooper for use in the Circus system [Cooper85].
Redundant computation has the advantage of fault-tolerance, and when the
operation involves updates to a replicated state it is often the most efficient
way to obtain a replicated 1-copy behavior. On the other hand, it is unclear
why one would want to use a redundant computation for an operation that
does not change the state of of the processes involved. With the exception
of a realtime system operating under stringent deadlines, where it might
increase the probability of meeting the deadline, such an approach would
represent an inefficient use of computational resources.

* Redundant computation is easily implemented in a virtually synchronous
environment. The event initiating the computation is broadcast to all the
processes that will participate in the computation. They all perform the
computation in parallel and respond to the caller, sending identical results.
The caller can either continue computing as soon as the first result is re-
ceived, or wait to collect replies from all participants.

ISIS does not permit redundant computations to be nested unless the ap-
plication makes provisions to handle this possibility. In contrast, the Circus
system supports nested redundant computations in a way that is transpar-
ent to the user, even permitting replicated callers to invoke non-idempotent
operations and operations implemented by a group with a replication factor
different from that of the caller. Cooper discusses these problems, as well
as mechanisms for guarding against incorrect replies being sent by a faulty
group member, in [Cooper85].

", Coordinator-cohort computation: A coordinator-cohort computa-
tion is one in which a single process executes a request while other processes
back it up, stepping in to take over and complete the request if a failure
occurs before the response is sent [Birman87b]. Such a computation could
make good use of the parallelism inherent in a group of processes, provided
that different coordinators are picked for different requests (in this way shar-
ing the load). However, if the distributed state of the processes involved is
changed by a request, the coordinator must distribute the updates made to

* its cohorts at the end of the computation. The cost of this style of updating
would have to be weighed against that of a redundant computation in order

'.,
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to pick the computational strategy most appropriate for a given application.
Implementation of a coordinator-cohort computation is easy in a virtu-

ally synchronous setting. The request is broadcast to the group that will
perform the computation. The caller then waits for a single response. In
many applications, the broadcast can be done using a one-phase protocol
such as CBCAST, although this decision requires an analysis similar to the
one used for the token passing example. The participants take the follow.
ing actions in parallel. First, they rank themselves using such information
as the source of the request, the current membership of the group doing
the request, and the length of time that each member has belonged to the
group. Since all see the same values for all of these system attributes, they
all reach consistent decisions. The coordinator starts computing while the
cohorts begin to monitor the membership of the process group. The co-
ordinator may disseminate information to the cohorts while doing this, or
use mechanisms like the token for synchronization. When the coordinator

* finishes, it uses CBCAST to atomically reply to the caller and (in the same
broadcast) send a termination message to the cohorts. If a coordinator fails
before finishing, its cohorts react as soon as they observe the failure event
(recall that a broadcast sent prior to the failure is delivered before the fail-
ure notification). The cohorts recompute their ranking, arriving at a new
coordinator that terminates the operation. If the original coordinator sent
information while computing, there are a number of options: the cohorts
can spool this and discard it if a failure occurs, or could apply it to their
states and take over from the coordinator by picking up from where it died.

Unless the application is sensitive to event orderings, this algorithm can
be implemented with asynchronous CBCAST's. As in the case of the token
algorithm, a highly concurrent execution would result.

Subdivided computation: A subdivided computation arises when
each participant does part of the requested tWk. Tihe caller collects and
assembles these to obtain a complete result. For example, each member of
a process "group might search a portion of a database for items satisfying

A" a query, with the result being formed by merging the partial results from
each subquery. As in the case of a coordinator-cohort computation, the par-
ticipants in a subdivided computation can draw on a number of properties
of the environment to divide the computation. Provided that all use the
same decision rule, they will reach the same decision. Dealing with failures,
however, is problematic in this case. A simple solution is to identify the
results as, e.g., "part 1 of 3." A caller that receives too few replies because
some processes have failed can retry the query, or perhaps just the missing

J..
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pirt.

1.9.2 System configuration and reconfiguration

We have treated the system configuration as a synonym for the view of

processes groups and processors in the system - that is, a list of the oper-
ational members, ordered by age. However, some systems have a software
configuration that augments this view-based configuration and is also used
for deciding how requests should be processed. This suggests that software
designers need access to a broadcast primitive like the one ISIS uses to in-
form process group members of group membership change. The GBCAST
primitive can be used for this purpose. Because GBCAST is atomic and
totally ordered with respect to both CBCAST and ABCAST, one can use
it to transmit updates to a replicated configuration data structure shared
by the members of a process group. Such an update would otherwise be im-

* plemented just like any other update to replicated data, but because of the
strong ordering property of the GBCAST, all processes see them in the same
order with respect to the arrival of other messages of all kinds. Thus, when
a request arrives or some other event is observed, the extended configuration
can be used as part of the algorithm for deciding how to respond.

1.9.3 Recovery

When a process recovers, it faces a complex problem, which in ISIS is solved
by the process-group join tooL A recovering process starts by attempting to

i.. ..*rejoin any process groups which the application maintains. When invoked,
the tool checks to see if the specified process group already exists and if

any other process is trying to recover simultaneously. A given process wil
observe one of the following cases:

.1. The group never existed before and this process is the first one to
join it. The group is created and the caller's initialization procedure
invoked. If two processes restart simultaneously, ISIS forces one to

0 wait while the other recovers.

2. The group already exists. After checking permissions, the system
adds the joining process to the group as a new member, transfer-
ring the state of some operational member as of just before the join
took place. The transfer is done by repeatedly calling user-provided
routines that encode the state into messages and then delivering these

• 'N
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to user-provided routines that decode the messages in the joining pro-
cess. The entire operation is a single virtually synchronous event. All
the group members see the same set of events up to the instant of
the join, and this is the state that they transfer. After the transfer,
all the members of the group (including the new member) see the
membership change to include the new member, and subsequently all
see exactly the same sequence of incoming requests (subject to the
ordering constraints of the protocol used to send those requests).

3. The group previously existed but experienced a total failure. The han-
dling of this case depends on whether or not the group is maintaining
non-volatile logs and, if so, whether or not this process was one of the
last to fail and consequently has an accurate log (Skeen gives an algo-
rithm for deciding this in [Skeen85]). The former case is treated like
case (1). In the latter, a recovery is initiated out of the log file. If the
process is not one of the last to fail, the system delays the recovery
until one of the last group members to fail has recovered, and then
initiates a state transfer as in case (2).

In ISIS, a checkpoint is done by performing a state transfer into a
log file. Thus, recovery out of a log looks like a state transfer from a
previously operational member, followed by the replay of messages that
were received subsequent to the checkpoint and prior to the failure.
Management and recovery from logs in a virtually synchronous setting
has been examined by Kane (Kane88].

Interestingly, ISIS obtains this powerful mechanism by composing several
of the tools described earlier. For example, the state transfer is actually
done by invoking tools like the coordinator cohort tool described above. To
ensure that this is done at a virtual instant in time, the recovery tool uses
a GBCAST protocol to add the new member to the existing process group,
and triggers the state transfer just before reporting the membership change
to the group members (including the new member). The mechanism is not
trivial to implement, but is still fairly simple. Similarly, solutions to the
other aspects of the problem are constructed out of broadcast protocols and
reasoning such as what we described above for the token passing algorithm.

% % 
%
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1 ,i Orthogonality issues

It was observed that for a set of tools to be of practical value they must
permit a step-by-step style of programming. For example, if we build a
distributed program using some set of tools, and then extend it in a way
that requires an additional replicated variable, the only code needed should
be for managing and synchronizing access to the new variable. It should not
be necessary to reexamine all the previous code to ensure that no unexpected
interaction will creep in and break some preexisting algorithm. We say that
a set of tools are orthogonal to one another if they satisfy this property.

A desirable characteristic of the virtually synchronous environment is
that orthogonality is immediate in algorithms that require just a single

1', broadcast event, because these broadcasts are virtually synchronous with
respect to other events in the system. For example, since updates to a repli-
cated variable appear to be synchronous, introducing a coordinator-cohort

* computation for some other purpose in a program that uses such updates
p. should not "break" the replicated data mechanism. More complex mecha-

nisms, such as the ISIS recovery mechanism, are made to look like a single
synchronous event, even when they involve several distinct subevents. A

consequence is that one can build software in ISIS by starting with a non-
distributed program that accepts an RPC-style of interaction, then extend-
ing it into a distributed solution that uses a process group and replicated
da*a, introducing a dynamically changing distributed configuration mech-
alwsm, arranging for automated recovery from failure, and so forth. Each
change is virtually synchronous with respect to the prior code, hence no
change will break the pre-existing code. The same advantage applies in a
setting like the Linda system: software here can be developed by debug-
ging a single process that uses the tuple-space primitives, and once it is
operational replicating this process to the extent desired.

1.11 Scaling, synchrony and virtual synchrony

7 We observed that a genuinely synchronous approach to distributed comput-
ing will have scaling problems. In Lindathe broadcast bus is a bottleneck,
particularly if load rises to the point where processors begin to experience

I, input buffer overruns. Moreover, as Linda grows, all processors must devote
* a higher and higher percentage of their CPU cycles to just maintaining the

shared memory. A large Linda S/Net system would suffer serious perfor-
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mance problems.
Similarly, the performance cf the HAS system degrades as a function

of the number of sites in the network, because a larger network has larger
expected delays over its communication links. This increases the minimum
delay before a broadcast can be delivered, and because HAS does not sup-
port an asynchronous broadcast the performance of application software is
directly impacted.

A system like ISIS has a slightly different problem. Here, the basic
protocols are essentially linear in the size of process groups (see [Birman88]).
However, several parts of ISIS involve algorithms that scale with the number
of sites in the network. To address this issue, the next version of ISIS will
introduce a notion of scope into the system. The idea is to bound these
algorithms to small collections of sites in a way that does not compromise

-. the correctness of the overall system. It is believed that the resulting system
will scale up to several hundred sites without imposing a severe load on
any machine, assuming that process groups do not grow to include more
than 20 or 30 members (here, we assume a 1OMbit network and 2-5MIP
workstations). These figures are based on current experience with those

,. aspects of the ISIS system that will not change when better algorithms are
installed. Thus, ISIS potentially scales to moderately large networks, but

is unlikely to scale up into geographically distributed settings with tens of
thousands or millions of sites. An open question is whether there exists
some other architecture that would yield virtual synchrony and high levels
of concurrency, as does ISIS, but would scale without limit.

Finally, consider the quorum schemes, which also achieve virtual syn-
chrony. These degrade in a way that is completely determined by the quorum
size and the number of failures to be tolerated. While process groups stay
small, one would expect bounded performance limited by RPC bandwidths,
and poorer than what can be achieved using asynchronous protocols. On
the other hand, such an approach is unlikely to scale to very large groups.

To summarize, there seems to be good reason to view virtual synchrony
as an effective programming tool for small and medium size networks, per-

* haps even encompassing a typical medium-size factory or company. In much
larger settings, other approaches yielding weaker correctness guarantees is
needed.

It should also be noted that our collection of tools focuses on program-
ming "in the small". The design and implementation of software for a factory

requires something more: a methodology for composing larger systems out
of smaller components, and perhaps a collection of tools for programming in

'pi
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the large. The former would consist of a formalism for describing the behav-
ior of system components (which could themselves be substautial distributed
systems) and how components interact with one another, independently of
implementation. The latter would include software for cooperative applica-
tion development, monitoring dependencies between components of a large
system and triggering appropriate action when a change is made, file sys-
tems with built in replication, and mechanisms with which the network can
be asked to monitor for arbitrary user-specified events and to trigger user-
specified actions when those events occur. These are all hard problems, and
any treatment of them is beyond the scope of this discussion. Moreover,
the current state of the art in these areas is painfully deficient. Substan-
tial progress is needed before it becomes practical to talk about building
effective and robust network solutions to large-scale problems.

1.12 An example of ISIS software and perfor-
mance

It might be interesting to see a sample of a typical ISIS program. The
program shown below solves the drilling problem in ISIS. In contrast to the

Linda S/Net solution, the method is fault-tolerant and supports dynamic
process recovery. As before, the code will be in two parts: the code for a
process that issues the original work request to the cell controller, and the
distributed algorithm run in parallel by the control processes. We start with

S.. the code for making a request:

/* Define a type called hole.t for describing holes */
typedef struct

* Description of hole ;n
/ut h, hy o* Description of the hole

0 /* Runtimo variables set by algorithu /
address h-drill; /* Process that will drill it */

int h.state; /* Status, see below */

} holet;

0 #define HNULL 0 /* Initial state */
.v -~ #define HASSIGNED I /* h-drill has been set */

".:
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#:dne HDRILLING 2 /* Drilling underway */
#define HDONE 3 /* Hole completed */

main()

address driller;
int nholes, nreplies, checklist[MAXHOLES], ntocheck;
hole-t holes [MAXHOLES];

... initialize nholes and holes[O..nholes-1] ...

/* Lookup address of drill service */
driller = pglookup("bldg14/cel122-a/driller");

nreplies a cbcast(driller, WORKREQ,
* / Message to broadcast */
'N; "({d,%d,. ..,a,d}O", holes, nholes,

I /* One reply anted e/,

/* Reply format e/
"(W d]", checklist, kntocheck);

if(nreplies != 1)
panic ("Drill service is not available\n");

if(ntocheck != 0)

'V printf("Job requires manual recheck. Please check:\n");
for(i a 0; 1 < ntocbeck; i++)

r,- {

hole.-t *h = kholoo[checklist[i]];
printf("Hole at %d,%d .. \n", ... );

printf("Type <cr> when finished rechecking: ");
while(getchar() !a '\n') continue;

... etc ...

0 This program imports the list of entry points from the drill service, which
defines the WORK.REQ entry to which the work request is being transmitted.

0
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To a reader familiar with the C programming lang age, th3 code will be

self-explanatory except for the arguments to cbcast, which are the group

to transmit to (a long form accepting a list of groups is also supported), the
entry point to invoke in the destination processes, the format of the data
to transmit (here, an array of structure elements), the array itself and its

length, the number of replies desired (1), the format of the expected reply

(an array of integers), a place to copy the reply, and a variable that will be
set to the length of the reply array.

The cell controller is more complex:

/* A typical drill controller */

8 include "hole-desc.h"

maino)
* {

/* Bind the two entry points to handler routines */
isisaentry(WORKREQ, work.req);
isisaentry(DRILLING, drilling);

-., /* Start ISIS lightweight task subsystem */
iuis.mainloop(restar-task);

$ }

/* Task to restart this process group member */
restart-taskC)

/* Join or create group, obtain current state *1
driller a pg.join("/bldgl4/ce1122-a/driller",

/* On first time create, call first_.timeinit *I
PGINIT, first_tineinit,

/* On Joining an existing system, do state transfer */
PGXFER, statexfor-out, state-xforin,

/* Call monitor.routine on membership changes */
PGMOWITOR, monitor-routine,

0);

* , /* Global variables */
int chocklist[AXHOLES], nutochock;

V
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/* Reception of a new work request (WORK-.REQ entry) ~
work-.req (msg)
message *msg;

int riholes;
hole.t holes EMAXHOLES];
pgroup-.view *pgv a pg-.getview(driller);

msg-.get~msg, "{ d,.. . ,Ya,%d} 0"1, holes, &nholes);
* for(n = 0; n < nholes; n++)

hole..t *h *&holes~n];
h->h..who *schedule~h, pgv);
if (<first hole assigned to this process>)

* h->h..state a H-.DRILLING;
else

h->h-.state = H..ASSIGNED;

t..fork(drill-task);
ntodrill = nholes;
ntocheck a 0;
cur-.req - mag;

send-.rep();

send-.repoC

V.. t .wait (&vork..done);
-'p if(pg-.rank(my..address, driller) 1)

/* Oldest process replies f or group *
reply(cur.req, 11{%d)[0', checklist, ntocheck);

cur-.req a (sesuage*)O;

mnt drill-tak-.active;

* /* How many failures we can tolerate at a time *
#define N-FAULTS..TOLERATED I.

4.V
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drill-task()

iLt done-wvith, n;-
char answEN-.FAULTS.TOLERLATED];
*+dill..task-.active;
n a next-.hole(my-.address, holes);

while(n !- -1)

hole.t *h - kholes En);
drill-.hole(h);

done-.with = n
n - next-.hole(holes);
/* Auy'nc. broadcast to inform others of my next action *
cbcast (driller, DRILLING,

* 'Z"a,%d,%d", my-.addreas, n, done-.with,

I..FAULTS..TOLERATED. 1,
kx" answ);

/* Invoked when a DRILLING cbcast is done e
drilling(msg)

mag..get(mg, 'Xa,%d,%d", who, fnext, &done);

/* Update status of holes list .
holestdoneJ-h..state a H-.DONE;
if(next != -1)

holes (next] h-state - H..DRILLING;

/* When done, awaken bend-.rep()*

if(--ntodrill an 0)
t..signal(kwork-.done);

/* Confirm that we got the message *
* ~~reply(.ag, eel
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/* When a process fails, reassign its remaining work *
monitor.routime (pgv)

pgroup..view *pgv;

int must-.drill - 0;
if(pgv->pgv-.event != PGV-.DIED)

return;
for~h - holes; h < kholes[nholes); h++)

if(h->h-..ho z- pgv->pgv-.died)

if(h->h-.state as H-ASSIGNED)

- h->h-..ho = schedule~h, pgv);
if(addr-.ismine(h-h-.who))

* *.zaust..drill;

* ~1' else if(h->h-.state -- H-.DRILLING)

h->h-.state a H-.DONE;
checklist Entocheck).. = h-holes;

* if(--ntodrill -- 0)
t-.signal Ckvork-.done);

if Cmust..dxill kk drill-task-.active an 0)
t..fork(drill 5 task);

The above code is ccrtainly longer than for the Linda example, and it may
look more complex. However, the Linda example was not fault-tolerant
and did not address the scheduling aspects of the problem. Moreover, our

* solution is actually quite simple. It works as follows.
Each controller process joins a driller process group. The group as a

whole receives each request by accepting a message to the work-.req entry
point. In parallel, all members schedule the work, noting which hole each of
the other processes is currently drilling and marking all others as assigned.

* A lightweight task is forked into the background to do the actual drilling; it
?.Z. will share the address space cell controller with the task running work..req,
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using a non-preemptive "monitor" style of mutual exclusion under which
only one task is executing at a time, and context switching occurs only
when a task pauses to wait for something. The work.req task now waits for
Orifling to be completed.

The drii1ltask operates by drilling the next assigned hole, then broad-
casting to all group members when it finishes this hole and moves on to
the next one. The broadcast must be done synchronously, waiting until
nough replies are received to be sure that the message has reached at least

NIFAULTSTOLERATED remote destinations (because the sender will receive
and reply to its own message, we actually wait for one more reply above this
threshold). The point here is to be sure that even if XFAULTSTOLERATED
drill processes crash, the broadcast will still be completed because some

A operational process will have received it. Each group member marks the
previous hole as H.DONE and the next one as H.DRILLING when this broad-
cast arrives.

*I If a process fails, the other group members detect this when their monitor
routines are invoked by ISIS. They reassign work, moving any hole that the

* failed process was actually drilling to the check list. Any process that has
ceased drilling (and hence no longer has an active drill-task spawns a new

*" . one at this time.
A normal ISIS application would also include code for initializing the

group at cold-start time and for transferring the state of the group to a
joining member, by encoding it into one or more messages. We have omitted
this code above.

What about performance? Figures 1.10-a and 1.10-b graph the perfor-
mance of this application program, in holes-per-second drilled by the entire
group as a function of the number of members. We generated these figures
on a network of SUN 3/60 workstations, otherwise idle, running release 3.5
of the SUN UNIX system and communicating over a 1OMbit ethernet. Fig-
ure 1.10-a was based on a control program for which the simulated delay
associated with moving the drill units and drilling holes was 1-second per
hole. Figure 1.10-b used a delay of zero. In the absence of any ISIS over-

* head, the first graph would show a linear speedup and numbers would all be
infinite in the second graph. Thus, the communication overhead imposed
by this version of ISIS becomes significant when the group reaches six mem-
bers, limiting the attainable speedup for drilling holes with this delay factor.
Since the number of messages sent per second grows as the square of the size

* of the group in this example, these curves are not unreasonable ones. More
detailed performance figures for ISIS are available in [Birman87b,Birman88j.
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1.13 Theoretical properties of virtually synchronous

systems

We conclude the chapter with a review of some theoretical results relevant
to the behavior of virtually synchronous systems.

1.13.1 How faithful can a virtually synchronous execution
be to the physical one?

N?-. A system like ISIS seeks to provide the illusion of a synchronous execution
while actually executing asynchronously. Moreover, unlike Linda or HAS,
failures are "events" in the virtually synchronous execution model used by
ISIS. This leads to limits on the extent to which the model can be faithful to

S-reality. For example, it is impossible to ensure that a virtually synchronous
execution will present failures in the precise sequence that physically oc-
curred with respect to other events. Specifically, in a situation where the
system is about to deliver a broadcast, it cannot prevent a physical failure
from occurring just as the broadcast delivery is taking place. At one destina-
tion, the failure has occurred "after" delivery, but at the other it is "before"
delivery. From this we see that a system like ISIS might sometimes be forced

N
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to claim that a message was delivered to a process that had actually crashed
before delivery took place.

A relevant theoretical result [Fisher85] shows that it is impossible to
reach distributed agreement in an asynchronous system subject to failures.
Additional work along these lines was done by Hadzilacos and reported in
[Hadzilacos84,Perry86]. These results limit what is achievable in a virtually
synchronous system. In particular, this establishes that ISIS cannot avoid
all risk of incorrectly considering an operational site to have failed.

On the other hand, it is possible for a system to avoid claiming anything
inconsistent with the observable world. This is done by introducing agree-
ment protocols to decide what picture of a fundamentally uncertain event to
provide in its synchronous world model, and then present this to its users in
a consistent manner. This is what ISIS does. Unless a failed site or process
recovers and can be queried about what it observed just before failing, code
that runs in ISIS can never encounter an inconsistency. Moreover, when

0 there is some question of ensuring that all processes have really observed aZ 7

broadcast or other event, this can be arranged by briefly running the system
-'' synchronously - for example, by asking those processes to reply after they

have seen the event and waiting for the replies. This is comparable to de-
ferring external actions in a transactional system until the transaction has
reached the prepared-to-commit stage.

1.13.2 When can a problem be solved asynchronously?
. :Schmuck has looked at the question of when a systex- specified in terms

of synchronous broadcasts can be run correctly using asynchronous ones

[Schmuck8l. He defines a system to be asynchronous if it admits an im-
plementation in which every broadcast can be delivered immediately to its
initiating process, with remote copies of the message being delivered some-
time later. Failure broadcasts are not considered, although they could be
added to the model without changing any of the results.

Define Sma c to be the class of all system specifications describing
* problems that can be implemented in this efficient, asynchronous manner.

Schmuck introduces the concept of a linearization operator, a function that
maps certain partially ordered sets of events to legal histories. In a theorem
he shows that for all specifications S:

S E Sasyn * 3 a linearization operator for S.

<3. He proves the only-if direction by showing how to construct an implemen-
,-,

r. -'
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tation for a specification 5, based on its linearization operator, using a
communication primitive similar to CBCAST. The other direction is proved

by contradiction. The result establishes that Schmuck's implementation
method is complete for the class Sasync, i.e. the method yields a correct

, implementation for all specifications S E -ac.
.' Schmuck's construction method depends on finding a linearization oper-

ator for a given specification. Unfortunately, whether a specification S is in

Sas nc is undecidable. It is immediate that there exists no general method
for finding a linearization operator for S. However, Schmuck does propose
methods for solving this problem for certain subclasses of Sasync. The ba-

sic characteristic of these subclasses is that they have linearization operators

determined entirely by commutativity properties of the broadcasts done in
the system. These results can be used to "automatically" construct a lin-

earization operator, and hence an optimal asynchronous broadcast protocol,
for a problem like the token-passing ones described above. In fact, when we

informally described a way to "linearize" executions on a system with token
passing and replicated updates, we essentially described the construction of
a linearization operator for that problem. Thus, Schmuck's work formalizes

.. a style of argument that has di-rect and intuitive meaning.
'p, Herlihy and Wing have also looked at the cost of achieving "locally"

ordered behavior in distributed systems. This work develops a theory of

linearizability, a property similar to serializability, but observed from the
5.. perspective of the objects performing operations rather than from the per-

spective of the processes acting upon those processes [Herlihy87].

1.13.3 Knowledge in virtually synchronous systems

Some recent work applies logics of knowledge to protocols similar to CB-
CAST and ABCAST. The former problem was examined by Taylor and

Panagaden [Taylor88], who develop a formalism for what they refer to as
concurrmet common knowledge. This kind of knowledge is obtained when

an asynchronous CBCAST is performed by a process that subsequently be-

-, haves as if all the destinations received the message at the instant it was
sent. In ISIS, such a process will never encounter evidence to contradict this
assumption. Taylor and Panagaden formally characterize the power of this

style of computation, and then use their results to analyze algorithms like

the concurrent update discussed above.

* Neiger and Toueg have examined the relationship between the total or-

dering of events in an ABCAST protocol and the total ordering that re-

_--
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sultF 'Lora iacorporatilig a shared realtime clock into a distributed system
[Neiger87]. They characterize the settings under which a broadcast algo-
rithm written to use a distributed clock could be implemented using an
ABCAST protocol and a logical dock [Lamport78].
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