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PREFACE

ORACLE (Oversight of Resources and Capability for Logistics

Effectiveness) is a methodology that was developed to abstract aggregate

relations from the U.S. Air Force's Recoverable Item Requirements

Computation System, which is also known as D041. Because the current

method for computing the ORACLE database is designed to work with only a

simplified version of D041, the purpose of Volume 1 of this Note is to

investigate how this method can be modified to work with the actual

version. This volume presents technical details, and it is intended for

readers who may wish to implement or extend this methodology, ,r to

understand its technical limitations. Volume II examines how an

* ORACLE-like procedure could be used to improve requirements forecasts.

This Note was prepared for the Office of the Assistant Secretary of

Defense for Production and Logistics under the auspices of RAND's

i National Defense Research Institute, the OSD-sponsored Federally Funded

Research and Development Center at RAND. The work was performed under

the project titled "Effective Modeling."
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SUMMARY

,"ORACLE (Oversight of Resources And Capability for Logistics

Effectiveness) is a methodology that assesses the effects of changing

certain resource levels on the peacetime materiel readiness and wartime

sustainability of U.S. air forces, to improve the estimaLion and

justification of resource requirements. The Air Force Logistics Command

(AFLO) uses the D041 system to help manage approximately 150,000

aircraft components. During each quarter, the D041 system is used to

estimate how much of each component should be repaired and purchased for

about three years into the future. The goal of the ORACLE methodology

is to construct an aggregate database having the following features:

* The database is an additional product of a standard D041 quarterly

computation, it is small enough to fit in a portable microcomputer, and

it can be readily manipulated by a spreadsheet-like program to mimic in

7 aggregate form the responses of D041 to program changes.

The current ORACLE methodology was designed to work with only a

simplifed version of D041, not the actual version. D041 is now being

modified to incorporate the logic that is in the Logistics Management

Institute's (LMI) Aircraft Availability Model (AAM). In particular,

D041 will incorporate the AAM's approach to common items, indenture

relationships, and an availability objective based upon no

'. cannibalization. Because the current methodology does not allow for any

of these new features, this Note investigates how these features cani be

* included.

Altogether, five different methods for developing the ORACLE

% database are described. The first method is based upon differentiating

the necessary conditions for optimality and mean pipeline equations,

* which is an extension of the approach used by the preliminary version of

ORACLE. Unfortunately, the indenture relationships make this approach

S. difficult to implement. The second method is an approximate procedure

4, in which the indenture relationships are essentially eliminated. The

• third method retains the indenture relationships but in a simplified

, S j

0
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form. The fourth is based upon making multiple runs of the AAM for the

same year. The fifth method uses regression analysis to analyze data

obtained for several years. These methods are compared with respect to

simplicity, accuracy, and execution time.

The only method for which there is some computational experience is

the final one, regression over time. Volume II discusses the

performance of that approach in the context of requirements forecasting.
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I. INTRODUCTION

ORACLE (Oversight of Resources and Capability for Logistics

Effectiveness) is a methodology that was developed to relate dollars

expended on recoverable components to the goals set in the Planning,

Programming, and Budgeting (PPB) process.[l] This methodology is

designed to systematically abstract aggregate relations between dollars

and goals from the U.S. Air Force's Recoverable Item Requirements

Computation System, which is also referred to as D041. However, the

current version of ORACLE is designed to work with only a simplified

version of D041, rather than the actual version.

The Program Objective Memorandum (POM) describes the activities and

* capabilities to be achieved over a five-year period, as well as the time-

phased resources required to achieve them. The Air Force Logistics

Command (AFLC) uses the D041 computation as the basis for its inputs to

the POM. However, the D041 computation makes forecasts for only about

three years beyond the asset cutoff date, while the POM years extend to

about seven years beyond asset cutoff. In the past, a cost-per-flying-

thour rate has been used to forecast POM requirements beyond D041's horizon,

but in recent years these forecasts have been substantial underestimations.

This Note will investigate the following two questions:

1. How can the ORACLE estimation methodology be modified so that

it can work with the actual version of D041?

2. How can an ORACLE-like procedure be used to improve the

accuracy of the POM requirements forecasts?

-' Volume I will consider the first question, and Vol. II will consider the

second.

To develop the ORACLE dpt-blse for a weapon system (or end item)

included within D041, the first step is to identify a set of independent

variables Zm, m = 1, . M., N (such as an availability target and total

0



-2

flying hours) and a set of dependent variables D ,n = .. N (such

as buy requirement, serviceable assets, and base repairs). The second
-. '

, step is to run D041 for a nominal case, which means for a specified set

of values for the independent variables for each weapon system. And the

final step is to compute the partial derivative of each dependent

variable with respect to each independent variable, as evaluated at the

nominal case. The ORACLE database for each weapon system consists of

the collection of partial derivatives 3D n/3Zm, where m = 1, ... , 'I and

n = 1, ... , N.

After the ORACLE database has been constructed, the outputs of

D041 can be approximated in the following way. For a given weapon

system, let Z be the value of the mth independent variable for the

nominal case, and let D be the corresponding value of the nthn

5% dependent variable as computc by D041. If a scenario is considered for

e which the independent variables are Zm, for m = 1, ... , M, then the

corresponding value of the nth dependent variable that would be computed

by D041 can be approximated with

M

-- = D 0 + E D n/'Zm(Z - Z 0). (1): n n n mm m

m=l

D041 is now being modified to incorporate the logic that is

currently in the Logistics Management Institute's (LMI) Aircraft

Availability Model (AAM). [2] In particular, D041 will incorporate the

AAM's approach to common items, indenture relationships, and an

availability objective based upon no cannibalization. Because the

current method for computing the ORACLE database does not allow for any

of these features, one purpose of this Note is to investigate how

these new features could be included. Next, each of these features is

described separately.

* The term "c:ommon item" refers to an item that is installed on more

than one weapon system. Thus when a common item is backordered, the

availabilities of several weapon systems may be degraded. When a spare

unit of a common item is procured, however, several weapon systems share

• the benefit. Based upon the relative amount of flying hours, the approach

P.- A-,-. 0 -a1. %-A
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taken by the AAM is to allocate a portion of a common item's backorders

and cost to each associated weapon system.

The indenture relationships indicate which items are subassemblies of

other items. A Line Replaceable Unit (LRU) refers to a component that can

be removed and replaced on the flight line; a Shop Replaceable Unit (SRU)

refers to a subassembly that can be removed and replaced in a repair shop.

The AAM treats the effect of LRU backorders differently from that of SRU

backorders. Although an LRU backorder affects aircraft availability, an

SRU backorder lengthens LRU repair times, thus lowering the probability of

an LRU spare being in a serviceable condition.

The objective function used by the AAM is the probability that a

random aircraft is not missing any of its reparable LRUs, assuming that

there is no cannibalization. In particular it is assumed that the holes

in the aircraft, because of a lack of serviceable LRUs, are uniformly

spread over all appropriate aircraft. This objective function depends

upon the expected numbers of LRU backorders at the base echelon, which in

turn depend upon the expected numbers of LRU backorders at the depot

echelon and upon the expected numbers of SRU backorders at both the base
and depot echelons.

Section II will state the equations in the AAM, as well as the

underlying assumptions and approximations. This model has the structure

of a constrained nonlinear programming problem, and it is solved using a

marginal analysis technique.

Section III will present a method for computing the ORACLE database

for the AAM based upon differentiating the necessary conditions for

optimality and mean pipeline equations, which is an extension of the

approach used by the current version of ORACLE. Because only LRUs are

considered in the current version, that version is able to compute the

ORACLE database by treating only one item at a time. However, one effect

of including indenture relationships is to couple the partial derivatives

for an LRU with those for all associated SRUs. In that case, computing

the ORACLE database requires solving a system of simultaneous linear

equations for each LRU in the weapon system.

%

W-Se'M P
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Because the indenture relationships make the foregoing approach

difficult to implement, Sec. IV will discuss four alternative

estimation procedures: The first method treats the SRUs as though they

were LRUs, which essentially eliminates the indenture relationships; the

second retains the indenturerelationships but in a simplified form; the

third is based upon making multiple runs of the AAM for the same year;

and the fourth uses regression analysis to analyze data obtained for

several years.

Altogether, Secs. III and IV will present five methods for

constructing the ORACLE database. Section V will compare these methods

with respect to simplicity, accuracy, and execution time.

MI
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II. AIRCRAFT AVAILABILITY MODEL

This section will describe the formulas and assumptions underlying

the Aircraft Availability Model (AAM) based upon the most recent

documentation for that model.[21 Because many of these formulas were

not explicitly stated in this documentation, it was necessary to verify

their accuracy by checking with the developers of the AAM.

Consequently, this section may provide the most complete mathematical

statement of the AAM that is available.

The following simplifying assumptions will be used:

1. There is only one level of indenture, which means that each

0 SRU is a subassembly of an LRU, rather than of another SRU;

2. An SRU can be a subassembly for only one type of LRU.

Although AAM does not require either of these assumptions, they will be

used to simplify the presentation given here.

OBJECTIVE FUNCTION
The objective function of AAM will be written as a direct runction

of the expected numbers of LRU backorders at bases. However, it will be

shown later that the expected numbers of LRU backorders at bases depend

upon the expected numbers of LRU backorders at the depot echelon and

upon the expected numbers of SRU backorders at both the base and depot

* echelons.

A weapon system refers to a particular mission and design of an

aircraft, which may have more than one series. For a given weapon

system, the index i will refer to the ith LRU and the index k will refer

* to the kth series. The index e will refer to the repair echelon: e 1

represents the base echelon and e = 2 the depot echelon.

Suppose that a particular weapon system has been specified and

define

aki0 = quantity per application of LRU i on series k
0i
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b = fraction of aircraft in series k that includes LRU i

kxv nk = number of aircraft in series k.

Thus the number of units of LRU i installed on aircraft of series k is

tkia kiO b kiob k'

If K is defined to be the number of series in the specified weapon system,

then the number of aircraft in that weapon system is

K

N E nk.

k=1

Define

EBOioe = expected number of backorders for LRU i at echelon e.

Thus EBOio refers to the expected number of backorders for LRU i at all

bases. Because The AAM allows the possibility that LRU i could be

installed upon several series of the same weapon systems, or upon

different weapon systems, it is necessary to compute the fraction of the

total backorders that is associated with a particular series of a

particular weapon system, which is done as follows. First define

SF k 
= number of flying hours for series k of the specified weapon

system

IP. = number of flying hours accumulated by units of LRU i over1

* all weapon systems

and then compute the use factor

Uki = Fk/IPi.
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The AAM considers UkiEBO iol to be the expected number of backorders for

LRU i that is associated with series k of the specified weapon system.

Assuming that the backorders are randomly distributed over the

available aircraft, then the probability that an aircraft of series k is

not missing a unit of LRU i is

qki0 = 1 - bki + bki(l - UkiEBO i0l/t kiO )akiO.

The probability that a randomly chosen aircraft in the specified

weapon system is not missing a unit of LRU i is

K

Qi0= 1 (nk/N)qki
0 "

k=1

If I is defined to be the number of LRUs in the weapon system and

it is assumed that the various LRUs fail independently, then the

probability that a randomly chosen aircraft is not missing any of its

reparable LRUs is

I

A = H Qi0. (2)

i=l

This expression is a measure of aircraft availability without

cannibalization and is the objective function that will eventually be

maximized.

EXPECTED SRU BACKORDERS AT DEPOT

The index pair (i, j) will be used to refer to the jth SRU

belonging to the ith LRU. However, if j = 0, then (i, 0) will refer to

the ith LRU. Define

ije = daily demand rate for SRU (i, j) at echelon e

DC.. = depot condemnation rate for SRU (i, j)
1Dn

DL.. = depot procurement time for SRU (i, i)

4,]

• At ' ., r , • ,
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RTije = average repair time for SRU (i, j) at echelon e

x.. = stock level for SRU (i, j) for each site at echelon e

mije = mean pipeline for SRU (i, j) for each site at echelon e.

The depot pipeline for an SRU consists of the units being repaired

at the depot, plus those on order from a commercial vendor. Thus the

mean depot pipeline for SRU (i, j) is

mij 2 = Xij2[RTij2 (I - DC)ij + DLijDC ij], (3)

where e = 2 refers to the depot echelon.

Define

.

p(y1mij e) = probability of having y units in the pipeline given

that the mean is mi..

The AAM uses either a Poisson or negative binomial distribution as

the probability distribution for each pipeline. Given the stock level

Sij2, the expected backorders for SRU (i, j) at the depot are given by

EBOij 2 =(y - x ij2)p(ylmij2).

Y>xij 2

EXPECTED LRU BACKORDERS AT DEPOT

The depot pipeline for an LRU consists of the units on order, plus

those being repaired at the depot, plus those awaiting SRUs at the depot

before being repaired. However, AAM makes the approximation that the

calculation of LRU depot backorders can be uncoupled from that for SRU

depot backorders. In particular, the mean depot pipeline for LRU is

computed as

WIT-

A,. .0 ~
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mi0 2 = Xi0 2 [RTi0 2 (l - DCi0 ) + DL iDC i0], (4)

which is the same as Eq. (3) except that j = 0.

Later in Eq. (6), the mean SRU backorders at the depot, which should

be affecting LRU backorders at the depot, are added to the mean LRU

pipeline at the base echelon. In effect, AAM assumes that each additional
SRU depot backorder will cause an additional LRU to be awaiting parts at

the depot, causing an additional LRJ to be backordered at the depot,

adding one unit to the mean LRU pipeline at the base echelon. This

approximation will overestimate the mean LRU base pipeline for two

reasons: A single LRU may be awaiting parts for more than one SRU, and an

SW additional LRU that is awaiting parts may not necessarily cause an

additional LRU to be backordered.

* Given the stock level x i02 and ignoring the SRU contribution, the

expected backorders for LRU i at the depot is

EBOi0 2 = (y - xi02)P(Ylmi0 2)"
Y>X i02

EXPECTED SRU BACKORDERS AT BASES

Define

RTS.. = fraction reparable this station (at base level)ii

for SRU (i, j)

* OST.. = order and ship time from depot to base for

SRU (i, j)

OIM.. = fraction of depot demand for SRU (i, j)
1j

originating from bases

NB. = number of activities that use LRU i at echelon e.
le



-10

The AAM treats the depot echelon as though it is a single

aggregated entity, which corresponds to having NBi2 = 1. However,

multiple bases are allowed, which corresponds to having NB i2 1.

The base pipeline for an SRU consists of the units on order from

the depot, plus those being repaired at the base. However, the units

on order must include the requisitions that have been backordered at the

depot, as well as those in transit between the depot and base. Because

OIM.. is the fraction of depot backorders that correspond to orders13

received from the base echelon, the mean pipeline for SRU (i, j) at an

average base is computed as

mij I = {X ijRTS ijRT ijI + Xij (1 - RTS ij)OSTij

* + OIMij EBO ij2}/NB il (5)

and the expected backorders at all bases are

EBO ijI  NBiI(Y - Xijl)p(y mijl).
yY>X ijp

EXPECTED LRU BACKORDERS AT BASES

The base pipeline for an LRU consists of the units on order, plus

those being repaired at the base, plus those awaiting parts at the base

before being repaired. The units on order include the requisitions

that have been backordered at the depot, plus those in transit between

* the depot and base.

The AAM makes two key assumptions when computing the mean LRU base

pipeline: One LRU at a base is awaiting parts for each backordered SRU

at that base, which ignores the possibility that a single LRU could be

* waiting for several SRUs; and the fraction (1 - OIMij) of the backordered

SRUs at the depot will have the same effect as the same number of

backordered LRUs at the depot, which enables the calculation of depot

SRU backorders to be uncoupled from that for depot LRU backorders. For

simplicity, this section has also assumed that each SRU can be

associated with only one type of LRU. Under these circumstances, the

mean pipeline for LRU i at an average base is
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mi01  {Xi0 1RTS 0RT 0 1 + X 1 - RTS )OST
i~ ~ oil i~i jo io

J(i)

+ EBOi02 + E [EBO ij + ( - 0iM ij)EBOij2]}/NBill (6)

j=0

where J(i) is the number of SRUs associated with LRU i. Thus the expected

backorders for LRU i at all bases are

EBOioI = 1 NBiI(y - x il)p(ylmil).

Y>Xiol1

SAFETY STOCK CONSTRAINTS

* The safety stock is defined to be the difference between the stock

level and the mean pipeline; that is, xi e - in.. Although not

K, mentioned in the AAM documentation, the planned D041 implementation of

the AAM will restrict the safety stock to be nonnegative. For

completeness, this section will allow an upper bound restriction to be

present as well. Define

S(m ije) pipeline standard deviation for SRU (i, j)

at echelon e as a function of the corresponding mean.

For example, D041 currently assumes that

S(mi = a /2(mije
) ( + l )/ 2 ,

where a and B are constants determined by a statistical study. For the

purposes of this section, it is assumed that the stock level x.. has

0 the constraint

LKij : (x.. - mije)/S(mije) : UK.. (7)K j eije ije ije

lO for i = 1, ..., I, j = 0, ..., J(i), and e = 1, 2, where LKij e and UKi. e are

specified lower and upper bounds. For example, LKije  0 corresponds to

the planned nornegativity restriction in D041.

0
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.PTIMIZATION PROBLEM

The final task is to formulate the optimization problem. First

define

STKije = available assets for SRU(i, j) at echelon e.

The available assets STK.. e include: serviceable spares on hand and

on order, plus carcasses waiting for induction and in repair, less any

backorders. Because broken carcasses are included as available assets,

this formulation assumes that everything that can be repaired will be

repaired. However, AAM does allow another option, the so-called "repair

option," in which the magnitude of depot repairs is also a decision

variable.

Next define

c. . = replacement cost for SRU(i, j).
Ii

Just as an earlier formula prorated backorders for common items among

different weapon systems, it is also necessary to prorate costs.

Compute

V. a b Fk) /I

V E = kiObki
k=1

which is the proportion of the total item flying program generated by

the specified weapon system. The AAM considers V.c.. to be the cost1 1J
actually charged to this weapon system when buying one unit of

SRU(i, j).

The optimization problem is to determine the stock levels x. e for

i = 1, . .. , I, j = 0, ..., J(i), and e = 1,2 in order to maximize the

objective (2) subject to the safety stock restrictions (7) and the

budget constraint

I J(i) 2

E E V c. i [NB. x.. - STK ] + B, (8

i=1 j=O e=1
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where

4y for y > 0

0 otherwise

and B is the available procurement budget.

The AAM has the structure of a constrained nonlinear programming

problem. The approximations in the foregoing equations were

deliberately made so that this problem can be efficiently solved by

using a marginal analysis technique. Becauo the depot SRUs are

uncoupled from depot LRUs, it is possible to make tradeoffs among SRUs

* for a given LRU, before making tradeoffs among LRUs. The LRUs can then

be ranked in terms of the increase in the objective function that would

occur if the corresponding spare unit, or equivalent investment in SRUs,

were added to the inventory.

For a component that is common to several weapon systems, the AAM

will in general compute a different stock level for each of these weapon

systems. In this circumstance, the AAM will implement the largest of

these stock levels, so that the weapon system "wanting" the component

the most will drive the decision. For the purpose of computing the

ORACLE database, which is the set of partial derivatives for the

dependent variables with respect to independent variables belonging to

A the same weapon system, this interaction between different weapon

systems will be ignored. Incorporating this interaction would

correspond to adding extra terms to the basic linear model (Eq. (1)), where

these extra terms involve the partial derivatives for the dependent

variables belonging to one weapon system with respect to independent

variables belonging to other weapon systems. Although in the future it

may prove desirable to extend ORACLE so that these extra terms are

added, such an extension will not be addressed here.
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III. NECESSARY CONDITIONS FOR OPTIMALITY

For the purpose of developing the ORACLE database for the AAM, it is

possible to use formulas given by Bigelow [31 for computing the

derivatives of several dependent variables, once the derivatives for the

stock levels, base repairs, and depot repairs are known, and for computing

the derivatives for base and depot repairs. The only formulas missing are

for computing the partial derivatives of the AAM stock levels with respect

to the independent variables. This section will show how to compute these

latter derivatives by differentiating the necessary conditions for

optimality and mean pipeline equations, which is an extension of the

method originally developed by Bigelow.[3,4]

A key approximation made throughout this section is to use the normal

distribution as the probability distribution for each pipeline, for the %

formulas for computing the partial derivatives even to be defined. If %

discrete distributions, as used in the AAM (the Poisson and negative %

binomial) were used, then the derivatives would not be defined. It is

well known that if the mean pipeline size is large, then the normal

distribution does provide a good approximation.[5] But if the mean is

small, the normal approximation introduces some error. However, this

approximation is not needed for the last two approaches considered in

Sec. IV.

When working with discrete probability laws, Bigelow [4] has

suggested an alternative approach that approximates a derivative by using

differences. The advantage of such an approach is that the normal

approximation is not needed. The disadvantages are that the resulting

equations are more cumbersome and may not assure more accuracy than simply

using tl-e normal approximation. Consequently, the normal approximation

will be used in what follows.

"'V
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STATEMENT OF CONDITIONS

Because the natural logarithm Z(o) is strictly monotonically

increasing, the objective function A can be replaced with VIA), since a

solution maximizes A if and only if it also maximizes £(A). This

replacement will be made in order to convert the product expression in

the objective function (2) into a summation. A Lagrange multiplier v

N will be used to include the budget constraint (8) into the modified

objective function. Thus the problem of maximizing £(A) becomes:

determine the stock levels x.. to maximize

I J(i) 2

L= Z(A') + v icij[NBijeXij e  ij (9)

i=1 j=O e=1

* subject to the constraints

LK. - (x. - m )/ em.) < U'K eI0
LKeije ' (mi i je (10)

For the value xij e to be optimal, this stock level must satisfy
one of the following four conditions necessary for optimality:

xij e = STK ije/NBie (11)

xije = S(mije )LKije + mije (12)

x je. = S(m ije)UKije. + mij e. (13)

MQ(A)/x. + vNB. V.c.. = 0. (14)
lie ie i 1J

Constraint (11) is a lower bound because of existing assets, (12) is a lower

bound on safety stock, (13) is an upper bound on safety stock, and (14)

must be satisfied if none of the preceding bounds are active.

It is convenient to define the normalized stock level

kij = (xij - mije)/S(mije).

% %j %ie % e
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N When using the normal approximation for the pipeline distribution, it

can be shown [6, p. 446] that the expected backorders can be computed as

EBOije = NBie S(mije )[(kije kije (kije)],

where the normal density is given by

O(r) = (1/27) I/ 2 exp(-r 2/2)

and the right tail of the distribution function by

(k) J0(r)dr.

* k

In the derivations that follow, two key results are used repeatedly:

the derivative of 1(r) is -0(r), and the derivative of O(r) is -rO(r)

Equation (14) will be written in detail for edch possible case.

First consider the partial derivative of the Lagrangian Eq. (9) with

respect to the LRU stock level at a base. According to the chain rule for

derivatives,

.A)/x i01 =(/Q i0 )(3Qi 0 /aEBOi 0 1 )(aEBO i0/axi01), (5)

- where

K

Qi 0/@EBOo l (nk/N)aqkiO/aEBOiO1

k= 1

-'q qki0/ EBOi01=

0a
-(akiObkiUki/tki0)(l - UkiEBO 01/tk0) akiO -

and

So

S .'

"S, i
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aEBO io /aX = -NB il(kio1).

Consequently Eq. (14) becomes

-(i/Qio)aQio/3EBO iol (kio I ) + vVicio = 0, (16)

and 8Qio/aEBOi0 I is given above.

Next consider the partial derivative of the Lagrangian Eq. (9) with

respect to the LRU stock level at the depot. According to the chain

rule,

3kA•3 i0

(1/Qi )(aQ i/aEBOiO) (aEBOiOI/amio ) (amio / axi02 )

where

aEBOi0 1 /ami 01 = NBil[ (kio I ) + O(ki 0 )S'(mi 0 l)]

am i01/ax i02 = -(k io2)/NB il

and S'(*) is the derivative of S(O). Because NBi2 1, Eq. (14) becomes

-(I/Q Q o/aEBO [f(k

+ O(k il)S'(m i)]0 (ki0 2 ) + vVcio = 0. (17)

Next consider the partial derivative of the Lagrangian Eq. (9) with

respect to the SRU stock level at a base. According to the chain rule,

aZ(A)/axij

(1/Qi0) ( aQ iO / aE BO i o l ) (aE BO i ~i/ am i Oi ) (am i ~l / ax ij 1)

p.%
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where

am /ax ii kii

and the other derivatives were given earlier. Thus Eq. (14) becomes

+ cukil ( i01)] '(k.i ) + vV~c .C 0. (18)

And, finally, consider the partial derivative of the Lagrangian

Eq. (9) with respect to the SRU stock level at the depot. According to

A the chain rule,

(l/Q o)(aQ.0 /aEBO i ) (aEBO.i~ /am .i)(am .i/ax j),

where

am i /ax i2 = [aEBO lj ax i2+ (1 - 01W i )aEBO lj ax ij]/NB i

aEBO iji /ax ij2 = (9EBO ijl /amij 1 )(amij1 lax ij2)

aEBO l am i =NB ii[1(k i ) + O(k .i)'( j)

am lax k )OIM /NB
ijl ij 2 = ij2 ii ii

aEB0 lax = -(k )
ij2 ij2 ij2

Consequently Eq. (14) becomes

-(IQ,0)aQi /3EBOii[( ~ + Oki )' i )]((I - 01m H )§'(k ij)

+ [ (k. )j + tO(k i)S'(m .j)] (k i2)OIm *) + VV~c .jV =0. (19)

ijl~ ~~~ %j j1 ij J 1i

0:
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DIFFERENTIATION OF CONDITIONS
Define the column vectors Xi = (X ije) and M.i = (Mije ). Let Z

represent an arbitrary independent variable. Suppose that the AAM has
0

been solved for a nominal case, corresponding to the value Z , thereby

determining the nominal values X.0 and M.0 for the two vectors. For the1 1

purpose of developing ORACLE's database, it is desirable to compute the

partial derivatives aXi/aZ and aN./aZ, as evaluated at the nominal

values. *rhis subsection will show how these derivatives can be computed

by differentiating the necessary conditions for optimality and mean

pipeline equations.

For each combination of indices (i, j, e), the previous subsection

showed that there is a necessary condition for optimality in the

form

00
F ije(Z0,Xi0,Mi 0 ,V 0 ) = 0, (20)

hr ije . . ..

where F.. is either (11), (12), (13), or (14), and Eq. (14) is

either (16), (17), (18), or (19). Equations (18)-(19) couple the

variables for an SRU with those for its associated LRU.

Also for each combination of indices (i, j, e), Sec. II showed

that there is a mean pipeline equation in the form

0 0 0
Gije (Z ,X .M 0, (21)

where G.. is either (3), (4), (5), or (6), and the expected backorderslie

* in these expressions are evaluated with (15). Equation (6) couples the

variables for an LRU with those for all associated SRUs.

Differentiating (20) implies

J(i) 2

S ' [(aFije/Xist)(ax ist/aZ) + (aF ije /arn ist)(am ist/az)]

~s=o t=l
+ aF.. /aZ + aF. ./av av/aZ = 0, (22)

ije ije

kx'w

0
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and differentiating (21) implies

J(i) 2

Ej E [(IGije/Xist)('Xist/'Z) + (3Gije /mist )(mist/aZ)]

s=0 t=l

+ 3G,. /aZ = 0. (23)

Because (6) and (18)-(19) couple the variables for an LRU with

those for its associated SRUs, differentiating these equations will

couple the partial derivatives for an LRU with those for its associated

SRUs. It therefore follows that the partial derivatives for a single

SRU cannot be determined separately from those for other SRUs associated

with the same LRU, or from the partial derivatives for the LRU itself.

In other words, (22)-(23) represent a system of simultaneous linear

*equations.

If we consider only LRU i and assume for the moment that av/aZ is

known, then there are 2[J(i)+l] unknown variables x ije/az plus

2[J(i)+l] unknown variables am ije/Z, or 4[J(i)+l] unknown variables

altogether. Because (22)-(23) represent a system of 4[J(i)+l]

simultaneous linear equations, there are sufficient equations to compute

a unique situation.

Because Fij e. is a linear function of the Lagrange multiplier v,

(22) will be independent of the nominal value v0 for this multiplier.

Thus it is not necessary to know this nominal value to compute the

partial derivatives of the stock levels and pipelines. This latter

observation is important, because the AAM does not use a Lagrange

multiplier solution procedure, so the nominal value for this multiplier

may not be known.

Define the column vector Y. to consist of both X. and M.. It is*1 1 1

convenient to rewrite (22)-(23) as

H Y./BZ + E. + R.v/BZ = 0, (24)

where each element of the matrix H. is either BF /ax ,E /am
1 ije ist' ije ist'

3G. je ax.s, or 3G.je/Bms; each element of the matrix E. is either
ije ist, ije ist1

Fije/Z or ;G ije /Z; and each element of the matrix R. is either

ij ie

0.
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8F ije /v or zero. The solution to this system of simultaneous linear

equations can be obtained by first inverting the matrix H. and then

computing

a i/aZ = H. -I[-E. - R. v/aZ]. (25)1 1 1

The appropriate value for the partial derivative av/aZ can be

determined in the following way. Define the row vector C. such that the

product CiaY. /Z is equal to
1 1

J(i) 2
E NB. V c .axije/Z. (26)

j=0 e=1

If the total budget B remains fixed, then the budget constraint (8) implies

that

C i aYi/3Z = 0.
i 1

After substituting (25) into (26), we find that

I I-2
Ci(H i I[-Ei - R.av/aZ]} = 0,

* i

implying that

I.I

*II

Hv/aZ CiHi 
1E. ' C.H. -R (27)

i=111

By substituting (27) into (25), the desired partial derivatives of the

stock levels can be obtained.
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In summary, the algorithm for computing the partial derivatives of

the stock levels with respect to an arbitrary independent variable has

the following steps:

1. First solve the AAM for the nominal case, thereby determining

the nominal vector values X 0 and M 0 for i = 1, ... , I;

2. By differentiating the necessary conditions for optimality,

differentiating the mean pipeline equations, and then

evaluating these relations at the nominal values, construct

the matrices H., E., and R. for i =1 ..., I;

3. Invert each matrix Hi, which is equivalent to solving a
L1

* system of linear equations with 4[J(i)+lI unknowns for

i=l, ... ,I;

4. By using (27), compute the partial derivative of the Lagrange

multiplier with respect to the independent variable;

5. And by using (25), compute the partial derivatives for the

stock levels with respect to the independent variable.

The main computational work in this algorithm seems to be inverting

the matrix H. for each LRU i, which is step 3. However, this matrix1

has a special structure that may be exploited. In particular, this

* matrix may be written as

H11 H12 0 0

H. = H21 H22 H23 H24

*H31 H32 H33 H34

0 0 H44J

where column 1 corresponds to base stock levels, column 2 to base

pipelines, column 3 to depot stock levels, and column 4 to depot pipelines,

and the rows are similarly defined. Those portions of the matrix that
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have nonzero elements are indicated by the symbol HIJ, where I and J can

be 1, 2, 3, or 4. Because H44 is the only nonzero submatrix on the

fourth row, it follows that the overall matrix H. can be inverted in two1

stages: First invert H44, and then invert the matrix consisting of the

submatrices HIJ for I and J between 1 and 3. However, the inversion of

H44 is trivial because it is a diagonal matrix. Thus the amount of

work required to invert H. can be reduced to solving a system of1

simultaneous linear equations with only 3[J(i) + 1] unknowns.

It is possible to exploit the structure of H. even further by1

developing an inversion algorithm that takes advantage of the zeroes on

the first row. However, such an algorithm would be more complex than

the one just described because H11 is not diagonal and H12 is not zero.

For simplicity, Sec. II gave the equations for the AAM for the

case in which there is only one level of indenture and in which an SRU

can be associated with only one type of LRU. However, the new version

of D041 will allow several levels of indenture, allow an SRU to be

associated with several types of LRUs, plus use a product relationship

(rather than a summation) for the SRU expected backorders in (6).

Because Eqs. (20) and (21) are sufficiently general to cover the

latter changes, the foregoing algorithm is also applicable to the new

version of D041.

Actually developing this algorithm would be quite time consuming.

Such development must include program design, coding, and validation. The

main difficulties would be the complex matrix manipulations, including

construction of the matrices, inversion, and multiplication.

60_
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IV. ALTERNATIVE ORACLE ESTIMATION METHODS

The indenture relationships make the approach of the last section

difficult to implement, because these relationships result in a set of

simultaneous linear equations that must be solved for each LRU in the

weapon system. Consequently, this section will discuss four simpler

alternative methods. The first method treats the SRUs as though they were

LRUs, eliminating the indenture relationships. The second method retains

the indenture relationships but in a simplified form. Either of these

approximate methods would be used only to compute the partial derivatives,

as the nominal values would still be obtained by solving the AAM without

any additional approximation. The third method is based upon making

*O multiple runs of the AAM for the same year. The fourth uses regression

analysis to analyze data obtained for several years.

ELIMINATION OF INDENTURE RELATIONSHIPS

For the purpose of computing partial derivatives, first consider

the approach of treating the SRUs as though they were LRUs. In other

words, all items (indentured or not) are treated as though they were

installed directly on the aircraft.

Bigelow has also recommended this approximation scheme but suggested

that the data be modified in the following ways: The time spent working

on an LRU to isolate the failed SRUs should be added to the present SRU

repair times; the price of an LRU should be reduced by the purchase price

* of a full complement of SRUs; and the SRUs installed on LRUs should be

.[ counted as part of the available SRU assets.[3] Bigelow's suggested

modifications have several disadvantages: Additional data are required

that may not be available; the residual price of the parent LRU may become

' small or even negative; the resulting necessary conditions for optimality

for the LRUs are different from those given in Sec. III and thus have

different solutions; and in the absence of extensive cannibalization, it

is unrealistic to consider the installed SRU components as being assets

IF0
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that are available for repairing other LRUs. Consequently, the approach

considered here is to treat the SRUs as though they were LRUs, but without

making any of the foregoing data modifications, which in turn avoids all

of the foregoing disadvantages.

To derive the formulas for this approximation, it is necessary to

generalize the definitions given in Sec. II. Define

aki j = quantity per application of SRU (i,j) on series k.

Thus the number of units of SRU (i,j) installed on aircraft of series k is

t kij a k. b kin k'

where bki and nk were defined in Sec. II. The probability that an

aircraft of series k is not missing a unit of SRU (i, j) is

qkij =  ki + ki( -kiEBijl/tkijakj

where Uki was defined in Sec. II. The probability that a randomly

chosen aircraft is not waiting for a spare unit of SRU (i, j) is

K

Q = (n /N)q

k=1

where N was defined in Sec. II. And, finally, the probability that a

.Nrandomly chosen aircraft is not missing any of its reparable components
is

i I J(i)

. A= [ Qij'
i=l j=0[ "which replaces Eq. (2) as the objective function.

.0

[ _ * S ,,.*-.
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The next step is to modify the mean pipeline equations that were

given in Sec. II. For i = 1, .. ., I and j = 0, ... , J(i), the mean base

pipeline is

miji = [Xij RTS ijRT ij + Xij (1 - RTS ij)OSTij + EBO ij2/NEil,

and the mean depot pipeline is

n ij2 = Xij2[RTij 2 (l - DCij) + DL ijDC ij],

where the other parameters were defined in Sec. II.

Equations (1l)-(14) in Sec. III still represent the necessary

Aconditions for optimality, except that Eq. (14) can now be simplified. For

i, ... ,I and j = 0, ..., J(i), the partial derivative of the Lagrangian (9)

with respect to the stock level at a base is

-(l/Qij)aQij /aEBO ij(k ij) + vV.c = 0,

V' and the partial derivative with respect to the stock level at the depot is

-(l/Qij )aQij /aEBO ij[(k ijI ) + O(k ij)S'(m ij)] (k ij2) + vV.c. . 0,13 131-iiij il ij 13

where

K

*' 3Q. /aEBOi = (n/N)aqk j/aEBO

k=l

and

a -3q flkij/EBOij I = -(ak. b. Jki/tkij)( 1 - UkiEBOij /tkij )kij I

Let Z be an arbitrary independent variable. The approach of

Sec. III can be used to compute the partial derivatives of the stock

levels and mean pipelines with respect to Z, namely 8xijl/aZ, axij2 /aZ,

ijl' ij2m mij0l/Z, and amij2/aZ. This approach requires that a four-by-four
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system of linear equations be solved for each item (i, j), where these

-q atons r -l btaiiied by differentiaLiIg this foregoing necessary

conditions for optimality and mean pipeline equations. However, these

equations imply that amij2/aZ can be evaluated independently of the

other variables, and that am ij/Z can be expressed as a linear function

of ax ij2/aZ. Thus through substitution, the four-by-four set of

equations for each item can be reduced to only a two-by-two set, leaving

only th. variables ax ij/Z and ax ij2/Z to be determined. In other

words, treating SRUs as LRUs can reduce the main computational

effort of the Sec. III algorithm to solving only a two-by-two system

of equations for each item, which basically is the same approach that

was described by Bigelow for minimizing expected backorders.[4]

Of course, treating the SRUs as LRUs is an approximation. Its

* disadvantage is that there will be some inaccuracy, while its advantage is

that the resulting algorithm will be much easier to program and faster to

run compared with the more exact approach considered in Sec. III.

SIMPLIFICATION OF INDENTURE RELATIONSHIPS

The second approach toward simplifying the Sec. III algorithm

is to retain the indenture relationships but in a simplified form. In

particular, the following approximations are made for the purpose of

computing the partial derivatives:

1. The normal distribution is used as the probability

distribution for each pipeline;

* 2. There is a single level of indenture;

3. After setting OIMij = 0 for each SRU (i, j), the

mean base pipelines for SRUs and LRUs are given by

Eqs. (5)-(6);

• 4. In the base case, conditions (1l)-(13) are not active

for LRU depot stock levels.

Approximation 1 was also made in Sec. III for the formulas for

computing the partial derivatives even to be defined.

21
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-'5 Although approximation 2 was also used in Secs. II and III, the

4AAM does allow several indenture levels and the algorithm considered in

Sec. III can be extended to allow several indenture levels. But, and

this point must be emphasized, having a single indenture level is

required by the approach considered here.

The AAM already makes the approximation that the calculation of depot

LRU backorders can be uncoupled from that for depot SRU backorders. But

in an analogous way, approximation 3 also uncouples the calculation of

base SRU backorders from that for depot SRU backorders with the effect

that each additional SRU depot backorder causes an additional LRU depot

backorder or an additional SRU base backorder, in either case adding one

unit to the mean LRU base pipeline. Although this approximation will

overestimate the mean LRU base pipeline, it may be acceptable for the

purpose of computing the partial derivatives of the stock levels.

Approximation 4 requires that the LRU depot stock levels for the

base case exceed the lower bounds because of existing assets and safety

stocks, while being less than the upper bounds because of safety stock.

However, these bounds are allowed to be active for LRU base stocks, SRU

depot stocks, and SRU stocks.

Equations (11)-(14) still represent the necessary conditions for

optimality, except that approximation 3 enables (14) to be simplified in

one case. The partial derivative of the Lagrangian (9) with respect to

the SRU stock level at the depot is now

.5

-(k/Q.M 0=k. i(i + O(k o)S'(m )](k +1vc . = 0, (28)
0 ) -o E 0i [ ( i0l 101 ij2

whereas the partial derivatives for the other cases are still given by Eqs.

(16)-(18).

.5. For each LRU i, approximation 4 implies that Eq. (17) is the necessary

* condition for optimality corresponding to the depot stock level, which

means that

fki02 1V iO iO~i/ i o/8EBO .i(F~ ~ + Ok 'i S'~m 001 (29)
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Suppose that the necessary conditions (1l)-(13) are not active for the

stock lcvel of SRU (i, j) at a base. Then Eq. (18) must be one of the

necessary conditions for optimality, implying that

(k ij I ) = vVic ijQi/{aQi0 /EBOi01 [(k i0) + O(k i0)S'(m i0)]}.

Substituting Eq. (29) implies that

](kijI ) = (cij /ci)(k i02).

After differentiating this expression with respect to an arbitrary

independent variable Z, we have

O(k )k ijl/Z = (c. /c0)(ki)3ki/Z ,iji 1]i 1ji 0 0

which expresses 3k ijl/Z as a linear function of k i02/aZ.

Next suppose that condition (11) is active for the stock level of

SRU(i,j) at a base, implying that ax ij aZ = 0. Because the normalized

stock level is defined as k ij = (x ij - mijl)/S(mij ) , it must be true

that

3k ij/aZ = -am ijl/Z[l + kijiS'(mijl)]/S(mijl). (30)

Because approximation 3 implies that am ijl/Z can be evaluated

directly as a known function of Z and the base case solution, Eq. (30)

implies that @k ij aZ can also be evaluated directly.

Finally, suppose that either condition (12) or (13) is active

-4! for SRU (i, j) at a base. In this case, the normalized stock level kij1

is equal to a constant, implying that the partial derivative 3kijl/aZ

equals zero.

In summary, deperding upon which of the conditions (11)-(14) is

active, ak /aZ can be e;:pressed as a linear function of 3k /3Z, as a
ijl i02

known function of Z, o)- as zero. However, the last two options are

special cases of the first option, namely that ak ij /@Z can be expressed

as a linear function of 3ki0 2/aZ. By employing the same argument, it

i0

,.
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can be seen that the partial derivative kij2 /aZ can also be expressed

as a linear function of 3k i02/3Z.

It follows from differentiating (15) that

3EBOijl/3Z = NBijl -S(mijli (kijl )kijl/aZ

+ S'(mijl)amiji /Z[O(kijl) - kijl (Kijl)] . (31)

As already noted, m ijl/3Z can be evaluated directly, and k ijl /3Z can

be expressed as a linear function of aki 0 2 /3Z. Thus (31) implies that

'EBO ij/3Z can be expressed as a linear function of 3ki02/3Z. Using the
isame argument, both @EBOi/Z and aEBOj2/Z can be expressed as a

sae rgmet bth2 iO02/2 ij2'

linear function of 3ki0 2 /3Z. And, finally, (6) implies that am i01/Z

can also be expressed as a linear function of 3ki 0 2 /3Z.

Thus, for each LRU i, only two partial derivatives need to be

determined, namely 3ki 1/3Z and 3kio 2 /aZ. Once akio2 /3z is determined,

then 3k /3Z and @k /2Z can be evaluated using the previously
ijl ij2

described linear relationships. Because ami02 /z am ijl/3Z, and

am. /3Z can all be evaluated directly, am /aZ can be computed by
ij 2 i~l

differentiating (6). After the foregoing derivatives have been

determined, then the partial derivatives of the stock levels can be

evaluated with

ax. =a S(m. )3k /3Z + [1 + k. S'(m. )]am. /aZ,
ije ije ije ije ije ije

* for i =  1, ... , I, j = 0, ... , J(i), and e =  1, 2.

The column vectors X i = (Xe), mi = (mi.), and Yi = (Xi, Mi) were
1 ije 1 ije 1

defined in Sec. III. Also define K. = (ki01' ki02 As indicated by

* the preceding discussion, approximations 1-4 enable (24) to be

simplified as

H.'3K./Z + E + R.'v/aZ = 01 1 1 1

Yi/Z = T K/aZ + P ',
1 1 1 1
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where the matrices H.',i Ei R. , Ti and P.' are all functions of the

nominal case values, and H.' is a two-by-two matrix. The solution to

this system of linear equations can be obtained by first inverting H.

*, and then computing

3Y./aZ = -T.'{(H' -I [Ei' + R.'av/aZ]} + P.' (32)1? 1 1 [. P1 i1

The appropriate value for the partial derivative 3v/aZ can be determined

by substituting (32) into (26).

Consequently, approximations 1-4 enable the computational effort to

be greatly reduced, because the main effort is solving only a two-by-two

system of linear equations for each LRU in the weapon system. The earlier

approximation method, which treated the SRUs as LRUs, required that a

* two-by-two system of linear equations be solved for each item in the

weapon system. However, both of these approximation schemes should be

contrasted with the more exact algorithm considered in Sec. III, which

*-required that a system of linear equations having 3[J(i)+l] variables be

solved for each LRU i in the weapon system.

MULTIPLE RL"!S

-a Another approach to constructing the ORACLE database is based upon

making multiple runs of the AAM. This approach is much simpler and easier

%P to implement than the algorithms considered earlier.

For a given weapon system, Sec. I defined Z to be the mth
m

independent variable and D to be the nth dependent variable, for
n

m = 1, ... , M and n = 1, ..., N. Let Z 0 be the value of the mth independent

0
variable for the nominal case, and let D be the corresponding value of

nthe nth dependent variable as computed by the AAM. The ORACLE database

consists of the collection of partial derivatives aD /aZ, as evaluated

*n m
at the nominal case.

In this alternative method of constructing the ORACLE database for

a given weapon system, the first step is to specify a nonzero

perturbation c for the mth independent variable, m 1, ... , M. The second
• m

ISN.II,..II I

01I I I
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step is to make M additional runs with the AAM, where the value of the

kth independent variable for the mth additional run is

Z 0 for k $ m

i!n

V z -

"ZO+t km.M m s

"In other words, for the mth run, the mth independent variable is the

only independent variable that is changed from the nominal case. Let

* D nm be the corresponding value of the nth dependent variable for the mth~n
additional run, as computed by the AAM. The final step is to approximate
the desired partial derivatives with

3Dn /3Zm = (D m - Dn0 )/E (33)

for m = i, ... , M andn=i, ... , N.

By definition

3D n/3Z = lim (Dn - D 0)/ m

if this derivative is defined. However, this derivative may not be

defined, because of AAM's use of discrete probability distributions to

represent the pipelines. If this derivative is defined, then Eq. (33) will

approximate that derivative, provided that Em is chosen to be suitably

small. But if this derivative is not defined, then Eq. (33) could still be

used, in which case Eq. (1) could be interpreted as approximating a

nonlinear curve with a secant rather than a tangent.

The above scheme requires M additional runs, one for each independent

variable. However, it may be desirable to make 2M additional runs to
compute two estimates of the derivative for each independent variable, one

based upcn a positive perturbation and another based upon a negative

perturbation. The average of these two estimates could then be used in
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the linear formula (1). Alternatively, both estimates could be used to

define a piecewise linear representation, which is likely to be a more

accurate model than the linear formula (1) currently utilized for ORACLE.

REGRESSION OVER TIME

Another method for constructing the ORACLE database utilizes

data obtained for several years. This method is also fairly simple and

easy to implement.

Let Z be the value of the mth independent variable in year t, andm

let D t be the corresponding value of the nth dependent variable as~n
computed by the AAM. A linear formula is used to relate the dependent

variables to the independent variables:

M

D nt = a 0 + a m m t. (34)

m=1
It that a can be interpreted as being the partial derivative

n
Dt

of the dependent variable D with respect to the independent variable

Z t for any year t.n

The suggested approach is to obtain actual historical values for

the relevant dependent and independent variables and then to compute

the coefficients a m by using linear regression analysis. However, such

an approach has several difficulties. First, the D041 requirements
'.model has evolved over time, and the AAM has not yet been used during

e.-. any past year. Consequently, it would be necessary to recompute the

* •dependent variables for past years with the AAM to obtain partial

derivatives that would be appropriate for the AAM.

Second, the magnitude of a dependent variable in one year may be

partly dependent on decisions made in earlier years. For example, the

* buy requirement for any year is partly a function of the percentage of

the previous year's requirement that was funded. Because some dependent

variables are partly functions of past history and not just of the

independent variables, there may be a significant residual error in a

* regression approach.
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And third, the values of some independent variables may be

correlated. For example, the age of a weapon system and the number of

flying hours per year may both be monotonically increasing functions

over time. This phenomenon is called multicollinearity or

intercorrelation, and it may produce significant errors when using a

regression approach.
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V. CONCLUSIONS

Five methods have been presented for developing the ORACLE database

for a given weapons system: first, differentiation of the necessary

conditions for optimality and mean pipeline equations (DIFF); second,

elimination of indenture relationships (ELIM); third, simplification of

indenture relationships (SIMP); fourth, multiple runs of the AAM (MULT);

and fifth, regression over time (REGR). Table 1 ranks these five

methods with respect to simplicity, accuracy, and execution time.

Because MULT requires only that multiple runs be made of an

existing model, it is judged in Table 1 as being the simplest method to

implement. REGR is also a fairly simple method, but it requires some

0 additional work: To obtain partial derivatives appropriate for the AAM,

it is necessary to recompute the dependent variables for past years with

the AAM and then estimate a regression formula. However, neither of

-these approaches requires much in the way of new software development.

The other approaches, which are based upon differentiating necessary

conditions for optimality, require major efforts in software

development, as well as changes in software each time that the AAM is

changed.

Assuming that Eq. (1) is used to estimate the changes in dependent

variables as a function of arbitrary changes in independent variables,

which method of computing the partial derivatives would yield the most

accurate results? One way of comparing these five methods is to think

* of DIFF as using a tangent to represent a nonlinear curve, ELIM and SIMP

as using approximate tangents, MULT as using a secant, and REGR as using

an approximate tangent. If the curve is convex or concave, then the

tangent would be the better representation for a small change in an

* independent variable, whereas the secant would be better for a change in

an independent variable that was larger than the perturbation used to

define the secant. The relative accuracy of these methods depends upon

the changes chosen for the independent variables. However, to compute

their tangents, DIFF, ELIM, and SIMP used the normal distribution to

S
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Table I

RANKING OF METHODS FOR DEVELOPING THE
ORACLE DATABASE

(1 = best, 5 = worst)

Execution
Method Simplicity Accuracy Time

DIFF 5 3 3

ELIM 3 5 2

SIMP 4 4 1

MULT 1 2 4

REGR 2 1 5

approximate the probability distribution for each pipeline. According

to the Central Limit Theorem (4), this approximation would be good for

items with fairly high failure rates but not for items with fairly low

ones. It is not clear how accurate these methods would be, even for

small changes in the independent variables. Because MULT and REGR do

not need to use the normal approximation, the latter approaches appear

to have a slight advantage with respect to overall accuracy.

If the goal of ORACLE is to predict values of dependent variables

during a future year, then REGR has an additional advantage with respect

ON to accuracy: Historical trends can be estimated by using the year as

S one of the independent variables, and Eq. (34) can be used to project

these trends into the future. Because REGR is the only method that uses

data from several earlier years, it is the only method that can capture

historical trends. If sufficient historical data are available, REGR

* may be the most accurate model for forecasting.

To compute the partial derivatives of the dependent variables with

respect to a single independent variable, DIFF requires that a system of

simultaneous linear equations having 3(J(i) + 1) variables be solved for. each LRU i in the weapon system; ELIM requires that a system of linear

kw
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equations having two variables be solved for each item in the weapon

system; SIMP requires that a system of linear equations having two

variables be solved for each LRU in the weapon system; MULT requires

that one additional run of the AAM be made, which means solving a

nonlinear programming problem; and REGR requires that one additional run

of th AAM bp made 4or eah past year of data to recompute th- depcnzunt

variables, followed by estimating one regression formula.

The number of unknown variables is the same for the first four

approaches, namely four times the number of items in the weapon system

(corresponding to the stock level and pipeline at each echelon for each

item). However, solving systems of linear equations should be faster

than solving a nonlinear programming problem having the same number of

unknown variables. Thus, in Table 1, SIMP is judged as having the

smallest execution time, followed by ELIM, DIFF, MULT, and REGR in that

- order.

The foregoing remarks regarding the five methods are summarized in

Table 1 with respect to the three indices of simplicity, accuracy, and

execution time. A method is said to dominate some other method if its
-4.

A' values for all three indices are smaller than those for the other

method. As indicated in Table 1, none of the five methods dominates any

other method.

The only method for which there is some computational experience is

the final one, REGR. Volume II of this report discusses the performance

of that approach in the context of requirements forecasting.

0
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