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PREFACE

The work described in this publication was performed by the Jet

Propulsion Laboratory, an operating division of the California

Institute of Technology, under contract NAS7-918, RE182, A187 with the

National Aeronautics and Space Administration, for the United States

Army Intelligence Center and School.

This revised edition replaces the original report, published on

June 26, 1987, and is being re-published because the original edition

contains photocopy blotches and illegible print.
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EXECUTIVE SUMMARY

,-'

;This Technical Memorandum ws peae
.,, originally as part of the Generic Fix Report (FY-86)
. . '-iwhich was elmininated under the FY-87 statement of
' work (SOW *2), undated (delivered to JPL 19 November

! The purpose of the Generic Fix Report, of which
~this paper was to be an appendix, was to collect all

a,.

- the material needed to understand Direction Finding
and Fix Estimation and their mathematical basis in
one volume to support the multi-volume series of Fix

• Estimation Reports.

-.- zThis paper is being published because it was
-" , conpeleted in FY-86 with FY-86 funds and was being
. held for integration into the Generic Fix Report.

~the mathematics involved in the Fix Estimation Reports.
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Fundamentals of Linear Estimation

0. Introduction

This memorandum will treat a selection of topics in linear
estimation, beginning with a very simple situation and progressing
through more complications. These topics are shown in A. below. This
progression will provide the main structure for the document. Topics
from B. and C. below will be brought in at points where their need has
been motivated.

A more conventional academic approach to covering this material
would be to discuss B. and C. first, to establish the foundation, and
then treat A. This approach would be easier to do but would lack
motivation in the early stages. We are trying the stated approach on
the assumption that the sponsor wants a more motivated presentation.

A. Topics in estimation;

1. One dimensional estimation with one observation.
S2. Same with two observations.

3 With same or different observational errors.

4. Any number of observations.
5. Two dimensional estimation, independent errors,
6. Multidimensional estimation,
7. Combining sets of observations."

B, Properties of random distributions:

1. Mean, first moment.
2. Standard deviation, variance, second moment,
3. Distribution, frequency function, all moments. -

Normal distribution.
Chi squared distribution.

Student's t distribution,
F distribution.

4. Confidence intervals'

C Least squares

1. Statement, geometric interpretation.
Gradient of the sum of squares.

2. Solution methods.
Orthogonal transformations.

3. Using the covariance matrix of observation errors.

The general style of the paper is tutorial, however due to the
amount of material being covered, and to avoid reaching book-length, it
will be more of a sketch of a tutorial rather than a true tutorial in

4some places.
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Equations will be numbered within sections. For example, if there
is an Equation (2) in Section 4.1, it will be referenced as Eq.(2) from
within Section 4.1 and as Eq. 4.1.(2) from any other section.

1. One dimensional estimation

1.1. A single observation

Suppose one makes a one dimensional observation, such as the
distance between two stakes at a construction site. Suppose the
measured distance is 95.36 meters, with an uncertainty of 2 centi-
meters.

For the moment we shall not define this concept of uncertainty too
precisely. One way to think of measurement uncertainty is in terms of
how surprised we would be at different possible outcomes if we could
somehow later determine the distance much more accurately. We would be
surprised if our error turned out to be 3 cm., and very surprised if it
was 4 cm., and not at all surprised if it was just 1 cm. If the error
turned out to be greater than about 6 cm. we would probably check to
see if there was a blunder in the first measurement or if the stakes

* had moved.

-, 1.2. Two observations

Suppose we make a second observation of this same distance and
obtain 95.37 meters, again with an uncertainty of 2 cm. What is our
best estimate of the true distance?

If we use the principle of least squares, which we will not
justify at this point, we seek a number, x, such that the sum of
squares of residuals between x and the observed values is minimized.
Thus denoting the measurements by b1 - 95.36 and b2 - 95.37, we seek x
to minimize

s - (x - b1 )
2 + (x - b2)2

We may differentiate s with respect to x, obtaining

S.- ds/dx - 2(x - bi + x - b2)

which will have the value zero when

x - (bi + b2)/2

i.e., when x is the average or mean of b, and b2. Thus our estimate of
0. the distance being measured is 95.365 meters.

What estimate of uncertainty do we attach to this result? To
answer this we shall need to adopt a mathematical model of uncertainty,

".. but before doing this we shall introduce one more example.

2
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1.3. Two observations with differing precision

Suppose we have the first observation as before but the make a
second observation of this same distance using a more precise measuring
device, obtaining a distance of 95.372 meters, with an uncertainty of
0.2 cm. Now the simple average of the two measurements no longer seems
like a reasonable estimate. We should somehow give more weight to the
more accurate measurement.

A reasonable way to do this is to scale the residuals for the two
measurements so that equal values of the scaled residuals correspond to
equal levels of surprise. Specifically, instead of the simple resid-
uals, (x - bl) and (x - b2), we will use the scaled residuals, (x -

bl)/d and (x - b 2 )/d 2 , where d, denotes the uncertainty in the
measurement b,. Thus, for example, if (x - bl)/d, has the value 1.2,
this engenders the same level of surprise as would be associated with
(x - b2 )/d 2 having the value 1.2.

The combined error function we shall now seek to minimize is

s - [(x - bl)/d1 ]2 + [(x - b2)/d2]2

Differentiating with respect to x we obtain

ds/dx - 2[(x - bl)/d, + (x - b 2 )/d 2]

which will have the value zero when

x - (bl/d1 + b2 /d 2 ) / (l/d + l/d 2 )

Using the values, b1 - 95.36, dl - 0.02, b2 - 95.372, and d2 -
0.002, we obtain the estimate, x - 95.3709. Note that with this
estimate the simple residuals are

x - b1 - 0.0109
and

x - - -0.00109

whereas the scaled residuals have equal magnitudes of

I (x - b1 )/djj - I x - b2 )/d21 - 0.545

p" Looking on to larger problems, we remark that although least
%' squares estimation has a tendency to balance the magnitudes of scaled
5. residuals, the actual data and dimensionality of a problem limits how

closely this balance can be approached, and in general one can not hope
0 for exact balancing as was attained in this example.

Now we must develop a mathematical model for uncertainties.

2. Characterizing random distributions

Consider again our first example in which we assumed the uncer-
tainty of the measurement was 2 cm. Suppose we repeat this measurement
1000 times and count the number of times the difference from our

.53
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origir-, measurement falis in selected ranges, such as (-v, -4 cm.),
(-4, 2), (-2, 0), (0, 2), (2, 4), and (4, D). If we repeated this
ns'-urement another 1000 times we would expect some stability in the
percentage of measurement differences falling in each one of our bins.
For example we would expect the percentage of measurement differences
falling in (0, 2 cm.) would hover around some fixed value, say 34%.

A mathematical model that is useful in analyzing this type of
behavior is the assumption that there is a nonnegative continuous
function, f, defined for all real numbers, and related to our experi-
ment by the condition that the area under the graph of f between any
two points a and b gives the value to which this type of repeated
experimenting and counting converges. Thus, such a function, f,
relating to our experiment would need to have area between 0 and 2 of
0.34.

The usual statistical terminology is to call a function, f, a
frequency function or a probability density function if it is nonnega-
tive and its integral from -c to +- exists and has the value 1. We
will only be concerned with frequency functions that are continuous, or
at most have jump discontinuities at a finite number of points.

The indefinite integral of a frequency function is called a
distribution function. Thus from a frequency function, f, we obtain a
distribution function, F, defined by

F(t) - ft f(s) ds

A distribution function is defined for all real numbers, is
continuous and monotone nondecreasing. It approaches the limiting
value of 0 as its argument approaches -- , and 1 as its argument ap-

proaches + o.

The term, random variable, iL commonly used to refer to a quanti-
ty, such as the measurement error in our example, that typically has a
different unpredictable value each time it is observed, but yet
exhibits some regularity with regard to the distribution of its values
in a large number of observations. Note that we are not actually
giving a definition of the term, random variable.

-E The closest we can come to giving a mathematical definition of the
term, random variable, is to say that the statement, "x is a random
variable with probability density function f" means that certain
stylized statements involving "x" are to be taken as meaning something
specific about "f". As an example of such a statement, note that "the
probability that x exceeds 2 is 0.02", which may also be expressed as
"P(x > 2) - 0.02", means "the inteFral of f from 2 to +, is 2 7-'-

It is often convenient to use the term, distribution, as a
linguistic aid in associating the name of a random variable with the
name of its frequency function. For example we may at some point let D
denote a random distribution with frequency function, f, and later say

, -that X is a sample from D.

-4,4

0

% % V X



In practice one almost never has enough information to determine a
frequency function from empirical data. Various assumptions are
typically made to fill this gap.

For some purposes it suffices just to assume that there is some
frequency function underlying the random aspects of a problem and
compute estimates of certain attributes of the distribution, most
commonly the mean, which is a measure of the central location of the
distribution, and the standard deviation, which is a measure of the
dispersion of the distribution.

t'," hen one wishes to go further and make statements involving

probabilities, it becomes necessary to base the analysis on some
specific frequency function. There are a number of frequency functions
that have been thoroughly studied by statisticians, so in practice one
usually picks one of these well known functions that has a plausible
shape for the problem.

The mean of a distribution with frequency function, f, is defined~by

• - rs f(s) ds

while the standard deviation, a, is defined by

o 02= _ (s M)2 f(s) ds

The squared quantity, a2, is called the variance of the distri-
bution.

It is useful to have notations for these concepts for use with the
"random variable" terminology. Thus the mean value of a random
variable, x, is also called the expected value of x, denoted by E(x).
This notation is extended to apply to arbitrary functions of a random
variable. Thus if g(x) is any function of a random variable, x, and
the following integral exists, we may write

E(g(x)) - Jag(s) f(s) ds

The expected value operator is a linear operator, in the sense
that for arbitrary scalars, a and f, and functions, g and h, for which

* the required integrals exist, we have

E(a g(x) + 6 h(x)) - a E(g(x)) + f E(h(x))

Using the expected value notation the definition of the standard
deviation, a, can be written as

- E( (x - E(x)) )

5

S%

%



It is useful to introduce another operator, Var(x), to capture
this last expression. Thus we define

Var(x) - E( (x - E(x)) 2 )

The value of the Var operator is insensitive to an additive shift
of the underlying distribution and varies with the square of a multi-
plicative factor. Thus

Var(ax + - Var(x) - a2 Var(x)

3. Examples of the use of the mean and standard deviation

3.1. Example assuming c is known

Returning to the example of Sec. 1.2., let us model the uncer-
tainty in the measurement process by assuming the observed values b,
and b2 are independent random samples from some distribution with
frequency function, f, having mean, p, and standard deviation, a. We
assume that f and p are not known, but we make the rather strong
assumption that a is known to have the value 2 cm. Our goal is to

* estimate p and obtain an estimate of the standard deviation of the
estimated value.

The estimation function used in Sec. 1.2. was the simple average

g(b1,b2) - (b1 + b2)/2

It will be instructive to consider a slightly more general
p' estimator function, namely

h(b1 ,b2) - abi + Pb 2

and then show that the choice of a - 6 - 1/2 has certain desirable
properties.

Regarding b1 and b2 as independent random samples from our assumed
distribution, the function h defines a new random variable having a
different distribution. What are the mean and standard deviation of

0 this derived distribution? What we hope, if h is to be of reasonable
use as an estimator, is that the mean of h is p, or has a known
functional relationship to p, and the standard deviation of h is less
than c, so we are estimating the quantity of interest, u, and with
dispersion less than that of a single observation.

0 We must generalize the definitions given previously for the
operators E() and Varo, because h depends on two random variables.

T
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We compute the mean of h as

E(h(bl,b 2)) - ff (abl + Pb2) f(b) f(b2) dbl db2

- af b, f(bl) dbl f f(b2) db2

+ Of f(bl) dbl f b2 f(b2) db2

4 - ap + -(a + iPA

and the variance of h as

Var(h(bj,b2 )) - E([h E(h)] 2)

- E{[ab1 + fib2 -(a + p)]2)

- E{[a(b 1 - ) + fi(b2 - y)]2)

0"a
2E[(bl-M)2 ] 

+ ;92E[(b 2 -j)
2] + 2acgE[(b 1 -p)(b 2-M)]

- a2Var(b1 ) + p
2Var(b 2)

05- + 2aff (bl-p)(b 2-p) f(bl) f(b2) dbl db2

. (a2 + p2)a2

+ 2af (bl-p) f(bl) db1 f (b2-A) f(b2) db2

S(a 
2 

+ p2)a2 + 0 - (a
2 

+ f2
)a

2

For the simple average estimator, g, where a - - 1/2, these
formulas give a mean value of p and a standard deviation of o/21/2 or
1.4 cm.

What about other values of a and Pi? An estimator is called
unbiased if its mean value is equal to the quantity we wish to esti-
mate, in this case, p. To achieve this we see that we must have
a + - I.

* An estimator is called minimum variance within its class if no
other estimator in its class has smaller variance. The minimum value
of the factor (a2 + p2), subject to a + P - 1, is attained when
a - - 1/2.

Any estimator of the form ab1 + Pb2 is called a linear estimator.
* From the above we see that such an estimator is an unbiased linear

estimator if a + P - 1, and it is the minimum variance unbiased linear
estimator if a - P - 1/2.

Remark: The term, E[(b 1 - iA)(b 2 - )], in the above equation for
Var(h(bl,b2)) is called the covariance of b, and b2, and is denoted by

* Cov(bl.b2). This is a very special case of the covariance since the
joint frequency function of bl and b2, here, f(bl)f(b 2), is the product
of two functions, each depending on only one of the variables. In such
a case the covariance is zero because it can be written as the product

7

07



of two integrals, each of which is zero. We postpone discussion of
Vcovariance in more general situations until matrix notation has been

introduced.

3.2. Example assuming a is unknown

Commonly one does not know a apriori, as was assumed in Sec. 3.1.,
but rather needs to estimate it from the data. Such an estimate can be
obtained from the sum of squares of residuals.

Define the residuals for the two measurements by

ri - bi - g(bl,b2), i - 1,2

and define

s2 - r1
2 +r2

2

Each residual is a function of the random variables, b, and b2,
and thus so is S2 . Therefore S2 is a derived random variable having
its own distribution. The mean value of S2 may be determined as
follows:

- E(S2 ) - E(r1
2 + r2

2)

- E([b1  (b1+b2)/2]
2 + [b - (b1+bz)/2]

2)

- 1/2 E([b l - b2 ]
2)

- 1/2 E([(b, u) - (b2  - )]2)

- 1/2 (Var(bl) + Var(b) - 2 Cov(bl,b2 ))

1/2 ( + a2 + 0) -

Thus S2 is an unbiased estimator for a2. In our example we have

S2 _ (-0.5 cm)2 + (0.5 cm)2 - 0.5 cm2

from which we obtain (0.5)1/2 - 0.71 cm as an estimate of a.

In the more general case of m observations and n parameters being
estimated the expected value of S2 is (m-n)02. Thus S2/(m-n) is an
unbiased estimator for a2. In our example we obtained E(S2) - 0

2

because we have m - 2 and n - 1. The difference, (m-n), is called the

number of degrees of freedom in the problem.

To estimate the dispersion of S2 requires more information or more
assumptions. The usual approach is to assume the distribution from
which the data values, big arise is a normal distribution. Then the
scaled derived random variable S2/o2 will have a X2 distribution with

" nm-n degrees of freedom. The normal distribution and X2 distribution
• will be defined in Sec. 5.

8
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Discussion along the above lines could be carried out for the case
of Sec. 1.3 in which the observations were made with differing precis-
ions. We will not do this however because it will be much more effic-
ient to introduce matrix notation and treat the general problem of the
linear estimation of n parameters using m observations subject to an
aprior covariance matrix on the errors of the observations.

4. The multidimensional linear estimation problem

4.1. Notation and concepts of linear algebra
N

The anticipated applications of this paper all involve real
numbers and thus we shall limit our discussion to this context. One
should be aware, however, that the concepts presented have identical or
very similar analogues in complex n-space. For further details on
anything introduced in this section see [Golub and Van Loan] or [Lawson
and Hanson].

We shall use Rn to denote n-dimensional real space. A point in
Rn is an n-dimensional real vector, and will be denoted by a lower case
roman or greek letter, e.g. x, with real components, x1, .... xn. An
mxn matrix is an array of m rows and n columns of real numbers, and
will be denoted by an upper case roman or greek letter, e.g. B. The
transpose of a matrix, B, will be denoted by Bt.

A transformation between two vector spaces will be called a linear
transformation if it involves just a matrix multiplication, and an
affine transformation if it consists of a matrix multiplication plus an
additive constant vector.

The number of linearly independent rows of a matrix, B, is the
same as the number of linearly independent columns and this number is
called the rank of B. If B is nxn and of rank n it is nonsingular and
has a unique inverse matrix that we denote by B-1 . Also, if B is
nonsingular, the matrices (Bt)-l and (B-1 )t exist and are equal and
will be denoted by B-t.

The largest rank possible for an nxm matrix is min(m,n). A matrix
having this maximal rank is said to be of full-rank. A matrix whose
rank is less than this maximal rank is called rank-deficient.

When it is necessary to distinguish between a row vector and a
column vector, we shall, for example, let x denote a column vector and
xt denote a row vector. For example, if x and y are n-dimensional
vectors, xty denotes the scalar valued inner product and xyt denotes
the n x n matrix valued outer product.

The Euclidean norm of a vector x is denoted by

Ilxil - (XtX)112

9
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The spectral norm of a matrix B is denoted by

IIBIJ - Max( IIBxII : ixl - 1 )
_~ [A,(tB)I/2

where A..(BtB) denotes the largest eigenvalue of BtB.

Two n-vectors, x and y, are mutually orthogonal if xty - 0. A set
of n-vectors, x1, . . , Xk, are mutually orthogonal if each pair is
mutually orthogonal. A set of n-vectors, x1, ... , Xx, is orthonormal
if the set is orthogonal and each vector has unit euclidean norm.

A square matrix Q is called orthogonal if its transpose is also
'.1 its inverse, i.e., QtQ - I, where I denotes the identity matrix. If Q

is orthogonal its row vectors constitute an orthonormal set of vectors
and the same is true for its column vectors.

Multiplication of a vector (respectively matrix) by an orthogonal
matrix preserves its euclidean norm (respectively spectral norm). Thus
if Q is an orthogonal matrix then llQxlI - llxl and IIQBII - IBII.

A 2-dimensional orthogonal matrix is either a rotation matrix

Q [cos 8 -sin e]
'< sin0 cosea

or a reflection matrix

Q[Cos & sin 01
Lsin 0 cos J

An n-dimensional orthogonal matrix, with n ? 2, can be represented as
the product of at most n(n-l)/2 special orthogonal matrices each of
which represents either a rotation or a reflection in the plane defined
by some pair of coordinate axes.

A square matrix A is symmetric if At - A. A symmetric matrix is

wl positive definite if xtAx > 0 for every n-vector x 0 and nonnegative
definite (also called positive semidefinite) if xtAx ; 0 for every n-
vector x 0. Note that the class of nonnegative definite matrices
includes the class of positive definite matrices. A positive definite

0 matrix is nonsingular, and its inverse matrix is positive definite.

If A is positive definite, the scalar quantity, xtAy, may be
regarded as a generalized inner product relative to the matrix, A. The
generalized inner product has analagous properties to the ordinary
inner product, but with some changes of terminology. For example,

0 whereas x and y are mutually orthogonal if xty - 0, they are mutually
conjugate with respect to A if xtAy - 0.

Every matrix A of the form A - BtB or A - BtWB, where B is any mxn
matrix and W is nxn nonnegative definite, is nonnegative definite. If
the column vectors of B are linearly independent and W is positive
definite, then A, given by either of the above two expressions, is
positive definite.

10
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A partial converse of this is the fact that any n-dimensional
symmetric nonnegative definite matrix, A, has a Cholesky factorization

*, of the form, A - UtU, where U is an nxn upper triangular matrix. If A
is positive definite, then U is uniquely determined by A to within the

signs of the rows of U. That is, if U satisfies A - UtU, then so does
the matrix V obtained by multiplying any row of U by -1. Thus, if A is
positive definite, we may standardize its upper triangular Cholesky

factor, U, by requiring that its diagonal elements be positive, then U

is uniquely determined by A.

It is sometimes more convenient to focus attention on the left
member of the Cholesky factorization. Thus writing L for Ut we may
write the factorization as A - LLt.

Every symmetric matrix A has an eigensystem factorization of the

form, A - VAVt, where A is an nxn diagonal matrix, and V is an nxn

orthogonal matrix. The diagonal elements of Rare the eigenvalues of A
and the column vectors of V are the eigenvectzrs of A. Note that the

equation satisfied by these matrices can also be written as AV - VA.

The n eigenvalues of a symmetric matrix are uniquely determined by
the matrix. The eigenvalues of a symmetric matrix are all positive if

and only if the matrix is positive definite and are all nonnegative if
-and only if the matrix is nonnegative definite.

VEvery mxn matrix, B, has a singular value decomposition, of the

form, B - USV t , where U is an mxm orthogonal matrix, V is an nxn
orthogonal matrix, and S is an mxn matrix that is all zero except for

the diagonal terms, which may be positive or zero. Denoting the

diagonal terms of S by si, i - 1, ... , min(m,n), it is often useful to

assume these are ordered so that s i a s 2 2 ... The numbers, si, arek called the singular values of B. The number, say k, of nonzero
singular values is equal to the rank of B. Since BtB - VStSVt , it

follows that the numbers s2' i -1 .,k, are the nonzero eigenvalues
of BtB, and the column vectors of V are the corresponding eigenvectors

of BtB.

The condition number of a full-rank matrix is the ratio between

its largest and smallest nonzero singular values. Loosly speaking the
condition number of a matrix is an upper bound on the amount by which

relative errors in a vector will be magnified when the vector is

operated upon by the matrix, either by direct multiplication or by

a, solving a system. A matrix is called well-conditioned if its condition
number is near one, and ill-conditioned if its condition number is
large. A matrix has the minimal possible condition number of one if
and only if either its rows or columns (or both) are mutually ortho-
normal. Thus a square matrix has a condition number of one if and only
if it is an orthogonal matrix.

Every mxn matrix, B, has a OR factorization, of the form, B - QR,
where Q is an nxn orthogonal matrix and R is an upper triangular mxn
matrix. If m > n and Rank(B) - n, the first n column vectors of Q form
an orthogonal basis for the linear space spanned by the column vectors
of B, and the matrix R of the QR factorization of B is also a right
Choleskj factor of the positive definite matrix, BtB, i.e., BtB - RtR.



The determinant of a triangular matrix, L, denoted by Det(L),is
the product of the diagonal elements of L. The determinant of a
symmetric nxn matrix, A, is the product of the n eigenvalues of A. The
determinant of the identity matrix, or of any other orthogonal matrix,
is 1. The determinant of the product of a set of matrices is the
product of the determinants of the matrices. As examples, if A is
positive definite, with the Cholesky factorization, A - LLt, then

[Det(A)] 1 2 - Det(L)

and if B is a square matrix with QR factorization, B - QR, then

Det(B) - Det(R)

4.2 N-dimensional random variables

An n-dimensional frequency function or probability density
function is a function defined over RI that is nonnegative and whose
integral over all of RI exists, and has the value 1. Letting x denote

Nan n-dimensional vector, the mean value of an n-dimensional distribu-
tion having frequency function f is the n-vector p defined by

u - E(x) - f x f(x) dx

where here the integral sign denotes integration over all of R,.

The nxn covariance matrix of an n-dimensional distribution with
frequency function, f, is defined by

H - Cov(x) - E[(x -)(x _p)t]

- f (x - p) (x - p)t f(x) dx

From the form of this expression it can be shown that the matrix H is
symmetric, i.e., hi. - hji for all i and J and also H is nonnegative

definite.

It can be verified that

0 Cov(x) - E(xxt) - ppt

V% If a new random variable, u, is defined as a linear transformation

of x, say, u -Ax, then

E(u) - A E(x)

and

V.- CoY(u) - A Coy(x) At

An important special case arises when the function f(x) is the
product of n functions, each depending on just one component of x, i.e.

f(x) f 2(x1) ... fn(y)

12
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In such a case we may assume without loss of generality that the
functions, fi, are scaled so that each one is a frequency function.
Then the off-diagonal terms of H are all zero, and each diagonal term,
hii, is just the one-dimensional variance of the component, x,, determ-
ined by the frequency function fi(xi).

The separate components of x are said to be independently dis-
tributed if and only if all of the off-diagonal elements of the
covariance matrix are zero.

4.3. Linear estimation of n parameters using m observations

Assume that an m-dimensional phenomenon (this may be a number of
instances of some lower dimensional phenomena) to be observed has a
distribution, D, with a frequency function, f, having an m-dimensional
mean vector, n, and an mxm positive definite covariance matrix, H.

Assume further that n is representable as a linear combination of
n m-vectors, b, i - 1, ... , n. Thus we are assuming there are coeffic-
ients, i, such that

17 - Zi b

Letting B denote the mxn matrix with column vectors bi, and
denote the n-vector with components i, this equation can be written as

To avoid complications that would obscure the central ideas, we
assume that m > n, and the vectors bi are linearly independent. It
follows that B is of rank n.

Various linear estimation problems can be based on this model,
depending on which elements of the model are assumed to be known and
which are to be estimated. Consider first the case in which H and B
are known, and C and q are unknown. Suppose we have an observation, y,
regarded as a random sample from the distribution, D. We wish to
estimate C and " and the covariance matrices of each of these est-
imates.

The Method of presentation used in Sections 4.3.1 through 4.3._
follows pp. 36-48 of [Plackett, 1960].

4.3.1. The estimator t and its covariance matrix

First note that y itself is a linear unbiased estimator for
since E(y) - ', however we shall see that a better estimator is
available.

Our linear estimator for f will be

(1) - (BtH-lB)-IBtH-ly - Py

13



Here we have introduced the nxm matrix

(2) P - (BtH-1B).lBtH-l

The estimator is clearly the unique solution of the linear system

(3) BtH-lB - BtH-1y

which will be discussed further in Sec. 4.3.3.

To verify that is an unbiased linear estimator for we compute

E[]- E[PyJ - P Efyl - P n - P Bf

- [(BtH-IB)-lBtH"I ] B

- (BtH-B)-1(BtH-lB)

Note that the property of P that was crucial here was

PB - I

Since B is a rectangular matrix it does not have an inverse, but any
matrix G satisfying GB - I is called a left inverse of B. There will
in general be many such matrices and all provide unbiased linear
estimators for f.

The covariance matrix for the estimator, , may be computed as

Cov( ) - Cov(Py) - P Cov(y) Pt - P H Pt

- [(BtH-lB)-lBtH-1] H [H-lB(BtH-lB) -']

- (BtH-IB)-l (BtH'lB) (BtH-lB)-l

- (BtH'B)-l

Among unbiased linear estimators, the estimator, Py, has the
minimum variance, in the sense that if Gy is any other unbiased linear
estimator, i.e., G satisfies GB - I, then the difference, Cov(Gy) -

Cov(Py), will be a nonnegative definite matrix. To verify this we
write a matrix expression that is nonnegative definite due to its form
and then show it is equal to the required difference.

(G-P)H(G-P)t - GHGt - GHPt - PHrt + PHPt

- Cov(Gy) - GH[H-B(BtH-B)-')

- [(BtH-IB)-2BtH-l]HGt + Cov(Py)

- Cov(Gy) - Cov(Py) - Cov(Py) + Cov(Py)

14
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- Cov(Gy) - Cov(Py)

4.3.2. The estimator 1 and its covariance matrix

Since v - BC, we define our estimator for , to be

n - B - BPy

This estimator is unbiased since

E[] - B E[C) -B -

The covariance matrix for 1 is

7Cov() - Cov(BC) - B Cov( ) Bt

Since we obtained two different expressions for Cov( ) we may write
either

CoV(A) - B PHPt Bt - BP H (BP)t

or

Cov(A) - B (BtH-lB)-' Bt

Since P is a left inverse for B, it follows that BP is a left
identity for B, i.e., (BP)B - B. It can be verified that this is the
crucial property that permitted verification that BPy is an unbiased
estimator of n. Thus if J is any left identity for B, i.e., J is an
mxm matrix satisfying JB - B, then Jy is an unbiased estimator for '.

*. Among all unbiased linear estimators for 7, BPy has the minimum
variance, in the sense that if Jy is any other unbiased linear estimat-
or, i.e., J satisfies JB - B, then the difference, Cov(Jy) - Cov(BPy),
is a nonnegative definite matrix. This is verified as follows:

(J BP)H(J - BP)t - J H Jt J H PtBt - BP H Jt + BP H (BP)t

- Cov(J) - J H [H-B(BtH'B)-1] Bt

- B [(BtH-lB)-lBtH- ] H Jt + Cov(BP)

- Cov(J) - B (BtH-B)-l Bt

- B (BtHl'B) -l Bt + Cov(BP)

- Cov(J) - Cov(BP)

4.3.3. Interpretation as least squares estimation

The estimator, A, defined in Eq. 4.3.1.(l), can be derived as the

solution to a certain weighted linear least sauares problem. This is
4the problem of finding an n-vector, x, to minimize the quadratic

function

15
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(1) S2 - (Bx y)t H-i (Bx y)

where B is a given mxn matrix, y is an m-vector of observations, and H
is an mxm positive definite symmetric matrix which is the known
covariance matrix for the distribution of errors in y.

The n-vector of partial derivatives of S2 with respect to x is

(2) aS 2 /ax - 2BtH-1 (Bx - y)

Setting this equal to zero gives the system of equations

(3) BtH-iBx - BtH-ly

to be solved for x. We shall let g2 denote the minimum value of S2,
i.e., the value of S2 when x .

Eq.(3) (see also Eq. 4.3.1.(3)) is called the normal equations for
the least squares problem of minimizing S2 of Eq.(l). Note that when H
- I, the geometric interpretation of setting Eq.(2) equal to zero is
that the residual vector, Bx-y is required to be orthogonal (i.e.,
perpendicular or normal) to all columns of the matrix, B. I presume
this is the reason the word "normal" has been associated with Eq.(3).
When H o I, Bx-y is required to be conjugate to all columns of B,
relative to the positive definite matrix, H-I.

The use of normal equations in the form BtBx - By dates back to
Gauss, 1821. The form treated here, involving H, was introduced by A.
C. Aitken, 1934. Reference: [Plackett].

4.3.3.1. Transformations of the least squares problem

There are two types of transformations that are very useful, both
for the analysis and for the computational solution of a least squares
problem. The first transforms the case of general H to the case of H -
I, while the second decomposes m-space into the n-dimensional subspace

spanned by the columns of C, and the complimentary (m-n)-dimensional
subspace orthogonal to the columns of C.

For the first transformation we factor H as

(1) H - LLt

and introduce C and z defined by

(2) C - L'IB

and

(3) z - L'y

Then Eq. 4.3.3.(l) can be rewritten as

(4) S- (Cx - Z)t(CX - z) -Cx - z112

16
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The statistical interpretation of this transformation is that y,
which was a sample from a distribution having mean, q, and covariance
matrix, H, is transformed to z, which is a sample from a distribution

having mean, L-lq, and covariance matrix, I. Thus the components of z
each have unit variance and are mutually uncorrelated.

There are various ways to achieve the factorization, H - LLt. The
simplest is the Cholesky decomposition of H. Another approach would be
to use the eigensystem decomposition, H - VAVt, and then set L - VAI/2.

The goal of the second transformation is to replace C by a matrix
having all of its nonzero elements in its first n rows. It is conven-
ient, but not essential, to choose this transformation so that it also
transforms z to a vector having all of its nonzero components in the
first n+l positions.

One way to construct such a transformation is by use of the QR
4 decomposition of C,

(5) C - Q[R

* •where Q is an mxn orthogonal matrix, R is an nxn nonsingular upper
triangular matrix, and 0 denotes a zero matrix of conformable dimen-
sions, here an (m-n)xn zero matrix. (An alternative to the use of the

". QR decomposition for this transformation would be the use of the
singular value decomposition. The SVD is computationally more expen-
sive, but gives additional information that is desirable in some
situations. We shall not discuss the SVD further in this paper.)

Using Eq.(5) in Eq.(4) gives

(6) s-IIQ[]X - z -2 I[o]X - Qtz11

Let u denote the first n components of Qtz and let v denote the

last m-n components of Qtz, i.e.,

*(7) [VU] - Qtz

Then

* [X]I I UR112 + 1v112

,% % This last expression shows S2 as the sum of two terms, the first
%" of which can be reduced to zero by the unique x that satisfies Rx - u,

while the second term is independent of x. Thus the minimum value of
S2 is

* (9) S2 - llv112

and since the minimizing value of x is unique, and is already known to
A- be , it follows that satisfies
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(10) R- u

From Cov(z) - I, Eq.(7), and the orthogonality of Q, we obtain

(11) Cov([u1) - I

and thus, also

(12) Cov(u) - I

and

(13) Cov(v) - I

Fr-m Eq.(9) we obtain

(14) E(S2 ) - E(IV112) - Z E(v ) - X Var(v1 ) - m-n

4.3.4. Introducing a scaling factor for H

0 .The assumption that H is completely known a priori is often
unrealistic. A useful weakening of this assumption is the assumption
that the covariance matrix of the distribution, D, from which the
observation was sampled, is 02H, where H is a known positive definite
rr atrix and 0 is an unknown scalar. This amounts to assuming that the
signs and relative sizes of the elements of the covariance matrix of D
are known but an overall scale factor is unknown. We shall see that
this factor, 02, can be estimated using the sum of squares of resid-
uals, S2, of Eq. 4.3.3.(l), generalizing the example discussed in Sec.
3.

As to practical methods for the a priori definition of H, a common
situation would be to assume the errors in the different components of
y are uncorrelated so that H need only be a diagonal matrix. Then each
diagonal element of H would be assigned the a priori variance of the
error in the corresponding component of y. In this case one would
expect the value of 0 to turn out to be 1, and the extent to which the
a posteriori estimate of 0 differs from 1 can be a consideration in
assessing the quality of the model relative to the available data.

Another possibility is that one may simply assume that the errors
in the different components of y are uncorrelated and all have the
same, but unknown, variance. Then one could set H - I and the a
posteriori estimated value of 02 would be an estimate of the variance

0 of errors for each component of y.

If we start with 02H as the covariance matrix for D and repeat the
derivations of Sections 4.3.1, 4.3.2, 4.3.3, and 4.3.3.1, we find 02
cancels out in the expression for the matrix, P, so the estimator, C,
is unchanged. The covariance matrix for inherits the factor 42 so
we obtain

(I) Cov(A) - (

18
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Similarly the estimator j is unchanged, but its covariance becomes

(2) Cov( ) - 02 BP H (BP)t

or

(3) Cov( ) _ 02 B (BtH-IB) "l Bt

Eqs.4.3.3.1.(ll-14) become

(4) Cov([]) - I

(5) Cov(u) - I

(6) Cov(v) - I

(7) E(S2) - (m-n)02

4.3.4.1. An unbiased estimator for 0

Eq. 4.3.4.(7) can be rewritten as

(1) E[9 2/(m-n)] - 02

showing that S2/(m-n) is an unbiased estimator for 42. We denote this
estimator by

(2) 2 - S2/(m-n)

This provides a practical estimate for 0 that is needed in situations
such as were described at the beginning of Sec. 4.3.4.

The next question one typically asks is how good is this estimate.
In terms of our mathematical model this translates to the problem of
finding the variance of the estimator, .

A direct derivation of this variance for the case of a general
S underlying frequency function, f, would involve third and fourth

moments of f, i.e. integrals of y f(y) and y'f(y). This would not be
of practical use since independent estimates of these moments would not
generally be known. Thus, as was mentioned in Sec. 3, the usual
approach is to assume that f is some well known frequency function that
provides a plausible model for the observation errors in the real world
system being investigated, and for which the resulting distribution for

S.. S2 is known.

Standard statistical distributions of interest for our purposes

will be presented in Sec. 5.

s .



5. Standard distributions

5.1. The normal or Gaussian distribution

The one-dimensional normal distribution, also called the Gaussian
distribution, having mean, q, and variance, a2, is conventionally

-denoted by N(n,a2). Its frequency function is

f(y) - (2f)-1/2 0-1 exp(-[(y-1)/a] 2 /2)

If y has the distribution, N(n,a 2), then the random variable
defined by z - (y-n)/a has the distribution, N(0,1). Values of the
frequency function and distribution function for N(0,1) are readily
available in tables and from computer subroutines. Some probabilities
from the distribution, N(0,1), are given in the following table:

Table 1. Probabilities for z c N(0,1)

,, p P(IzI 5 p)

05 0
0.52 0.4

* 0.68 0.5
0.84 0.6
1.0 0.683
1.96 0.95
2.0 0.954
3.0 0.997
+<v 1.0

Let N(m;n.Z) denote the m-dimensional normal distribution having
mean vector, r, and covariance matrix, Z. Here n is an m-vector and Z
is a positive definite mxm matrix. The frequency function for this
distribution is

%" f(y) - (2r) - m/ 2 [Det(Z)]-/ 2 exp[-(y-7)tZl(y-7)/2]

A very significant property of the normal distr4bution is the fact
that an affine transformation of a normal random var-dble will again be
a normal variable. Specifically let P be an nxm matrix with n _i m and

0 Rank(P) - n. Let y e N(m;n,S). Define a new n-dimensional random var-
iable, z - [ + Py. Then z e N(n; +Pq,PZPt).

As an important special case of such an affine transformation, let
Ei denote the lxm matrix (i.e. row vector) whose elements are all zero
except for a 1 in column i. The product Ejy is just the component yj

0 of y, and EiZEt is just the component al of Z. It follows that yj e
N(v71,Cji). [The notation here is a bit unfortunate. Note that ai, ia
the variance of yj and thus the standard deviation of y, is a112].

An affine transformation that is often useful is the transforma-
tion from the general case of N(m;,E) to the special case of N(m;O,I).
Denote the Cholesky factorization of Z by Z - LLt. Then if y has the
distribution, N(m;nM), the random variable defined by
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z - L-'(y-i)

has the distribution, N(m;0,1).

As an example of the multivariate normal distribution, consider

N(2;0,I), which is also called the circular bivariate normal distribu-
tion. The integral of the density function for this distribution over

a disk of radius, p, has a particularly simple expression, namely,

l-exp(-p 2/2). Some probabilities from this distribution are given in

the following table:

Table 2. Probabilities for z c N(2;0,I)

p p2  P(11z112 < p2) - l-exp(_p 2/2)

0.32 0.10 0.050

1.00 1.00 0.393
1.18 1.39 0.500

2.00 4.00 0.865

2.45 5.99 0.950
3.00 9.00 0.989

+CO 1.000

5.2. Confidence regions

A region in which a random sample is expected to appear p% of the

time is called a p% confidence region. For example, if z e N(0,1) the
interval [-0.84, 0.841 is a 60% confidence interval for z. There are
infinitely many other 60% confidence regions, however, for example,

[-05, +-], or [--, 05], or [--, -0.52]u[0.52, +-].

In higher dimensional spaces there is even more variety in the
shapes and connectedness properties of regions that could be chosen to
be a p% confidence region. For example one could choose a rectangle,

or other polygon, or a circle, or nonconvex or disjoint regions. A

choice having practical appeal for our purposes is the one that can be

characterized as being the region in which the density function exceeds
a certain fixed value. Then the probability density is larger at every

point interior to the region than it is at any point exterior to the

0' region. In the case of the multivariate normal distribution such

5 regions will be ellipsiods. Recall that spheres, ellipses, circles,

and one dimensional intervals are all special cases of ellipsoids.

As we shall see in the immediately following paragraphs, this

choice of the definition of a confidence region provides a significant

technical convenience, in that the case of a general ellipsoid reduces
easily to the case of a sphere, and thence to dependence on a scalar,

rather than an n-dimensional, random variable.

For y c N(m;n,E), we shall define the p% confidence elliDsoid to
be the unique ellipsoid, C, defined by

1 () C - (y : (y-17)1Z-1(y-1 ) g p2)
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where p is the unique nonnegative value that permits the integral of
the density function over C to have the value, p/10C.

Note that the frequency function for the n-dimensional normal
distribution is the product of [Det(Z)] "I /2 and a function of (y-
r1)tZ '(y-s7) with Z being positive definite. Any function of this form
has the property that for a fixed dimension, n, its integral over an
ellipsoid C defined as in Eq.(l) depends only on p and not on Z or n.
Thus the functional relation between p and p given in Table 2 applies
not only to the circular bivariate normal distribution but also to the
general (elliptical) bivariate normal distribution with IIz11

2 in the
table heading replaced by (y-n)t-(y-n).

We see that determining critical sizes for confidence ellipses
defined as in Eq.(l) depends on knowledge of the distribution of 11z1 2,
for zcN(m;Oi). This distribution is called the x2 distribution with m
degrees of freedom, and will be discussed in Sec. 5.3.

5.2.1. Geometric characterization of a confidence ellipsoid

Let C be the ellipsoid defined above in terms of q, Z, and p.
VY." Write the eigenvalue factorization of Z as Z - QAQt where Q is ortho-
S gonal and A is diagonal with positive diagonal elements (the eigen-

values of Z), Ai, i- 1 ...1, m. We shall assume the eigenvalues are
ordered so that Al A2  ? ''' Am. The column vectors of Q, which we
shall denote by qi, i - 1, .... ,m, are the corresponding eigenvectors of

Note that Z-1 - QA-lQt, so the eigenvectors of Z-1 are the same as
those of Z while the eigenvalues are the reciprocals of those of Z.

The ellipsoid, C, is centered at n and its principal axes are
parallel to the eigenvectors of Z with q, giving the direction of the
major axis. The semi-diameter, ai, in the direction of the ith
principal axis can be determined by solving the equation

(Qiq)tZ-1(aiqi) - p2

from which

-2x- - 2

...

-7 Consider the case in which Z - o21. Then the eigenvalues of Z are
all equal to a2, so the confidence ellipsoid is a sphere of radius

! a - pa.

w, .. 5.3. The X2 distribution

* We have encountered two different situations, Eq. 4.3.3.1.(14) and
Sec. 5.2, in which our analysis led to consideration of the distribu-

* tion of the sum of squares of of random variables. If these variables
are independent samples from N(0,1), their sum of squares has a
distribution called the X2 distribution.
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Eq. 4.3.3.1.(9) showed that S2 was the sum of squares of the
components of the (m-n)-vector, v, and it was also established that
E(v) - 0 and Cov(v) - 021. If we now add the assumption that the
distribution of the original random variable, y, is the normal distri-
bution, i.e., y c N(m;n,02Z), then, since v was obtained as an affine
transformation of y, the distribution of v is N(n;0,02I).

A random variable defined as the sum of squares of k independent
samples from N(0,1), or equivalently as the sum of squares of com-

ponents of a sample vector from N(k;0,1), is said to have the X2 (chi-
squared) distribution with k degrees of freedom. We will denote this
distribution by X2 [k].

Letting t denote the independent variable, the density function
for the x2 [k] distribution is zero for t < 0 and

f(t) - e for t a 0

2 k 2 r(k/2)

* The distribution X2 [k] has a mean value of k. The variance is 2k
and thus the standard deviation is (2k)/2 . Values of the distribution
function for x2 [k] are available from tables or computer subroutines.

Unlike the normal distribution, the X2 distribution is unsymmet-
ric. The mode and median of the X2 [k] distribution are each less than
the mean. If s is a x2 1k) variable, the transformed variable,
t - (2s)112, has a distribution that is closely approximated by

e: N((2k-l)1/ 2 ,1) for k a 30.

Table 3. Values of P(s5x) for s E X2 [k]
for selected values of k and x.

x - 0.05 0.5 0.95

k

1 0.004 0.46 3.8
2 0.10 1.39 5.99

* 5 1.1 4.4 11.1
10 3.9 9.3 18.3
20 10.9 19.3 31.4
30 18.5 29.3 43.8

Note that the row for k - 2 in this table agrees with values in
* Table 2 since IIz112 of Table 2 is a X7[2] variable.

We may now treat the question raised in Sec. 4.3.4 regarding the
dispersion of 2/(m-n) as an estimator for . If we assume the data
vector y is a sample from N(m;, ' 2H), with H known, then S2/02 is a
sample from X2 [m-n].

F For example, if m-n - 20, we may conclude that there is a 90%

probability that
10.9 S S2/02 s 31.4
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and a 5% probability that
S 2/02 31.4

There are various ways one may use these results. If one has a
prior notion of a reasonable value for , then if 2 exceeds 31.4 times
the square of that value, it may be taken as evidence that the model is

, not consistent with the data, or the prior value of 0 was incorrect.

*If one has no prior notion of the value of 0, then one might
conclude that there is a 90% probability that 02 satisfies

v-' S2/3. <2 < S2/10. 9
2/31.4 <

5.4. Student's t distribution

In Sec. 4.3.4 the formula Cov() - 2 (BtH-lB)-l was obtained.
Also it has been noted that if y has a normal distribution then does
also, in particular

j (i) c N(n; ,02(BtH-1B) - 1)

0 Thus if B, H, and 4 are known, one can compute a p% confidence
ellipsoid for C, or p% confidence intervals for individual components
of , as discussed in Sec. 5.2.

If is not known it can be replaced by its estimator,

(2) - (m-n)] /2

(see Eq. 4.3.4.2.(2)), if m-n is sufficiently large so the variance of
$ is sufficiently small. Alternatively, particularly when m-n is not

*/ large, a different approach may be used, involving the Student's t
distribution. This distribution was presented in 1908 by an anonymous
author identified as "Student". Reference: [Plackett].

Eq.(l) can be rewritten as

(3) / e N(n;E/4,(B tH' B)- )

S which serves to focus attention on t/o. We now ask: What is the
distribution of A/p?

Note that has a normal distribution and $2 is within a known
factor of being a X2 variable. Furthermore these two variables are
statistically independent, since C is a function of u and not v,

S [Eq.4.3.3.1.(i0)], S2 is a function of v and not u, [Eq.4.3.3.1.(14)],
and u and v are statistically independent, [Eq.4.3.3.1.(Il) or
4.3.4.(4)].

Thus we need to know the distribution of the ratio of a normal
variable to the square root of a statistically independent X2 variable.

O That is what the Student's t distribution is.
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Let wcN(n;O,E) and p2CX2 [k], with these distributions being
mutually independent. Then the n-dimensional vector random variable

(4) t - kI/2/f

has the n-dimensional Student's t distribution with k degrees of
freedom and kernel matrix Z. The frequency function for t is

(5) f(t) - r[(k+n)/2J

r(k/2)(kw)n/
2 [Det(Z)]"/2 [l + ttZ-lt](k+n)/2

Furthermore,

(6) E(t) - 0

and

(7) Cov(t) - [k/(k-2)]Z

Remark: The frequency function for the 1-dimensional Student's t
distribution with Z - 1 can be found in numerous sources, however I

* •wish to thank Dr. J. Myhre for referring me to [Anderson] where Eqs.(5-
7) above are given in Problem 27, Page 283.

We return now to the study of / To obtain w and 6 satisfying
the conditions to define an n-dimensional Student's t variable, let w -

(- )/ and - &/ . Then the variable

(8) t - (m-n)1/2(A-.)/S -

has the Student's t distribution with (m-n) degrees of freedom and
kernel matrix Z - (BtH-lB) ".

As with the density function for the multivariable normal dis-
tribution, the density function for the multivariable Student's t
distribution is the product of [Det(Z)]-1 /2 and a function of ttZ-lt,
with Z being positive definite, and thus has the property that for a
fixed dimension, n, and number of degrees of freedom, k, its integral

over an ellipsoid C defined as in Eq. 5.2.(1) depends only on p and not
* on Z or.

Thus to find critical values for confidence ellipses of the form
of Eq. 5.2.(l) for an n-dimensional Student's t distribution with k
degrees of freedom, it suffices to know the distribution of the scalar
random variable, Ith 2. The variable 11t112/n has a distribution known as

* the F distribution with n and k degrees of freedom.

We shall define the F distribution in Sec. 5.5, then verify the
assertion in the last sentence above, and finally relate the F distri-
bution to the our particular case of t -

-2.



5.5. The F distribution

If 01 C x2 [k,] and 82 f X2[k 2] then the ratio

81/k1 k201

82/k 2  k162

is said to have the F distribution with ki and k2 degrees of freedom.
This distribution will be denoted by F[k 1,k2].

The F distribution was introduced by Fisher, 1922, and incorpor-
ated in a general framework for testing linear hypotheses by
Kolodziejczyk, 1935. Reference: (Plackett]. Values of the distribu-
tion function for the F distribution are available in tables and from
computer subroutines.

Suppose w c N(n;0,1), 02 c x2 [k21, and t - kl/2w/0 2. Then t is an
n-dimensional Student's t variable with ki degrees of freedom. Also

J]wJ1 2 is a x2 [n] variable. Let

11t112 k2  IJwI!2

n n 82

Then 0 c F[n,k2].

Continuing now our consideration of /$, it was noted (See
Eq. 5.4.(8)) that ( - )/$ is an n-dimensional Student's t variable with
(m-n) degrees of freedom. It follows therefore that
V _]l-2/(n 2) e F[n,m-n]. Thus critical points for confidence ellipses
for when 4 has been estimated by can be obtained from tables for
the F distribution.

6. Approaches to data analysis

6.1. Analysis of one coherent set of data

* Assume we have a set of m observed values, y,, i - 1, ... m,
which we will treat as an m-dimensional vector. It is assumed that y
can be regarded as being a random sample from the normal distribution,
N(m;q,0 2H), where H is a known mxm positive definite matrix and q is
unknown. We think that the value of is 1 but we will estimate 0 from
the data as a check on the validity of the model.

It is assumed that q has a representation of the form

(1) - BC

where B is a known mxn matrix of rank n, and f is an unknown n-vector.
* Our objectives are to estimate f, obtain a covariance matrix for the

estimator of f as a measure of the dispersion of the estimator, and
estimate 0 as a measure of the quality of the model.
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We shall use the two transformations introduced in Sec. 4.3.3.1.
Details of the computational steps specified will be found in [Lawson
and Hanson].

Compute the Cholesky factorization of H as H - LLt. Then we know
the minimum variance unbiased linear estimator, , for C is the value
of x that solves the least squares problem of

(2) minimizing IL-'Bx L-yll'2

Compute [C:z] - L-'[B:y] by solving the system L[C:z] - [B:y].
Then our least squares problem is to

(3) minimize llCx - z112

Compute the "QR" factorization of [C:z]. This gives an mxm ortho-
gonal matrix, Q, and an (n+l)x(n+l) upper triangular matrix, U,
satisfying

(4) [C:z] - Q

Partition the matrix U as

(5) U -

%0 a

where R is an nxn nonsingular upper triangular matrix, g is an n-
dimensional column vector, 0 denotes an n-dimensional row vector of
zeros, and a is a scalar. The transformed least squares problem is now
that of

(6) minimizing Ii [0x "[ 112

or equivalently

(7) minimizing IlRx - gl[2 + a2

Since R is nonsingular, the first term in this expression will be
reduced to zero by the unique x that satisfies

* (8) Rx - g

* -. and the minimum value of the expression being minimized is just a2.

Summarizing these steps, we may write

" (9) g2 - min (Bx-y)tH-l(Bx-y)

U.- min. 0IL'Bx - L-'yl 2

- mm 1 IIRx - g112 + 2

* - a2

with the minimizing value of x being f that satisfies
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(10) R- g.

Our unbiased estimate of is . Our unbiased estimate of 02 is
2 _ g2/(m-n). Confidence intervals for $2 are available by use of the

X2 distribution as illustrated in Sec. 5.3.

The covariance matrix for is
4r ,

(11) Cov() - 42V

where

(12) V - (BtH-lB)-l - (RtR) -1 - R-1R -t

6.2. Combining sets of data

The total set of data defining the problem discussed in Sec. 6.1
consists of the vector y, and the matrices, B and H. Suppose two sets
of data, (y1 , B1 , H1 ) and (Y2 , B2 H2 ), have been acquired that are both
assumed to derive from the same underlying parameter vector, . Thus,
for i - 1, 2, it is assumed that yj is a noisy observation of BiE with

0 covariance matrix, 02Hi, Furthermore we assume the observations y, and
Y2 are independent, in the sense that Cov(yl,y2) - 0.

Suppose the processing described in Sec. 6.1 has been applied to
each of these data sets, obtaining estimates, C1 and C2 , as well as allof the intermediate and auxiliary quantities defined in Sec. 6.1.

We wish to consider the question of selecting from among these

intermediate and auxiliary quantities those that will be useful in the
computation of an estimate of C based on the combined data sets, and
also to specify how these selected quantities are to be used to obtain

such an estimate.
-"

Supplementary quantities deriving from data sets 1 or 2 will be
indicated by the symbol used in Sec. 6.1 subscripted with I or 2,
respectively. Quantities based on combined data will be indicated by
the symbol of Sec. 6.1 with no subscript. Thus we may begin by
defining

~~(1)B-

(2)

_[H 2
r '.(3) H 1

Z.

.
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The combined problem can be characterized as that of minimizing
the quantity S2 defined by

(4) S2 - (Bxoy)tH'I(Bx-y)

- (Bix-Yl)tHil(Blx-y,) + (B2 x-y2 )tH21(B 2 x-y2 )

- [ [g] 2- [g:112

- I x + 1,

X 12

where

(5) - g al

0~aJ

* The problem of minimizing S2 is now seen to be a linear least
N squares problem involving the matrix A and the vector g. A reasonable

approach to solving this problem would be via the "QR" decomposition as
in steps 6.1.(3) - (8). This "QR" decomposition can be written as

(6) [:gJ - Q1 fl

where Q is a (2n+2)x(2n+2) orthogonal matrix, A is an nxn nonsingular
upper triangular matrix, ^ is an n-vector, 0 denotes an n-dimensional
row vector of zeros, and & is a scalar. We then have

(7) s X I - 9II + a

so the the solution vector is given as the solution of

(8) -

and the minimum value of S2 is

" (9) g2 _-

44!i The covariance matrix of i

44 (10) r-;(,) _ 21

where

,.(11) 9- (ftt ty 1)-, ft-1f-

Summarizing the above process we see that the upper triangular
matrix, U, of Eq.6.1.(5) can be chosed as the quantity to save for each

4, i data set for use in later combining the data sets. The process of
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P! combining data sets then amounts to stacking the saved U-matrices
vertically, as in Eq.(5), and then computing the "QR" decomposition of
this augmented matrix, as in Eq.(6), to obtain the U-matrix for the
combined problem. The combined covariance matrix can be computed from
the R-submatrix of the U-matrix, as in Eq.(ll).

6.2.1 Additional remarks on combining data sets

An alternative way to approach the minimization of the last
expression in Eq. 6.2.(4) is to note that the minimizing vector is
the unique solution of the normal equations

(1) - t

Thus the covariance matrix for /O can be expressed as
(2) - (f)- - (RtR1 + R R2 ) - 

- (Vi +2

and can be expressed as
(3) -(ftk)-

* _ 0(Rtg1 + Rtg 2)

. (R~1 1 + R2 2 )

- (vi + v)- 1 (V- 1 + v_1A

It is at least of mathematically aesthetic interest to note that
Eqs.(2) and (3) can be written as

(4) 1-1 - vil + v21

and

(5) - J + 2

Eqs.(2) and (3) show that as an alternative to the approach
suggested in Sec. 6.2 of using the U-matrix as the object to be saved
and updated as data sets are combined, one could instead use the C-
vector and the V-matrix. These could then be updated as data sets are
combined using Eqs.(2) and (3).

The use of U gives much better numerical stability and reliability
than the use of V and .

We assumed at the beginning of Sec. 6.1 that B was of rank n. In
computational practice it is essential to recognize that, even though
the matrix B may be of rank n, if its column vectors are nearly
linearly dependent, i.e., if it has a large condition number (see Sec.
4.1), its performance in a computational process may be more like a
matrix of lower rank For this reason it is important to consider what
will happen to a computational procedure if B is ill conditioned or has
rank less than n.

30

61



The computation of the QR decomposition of a matrix is well
defined and numerically stable regardless of the rank or condition
number of the matrix being factored. Thus using the U-matrix as the
fundamental object in processing separate data sets and combining them
is a numerically stable process. If the R-submatrix of the U-matrix at
some stage is ill-conditioned or rank-deficient then the quantities
and V computed from the U-matrix at that stage are likely to be poorly
determined or undeterminable. This only affects the and V at this
stage, however. If this U-matrix is later combined with a U-matrix
derived from another set of observations, it is possible that the R-
submatrix of the new U-matrix will be be,-ter conditioned and reasonably
accurate values of and V can be determined.

The U-matrix computed from some particular set of data will be
essentially the same regardless of whether it is computed from all the
data at once or through the combining of U-matrices previously computed
for disjoint subsets of the data.

In contrast to the stability of the U-matrix approach, the
approach based on Eqs.(2) and (3) is highly dependent on the order in
which data is grouped. Error in the V-matrix at any stage will
propagate to all following stages. The method fails completely if the
V-matrix cannot be determined at some stage due to rank-deficiency of
the underlying B-matrix, even though after more data is accumulated one
might have a full-rank, and even well-conditioned, underlying B-matrix.

Updating methods based on Eqs.(2) and (3) were given in the early
papers on "filtering" or "Kalman filtering" in the late 50's and early
60's. Instability of the type described here was recognized as a
problem in those days. The QR decomposition was not widely known and
understood in the early 60's, but by the late 60's it was being used in
many algorithms of linear algebra. Its value in "filtering" was
increasingly appreciated in the early 70's. A systematic treatment of
"filtering" emphasizing the use of the U-matrix is given in [Bierman].

l.
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