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PREFACE

The work described in this publication was performed by the Jet
Propulsion  Laboratory, an operating division of the California
Institute of Technology, under contract NAS7-918, RE182, Al87 with the
National Aeronautics and Space Administration, for the United States

Army Intelligence Center and School.

This revised edition replaces the original report, published on

June 26, 1987, and is being re-published because the original edition

®

S contains photocopy blotches and illegible print.
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EXECUTIVE SUMMARY

This Technical Memorandum was prepared
originally as part of the Generic Fix Report (FY-86)
which was elmininated under the FY-87 statement of
work (SOW %#2), undated (delivered to JPL 19 November
1986) .

The purpose of the Generic Fix Report, of which
this paper was to be an appendix, was to collect all
the material needed to understand Direction Finding
and Fix Estimation and their mathematical basis in
one volume to support the multi-volume series of Fix
Estimation Reports.

This paper is being published because it was
compeleted in FY-86 with FY-86 funds and was being
held for integration into the Generic Fix Report.
It will be of value to readers desiring to persue
the mathematics involved in the Fix Estimation Reports.
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Fundamentals of Linear Estimation

0. Introduction

This memorandum will treat a selection of topics in linear
estimation, beginning with a very simple situation and progressing
through more complications. These topics are shown in A. below. This
progression will provide the main structure for the document. Topics
from B. and C. below will be brought in at points where their need has
been motivated.

A more conventional academic approach to covering this material
weuld be to discuss B. and C. first, to establish the foundation, and
then treat A. This approach would be easier to do but would lack
motivation in the early stages. We are trying the stated approach on
the assumption that the sponsor wants a more motivated presentation.

*A. Topics in estimation;

One dimensional estimation with one observatlon.
Same with two observations.

With same or different observational errors.

Any number of observations,

Two dimensional estimation, independent errors,
Multidimensional estimation, 7
Combining sets of observations

Ny BN

B, Properties of random distributions!

1. Mean, first moment.
Standard deviation: variance, second moment,
Distribution, frequency function, all moments. -
Normal distribution.
Chi squared distribution,
Student’s t distribution]
F distribution.
4, Confidence intervals.

w

C. Least squares[

1. Statement, geometric interpretation., -
Gradient of the sum of squares,
2. Solution methods. -~
Orthogonal transformations, "
3. Using the covariance matrix of observation errors. o

The general style of the paper is tutorial, however due to the
amount of material being covered, and to avoild reaching book-length, it
will be more of a sketch of a tutorial rather than a true tutorial in
some places.
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Equations will be numbered within sections. For example, if there
is an Equation (2) in Section 4.1, it will be referenced as Eq.(2) from
within Section 4.1 and as Eq. 4.1.(2) from any other section,.

1. One dimensional estimation
1.1. A single observation

Suppose one makes a one dimensional observation, such as the
distance between two stakes at a construction site. Suppose the
measured distance is 95.36 meters, with an uncertainty of 2 centi-
meters.

For the moment we shall not define this concept of uncertainty too
precisely. One way to think of measurement uncertainty is in terms of
how surprised we would be at different possible outcomes if we could
somehow later determine the distance much more accurately. We would be
surprised if our error turned out to be 3 cm., and very surprised if it
was 4 cm., and not at all surprised if it was just 1 em. If the error
turned out to be greater than about 6 cm. we would probably check to
see if there was a blunder in the first measurement or if the stakes
had moved.

1.2. Two observations

Suppose we make a second observation of this same distance and
obtain 95.37 meters, again with an uncertainty of 2 cm. What is our
best estimate of the true distance?

If we use the principle of least squares, which we will not
justify at this point, we seek a number, X, such that the sum of
squares of residuals between x and the observed values is minimized.
Thus denoting the measurements by b, = 95.36 and b, = 95.37, we seek x
to minimize

s = (x - b))%+ (x - by)?

We may differentiate s with respect to x, obtaining
ds/dx = 2(x - b; + x - b))
which will have the value zero when
x = (b, + b,)/2

i.e., when x is the average or mean of b, and b,. Thus our estimate of
the distance being measured is 95.365 meters.

What estimate of uncertainty do we attach to this result? To
answer this we shall need to adopt a mathematical model of uncertainty,
but before doing this we shall introduce one more example.

e e e, PRy g Sttt et s A
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1.3. Two observations with differing precision

Suppose we have the first observation as before but the make a
second observation of this same distance using a more precise measuring
device, obtaining a distance of 95.372 meters, with an uncertainty of
0.2 cm. Now the simple average of the two measurements no longer seems
like a reasonable estimate. We should somehow give more weight to the
more accurate measurement.

A reasonable way to do this is to scale the residuals for the two
measurements so that equal values of the scaled residuals correspond to
equal levels of surprise. Specifically, instead of the simple resid-
uals, (x - b;) and (x - b,), we will use the scaled residuals, (x -

b,)/d; and (x - b,)/d,, where d, denotes the uncertainty in the
measurement b,. Thus, for example, if (x - b,;)/d; has the value 1.2,
this engenders the same level of surprise as would be associated with
(x - b,)/d, having the value 1.2.

AN

ki- The combined error function we shall now seek to minimize is
% s = [(x - b))/d;]% + [(x - by)/d,}?

Jl_ Differentiating with respect to x we obtain

_f_:;: ds/dx = 2[(x - b;)/d; + (x - b,)/4d,]

ﬁ? which will have the value zero when
-
o x = (b,/d; + b,/d;) / (1/4, + 1/d,)

N Using the values, b, = 95.36, d;, = 0.02, b, = 95.372, and d, =
_Qﬁ 0.002, we obtain the estimate, x = 95.3709. Note that with this
"o estimate the simple residuals are

J‘Q)

X - b = 0.0109
and

X - b, = -0.00109

A& Ay

TR X
-,

whereas the scaled residuals have equal magnitudes of

hl
. ’
v [(x - by)/d,| = |{(x - by)/d,| = 0.545
:K: Looking on to larger problems, we remark that although least
.i} squares estimation has a tendency to balance the magnitudes of scaled
,,ﬁ residuals, the actual data and dimensionality of a problem limits how
b closely this balance can be approached, and in general one can not hope
- for exact balancing as was attained in this example.
" .
-
:: Now we must develop a mathematical model for uncertainties.
N
‘_} 2. Characterizing random distributions
%!; Consider again our first example in which we assumed the uncer-
- tainty of the measurement was 2 cm. Suppose we repeat this measurement
;: 1000 times and count the number of times the difference from our
o
o~ ‘
¥
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origir.. measurement falis in selected ranges, such as (-, -4 cm.),
(-4, -2), (-2, 0), (0, 2), (2, 4), and (4, ). If we repeated this
- surement another 1000 times we would expect some stability in the
percentage of measurement differences falling in each one of our bins.
For example we would expect the percentage of measurement differences
falling in (0, 2 cm.) would hover around some fixed value, say 34%.

A mathematical model that is useful in analyzing this type of
behavior is the assumption that there is a nonnegative continuous
function, f, defined for all real numbers, and related to our experi-
ment by the condition that the area under the graph of f between any
two points a and b gives the value to which this type of repeated
experimenting and counting converges. Thus, such a function, f,
relating to our experiment would need to have area between 0 and 2 of
0.34.

The usual statistical terminology is to call a function, f, a

frequency function or a probability density function if it is nonnega-
tive and its integral from -« to += exists and has the value 1. Ve

will only be concerned with frequency functions that are continuous, or

at most have jump discontinuities at a finite number of points.

The indefinite integral of a frequency function is called a
distribution function. Thus from a frequency function, f, we obtain a
distribution function, F, defined by

F(t) = [ £(s) ds

A distribution function is defined for all real numbers, is
continuous and monotone nondecreasing. 1t approaches the limiting
value of 0 as its argument approaches -, and 1 as its argument ap-
proaches +w,

The term, random variable, ic commonly used to refer to a quanti-
ty, such as the measurement error in our example, that typically has a
different unpredictable value each time it is observed, but yet
exhibits some regularity with regard to the distribution of its values
in a large number of observations. Note that we are not actually
giving a definition of the term, random variable.

The closest we can come to giving a mathematical definition of the

term, random variable, is to say that the statement, "x is a random
variable with probability density function f" means that certain
stylized statements involving "x" are to be taken as meaning something
specific about "f". As an example of such a statement, note that "the
probability that x exceeds 2 is 0.02", which may also be expresseq as
"P(x > 2) = 0.02", means "the integral of f from 2 to += is 2.75 “

It is often convenient to use the term, distributjon, as a
linguistic aid in associating the name of a random variable with the

name of its frequency function. For example we may at some point let D

denote a random distribution with frequency function, f, and later say
that X is a sample from D.

e
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In practice one almost never has enough information to determine a
frequency function from empirical data. Various assumptions are
typically made to fill this gap.

For some purposes it suffices just to assume that there is some
frequency function underlying the random aspects of a problem and
compute estimates of certain attributes of the distribution, most
commonly the mean, which is a measure of the central location of the
distribution, and the standard deviation, which is a measure of the
dispersion of the distribution.

When one wishes to go further and make statements involving
probabilities, it becomes necessary to base the analysis on some
specific frequency function. There are a number of frequency functions
that have been thoroughly studied by statisticians, so in practice one
usually picks one of these well known functions that has a plausible
shape for the problem.

The mean of a distribution with frequency function, f, is defined
by

y-J:sf(s)ds

wvhile the standard deviation, o, is defined by

0 = [T (s - w? f(s) ds

The squared quantity, o2, is called the variance of the distri-
bution.

It is useful to have notations for these concepts for use with the
"random variable" terminology. Thus the mean value of a random
variable, x, is also called the expected value of x, denoted by E(x).
This notation is extended to apply to arbitrary functions of a random
variable. Thus if g(x) is any function of a random variable, x, and
the following integral exists, we may write

E(g(x)) = [ 8(s) £(s) ds

The expected value operator is a linear operator, in the sense
that for arbitrary scalars, a and B8, and functions, g and h, for which
the required integrals exist, we have

E(a g(x) + B h(x)) = a E(g(x)) + B E(h(x))

Using the expected value notation the definition of the standard
deviation, ¢, can be written as

0?2 = E( (x - E(x))?)

:..:F".%' x -.‘.\"l‘-"‘.\'.'—}‘: v :J‘: : el ~ \)':V“'F.)h" w0,
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It is useful to introduce another operator, Var(x), to capture
this last expression. Thus we define

Var(x) = E( (x - E(x))?)

The value of the Var operator is insensitive to an additive shift
of the underlying distribution and varies with the square of a multi-
plicative factor. Thus

Var(ax + B8) = Var(ax) = a? Var(x)
3. Examples of the use of the mean and standard deviation
3.1. Example assuming o is known

Returning to the example of Sec. 1.2., let us model the uncer-
tainty in the measurement process by assuming the observed values b,
and b, are independent random samples from some distribution with
frequency function, f, having mean, u, and standard deviation, o. Ve
assume that f and g are not known, but we make the rather strong
assumption that ¢ is known to have the value 2 cm. Our goal is to
estimate p and obtain an estimate of the standard deviation of the
estimated value.

The estimation function used in Sec. 1.2. was the simple average
g(b;,by) = (b, + b,)/2

It will be instructive to consider a slightly more general
estimator function, namely

h(b,,b,) = ab, + fb,

and then show that the choice of a = 8 = 1/2 has certain desirable
properties.

Regarding b; and b, as independent random samples from our assumed
distribution, the function h defines a new random variable having a
different distribution. What are the mean and standard deviation of
this derived distribution? What we hope, if h is to be of reasonable
use as an estimator, is that the mean of h is u, or has a known
functional relationship to u, and the standard deviation of h is less
than o, so we are estimating the quantity of interest, u, and with
dispersion less than that of a single observation.

We must generalize the definitions given previously for the
operators E() and Var(), because h depends on two random variables.
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v We compute the mean of h as
L&
E(h(b,,b,)) = [f (ab, + Bb,) f(b,) £(b,) db, db,

7 - af b, £(b,) db, [ £(b,) db,

e + Bf £(b,) db, [ b, f(b,) db,

e —au+ Pu = (a+ Pop

. g and the variance of h as

; y Var (h(b,;,b,)) = E{[h - E(h)]?)

ol = E([ab, + b, -(a + BIu]?)

g = E{{a(b, - p) + B(b, - u)]*)

= a?E[(b;-p)?] + BPE[(b,-p)2] + 2aBE[(b;-u) (by-p))
};; ~ a®Var(b,) + f*ar(b,)

:ET + 208f[ (b;-p)(b,-p) £(b,) £(b,) db, db,
- - (a? + p2)o?

‘iz + 2aBf (by-p) £(b,) db;, [ (b,-u) £(b,) db,

= (a? + f2)o%? + 0 = (a? + p?)o?

i PN e

e

x " a
.

For the simple average estimator, g, where a = 8 = 1/2, these
formulas give a mean value of py and a standard deviation of 0/2!/2 or
1.4 cm.

L —l".h“-
a R
* s 0 "
- l‘ '. s

s AQL
oA, W

What about other values of o and 8? An estimator is called
unbiased if its mean value is equal to the quantity we wish to esti-

nﬁ- mate, in this case, u. To achieve this we see that we must have
o~ a+ 8 =1.
Lo
.' An estimator is called minimum variance within its class if no
- - other estimator in its class has smaller variance. The minimum value
e of the factor (a®? + B2%), subject to a + 8 = 1, is attained when
K- a=p=1/2.
-‘\..
jﬁ Any estimator of the form ab, + Bb, is called a linear estimator.
' From the above we see that such an estimator is an unbiased linear
oG estimator if a + f = 1, and it is the minimum variance unbiased linear
;?: estimator if a = 8 = 1/2.
:g' Remark: The term, E{(b, - w)(b, - p)], in the above equation for
-

Var(h(b,,b,)) is called the covariance of b, and b,, and is denoted by
Cov(b,,b,). This is a very special case of the covariance since the
joint frequency function of b, and b,, here, f(b,)f(b,), is the product
of two functions, each depending on only one of the variables. In such
a case the covariance is zero because it can be written as the product
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of two integrals, each of which is zero. We postpone discussion of
covariance in more general situations until matrix notation has been
introduced.

3.2. Example assuming ¢ 1s unknown

Commonly one does not know o apriori, as was assumed in Sec. 3.1.,
but rather needs to estimate it from the data. Such an estimate can be
obtained from the sum of squares of residuals.

Define the residuals for the two measurements by

r, = b, - g(b,,b,), i=1,2

and define

2 2 2
§¢ =r,“+r,

Each residual is a function of the random variables, b, and b,,
and thus so is S2. Therefore S? is a derived random variable having
its own distribution. The mean value of S? may be determined as

follows:

E(S?) = E(r,? + 1,%)
= E{[b, - (b1+b2)/2]2 + [b, - (b,+b;)/2]2%)
- 1/2 E([b, - b,]%)
= 1/2 E([(b; - w) - (b, - u)]?)
= 1/2 (Var(b,) + Var(b,) - 2 Cov(b,,b,)}
- 1/2 {62 + 0% + 0) = o?
Thus S? is an unbiased estimator for o¢2. 1In our example we have

$2 = (-0.5 cm)? + (0.5 cm)? = 0.5 cm?
from which we obtain (0.5)¥2 = 0,71 cm as an estimate of o.

In the more general case of m observations and n parameters being
estimated the expected value of S? is (m-n)o?. Thus S%/(m-n) is an
unbiased estimator for o¢%. In our example we obtained E(S?) = o2

because we have m = 2 and n = 1. The difference, (m-n), is called the

number of degrees of freedom in the problem.

To estimate the dispersion of $? requires more information or more
assumptions. The usual approach is to assume the distribution from
which the data values, b,, arise i{s a normal distribution. Then the
scaled derived random variable S2/0%2 will have a x? distribution with
m-n degrees of freedom. The normal distribution and x? distribution
will be defined in Sec. 5.
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% Discussion along the above lines could be carried out for the case
f;: of Sec. 1.3 in which the observations were made with differing precis-
D

jons. We will not do this however because it will be much more effic-
ient to introduce matrix notation and treat the general problem of the
linear estimation of n parameters using m observations subject to an
aprior covariance matrix on the errors of the observations.

.f‘gy

) \‘. ‘
:Q: 4. The multidimensional linear estimation problen
b, .
'e\ 4.1. Notation and concepts of linear algebra
* w\-
:Q The anticipated applications of this paper all involve real
3;5 numbers and thus we shall limit our discussion to this context. One
1FQ should be aware, however, that the concepts presented have identical or
( very similar analogues in complex n-space. For further details on
, anything introduced in this section see [Golub and Van Loan] or [Lawson
Y and Hanson].
Fr
13& We shall use R" to denote n-dimensional real space. A point in
;\{. R" is an n-dimensional real vector, and will be denoted by a lower case
'; roman or greek letter, e.g. x, with real components, Xy, -+-y X,. An
. mxn matrix is an array of m rows and n columns of real numbers, and
, : will be denoted by an upper case roman or greek letter, e.g. B. The
n transpose of a matrix, B, will be denoted by Bt.
L]
: A transformation between two vector spaces will be called a linear
» transformation if it involves just a matrix multiplication, and an
{\ affine transformation if it consists of a matrix multiplication plus an
:j additive constant vector.
~
::: The number of linearly independent rows of a matrix, B, is the
‘i same as the number of linearly independent columns and this number is

called the rank of B. If B is nxn and of rank n it is nonsingular and
has a unique inverse matrix that we denote by B"!. Also, if B is
nonsingular, the matrices (B')™! and (B"!)* exist and are equal and

= ( )

>, will be denoted by B°t.

)
L The largest rank possible for an nxm matrix is min(m,n). A matrix
"“ having this maximal rank is said to be of full-rank. A matrix whose

rank is less than this maximal rank is called rank-deficient,

L
“a

When it is necessary to distinguish between a row vector and a
column vector, we shall, for example, let x denote a column vector and
L x* denote a row vector. For example, if x and y are n-dimensional
. vectors, x'y denotes the scalar valued inner product and xy' denotes
the n X n matrix valued guter product.

The Eucljdean norm of a vector x is denoted by
o x| = (x*x)/2
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o

.l
1N
oy The spectral norm of a matrix B is denoted by

o
R Bl = Maxt [Bx] : Ixf = 1)
.‘ v = [Amu(BtB)]”z
#:,r

o where A . (B'B) denotes the largest eigenvalue of B'B.

‘.

Al

.y
}ﬂ\j Two n-vectors, x and y, are mutually orthogonal if x%y = 0. A set
1‘)v of n-vectors, Xx;, ..., X,, are mutually orthogonal if each pair is
e, mutually orthogonal. A set of n-vectors, x,, ..., X,, is orthonormal
i,ﬁu if the set is orthogonal and each vector has unit euclidean norm.
AN
ey ,
xts A square matrix Q is called orthogonal if its transpose is also
:\x: its inverse, i.e., Q*Q = I, where I denotes the identity matrix. If Q
( * is orthogonal its row vectors constitute an orthonormal set of vectors

and the same is true for its column vectors.

Py

Multiplication of a vector (respectively matrix) by an orthogonal
matrix preserves its euclidean norm (respectively spectral norm). Thus
if Q is an orthogonal matrix then ||Qx| = ||x| and |QB| = |B].

Pl f‘:%\

r!LT A 2-dimensional orthogonal matrix is either a rotation matrix
h_‘f'
‘th q - |cos 6 -sin §
R sin ¢ cos 4
%
- . :
\h or a reflection matrix
{ q - o8 é sin #
e sin 4 cos §
} jﬁ An n-dimensional orthogonal matrix, with n =2 2, can be represented as
Af:- the product of at most n(n-1)/2 special orthogonal matrices each of
- which represents either a rotation or a reflection in the plane defined
i) by some pair of coordinate axes.
::i A square matrix A is symmetric if A* = A. A symmetric matrix is
[~ positive definite if x*Ax > O for every n-vector x ¥ O and ponnegative
: ‘: definite (also called positive semidefinite) if x'*Ax = 0 for every n-
i\ vector x ¥ 0. Note that the class of nonnegative definite matrices
pl includes the class of positive definite matrices. A positive definite
s matrix is nonsingular, and its inverse matrix is positive definite.
S
&
&~H If A is positive definite, the scalar quantity, x'Ay, may be
k*i regarded as a generalized inner product relative to the matrix, A. The
L i generalized inner product has analagous properties to the ordinary
’; inner product, but with some changes of terminology. For example,
o whereas x and y are mutually orthogonal if xy = 0, they are mutually i
oh conjugate with respect to A if x*Ay = 0.
f“'ﬁ Every matrix A of the form A = B'B or A = B'WB, where B is any mxn
‘v matrix and W is nxn nonnegative definite, is nonnegative definite. If
'.” the column vectors of B are linearly independent and W is positive l
T definite, then A, given by either of the above two expressions, {is
(-, positive definite. i
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A partial converse of this is the fact that any n-dimensional
symmetric nonnegative definite matrix, A, has a Cholesky factorjization
of the form, A = U'U, where U is an nxn upper triangular matrix. If A
is positive definite, then U is uniquely determined by A to within the
signs of the rows of U. That is, if U satisfies A = U'U, then so does
the matrix V obtained by multiplying any row of U by -1. Thus, 1f A is
positive definite, we may standardize its upper triangular Cholesky
factor, U, by requiring that its diagonal elements be positive, then U
is uniquely determined by A.

It is sometimes more convenient to focus attention on the left
member of the Cholesky factorization. Thus writing L for U' we may
write the factorization as A = LLt.

Every symmetric matrix A has an gigensystem factorization of the
form, A = VAV!, where A is an nxn diagonal matrix, and V is an nxn
orthogonal matrix. The diagonal elements of { are the eigenvalues of A
and the column vectors of V are the gigenvectbérs of A. Note that the
equation satisfied by these matrices can also be written as AV = VA.

The n eigenvalues of a symmetric matrix are uniquely determined by
the matrix. The eigenvalues of a symmetric matrix are all positive if
and only if the matrix is positive definite and are all nonnegative if
and only if the matrix is nonnegative definite.

Every mxn matrix, B, has a singular value decomposition, of the
form, B = USV®, where U is an mxm orthogonal matrix, V is an nxn
orthogonal matrix, and S is an mxn matrix that is all zero except for
the diagonal terms, which may be positive or zero. Denoting the
diagonal terms of S by s,, i = 1, ..., min(m,n), it is often useful to
assume these are ordered so that s; 2 s, =2 ... The numbers, s,, are
called the gingular values of B. The number, say k, of nonzero
singular values is equal to the rank of B. Since B'B = VS!SV it
follows that the numbers sf, i=1, ..., k, are the nonzero eigenvalues

of B'B, and the column vectors of V are the corresponding eigenvectors
of B'B.

The condition number of a full-rank matrix is the ratio between
its largest and smallest nonzero singular values. Loosly speaking the
condition number of a2 matrix is an upper bound on the amount by which
relative errors in a vector will be magnified when the vector is
operated upon by the matrix, either by direct multiplication or by
solving a system. A matrix is called well-conditioned if its condition
number is near one, and ill-conditioned if its condition number is
large. A matrix has the minimal possible condition number of one if
and only if either its rows or columns (or both) are mutually ortho-
normal. Thus a square matrix has a condition number of one if and only
if it is an orthogonal matrix.

Every mxn matrix, B, has a QR factorizatjon, of the form, B = QR,
where Q is an nxn orthogonal matrix and R is an upper triangular mxn
matrix. If m > n and Rank(B) = n, the first n column vectors of Q form
an orthogonal basis for the linear space spanned by the column vectors
of B, and the matrix R of the QR factorization of B is also a right
Cholesk, factor of the positive definite matrix, B'B, i.e., B'B = R'R.

11
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sb ) The determinant of a triangular matrix, L, denoted by Det(l),is
5*5: . the product of the diagonal elements of L. The determinant of a
symmetric nxn matrix, A, is the product of the n eigenvalues of A. The
determinant of the identity matrix, or of any other orthogonal matrix,

o is 1. The determinant of the product of a set of matrices is the
::&R product of the determinants of the matrices. As examples, if A is
L positive definite, with the Cholesky factorization, A = LL!, then

N
0N

s [Det(A) )2 = Det(L)

\ +
b**\ and if B is a square matrix with QR factorization, B = QR, then
1]

v
e Det(B) = Det(R)

)

AN
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4.2 N-dimensional random variables

N

’ :a An n-dimensional frequency function or probability density

ijﬁ function is a function defined over R" that is nonnegative and whose
‘.\, integral over all of R® exists, and has the value 1. Letting x denote
;)\j an n-dimensional vector, the mean value of an n-dimensional distribu-
\:r tion having frequency function f is the n-vector u defined by

: po= E(x) = [ x f(x) dx

3 L)

N

\- where here the integral sign denotes integration over all of R .

o'.

i The nxn covariance matrix of an n-dimensional distribution with
g . frequency function, f, is defined by

o

1; ﬁ H = Cov(x) = E[(x - p)(x -p)t]

Mgy

"

w =[x - p) (x-ptf(x) dx 4

From the form of this expression it can be shown that the matrix H is

E{Bz symmetric, i.e., h1j - hJi for all i and j, and also H is nonnegative
oo definite.

\':'-_\'
A It can be verified that
) i’x

.. Cov(x) = E(xx) - put

,L::_.-

S, If a new random variable, u, is defined as a linear transformation
SR

o of x, say, u = Ax, then

ne

s
\."

s E(u) = A E(x)

®

by

o and

<"

W

::- Cov(u) = A Cov(x) At

e

.. An important special case arises when the function f(x) is the
,’ product of n functions, each depending on just one component of x, il.e.
% .
E)
s £(x) = £,(x)) -+ £,(x)
{
) 12
’vfh
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In such a case we may assume without loss of generality that the
functions, f,, are scaled so that each one is a frequency function.
Then the off-diagonal terms of H are all zero, and each diagonal term,
h,,, is just the one-dimensional variance of the component, ¥,, determ-
ined by the frequency function f,(x,).

The separate components of x are said to be independently dis-
tributed if and only if all of the off-diagonal elements of the
covariance matrix are zero.

4.3. Linear estimation of n parameters using m observations

Assume that an m-dimensional phenomenon (this may be a number of
instances of some lower dimensional phenomena) to be observed has a
distribution, D, with a frequency function, f, having an m-dimensional
mean vector, n, and an mxm positive definite covariance matrix, H.

Assume further that 5 is representable as a linear combination of
n m-vectors, b,, i = 1, ...,n. Thus we are assuming there are coeffic-
ients, £, such that

n =2 £b,

Letting B denote the mxn matrix with column vectors b,, and £
denote the n-vector with components §,, this equation can be written as

n = B¢

To avoid complications that would obscure the central ideas, we
assume that m > n, and the vectors b, are linearly independent. It
follows that B is of rank n.

Various linear estimation problems can be based on this model,
depending on which elements of the model are assumed to be known and
which are to be estimated. Consider first the case in which H and B
are known, and £ and n are unknown. Suppose we have an observation, y,
regarded as a random sample from the distribution, D. We wish to
estimate £ and n and the covariance matrices of each of these est-
imates.

The Method of presentation used in Sections 4.3.1 through 4.3._
follows pp. 36-48 of [Plackett, 1960].

4.3.1. The estimator 2 and its covarilance matrix

First note that y itself is a linear unbiased estimator for g
since E(y) = n, however we shall see that a better estimator is
available.

Our linear estimator for £ will be

(1) § = (B'H'1B)"1B*H’ly = Py

13
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Here we have introduced the nxm matrix

(2) P = (B*H!B)"!B*H?

The estimator £ is clearly the unique solution of the linear system
(3) B'H !B - BH'ly

which will be discussed further in Sec. 4.3.3.

To verify that £ is an unbiased linear estimator for £ we compute

E[£] = E[Py]) = P E[y] =P n = P B{

[ (B*H"*B)"1BtH™!] B¢

(B*H™!B)"1(B*H 1B)¢

- £
Note that the property of P that was crucial here was
PR = 1
Since B is a rectangular matrix it does not have an inverse, but any
matrix G satisfying GB = 1 is called a left inverse of B. There will
in general be many such matrices and all provide unbiased linear

estimators for €.

The covariance matrix for the estimator, é, may be computed as

Cov(€) = Cov(Py) = P Cov(y) Pt = P H Pt
= [(B*H"IB) !B*H!) H [H !B(B*H !B)"!]
= (B'H7!B)"! (B'H'lB) (B'H!B)7!

- (BH!B)"!

Among unbiased linear estimators, the estimator, Py, has the
minimum variance, in the sense that if Gy is any other unbiased linear
estimator, i.e., G satisfies GB = I, then the difference, Cov(Gy) -
Cov(Py), will be a nonnegative definite matrix. To verify this we
write a matrix expression that is nonnegative definite due to its form
and then show it is equal to the required difference.

(G-P)H(G-P)* = GHG®* - GHP® - PHG* + PHP*
= Cov(Gy) - GH[H !B(B*H™1B)"}]
- [(B*H™1B)"!B*H !])HG* + Cov(Py)

= Cov(Gy) - Cov(Py) - Cov(Py) + Cov(Py)

14
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= Cov(Gy) - Cov(Py)

4.3.2. The estimator # and its covariance matrix
Since n = Bf, we define our estimator for n to be
7 = B = BPy
This estimator is unbiased since
E[#] = BE[{] =B € =1
The covariance matrix for # is
Cov(f}) = Cov(BE) = B Cov(€) Bt

Since we obtained two different expressions for Cov(@) we may write
either

Cov(#) = B PHP* B = BP H (BP)*

orx
Cov(#) = B (BtH'!B)"! Bt

Since P is a left inverse for B, it follows that BP is a left
identity for B, i.e., (BP)B = B. It can be verified that this is the
crucial property that permitted verification that BPy is an unbiased
estimator of . Thus if J is any left identity for B, i.e., J is an
mxm matrix satisfying JB = B, then Jy is an unbiased estimator for 7.

Among all unbiased linear estimators for 5, BPy has the minimum
variance, in the sense that if Jy is any other unbiased linear estimat-
or, i.e., J satisfies JB = B, then the differeace, Cov(Jy) - Cov(BPy),
is a nonnegative definite matrix. This is verified as follows:

(J - BP)H(J - BP)* = J H J* - J H P*B* - BP H J* + BP H (BP)*

= Cov(J) - J H [HIB(B*H"!B)!] B*

- B [(B*H'1B)"!B*H!] H J* + Cov(BP)
= Cov(J) - B (B*H™!B)"! B*

- B (B*H!B)"! B* + Cov(BP)
= Cov(J) - Cov(BP)

4.3.3. Interpretation as least squares estimation

The estimator, ?, defined in Eq. 4.3.1.(1), can be derived as the
solution to a certaln weighted linear least squares problem. This is
the problem of finding an n-vector, x, to minimize the quadratic
function
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2 kL, KOO

A RO W th g a'e O ‘ RN T
Fadhd ..!0.‘:!'9-3'!:!'!»»!:‘ .M!::".l. ':!"l:‘hs !::‘!0:‘,':‘352".01 frtet! R "'o"!o".‘!oﬂ‘!" .ﬁ‘!'n'!h‘!"‘:':‘!'o‘{'o'!h‘!'n'!'n‘!'ﬁ‘!’t‘:‘b‘.ﬁ o sReithates



Pl Nl Nl ol D

SX_n Nk

e
-“l

-

----

PR

odd i d'..l

[y o ‘A atl ol "4t ¥ P W WP T OO T O IR T S St St Sak el Ak o A SNLA A A i A R A A ]

(1) S2 = (Bx - y)* H?! (Bx - y)

where B is a given mxn matrix, y is an m-vector of observations, and H
is an mxm positive definite symmetric matrix which is the known
covariance matrix for the distribution of errors in y.

The n-vector of partial derivatives of S? with respect to x is
(2) 3S%/3x = 2B'H"(Bx - y)
Setting this equal to zero gives the system of equations
(3) B'H™!Bx = BH'ly

to be solved for x. We shall let §2 denote the minimum value of S2,
i.e., the value of S? when x = £.

Eq.(3) (see also Eq. 4.3.1.(3)) is called the normal equations for
the least squares problem of minimizing $% of Eq.(l). Note that when H
= I, the geometric interpretation of setting Eq.(2) equal to zero is
that the residual vector, Bx-y is required to be orthogonal (i.e.,
perpendicular or normal) to all columns of the matrix, B. I presume
this is the reason the word "normal" has been associated with Eq.(3).
When H = I, Bx-y is required to be conjugate to all columns of B,
relative to the positive definite matrix, H!.

The use of normal equations in the form B*Bx = B'y dates back to
Gauss, 1821. The form treated here, involving H, was introduced by A.
C. Aitken, 1934. Reference: [Plackett].

4.3.3.1. Transformations of the least squares problem

There are two types of transformations that are very useful, both
for the analysis and for the computational solution of a least squares
problem. The first transforms the case of general H to the case of H =
I, while the second decomposes m-space into the n-dimensional subspace
spanned by the columns of C, and the complimentary (m-n)-dimensional
subspace orthogonal to the columns of C.

For the first transformation we factor H as
(L) H - LL®

and introduce C and z defined by

(2) C =118
and
(3) z = Ly

Then Eq. 4.3.3.(1) can be rewritten as

‘v"\"'ﬂ

(4) S2 = (Cx - z)¥(Cx - z) = [cx - z|?
16
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N The statistical interpretation of this transformation is that y,
s which was a sample from a distribution having mean, n, and covariance
e . P E

e matrix, H, is transformed to z, which is a sample from a distribution

; having mean, L™, and covariance matrix, 1. Thus the components of z
o each have unit variance and are mutually uncorrelated.

Pl
b
i:} There are various ways to achieve the factorization, H = LL'. The
;fx: simplest is the Cholesky decomposition of H. Another approach would be
-:&; to use the eigensystem decomposition, H = VAV, and then set L = VAl/Z,
]

N The goal of the second transformation is to replace C by a matrix
;;b having all of its nonzero elements in its first n rows. It is conven-
sfc ient, but not essential, to choose this transformation so that it also
] \\ transforms z to a vector having all of its nonzero components in the
NV first n+l positions.

(_ ; One way to construct such a transformation is by use of the QR
}:} decomposition of C,

e .

' -

c-ofy

e where Q is an mxn orthogonal matrix, R is an nxn nonsingular upper
.\i\ triangular matrix, and 0 denotes a zero matrix of conformable dimen-
j:i{ sions, here an (m-n)xn zero matrix. (An alternative to the use of the
AtL: QR decomposition for this transformation would be the use of the

:x? singular value decomposition. The SVD is computationally more expen-
ol sive, but gives additional information that is desirable in some

( situations. We shall not discuss the SVD further in this paper.)
25

:{i§ Using Eq.(5) in Eq.(4) gives

o . .

pi 6 s = Jafglx - 22 - 1 [g]x - @l

o .

555 Let u denote the first n components of Q'z and let v denote the
;:f. last m-n components of Qtz, i.e.,

7,

I-I

Lo
l\'l
u
P ¢ [v] -Qz
w
A
oy Then
"
AL
b R u
® R R N [ LSRN ER M
e |
ey This last expression shows S as the sum of two terms, the first
:*: of which can be reduced to zero by the unique x that satisfies Rx = u,

*: while the second term is independent of x. Thus the minimum value of
n"\ Sz is

T
2. (9) 82 = |v[?

1
=
Yo and since the minimizing value of x is unique, and is already known to
’f:- be £, it follows that £ satisfies
'\.
W 17
o
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;:ﬁ (10) R = u

! ' '
(' i From Cov(z) = I, Eq.(7), and the orthogonality of Q, we obtain
\.4 (11) Cov([ ]) =1

E

oy and thus, also

v

S (12) Cov(u) = I

X

’?:' and

oo

L (13) Cov(v) = 1

N
( Frem Eq.(9) we obtain

e (16) E(32) = E(|v[?) = £ E(v3) = % Var(v,) = m-n

o8

l.'-l

5} 4.3.4. Introducing a scaling factor for H

:. The assumption that H is completely known a priori is often
’a:. unrealistic. A useful weakening of this assumption is the assumption
ﬂﬂ that the covariance matrix of the distribution, D, from which the

observation was sampled, is ¢°H, where H is a known positive definite
matrix and ¢ is an unknown scalar. This amounts to assuming that the
signs and relative sizes of the elements of the covariance matrix of D
are known but an overall scale factor is unknown. We shall see that

—~

':3 this factor, ¢, can be estimated using the sum of squares of resid-
—\j uals, S$2, of Eq. 4.3.3.(1), generalizing the example discussed in Sec.
.:z 3

N
s

As to practical methods for the a priori definition of H, a common
situation would be to assume the errors in the different components of

10

1 $ y are uncorrelated so that H need only be a diagonal matrix. Then each
0gy diagonal element of H would be assigned the a priori variance of the
x error in the corresponding component of y. In this case one would
,:" expect the value of ¢ to turn out to be 1, and the extent to which the
'f‘ a posteriori estimate of ¢ differs from 1 can be a consideration in
2 assessing the quality of the model relative to the available data.
A
=$2 Another possibility is that one may simply assume that the errors
:\:- in the different components of y are uncorrelated and all have the
::3: same, but unknown, variance. Then one could set H = I and the a
" posteriori estimated value of ¢? would be an estimate of the variance
. of errors for each component of y.
.- If we start with ¢?H as the covariance matrix for D and repeat the
e derivations of Sections 4.3.1, 4.3.2, 4.3.3, and 4.3.3.1, we find ¢2
N cancels out in the expression for the matrix, P, so the estimator, 5,
"” is unchanged. The covariance matrix for £ inherits the factor ¢2,
S50 we obtain
S
e (1) Cov(§) = ¢2(BH1B)™
.
o 18
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Similarly the estimator 5 is unchanged, but its covariance becomes

2) Cov(n) = ¢2 BP H (BP)*
or
(3) Cov(n) = ¢2 B (BH!B)"! B*

Eqs.4.3.3.1.(11-14) become

(4) cov(m) -1
(3) Cov(u) = I
(6) Cov(v) = 1
(7) E(32) = (m-n)¢?

4.3.4.1. An unbilased estimator for ¢
Eq. 4.3.4.(7) can be rewritten as
(1) E[5%/(m-n)] =~ ¢?

showing that 52/(m-n) is an unbiased estimator for ¢2. We denote this
estimator by

(2) $? = 3%2/(m-n)

This provides a practical estimate for ¢ that is needed in situations
such as were described at the beginning of Sec. 4.3.4.

The next question one typically asks is how good is this estimate.
In terms of our mathematical model this translates to the problem of
finding the variance of the estimator, 3.

A direct derivation of this variance for the case of a general
underlying frequency function, f, would involve third and fourth
moments of f, i.e. integrals of y3f(y) and y*f(y). This would not be
of practical use since independent estimates of these moments would not
generally be known. Thus, as was mentioned in Sec. 3, the usual
approach is to assume that f is some well known frequency function that
provides a plausible model for the observation errors in the real world

system being investigated, and for which the resulting distribution for
82 is known.

Standard statistical distributions of interest for our purposes
will be presented in Sec. 5.
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1 {: 5. Standard distributions ‘
A -\:'.\\

j“vt 5.1. The normal or Gaussian distribution

. \ The one-dimensional normal distribution, also called the Gaussian
s distribution, having mean, n, and variance, o?, is conventionally

.:it denoted by N(n,0%). 1ts frequency function is

N

NN £(y) = (2n)71/% o7 expl(-[(y-n)/0)?/2)

“' ; If y has the distribution, N(n,o0?), then the random variable

,\ju defined by z = (y-n)/o has the distribution, N(0,1). Values of the
‘:r: frequency function and distribution function for N(0,1) are readily
.xix available in tables and from computer subroutines. Some probabilities
NN from the distribution, N(0,1), are given in the following table:

Table 1. Probabilities for z ¢ N(0,1)

L4
M .

..A.,a

o

o e Bzl = 0

o S S

:‘:_:: 05 0

0.52 0.4

® 0.68 0.5

o 0.84 0.6

N 1.0 0.683
- 1.96 0.95

- 2.0 0.954

LS 3.0 0.997
( + 1.0

o

,in Let N(m:n.¥) denote the m-dimensional normal distribution having
j::f mean vector, 1, and covariance matrix, ¥. Here f is an m-vector and X
b is a positive definite mxm matrix. The frequency function for this

v
s

distribution is

O

<% £(y) = (2m)™2 [Det(2)] V2 exp[-(y-n)*= " (y-n)/2]

!_'.:
r:h: A very significant property of the normal distribution is the fact
i*tj that an affine transformation of a normal random var.able will again be
P a normal variable. Specifically let P be an nxm matrix with n < m and
2 . Rank(P) = n. Llet y € N(m;n,2). Define a new n-dimensional random var-
':j: iable, z = ¢ + Py. Then z ¢ N(n;{+Pn,PZP').

“a

'T;: As an important special case of such an affine transformation, let
‘;{} E, denote the 1lxm matrix (i.e. row vector) whose elements are all zero
o except for a 1 in column i. The product E,y is just the component y,
.:_. of y, and E,ZE} is just the component o,, of £. It follows that y, ¢

. N(n,,0,,). [The notation here is a bit unfortunate. Note that o,, ia
- the variance of y, and thus the standard deviation of y, is o}{?].

-

e An affine transformation that is often useful is the transforma-
o tion from the general case of N(m;n,Z) to the special case of N(m;0,I).

. Denote the Cholesky factorization of = by £ = LL*. Then if y has the

CA

distribution, N(m;n,Z), the random variable defined by

»
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z = L'(y-n)

has the distribution, N(m;0,I).

As an example of the multivariate normal distribution, consider
N(2;0,I), which is also called the circular bivariate norma istribu-
tion. The integral of the density function for this distribution over
a disk of radius, p, has a particularly simple expression, namely,
1-exp(-p%/2). Some probabilities from this distribution are given in
the following table:

Table 2. Probabilities for z ¢ N(2;0,I)

P p? P(Jz[2 = p?) = 1-exp(-p?/2)
0.32 0.10 0.050
1.00 1.00 0.393
1.18 1.39 0.500
2.00 4.00 0.865
2.45 5.99 0.950
3.00 9.00 0.989
+© +0 1.000

5.2. Confidence regions

A region in which a random sample is expected to appear p% of the
time is called a p% confidence region. For example, if z ¢ N(0,1) the
interval [-0.84, 0.84) is a 60% confidence interval for z. There are
infinitely many other 60% confidence regions, however, for example,
[-05, 4=}, or [-=, 05], or [-=, -0.52]U[0.52, +=].

In higher dimensional spaces there is even more variety in the
shapes and connectedness properties of regions that could be chosen to
be a p% confidence region. For example one could choose a rectangle,
or other polygon, or a circle, or nonconvex or disjoint regions. A
choice having practical appeal for our purposes is the one that can be
characterized as being the region in which the density function exceeds
a certain fixed value. Then the probability density is larger at every
point interior to the region than it is at any point exterior to the
region. In the case of the multivariate normal distribution such
regions will be ellipsiods. Recall that spheres, ellipses, circles,
and one dimensional intervals are all special cases of ellipsoids.

As we shall see in the immediately following paragraphs, this
choice of the definition of a confidence region provides a significant
technical convenience, in that the case of a general ellipsoid reduces
easily to the case of & sphere, and thence to dependence on a scalar,
rather than an n-dimensional, random variable.

For y ¢ N(m;n,X), we shall define the p% confidence ellipsoid to
be the unique ellipsoid, C, defined by
(1) C={y : (y-m)*=Ny-n) = p?)
21
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where p is the unique nonnegative value that permits the integral of
the density function over C to have the value, p/10C.

Note that the frequency function for the n-dimensional normal
distribution is the product of [Det(Z)] '/? and a function of (y-
n)*Z°l(y-n) with T being positive definite. Any function of this form
has the property that for a fixed dimension, n, its integral over an
ellipsoid C defined as in Eq.(l) depends only on p and not on ¥ or n§.
Thus the functional relation between p and p given in Table 2 applies
not only to the circular bivariate normal distribution but also to the
general (elliptical) bivariate normal distribution with [z||> in the
table heading replaced by (y-m)*T i (y-n).

We see that determining critical sizes for confidence ellipses
defined as in Eq.(l) depends on knowledge of the distribution of [z]?,
for zeN(m;0,i). This distribution is called the x? distribution with m
degrees of freedom, and will be discussed in Sec. 5.3.

5.2.1. Geometric characterization of a confidence ellipsoid

Let C be the ellipsoid defined above in terms of n, Z, and p.
Write the eigenvalue factorization of £ as T = QAQ' where Q is ortho-
gonal and A is diagonal with positive diagonal elements (the eigen-
values of Z), A;, i =1, ..., m. We shall assume the eigenvalues are
ordered so that A, = A 2 A,. The column vecters of Q, which we

>
P
shall denote by q,, i = 1, ...,m, are the corresponding eigenvectors of
z.

Note that Z'! = QA™!QY, so the eigenvectors of ! are the same as
those of X while the eigenvalues are the reciprocals of those of Z.

The ellipsoid, C, 1is centered at n and its principal axes are
parallel to the eigenvectors of X with q; giving the direction of the
major axis. The semi-diameter, o,, in the direction of the ith
principal axis can be determined by solving the equation

(aiql)tz-l(aiqi) - p2
from which

2y-1 o 42
atd; p

a, = pA?

1
Consider the case in which T = ¢?I. Then the eigenvalﬁes of T are

all equal to o?, so the confidence ellipsoid is a sphere of radius

a = po.

5.3. The x? distribution

We have encountered two different situations, Eq. 4.3.3.1.(14) and
Sec. 5.2, in which our analysis led to consideration of the distribu-
tion of the sum of squares of of random variables. If these variables
are independent samples from N(0,1), their sum of squares has a
distribution called the ¥? distribution.

22

A N:.. \:..‘- Ag

Y 0 I N RN 3O RN e TR
LAt Ty L AL RO TN 0 I K D ) .q. ?t&?uﬁfﬂ?:f!.‘e LSRN 312‘5'.'?:5&.ﬁ'v“.'ct"a!'?c.i?:!"o. v

e V0T,




K i Eq. 4.3.3.1.(9) showed that 52 was the sum of squares of the
:*H components of the (m-n)-vector, v, and it was also established that
E(v) = 0 and Cov(v) = ¢2I. If we now add the assumption that the

Y distribution of the original random variable, y, is the normal distri-
~:¢ bution, i.e., y ¢ N(m;n,¢?c), then, since v was obtained as an affine

:ﬁ transformation of y, the distribution of v is N(n;0,¢%I).

:{ A random variable defined as the sum of squares of k independent
\ samples from N(0,1), or equivalently as the sum of squares of com-
i ponents of a sample vector from N(k;0,I), is said to have the x? (chi-
;J: squared) distribution with k degrees of freedom. We will denote this
'?ﬁ distribution by x?[k].

P
hﬁ: Letting t denote the independent variable, the density function
( for the x?[k]) distribution is zero for t < 0 and

k/2)-1 -t/2

< fF(r) = L2 et/ for t = 0

;.‘,- 2%/2 p(k/2)

N
.4 The distribution x?[k] has a mean value of k. The variance is 2k
b and thus the standard deviation is (2k)¥2. Values of the distribution
< function for x?{k) are available from tables or computer subroutines.
;?: Unlike the normal distribution, the x? distribution is unsymmet-
o ric. The mode and median of the x?[k] distribution are each less than
( the mean. If s is a x?{k} variable, the transformed variable,

e t = (2s)¥?, has a distribution that is closely approximated by

;;: N((2k-1)¥2,1) for k = 30.

L

»5: Table 3. Values of P(s<x) for s € x?[k]
5; for selected values of k and x.
O x = 0.05 0.5 0.95
N k

'

o
ot 1 0.004 0.46 3.8
LT 2 0.10 1.39 5.99

. J 5 1.1 4.4 11.1

ﬁ:: 10 3.9 9.3 18.3

L 20 10.9 19.3 31.4

- 30 18.5 29.3 43.8

-

"l Note that the row for k = 2 in this table agrees with values in
ol Table 2 since |z||2 of Table 2 is a x?[2) variable.
o
'j: We may now treat the question raised in Sec. 4.3.4 regarding the
ffz dispersion of 32/(m-n) as an estimator for ¢2. If we assume the data
:}: vector y is a sample from N(m;n,4?H), with H known, then 5%/¢42 is a
."-. sample from x?[m-n]).

T{F For example, if m-n = 20, we may conclude that there is a 90%

e probability that

;;;:; 10.9 < 8%2/¢% < 31.4
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and a 5% probability that
§2/¢% = 31.4

There are various ways one may use these results. If one has a
prior notion of a reasonable value for ¢, then if 52 exceeds 31.4 times
the square of that value, it may be taken as evidence that the model is
not consistent with the data, or the prior value of ¢ was incorrect.

If one has no prior notion of the value of ¢, then one might
conclude that there is a 90% probability that ¢? satisfies

§2/31.4 < ¢% < §2/10.9
5.4. Student’s t distribution

In Sec. 4.3.4 the formula Cov(f) = ¢2(BH !B)"! was obtained.

Also it has been noted that if y has a normal distribution then é does
also, in particular

(1) € € N(n;€,42(BtH1B)™ 1)

Thus if B, H, and ¢ are known, one can compute a p% confidence

ellipsoid for £, or p% confidence intervals for individual components
of £, as discussed in Sec. 5.2.

If ¢ is not known it can be replaced by its estimator,
(2) ¢ = (5%/(m-n)]*/?

(see Eq. 4.3.4.2.(2)), if m-n is sufficiently large so the variance of
3 is sufficiently small. Alternatively, particularly when m-n is not
large, a different approach may be used, involving the Student’'s t
distribution. This distribution was presented in 1908 by an anonymous
author identified as "Student". Reference: [Plackett].

Eq.(1l) can be rewritten as
(3) £/¢ ¢ N(n;€/¢, (BHIB)™Y)

which serves to focus attention on €/¢. We now ask: What is the
distribution of £/4?

Note that E has a normal distribution and ¢? is within a known
factor of being a x? variable. Furthermore these two variables are
statistically independent, since ? is a function of u and not v,
[Eq.4.3.3.1.(10)], 3% is a function of v and not u, [Eq.4.3.3.1.(14)],
and u and v are statistically independent, [Eq.4.3.3.1.(1l1) or
4.3.4.(4)].

Thus we need to know the distribution of the ratio of a normal
variable to the square root of a statistically independent x? variable.
That is what the Student’s t distribution is.
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- Let weN(n;0,Z) and f%ex?[k], with these distributions being
j: mutually independent. Then the n-dimensional vector random variable
g

- (%) t = ki%w/B
f has the n-dimensional Student’s t distribution with k degrees of
L freedom and kernel matrix ¥. The frequency function for t is
!‘ '
i (5) £(t) = [ (ktn)/2)
e T(k/2) (km)™2[Det(Z)]1/2[1 + ttz ig) /2
o

“\
e Furthermore,
£
o (6) E(t) = O
oGy
4

and

:~$ (7) Cov(t) = [k/(k-2)]Z

.h

Ol

Remark: The frequency function for the l-dimensional Student’s t
" distribution with £ = 1 can be found in numerous sources, however 1
® wish to thank Dr. J. Myhre for referring me to [Anderson] where Eqs.(5-
‘;‘ 7) above are given in Problem 27, Page 283.

We return now to the study of £/3. To obtain w and B satisfying
N the conditions to define an n-dimensional Student’s t variable, let w =
ke (€-€)/¢ and B = §/¢. Then the variable

o (8) t = (m-n)2(E-£)/8 = (2-6)/3
§: has the Student’s t distribution with (m-n) degrees of freedom and
e kernel matrix T = (BYHIB)"!.

, As with the density function for the multivariable normal dis-
N tribution, the density function for the multivariable Student’s t
:i distribution is the product of [Det(Z)]) 12 and a function of t'Tlt,
o with T being positive definite, and thus has the property that for a
:) fixed dimension, n, and number of degrees of freedom, k, its integral
b over an ellipsoid C defined as in Eq. 5.2.(1) depends only on p and not
® on £ or n.
5"
92 Thus to find critical values for confidence ellipses of the form
~ of Eq. 5.2.(1) for an n-dimensional Student’s t distribution with k
:Q degrees of freedom, it suffices to know the distribution of the scalar
yy random variable, [t[|2. The variable [t|?2/n has a distribution known as
L the F distribution with n and k degrees of freedom.
<
:: We shall define the F distribution in Sec. 5.5, then verify the
L assertion in the last sentence above, and finally relate the F distri-
::- bution to the our particular case of t = (£-£)/3.
.
L
A
“..
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5.5. The F distribution
1f 6, € x*[k,] and 6, ¢ x*[k,] then the ratio

8,/%, kyb,y
8,/k, k8,

is said to have the F distribution with k;, and k, degrees of freedom.
This distribution will be denoted by F[k,,k,].

The F distribution was introduced by Fisher, 1922, and incorpor-
ated in a general framework for testing linear hypotheses by
Kolodziejczyk, 1935. Reference: [Plackett]. Values of the distribu-
tion function for the F distribution are available in tables and from
computer subroutines.

Suppose w ¢ N(n;0,I), 6, € x*[k,], and t = k}/%w/6,. Then t is an
n-dimensional Student's t variable with k, degrees of freedom. Also
|w[? is a x?[n] variable. Let

Iel® k, [wli?

2
n n 83

Then ¥ ¢ F[n,k,].

Continuing now our consideration of E/é, it was noted (See
Eq. 5.4.(8)) that (£-£)/3 is an n-dimensional Student’s t variable with
(m-n) degrees of freedom. It follows therefore that
HE-EHZ/(naz) ¢ F[n,m-n]. Thus critical points for confidence ellipses
for £ when ¢ has been estimated by 3 can be obtained from tables for
the F distribution.

6. Approaches to data analysis
6.1. Analysis of one coherent set of data

Assume we have a set of m observed values, y,, 1 =1, ..., m,
which we will treat as an m-dimensional vector. It is assumed that y
can be regarded as being a random sample from the normal distribution,
N(m;n,4?H), where H is a known mxm positive definite matrix and n is
unknown. We think that the value of ¢ is 1 but we will estimate ¢ from
the data as a check on the validity of the model.

It is assumed that n has a representation of the form
(1) n = B¢
where B is a known mxn matrix of rank n, and £ is an unknown n-vector.
Our objectives are to estimate £, obtain a covariance matrix for the

estimator of £ as a measure of the dispersion of the estimator, and
estimate ¢ as a measure of the quality of the model.
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We shall use the two transformations introduced in Sec. 4.3.3.1.

Details of the computational steps specified will be found in [Lawson
and Hanson].

Compute the Cholesky factorization of H as H = LL'. Then we know
the minimum variance unbiased linear estimator, 5 for £ is the value
of x that solves the least squares problem of

(2) minimizing ||L"1Bx - L7ly|2

Compute [C:z] = L}[B:y] by solving the system L[C:z] = [B:y].
Then our least squares problem is to

(3) minimize ”Cx - ZH2

Compute the "QR" factorization of [C:z]. This gives an mxm ortho-

gonal matrix, Q, and an (n+l)x(n+l) upper triangular matrix, U,
satisfying

(4) (C:z] = Q[g]
Partition the matrix U as
R g
0[5

where R is an nxn nonsingular upper triangular matrix, g is an n-
dimensional column vector, 0 denotes an n-dimensional row vector of

zeros, and a is a scalar. The transformed least squares problem is now
that of

e
(6) minimizing || lb]x . [5] |2
or equivalently
(7) minimizing |Rx - g|? + o2

Since R is nonsingular, the first term in this expression will be
reduced to zero by the unique x that satisfies

(8) Rx = g
and the minimum value of the expression being minimized is just a®.
Summarizing these steps, we may write
(9) §2 = min, (Bx-y)*H !(Bx-y)
= min, [L"'Bx - Lly|?
- min, [Rx - g||? + o?
- a?

with the minimizing value of x being £ that satisfies
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(10)

RE = g.

<Q$€;ﬂﬁiﬂ‘.

Our unbiased estimate of £ is é.
3% = 32/(m-n).
x? distribution as illustrated in Sec. 5.3.

r—y
Y &
Lol ol

A
The covariance matrix for £ is

>
A

(11) Cov(€) = ¢V

Uk

o

where

o 5
L g

87

(12) V = (B*H''B)"? = (R*R)™! = R IRt

-

Eﬁ&f"

6.2. Combining sets of data

- Py

»
<y

Our unbiased estimate of ¢2 is
Confidence intervals for 32 are available by use of the

The total set of data defining the problem discussed in Sec. 6.1

Lt

\\i consists of the vector y, and the matrices, B and H. Suppose two sets
-:f of data, (y,, B;, H,) and (y,, B, H,), have been acquired that are both

_:ﬁ assumed to derive from the same underlying parameter vector, €. Thus,
. for i =1, 2, it is assumed that y, is a noisy observation of B,£ with
et covariance matrix, ¢2H1. Furthermore we assume the observations y, and
”}: y, are independent, in the sense that Cov(y,,y,) =~ O.

St}

}ﬁ{ Suppose the processing described in Sec. 6.1 has been applied to

ii each of these data sets, obtaining estimates, 21 and éz, as well as all

; Y )
FAsCAs

L X

‘ -J";s;,j-‘_&)
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such an estimate.
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respectively.
the symbol of Sec. 6.1 with no subscript.
defining
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SO0

of the intermediate and auxiliary quantities defined in Sec. 6.1.

We wish to consider the question of selecting from among these
intermediate and auxiliary quantities those that will be useful in the
computation of an estimate of § based on the combined data sets, and
also to specify how these selected quantities are to be used to obtain

Supplementary quantities deriving from data sets 1 or 2 will be
indicated by the symbol used in Sec. 6.1 subscripted with 1 or 2,
Quantities based on combined data will be indicated by
Thus we may begin by
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L

™\

3

. The combined problem can be characterized as that of minimizing
;::. )¢ X the quantity S? defined by

'l‘?'

( (4) $2 = (Bx-y)tH}(Bx-y)

P ‘__‘

":.f. = (B;x-y,)'H{ (B;x-y,) + (B,x-y,)tH;*(B,x-y,)

e

»-::‘ - Rl] _ & 2 Rz] B 2

”[o * [al B IR

\

o f - 3l

N - |Rx - g

-.::s-

NN where

e

)
( gl] gl.l

(5) R=fp : - |2

,:#‘. Rzl & &2

‘:\-:, 0 [+

,\..

o

!W, The problem of minimizing S? is now seen to be a linear least

\';: squares problem involving the matrix R and the vector g. A reasonable
-.ﬁ*.‘ approach to solving this problem would be via the "QR" decomposition as
:J': in steps 6.1.(3) - (8). This "QR" decomposition can be written as
L5

X4&3 R A

S o1 = g
- () (R:g) - a0 = ofg &

e

b,
‘AN where Q is a (2n+2)x(2n+2) orthogonal matrix, R is an nxn nonsingular
‘::.:. upper triangular matrix, § is an n-vector, O denotes an n-dimensional
‘-',' row vector of zeros, and & is a scalar. We then have

O

(7) s? = |Rx - g% + &?

so the the solution vector £ is given as the solution of

(8) RE - &

NN and the minimum value of §2 is

e

o (9) 52 = 52

:«:.: The covariance matrix of £ i~

L A

oy (10) C~i(8) = ¢20

::_,:

~ where

Wy

L™

e (11) 9 = RR)F = ROIR

@

N Summarizing the above process we see that the upper triangular
f.":'_'. matrix, U, of Eq.6.1.(5) can be chosed as the quantity to save for each
Y data set for use in later combining the data sets. The process of
l‘ "
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combining data sets then amounts to stacking the saved U-matrices
vertically, as in Eq.(5), and then computing the "QR" decomposition of
this augmented matrix, as in Eq.(6), to obtain the U-matrix for the
combined problem. The combined covariance matrix can be computed from
the R-submatrix of the U-matrix, as in Eq.(11).

6.2.1 Additional remarks on combining data sets
An alternative way to approach the minimization of the last
expression in Eq. 6.2.(4) is to note that the minimizing vector £ is
the unique solution of the normal equations
(1) RRE - Rtg
Thus the covariance matrix for €/¢ can be expressed as
(2) U = (R*™R)"? = (RIR, + RIR,)7! = (V]! + v;1)°?
and é can be expressed as
(3) £ = (RR)VR'E
= V(Rig; + R3g,)
= V(R§R1€1 + Rnggz)
- (Vil + Vzi)_l(vilél + Viléz)

It is at least of mathematically aesthetic interest to note that
Eqs.(2) and (3) can be written as

(4) LA LR A
and
(5) ¢ - Vil + V3,

Eqgs.(2) and (3) show that as an alternative to the approach
suggested in Sec. 6.2 of using the U-matrix as the object to be saved
and updated as data sets are combined, one could instead use the £-
vector and the V-matrix. These could then be updated as data sets are
combined using Eqgs.(2) and (3).

The use of U gives much better numerical stability and reliability
than the use of V and §.

We assumed at the beginning of Sec. 6.1 that B was of rank n. In
computational practice it is essential to recognize that, even though
the matrix B may be of rank n, 1f its column vectors are nearly
linearly dependent, i.e., if it has a large condition number (see Sec.
4.1), its performance in a computational process may be more like a
matrix of lower rank. For this reason it is important to consider what
will happen to a computational procedure if B is 111 conditioned or has
rank less than n.
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The computation of the QR decomposition of a matrix is well
defined and numerically stable regardless of the rank or condition
number of the matrix being factored. Thus using the U-matrix as the
fundamental object in processing sepsrate data sets and combining them
is a numerically stable process. If the R-submatrix of the U-matrix at
some stage is ill-conditioned or rank-deficient then the quantities é
and V computed from the U-matrix at that stage are likely to be poorly
determined or undeterminable. This only affects the £ and V at this
stage, however. If this U-matrix is later combined with a U-matrix
derived from another set of observations, it is possible that the R-
submatrix of the new U-matrix will be becter conditioned and reasonably
accurate values of é and V can be determined.

The U-matrix computed from some particular set of data will be
essentially the same regardless of whether it is computed from all the
data at once or through the combining of U-matrices previously computed
for disjoint subsets of the data.

In contrast to the stability of the U-matrix approach, the
approach based on Egs.(2) and (3) is highly dependent on the order in
which data is grouped. Error in the V-matrix at any stage will
propagate to &all following stages. The method fails completely if the
V-matrix cannot be determined at some stage due to rank-deficiency of
the underlying B-matrix, even though after more data is accumulated one
might have a full-rank, and even well-conditioned, underlying B-matrix.

Updating methods based on Eqs.(2) and (3) were given in the early
papers on "filtering" or "Kalman filtering" in the late 50’'s and early
60's. Instability of the type described here was recognized as a
problem in those days. The QR decomposition was not widely known and
understood in the early 60’'s, but by the late 60’s it was being used in
many algorithms of linear algebra. 1Its value in "filtering" was
increasingly appreciated in the early 70's. A systematic treatment of
"filtering" emphasizing the use of the U-matrix is given in [Bierman].
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Affine transformation 10
Probability density function 4,
QR factorization 11

Random variable 4

Rank 9, 13

Full ¢

Rank-deficient 9

Singular value decomposition 11
Singular values 11

Spectral norm 10

Standard deviation 5, 20
Student’'s t 24
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Var(x) 6
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Vector 9

Well-conditioned 11
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