
UNCLASSIFIED FILEp
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)F

00 REPORT DOCUMENTATION PAGE BEFORE COIPLFUING FORM

I. RFPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

AFIT/CJ/NR 88- 5 O I
4. TI rLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED

AO Mi)MfROVEO QNtllh C0LLKCTIO L) U0 MS THESIS

? f 6. PERFORMING 01G. REPORT NUMBER

7. AUTHOR(.s) S. CONTRACT OR GRANT NUMBER(s)

-
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK

AREA & WORK UNIT NUMBERSAFIT STUDENT AT: 7-Myj3 TleH UIJIiVr£1LS T/

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
1988

13. NUMBER OF PAGES

14 MONITORING AGENCY NAME & A3DRESSfll different from Controlling Office) IS. SECURITY CLASS. (of this report)

AFIT/NR
Wright-Patterson AFB OH 45433-6583 UNCLASSIFIED

* ISa. DECL ASSIFICATION/DOWNGRADING
SCHEDULE

16. DISTRIBUItON SiATEMENT I.j this Report:

"-., DISTRIBUIED UNLIMITED: APPROVED FOR PUBLIC RELEASE

i LAUG 0 3 I
17. OISTRIBUTION STATEMENT (of the abstract entered In Block 20, if different from Report)

SAME AS REPORT
] p

IS. SUPPLEMENTARY NOTES Approved for Public/ elease: IA AFR 190-1I

LYNN E. WOLAVER L/,. t -,-l ?'1#L '
d Dean for Research Professional Development "

Air Force Institut/of Technology
- EWright-Patterson AFB OH 45433-6583

19.' KEY WORDS (Continue on rever e side if necessary and identify by block number)

20 ABSTRACT (Continue on reverse side If necessary and Identify by block number)

ATTACHED

S

DD .'JN7 473 EDITION OF I NOV 65 IS OBSOLETE NA I
:,;., D V. , UN .SS I . ..

SECURITY CLASSIFICATION OF THIS PAGE I4?ien Dat Entered)

• ~ . , , " " ." . ".

AN IMPROVED DATA COLLECTION AND PROCESSING SYSTEM

by

JOHN R. O'HAIR, B.S. in E.E.

A THESIS

IN

ELECTRICAL ENGINEERING

Submitted to the Graduate Faculty
of Texas Tech University in

Partial Fulfillment of
the Requirements for

the Degree of

MASTER OF SCIENCE

* IN

ELECTRICAL ENGINEERING

Approved

Vairperson of the Cd nmittee

Accepted

Dean of the Graduate School

May, 1988

ABSTRACT

Title: An Improved Data Acquisition and Processing System

Author: John R. O'Hair, 1Lt, USAF

Degree Awarded: Master of Science in Electrical Engineering

Texas Tech University, 240 pages, 1987.

This work details the development of a software control system to be used to collect data on

instabilities occurring in transistors during turn-off (commonly, Reverse Bias Second Break-

down). The system uses a Zenith Model 158 PC compatible microcomputer with a Hewlett-

Packard Interface Bus (HPIB) 61062AA interface card linked to a Tektronix 7612D Programmable

Digitizer (7612D) for data capture, processing and storage. The control system performs the func-

tions necessary to read the breakdown data from the 7612D, process said data and provide output

to the operator in one of several forms. Output of graphic data requires a Hewlett-Packard 7470A

(or compatible) Graphics Plotter. Numer',; output can be written to any standard line printer or to

disk for later printing.

Accesion Fo~~~NTIS CP:..r .'

c ric r,,.
DTIC

i
C. .

B 6

K:

t' NSPCTE

j).,- ,

0

~ACKNOWLEDGEMENTS

A. I would like to thank Dr. William M. Portnoy for his assistance throughout my stay

-,,'.at Texas Tech. I extend my deepest appreciation to the other graduate students in the Pulse

. Power Conditioning Laboratory for their help both in academics and on the project reported

in this thesis. I gratefully acknowledge the guidance and help of my parents who have
~supported me in all my undertakings, and lastly, and most importantly, I thank my Lord,

V. Jesus Christ, for his nurturing and care.

-a

0

_-a

'av

a:'.

TABLE OF CONTENTS

ACKNOWLEDGEMENTS1................

LIST OF FIGURES... v

CHAPTER

I. INTRODUCTION

Focus...1.

Background .. 1I

11. TEST APPARATUS.. 3

Incorporating the Zenith.. 4

IlI. SOFT WARE DEVELOPMENT
BASIC Programming..7

MS-PASCAL Programming 10

Turbo Pascal Programming................................... 15
System Software ... 16

Data Acquisition Programs 16

*Ancillary Programs................................... 19
Files Created and Individual Structure 24

IV. VERIFICATION OF SOFTWARE SYSTEM

Accuracy of Measurement............................. 27

Verification ... 29

V. CONCLUSION... 40

LIST OF REFERENCES .. 41

APPENDICES

*A. OPERATING INSTRUCTIONS.....................................42

B. TAKEDATA.BAT PROGRAM LISTING 48

C. HARDWARE.PAS PROGRAM LISTING.......................... 52

D. GETDEVIC.PAS PROGRAM LISTING............................. 65

*E. STORDATA.PAS PROGRAM LISTING 79

F. PROCESS1.PAS PROGRAM LISTING 94

G. PROCESS2.PAS PROGRAM LISTING 107

H. PROCESS3.PAS PROGRAM LISTING 118
1 . REPEATER.PAS PROGRAM LISTING............................ 127

ttiii =)Xts m

iv

J. PLOTDATAPAS PROGRAM LISTING 133

K. TABULATE.PAS PROGRAM LISTING 187

- L. SORTABLE.PAS PROGRAM LISTING 202

.9 M. EDITLIST.PAS PROGRAM LISTING 221

N. PRCSLTWO.PAS PROGRAM LISTING 231

N

ui.

LIST OF FIGURES

1. NPN Transistor showing voltage and current conventions 2

2. Schematic of a simplified data acquisition system incorporating
the Zenith Microcomputer ... 5

3. Drawing showing DOS memory allocation along with MS-PASCAL
. working area memory allocation .. 11

4. Normal Pascal program hierarchy compared to modified hierarchy 13

5. Example of plot type 1 .. 20

6. Example of plot type 2 ... 22

7. Example output from SORTABLE.COM. Sorted on forward
and reverse base drives, respectively ... 23

8. Storage filename interpretation ... 26

9. Sample plots along with photograph of Collector-Emitter Voltage
and Collector Current. The figure shows the entire test cycle from
TUT turn-on to turn-off. In data acquisition, the time of interest is
during the peak in the Collector-Emitter Voltage. This is the region
where breakdown will occur 30

10. Sample plots showing safe turn-off. This is a blow-up of the peak
region in Figure 9. Forward bias setting is 1 A. Reverse bias is
0.05 A .. 3 1

11. Sample plots again showing safe turn-off. The rate of drop in the
Collector-Emitter Voltage is now more precipitous indicating nearing
the edge of safe operation. Forward bias setting is 3 A. Reverse
bias setting is 0.05 A ... 32

* 12. Sample plots showing breakdown. Forward bias setting is 3 A.
Reverse bias setting is 0.1 A ... 33

13. Sample plots showing breakdown. Although breakdown does occur,
it takes considerably longer to happen. Forward bias setting is 3 A.

" Reverse bias setting is 0.06 A .. 34

14. Verification of P and E by graphical means. Forward bias setting is 1 A.
Reverse bias setting is 0.06 A .. 36

15. Verification of P and E by graphical means. Forward bias setting is 2 A.
Reverse bias setting is 0.1 A ... 37

v

16. Verification of P and E by graphical means. Forward bias setting is 2 A.

Reverse bias setting is 0.2 A .. 38

17. Verification of P and E by graphical means. Forward bias setting is 2 A.
Reverse bias setting is 0.4 A .. 39

18. Integration Scheme ... 114

19. Example of sorting function ... 212

'p.

I.I

'p.

4O.

0*, CHAPTER I
In - INTRODUCTION

Focus

The focus of this effort has been to continue with the work previously done at
Texas Tech Univ&sity in the area of Reverse Bias Second Breakdown of transistors. Past

work has centered around the development of a complete data acquisition system to exam-

ine the above menoned phenomenon. 'This endeavor has concentrated on improving one

major aspect of thelsystem, data collection and processing.

In the following, discussion shall be limited primaily to the work undertaken by

the author, and only enough background material as is necessary to provided a complete
picture of the project shall be included; therefore, the reader should first familiarize his or

herself with the work done previously before continuing (1,2,3,4).

_- -The data collection system consists primarily of a Tektronix 7612D Programmable

Digitizer with two Tektronix 7A16P Programmable Amplifiers, Hewlett-Packard HP-85

Microcomputer, HP-9895A Flexible Disc Memory, HP-7470Alotter and Zenith Model

158 Microcomputer with Hewlett-Packard Interface BusT(HPIT3 61062AA interface card.

This setup, except for the Zenith.Microcomputer, has been used in all the past work, al-
though the digitizer was not integrated during the earliest works.

The specific objective of this effort was to utilize the new Zenith Microcomputer in

the cc!!-tion system as efficientli, as possible.n Thus gaining the maximum improvement to

the overall system possible with the Zenith Microcomputer addition.

'- Work was broken into three phases. Phase one consisted of integrating the new

Zenith Microcomputer into the data collection system. Physical placement, hardware

checkout and software development are covered here. Phase two consisted of initial data

0 measurements, and phase three consisted of verification of said data. Of the three phases,

phase one consumed the most time and effort, and, for that reason, reporting of the work

done during that phase represents the bulk of this thesi .
4, :. " : . , ; , . , : "

* .Background
Reverse Bias Second Breakdown, as it is referred to here, is an instability that oc-

curs in transistors during turn-off. The most common environment for breakdown is a

transistor being used to switch an inductive load, but this instability does occur under many

* other operating conditions.

1

1

2

The breakdown instability is characterized by a sudden decrease in Collector-Emit-
ter Voltage (Vce) and increase in Collector Current (1c). The change in Vce is on the order

of 500 Volts in 10 to 20 nanoseconds. This precipitous variation is used to trigger the

protection circuit described in the afore mentioned references.
To force the Transistor Under Test (TUT) into breakdown, it is first turned on by a

forward current pulse into the base of the transistor. After approximately 5ms, a reverse

current pulse is applied to the base of the transistor. A forward pulse is defined as being in
the direction of Ib, and a reverse pulse is in the opposite direction (see Figure 1).

/ Ic

SI

.'

Vee

~Figure 1. NPN Transistor showing voltage and current con-

ventions.

If breakdown occurs, it appears shortly after the application of the reverse current

pulse, when the transistor is attempting to turn off. The time interval between the applica-

tion of the reverse current pulse and breakdown is of specific interest in this research. Ob-
serving the values of Ic, Vce and Vbe during the time interval provides crucial information
in the evaluation of breakdown. From Ic and Vce, the instantaneous Power, P, and the

* Energy at Breakdown, E, can be determined. These last two values, combined with the

preceding three, define, for the most part, the conditions of breakdown.
This work concentrated on developing a system which would collect Ic, V and

N Vbe and calculate P and E in as efficient a manner as possible given the equipment at hand.
"I...

Si,'

Sq2.

CHAPTER II
TEST APPARATUS

A more detailed examination of the equipment used in the data collection system is

now in order. Previous efforts used a HP-85 Microcomputer as System Controller tied

into the rest of the system via a HPIB plug-in module. Waveform data could be digitized

by a Tektronix 7612D Programmable Digitizer (7612D) in which case the data could be di-
rectly read into the System Controller across the HPIB, or it could be digitized by, first,

taking a photograph of the waveform trace captured on an oscilloscope and then digitized

by placing the picture on a graphics tablet and manually transcribing the waveform.

The system also contained a HP 3467A System Voltmeter, a IIP 3497A Data Ac-

quisition Control Unit and a HP 9111 A Graphics Tablet; however, these devices are no

longer used as the functions they perform and the data they provide can all be obtained by

* •using the 7612D alone. As far as data collection is concerned, the system requires only the

7612D, once it has been properly interfaced into the system controller.

In the most recent work done prior to this effort, the 7612D interface had been

completed, and it was the primary source of data acquisition for that work. The software

that was developed to control the interface between the HP-85 System Controller and the

'-.-" 7612D is adequate for the task of taking data; however, it is an exceedingly slow system.

,.... At the start of this effort, a Zenith Model 158 Microcomputer (referred to hereafter
i* "'" as the Zenith) was added to the system. The goal of this addition was to correct the one

major deficiency of the past system, speed. It was hoped that the Zenith would be able to

handle the task of data acquisition and processing in a near real time fashion, something

that was entirely lacking in the past configuration of the system.

There are several factors, relevant to this discussion which have an impact on the

.- speed of the data acquisition system. First, the HP-85 uses a microprocessor which is not

as sophisticated or powerful as the microprocessor used in the Zenith. The HP-85 micro-

processor operates at sub-megahertz clock speeds as compared to the Zenith microproces-

sor, the Intel 8088, which operates at between 4.77 and 8 MHz. Although raw clock speed

* •is not a complete indicator of processing speed, the order of magnitude difference between

the HP-85 and the Zenith is a rough indication of the improvement in computational speed

that could be gained by upgrading the system to include the Zenith.

Another factor which affects the speed of the acquisition process is the program-

* eming language available for collection control and data manipulation. The HP-85 uses

3

4

BASIC as its upper level programming language. Non-compiled BASIC, like that used in

the HP-85, tends to be much slower than the more powerful compiled languages available

to the Zenith such as PASCAL or FORTRAN. Combining the programming language with

some shortcomings in the way the HP-85 talks to the HP-9895A disk drive, the process of

data transfer and storage becomes bogged down.

Another deficiency of the HP-85 that the Zenith was meant to correct was shortage

of memory. The HP-85 contains approximately 32 kilobytes of direct access memory

known as Random Access Memory (RAM). This limited amount of memory made it im-
possible to read in more than 1024 points for each curve on the 7612D. The 7612D is ca-

pable of taking up to 2048 samples on two separate waveforms simultaneously; therefore,

for a given time interval, half the sampling bandwidth was lost. The Zenith is capable of

taking in the full 4096 points available, having 640 kilobytes of RAM at its disposal.

* Incorporating the Zenith

The Zenith was, at first, designed to be an addition to the acquisition system and

not a replacement for the HP-85. Because of certain difficulties encountered, this proved to

be impossible within the timeframe of this work.
Figure 2 shows the expected change from the old system to the new. The HP-85

was to remain the System Controller up to the point of actually transferring the data from
the 7612D. At that point, the Zenith would takeover, transfer the data to itself, relinquish

control to the HP-85 and begin processing the data in a real time fashion. In theory, ac-
cording to the supposed capability of the HPIB, this plan should have been possible. It

was, however, not.

The HPIB is Hewlett-Packard's emulation of the IEEE-488 standard set in 1978.

This standard contains the proper protocols to transfer active control of the bus to another

* controller, called the Active Controller. This transfer facility is what would be necessary to
use both the HP-85 and the Zenith on the same bus at the same time.

As the Zenith stands now, it contains the HPIB interace card which is responsible

for carrying out all communications over the bus. Control of bus communications is done
* via a set of software commands inside the Zenith which were provided with the interface

card and corporately are referred to as the Command Library. In order to use the Com-

mand Library, the HPIB interface card must be set as the System Controller; however,

when set as the System Controller, the Zenith is unable to pass control of the bus to an Ac-

W 0"

,',d',

5
tive Controller (in this case, the HP-85). With the Zenith set as System Controller, it is

impossible to employ both computers in the data acquisition system.

If the Zenith is not set as the System Controller, but the HP-85 is (as shown in

Figure 2), then the Zenith cannot use the Command Library. This library is absolutely es-

sential to do any type of communication through the bus. It would be impossible to trans-

fer the data from the 7612D without the aid of the Command Library.

Simplified Data Acquisition System

HP-85: System Controller

'," ----------t Tektronix 76121): Data
' -':Processor Digitizer

I II

----------- Control Paths RBSOA Tester:

Data Transfer Path Data Producer

Figure 2. Schematic of a simplified data acquisition system
incorporating the Zenith Microcomputer.

0 An effort was made to obtain the source code used to develop the Command Li-

brary from Hewlett-Packard. It was hoped that a modification of the code could be ar-

ranged so that communication via the bus would be possible without the interface card be-

ing set as System Controller. Hewlett-Packard was not forthcoming with the information,

and the line of research was discontinued.
Without being able to pass control from the Zenith to the HP-85 while the Zenith

was System Controller and being unable to get the information into the Zenith when it was

not the System Controller, it was decided to scrap the idea of using both computers in theiq improved system and concentrate on using the more capable Zenith, only.

-ii

S

4p.

4-.4-.
6

CHAPTER III

SOFTWARE DEVELOPMENT

BASIC Programming

With the decision to use the Zenith as the sole controller, it became necessary to de-

velop a complete software system which could perform all the needed control and process-

ing tasks. It would have to supply the test apparatus with the instruction it needed to ac-

quire the specific data of interest, and the software would have to conduct all the applicable

processing and information storage, retrieval and output functions. In short, the system

would have to be able to do everything that the HP-85 could do. Re-invention of the wheel

was, however, something to be avoided.

The first step toward developing the system software was to first determine in what

language to program. The HPIB interface card's Command Library was capable of being

used with a number of upper level computer languages including: Pascal, BASIC and C.

All of these languages can be run on the Zenith given the proper compiler or environment.

It should be noted that the control software for the HP-85 was written in BASIC.

From the beginning, time had been a crucial factor in all d, cisions made concerning

this project. The quicker, the faster, more capable, Zenith could be brought on line, the

better. As control software was already available in BASIC on the HP-85, initial effort

were directed toward transferring the BASIC source code from the HP-85 to the Zenith in

the hope of running the code, or a slightly modified version of the code to control the ac-

quisition system.
The actual source code for the HP-85 is stored on the HP-9895A Flexible Disc

Memory which is connected to the HP-85 via the HPIB, but the Zenith was also connected

to the bus. It was thought that the Zenith might be able to transfer the files from the HP-

9895A to the Zenith's own floppy disk drive by accessing them using the HPIB card. The

code could then be run on the Zenith using the BASIC line interpreter, GWBASIC®.

Normally, the HP-85 talks to the disk drive using control codes stored on a special
Read Only Memory (ROM) chip. If the Zenith were to properly address the HP-9895A, it

0 would have to use these codes, but they are inaccessible from the Zenith. Additionally,

none of the manuals for either the disk drive, the mass storage ROM or the HP-85 con-

tamined information on the necessary codes. Hewlett-Packard was again contacted and

asked for information regarding the control codes for the HP-9895A, but they were unable

to provide the necessary information. Instead they offered a disk drive controller software

7

.0-Zz

8

package (part no. HP 88500B) which they claimed would talk to any of HP's HPIB disk

drives. When the software arrived, it proved to be incompatible with the HP-9895A.

Again Hewlett-Packard was contacted, and asked why the package would not work. After

a somewhat lengthy delay, a Hewlett-Packard representative responded by stating that the
package would not work on the HP-9895A disk drives and that it had never been intended

to do so. Further, HP did not and would not ever have a package available to control those

disk drives from an IBM PC compatible. It was, therefore, not possible to directly access

the source code on the HP-9895A.

While directly accessing the files on the HP-9895A was impossible, it was possi-

ble to perform a one time only transfer of the files from an HP-85 to an IBM PC compatible

at an off-site location. The files were first transferred to a newer HP personal computer

and then to another IBM PC compatible computer. Copies of the source code were then

transported on five-and-one-quarter-inch floppy diskettes to the lab where this effort was

* being undertaken.
As mentioned earlier, time was a strong factor in the decision process. So, the

quickest possible method of using the source code which had been transferred into the
Zenith was attempted, running unmodified code in GWBASIC. This met with failure.

On examination of the code, it was discovered that the HP BASIC that was running

on the HP-85 was significantly different than the GWBASIC that was used on the Zenith.
The first problem with directly running the software was in the file format in which the

source code was transferred. The HP-85's screen can only display 40 columns of data or

text in any particular row. This is also how the data is stored on the HP-9895A disk
drives. If a BASIC line was longer than 40 characters, the line was wrapped around to the
next row down. When the code was read in from the HP-9895A to the HP-85, the line or

word wrap was ignored as far as the function of the program was concerned.

*I• GWBASIC interprets lines .lightl;/different than does the HP-85's BASIC. Where

4the HP-85 will ignore the word wrap, the Zenith, using GWBASIC, will not. GWBASIC
requires every row to begin with a line number. If the line number is missing as in the case

of the transferred files where line wrap has occurred, GWBASIC will declare an error and

* stop reading in the source code. To illustrate this, here is an example:

70 FOR I=CURSROW to 64 @ DISP @

NEXT I

6!

9

This is the format of the files that were transferred over from the HP-85, but the Zenith

using GWBASIC would require the following format for an input source code file.

70 FOR I--CURSROW to 64 @ DISP @ NEXT I

However, just because GWBASIC reads the file in does not mean it will run it unmodified.

,M To correct this problem, a program which would remove the word wrap from the

HP-85 source code files that were in the Zenith had to be written. If there had been only a

few files, it would have been possible to correct the files using a screen text editor, how-

ever, there were 20 files for a total of over 2000 lines of code. After writing the program

and running the source code files through it, again an attempt was made to run the HP-85

software using GWBASIC. At this point, it was discovered that GWBASIC was incom-

patible with the HP-85's BASIC.

When a copy of the HP-85's source code was first obtained for the Zenith, it was

known that, at the very least, certain sections would have to be rewritten. It had been

thought that the time involved in this rewrite would be minimal; however, with the discov-

ery of the compatibility problems in the source code and the resulting requirement to rewrite

the source code line by line, it became evident that this avenue of approach was no longer

worthwhile. The expense in time and the resulting product could not be justified when the

entire control software could be re-programmed using another language in less time and

end up with a more versatile and faster system.

At this point, it was decided to begin developing software using one of the lan-

guages which was supported by the Command Library, Microsoft Pascal (MS-PASCAL).

MS-PASCAL has several distinct advantages over BASIC. First, it is a compiled language

which means much faster execution. It is a structured language which allows for more

* complex programming with easier debugging. Lastly, and probably most importantly,

MS-PASCAL allows the program to utilize math coprocessors if they are installed in the

computer. In the case of the Zenith, an 8087 Math Coprocessor is installed.

A little background on the 8087 Math Coprocessor before proceeding. The 8087 is

* designed to do nothing but floating point mathematical operations. It does these operations

typically over 100 times faster than they can be done by the standard 8088 Microprocessor.

In heavy math applications, the 8087 can speed the operation of the application by as much

as 15 times. This increase in speed is critical if data acquisition system is to be able to pro-

*cess in real time.

yA.

0

010

It should also noted that BASIC, any type of BASIC, cannot utilize a math

coprocessor. It becomes obvious that any new code that needs to be written should be

written in a language that can use an 8087. MS-PASCAL could, and so, it was selected for

use in programming the new system software.

MS-PASCAL Programming

At the start of the programming effort, a set of requirements was created. Any

software developed was expected to met all of the stated requirements. What follows is a

list of these requirements:

1. The system must perform initial setup procedures which include: poll bus
to insure the 7612D is on line and functioning, calibrate the 7612D, set the

system time-out error checking level, check for any other devices on-line,

identify those devices and prepare them for use.

2. Perform the necessary bookkeeping functions, such as: set up and maintain

-..:' - an index of devices, keep track of how many tests have been run on a par-

"", ticular device, maintain a record of which forward and reverse base drive
current settings have been used and keep a count of the number of break-

downs compared to the number of tests on a given device at a particular set-

ting.

3. Allow the 7612D to acquire Vce and Ic and then enter these waveforms into

the Zenith for processing and storage.
4. Process Vce and Ic to obtain P and E.

5. Store all data on floppy disk.

6. Repeat measurements in as efficacious a manner as possible.

7. Plot specific waveforms from selected tests on the HP-7470A plotter.

* 8. Compile and output a table of breakdown values on a particular device.
' ., Breakdown values include: Vce and Ic at the moment the protection circuit

fires, the forward and reverse base drive values, the energy at breakdown

and the time to breakdown.

Work was directed toward obtaining each requirement in the order they are pre-

sented above. Prior to achieving the last two goals in requirement 1, it was determined that

the only device to be used in the data acquisition process would be the 7612D; therefore, it

would not be necessary to check for any other devices on-line or identify those devices and

5prepare them for use. Those requirements were dropped.

The first snag in programming was encountered after approximately 550 lines of
code had been written. A stack overflow error was encountered. Stack overflow occurs

when the amount of memory used by the variables contained in the stack exceeds a specific

limit. This problem is demonstrated in Figure 3 below.

Video Ramt
ROM
System Use Constants

Data-0~~5~ DOS

Unused Memory Expands as
oA Program Executes

Aiaola MemoryApplication Program Executes

" " Code Area
DOS,_ Heap

1.. DOS .The Heap does not always

expand, but it can.

Figure 3. Drawing showing DOS memory allocation along with
MS-PASCAL working area memory allocation.

At the time the error was encountered, it was unclear as to the cause. The individ-

ual procedures within the system software did not appear to contain enough variables or

functions to fill the stack space. Without really understanding the problem, a solution of
* sorts was found, but it allowed only an additional 200 to 250 lines of code to be added.

Later, the probable cause of the problem was located. At the end of each program's

execution, an error message, "Error Code: 2001, Null Pointer Assignment," would be dis-
played. Since the program was finished running, the error message was merely annoying;

however, the source of the message was investigated. Microsoft, the maker of the Pascal

compiler, was contacted. Their analysis of the problem was that a variable pointer had not

been cleared before the end of the program.

12

No pointers were used in the program under development at that time or at any time

during the course of this project. The only possible source of a pointer assignment was the

Command Library for the HPIB.

From this information, a theory was developed. Apparently, the functions con-

tained in the Command Library use pointers, and the developers forgot to clear their pointer

assignments before closing the functions. Without the specific pointer designations, it is

impossible to clear the assignments.

As the program executes, it calls the Command Library functions. Each time there

is a function call, pointer assignments are made which use up stack space. The stack space

cannot be reclaimed unless the assignments are released. They are not; therefore, as

execution continues, more and more stack space is used, until the available stack space is
filled and the program crashes.

Whether the theory is correct or not, it was not possible to extend the program

length beyond the limit encountered. So, an alternative method was developed which

proved to be a workable solution to the stack overflow problem. The Disk Operating Sys-

tem on the Zenith (ZDOS) provides a batch file utility which can be used to call separate
programs in a sequential fashion. ZDOS, also, has an ability to create loops in the execu-

tion structure of the batch file. With this capability, it is possible to break the system soft-

ware into several separate programs which execute sequentially and perform all the neces-

sary data acquisition and processing tasks.
As each program executes, it fills up the useable stack space, but when execution is

completed and the program ends that stack space becomes available for another program to

use. Thus, if the original program is broken at the point just prior to the stack overflow,

the memory is cleared by the ending of one program and the beginning of another before

the problem is encountered.

* Each program in the sequence does, however, require a certain amount of informa-
tion from the previously executed programs. This information would be kept as global

variables in a normal Pascal program. In order for the new programming scheme to be ef-

fective, a method for passing data between the programs, quickly, efficiently and without

* requiring user interference had to be developed.

.1,. Another very useful utility now comes into play. One of the common utilities on

almost any IBM PC compatible is a RAM disk. This is a program which sets up a segment

of user memory for use as a RAM disk. RAM disks behave exactly as normal disk drives

* do, meaning they can be written to and read from in the same fashion as floppy or hard

.

_,.

S

. I . II II ' l 1 1 1 11 1 11 1 111 1 1 IIPV

13

disks, only much faster. Using the utility, RAMDISK.SYS, a new drive was setup on the

Zenith. A text file called PASSER.DAT was created to contain those global variables nec-

essary to the execution of the software system.

With the RAM disk to contain the necessary global variables, an extended program

architecture or hierarchy was created. In an application such as this, where there are dis-
tinct steps that do not require a high degree of interaction with other parts of the program

and execution follows a set order, the batch file system performs just as well as any other

program structure available. The difference between the new and old hierarchy is shown in

Figure 4.

Normal Pascal Hierarchy Modified Pascal dierarchy

* Program Level - Highest Normal Level in DOS Level -Batch file calls Programs as if
Pascal they were Procedures

Procedure Level -Called by Program
V Level

Program Level - Same as Normal Pascal
Sub-Procedure Level - Called by Other Heirarchy from here on
Procedures. Structurally the same as

Procedure Level, can even be called by
Program Level

Figure 4. Normal Pascal program hierarchy compared to modi-
fied hierarchy.

The RAM disk was given the drive designation G:, and all communications with

that disk are preceded with that address designation. (On a Zenith Model 158, the drive
V. designations A through F are already used whether a physical drive for the specific desig-

nation is present or not. For example, on the machine used in this work only drive desig-

nations A,B and C actually refer to a physical drive. D,E and F are completely unused.
RAMDISK.SYS automatically uses the first unassigned drive designation available, but

even though D,E and F were unused, they were assigned in the Zenith hardware/software
reserved designations.)

PASSER.DAT consists of various parameters kept on set lines and positions in a
text file. The first line contains a string of ten toggle switches. The toggles are simply

V V 0

-r- ."-.

0

14

characters like "Y" or "N." Depending upon the state of a particular letter, an action may or
may not be taken in a given program. This is one way of letting all the succeeding pro-
grams know what actions need to be taken depending upon what has previously occurred.

In the system completed in this effort, only five of those toggles are used. The other five

are for use by follow-on programming efforts and lends the system some expandability.
Lines two and three of PASSER.DAT contain the device number and the system

time-out error value, respectively. The device number is an integer used as an index value
which references the device record contained in the device index file, INDEX.DEV. With

the device number it is possible to obtain all the information currently stored on a specific
device in the index file. It also tells the preceding programs which device is currently in-
stalled on the tester. The system time-out error value is a real number value which tells

each program that performs Input/Output (I/O) functions over the HPIB how long to wait
for a response before declaring an error.

Line four contains the most recent base drive forward and reverse bias current set-
tings. These values are stored as part of all the files created during the acquisition and pro-
cessing phases. They represent the variables in the test, and it is important that all data

taken during a particular test run be labeled with these values as a protection against

mistakenly grouping and processing files from different tests with different settings.
Lines five and six contain file designations. The fifth line contains the name and

location of the bookkeeping file which contains a listing of the various forward and reverse

bias settings, a comment line for descriptive information and a count of the number of times
a particular device was tested at given bias settings and the number of times the device en-

tered into Reverse Bias Second Breakdown. The sixth and final line contains the root file-

. name for storage of incoming data and the files created during processing.
*. The individual system control programs are stored on the hard disk until needed.

Although storing the files on the hard disk results in slower overall program execution,

3/ since between each program the computer must stop and load the succeeding program into
memory before it can be executed, the delay is so minimal that it is barely noticeable. Pri-

'3' marily, this is due to the relatively small size of the programs (less than 50 kilobytes each)

and the inherent speed of the hard disk.
The two main advantages achieved by using a batch file execution scheme are, first,

it is very versatile in the application at hand. If at any time it is decided to add additional

processing or analysis steps, all that need be done is write an additional program in any

compiled language (such as PASCAL, C, FORTRAN or Compiled BASIC), place the

A....

15

executable version of the program into the appropriate directory on the Zenith's hard disk
and include a statement in the controlling batch file to call the new program at the appropri-

A ate point in the overall acquisition cycle.
The second main advantage attained by the batch file approach is the alleviation of

the problem that led to its adoption in the first place, stack overflow. With this execution
scheme there are no limits to the size of the system software package save the size of the

available secondary storage on the Zenith.

Turbo Pascal Programming

As mentioned above, the new hierarchy allows the use of any compiled language as
*I a programming tool. Each language typically offers features not found or difficult to use in

Nother languages. This makes the different languages convenient for use in particular appli-
cations. Sometimes compilers for the same language produced by different publishers will
also have different features which makes it more advantageous to use one compiler over

another. For instance, MS-PASCAL has the ability to use libraries created by third parties.

This is the feature that allows the Zenith to use the HPIB Command Library and control the
7612D.

Another Pascal compiler which has some other advantages for use in program de-
velopment is Borland International's Turbo Pascal (or Turbo for short). Turbo is, gener-

ally, a much friendlier development environment. Where MS-PASCAL requires the
programmer to create the source code in a separate text editor, Turbo provides an integrated

text editor and compiler.
After developing the source code for MS-PASCAL, the programmer must exit the

- .

text editor and attempt to compile the code. MS-PASCAL can take up to three or four min-
utes for a 300 line program. If any errors are encountered, they are printed out all at once.

* The programmer must then either get a hard copy listing of the errors or attempt to remem-
, ber them all, enter the text editor, make the necessary corrections, exit the text editor and

attempt to compile the program again.
In Turbo, the editor and compiler are bundled together. After the source code is

* developed, two key strokes will bring the programmer into the compiler. To compile, only

one key needs to be pressed, and the compilation begins. A typical 300 line program
would take less than 15 seconds to compile. If any errors are encountered, the compiler

stops, enters the editor and brings the programmer to the exact location in the source code
* where the error occurred. This makes debugging a much simpler process.

N % N ,

16

Although Turbo had several features that made it desirable, it could not use external

libraries; therefore, it could not be used to communicate between the Zenith and the instru-

ments on the HPIB. For those applications where control of the HPIB was not necessary,
the greater ease-of-use of Turbo made it the compiler of choice. These applications in-

cluded data storage, processing and output. Thus, those programs not concerned with

HPIB control were all written and compiled using Turbo.

System Software

The collection and processing system software consists of 12 individual executable

programs and one batch file routine. The batch file routine controls data acquisition which

involves only seven of the 12 programs. The remaining five are referred to as the ancillary

programs and perform necessary maintenance tasks as well as providing data output in
various forms. A complete commented listing of all of the programs and the batch file are

contained in the appendices.

Data Acquisition Programs

The batch file routine, TAKEDATA.BAT, performs the function of the main pro-

gram block in the normal Pascal hierarchy. It keeps the flow of program execution orderly

and well defined. It, also, checks the amount of storage available on the floppy disk drive

where all data will eventually be stored, it will cause those files which have been created on

the RAM disk during one data acquisition cycle to be copied over to the floppy disk drive

and then delete those files from the RAM disk to conserve space. At the end of the

acquisition cycle, it will check for the existence of a file on the RAM disk called

CONTINUE.ANS (created by the program REPEATER.COM). If the file is found, the

batch file will loop back to the beginning of the data acquisition cycle and start the process
S. going again. If the file is not present, the cycle is ended and any remaining files contained

on the RAM disk are copied over to the floppy disk drive and the batch file execution is
terminated.

The first program called by TAKEDATA.BAT is HARDWARE.EXE. This pro-

gram is compiled using MS-PASCAL and is used to set the system time-out error value,

create the file PASSER.DAT and calibrate the 7612D. Calibration is done by obtaining a

zero level line on both Channel A and Channel B of the 7612D by setting the input coupling

to GND and manually triggering the 7612D (11). These zero level lines are then read in as

a series of 2048 points for each channel.

'V 17
Each point consists of one byte. The value of the byte indicates the vertical deflec-

tion where each division on the Tektronix 7A16P Programmable Amplifiers is divided into

32 levels, the difference between successive levels being equal to a binary increment of
one. So, for the lowest point of the vertical deflection, the byte value would be 000000002

(decimal equivalent = 0). This is equivalent to the largest negative number displayable by
the 7612D. The highest point would have a byte value of 111111112 (decimal equivalent =

* -. 255) which is the largest positive number displayable by the 7612D. The midpoint be-
tween the high and the low would be 011111112 (decimal equivalent = 127). This mid

point value is really the equivalent of zero with deviations from it being the same as excur-

sions from zero.

Since the data contained in the 7612D is binary in nature, it would be nice to be able

to read and manipulate the data in that state; however, neither MS-PASCAL or Turbo Pas-
.5, cal are very efficient at handling single byte binary numbers. Both compilers do have a fa-

* cility to handle ASCII characters, and single byte binary numbers can be referenced by their

ASCII equivalent.5-'.

An ASCII character is a symbol which is used to refer to a particular single byte bi-

nary value. For instance, the byte, 010000012, is referenced by the symbol, "A." In the

extended ASCII character set used by both MS-PASCAL and Turbo, all 256 possible sin-

iV gle byte binary values have a corresponding symbol.

It is possible to read a single byte binary value, such as a data point, into a program
as an ASCII character. The program will handle it exactly as an ASCII value which means

it can be written to disk or read from disk as if it were text. By treating the data from the

7612D as ASCII values, it is possible to read the binary data and handle it within the pro-
gram easily. When it comes time to evaluate or use the data, it can be read from where it

was stored on disk and translated into decimal form by the built-in procedure "ORD." The
r.5".'

* data can then be handled as integer values.

HARDWARE.EXE first reads in the total 4096 points from Channels A and B.

The program reads those points in as two sets of 16 128 character long ASCII strings. The

program will read the data one 128 character string at a time and write each string out to the
* RAM disk one at a time until all the points have been entered. This method of reading the

data from the 7612D has been found to be the fastest available given the limitations of the

7612D, MS-PASCAL and the HPIB Command Library. The total operation requires less

p.. than a second and a half. All of the programs which read data from the 7612D use this

* procedure.

A 5 2 1.

18

The first 2048 characters (points) of the file created on the RAM disk is then read

into an array in the program, the ASCII characters are translated into their integer equiva-

lents, all 2048 points are then averaged and the average compared to the equivalent zero
, value of 127. If the average is within ±1, Channel A is considered calibrated.
4The second 2048 characters are then read and processed the same way. This is the

data from Channel B. If neither channel needs to be calibrated, HARDWARE.EXE ends

and the batch file takes over. If one or both of the channels need to be calibrated, a mes-

sage is output ,o the operator to adjust the position knob on the 7612D in whatever direc-

Kom, tion is necessary. The operator then re-triggers the 7612D, and the program reads the data

as before. This continues until both channels on the 7612D are calibrated.
The program GETDEVIC.COM is called next. This program is responsible for

setting up and maintaining the index of devices contained on the file INDEX.DEV. The

program provides a listing of all devices currently kept on INDEX.DEV and prompts the

* operator to input the device number corresponding to the device being tested. Using this

value, the program retrieves the proper bookkeeping and storage filenames from IN-
"'* DEX.DEV. The filenames are then written out to PASSER.DAT in lines five and six.

Just prior to the program GETDEVIC.COM the batch file enters the top of its exe-

cution loop. This means that HARDWARE.EXE is executed only once during a given data
.. acquisition session. Where a data acquisition session is defined as the period of time be-

.. tween the operator beginning TAKEDATA.BAT until the operator terminates the session

when queried if he or she desires to continue or not. Because the loop marker is prior to

GETDEVIC.COM, it is likely that when GETDEVIC.COM is called it might not be the first

time through the acquisition process. If there has been no change in the test device (i., the

TUT has not been replaced), then there is no needed for GETDEVIC.COM to run as

PASSER.DAT contains the proper bookkeeping, storage filenames and device number. To

* save time and avoid having to go through GETDEVIC.COM when it is not necessary, the

first toggle switch in the first line of PASSER.DAT has been assigned to toggle the execu-

tion of GETDEVIC.COM on or off. The program is still loaded into memory; however,

the first step it takes is to read PASSFR.DAT. If the toggle is set to "N," then the program

• will not execute, and control is returned to the batch file.

STORDATA.COM is the next program to be executed. It is responsible for setting

up, maintaining and updating the bookkeeping file. The program executes once during

each acquisition loop, and it is, also, responsible for setting the condition of toggles 2,3

* and 6. These toggles control the execution of the programs which read the data in from the
.4,.,,

19

7612D and process it. Toggle 2 is used to control the execution of PROCESS3.EXE
which reads Vbe from the 7612D. Toggle 3 informs the succeeding programs whether or

not breakdown has occurred, and toggle 6 controls the execution of PROCESS 1.EXE
which reads Vce and Ic . Toggle 6 also controls the execution of PROCESS2.COM which

calculates P and E from Vce and Ic. After STORDATA.COM, PROCESS1.EXE, PRO-

CESS2.COM and PROCESS3.EXE execute in that order. The function of these programs
are given above.

,A The final program to execute in the data acquisition phase is REPEATER.COM.

i" This program performs two functions. First, it queries the operator as to whether or not he

or she would like to continue. If the answer is affirmative, the program creates the file

CONTINUE.ANS on the RAM disk which will tell the batch file to proceed to the begin-
ning of the loop and start again. A negative answer will cause nothing to happen and the

batch file will terminate after some clean up procedures such as copying the new book-

-* keeping file to the floppy disk drive from where it was temporarily placed on the RAM

disk. The second function is to update the INDEX.DEV file. During the data acquisition
loop, the storage filename might have been altered. The alteration must be kept to maintain

a proper record of storage filenames.
With the execution of REPEATER.COM, the batch file program has reached the

.nd of one data acquisition cycle. Repeated measurement would follow the same steps

save the call to HARDWARE.EXE.

Ancillary Programs

There are five programs included with the system software which are not used during the

• .data acquisition process. Three of the five are concerned with providing data

output. One is used in maintenance of the file INDEX.DEV, and the last is to either calcu-
* late or recalculate P and E from Vce and Ic .

The three output programs are PLOTDATA.COM, TABULATE.COM and

SORTABLE.COM. The largest of these programs is PLOTDATA.COM, and the source

code used to generate the program represent roughly a third of the entire programming ef-

* fort. As its name implies, it is used to generate a plot of the data. The program is capable
of generating one of two different outputs. The first plots the waveforms for Vce, Ic, P

and E as well as printing out the breakdown values for Vce, Ic and E, time to breakdown,

A forward and reverse base current bias settings, device number and test series number.
•* Figure 5 is an example of one of these plots.

W0

,LM-

20

- n < 0
0 0 0 a-

1 I 0 +w + w

ci -J v.. - , U) I

0) = 1.u

-o,

U '9U

£ ' -' 3

L a E L
> 0u L

:D 0 4) >t

o~

u c)

C' U) <

Lw004->.

0 .10 0u0

U) w

•-,4 L"'

0 a

00

L U

'In 0
4-) BUl

* E CuI~wE E

I . I, ,,4 * , o ,

L
0 -

C.)

0 Gse Inor

0

8- O '44 tN'

I L

21

The time to breakdown is defined as the time interval over which the instantaneous

power is being integrated. The test series number is the order of occurrence of the test run

where the data being plotted was collected. For example, if the test series number was six,

it would mean the data being plotted was from the sixth test made on that particular device.

The second type of plot available is one which plots out all of the previous
information, and in addition, plots Vbe. The waveforms for Vce and Ic are superimposed

upon on another, and Vbe takes the place of 1c . An example of this plot format is shown in

Figure 6.

The two other programs involved in producing outputs are TABULATE.COM and
SORTABLE.COM. TABULATE.COM does not directly produce output but merely tabu-

lates the breakdown values for all the tests done on a particular device and write these val-

ues to disk. On disk, these values are not stored in a fashion which can be directly read.
This is where SORTABLE.COM comes in to play.

SORTABLE.COM is a routine to sort and output the assembled breakdown values

created during TABULATE.COM. It provides the ability to sort the file created in TABU-
LATE.COM on one or two key values. The sorting can be done using any of the break-

down values as keys. It is, therefore, possible to produce several different output based
upon the same tabulated file. SORTABLE.COM can provide output either to a text file on

disk for use in latter printing or directly to a line printer. An example of
SORTABLE.COM's output can be seen in Figure 7.

The last two programs contained in the software system are EDITLIST.COM and
PRCSLTWO.COM. EDITLIST.COM is used to create, repair, maintain and add to the
file, INDEX.DEV. This capability was found to be necessary during software develop-

ment as there are numerous ways for LNDEX.DEV to be damaged, and without it, none of

the programs will execute properly. It was, therefore, imperative to create a program with

* the capability of restoring any data lost with the damage of INDEX.DEV.

The final program, PRCSLTWO.COM, is merely a repeat of PROCESS2.COM.

Except, it is capable of working outside the batch file environment. It is used to either cal-

culate or re-calculate the values for P and E.

0

Files Created and Individual Structure

An important element of the system software is the files it creates. The first file

created is PASSER.DAT which was discussed in detail earlier. The next file created or

* used is the bookkeeping file.

0N N

v0 TUIJM

22

in 0 0~ 4

1 0 +

co CO 0i 0 L
M 0 (n) 0 '-4

U) >
M~ m

4) D z.. CJ~in(o a

> 0 4 -) >1 £

00
-) CO L L

0 > 0 L L

4-) -0 1 4) 00 0

4 -) E)W 0Ua)

1. C) w
00

--

0

I IM 0*

L w D
0))

6-410
LL0o

C1 A)''-

j 00L

al
E E'

iN sajadw V st5 nor

23

For primary key of Forward Base Current = 1.OOE+00 A

For secondary key of Reverse Base Current = 6.OOE-01 A
Collector-Emitter Voltage 1.34E+02 V
Collector Current 2.47E+00 A

i Energy at Breakdown 1.19E-01 J
Time at Breakdown 1.21E-04 Sec

For primary key of Forward Base Current = 2.OOE+00 A

For secondary key of Reverse Base Current = 1.OOE-01 A

Collector-Emitter Voltage 1.59E+02 V
Collector Current . 5.80E+00 A
Energy at Breakdown 1.14E-01 J
Time at Breakdown 7.58E-05 Sec

For secondary key of Reverse Base Current = 2.OOE-01 A

* Collector-Emitter Voltage 1.62E+02 V
Collector Current . 6.36E+00 A
Energy at Breakdown 1.10E-01 J
Time at Breakdown 7.01E-05 Sec

For secondary key of Reverse Base Current = 4.OOE-01 A

Collector-Emitter Voltage 1.61E+02 V
Collector Current 6.36E+00 A
Energy at Breakdown 1.05E-01 J
Time at Breakdown 6.79E-05 Sec

For primary key of Forward Base Current = 3.OOE+00 A

For secondary key of Reverse Base Current = 6.OOE-02 A
',e.

Collector-Emitter Voltage 1.52E+02 V
Collector Current 2.98E+00 A

* Energy at Breakdown . 1.47E-01 J
Time at Breakdown 1.25E-04 Sec

For secondary key of Reverse Base Current = 1.OOE-01 A
Collector-Emitter Voltage 1.63E+02 V

, Collector Current 5.33E+00 A
. Energy at Breakdown 1.13E-01 J

Time at Breakdown 7.80E-05 Sec

Figure 7. Example output from SORTABLE.COM. Sorted on
forward and reverse base drives, respectively.

_24

For secondary key of Reverse Base Current = 8.OOE-01 A

Collector-Emitter Voltage 1.64E+02 V
Collector Current 6.47E+00 A
Energy at Breakdown 1.03E-01 J
Time at Breakdown 6.49E-05 Sec

For secondary key of Reverse Base Current = 4.OOE+00 A

,. Collector-Emitter Voltage..... 1.67E+02 V
Collector Current 7.23E+00 A
Energy at Breakdown 9.12E-02 J
Time at Breakdown 5.46E-05 Sec

Figure 7. Continued.

The bookkeeping file is a text file and contains, first, a listing of forward and re-

verse bias current settings. The settings are written in ten lines of two numbers. The first

number in the line is the forward bias setting, and the second is the reverse bias setting.
Initially, all the values are zero, but as tests are performed using different settings, one by

one the zeros are changed to actual values. A maximum of 10 forward and 10 reverse set-

tings are allowed for a total of 100 different combinations. Following the settings segment

of the bookkeeping text file is a comment line. This is an 80 character string which is used
to record operator comments about the TUT. Its use is completely optional.

The last segment of the bookkeeping file is 10 lines of 20 numbers each. The first

line corresponds to the first reverse bias setting (bias settings segment, line one, second

number). All of the numbers on this line correspond to tests made on the TUT using that

particular setting. The first two numbers of each line correspond to the first forward bias

setting (bias settings segment, line one, first number), the second two numbers to the sec-

ond forward bias setting (bias settings segment, line two, first number), the third two to the

third forward bias setting and so on. In this way, each two numbers are connected to one

forward and one reverse bias setting. The first number in each pair of numbers represents

the number of times the TUT broke down at the corresponding bias settings. The second

7 number represents the total number of time the device was tested at those settings.

The last segment is used to help determine device threshold tolerances. It is an

added feature above and beyond what was really necessary in the system, but it is thought

that in future efforts it might be useful. Whether or not the feature is used, the program

25

which controls it, STORDATA.COM, must be run as part of the data acquisition process as

that program also performs other functions vital to the overall system.

The filename for the bookkeeping file has the following general structure:

DEVxxxLL.BK. The "xxx" represents the device number (for device 1, "xxx" = 001), and

the "LL" specifies the inductor attached to the collector.

The next set of files created are all related to each other by a common root name,

BDxxxLLq.yyy. This root name is explained in Figure 8. The filenames for all the data

',p taken on one particular test run are all the same except for the character represented by "q."
The changes made to "q" are, also, explained in Figure 8. All of the test runs on a particu-

lar device will have the same "xxx" value but different "yyy." This allows anyone to de-

termine which group of files belongs to a particular device and/or test run, as well as what

is contained in the file.

Files A, B and C (where A, B and C refer to what replaces "q") all have the same

.. basic format. The only difference is in file A which contains an extra line placed at the very

beginning of the file. The line contains a single character a "Y" or a "N." Examining the
character is an easy way of determining if breakdown occurred during the test run or not.
"Y" indicates breakdown. "N" indicates no breakdown and, probably, safe turn off.

Line two of file A is exactly the same as line one of B and C. It contains the for-

ward bias current setting and the reverse bias current setting. The next line contains, first,
the Volts per Division setting of the appropriate plug-in on the 7612D, second, the hori-

zontal scale factor (time between each sample) and, last, the probe correction factor. The

probe correction factor is use to make sure the scale is properly set on the vertical deflec-

tion. It is set to one on files A and C since correction is automatically done by the Channel

A plug-in. The file B value should be set to 10 which is the correction factor necessary to

convert the value of the vertical deflection in volts to amperes. The final "line" is a string of

2048 ASCII characters which are the actual data points.
File E contains a column of 2047 numbers. The numbers represent the cumulative

energy up to and including the particular time step corresponding to the numbers position in

the column (j., The fifth number is the total energy up to and including the fifth time

step.).

File P is a mixture of the formats from the preceding files. The first line contains

the forward and reverse bias settings. The second line contains the total cumulative energy

to breakdown, horizontal scale factor and vertical scale factor, respectively. The third line

O* is a string of 2048 integers which are the result of multiplying the ordinal (integer) values

'p.

26

of the ASCII characters in files A and B. These integers represent the unsealed values of
Instantaneous Power.

Data Specification

G:BDxxxLLq.yyy

Test Series
Drive Specification Number

Device Number Letter Symbol
Corresponding

to Inductor Value

Data Specification Key

0 A: File contains Vce waveform data
* B: File contains I waveform data

C: File contains Vbe waveform data
E: File contains Cumulative Energy values
P: File contains Instantaneous Power waveform data

Figure 8. Storage filename interpretation.

The final file created by the software system is the file created by TABU-

LATE.COM. The file is a direct access file with a maximum of 999 records, one for each
*possible test series number. Each record consists of an integer value which contains the

particular test series number for the data contained in the record. Additionally, each record

contains six real number values corresponding to the forward and reverse bias current set-
tings, the Collector-Emitter Voltage at breakdown, the Collector Current at breakdown, the
Energy at breakdown and the time to breakdown.

S:

CHAPTER IV
VERIFICATION OF SOFTWARE SYSTEM

Accuracy of Measurement

Prior to detailing the steps used to verify the correctness of the data and the pro-

cessing thereof, the issue of the accuracy of the data and how it effects the calculated values
needs to be discussed. The principal source of inaccuracy is the 7612D and the 7A16P

combination. Once the data has been digitized, the transfer to the Zenith and the ensuing

calculations performed on the data are basically error free i., The round off errors encoun-

tered during the computations are negligible compared to the error introduced by the

1', 7612D/7A16P combination.). For this reason, discussion of the accuracy of the measure-
ment and data processing results will focus on the accuracy of the 7612D/7A16P.

There are two main sources of error introduced in the digitizer. First, there is the

* Digital-to-Analog (D/A) conversion error. Second, there is the error due to the 7612D's

electrical characteristics. Basically, the second source of error is a catch-all for the error not
accounted for in the D/A conversion error.

Looking first at the D/A conversion error, according to reference 11, the error is a
function of the frequency of operation of the D/A circuitry. This means that depending

upon the sampling period selected by the operator, the error will change. Typical operation
of the 7612D in the data acquisition process involves using sampling periods of between 20
and 40 nanoseconds (ns). Using values provided in reference 11 and interpolating, yields

an estimated Signal-to-Noise Ratio (S/N) of 32dB, or an error of approximately 0.1%.

This will be the typical worst case D/A conversion error and will be used to estimate the
total measurement error.

The error due to the 7612D's electrical characteristics is provided by reference 11.

* The stated value is 2%.
Combining the two sources of error gives the total measurement error, em, as 2.1%

-A which can be approximated simply as 2%. The data taken from each channel will be esti-
J. mated to have this error. Thus, all of the plots created by directly using the data from

* Channel A and B will contain up to 2% error, as will the breakdown values, Vce and Ic,

which are calculated directly from the Channel A and B data.
The error found in P and E must be calculated. Let aA and aB be the actual value of

the data being measured (kQ, no error) and eA and eB be the amount of error in the mea-

27

S5

A'!

28

surement. Then, (aA + eA) would be the value stored on Channel A of the 7612D and read

by the Zenith. Likewise, (aB + eB) would be stored on Channel B.

In the case of calculating P, the data from Channel A is multiplied by the data from

Channel B.

(aA + eA)(aB + eB) = aAaB + aAeB + aBeA + eAeB (1)

But, the worst case for eA is, eA = LAaA where LA is the total measurement error, em, for

Channel A, and the worst case for eB is, eB = LBaB where LB is em for Channel B. Thus,

for the worst case,

aAaB + aAeB + aBeA + eAeB = aAaB + aALBaB + aBLAaA

+ eAaALBaB . (2)

The total error, emP,, in the calculation of P can be found by using the formula,

(Actual - Estimated)= m(3
Actual =emp. (3)

The "Actual" value is the aAaB term while the "Estimated" value is aAaB + aALBaB +

vi. aBeAaA + LAaALBaB. The total error in the power calculation is then,

emp =eA + LB + AB. (4)

However, the value, LAEB, is negligible and can be neglected. The end result for the

* power calculation total error is,

emp = eA+LB = 0.02 +0.02 = 0.04 = 4% . (5)

* The total error of the energy calculation, eme, can be determined in a fashion similar

to that used above for the power calculation. Instead of the subscripts A and B referring to

the channel, let them now refer to value of the Instantaneous Power and the time, respec-
tively. Thus, eme becomes,

_0.

0

'I.'

29

eme = CA + EB = 0.04 + 0.000035 - 0.04 = 4% . (6)

Where the value, eB, is provided by reference 11.

Verification

An important step in the overall development of the software system is proving that

it works. Verification is done as a two step process. The first step being to prove that the

data is accurately read from the 7612D and that it is properly scaled. The second step is to

demonstrate that the processing of that data to find P and E is done correctly.
The first step is the easiest to prove as it can be done pictorially. Figures 9 through

13 show a side by side comparison of data taken in from the 7612D and a photograph of

the same waveforms displayed on a Tektronix 7834 Storage Oscilloscope using two 7A19

Amplifiers, a 7B85 Delaying Time Base and a 7B80 Time Base. The photographs are
shown in the lower right-hand comer of the figures. Vce is the bottom trace in the pho-

a-.' tographs, and Ic is the upper trace in the photographs (The bottom trace is defined as the

trace beginning at the lowest point on the left edge of the photograph.). All other data is

labelled.
,.-. A comparison of the photographs to their respective plots demonstrates that Vce and

-,.. Ic are accurately digitized and fed to the Zenith. As near as can be told, given the blurred

lines of the photographs, the vertical scale factor of the plots are also correct. It is indeed

quite likely that the data transported from the 7612D into the Zenith is more accurate than

the data shown in the photographs. This is due to the width of the lines when compared to

the size of the photograph. The natural blurring that occurs adds a degree of inaccuracy to

the data seen in the photograph when compared to the digitized 7612D data.

a Figures 9 through 13 directly verify only two of the five possible output wave
forms. Vbe is indirectly verified as it is obtained in exactly the same fashion that Vce is,

and Vbe even comes from the same channel on the 7612D. Another photograph of that

waveform is not really necessary.

0 Verifying the calculated plots, P and E, is not quite as simple. Starting with the

safe assumption that Vce and Ic are accurate, one can prove by induction that the Instanta-

neous Power plot is indeed accurate. The inductive argument that if one point on the plot is

OH

,e\ 30

L
0i

"-'-I-

UJ .zo

L V

L
0 a

E ..
,-4 5 -Z

00
6 C3

"a I .-I o-.

,- s A, .dwV

U)>
0

00

TU) -u C

* w a)~

00

Li] E
LO 6- AS- 4Da

31

L -- e

L C

4-)

0 >v

EE

C.C

0!0

WE 2

0I LL 0

0u

4-)

L)L

0 In r- .LL0

w~L C) S 4-4

'.4 32

inJ

L Cal

Gob

a)a

CV) 0

cu 'V I1 0 LUdwy 2'

in Lii

0

u Cu -:t 9
S-4. 1J OA OW C)

cnC.

33

4-)
4

'-4 D

>a 0

L c

4-) E

E AdI

0

*b C

0 (

L wJ

wa w V

0 1 - GL

a I U(

Lo Ll
0t

E E

I I -- C

>~D 9

03

rn o,

0f n nC

d d C .

34

@w

o
.4-) S

r 01

4-)

an 0

V) Ca)

Lu

J o. " .L

,SI - - ==

U - an .E E

Ln in

oa 3w.
@m

,n I .O)

sa adu r- :

S-4~ 1~ OA i -4-4D

LhJ-cU

a' 35

correct then all the points are correct is valid in this instance since all of the points were

generated in exactly the same manner; therefore, any error introduced in the calculation

would be found in all of the data points used to create the plot.
To verify P, Figures 14 through 17 are used. A perpendicular line is drawn up-

ward from the x-axis at a set time value for Vce, Ic and P on each plot. Next, a horizontal

line is drawn to vertical axes, and the magnitude of the described point is calculated. The
values for Vce and Ic are multiplied together to get the expected value of the power, Pe. Pe
is then compared to the value determine from the plot for Instantaneous Power, Pm. The

resulting error in all cases was less than 2%. This value is well within an error range
which can be attributed to human error. Thus, the plot for Instantaneous Power is verified.

The breakdown values for Vce and Ic were verified in a like manner. A horizontal

line was drawn from the point where breakdown occurred for Vce and Ic. The values so

obtained were compared to the values printed out under "Breakdown Values." The average

error was less than 2%, and the values are considered verified. The lines described in this

procedure are not shown in the figures.
The last item to be verified is the Energy plot. To prove the accuracy of the plot a

deductive argument is used. The Energy plot is actually the summation of the individual

areas under P for the 2047 time intervals. If the total energy is proven to be accurate then

the individual calculation of the area must be accurate, too.

Using the safe assumption that P is accurate, an approximation of P was made by

forming a right triangle mounted on a rectangular base. The hypotenuse of the triangle was

a line approximating the falling value of P. The height of the triangle was determined by

-.:- drawing a vertical line approximately parallel to the rising edge of P but slightly offset to
take into account the missing notch of the triangle at the top. The length of the vertical line

represents the sum of the height of the triangle and the rectangle. The height of the rectan-

* gle was determine by measuring the distance from the x-axis to the point of the sudden

drop in P. The base is the distance between the long vertical line and the point where the

sudden drop in P intersects the x-axis. With all the dimension known, a calculation of the

area which represents the total energy was performed. The resulting error between the en-

* ergy measured as stated above and the total energy value printed under "Breakdown Val-

ues" averaged less than 2%. Although the extreme closeness of the results is mainly luck,

it does provide a basis from which it can be stated that the Energy plot is accurate.

,I.

* 36

C Go

o i w E m

CYC

0 5-'

4)~U itE J

E m011

CJ5
0IO cE. CY PEI

-5 > - 0%

a a

In gn

ai

La I- I L.

> '

S-10

00

ii

aS 0nG

0 t0%

L) q
oo %D.5C

0 0 E E.-~
en -1 W

I) > ia i.)
*n 'V0 c; I

fr C

N *****4 -cc

I ~ ~ n - 4C

* U I ~m
_____ _I ~>

* ~Z W

Sn w

m bo

an Sn wI 0
UI C.)

.4-). T__ _

E E
* W

Sn U3

I ~ ~ - 1 OA- s1
L I-4D

o k

38

C7 WO .> in

I I

cio

t-t- %n

t"',II

DE

- 1 0 =

,-4 1 OA -=

us> E E S: . = = .

III
I,:[) " " '''.- Q .- I' . "

I-.0W

: ::

oc.!. .~ -

aJ I l i a

0 L 0

E -

>'

V,-- U)- soA

AC We

m saaw s o

*"-' , -"U) --

m i",b

cs~a .4cs

S-4 1OA cl S440

39

in

ca

= ,, i II 4

0 O"6)

0

0 Cd
- 0 < - =

L4- I n - = .

EE

I I . "c
L

,,,.. *. 'l i

W E - -

Q" - .r- .ID E t.

w ', ,,.-'

P LI C. v

•::in
I.,. gill I I n u

m U) '.--

L in

5,L

U)

E. E

0) 0)

saidw se ro C

r- -1O

CHAPTER V
CONCLUSION

From the beginning, the focus of this work has been to improve upon the old data

collection and processing system used in previous efforts. The major shortcoming of the

old data system was the speed with which data could be collected and processed. The ad-

dition of the Zenith Microcomputer to the acquisition system has served to correct that defi-

, ciency to a fairly great degree. In the old system, which used the HP-85 as the System

Controller, the bottleneck in the acquisition process was the speed of the HP-85. The

Zenith's superior performance capabilities were used to alleviate the bottleneck, and in-

crease the number of data points that could be read from any particular test to the maximum
provided by the 7612D.

Initial efforts were directed at using both the Zenith and the HP-85 in the acquisition

system, but that became impossible given the hardware/software limitations of the HPIB

interface card in the Zenith. The Zenith then became the sole controller of the system and

new software was created to allow the Zenith to perform the necessary tasks.

The new software was originally written for the MS-PASCAL compiler, but com-

plications with the memory allocation of the stack made it impossible to write a single inte-

grated program which could perform all the required tasks. A new approach was under-

taken which corrected the difficulties encountered, but it, also, allowed the use of any

compiled language for those tasks not requiring the use of the HPIB. As a result of the

extended capability of the new approach, large portions of the software system were writ-

ten for and using a different, easier-to-use compiler, Turbo Pascal.

Once the system was completed, a series of tests were made upon a Texas Instru-
ments 2N5886 transistor, and the results obtained were used as a basis for verifying the

software systems accuracy.

e On whole, the new data collection and processing system does what it should. It
meets all of the requirements it was specifically tasked to meet, it allows for the acquisition

of individual and multiple test runs as quickly as the data can be set up on the 7612D and it

accurately collects and processes the data given it.

4'.0

40

I' . .,:" , "-.5' .' ' "' '

LIST OF REFERENCES

1. Dale James Skelton, "Reverse Bias Second Breakdown in Power Switching
Transistors, "M.S. Thesis, Texas Tech University, 1982.

0 '. 2. Scott Allen McMullen, "Energy Considerations in Second Breakdown," M. S.
Thesis, Texas Tech University, 1984.

3. Michael E. Katsaras, "Turnoff Transients in Power Switching Transistors," M. S.
Thesis, Texas Tech University, 1986.

4. C. M. Graves, "A Data Acquisition and Conditioning System for Analysis of
Transients in Semiconductor," proposed title of M. S. Thesis, Texas Tech
University, Unfinished.

5. Tom Swan, Mastering Turbo Pascal. Hasbrouck Heights, New Jersey: Hayden
Book Company, 1986.

6. Elliot B. Koffmann, Pascal. Reading Massachusetts: Addison-Wesley Publishing
Company, 1982.

7. HP-TB Command Library for MS-DOS. By Hewlett-Packard Company: U.S.A.,
1986.

8. Turbo Pascal Reference Manual. By Borland International, Inc.: Scotts Valley,

CA, 1986.

9. Microsoft Pascal Compiler User's Guide. By Microsoft Corporation, 1986.

10. Microsoft Pascal Reference Manual. By Microsoft Corporation, 1986.
11. 7612D Programmable Digitizer Operators Instruction Manual. By Tektronix, Inc.:

Beaverton, Oregon, 1983.

441.d. ,

APPENDIXrn Awnly

OPRTN0NSRCIN

4

...

43

Read all of the following instruction before attempting to use the test system.

In the following, instructions regarding Tester Power-Up and Power-Down Se-
quences for the Reverse Bias Safe Operating Area Tester were developed by Michael
Katsaras as part of his work toward his Master's Thesis but was not included in the final
version of the thesiz Before proceeding, the reader should familiarize his or herself with
references I and 3. Also, a thorough understanding of the operation of Tektronix 7612D
and 624 Monitor is necessary. Finally, it would be beneficial if the operator understood the

basic workings of an 1BM PC compatible using DOS.

Teqter Power-Up Sequence
1. Make sure there is a transistor in the TUT socket. Do not attempt to turn

power on without a transistor loaded. (Note: The transistor can be changed while the

power is on.)
* 2. Make sure base current controls are all set to minimum.

3. Make sure collector supply control cable is connected Make sure the col-

lector supply voltmeter is connected to the power supply (current limited outputs). Make
sure the load inductor is connected.

4. Turn power to tester on. Turn collector current monitor biasing supply on
(if collector current levels are expected to be higher than 10 A). The "power" indicator

should be on at this time. Wait 30 seconds, until the H.V. switch tube (front panel) warms
up.

5. Turn on the collector supply. No voltage should be measured by the
voltmeter.

6. Turn on the external trigger power supply for the 7612D, located on the
back right rear of the 7612D.

The tester is now ready for operation.

Setting Up to Take a Measurement
1. Connect the Vce probe to the A input on Channel A of the 7612D.
2. Connect Vbe to input B, Channel A.

3. Connect the Ic monitor to input A, Channel B.
4. The Ib monitor can be connected to input B, Channel B, but it is not really

necessary.

Sp

rim

44

5. Connect the Scope Trigger to the external trigger input on the 7612D. (The
little blue box attached to the front of the 7612D.)

6. Set the 7612D to external trigger, negative going slope (to see turn-

off/breakdown region) for both channel A and B.
7. Select the desired time step for both channel A and B. It is imperative that

the settings for both channels be the same. If they are not, the data acquisition programs
will not run.

8. Select the appropriate forward and reverse bias settings.
9. Press the manual start. According to the instruction written by Michael

Katsaras, "Three things should happen: a) The 'Clamp Supply Indicator' should light, b)

the clamp supply voltmeter should indicate the H.V. clamp setting, and c) the collector
supply voltmeter should indicate the collector supply voltage. To set the collector supply,
choose controls [forward and reverse bias settings] which do not cause breakdown and

* adjust the voltage during the five second delay after the 'manual start' button is pressed."
Assuming all of the above has been accomplished and no problems were encoun-

tered, the operator is now ready to begin taking data.

Taking a Measurement
1. Turn the Zenith computer on. The mainframe power switch is located on

the back of the chassis on the right side. The monitor power switch is located on the front

of the monitor.
2. Although the data acquisition software will prompt the operator to check to

be sure there is a formatted disk in drive A:, it is easier to do so now, before entering the
acquisition process. Further, it is recommended that the operator have on hand at least one

additional blank formatted disk. To format a disk, place an unformatted (new) disk in drive
A:, type FORMAT A: and press <RETURN>.

• 'S3. The Zenith must be configured with at least a 32 kilobyte RAM disk. The
- drive designation must be drive G:. To check the availability of drive G:, type G: and press

<RETURN>. If the prompt symbol changes from C:\> to G:\>, then drive G: is active.
4 Type C: and press <RETURN>. If the message "Invalid Drive Specification" appears

when "G:" is typed, then the following line must be added the CONFIG.SYS file in the
root directory of drive C:, "DEVICE = RAMDISK.SYS 32". This line will set up a RAM

disk at the first available drive address. On a Zenith, this is drive G:. The file
RAMDISK.SYS must also be present in the root directory on drive C:.

4=.n
"-S°

45

4. At the C:\> prompt or any C:\xxxxxx> prompt, type TAKEDATA and
press <RETURN>. The data acquisition process now begins.

., ~5. The first thing displayed is a reminder to place a formatted disk in drive A:.

If this has not already been done, do so now.

6. Next, the operator is queried for the system time-out error value or the sys-
tem time-out. This is the length of time in seconds that the Zenith will wait for a response

from any of the devices on the bus before declaring an error. Typical values used in the

development of this software have been three to four seconds.
7. The calibration cycle is then entered. Follow the instructions on the screen

exactly. Remember, this is a loop. It may be necessary to go through the cycle several

times before calibration is complete. When instructed to adjust the position knob on the
Channel A or B plug-ins, a value of less than five is a y= small adjustment. It is, also,
easier to calibrate the 7612D if the Volts/Div is set on 5 Volts/Div on both plug-ins.

• 8. When calibration is completed, the program will then display a listing of all
files stored on drive A:. It will also display the amount of storage space available. If there
is less than 50 kilobytes, replace the disk with a blank formatted disk.

9. From this point on, follow the instructions that are printed on the screen.

When an affirmative or negative answer is requested, enter a single "Y" or "N". The letters
need not be capitalized. If a mistake is made, no damage will result as all query responses

are "idiot" proofed. Numeric entries, on the other hand, are not "idiot" proofed. So, be

sure the number is correct before hitting the <RETURN> key. The values can be edited
prior to hitting the <RETURN> key by backspacing to the point where the error was made

and re-typing. Textual entries, sentences and words, are also not "idiot" proofed, but they
are typically not critical to program execution, and if an error is made, it can be corrected
latter.

It is recommended that the operator become familiar with the operation of the entire

system by taking data on one of the older, no longer needed, test devices.

V .. _ _ _ __ _ _ _

,. The Creating Output

The operator should be familiar with the use of the HP-7470A Graphics Plotter be-

fore proceeding. The HPIB peripheral drive should be loaded with the HPIB set to be
LPT2. This function is performed in the CONFIG.SYS file with the line, "DEVICE =

HPIB.SYS LPT2=705". If that line is not present and alternative method is to type
HPIBMODE LPT2=705 at the C:\> prompt.

-. %

0,'m

" Va '' '

64~46

Obtaining a Plot
1 . Place the floppy diskette containing the device data to be plotted in drive A:.

All of the BDxxxLLq.yyy files for the particular device and series to be printed must be
present on the same disk for the data to be plotted. If the wrong disk has been inserted and

the data is not present, the software will tell the operator, and allow him or her to replace

the disk with the proper one.
2. Place a plotter pen in the right hand stall of the HP-7470A and turn the

plotter on.
3. Load a sheet of plotter paper into the plotter.

4. Type PLOTDATA while in the C:\RBSOA directory, press <RETURN>

and answer the questions that are asked. A plot will then be generated, but be patient. The
$-; process takes five to seven minutes.

Creating a Table of Breakdown Values
S1. Place the disk containing the data from the first test run in drive A:.

2. Type TABULATE while in the C:\RBSOA directory and press
<RETURN>.

3. Answer the questions asked and a file winl be created on the C:\RBSOA di-

rectory with the name BDxxxLL.TAB. This is the file containing the tabulated breakdown
data. If the operator desires, the file can be copied to floppy diskette and then deleted from

- the C:\RBSOA directory to save room on the hard disk, but this is not necessary.
The operator has created a TAB file, but this cannot be directly printed out.

Obtaining a Sorted Output of Breakdown Values
1. Type SORTABLE while in the C:\RBSOA directory and press

<RETURN>.

* 2. Answer the questions asked. If output to the line printer is desired, tell the

program to output to "LPTI", and be sure the line printer is on and ready to receive data.

Otherwise, tell the program the name and destination for an output text file.
3. There is no limit to the number of time SORTABLE.COM can be run on a

* given TAB file. So, different sort keys can be used without trouble; however, be sure to

use different output names, except in the case of the line printer, or the previous file will be

overwritten by the new output file.

0 , ' " " "

Usin2 EDITLIST.COM

This file is used to edit and maintain the device listing contained in the file IN-

DEX.DEV.

1. Type ED1TLIST while in the C:\RBSOA directory and press <RETURN>.

-. 2. Answer the questions asked.

3. Make the changes or additions desired.

Using PRCSLTWO.COM

This file is used to calculate or re-calculate the values for P and E. Its use can speed

the execution of TAKEDATA as it can allow the operator to remove the call to PROCESS2.

This is not recommended. The principle use for this program is to re-calculate P and E if it

is feared the files have been corrupted. PRCSLTWO.COM can also be used in the case of
a program crash after Vce and Ic have been read but before PROCESS2 could run prop-

erly.

1. Be sure the disk containing the files BDxxxLLA.yyy and BDxxxLLB.yyy

for the desired device and test series is in drive A: and that there is sufficient disk space 40
*, kilobytes, at least, for the storage of BDxxxLLE.yyy and BDxxxLLP.yyy.

2. Type PRCSLTWO while in the C:\RBSOA directory and press
*<RETURN>.

3. Answer the questions asked.

Powering Down the Tester

1. Make sure all bias settings are set to minimum.

2. Turn off the collector supply first, then wait at least five seconds and turn

.-. -off the tester.

3. Turn off the collector current monitoring supply and the external trigger

power supply.

4. Turn everything else off.

- V "

7. ,

"0'-f

°-.0

APPENDIX B
TAKEDATA.BAT PROGRAM LISTING

or

S48

49

Batch file program: TAKEDATA.BATr

ECHO off
" Stops DOS from echoing the following lines to the screen, except for

those commands with "ECHO" in front of them. These are remarks to

be printed to the screen.

CD'RBSOA
" Changes active directory to C:\RBSOA.

ECHO Before proceeding be sure you have a formatted disk in drive A:.

ECHO If you are not sure if the disk is formatted or not, type AC to

ECHO terminate this program; otherwise, press any other key to continue.

PAUSE
* Execution halts until operator presses a key.

HARDWARE

0 • Calls the program HARDWARE.EXE, and executes it.

:loop
.Top of the acquisition loop.

* ECHO Here is the directory on Drive A:.

DIR A:/W
- Prints the directory on drive A: to the screen.

ECHO If there is less than 50 kBytes free on this disk, replace it with a blank,

ECHO formatted disk before continuing.

PAUSE
IF EXIST G:CONTINUE.ANS DEL G:CONTINUE.ANS

- This line deletes the file CONTINUE.ANS if it exists. The file is used to
control loop execution.

* CLS

.Clears the screen.

IF NOT EXIST G:HALTER.PGM GETDEVIC

The "" mark denotes the beginning of a comment not found in the software used
in running the system. These comments are placed purely as an aid to understanding how

the programs work and why they were written the way they were.

a. i

05

if the file HALTER.PGM does not exist, then execute the program GET-

DEVIC.COM. HALTER.PGM is created when a program in the ac-

quisition loop requires information and the operator refuses to provide

it. The operator has at least two opportunities to do this and is warned
before the file is created. In the acquisition loop, prior to program ex-
ecution, a check is made for the existence of this file.

CLS
ECHO Acquire the Collector-Emitter Voltage on Channel A and the Collector
ECHO Current on Channel B. These waveforms will be read in so be sure they

ECHO are what you want before proceeding.

PAUSE
, Pauses execution while the operator obtains the desired waveforms on the

C,, 7612D.
~CLS

IF NOT EXIST G:HALTER.PGM STORDATA

• Calls and executes STORDATA.COM.

CLS
IF NOT EXIST G:HALTER.PGM PROCESS 1

* Calls and executes PROCESS 1.EXE.

CLS
ECHO Calculating Instantaneous Power and Energy, please wait...

IF NOT EXIST G:HALTER.PGM PROCESS2
- Calls and executes PROCESS2.COM. If Vbe is to be taken, there is a

pause built into the end of PROCESS2.COM.

CLS
IF NOT EXIST G:HALTER.PGM PROCESS3

• Calls and executes PROCESS3.EXE.

CLS

F EXIST G:BD???L??.* COPY G:BD???L??.* A:

If the file BDxxxLLq.yyy exist, it is copied to drive A:, and then the next

* line deletes those files just copied. This save storage space on the

RAM disk.
IF EXIST G:BD???L??.* DEL G:BD???L??.*

IF NOT EXIST G:HALTER.PGM REPEATER

51

* Calls and executes REPEATER.COM.
CLS
IF EXIST G:CONTiLNUE.ANS GOTO loop

- If the file CONTINUE.ANS was created in REPEATER.COM, then the
batch file jumps back to the top of the loop and execution begins
again.

CLS
COPY G:DEV?????.BK A:

- Copies the bookkeeping file to the floppy diskette in drive A:
ECHO Session Finished.

IF EXIST G:HALTER.PGM TYPE G:HALTER.PGM

• Prints the contents of HALTER.PGM if it exists. This tells the operator
the reason for the halting of the program.

IF EXIST G:HALTER.PGM DEL G:HALTER.PGM

.P'.1

V
.

-O*

APPENDIX C

HARD WARE PAS PROGRAM LISTING

S 52

Sj

53

PROGRAM DataAcquisition (INPUTOUTPUT);
This program is used to first, pole the bus for the 7612D, and then, cali-

brate it. Written for the MS-PASCAL Compiler. The reader should

be thoroughly familiar with the HPIB Command Library Reference
Manual, as well as the manuals for MS-PASCAL (Reference and

User's) and the 7612D Programmable Digitizer Operator's Instruction

Manual. This statement goes for all of the programs written for the

MS-PASCAL compiler (HARDWARE, PROCESS1 and PRO-

CESS3).

w'w. {$INCLUDE: 'IODECL.EX'}
* Declares the Command Library global variables.

CONST
bus = 7;

TYPE

STR3 = STRING(3);

STR9 = STRING(9);

VAR

I: INTEGER;
endline: STRING(2);

• command: STR3;

passinfo : STRING(10);

pass: STRING(12);
passer: TEXT;

• timeout: REAL;
* These are the global variables used in this program.

S**

.S

54

[$INCLUDE: 'IOPROC.EX'1
Declares the function names used in the Command Library. This way no

declaration of external functions is necessary to use the HPIB interface

*card.

PROCEDURE error_handler (error: INTEGER; routine: STR9; A: CHAR);
This procedure is used to check the error condition of the interface bus. It

returns a statement as to which function the error occurred in and what

the error was.

VAR

estring : STRING(40);

cmd : INTEGER;

BEGIN

IF error <> noerr THEN

The value "noerr" is a predeclared constant from IODECL.EX. Its value
is zero.

BEGIN

Errstr(cmd,estring);
* The procedure Errstr0 returns the statement describing the error.

WRITELN('Error in call to ',routine);

VWR1TELN(error:6,' ',estring);
IF A ='N' THEN

, The character "A" is used to cause the procedure to halt and allow the op-
S erator to correct the problem before going on. It tells the operator

whether the error is one that needs to be corrected or not.

BEGIN
V WRITE('Press <RETURN> to continue ...

• READLN
~END;

IF A ='Y'THEN
Vi BEGIN

Se.

0

55

WRITELN('CORRECT ERROR - Press <RETURN> to continue.');

READLN

END
END

END;

FUNCTION DOSXQQ(commandparameter• WORD): BYTE; EXTERN;

This is an external function declaration, meaning the function is contained

in a library. DOSXQQ happens to be in one of the standard libraries

for MS-PASCAL which is automatically searched during LINK, the
step used to create the executable file. Otherwise, the library would

need to be specified during LINK. The function allows the program
to place calls directly to DOS.

PROCEDURE BLOCK;

• This procedure does nothing but perform ten WR1TELN statements. The
procedure is used to make the screen display more readable by break-

ing up blocks of text.

VAR
I: INTEGER;

BEGIN

FOR I:= 1 TO 10 DO

WRITELN
END; (END PROCEDURE BLOCK)

PROCEDURE hardwarecheck(VAR tout: REAL);
0 ~

0

56

(Checks bus looking for active devices.)

[MOD 1 - checks 7612D)

VAR
R: REAL;

sentl3: STRING(13);

sentl : STRING(12);

sent2 : STRING(2);

sent3 : STR3;

sent5 : STRING(5);
sent7 : STRING(7);
rec: STRING(20);

- These string values are used to hold commands to be sent the 7612D and

* •receive a response back.

I,cmd• INTEGER;
.The integer value "cmd" is always used to receive the error code number

from the 10 functions in the Command Library. This value is passed
to the procedure errorhandler for error checking.

test: BOOLEAN;

ans : char;

BEGIN (HC 1)

cmd := IOEOI (7,1); {********** These four lines set ***************}

endline[1I := CHR(13); (******** EOI enable (last byte of *************)

endline[2] := CHR(10); (transmission sent with EOI active) and EOL char-}

cmd := IOEOL(7,endline,1); (as <CR> <LF> (carriage return, line feed).)
0cmd:= IORESET(bus);

- Resets bus to known state.
error_handler(cmd,'IORESET ",N);

- Performs an error check on the function IORESET.
cmd := IOCLEAR(7); (clears bus to known levels)
WRITE('ENTER SYSTEM TIMEOUT (in seconds)...');

First operator response requested.
READLN(tout); (tout = time-out in seconds).0

57

The value "tout" is the time in seconds the system will wait for a response
from any device before declaring an error.

* cmd:= IOTIMEOUT(7,tout); (defines time-out as tout)

error handler(cmd,'IOTIMEOUT','N');
cmd:= IOREMOTE(bus);

• This function is used to tell the 7612D to listen to the bus for command
input and to disable the front panel.

. error handler(cmd,'IOREMOTE"'N);

sent3 := 'ID?';
* The letters "ID?" are placed in the 3 character string "sent3. "I1)?" is a

query used to tell the 7612D to respond with its name.

test:= FALSE;
REPEAT

a Top of a loop used to allow the operator to correct any problems and re-

test the bus/7612D interface.
'i cmd:= IOOUTPUTS(70200,sent3,3);

• The string "sent" is actually sent to the 7612D here. This is done to

check the 7612D to'be sure the power is on and the bus is functioning
properly.

IF cmd = 0 THEN
BEGIN

WRITELN(The 7612D is ready for use. ');

t *If there is no 1O error, this message is printed.
.test:= TRUE;

,. END;

errorhandler(cmd,'IOOUTPUTS','N')

-- UNTIL test;
* End of loop. If there has been no error or the error has been corrected,

then the loop will stop execution.
cmd := IOLOCAL(7);

•Returns control of the 7612D to the front panel of that device rather than

the bus.

END; (HC I

0d
Id

4O

58

PROCEDURE Calibrate;

This procedure is used to check the calibration of the 7612D. Theoreti-
cally, the zero point of the curves can be set by direct software con-
trol. This was not possible when following the information given in

the 7612D operator's manual. So, this procedure for manual

calibration was developed.

VAR

totA,totB : REAL;
test: BOOLEAN;
line: STRING(l 28);
state,I,R,C,cmd : INTEGER;
response : STRING(40);

incoming : CHAR;

readit: STRING(6);

cal: TEXT;

BEGIN
ASSIGN(cal,'G:CALEBRAT.DAT');

- Makes "cal" the file designation for the file named "G:CALIBRAT.DAT".

test := TRUE;
WHILE test DO BEGIN

*This is the beginning of the calibration loop. It will continue to execute

until the condition "test" is false.
REWRITE(cal);

WRITELN('Set input coupling to GND on both Channel A & B. Then trigger');

* WRlTELN('the scope so there is a double flat line trace.');
WRITE('Press <RETURN> when ready to coniue..

* READLN;

BLOCK;
readit := 'READ A';

0OI

59

* This is the command to be sent to the 7612D. It tells the digitizer to read

out the data stored on Channel A.

cmd:= IOOUTPUTS(70200,readit,6);

- The command is sent.
FOR R:= 1 TO 3 DO BEGIN

This loop reads in the first three characters put out by the 7612D. They

are control characters unnecessary for the function at hand and are

discarded.

cmd:= IOENTERS(70200,incoming,I)

END;

state 0;

totA 0;

cmd:= IOMATCH(7,CHR(1O),state);
* This function turns off the end of line check. The Zenith will ignore the

normal characters indicating end of line. Otherwise, the lines about to

be read in could terminate prior to their real end when data is read that

has the same binary value as the end of line characters. In order for

the data to be correctly read in all of the lines must contain a total of
128 characters each.

FORR := 0 TO 15 DO BEGIN

* The three steps are taken 16 times.

1:= 128;

cmd:= IOENTERS(70200,1ine,I);

* A line of length 128 is entered into the string variable "line" from the bus.
This is the data points from the 7612D.

* WRITE(caljine)
* The line value is then written to the file referred to as "cal."

END;

* The result of the above 16 lines of 128 characters being transferred is a

* text file of 2048 ASCII characters on the RAM disk. The characters

represent the binary values of the data read from the 7612D.

state 1;

.. cnd:= IOMATCH(7,CHR(10),state);

60

''10 matching is turned back on.

I:= 40;"'4

cmd:- IOENTERS(70200,response,I);
* The trailing values for Channel A, control and error checking values, are

read.

readit :='READ B';
cmd:= IOOUTPUTS(70200,readit,6);

. The entire cycle just conducted with Channel A is repeated for Channel B.

FOR R:= 1 TO 3 DO BEGIN
I := 1;

cmd:= IOENTERS(70200,incoming,I)
END;

state 0;

totB :=0;
cmd:= IOMATCH(7,CHR(10),state);
FOR R:= 0 TO 15 DO BEGIN

I:= 128;
cmd:= IOENTERS(70200,line,I);

WRITE(caline)

END;

CLOSE(cal);
" The file referred to as "cal" now contains 4096 characters representing the

data from Channel A and B.

WRITELN('Please wait. I am thinking.');
• This line tells the operator the program is working, the data has been read

and processing is beginning.

* RESET(cal);
* The file referred to as "cal" is re-opened, the cursor position is moved to

the top of the file and the file is ready to be read.

state:= 1;

* cmd:= IOMATCH(7,CHR(10),state);

I:= 40;

cmd:= IOENTERS(70200,response,I);

, 9

61

Some final control characters are read from the 7612D returning it to nor-
mal functioning.

FOR R:= 1 TO 2048 DO BEGIN

READ(cal,incoming);
• The first 2048 characters in "cal" are read one at a time. (Channel A data)

C:= ORD(incoming);
.The characters are converted to there equivalent integer value.

totA := totA + C
. The integer values are summed.

END;

WRITELN(T'm thinking Believe me rm thinking.');
• This line is written to tell the operator that the processing of the data from

Channel A is finished and processing of data from Channel B is be-
V. ginning.

FOR R:= 1 TO 2048 DO BEGIN
, The steps done to sum the data from Channel A are repeated again, but for

the data from Channel B.
READ(cal,incoming);

C:= ORD(incoming);
ii '' [totB := totB + C

END;

CLOSE(cal);
WRITELN('It just didn"t look like it.');

• This line tells the operator that the processing is complete.

WRITELN;

cmd:= IOLOCAL(7);
* totA totA/2048;

totB totB/2048;

* The average value of the data read from the 7612D is calculated.
IF ((totA < 126) OR (totA > 128)) THEN BEGIN

0 • If the value is ± 1 of 127, which is the equivalent of the zero point, then
.-,,. calibration is complete on Channel A. Otherwise, the following is

printed and the calibration loop is executed.
WRITELN('Channel A needs to be calibrated. ');

0%

".-

-.-..--.-

'o-A

62

totA -(totA - 127);
WRITELN('Adjustment amount... ',totA:4:2);

WRITELN('Positive, turn knob clockwise; Negative, turn knob counter-clockwise')

END;

IF ((totB < 126) OR (totB > 128)) THEN BEGIN
- If the value is ± 1 of 127, which is the equivalent of the zero point, then

calibration is complete on Channel B. Otherwise, the following is
printed and the calibration loop is executed.

WRITELN('Channel B needs to be calibrated. ');

totB := -(totB - 127);
WR1TELN('Adjustment amount... ',totB:4:2);
WRITELN('Positive, turn knob clockwise; Negative, turn knob counter-clockwise')

END;
IF ((totA > 126) AND (totA < 128) AND (totB > 126) AND (totB < 128)) THEN

.' • If neither Channel A or B needs to be calibrated, then the file "cal" is
erased from the RAM disk and the loop is terminated.

BEGIN

DISCARD(cal);
WRITELN('Calibration completed.');
test := FALSE

END

ELSE BEGIN
WRITE('Press <RETURN> after adjustment is made.');

READLN;
BLOCK

END

* END

END;

- BEGIN (Main Program)

. The procedure described above are called and executed here in the Main

Program.
'.'.-.

0?-

63

hardwarecheck(timeout);

Calibrate;

, The following line create the file, "PASSER.DAT," which is used to pass

global variables between the programs in the acquisition cycle.

pass :='G:PASSER.DAT';
ASSIGN(passer,pass);
passinfo[l] :=Y,;

• The first character in the first line of PASSER.DAT is set to "Y." This
character is used to control the execution of GETDEVIC. HARD-

WARE executes only once at the beginning of the acquisition cycle,

GETDEVIC must execute after HARDWARE because the file
PASSER.DAT does not contain complete information, and GETDE-
VIC must also execute whenever a change to the last two lines of

PASSER.DAT is needed. So, the first character of line one is set at

-..- * the creation of PASSER.DAT to "Y."

passinfo[2] :='N';
passinfo[3] :='N';
passinfo[4] := 'N';

passinfo[5] :='Y';
• The next four characters in the first line of PASSER.DAT are set. The

actual value is not all that important. These are set as seen mainly

from a requirement of later programs that no longer exist.
FOR I:= 6 TO 10 DO

S'passinfo[I] :='Q';

• The last five characters in the first line are set. There is no requirement

that they be set to any particular value.
* REWRITE(passer);

WRITELN(passer,passinfo);

, PASSER.DAT is opened and the first line, referred to as "passinfo," is
written on the RAM disk.

* WRITELN(passer,' 0');

• The second line is written in PASSER.DAT. This contains the device
number for the TUT. It is set to zero here since GETDEVIC needs to

run to place the proper value in this position.

.SO
-0

0m.

64

WRITELN(passertimeout:6:3);

The time-out error value is written to PASSERDAT.

WRITE(passer,' 0',' 0');

The beginning values for the forward and reverse bias settings are writ-
ten. They are both zero at this point. STORDATA will replace these

values with the proper settings.
CLOSE(passer)

END. [End Program)

JI

D.1

I

4'.'

4,.

I

°.
-4

a.

""APPENDIX DLITN
-p"GTEI.A RGA ITN

GEDVCPA RGA

* 41J

'S.

5.

V..

0. 65

N 66

PROGRAM getdevice;
This program is compiled using Turbo Pascal (8087 Compiler). It is

used to create and maintain a file of records. The records are used to
keep track of the devices being tested. The file is called INDEX.DEV,

and it is kept on the C:ARBSOA directory. The reader should have a

thorough understanding of Turbo Pascal. For information on Turbo

Pascal, see the Reference Manual.

TYPE

STR3 = STRING[3];

STR13 = STRING[13];
STR80 = STRING[80];

PASSARRAY = ARRAY[1..10] OF CHAR;
• This data type could be declared as a STRING; however, it was found

that referencing individual elements, characters, directly was difficult,

unreliable and basically impossible using the standard STRING type.
Declaring the TYPE PASSARRAY allowed for direct access to spe-

cific array elements.

VAR

passinfo: PASSARRAY;
* "Passinfo" is the ten character string found at the beginning of

PASSER.DAT. It was important to be able to address specific char-

acters directly so this is of TYPE PASSARRAY. Later programs use

a different method to do this.

pass: STRING[12];

* passer: TEXT;
bookkeeper,storage: STRING[13];

device INTEGER;
ForBias,RevBias,timeout: REAL;

* answer: CHAR;

4.

.1
, ', - ,' , , , ,/w , . _ ,

67

PROCEDURE halter(errmsg : STR80);
This is the same procedure used in HARDWARE.PAS modified for

Turbo Pascal. It performs the same function, orderly discontinuance

of the entire acquisition cycle when program continuance would result

in a crash.

VAR

name: STRING[12];

going : TEXT[151;

BEGIN

• , name := 'G:HALTER.PGM';
ASSIGN(going,name);

REWRITE(going);

WRITELN(going,'There was some type of error in Program Getdevic.');

WRITELN(going,errmsg);
WRITELN(going,'PROGRAM HALTED');

CLOSE(going);
HALT

END;

PROCEDURE Devices (VAR devic : INTEGER; VAR bookoutstorout: STR1 3);
* "Devices" is used to create and maintain the device file. It allows the op-

erator to see a complete listing of the file and add records, if desired.
*1 From the list provided, the operator selects the device record corre-

sponding to the device under test. It passes out to the main program
the names of the storage and bookkeeping files applicable for the de-

vices selected.

CONST

first: BOOLEAN = FALSE;

W',a

*I
68

TYPE
STR40 = STRING[40];

STR13 = STRING[131;
DEVICES = RECORD

0 Declaration of the record type to be used in the file INDEX.DEV.

DEV :INTEGER;

descrip : STR40;

book: STR13;
stor : STR13

END;

VAR

index : FILE OF DEVICES;
* indexrec : DEVICES;

error,Count,MaxLineCount,LineCount,addedevices : INTEGER;

test: BOOLEAN;
inductans: CHAR;

Four: STRING[4];

Three: STRING[3];
Two: STRING[2];

Onel,One2 : STRING[Il;

BEGIN

test := TRUE;

addedevices := 0;
/4 ASSIGN(index,'C:\RBSOA\INDEX.DEV');

. The text variable "index" becomes the file designation for the file IN-

-. DEX.DEV.
4 - {$I-}

,. • This compiler option turns off the 1O error checking normally done. It

permits the program to keep running in the event the next command
causes an 10 error, however, the error condition must then be checked
within the software.

RESET(index);

4,r-

69

{$I+1

IF IOresult <> 0 THEN BEGIN
, The error condition is checked. An value of "IOresult" other than zero

indicates an error. In this case, the error is assumed to be file not

found. So, the file is created in the lines below.

WR1TELN('C:INDEX.DEV not found. Assumed first time used. ');

WRITELN('Creating C:\RBSOA\JNDEX.DEV.');

.V first:= TRUE;
'REWRITE(index)

- The file INDEX.DEV is created.

END

'V ELSE BEGIN
WRITELN('You will be asked for the device number for the device under test.');

ans := 'Q';

WHILE NOT ((ans= 'y') OR (axis 'Y') OR (ans = 'N) OR (arts = 'n')) DO BEGIN

• This "WHILE NOT" loop is used throughout all of the system software.

It can only be exited if the operator responds with either an upper or

lower case "Y" or "N." It is the typical "idiot" proofing used on all

yes or no responses. It also ensure that the value of "ans" is known

when the loop is left.
WRITELN('Do you want to see a listing of all currently cataloged devices in');

WRITE('the index file C:\RBSOAMNDEX.DEV? (Y or N)...');

READLN(ans)
- Reads the operator's response from the keyboard.

END;

IF ((ans = 'Y') OR (ans = 'y')) THEN BEGIN

* * If the answer is yes, then a listing of all the devices kept in INDEX.DEV

-: "is printed out to the screen.

LineCount := 1;

Count := 0;
SEEK(index,LineCount);

WHILE NOT EOF(index) DO BEGIN
" Until the end of the file INDEX.DEV, the steps between here and the

"02" symbol are executed.

.4

• So

* N•

RVO

70

READ(index,indexrec);

m Reads one record from INDEX.DEV.
WITH indexrec DO BEGIN

WRITE(DEV,' ');
WRITE(descrip:40,' ');
WRITE(book,' ');

WRITELN(stor)
- The individual fields in the record read from INDEX.DEV are printed to

the screen on one line.

END;
LineCount := LineCount + 1;

• The value "LineCount" is incremented by one. This is the record location
pointer used in retrieving the next record.

Count:= Count + 1;

, "Count" is used to cause the reading of device records to pause after 21.

IFout . This lets the operator read them at his or her own pace.
F Count =21 THEN BEGIN

- If this is the 21 st line since the last pause or the beginning of the list the
reading will stop until the operator hits <RETURN>.

Count:= 0;

WRITELN('Press <RETURN> for more devices.');
READLN

END

END;

WRITELN('End of indexed devices.')
,. END;

IF ((ans = 'N) OR (ans = 'n')) THEN
- If the operator did not want to see a listing, he or she is now asked for

the number corresponding to the device under test. This is the same
* number that is printed in the field "DEV."

WHILE test DO BEGIN
- This numeric response is "idiot" proofed somewhat (It will not detect a

wrong number). The operator response is read in as a string then

N

71

converted to numeric format with error checking done to be sure the
entry is indeed a number.

WR1TE('Enter the device number. ');
READLN(Four);

VAL(Four,LineCount,error);

i Conversion to numeric format is done here.
IF error = 0 THEN test:= FALSE

- If there is no error (k, error = 0), then the loop is exited by setting "test"

equal to "FALSE".

END

END;

ans := V;

IF (first OR NOT test) THEN ans := W
* • This is a complex test done to see what has occurred above. The value

"first" is BOOLEAN. If it is false, then this is not the first time the

file, INDEX.DEV, has been used. In that case, the value "axts" will

be set to "N." The other condition of the test is checking the value of
"test." If it is false, then the device number has already been input and
"ars" can be set to "N" so the next part of the procedure will not exe-

' cute.

ELSE BEGIN
- If "first" is FALSE and "test" is TRUE, then the following will be exe-

cuted. Otherwise, the value of "axis" has already been set.
WHILE NOT ((axis = 'y') OR (ans 'Y') OR (arts = 'N') OR (ans = 'V')) DO BEGIN

WRITE('Was the device you are going to be testing in the list? (Y or N)... ;
READLN(ans)

END
END;
IF (((ans= 'n') OR (axis = 'N')) AND test) THEN BEGIN

* If "axis" is set to a negative answer and "test" is TRUE (indicating that the

. device number has not as yet been specified), then the following, until
the "Mf", is executed.

LineCount FileSize(index);

SS.

"Q=0I- %, I~d~ d ~ 7 'V~ ~ ?

72

* "LineCount" holds the value representing the total number of records
stored in INDEX.DEV.

IF LineCount = 0 THEN LineCount := 1;
ILieo The first record in INDE. V is number 0. This is not used in the

system software, and this statement forces that record to be skipped.
i! test := TRUE;

WHILE test DO BEGIN
* This is the top of a loop designed to let the operator double check the de-

vice entry he or she is about to make. Until "test" is FALSE, the loop
will execute. End of the loop is denoted by "DXt".

WITH indexrec DO BEGIN
WRITELN('Enter the Device Description for Device Number ',LineCount);

WRITELN('xx - X's indicate 40

Characters.');

READLN(descrip);

. Reads in a 40 character long description of the device under test.
,.. . DEV:= LineCount;

• Gives the device number,"DEV", the value of LineCount. This way the

device record can be referred to and accessed using only the device

number.
WRITELN('The following is a list of inductor value codes. Please enter the ');
WRrTELN('the SECOND letter corresponding to the value of the inductor being

used.');
-'RITELN('LG... 44 .tH');

^6. WRITELN('LH... 146 j±H');

WRITELN('LI . . . 267 ptH');

WRITELN(L... 426 ltH');
A WRITELN('LK... 1 mH');

WRITELN('LL... 2.16mH');

-'j READLN(induct);
* * Since different inductors are used, a way to reference them needed to be

incorporated into the system software. It had to be known from the

start what the inductance was. So, a two letter code was developed to

be used as part of the storage file and bookkeeping file names. The

73

first letter "L" indicates the load is an inductor. The second letter lets

it be known what the value of the inductance was. The reason the

second letter does not start with "A" or end with "Z" is to allow other

inductances to be added at either end. It was deemed unlikely that

values in between the present ones would be used.

induct:= UPCASE(induct);
, Translates the character "induct" to uppercase, if needed.

",9 INSERT(induct,One 1,1);

° Places "induct" into the one character string "One ".

IF DEV < 10 THEN BEGIN

- Creates the storage and bookkeeping filenames for the case of a device
number less than 10.

STR(LineCountOne2);

book := CONCAT('G:DEVOO',One2,'L',One 1,'.BK');

stor:= CONCAT('G:BDOO',One2,'L',Onel,'.000')

4. END;
IF ((DEV > 9) AND (DEV < 100)) THEN BEGIN

- Creates the storage and bookkeeping filenames for the case of a device

number greater than 9 and less than 100.

STR(LineCountTwo);
9'. book:= CONCAT('G:DEVO',Two,'L',Onel,'.BK');

stor := CONCAT('G:BDO',Two,'L',Onel,'.000')

END;

IF ((DEV > 99) AND (DEV < 1000)) THEN BEGIN

* Creates the storage and bookkeeping filenames for the case of a device

number greater than 99 and less than 1000.

• STR(LineCount,Three);
book := CONCAT('G:DEV',Three,'L',Onel,'.BK');

stor := CONCAT('G:BDO',Three,'L',One 1,'.000')

END;

* WRITELN('Here is the entry for Device Number ',DEV);

WRITELN(DEV:3,' ',descrip:40,' ',book,' ',stor);

. This line lets the operator see the entire device record just created before it

is added to INDEX.DEV.

.

,A

74

END;

ans:='Q';

WHILE NOT ((axis = 'y') OR (ans = 'Y') OR (ans = 'N') OR (ans = 'n')) DO BEGIN

WRITE('Is the entry alright? (Y or N)...

READLN(ans)

Asks the operator to verify the accuracy of the record just created.

END;
IF ((ans= 'y') OR (ans =Y)) THEN BEGIN

. The device record is added to the INDEX.DEV.

addedevices := addedevices + 1;

SEEK(index,LineCount);

WRITE(index,indexrec);

ans := V;

WHILE NOT ((ans ='y') OR (ans = 'Y') OR (arts = 'N') OR (axis = 'n')) DO

BEGIN

WR1TE('Do you want to add another Device to the file? (Y or N).. .

READLN(ans)

* The operator can add another record, if so desired.

END;

IF ((as= 'n') OR (ans ='N')) THEN test:= FALSE

ELSE LineCount:= LineCount + 1;

END
ELSE BEGIN

,,'..ans :='Q';

WHILE NOT ((ans = 'y') OR (arts = 'Y') OR (ans = 'N') OR (axis = 'n')) DO

BEGIN

* WRITE('Do you want to try again? (Y or N).. .

READLN(ans)

" If the operator was not satisfied with the last record created, the operator
-A is asked if he or she wants to try again. A negative answer halts the

* program.

END;

-"* . IF ((ans ='n') OR (ans ='N)) THEN

HALTER('Operator unwilling to try to define device.')

Ile

0-P.4

75

END

END

.1' END;

IF (((ans= 'Y') OR (ans = 'y')) AND test) THEN BEGIN

• This test uses the value placed in "ans" when the operator was asked if

the device under test was in the list provided when the contents of
INDEX.DEV was printed to the screen. A positive response means

the device was in the list, and if "test" is TRUE, then the device num-

ber has not yet been specified.

test:= TRUE;

WHILE test DO BEGIN

- The device number is now entered using the same error trapping routine

used before and a check is made to see if the device number is within

the range of values in INDEX.DEV.

"." WRITE(Enter the device number. ');

READLN(Four);

VAL(Four,LineCount,error);

IF error = 0 THEN test:= FALSE;

MaxLineCount := FileSize(index);

IF MaxLineCount < LineCount THEN BEGIN

WRITELN('Device Number exceeds current index limit ikt no such device).');

WR1TELN('Try again.');

. test:= TRUE

END

END

".-'"END;

test := TRUE;

WHILE test DO BEGIN
* 0 This loop displays the record for the device selected anr. asks the operator

". if it is correct. If it is, the storage and bookkeeling filenames are

placed into the STRING variLales "storout" and "bookout" in order to

be passed out of the procedure to the main program, and the loop

-L N'

7b

ends. If the device is incorrect, the operator is asked for a new device

number, the record for the new device is displayed and the operator is
again asked to verify the record.

C EK(index,LineCount);

WRITELN('This is the device you selected.');
READ(index,indexrec);

WITH indexrec DO BEGIN

WRITE(DEV,' ');
WRITE(descrip:40,' ');
WRITE(book,' ');

WRITELN(stor)
.. END;

ans

WHILE NOT ((ans = 'y') OR (ans = 'Y') OR (ans = 'N') OR (ans = 'n')) DO BEGIN

WRITE('Is this the correct device? (Y or N)... ');

READLN(ans)
END;

IF ((ans= 'y') OR (ans = 'Y')) THEN BEGIN

test:= FALSE;
WITH indexrec DO BEGIN

devic:= DEV;
bookout := book;

storout := stor
e4 END

END
ELSE BEGIN

* test:= TRUE;

WHILE test DO BEGIN
WRITE('Enter the correct device number. ');
READLN(Four);

* VAL(Four,LineCount,error);

IF error = 0 THEN test := FALSE

END;

test:= TRUE

V' .

77

END
END;

CLOSE(index)

END;

BEGIN [MAIN PROGRAM)

pass := 'G:PASSER.DAT';
ASSIGN(passer,pass);

RESET(passer);
*The file PASSER.DAT is opened, ready to be read.

* READLN(passer,passinfo);

READLN(passer,device);
READLN(passer,timeout);
READ(passer,ForBias,RevBias);

*The first four lines of PASSER.DAT are read into GETDEVIC. The last

two lines are not needed.

CLOSE(passer);
IF ((passinfo[1I = Y) OR (passinfoill = 'y')) THEN BEGIN

If the first character in the 10 character string in PASSER.DAT is a "Y"

or "y," then the device under test is a new device, different from the

last device tested, or this is the first time through the acquisition cycle.
In either case, new bookkeeper and storage filenames need to be
placed in PASSER.DAT lines five and six.

* Devices(device,bookkeeper,storage);

*The new names are found.

WHILE NOT ((answer = y') OR (answer = Y) OR (answer =W'n) OR (answer
A= 'N)) DO BEGIN

* * The bookkeeping file needs to be transferred from drive A: or created, if

this is the first test for the device. This answer to this question tells

the program STORDATA where to look for the bookkeeping file.

-. WRITELN('Has the book keeping file for this device been transferred to the ');

78

WRITE('RAM disk (drive G:)? {If you are not sure, answer "N") (Y or N)...

READLN(answer)

END;
p (

IF ((answer = 'Y') OR (answer = 'y')) THEN passinfo[7] :=N';",S
~IF ((answer = '') OR (answer = 'n')) THEN passinfo[71 :=Y,;

The seventh character in the first line of PASSER.DAT is used to convey

the necessary information to STORDATA.

REWRITE(passer);

WRITELN(passerpassinfo);

WRITELN(passer,device);

WR1TELN(passer,timeout);

WRITELN(passer,ForBias,RevBias);
WRITELN(passer,bookkeeper);

WRITELN(passer,storage);

CLOSE(passer)
• The new PASSER.DAT file overwrites the old one.

END

END. (MAIN PROGRAM)

-.

'.

-

APEDI

STRAAA RGA SIG

h~79

0I11 1 11

'V. 80

PROGRAM Bookkeeping;

This program is responsible for creating and maintaining the

bookkeeping file. Written for the Turbo Pascal Compiler with 8087

support.

TYPE

ST1O = STRING[10];

ST13 = STRING[13];
STR80 = STRING[801;

VAR
keeper,stor: STRING[13];

* stopper: TEXT;
passinfo• STRING[10];

break,recordit : CHAR;

device: INTEGER;
ForBias,RevBias,timeout: REAL;

5-

PROCEDURE halter(errmsg: STR80);

* This is the same procedure found in all of the previous programs in the

acquisition cycle. It is exactly the same as the procedure in GETDE-
VIc.

VAR

name: .STRING[121;
going: TEXT[15];

* BEGIN
name := 'G:HALTER.PGM';

ASSIGN(going,name);
REWRITE(going);

'5-

0

81

WRITELN(going,'There was some type of error in Program Stordata.');

WRITELN(going,errmsg);
WRITELN(going,'PROGRAM HALTED');

CLOSE(going);
HALT

END;

PROCEDURE passin out (VAR info: ST10; VAR DEV" INTEGER;
VAR timeo,fBiasrBias: REAL;

. VAR bookkeeper,storage : ST13; IN-OUT : CHAR);

• This procedure is used in all of the succeeding acquisition cycle pro-

grams. It is used to read or write the file PASSER.DAT. Depending

upon the character "INOUT," the procedure reads the values in

, PASSER.DAT or writes new values to PASSER.DAT. The values
* read are passed to the main program as global variables. The same

variables, possibly altered, are passed back to this procedure prior to

the end of the program to be written to PASSER.DAT.

VAR

pass: STRING[13];

passer: TEXT;

BEGIN

pass :='G:PASSER.DAT';
* ASSIGN(passer,pass);

-. IF INOUT = 'I' THEN BEGIN
- If this test is met, then the values are read from PASSP.R.DAT.

RESET(passer);

* READLN(passer,info);
READLN(passer,DEV);

READLN(passer,timeo);
READLN(passer,fBiasrBias);

0

82

READLN(passer,bookkeeper);

READLN(passer,storage);

CLOSE(passer)
END;
IF INOUT = 'O' THEN BEGIN

• If this test is met, then the values are written to PASSER.DAT.

REWRITE(passer);

WR1TELN(passer,info);

WRITELN(passer,DEV);

WRITELN(passer,timeo);

WRITELN(passer,fBias,rBias);

WRITELN(passer,bookkeeper);
WRITELN(passer,storage);

CLOSE(passer)S
END

END; (End PassInOut)

PROCEDURE findbookkeeper(bk: ST13; newdevice: CHAR);

. This procedure is concerned with first, finding out if the bookkeeping file

exists. If it doesn't, then it creates a new bookkeeping file on the RAM

disk. If it does exist, the procedure will find it and transfer it to the

RAM disk if it hasn't been already.

VAR

transfer,ans : CHAR;

book,temp" TEXT;

abk: STRING[13];
R,I INTEGER;

BEGIN
ASSIGN(book,bk);

IF ((newdevice = 'y') OR (newdevice = 'Y')) THEN BEGIN
-N

J

WW

83
• The variable "newdevice" is actual the seventh character in the first line of

PASSER.DAT. If that value meets the test, then the following, until

the "'" symbol, is executed.
ans V;

WHILE NOT ((ans= 'y') OR (axts ='Y') OR (axis = 'n') OR (ans = WN')) DO BEGIN

*'WRITE('Is this the first time this device has been tested? (Y or N). . .

READLN(ans)

END;
IF ((axis = 'Y') OR (ans = 'y')) THEN BEGIN

WRITELN('Creating new book keeping file...

REWR1TE(book);

FOR I:= 1 TO 10 DO
WRITELN(book,' 0 0');

• If this is the first time the device has been tested, then a new bookkeeping

0 • file is created. The file's first 10 lines are "0 0." These numbers will

be changed as forward and reverse bias settings replace them. This al-
lows for 10 different forward and 10 different reverse bias setting.

-* WRITELN(book,'None.');

The next line will contain the comment line, but for now, holds only the

word "None."
FOR I:= I TO 10 DO BEGIN

FOR R:= 1 TO 9 DO

WRITE(book,' 0 0');

WR1TELN(book,' 0 0')

. The final section of the bookkeeping file is 10 rows of 20 columns of ze-
V'.

ros. See Chapter 3, Files Created and Individual Structure for more on

* this section.

END;
CLOSE(book)

END; (IF ((ans ='Y...)

'.- . IF ((ans = 'N) OR (ans= 'n')) THEN BEGIN
." ° If this was not the first time the device had been tested, then the follow-

-' bing, until the "fm" symbol, will be executed.

84

abk:= bk;
DELETE(abk, 1,1);

INSERT('A',abk,1);

. These two lines change the bookkeeping filename from

*.'. G:DEVxxxLL.BK to A:DEVxxxLL.BK and places that new name in

the STRING, "abk."

ans :='Q';

WHILE NOT (ans= 'Y) DO BEGIN

• This is the top of a loop which looks for the file on drive A: and copies

the file to the RAM disk.

WR1TELN('Insert the disk containing ',abk,' in drive A:');
, This line tells the operator to place the disk containing the bookkeeping

file in drive A:.
WRITE('Press <RETURN> when ready.');

READLN;

ASSIGN(temp,abk);
' " [$I-)

RESET(temp);

t$I+)
IF loresult = 0 THEN BEGIN

_ The program now looks on drive A: for the bookkeeping program. If it

finds the file then it will be copied to the RAM disk by the next four

lines. The value "ans" will be set to "Y" and this WHILE loop will

end. Otherwise, the loop is re-executed and the operator can place a

different disk containing the correct file in drive A:.

REWRITE(book);

* WHILE NOT EOF(temp) DO BEGIN

READ(temp,transfer);
WRITE(book,transfer)

• The file is transferred from A: to the RAM disk, G:, one character at a

* time until the End Of File is reached.S.
. END;
V; CLOSE(book);

CLOSE(temp);

S%

O 0I

85

ans Y

END

ELSE BEGIN
• If the "loresult" was not zero (&, there was an error), then the screen is

cleared and the line below is written to the screen.

CLRSCR;

WRITELN('ERROR ACCESSING FILE ON SPECIFIED DRIVE.');

ans
*-.-.. WHILE NOT ((ans= 'y') OR (ans= 'Y') OR (ans = 'n') OR (ans= 'N')) DO

BEGIN
* This gives the operator a chance to decide to try again or not. If the an-

swer is no the program is halted using the procedure HALTER.
WRITE(Try again? (Y or N)...
READLN(ans)

END;
IF ((ans = 'Y') OR (ans = 'y')) THEN ans 'Q';
IF ((ans ='N') OR (ans = 'n')) THEN

HALTER('User initiated Halt.')

END [ELSE)

END (WHILE NOT ((ans =Y...
End of the loop which transfers the bookkeeping file to drive G:.

END (IF ((ans ='n...

END (IF newdevice...)
* If "newdevice" had been "N," then the entire procedure would have been

skipped, and it would have been assumed that the file had already been
* transferred to the RAM disk. This is done so that on repetitive tests the

procedure does not execute when it is not needed.

END; (END PROCEDURE)

PROCEDURE updatebk(bdstring: ST13; VAR fBiasrBias REAL; VAR bd: CHAR);
J. * This procedure is used to maintain and update the bookkeeping file.

86

TYPE

setting = ARRAY[1..2,1..10] OF REAL;
intarr = ARRAY[I..2,L..10,L..10] OF INTEGER;

VAR

s : setting;

testcount: intarr;
long: STRING[80];

Y,X,I,R,C: INTEGER;

temp,book: TEXT;

t: STRING[13];
Vtransfer,ans : CHAR;

BEGIN

ASSIGN(book,bdstring);
RESET(book);

I ans := 'Q';

WHILE NOT ((ais = 'y') OR (arts = 'Y') OR (axis = 'n') OR (axs 'N')) DO BEGIN
WRITE('Did break down occur? (Y or N)...)

READLN(ans)
The response here serves two purposes. First, it tells the rest of the pro-

cedure what type of update needs to be done. Second, the response

will be stored as the first letter in the first line of the storage file,
BDxxxLLA.yyy. The response is y. important to the programs,

PLOTDATA and TABULATE.

END;
CLRSCR;

bd := ans;
WRITELN('Here are the current forward and reverse bias settings.');

0 WRITELN('Forward Bias... ',fBias:0:6,' Reverse Bias... ',rBias:0:6);

* These lines print to the screen the current values for the forward and re-

verse bias setting stored in PASSER.DAT. If they are not correct, they

must be changed. As it was not envisioned that the settings would

0

87

remain constant for a large number of tests in a row, the update process

is executed every acquisition cycle whether needed or not.

ans:='Q';
FOR I:= 1 TO 10 DO

' READLN(book,s[1,11,s[2,I]);

• The first 10 lines of the bookkeeping file are read in to the 2 by 10 array

WHILE NOT ((ans= 'y') OR (ans 'Y') OR (ans= 'n') OR (ans = 'N)) DO
BEGIN

WRITELN('Is the Forward Bias Setting correct for the measurement just taken?');
WRITE(' (Y or N)...');

READLN(ans)

• The question refers to the bias setting currently in PASSER.DAT.

* END;
IF ((ans = 'y') OR (ans= 'Y')) THEN BEGIN

. If the setting is correct, the breakdown counts in section three of the

bookkeeping file are updated as outlined in Chapter 3, Files Created

and Individual Structure.
.(';"-"x := 1;

WHILE fBias <> s[1,X] DO X:= X + 1
• The column position of the appropriate breakdown count pair is located

by matching the current bias setting to the one contained in the array

END;

IF ((ans = 'n') OR (ans= 'N')) THEN BEGIN

If the setting is not correct, then a listing of the settings stored in the

bookkeeping file is printed to the screen.,..

"-" WRITELN('Here are the Forward Bias Settings currently on disk (zero = no setting).');

FOR I:= I TO 5 DO
MWRITE(s[1,I1:0:6,' ');

WRITELN;
FOR I:= 6 TO 10 DO

VRITE(s[1,I]:0:6,' ');

VWRITELN;
0

4 W

88

arts
WHILE NOT ((ans - 'y') OR (ans= 'Y') OR (ans = 'n') OR (arts = 'N1)) DO

BEGIN
* m

t WRITELN('Is the setting used on this test in the above list?'):

WRITE(' (Y or N)...

READLN(ans)

,, END;

IF ((arts = 'V') OR (arts = 'N')) THEN BEGIN
• If the current setting is not contained in the bookkeeping file, then the

operator is asked to input the new setting.

WRITE('What is the current setting?. .)
READLN(fBias);
I1:= 1;

WHILE s[1,I <> 0 DO

I:=I+ 1;
s[l,I] := fBias;
X:=I

• The new setting is placed in the position of the first zero value in the ar-
ray "s." The column location of the breakdown count pair is also ob-

tained.

END;
IF ((axis = 'y') OR (axis = 'Y')) THEN BEGIN
WRITE('Please enter the value of the current setting. . . .

READLN(fBias);

X:= 1;
WHILE fBias <> s[1,X] DOX := X + 1

4%- * If the current setting is in the bookkeeping file, the operator is again

N asked to input the current setting. The setting is compared to those kept
in the array "s." When a match is found, the location is used to provide

the column of the breakdown count pair.
S* • This method of file update is not elegant, logical or simple, but it does

work. More trouble was involved in changing this procedure than it

was worth. So, it wasn't.

END;

4'

0

89
END; [If ((ans ='n'...forward bias)
ans :='Q';
WHILE NOT ((ans = 'y') OR (ans 'Y') OR (ans = 'n') OR (ans = W)) DO
BEGIN
WRITELN('Is the Reverse Bias Setting correct for the measurement just taken?');
WRITE(' (Y or N)...

READLN(ans)

END;
The exact same method used to update the forward bias setting was used

to update the reverse. The only difference is that instead of using the
s[1,XJ values, the s[2,Y] values were using. Where Y is the row
position of the breakdown count pair.

IF ((ans = 'y') OR (ans 'Y')) THEN BEGIN
Y := 1;

-WHILE rBias > s[2,Y] DO Y := Y + 1
END;
IF ((ans= 'n') OR (ans = 'N')) THEN BEGIN
WR1TELN('Here are the Reverse Bias Settings currently on disk (zero = no setting).');
FOR I:= 1 TO 5 DO

WRITE(s[2,I:0:6,' ');
WRITELN;
FOR I:= 6 TO 10 DO

WRITE(s[2,I]:0:6,' ');
WR1TELN;

ans
WHILE NOT ((ans = 'y') OR (ans= 'Y') OR (ans= 'n') OR (ans = 'N')) DO
BEGIN
WRITELN('Is the setting used on this test in the above list?');
WRITE(' (Y or N)..);.

READLN(ans)

END;
IF ((ans= 'n') OR (ans = 'N')) THEN BEGIN
WRITE('What is the current setting?...
READLN(rBias);

V . N

90
I:=1;

WHILE s[2,I] <> 0 DO

I:=I+1;

s[2,I] := rBias;
Y:=I

END;
IF ((ans = 'y') OR (ans = 'Y')) THEN BEGIN
WRITE('Please enter the value of the current setting

READLN(rBias);
Y .= 1;

WHILE rBias <> s[2,Y] DO Y:= Y + I
END;

END; (If ((ans = 'n'...reverse bias)

- The column and row position for the breakdown count pair have now

been found.
- The following is involved with updating or not updating the comment

line. If desired, the line can be changed.

WRITELN('Here is the current comment line for ',bdstring,'.');

READLN(book,long);

WRITELN(Iong);
ans :='Q';
WHILE NOT ((ans = 'y') OR (ans = 'Y') OR (ans = 'n') OR (ans= 'N)) DO

BEGIN
WRITE('Do you want to change the comment line? (Y or N)...)

READLN(ans)
END;

* IF ((ans = 'y') OR (ans = Y')) THEN BEGIN
WRITELN('Enter new comment line.(Maximum of 80 characters)');

READLN(long)
END;

* * This ends the section concerned with updating the comment line.
FOR R:= I TO 10 DO

FOR C:= I TO 10 DO

FOR I:= 1 TO 2 DO

, --.

91

READ(book,testcount[I,C,R]);
• The third section of the bookkeeping file is read and place in a 3 D array.

,* IF ((bd = 'y') OR (bd = 'Y')) THEN BEGIN

testcount[1 X,Y] :- testcount[1,X,Y] + 1;
testcount[2,X,Y] := testcount[2,X,Y] + 1

END;
• If breakdown occurred both the number of breakdowns,

"testcount[1,X,Y]," and the total number of tests, "testcount[2,X,Y],"
are increased by one.

IF ((bd = 'n') OR (bd = 'N1)) THEN

testcount[2,X,Y] := testcount[2,X,Y] + 1;
• If breakdown didn't occur, then only the total number of tests is in-

creased.
*. CLOSE(book);

REWRITE(book);
* The bookkeeping file is closed and then re-opened in preparation for it

being overwritten with a new, updated, version of the bookkeeping
file.

FOR I:= 1 TO 10 DO
WRITELN(book,s[1,11,' ',s[2,11);

. The bias settings are written to the bookkeeping file on the RAM disk.
WRITELN(book,long);

* The comment line is written.
FOR R:= 1 TO 10 DO BEGIN

FOR C:= 1 TO 9 DO

: FOR I := 1 TO 2 DO

WRITE(book,testcount[I,C,R],' ');
WRITELN(book,testcount[1,10,R],' ',testcount[2,10,R])

*END;

* Section 3 is then written.

bd := UPCASE(bd);

CLOSE(book)
END;

N.

92

BEGIN (MAIN PROGRAM)

pass inout(passinfo,device,timeoutForBias,RevBias,keeper,stor,T);
- The global variables from PASSER.DAT are read.

findbookkeeper(keeper,passinfo[7]);

• The bookkeeping file is created or copied over to the RAM disk.

updatebk(keeper,ForBias,RevBias,break);

- The bookkeeping file is updated.

DELETE(passinfo,3,1);
INSERT(break,passinfo,3);

* The "Y" or "N" response to wether or not breakdown occurred is placed

in the third character of the first line of PASSER.DAT.

recordit ''
WHILE NOT ((recordit = 'y') OR (recordit = 'Y') OR (recordit = 'n') OR

(recordit = 'N')) DO BEGIN
WRITE('Do you want to keep this run? (Y or N). .'

-* READLN(recordit)
END;

• The operator is asked if he or she wants to store the data currently dis-

played on the 7612D.

IF ((recordit = 'y') OR (recordit = 'Y')) THEN BEGIN

DELETE(passinfo,6,1);
*. INSERT('Y',passinfo,6)

END
0 *If the data is to be kept, the sixth character in the first line of

PASSER.DAT is set to "Y." This will cause PROCESS1 to read the
data and place it in two files on the RAM disk similar to as was done in

HARDWARE, Procedure Calibration. The character will also tell

o PROCESS2 to read those two files and calculate the Instantaneous
Power and Energy.

ELSE BEGIN
DELETE(passinfo,6,1);

St

93

INSERT('N',passinfo,6)

END;
*If the operator does not want the data, then "N" in position 6 of the first

line of PASSER.DAT will tell both PROCESS 1 and PROCESS2 not to
execute.

recordit ''
WHILE NOT ((recordit = y') OR (recordit ='Y) OR (recordit = 'n') OR

(recordit = WN)) DO BEGIN
WR1TE('Do you want to measure the Base-Emitter Voltage? (Y or N) . . .

READLN(recordit)

END;
The operator is asked if he or she will measure VJbe. If the answer is no,

the second character in line one of PASSER.DAT will be set to "N"
and the program will not execute. If the answer is yes, then the char-
acter is set to "Y" and PROCESS2 will pause as it finishes calculating

* ~. P and E to allow the operator to acquire Vbe. Then, Vbe will be col-

((reordt =lected and written to a RAM disk file like Vce and Ic.
IF (rcri='y') OR (recordit = Y')) THEN BEGIN
DELETE(passinfo,2,l);

INSERT('Y',passinfo,2)
END

ELSE BEGIN
DELEI'E(passinfo,2,I);

INSERT('N',passinfo,2)
V~~A END;

pass -in-out(passinfo,device,timeout,ForBias,RevBiaskeeper,stor,'O')

*The changes in the global variables are passed back to this procedure
which then writes a new PASSER.DAT, destroying the old.

END. f{MAIN PROGRAM)

0

1

p.-

0

p." PROGRAM LISTING

D~.

0

'p

0

J

-"V

* 94

0

p. '19; ~ t~

95

PROGRAM ProcessLevelOne(INPUT,OUTPUT);

This program reads the data captured on Channel A and B. It writes the

data out to two separate files, one for each channel. This program is

written for the MS-PASCAL compiler.

($INCLUDE: 'IODECL.EX'J
• The file IODECL.EX contains the declarations necessary to the Com-

mand Library. These declarations are included as part of the code for
. this program by using this statement.

.4. CONST
S.

bus = 7;

TYPES
STEXT =TEXT(45);

STR13 = STRING(13);

ST1O = STRING(10);

STR9 = STRING(9);

LST80 = LSTRING(80);

setting = ARRAY[1..2,1..101 OF REAL;

VAR

bookkeeper,storage : STRING(13);
passinfo: STRING(10);

- answer,process : CHAR;

device: INTEGER;

ForBias,RevBias,timeoutHscale• REAL;

0g

96

[$INCLUDE: 'IOPROC.EX'1
* Includes all the external function declaration necessary to use the Com-

mand Library.

{ **]

PROCEDURE ENDXQQ; EXTERN;

External procedure which is part of extended MS-PASCAL. Allows the

program to be terminated prior to the normal ending. Performs the

same function as HALT (not HALTER) in Turbo Pascal.

0

PROCEDURE halter(errmsg: LST80);

• Same procedure as in the preceding programs. Halts the data acquisition
software.

VAR

-' name: STRING(12);

going: TEXT(15);

BEGIN

name :='G:HALTER.PGM';

ASSIGN(going,name);

* REWRLTE(going);
WRITELN(going,'There was some type of error in Program Process l.');

WRITELN(going,errmsg);

WRITELN(going,'PROGRAM HALTED.');

* CLOSE(going);

ENDXQQ

END;

p:i

0

97

PROCEDURE passut..out (VAR info: ST1O; VAR DEV : INTEGER;

VAR tixneo,fBiasrBias : REAL;
VAR bookkeeper,storage, : STR 13; IN_-OUT :CHAR);

Same as in STORDATA see that program for detais.

VAR
pass : STRING(1 2);

passer: STEXT;

BEGIN

pass := 'G:PASSER.DAT';
* ASSIGN(passer,pass);

IF INOUT = 'I' THEN BEGIN

RESET(passer);

READLN(passer,info);
READLN(passer,DEV);

READLN(passer,timeo);

READLN(passer,fBias,rBias);
READLN(passer,bookkeeper);

READLN(passer,storage);

CLOSE(passer)
END;
IF INOUT = '0'THEN BEGIN

REWRITE(passer);

* WRITELN(passer,info)

WRITELN(passer,DEV);
WRITELN(passer,tinieo);

WRITELN(passer,fBias,rBias);

* WRITELN(passer,bookkeeper);
WRITELN(passer,storage);
CLOSE(passer)

END

LSV~

98

END; (End Pass_In_Out)

PROCEDURE error_handler (error: INTEGER; routine: STR9; A: CHAR);

Same procedure as that found in HARDWARE. See that program for

details.W,

VAR
V€ estring: STRING(40);

, BEGIN
IF error <> noerr THEN

BEGIN

Errstr(error,estring);
WRITELN('Error in call to ',routine);
WRITELN(error:6,' ',estring);

IF A = 'M THEN

BEGIN
WRITE('Press <RETURN> to continue ...

,A READLN

.~END;
IF A = YTHEN

BEGIN

WRITELN('CORRECT ERROR - Press <RETURN> to continue.');

~ READLN
• END

END;

PROCEDURE setup(tout: REAL);

k5'...

99

Sets the bus to a known state. Makes sure that the IOTIMEOUT is set.
Sets the 7612D to remote so it is ready to receive later commands from

the bus.

V VAR

cmd :INTEGER;

endline: STRING(2);

BEGIN

cmd := IOEOI(7,1);
-error_handler(cmd,'IOEOI ','Y');

endline[1 := CHR(13);
endline[2] CHR(10);
cmd := IOEOL(7,endline,l);

cmd:= IOREMOTE(7);
errorhandler(cmd,'IOREMOTE ','Y');
cmd:= IOTIMEOUT(7,tout)

END;

-', PROCEDURE horscale (VAR Hsc : REAL);
* This procedure reads the horizontal scale of the both channels of the

7612D. The values must be the sfme or the program will abort.

VAR
* response: STRING(25);

I,cmd• INTEGER;
HscA,HscB : REAL;

vsc: STRING(5);

BEGIN

vsc :='HSFA?';
cmd:= IOOUTPUTS(70200,vsc,5);

9 S M -1

SM 1 'o 3

100

Sends the query to the 7612D which causes it to return the Horizontal

Scale Factor of Channel A. The value is in seconds between data sam-

ples.

I:= 25;

cmd := IOENTERS(70200,response,);

• The characters preceding the scale factor are read.

cmd:= IOENTER(70200,HscA);

• The horizontal scale factor is read.

cmd := IOENTERS(70200,response,I);

• The trailing characters are read to release the 7612D.
4.I

vsc :='HSFB?';

cmd := IOOUTPUTS(70200,vsc,5);

, The procedure is repeated for Channel B.

* I:= 25;

cmd := IOENTERS(70200,response,I);

cmd:= IOENTER(70200,HscB);

cmd := IOENTERS(70200,response,I);

IF HscA <> HscB THEN BEGIN

- The scale factors are compared. If not equal, the program is halted.

WRITELN('Horizontal Scale Factor are not equal. They must be.');

WRITELN('Program Halted.');

HALTER('Horizontal Scale Factor are not equal.')

4END

ELSE Hsc := HscA

• The horizontal scale factor is passed out to the main program.
, END;

PROCEDURE ChannelA(HscA,fBiasrBias• REAL; stor: STR13; breakdown CHAR);

* Channel A's data is read and written out to RAM disk.

"4'

VAR

- line: STRING(128);

r4,

0d'

r 44 ~ 24.4'

101

store: STEXT;

state,I,R,C,cmd : INTEGER;
response: STRING(40);

incoming: CHAR;
N vsc : STRING(5);

VV,probeA : REAL

v' readit: STRING(6);

going: STRING(14);V

BEGIN
WRITELN('Reading data from Channel A.');

probeA := 1;
• Multiplication factor for the probe attached to Channel A. In this case,

* the plug-ins on the 7612D recognize the attenuation factor on the probe

and automatically compensate for it. So, no scaling is needed. If the

probes are changed, then these values need to be re-examined.
FOR I:= I TO 9 DO

going[I] := stor[l];

-going[10] := A;
FOR I:= 10 TO 13 DO

going[I+1] := stor[Il];
These last five lines take the storage filename, "stor," which was read

from PASSER.DAT and transferred to this procedure and makes a new
storage filename called, "going." "Going" has an additional letter "A"
after the inductor designation signifying that the file contains the data
from Channel A, namely Vce. For more information see Chapter 3,

Figure 8.
ASSIGN(store,going);

REWRJTE(store);
WRITELN(store,breakdown):

WRITELN(store,fBias,' ',rBias);

• The breakdown "Y" or "N" character is written in the first line of the file."or

Next, the forward bias and reverse bias settings are written in line two.

vsc := VSLI?';S

S

102

cmd:= IOOUTPUTS(70200,vsc,5);

1d := 5;
cmd:= IOENTERS(70200,vsc,);

%cmd := IOENTER(70200,VV);

I:=40;

cmd:= IOENTERS(70200,response,I);
- The last seven lines read the value of the Volts/Div setting on Channel A.

WRITELN(store,VV,' ',HscA,' ',probeA);
The value of the vertical scale, the horizontal time scale and the probe

multiplication factor are written to the storage file in line three.

readits'READ Aa;
cmd:= IOOUTPUTS(70200,readit,6);

V* The 7612D is ordered to transmit the data on Channel A.

FOR R:= 1 TO 3 DO BEGINS -I := 1;

cmd:= IOENTERS(70200,incoming,I)

END;
* The first three characters in the data stream sent by the 7612D are

stripped. They are unused control characters.

state := 0;
cmd:= IOMATCH(7,CHR(10),state);

• The end of line test is disabled. This prevents the data strings about to be

read from being terminated before the required 128 characters have
been read. The data is binary. If one of the bytes has the same value

Ai as the character used to sense the end of line, then the line would end
prematurely if the checking were left on.

* FOR R:= 0 TO 15 DO BEGIN

1=128;

cmd: IOENTERS(70200,line,D);
WRITE(store,line)

* . Sixteen sets of 128 characters are read from the 7612D and then written

to the RAM disk. The process takes less than one second per channel
this way. If the characters were read one at a time, instead of in strings,

it would take over 30 seconds to read all of the data.

103

END;

CLOSE(store);

state := 1;

cmd := IOMATCH(7,CHR(1O),state);

The check for the end of line character is turned back on. It would be

dangerous to leave it off except when absolutely necessary.

I:= 40;

I, cmd := IOENTERS(70200,response,i)

V The trailing control characters are stripped of the output from Channel A.

END;

r •PROCEDURE ChannelB (HscB,fBiasrBias : REAL; stor: STR 13);

- • This procedure performs the same function as "ChannelA." Only the

differences are noted.

VAR

line: STRING(128);

store: STEXT;
state,I,R,C,cmd : INTEGER;

incoming : CHAR;

J . vsc : STRING(5);

VI,probeB : REAL;

readit: STRING(6);

e going : STRING(14);

response: STRING(40);

BEGIN

WRITELN('Reading data from Channel B.');
* probeB := 10;

FOR I:= 1 TO 9 DO
going[I] := stor[l];

going[10] := 'B';
S

0

104

*"B" is inserted as "A" was in the preceding procedure.

FOR I:= 10TO 13DO
going[-I-1:= stor[I];

vsc :'VSR1?';
cmd: IOOUTPUTS(70200,vsc,5);

I:d 5; NES720,s,)

cmd: IOENTER(70200, vI);

1=40;
cmd :=IOENTERS(70200,response,D);

readit:='READ B';
- The data from Channel B is read instead of Channel A.

cnid: IOOUTPUTS(70200,readit,6);
ASSIGN(store,going);

REWRTI'Estore);
WRITELN(store,fBias,' ',rBias);

WR1TELN(store,VI,' ',HscB,' ',probeB);
FOR R:= ITO 3DO BEGIN
I: =1;

cmd: IOENTERS(70200,incoming,I)

".4 END;
state: 0;,
cmd: IOMATCH(7,CHR(10),state);
FOR R:=OQ15 DO BEGIN

1: 128;

'a''cmd: IOENTERS(70200,line,1);
* WVRITEstore,line)

END;
state: 1;
cmd: IOMATCH(7,CHR(10),state);

* 1:= 40;

cmd: IOENTERS(70200,response,I);

cmd: IOLOCAL(7);
CLOSE(store)

.. 105

END;

PROCEDURE addone(VAR stor: STR13);

This procedure adds one to the test series number at the end of the stor-

age filename. See Chapter 3, Figure 8 for more on the series number.

VAR
I INTEGER;

BEGIN

IF ORD(stor[131) = 57 THEN BEGIN

*IF ORD(stor[12]) = 57 THEN BEGIN
IF ORD(stor[11]) = 57 THEN BEGIN

• If the series number is 999, then ...
WRITELN('Too Many Indexed Devices. Program Halted.');

HALTER(Too Many Indexed Devices.')

END
ELSE BEGIN

I := ORD(stor[11]) + 1;

stor[1I := CHR(I;
stor[12] := CHR(48);

stor[13] :=CHR(48)
* If the series number is x99 (where x is 0 to 8), then the "x" is increased

by one and the two nines are set to zero.

S END

END
5ELSE BEGIN

I := ORD(stor[12]) + 1;

* ° stor[121 := CHR(I);

stor[13] := CHR(48)

* If the series number is xy9 (where y is 0 to 8), then y is increased by one

and the nine is set to zero.

106

END
END
ELSE BEGIN
I: ORD(stor[13]) + 1;
stor[131 : CHR(I)

If the series number is xyz (where z is 0 to 8), then z is increased by one.

END
END;

Cv BEGIN
pass _in-out(passinfo,device,timeout,ForBias,RevBias,bookkeeper,storage,T);

IF ((passinfo[6] = 'Y') OR (passinfo[6] = 'y')) THEN BEGIN

addone(storage);

setup(timeout);
horscale(EHscale);

ChannelA(Hscale,ForBias,RevBias,storage,passinfol3l);

A * Passinfol31 is the third character, first line, of PASSER.DAT. It is used
to hold the "Y" or "N" indicator of breakdown stored in the first line of

the Channel A storage file.

ChanneIB(Hscale,ForBias,RevBias,storage)

END;
pass in-out(passinfo,device,tinieout,ForBias,RevBias,bookkeeper,storage,'O');

ENDXQQ
- END. [End Program)

,s%. APPENDIX G
PROCESS2.PAS PROGRAM LISTING

* 107

- - -

108

PROGRAMProcessLevelTwo; (For use in Batch processing only!)

This program is used to calculate the Instantaneous Power and Energy

from the data stored on the RAM disk in PROCESS1. The program is

written for the Turbo Pascal compiler with 8087 support.

TYPE

ST10 = STRING[10];

STR13 = STRING[131;

STR80 = STRING[80];

datarray = ARRAY[1..3,1..2048] OF INTEGER;

ene = ARRAY[1..2047] OF REAL;

VAR

passinfo : STRING[10];

device: INTEGER;

timeout,ForBias,RevBias: REAL;

bookkeeper,storage : STR13;

VIP: datarray;

globEnergy :ene;

PROCEDURE halter(ermnsg: STR80);

* This is the same procedure found in all the previous programs. See

HARDWARE or GETDEVIC for more.W
VAR

name: STRING[121;

going: TEXT[151;

BEGIN

name :='G:HALTER.PGM';

ASSIGN(going,name);

i

109

REWRITEgoing);

WRITELN(going,There was some type of error in Program Process2.');

WRITELN(going,errmsg);

WRITELN(going,'PROGRAM HALTED');

CLOSE(going);
HALT

END;

PROCEDURE pass....&out (VAR info: ST1O; VAR DEV : INTEGER;

VAR tinieo,fBiasrBias : REAL;

'I VAR bkstor: STR13; JNIOUT : CHAR);

*This is the same procedure seen in STORDATA and PROCESS 1. See

STORDATA for more.

VAR

pass: STRING[131;
passer : TEXT,

BEGIN

pass := 'G:PASSER.DAT';
ASSIGN(passer,pass);

IF IN -OUT =T''THEN BEGIN

RESET(passer);
READLN(passer,info);

* READLN(passer,DEV);

READLN(passer,timeo);
READLN(passer,fBias,rBias);

READLN(passer,bk);

* READLN(passer,stor);

CLOSE(passer)
END;
IF INOUT ='O' THEN BEGIN

162- k, -XZ .7;

-

110

REWRITE(passer);

WRITELN(passer,info);

WRITELN(passer,DEV);
WRITELN(passer,timeo);

WRITELN(passer,fBias,rBias);

WRITELN(passer,bk);

WRITELN(passer,stor);

CLOSE(passer)
END

END; (End PassInOut)

PROCEDURE Calculate (stor: STR13; VAR energy ene);
• This procedure is the meat of this program. Vce and Ic are read from the

RAM disk, the values are multiplied together to produce the Instanta-

neous Power, P, and P is then integrated. Integration is started at the
one time step back from the point where Vce is 5% of its maximum

value and continues until the time step just after the point where P is

3% of its maximum value on the descending edge. An energy array is

passed to the main program. There are 2047 elements in the array.

Each element represents the cumulative energy calculate to the corre-

sponding time interval. The array contains zeros to the point where in-

tegration begins and zeros after integration ends.

VAR

R,I,Vmax,VstartPos,PstopPos : INTEGER;

going: STRING[14];
VIP : datarray;

incoming : CHAR;

Pmax,Pstop,eMax,Vstart,VscP,VI,VV,HscA,HscB,probeA,probeB,fBias,rBias,

intmedlintmed2: REAL;

store : TEXT[25];

BEGIN
eMax: 0;
FOR R 1= TO 2047 DO energy[RI : 0;

- The energy array is initialized.

going: stor,
INS ERT('A',going,1 0);
AS SIGN(store,gomng);

RESET(store);
*The storage filename held in "stor" is placed into the string "going" and

an "A" is inserted after the inductor value. "stor" = G:BDXXXLL.yyy;
"1going" = G:BDxxxLLA.yyy. This is the file containing the data from
Channel A (Vee).

READLN(store);

READLN(store,fBiasjrBias);

READLN(store,VVHscA,probeA);
- The first three lines of "store" (the file designation of "going") are read.

FOR R:= 1 TO 2048 DO BEGIN
READ(store,incoming);

I := ORD(incoming);

VIP[1,R]:= I -127
*The 2048 data points are read. The ASCII values are converted to integer

values and then correction is made for the zero offset. The zero offset

is explained in detail in Chapter 3, Data Acquisition Programs.

END;
CLOSE(store);
going :=stor-

* INSERT('B',going,1 0);

ASSIGN(store,going);

RESETr(store);
The file containing the data from Channel A is closed, and the file con-

* taining the data from Channel B is open.

READLN(store,fBias,rBias);
READLN(store,VI,HscB,probeB);

1 12

• The first two lines of the file are read. Reminder, the Channel A data file

contains an extra line in the beginning; otherwise, the files are identical
in structure.

IF HscA <> HscB THEN BEGIN
WRITELN(Horizontal scale factors not equal. Program Halted.');

HALTER('Horizontal scale factors not equal.')
• The horizontal scale factors are compared. If they are not equal, the pro-

gram is halted. It is absolutely imperative that the data have the same

time scale as the data points are simply multiplied together to get P. If
the time scales are different, then the data points on Vce and Ic will not

correspond to the same point in the test cycle, and a multiplication of
the two values would be meaningless.

END;
FOR R:= I TO 2048 DO BEGIN

READ(store,incoming);
I := ORD(incoming);
VIP[2,R] := I - 127

* The data points for Ic are read, converted the integers from ASCII and

corrected for zero offset.

END;
CLOSE(store);
VscP:= probeA*probeB*VV*VI/1024;

• The vertical scale factor for P is calculated. There are 32 discrete levels

in each Volt/Div setting. When the vertical scale factor is created this is

taken into account by dividing by 32 * 32 = 1024.
FOR R := 1 TO 2048 DO

* VIP[3,R] := VIP[1,R]*VIP[2,R];
. The Instantaneous Power is calculated. VIP[1,R] = Vce; VIP[2,R] =Ic;

VIP[3,R] = P.
Vmax := -128;

FOR R:= 1 TO 2048 DO
IF Vmax < VIP[l,R] THEN Vmax := VIP[l,R];

* The maximum value of Vce is found.

Vstart:= 0.05*Vmax;

%P

113

VstartPos :=1;
WHILE Vstart > VIP[1,VstartPos] DO

VstartPos := VstartPos +1;
- The starting position of the integration is found by finding the time step

where 5% of the maximum value of Vce is passed, and letting the start

position be the point just prior to where this occurred.

Pmax -100000.00;

FOR R: 1 TO 2048 DO
IF Pmax < VIP[3,RJ THEN Pmax: VIP13,R];

-The maximum value of P is found.
Pstop: 0.03*Pmax;

- The threshold value of 3% of the maximum value of P is calculated.

PstopPos :=1;
* WHILE Pmax <> VLP[3,PstopPos] DO

PstopPos PstopPos + 1;
*The position of the maximum value of P is determined.

WHI]LE Pstop < VIPII3,PstopPosl DO
PstopPos :=PstopPos + 1;

PstopPos :=PstopPos + 1;
*The position of the time step where P descends passed the threshold

value is determined.
FOR R:= 1 TO02047 DO

energy[RJ : 0;
FOR R: VstartPos TO PstopPos DO BEGIN

IF (VIP[3,RI+VIP[3,(R+1)I) < (ABS(VEPII3,R])+ABS(VIP[3,(R+l)1)) THEN BEGIN
IF VIP[3,R] > VIP[3,(R+1)] THEN BEGIN

~ intmedl :=VscP*VIPI3,RI;

intmed2: VscP*VIP[3,(R+1)1;
eMax: eMax + (0.5*SQR(intmedl)*HscA/(ABS(intmedl)+ABS(intmed2)))

-0.5*SQR(intmned2)*HscA/(ABS(intmedlI)+AB S(intmed2))
END

IF VIP[3,R] < VIP[3,(R+1)I THEN BEGIN
intmedl VscP*VIPI3,R];
intmed2 VscP*VIP[3,(R+ 1)I;

:;roe

0

114

eMax:= eMax + (0.5*SQR(intmedl)*HscA/(ABS(intmedl)+ABS(intmed2)))
+ 0.5*SQR(intmed2)*HscA/(ABS(intmedl)+ABS(intmed2))

END

END

ELSE BEGIN
IF ABS(VIP[3,R]) > ABS(VIP[3,(R+1)]) THEN

eMax := eMax + VscP*(VIP[3,(R+I)I*HscA + 0.5*HscA*(VIP[3,R]
-VIP[3,(R+1)]));

IF ABS(VIP[3,Rj) = ABS(VIP[3,(R+1)]) THEN

eMax:= eMax +VscP*VIP[3,R]*HscA;
IF ABS(' TIP[3,RI) < ABS(VIP[3,(R- ")]) THEN

eMax := eMax + VscP*(VLP[3,R]*HscA + 0.5*HscA*(VIP[3,(R+1)]-VIP[3,R]))
* END;

* energy[R] eMax

- The energy is calculated. The formula used is simply the area of the
,,-: rectangle formed by the time step and the lesser of the two vertical dis-

placements, plus the triangle. The steps above are used to determine if

the vertical displacement are equal or not, and if not, then which is
- .* greater. The following illustration (Figure 18.) gives a pictorial view

of the integration scheme used.

Dillomnov in ninmtud., , "T"rM #a nd poinmt.

Case of first Case of first Case of
/ .tr t anmd second second "

point equal. lcz9ar I

" 1€.'.st

. etnrme Step

Figure 18. Integration Scheme.

"a.'

-ao-

S

115

The scheme also includes a check for P crossing negative where

negative energy results (i, the transistor is supplying energy), but this

is not shown in the figure.

END;

going := stor;

going[l] :='A';

INSERT('P',going, 10);

AS SIGN(store,going);

REWRITE(store);
WRITELN(store,fBias,rBias);

WRITELN(store,eMax,HscA,VscP);

* The storage file for P is open on drive A:, the forward and reverse bias
settings are written in line one, and the total energy, horizontal scale

* factor and vertical scale factor are written in line 2.

FOR R := I TO 2048 DO

WRITE(store,VIP[3,R],' ');

_ A series of 2048 integer values are then written, all separated by a space.

The Instantaneous Power is written unscaled to disk i, the integer

product of the integer multiplication of the Channel A and B data is

.,. *''a. "written to disk). P is not converted to real numbers in an effort to save

storage space on disk. To convert the values stored on this file into the

actual watts calculated, simply multiply the individual integer values by
the vertical scale factor.

CLOSE(store)

END;

PROCEDURE WriteToEnergy(stor: STR13; energy : ene);

' This procedure writes the energy array created in the last procedure to

. disk in its own file.

VAR

going : STRING[14];

J..

0

116

store: TEXT;
R: INTEGER;

fullstr: STRING[25];
outstr7: STRING[7];

outstr5 : STRING[5];

outstr: STRING[121;

BEGIN
stor[1] :='A';
going:= stor;
INSERT('E',going,10);

ASSIGN(store,going);

REWRrEFstore);
* * The energy storage file, A:BDxxxLLE.yyy, is opened.

FOR R:= 1 TO 2047 DO

*IF energy[R] = 0 THEN WRITELN(store,'O')
* If the value in the energy array is zero, the character "0" (zero) is written

to disk rather than the number zero. The number zero is written as

"± 0.OOOOOOOOOOOOOOOOE±000" rather than "0." By writing the
value as a character, 24 bytes of storage space are saved per zero.

ELSE BEGIN
STR(energy[RI,fullstr);

outstr7 COPY(fullstr,2,7);

outstr5 COPY(fullstr,19,5);
outstr := CONCAT(outstr7,outstr5);

WR1TELN(store,outstr)

l For a value not equal to zero, the number is converted to string, and the

middle numbers are removed. There is no loss of accuracy in doing
this as the energy is accurate only to the second or third decimal place,

and those values are kept. This saves an additional 13 bytes of storage

space per number. The result is a file of around 28 kilobytes rather

::":' than 45 kilobytes or more.
END;

CLOSE(store)

117

END;

BEGIN (MAIN PROGRAM)
passjin-out(passinfo,device,timeout,ForBias,RevBias,bookkeeper,storage,Tr);

IF ((passinfo[6] = y') OR (passinfo[61 = 'Y')) THEN BEGIN

Calculate(storage,globEnergy);
WriteToEnergy(storage,globEnergy)

END;
IF ((passinfo[2] =Y) OR (passinfo[2] ='y')) THEN BEGIN

* This statement is used to place a pause in execution so the operator can

obtain the Base-Emitter Voltage on the 7612D. The pause only exe-

* cutes if the operator has previo, sly indicated in STORDATA that this
waveform is to be collected.

WR1TELN(Obtain the Base-Emitter Voltage waveform on the 7612D and');
WRITE('press <RETURN> when ready to read it in... .

READLN

END;

passin_out(passinfo,device,timeout,ForBias,RevBias,bookkeeper,storage,'O')
END.

4..v9i.1
1 r

4-.

4.

APPENDIX H
PROCESS3.PAS PROGRAM LISTING

'I118

I

119

PROGRAM ProcessLevel_Three(INPUT,OUTPUT);

This program reads data from Channel A and writes it out to file
"BDxxxLLC.yyy" on the RAM disk. The data is expected to be Vbe

and is treated as such. The program is written for the MS-PASCAL

compiler.

[$INCLUDE: 'IODECL.EX']

* This is the same declaration included in HARDWARE and PROCESS 1.

See HARDWARE for further information.

CONST

bus = 7;

TYPE

STEXT = TEXT(45);

STR13 = STRING(13);

ST1O = STRING(10);

STR9 =STRING(9);

LST80 = LSTRING(80);

setting = ARRAY[1..2,1..10] OF REAL;

VAR

bookkeeper,storage : STRING(I3);

passinfo: STRING(10);

* answer,process : CHAR;

device: INTEGER;

2..: ForBias,RevBias,timeout,Hscale• REAL;

0m

J"
0,

120

[$INCLUDE: 'IOPROC.EX')

* This is the same procedures declaration included in HARDWARE and

PROCESS 1. See those programs for further information.

.44

PROCEDURE ENDXQQ; EXTERN;

This extended level procedure is used to halt program execution prior to

the normal program end. Its function is similar to that of HALT in

Turbo Pascal.

PROCEDURE halter(errmsg• LST80);

* This is the same procedure use in all the preceding programs. See

HARDWARE or GETDEVIC for further information.

VAR
name: STRING(12);

going: TEXT(15);

BEGIN

name :='G:HALTER.PGM';

ASSIGN(going,name);

-REWRITE(going);

WRITELN(going,'There was some type of error in Program Processl.');

WRITELN(going,errmsg);

WRITELN(going,'PROGRAM HALTED.');

* CLOSE(going);

ENDXQQ
1 ' END;

%."

S.:

121

PROCEDURE pass jnout (VAR info: ST 10; VAR DEV : I4TEGER;

VAR tinieo,ffliasrBias: REAL;

VAR bookkeeper,storage: STR13; INOUT : CHAR);

Again, this is the same procedure used in previous programs. See

STORDATA for fturther information.

VAR

pass: STRING(12);

passer: STEXT,

BEGIN

* pass := G:PASSER.DAT';
ASSIGN(passer,pass);

IF INOUT = I'THEN BEGIN

RESET(passer);

READLN(passer,info);

READLN(passer,DEV);

READLN(passertimeo);
READLN(passer,fBiasrBias);
READLN(passer,bookkeeper);

READLN(passer,storage);

CLOSE(passer)

IF IN_-OUT = '0'THEN BEGIN

* REWRITE(passer);

WRITELN(passer,info);

WRITELN(passer,DEV);
WRITELN(passer,tinieo);

* WRITELN(passer,fBias,rBias);

WRJTELN(passer,bookkeeper);

WRITELN(passerstorage);
CLOSE(passer)

122

END

END; [End Pass_In_Out)

PROCEDURE error_handler (error : INTEGER; routine: STR9; A: CHAR);

" This is the same procedure used in HARDWARE and PROCESS 1. See

HARDWARE for further information.

VAR

estring: STRING(40);

BEGIN

IF error o noerr THEN

BEGIN0
Errstr(errorestring);

WRITELN('Error in call to ',routine);

WRITELN(error:6,' ',estring);

i IF A ='N' THEN

BEGIN

WRITE(Press <RETURN> to continue ...

READLN

END;
IF A = 'Y' THEN

BEGIN

WRITELN('CORRECT ERROR - Press <RETURN> to continue.');

READLN

S END

END
END;

PROCEDURE setup(tout: REAL);

S

S.

----- - -

123

This is the same procedure used in PROCESS1. See that program for

fur-ther information.

cmd:l'TEGER;

enln:STRING(2);

4. BEGIN
cmd :=IOEOI(7, 1);
error _handler(cmdJ'OEOI ','Y');

endlinell] :=CHR(13);

endline[2] : CHR(1O);
cmd: IOEOL(7,endline,l);

* cmd: IOREMOTE(7);
error.-handler(cmd,'IOREMOTE ','Y');

cmd: IOTDMEOUT(7,tout)

END;

PROCEDURE horscale (VAR Hsc: REAL);
*This procedure is used to obtain the horizontal scale factor from the

7612D.

VAR

response: STRING(25);
0 I,cmd: INTEGER;

HscA,HscB: REAL;

vsc: STRING(5;

0 BEGIN

vsc:='HSFA?';
cmd: IOOUTPUTS(70200,vsc,5);

*The 7612D is queried for the horizontal scale factor.

124

1:= 25;

cmd := IOENTERS(70200,response,I);

a The characters preceding the desired number are read.

cmd:= IOENTER(70200,HscA);

• The horizontal scale factor is read.

cmd:= IOENTERS(70200,response,I);

- Trailing control characters are striped

vsc :='HSFB?';

cmd:= IOOUTPUTS(70200,vsc,5);

I :=25;

cmd := IOENTERS(70200,response,l);

cmd:= IOENTER(70200,HscB);

cmd := IOENTERS(70200,response,I);

* • The process is repeated for Channel B. This is done only to be sure the
,S scale factors are the same. Channel B should be unchanged and still

contain the data from Ic . With that data still there, this comparison en-

sures the data has the same horizontal scale factor.

IF HscA <> HscB THEN BEGIN

WRITELN('Horizontal Scale Factor are not equal. They must be.');

WRITELN('Program Halted.');

HALTER('Horizontal Scale Factor are not equal.')

• The program is halted if the Channel A and B scale factors are unequal.

END

ELSE Hsc:= HscA

END,

S

PROCEDURE ChannelA(HscA,fBiasrBias : REAL; stor: STRI 3);
* This procedure reads the data from Channel A and places it on the RAM

0€ disk. It is identical to the procedure of the same name used in PRO-

CESS1 with the two exceptions. First, the output filename is different

(BDxxxLLC.yyy instead of BDxxxLLA.yyy). Second, the first line

125

used to hold the "Y" or "N" indicator of breakdown in BDxxxLLA.yyy

is deleted.

VAR
line: STR1NG(l 28);

store: STEXT,
stateI,R,C,cmd : INTEGER;

response : STRING(40);
incoming. CHAR,

vsc : STRIING(5);
VV,probeA : REAL.

readit: STRING(6);

going: STRING(14);

BEGIN
probeA := 1;
FOR I:= 1TO 9DO

going[II := storill];

goinglil0l := 'C';
FOR I:= 10TO 13DO

goingli11 := stor[I];
ASSIGN(store,going);

REV.TRrTEstore);

WRITELN(store,fBias,' ',rBias);

vsc := 'VSL1?';

cmd := IOOUTPUTS(70200,vsc,5);

1m:= NES720,s,)

cmd := IOENTER(70200,vVc);

Im:=0; NE(720,)

0~~~~~~~: 4m0; NTR(020rspne

W~RITELN(store,VV,' ',HscA,' ',probeA);

readit := 'READ A';
cmd := IOOUTPUTS(70200,readit,6);

126

FOR R:=1ITO 3DO BEGIN

cmd: IOENTERS(70200,incoming,I)

END;
state :=0;

cmd: IOMATCH(7,CHR(1O),state);
FOR R:=O0TO 15DO BEGIN

I: =128;

cmd: IOENTERS(70200,line,I);
WIREFE(store,line)

END;
CLOSE(store);
state :=1;

cmd: IOMATCH(7,CHR(l0),state);
I: =40;

/2 cmd := IOENTERS(70200,responseI);
cmd: IOLOCAL(7)

END;

BEGIN
pass -in -out(passinfo,device,timeout,ForBias,RevBias,bookkeeperstorage,'r);

]IF ((passinfoll2l ='Y) OR (passinfol2] = 'y')) THEN BEGIN

-~ setup(tiineout);

horscale(H-scale);

ChannelA(Hscale,ForBias,RevBias,storage)

END;
pass in-out(passinfo,device,tinheoutForBias,RevBias,bookkeeper,stOrage,'O');

ENDXQQ

* END. (End Program)

0, ,I I . . .I , !

44

*APPENDIX T

REPEATER.PAS PROGRAM LISTING

4.

S 2

44'

128

PROGRAM repeater,
This program is used to query the operator as to his or her desire to con-

tinue. It, also, is used to update the file, INDEX.DEV, with the stor-
i: age filename currently kept in the file PASSER.DAT. The test series

number may have been incremented during the acquisition cycle, and
rather than test for this condition, the name currently held in
PASSER.DAT is loaded into the storage filename field in the record of
the device under test.

TYPE

STR13 = STRING[13];
"V

VAR
SF. bk,stor: STR13;
O

DEV: INTEGER;

*, PROCEDURE repeatprogram(VAR device: INTEGER; VAR storage: STRI 3);
This procedure asks the operator if he or she wishes to take another mea-

surement. If the answer is yes, then the file, CONTINUE.ANS, is
created on the RAM disk. The existence of this file is used by the batch
file to determine if it should enter into a loop.

VAR

arts : CHAR;

• pass: STRING[12];
bookkeeper: STRING[131;
name : STRING[14];

passer,cont: TEXT;
• passinfo: STRING[10];

"a'. timeoutForBias,RevBias : REAL;

BEGIN

S

129

name :='G:CONTINLE.ANS';
ASSIGN(cont,name);

. The file designator "cont" is assigned the value of "G:CONT-

INUE.ANS."
pass :='G:PASSER.DAT';
ASSIGN(passer,pass);

RESET(passer);
,' READLN(passer,passinfo);

READLN(passer,device);
READLN(passer,timeout);
READLN(passer,ForBias,RevBias);

READLN(passer,bookkeeper);
READLN(passer,storage);

* CLOSE(passer);

• The file, PASSER.DAT, is read.
ans :=Q'
WHILE NOT ((ans = 'y') OR (ans ='Y') OR (ans = 'N') OR (ans = 'n')) DO BEGIN
WRITE('Do you want to continue taking measurements? (Y or N)...)
READLN(ans)

END;
IF ((ans = 'y') OR (ans = 'Y')) THEN BEGIN

ans := V;
WHILE NOT ((ans = 'y') OR (ans = 'Y') OR (ans = 'N') OR (ans = 'n')) DO BEGIN
WRITELN('Repeat measurement on same device? (Reminder: New Inductance

OR');
WRITE(Temperature = New Device) Same device? (Y or N) ...

0 READLN(ans)

, If the measurement to be taken will be on the same device, then the pro-
gram GETDEVIC will not need to run; therefore, the above question is

asked, and depending upon the answer, the first character in the first
* line of PASSER.DAT will be set so GETDEVIC will or will not exe-

cute as needed.
END;
IF ((ans = 'Y') OR (ans = 'y')) THEN BEGIN

N 130

passinfo[1I :'N;

passinfo[71 := 'N
END;
IF ((ans = 'M) OR (ans = 'n')) THEN BEGIN
passinfo[1I :=Y

passinfo[71 :=Y

END;
REWRITE(cont);
WRITELN(cont,'Continue.');

-The file, "CONTIN4UE.ANS", is created.

CLOSE(cont)

END; (IF ((ans =Y...)
REWRITE(passer);

* WRITELN(passer,passinfo);

WRITELN(passer,device);

WRITELN(passer,tinieout);
WRITELN(passer,ForBias,RevBias);
WRITELN(passer,bookkeeper);
WRITELN(passer,storage);

CLOSE(passer)
*The file, PASSER.DAT, is re-written with the new information.

END,

PROCEDURE IndexUpdate (device : INTEGER; store: STRi 3);

-~ * This procedure is used to update the file, INDEX.DEV, with the altered

storage filename.

TYPE

STR40 = STRING[401;
STR13 = STRING[131;
DEVICES =RECORD

oi

131

DEV:INTEGER;

descrip : STR4O;
book: STR13;

stor : STR1 3
END;

VAR

index: FILE OF DEVICES;
indexrec : DEVICES;
error,LineCount: INTEGER;

BEGIN
ASSIGN(index,'C:\RBSOA\INDEX.DEV');

* ~[II$-)
RESET(index);

[$I+)I
IF IOresult <> 0 THEN BEGIN
WR1TELN('C:\RBSOA\INDEX.DEV not found. What happened?');

WR1TELN('Program Halted.')
*An error check is made to be certain the file INDEX.DEV is present- If it

is not, the program will do nothing'further.
END
ELSE BEGIN
error :=FileSize(index);

IF device > error THEN BEGIN

If the device number is larger than the number of devices stored in IN-

DEX.DEV, then the program will do nothing further.

WRrTELN('FileSize ',error,' device ',device,' Error in update to device.');

WRITELN(Prograxn Halted);

HALT

* END;

'S...SEEK(index,device);

READ(index,indexrec);

132

* If no errors have been encountered, the record for the device under test is

retrieved.

WITH indexrec DO

stor := store;
The storage filename taken from PASSER.DAT replaces the storage file-

name in the device record.
SEEK(index,device);
WRITE(index,indexrec)

* The updated record is written to INDEX.DEV in direct access mode (no

other records are disturbed).
END;

CLOSE(index)
END;

BEGIN (Main Program)

repeatprogram(DEV,stor);
IndexUpdate(DEV,stor)

END.

SV

i1
'I

S ,

--S

0:

I

,0

~PLOTDATA.PAS PROGRAM LISTING

4,,.

0

134

PROGRAM plotdata2;

* This program is used to create plots on the HP-7470A Graphics Plotter.

The waveforms of a single test run are printed in one of two formats.

This program requires that the HPIB Peripheral Driver be installed with

the plotter bus address (705) set equivalent to the output device
"LPT'2." The reader should be thoroughly familiar with the HP-7470A

User's Manual.

TYPE

STR13 = STRING[13];

STR11 = STRING[11];
STR9 = STRING[9];

datarray = ARRAY[l..3,1..2048] OF INTEGER;

VAR
storage: STR13;

ts: STRll;
testmain : BOOLEAN;
Ignorit,answer,plotall: CHAR;

MaximumA,MaximumB,MaximumP,MinimumA,MinimumB,MinimumP,DEV,SER,

tIl,tI2,MaxC,MinC,PmaxPoint : INTEGER;

ForBias,RevBiasEner,Hscale,Vscale,Ascale,Bscale,ScaleC: REAL;

5 PROCEDURE NumToStr9 (X: REAL; VAR Y: STR9);

This procedure is used to prepare real numbers for output as strings. The

values are limited to three significant figures in scientific notation

format.

VAR

fullstr: STRING[25];

one: STRING[I];
thr: STRING[3];

four: STRING[4];

• S

'a , . -, ' ' . ..

135

error,I: INTEGER;

num" REAL;

BEGIN

STR(X,fullstr);
DELETE(fullstr, 1,1);

one:= COPY(fullstr,6,1);

The third digit to the right of the decimal place is loaded into the one
character long string "one."

VAL(one,num,error);

, The character in "one" is translated into numeric format and loaded into
11num."

DELETE(fullstr,6,12);

* DELETE(fullstr,8,1);

Y := COPY(fullstr, 1,9);
• The extra characters in the original number passed to the procedure are

deleted. The shortened form of the number is placed in the nine char-

acter long string, "Y." The number is shortened from
":±x.xxxxxxxxxxxxxxxxE±xxx" to ":x.xxE±xx."%

IF num >= 5 THEN BEGIN

If the digit in the third place to the right of the decimal point is equal to or

over five, the digit to the left is increased by one. This serves to round
the new number. The rest of this procedure is involved in performing

this function.

four:= COPY(fullstr,2,4);
* VAL(four,num,error);

num:= num + 0.01;
IF num = 10.00 THEN BEGIN

• This section increases the exponent if it is needed.
* num:= 1.00;

thr:= COPY(Y,7,3);

VAL(thr,I,error);

I:=I+1;

* STR(I,thr);

S .

.. ii

136

IF ((I < 10) AND (I > -10)) THEN INSERT('O',thr,2);

INSERT(thr,Y,7)

END;

STR(num:3:2,four);

DELETE(Y,2,4);

INSERT(four,Y,2)

END

END;

PROCEDURE PlotWhat(stor: STR13; VAR plotYorN : CHAR);

* This procedure is used to determine what files on drive A: are available to

0 be plotted. It then compares the listing of files available to the user's

request for plotting options. If the right files are not available, the user

is told and asked to replace the disk in drive A: with one that should

have all the necessary files.

VAR

ans : INTEGER;

ExA,ExB,ExC,ExD,ExE,ExP: CHAR;

going: STRING[14];

test: BOOLEAN;

store : TEXT;

BEGIN

WRITELN('Place the disk containing the data to be plotted in drive A:);
WRITE('Press <RETURN> to continue...

READLN;

test := TRUE;
WHILE test DO BEGIN

This WHILE loop is used to look for available files and compare those

files with the ones necessary to fulfill the operator's plotting request. If

0I' "

137

all the files are present, the loop ends; otherwise, it continues until the

files are found or the operator quits.

going :=stor;

lNSERT('A',going, 10);

ASSIGN(store,going);

[$I-)I
RESET(store);

IF IOresult <> 0 THEN ExA :'N'

ELSE ExA:Y;

CLOSE(store);

The last seven lines (excluding f($1-)) are used to check drive A: for

BDxxxLLA.yyy. If the file is present the variable "ExA" is set to "Y."

If the file is not present, "ExA" becomes "N."

* going :=stor;

INSERT('B',going, 10);

ASSIGN(store,going);

RESET(store);

IF I0result <> 0 THEN ExB :='N'

ELSE ExB:='

CLOSE(store);
* A repeat of the previous check is done for BDxxxLLB.yyy.

going := stor,

INSERT('C',going, 10);

ASSIGN(store,going);

RESET(store);

SIFI10result <>O0THEN ExC:= 'N'

ELSE ExC :='Y';

CLOSE(store);
*Again, for BDxxxLLC.yyy.

* going :=stor,

INSERT('E',going, 10);

ASSIGN(store,going);

RESET(store);

*IFI10result <>0THIEN ExE:='N

138

ELSE ExE :=Y;

CLOSE(store);

-BDxxxLLE.yyy.

going :=stor

INSERT('P',going, 10);

ASSIGN(store,going);

RESET(store);

IF IOresult =0 THEN ExP:=Y

ELSE ExP := 'N';

CLOSE(store);

- Lastly, for BDxxxLLP.yyy.
[$I+)

ans :=3;
*WHILE NOT ((ans = 0) OR (ans = 1) OR (ans =2)) DO BEGIN

*This WHILE loop is part of the first loop. It is used to ask the operator

for the particular plotting option required. It is primarily an "idiot"
proofing loop.

CLRSCR;

WRITELN(With this program, you can plot in one of two different formats.');

WRrrELN(Fimt, you can plot Collector-Emitter Voltage, Collector Current,');

WRITELN('Instantaneous Power and Cumulative Energy up to the point of second');

WRITLN(breakdown. Second, all of the above plus Base-Emitter Voltage can ');
W;RTELN('also be plotted.');

WR1TELN;WR1TELN;

WR1TE('Enter 1 for the first case, 2 for the second and 0 to quit. ..

* READLN(ans)

END;

IF ans = 0 THEN HALT;

IF ans = 1 THEN BEGIN

* ~IF ((ExA =Y Y) AND (ExB ='Y) AND (ExE = Y) AND (ExP = Y)) THEN

BEGIN

PlotYorN := 'N';

test := FALSE

139

* If the operator chooses option 1, then the files for Vce, Ic, E and P must

be present (BDxxxLL(A,B,E,P).yyy). If they are present, the main
program is informed of the selection by "PlotYorN" and the first

1WHILE loop is ended.

END
ELSE BEGIN

WRITELN('Not all of the files need are on the disk in drive A:');

WRITELN('Replace the disk in drive A: with the correct one.');

WR1TE('Press <RETURN> to continue. ..

READLN

R If not all the files are present, the above message is printed, and the loop

will be executed again from the beginning.

END

* END;

IF ans = 2 THEN BEGIN

IF ((ExA = 'Y') AND (ExB = 'Y') AND (ExE = 'Y') AND (ExP = 'Y') AND

(ExC = 'Y')) THEN BEGIN

PlotYorN := Y,

test := FALSE
If option 2 is selected and all the files are present (Vce, L2, E, P and

Vbe), the main program is informed by "PlotYorN" and the loop is

ended.

END

ELSE BEGIN

WRITELN('Not all of the fies need are on the disk in drive A:');

WRITELN('Replace the disk in drive A: with the correct one.');

WRITE('Press <RETURN> to continue...');

READLN

* If all the files are not present, the above is printed to the screen, and the

* loop is executed, again.

END

END

END

• END;

a'

140

PROCEDURE listdevice(VAR stor : STR13; VAR device,series : INTEGER);

* This procedure is common with some minor variation to all of the ancil-

lary programs except EDITLIST. The procedure is responsible for

listing the device records in INDEX.DEV upon request, querying for

device and test series numbers which describes the particular test run to
be plotted and returning the storage filename modified to contain the

series number for the desired test.

TYPE

STR40 = STRING[40];

- STR13 = STRING[13];
DEVICES = RECORD

DEV: INTEGER;

descrip : STR40;

book: STR13;

store: STR13
END;

VAR

index : FILE OF DEVICES;

indexrec : DEVICES;

error,LineCount : INTEGER;

* name: STRING[181;

one: STRING[l];

''two: STRING[21;

thr: STRING[3];

* test: BOOLEAN;

ans: CHAR;

I,Count : INTEGER;

* BEGIN

141

name :='C:\RBSOA\INDEX.DEV';

AS SIGN(index,name);

RESET(index);
WRITELN('You will be asked for the device number corresponding to the storage file');

WRITELN('for the data taken on the device of interest. You will also be asked for');

WRITELN('the storage series number which is the last three numbers in the file name.');

WRITELN('The value shown in the listing is the highest currently stored.');

ans := 'q';

WHILE NOT ((ans = 'y') OR (ans = 'Y') OR (ans = 'n') OR (ans = 'N')) DO

BEGIN

WRITELN('Do you want the see a listing of all currently cataloged devices?');

*,"_ WRITE('See list? (Y or N)...)

READLN(ans)

END; (WHILE NOT ((ans = 'y'...)

IF ((ans = 'Y') OR (ans = 'y')) THEN BEGIN

• If the operator wants to see a list of the devices in INDEX.DEV, this

section will do it.

LineCount:= 1;
Count:= 0;

SEEK(index,LineCount);
WHILE NOT EOF(index) DO BEGIN

READ(index,indexrec);

• The record at the cursor location defined by "LineCount" is read.

WITH indexrec DO BEGIN

WRITE(DEV,' ');

* WR1TE(descrip:40,' ');

WRITE(book,' ');
WRITELN(store)

" The fields in the device record are printed on the screen.

END;
LineCount:- LineCount + 1;

*(*5

• The cursor location pointer is increased by one.
C t o +: '.' Count := ount+ 1;

142

"Count" is used to keep track of the number of records displayed on the

screen.

IF Count = 21 THEN BEGIN

• When "Count" reaches 21, 21 lines are displayed on the screen. At this

point, a pause is executed to give the operator a chance to review the

records, and the "Count" is set to zero.

Count:= 0;
WRITELN('Press <RETURN> for more devices.');

READLN

END

END;
N! WRITELN('End of indexed devices.')

END; {IF ((ans= }
* test := TRUE;

WHILE test DO BEGIN
• This loop is designed as a type of "idiot" proofing. It prevents a device

number which is too large from being accepted. It could have been
done differently and more efficiently, but wasn't. Any upgrades might

look at this.

WRITE('What is the device number? (Integer Value Only!)...
READLN(device);

IF device < 1000 THEN test:= FALSE

ELSE WRITELN('Integer too large. Try again.')

END;

test:= TRUE;

* WHILE test DO BEGIN
• "Idiot" proofing for the series number.

WRJTE('What is the series number? (Integer Value Only!)...

READLN(series);

* IF series < 1000 THEN test:= FALSE
ELSE WRITELN('Integer too large. Try again.')

END;

SEEK(index,device);
* READ(index,indexrec);

'

143

The specific device record is retrieved.

WITH indexrec DO

stor := store;
, The storage filename is placed in "stor."

CLOSE(index);

DELETE(stor,1 ,1);

INSERT('A',stor, 1);

DELETE(stor, 11,3);

INS ERT('000',stor, 11);

The drive designation on the storage filename (previously G:) is changed

Sto A:, and the series number is deleted and replaced with "000." The

series number will be replace with the one selected by the operator ear-

lier in the lines below.

* IF series < 10 THEN BEGIN

STR(series: 1,one);

INSERT(one,stor, 13)

* If the series number is less than 10 (one digit), it is transformed into a

one character string and inserted into the last position of the storage

filename.

END;

IF ((series > 9) AND (series < 100)) THEN BEGIN

STR(series:2,two);
INSERT(two,stor,12)

• Repeat of the above, but for the case of a two digit series number.

END;

* IF ((series > 99) AND (series < 1000)) THEN BEGIN

STR(series:3,thr);

INSERT(thr,stor, I1)

' For the case of a three digit series number.

* END;

DELETE(stor, 1,1);

INS ERT('A',stor, 1);

END; (Procedure listdevice }

• ,
o.

S-..

145

VAR MaxA,MaxB,MaxP,MnA,MinB,MnP: INTEGER;
VAR HscA,VscP,ScaleA,ScaleB,energy,fBiasArBiasA• REAL;

VAR Ign : CHAR);
This procedure plots the waveforms for Vce, Ic and P. Vce and Ic will

be superimposed in the upper left plot.

VAR

R,I,S : INTEGER;

going: STRING[14];

incoming : CHAR;

VIP: datarray;

VI,VV,HscB,HscP,probeA,probeB,fBiasB,rBiasB,fBiasP,

rBiasP,ZeroA,ZeroB,ZeroP,

numouty,numoutx,DA,DB,DP : REAL;

store,LPT2 : TEXT;
'WI

BEGIN
AS SIGN(LPT2,'LPT2');

REWRITE(LPT2);

going := stor;

INSERT('A',going, 10);
ASSIGN(store,going);

: .incoming :='Q';
-I-. { $I- }

RESET(store);
* The file containing Vce is opened for reading here. If the file is not pre-

sent, the operator is given the opportunity to fix the problem.

WHILE Ioresult <> 0 DO BEGIN

WRITELN(There has been an error accessing file',going "

* WRITELN(P!ease check to be sure the proper disk is in drive A:');-S.

WRITE('Enter "Y" to continue, or "N" to halt program. ...
READLN(incoming);

IF ((incoming = 'y') OR (incoming = 'Y')) THEN RESET(store);

* IF ((incoming = 'N') OR (incoming = 'n')) THEN HALT

-'°' %__0

146

END;
1$I+}
READLN(store,Ign);

READLN(store,fBiasA,rBiasA);
READLN(store,VV,HscA,probeA);

The first three line of the file are read. Notice that the first character of

the first line is placed in "Ign." The breakdown "Y" or "N" character is

now in "Ign" which is passed to the main program. The forward and

reverse bias settings are read from line two, and the Volts/Div, hori-

zontal scale factor and probe scaling factors are read from line three.

ScaleA:= W*probeA/32;
° The vertical scale factor for Vce is calculated.

FOR R:= 1 TO 2048 DO BEGIN

* READ(store,incoming);

VIP[1,R]:= ORD(incoming)

The data points are then read, but they are not corrected for the zero off-

set factor of 127. It is not needed in this application.

END;

CLOSE(store);

going := stor;

U"' INSERT('B',going, 10);

ASSIGN(store,going);
* A repeat of the above reading process is done for the file containing Ic.

U:. The only difference is that the first line of this file corresponds to the

*. second line of the preceding file.
* {$I-}

RESET(store);

-,. WHILE loresult <> 0 DO BEGIN

"U'. 'p WRITELN(There has been an error accessing file ',going);

* WRITELN(Please check to be sure the proper disk is in drive A:');

, WRITE('Enter "Y" to continue, or "N" to halt program. ...
'

READLN(incoming);

IF ((incoming ='y') OR (incoming = 'Y')) THEN RESET(store);

* IF ((incoming = 'N') OR (incoming = 'n')) THEN HALT

• "U"p7".'' "", . r r ' '' ,'" " ".i'-":, ' " ''" °;' ,

0

147

END;

($I+)
READLN(store,fBiasB,rBiasB);

READLN(store,VI,HscB,probeB);

ScaleB := VI*probeB/32;

IF HscA <> HscB THEN BEGIN

WRITELN('Horizontal scale factors not equal. Program Halted.');

HALT

The horizontal scale factors are compared. If they are not equal the pro-

gram will halt and the data cannot be plotted.
' i END;

FOR R:= 1 TO 2048 DO BEGIN

READ(store,incoming);

VIP[2,R] := ORD(incoming)
Ic is read.

END;

'p. CLOSE(store);

going := stor;

INSERT('P',going, 10);
ASSIGN(store,going);

* The read process is done one more time for the file containing P.
7] {$i-)

', RESET(store);
WHILE Ioresult <> 0 DO BEGIN

WRITELN('There has been an error accessing file ',going);

* WRITELN(Please check to be sure the proper disk is in drive A:');

WRITE('Enter "Y" to continue, or "N" to halt program....

READLN(incoming);

IF ((incoming = 'y') OR (incoming = 'Y')) THEN RESET(store);

* IF ((incoming = 'N') OR (incoming = 'n')) THEN HALT

END;

{$I+)
READLN(store,fBiasP,rBiasP);

*_ READLN(store,energy,HscP,VscP);

148

The forward and reverse bias settings are read from line one, and the total

energy during breakdown, the horizontal scale factor and the vertical

scale factor are read from line two.

FOR R:= I TO 2048 DO

READ(store,VIP[3,R]);

- The Instantaneous Power is read.

CLOSE(store);

IF ((fBiasP <> fBiasA) OR (fBiasP <> fBiasB) OR (fBiasA <> fBiasB)) THEN BEGIN

WRITELN('Error in reading in files. Forward Bias Settings not equal.');

WRITELN('Program Halted.');

HALT

* A check is made to be sure all the forward bias settings read from the file

are the same; otherwise, the program stops and the data cannot be plot-

ted.

END;

IF ((rBiasP <> rBiasA) OR (rBiasP <> rBiasB) OR (rBiasA <> rBiasB)) THEN BEGIN
WRITELN('Error in reading in files. Reverse Bias Settings not equal.');

WR1TELN('Program Halted.');

HALT
* Same as last check only for the reverse bias settings.

END;

IF ((HscA <> HscB) OR (HscA <> HscP)) THEN BEGIN

WRITELN('Error in reading in files. Horizontal Scale Settings not equal.');

WRITELN('Program Halted.');
HALT

* * The horizontal scale factors are compared. If they are not the same the

program halts.

END;

MaxA:=0 ,
* MaxB := 0;

MaxP:= -32766;

MinA:= 256;

MinB := 256;

* MinP:- 32767;

.1"

0~

fatal ' e" i¢" ,-w. - t r i

149

FOR R:= 1TO 2048 DOBEGIN

IF (MaxA < VIP[lR]) THEN MaxA: VIP[1,R];

IF (MaxB, < VIP[2,RJ) THEN MaxB: VIPII2,R];

IF (MaxP < VIP[3,R]) THEN MaxP: VIPII3,RI;

IF (MmnA > VIP[1,R]) THEN MinA: VIPjI1R];

IF (MinB > VIP[2,R]) THEN MinB: VIP[2,R];

IF (MinP > VIP[3,R]) THEN MinP: VIP[3,R]
*The maximum and minimum values of Vce, Tc and P are found.

END;

DA: Max.A - MinA;

DB:= MaxB -MinB;
DP:= MaxP -MinP;

The difference between the maximum and minimum value for each data

* set is calculated. Thbis is used in producing a scaled plot which is as

large as the space allows.

FOR R:=1ITO 2048DO BEGIN

VIP[l1,R] :VIP[1,R] - MinA;
VIP[2,R] VIP[i2,R] - MinB;

VIP[3,R] VIP[3,R] - MinP
*The minimum values of Vce, Ic and P are now zero. All data points have

A been corrected for the new offset.

END;

DA:= 2000/DA;

DB :=2000/DB;

DP:= 2000/DP;
* * The maximum vertical deflection of the plotted output is 2000 plotter

units. "DA", "DB" and "DP" are now scale factors which when multi-

plied by the offset data points will convert the integer data point values
to plotter units.

* ZeroA: ABS((l27-MinA)*DA);

ZeroB: ABS((l27-NMinB)*DB);

ZeroP: ABS(MinP*DP);
*The above three lines calculate the zero crossing location Of Vce' Ic and

* P.

150

IF MinA < 127 THEN BEGIN

WRITELN(LPT2,'LT 2,1');

numouty:= 4400+ZeroA;

WRITELN(LPT2,'PA 1240,',numouty:0:4);
WRrrELN(LPT2,'PD 4800,',numouty:0:4)

* If the minimum value of Vce is below 127 (= 0), then the data goes neg-

ative and the zero crossing dashed line created by the above four lines
is produced on the plot.

END;

IF MinB < 127 THEN BEGIN
WRITELN(LPT2,'LT 1,1');

numouty:= 4400+ZeroB;
INWR1TELN(LPT2,'PU 1240,',numouty:0:4);

* WRITELN(LPT2,'PD 4800,',numouty:0:4)
* The same is done for LC.

END;
IF MinP < 0 THEN BEGIN

WRITELN(LPT2,'LT 2,1');

numouty:= 1410+ZeroP;

WRITELN(LPT2,'PU 1360,',numouty:0:4);

WRITELN(LPT2,'PD 4800,',numouty:0:4)

• Again, for P.

END;

WRITELN(LPT2,'LT');

numouty 4400+(VIP[1,1 *DA);
* • The value "numouty" is the vertical plot coordinate. The 4400 offset

e'.' value defines where the plot is placed vertically on the sheet. Vertical

placement is defined as the placement along the axis which stretches
across the most narrow part of the paper or from long edge to long

edge.

WRITELN(LPT2,'PU 1290,',numouty:0:4);
• The horizontal deflection will be described by "numoutx." The line

.. above gives the starting point in the x-direction as 1290.

* FOR I:= 2 TO 513 DO BEGIN

.1,

151

R:= (I-1)*4;

numoutx:= 1290+(R-1)*1.7;

numouty:= 4400+(VLP[1,R]*DA);

* The location of the next point to be plotted are calculated in plotter units.
WRITELN(LPT2,'PD ',numoutx:0:4,',',numouty:0:4)

The data for Vce is plotted. Only every fourth point are plotted to save

time in plotting. The accuracy of the plot does not suffer as there are
still over 100 data points per inch in the horizontal direction.

END;

numoutx:= 1290+1024*1.7;

numouty := 4400+VIP[1,1024]*DA;
• The location for the graph label for Vce is calculated.

WRITELN(LPT2,'PU');
WRITELN(LPT2,'PA ',numoutx:0:4,',',numouty:0:4);

• The plotter pen is moved to the location.
WRITELN(LPT2,'SI .12,.21');

* ,IF numouty > 4600 THEN BEGIN

WRrIELN(LPT2,'CP 0,-.9');

WRITELN(LPT2,'LBV')

END
ELSE BEGIN

WRITELN(LPT2,'CP 0,+.9);

k WRITELN(LPT2,'LBV')
END;

* Depending upon the value of the data point at the location the label, "V,"

* will be printed above or below the plot just made.

numouty:= 4400+(VIP[2,1]*DB);
WRITELN(LPT2,'PU 1290,',numouty:0:4);

• A repeat of the plotting process is done for Ic . Notice the offsets are

1290 and 4400. This will superimpose the graphs of Vce and Ic .

, FOR I:= 2 TO 513 DO BEGIN
.,. R := 01-1)'4;

numoutx:= 1290+(R-1)*1.7;

* numouty:= 4400+VIP[2,R]*DB;

152

WRITELN(LPT2,'PD ',numoutx:O:4,',',numouty:0:4)

END;

*A repeat of the labeling process is done below, but the horizontal place-
ment is moved from point 256 to 1024, and the label is "I."

numoutx: 1290+1024*1.7;

numouty: 4400+VIP[2,1024]*DB;

W;R1TELN(LPT2,'PU ',numoutx:0:4,,',numouty:0:4);

IF nurnouty > 4600 THEN BEGIN

WRITELN(LPT2,'CP 0,-1.1');

WRITELN(LPT2,'LBI')

END

ELSE BEGIN

WRITELN(LPT2,'CP 0,1.1');

* WRITELN(LPT2,'LBI')

% END;
*The last plot made in this procedure is P. It is made the same way the

plots above were done. It, also, is labeled as the other plots were.

numouty: 1410+V1P[3,1]*DP;

4 WVRITELN(LPT2,'PU 1290,',numouty:0:4);

FOR I:=2 TO 513 DO BEGIN

numoutx: 1290+(R-1)*1.7;

numouty: 1410+VIP[i3,R]*DP;

WRITELN(LPT2,'PD ',numoutxK:0:4,',',numouty:0:4)

END;
* numoutx: 1290+256*1.7;

numouty: 1410+VIP[3,256]*DP;
WRITELN(LPT2,'PU ',numoutx:0:4,',',numouty:0.4);

IF numouty > 1610 THEN BEGIN

* WRITELN(LPT-2,'CP 0,- 1.1l');
4 WRrrELN(LPT2,'LBP')

"C END

ELSE BEGIN

* WRITELN(LPT2,'CP 0, 1.1');

153

WRrrELN(LPT2,'LBP')

END;
WRITLN(LPT2,'SI');

WRITELN(LPT2,'PU');

CLOSE(LPT2)

END;

PROCEDURE plot2 (stor: STR13; VAR MaxAinA : INTEGER;
-a. VAR HscA,ScaleA: REAL);

*This procedure is used to plot Vbe in the upper right quadrant of the out-

put. It is created exactly as the plots in "Plot 1" were, except no label is

* plotted.

TYPE

-, simplearT = ARRAY II..2048] OF INTEGER;

VAR

R,I,S : INTEGER;

going: STRLNGI14];

incoming: CHAR;

VIP: simplearrn

VV,probeA,ZeroA,fBiasAjrBiasA,numouty,numoutx,DA : REAL;

store,LPT'2: TEXT;

* BEGIN

a,, AS SIGN(LPT2,'LPT'2');

REWRJTE(LPT2);

going := stor;

* INSERT('C',going, 10);
a ASSIGN(store,going);

incoming :=Q;

($I-)
* RESET(store);

a'~

154

WHILE loresult <> 0 DO BEGIN

WRJTELN('There has been an error accessing file ',going);

WRITELN(PIease check to be sure the proper disk is in drive A:');

WRITE('Enter "Y" to continue, or "N" to halt program

READLN(incoming);

IF ((incoming = 'y') OR (incoming = 'Y')) THEN RESET(store);

IF ((incoming = 'N') OR (incoming = 'n')) THEN HALT

END;

($I+}
• The file containing Vbe is found and opened.

READLN(store,fBiasA,rBiasA);

READLN(store,VV,HscA,probeA);
* The first two lines are read. Forward bias and reverse bias settings from

* line one, and Volts/Div, horizontal scale factor and probe multiplication

factor from line two.

ScaleA := W'*probeA/32;

FOR R:= I TO 2048 DO BEGIN

READ(store,incoming);

VIP[R] := ORD(incoming)

END;
- The data points are read.

CLOSE(store);
MaxA:= 0;

MinA:= 256;
FOR R:= 1 TO 2048 DO BEGIN

IF (MaxA < VIP[R]) THEN MaxA:= VIP[R];

IF (MinA > VIP[R]) THEN MinA := VIP[R];

END;
* The minimum and maximums are calculated.

* DA:= MaxA - MinA;

The difference between the minimum and maximum is calculated.

FOR R := 1 TO 2048 DO BEGIN

VIP[R] := VIP[R] - MinA;

END;

155

The data points are shifted so the minimum value in tV'm rray is zero.
DA:= 2000/DA;

* "DA" becomes the conversion factor from integer values to plotter units.

IF MinA < 127 THEN BEGIN

ZeroA:= ABS((127-MinA)*DA);

WR1TELN(LPT2,'LT 2,1');

numouty:= 4400+ZeroA;

WR1TELN(LPT2,'PA 5780,',numouty:0:4);
WRITELN(LPT2PD 9340,',numouty:0:4);

WRITELN(LPT2,'LT)

END;

• If the plot goes negative the zero crossing location is marked by a dashed

line.
*numouty := 4400+(VIP[I]*DA);

WRITELN(LPT2,'PU 5830,',numouty:0:4);

FOR I:= 2 TO 513 DO BEGIN
: R:= (1-1)'4;

numoutx := 5830+(R-1)* 1.7;

numouty := 4400+(VIP[R]*DA);
WRITELN(LPT2,'PD ',numoutx:0:4,',',numouty:0:4)

END;

• Every fourth data point is plotted. Notice the offsets, 5830 and 4400.

This places the plot in the upper right quadrant.

* WRITELN(LPT2,?PU');

CLOSE(LPT2)
END;

PROCEDURE LabelChoice2;

• This procedure is used to create the text labels for the axes, the zero

crossing line key and the graph titles for plotting option 2 made in

"PlotWhat." The procedure is simply a series of WRITELN state-
* ments. To understand what is happening in this procedure the reader

V

156

should refer to the HP-7470A User's Manual. No further comments

are included for this procedure.

VAR

LPT'2 TEXT;

BEGIN

AS SIGN(LPT2,'LPT2');

REWRlTE(LPT'2);

WRITELN(LPT2,'SI .27,.375');

WRITELN(LPIT2,'PU 2790,6600');

WRITELN(LPT2,'CP -5,0');

WRLTELN(LPT2,'LBV and F');

WRITELN(LPT2,'PU 2790,6600');

WRITELN(LPT2,'CP -4,-S3);
WRITELN(LPT2,'LBCE C);

WRITELN(LPT2,'PA 7330,6600')

WRITELN(LPT2,'CP -10,0');

WRITELN(LPT2,'LBBase-Emitter Voltage');

WRITELN(LPT2,'PA 2790,3610');

WRITELN(LPT2,'CP -4.5,0');

WRITELN(LPT2,'LBP and E');

WRITELN(LPIT2,'PA 2790,3610');
4.. WRITELN(LPT2,'CP -3.5,-.3');

W"MN(P2,LI)

0 WRITELN(LPT2,'LBI C')

N.,WRITELN(LPT2,'DR 0,1);

WRITELN(LPT2,'PA 5330,5450');

WRITELN(LPT2,'CP -2.5,-412);

WRITELN(LPT2,'LB Volts');

WRITELN(LPT2,'PA 740,5450');

WRITELN(LPT2,'CP -2.5,0');

WRITELN(LPT2,'LB Volts');

WRITELN(LPT2,-PA 740,5450');

157

WRITELN(LP1-2,'CP -3.5,-1.2');

W~RITELN(LPT2,'LBAmperes');

WRITELN(LPT2,'PA 740,2360');
WRrrELN(LPT2,'CP -2.5,0');

- WMRMTLN(LPT2,'LB Watts');

WR1TELN(LPT2,'PA 740,2360');
WRITELN(LPT2,'CP -3,-1.2');
WRITELN(LPT'2,'LBJoules');

WRITELN(LPT2,'DR 1,0');

WRITELN(LPIT2,'PU 5500,1200');

WfRITELN(LPT2,'LT 2,1');
WRITELN(LPT2,'PD 6800,1200');
WRITELN(LPT2,'LT 1,1F);

* WRITELN(LPT2,'PU 7050,1200');
WRITELN(LPT2,'LBZero Crossing V and P');
WRITELN(LPT2,'PU 5500,950');
WR1TELN(LIP12,'PD 6800,950');
WRITELN(LPT2,'PU 7050,950');
WRLTELN(LPT2,'LBZero Crossing Current');
WRITELN(LPT2,'LT');

CLOSE(LPT2)
END;

* PROCEDURE VerticalAxisl (MaxA,MaxB,MaxP,inA,MinB,MinP: INTEGER;

VscP,ScaleA,ScaleB,energy,fBiasrBias: REAL);
*The vertical axes scales for Vce, Ic and P are calculated and plotted for

Lb. plot option two with this procedure.

"4-i VAR
fullstr: STRING[27];

outstr: STRING[91;
* MinPlotA,inPlotB,MinPlotP,MaxPlotA,MaxPlotB,MaxPlotP: REAL;

158
LPT2: TEXT;

BEGIN

ASSIGN(LPT2,'LPT2');

-' ~ REWR1TE(LPT2);

MinPlotA:= ScaleA*(MinA - 127);

MinPlotB:= ScaleB*(MinB - 127);

MinPlotP:= VscP*MinP;
" The minimum value of Vce in volts, Ic in Amperes and P in Watts is cal-

culated.

MaxPlotA := ScaleA*(MaxA - 127);

MaxPlotB:= ScaleB*(MaxB - 127);

MaxPlotP:= VscP*MaxP;
" The maximum value of Vce in volts, Ic in Amperes and P in Wats is cal-

culated.

WRITELN(LPT2,'SI .12,.21');

WRITELN(LPT2,'PU 750,6400');

WRITELN(LPT2,'CP -3,+.5');
NumToStr9(MaxPlotA,outstr);
WRITELN(LPT2,'LB',outstr,'V');

. The plotter pen is moved to the location where the maximum value of Vce

is to be written. Depending upon the magnitude of the value the pen is

moved a certain number of characters to the left to keep a constant right

justification with the rest of the numbers to be printed below.

WRITELN(LPT2,'PU 750,4400');

* WRITELN(LPT2,'CP -3,+.5');

NumToStr9(MVinPlotA,outstr);
WRITELN(LPT2,'LB',outstr,'V');

* The minimum value of Vce is printed. It is also right justified.

• WRITELN(LPT2,'PU 750,6400');

WRITELN(LPT2,'CP -3,-.5');

NumToStr9(MaxPlotB,outstr);

WRITELNCLPT2,'LB',outstr,'A');
* The maximum value of Ic is printed (right justified).

N . -

159

WRITELN(LPT2,'PU 750,4400');

WRITELN(LPT2,'CP -3,-.5');

NumToStr9(MinPlotB,outstr);

WRITELN(LPT2,'LB',outstr,'A');
'.. •~ The minimum value of Ic is printed (right justified).

WRITELN(LPT2,'PU 750,3410');

WRITELN(LPT2,'CP -3,.5');

NumToStr9(MaxPlotP,outstr);
WRITELN(LPT2,'B',outstr,'W');

• The maximum value of P is printed (right justified).

WRITELN(LPT2,'PU 750,3410');

'.. WR1TELN(LPT2,'CP -3,-.5');

NumToStr9(energy,outstr);
* WRITELN(LPT2,'LB',outstr,'J');

' The maximum value of the energy is printed (right justified). The energy

was obtained when the file containing P was read. The total energy is

contain on line two of that file, and was passed to this procedure.

Since the total energy is the maximum energy, it is possible to use that

value to create the scale label. Also, the power and energy plots are

superimposed in both of the plot options so the scale value for the en-

ergy is written just below that for the power.
WRITELN(LPT2,'PU 750,1410');

WRITELN(LPT2,'CP -3,-.5');
NumToStr9(0,outstr);

,',p. WRITELN(LPT2,'LB',outstr,'J');

S * The minimum value of the energy is printed.

WRITELN(LPT2,'PU 750,1410');

WRITELN(LPT2,'CP -3,.5');
NumToStr9(MinPlotP,outstr);

* WRITELN(LPT2,'LB',outstr,'W');

* The minimum value of P is printed (right justified).

WRITELN(LPT2,'S');

WRITELN(LPT2,'PU 7585,3100');

* WRITELN(LPT2,'CP -11,0');

160

NumToStr9(energy,outstr);

WRITELN(LPT2,'LB ',outstr,TJ);

*The value of the total energy is printed in the lower right quadrant in the

"Breakdown Values" section.

WRITELN(LPT2,'PU 7585,1900');
WRITELN(LPT2,'CP -12,0');

414 NumToStr9(fBias,outstr);

WRITELN(LPT2,'LB ',outstr,'A');

WRITELN(LPT2,'PU 7585,1900');

WRITELN(LPT'2,'CP 6.2,0');
NumToStr9(rBias,outstr);

WRITLN(LP T2,'LB ',outstr,'A');

*The forward and reverse bias settings are also printed over in the lower

right quadrant.

CLOSE(LPT-2)

END;

PROCEDURE VerticalAxis2 (MaxA,MinA: INTEGER; ScaleA: REAL);
*This procedure is used to print the vertical axis scale for Vje.

VAR

fullstr: STRING[27];

outstr: STRING[9];

MinPlotA,MaxPlotA -REAL;
LPT2: TEXT,

10 - BEGIN
*. ASSIGN(LPT2,'LPT2');

REWRrrE(LPT2);

MinPiotA: ScaleA*(MinA - 127);

N, MaxPlotA ScaleA*(MaxA - 127);
*The maximum and minimum values of Vbe are calculated.

~J. ,N

161

WRITELN(LPT2,'SI .12,.21');

WR1TELN(LPT2,'PU 5290,6400');

WRITELN(LPT2,'CP -2,0');
NumToStr9(MaxPlotA,outstr);

WRITELN(LPT2,'LB',outstr);
-The maximum value of Vbe is printed (right justified).

WRITELN(LPT2,'PU 5290,4400');

WR1TELN(LPT2,'CP -2,-.5');

NumToS tr9(MinPlotA,outstr)

WRITELN(LPT2,'LB',outstr);

- The minimum value of Vbe is printed (right justified).
CLOSE(LPT2)

END;

PROCEDURE EnergyPlot(stor: STR13; Hsc : REAL; VAR PmaxPos: INTEGER);

*This procedure plots the Cumulative Energy superimposed on the In-

stantaneous Power.

TYPE

ene = ARRAY[L.2047] OF REAL;

VAR

store,LPT2: TEXT;
* energy: ene;

I,R,Estart,Estop : INTEGER;

DE,EmaxX,Y,t: REAL;

test: BOOLEAN;

* going: STRING[14];

incoming : CHAR;

fullstr: STRING[25];

time: STRING[10];

6%eMLk

162

BEGIN

ASSIGN(LPT2,'LPT2');

REWRrrE(LM);

going:= stor,

INSERT('E',going, 10);

AS SIGN(store,going);

incoming:='Q;

. ($I-)
RESET(store);
WHILE Ioresult <> 0 DO BEGIN

WRJTELN(M'here has been an error accessing file ',going);

WRITELN(rPlease check to be sure the proper disk is in drive A:');

WRIE('Enter "Y" to continue, or "N" to halt program....

* READLN(incoming);

IF ((incoming = 'y') OR (incoming = 'Y')) THEN RESET(store);

IF ((incoming = 'N') OR (incoming = 'n')) THEN HALT

END;

1$1+)
* The file containing the energy is found and opened.

test := TRUE;

FOR R := 1 TO 2047 DO

READ(store,energy[R]);
• The cumulative energy values are read.

CLOSE(store);
FOR R := 1 TO 2047 DO

IF test THEN

IF energy[R] > 0 THEN BEGIN

test := FALSE;

Estart :=R

END;

The point where the energy becomes non-zero is found. This is where

the plot will begin.

Estart := Estart - 1;

Emax :=-100000.0;

163

FOR R:= 1 TO 2047 DO

IF energy[R] > Emax THEN Emax:= energy[R];

* The maximum value of the energy is found.

test:= TRUE;
FOR R I TO 2047 DO

IF test THEN

IF energy[R] = Emax THEN BEGIN

test := FALSE;

Estop:= R

END;
The first occurrence (and theoretically the only) of the maximum value of

E is found. This will be the end of the energy plot.

Estop:= Estop + 1;

* PmaxPos:= Estop -2;

-. DE := 2000/Emax;

' The vertical conversion factor from real numbers into plotting units is

calculated.

X:= 1.7*(Estan-1) + 1290;

Y:= 1410;
* The start point for the energy plot is calculated in plotter units.

WRITELN(LPT2,'PU ',X:0:4,',',Y:0:4);IR := 0;

FOR I := Estart TO Estop DO BEGIN

R:= R+ 1;

IF R = 4 THEN BEGIN
• R:= 0;

X:= 1.7*1 + 1290;

Y := 1410 + DE*energy[I];
WRITELN(LPT2,PD ,X:0:4,',',Y:0:4)

* END

END;

* The energy plot is created. Every fourth point is plotted.

X := X + 100;

* Y:= Y -25;

6-S .

0~.

*45 J ,-

164

WR1TELN(LPT,'PU ',X:0:4,',',Y:0:4);

WR1TELN(LPT2,'SI .12,.21');

WR1TELN(LPT2,'LBE');
'V * The energy plot is labeled.

t: (Estop - Estart)*Hsc;

The time interval over which integration was conducted is calculated.

This value is one of the values printed in the "Breakdown Values" sec-

tion.

STR(t,fullstr)
ThIe time is converted from real number to string.

DELETE(fullstr,1,);

DELETE(fullstr,7,1 1);

DELETE(fullstr,9,1);

* time: COPY(fullstr,1,l0);

The time is placed into the string "time" as a 10 character representation

of the time to breakdown in scientific notation. This step saves the

U.' printing of 25 characters to get the time, and it saves space on the pa-
per.

WRITELN(LPT2,'SI);
A ~WRITELN(LMT,'PU 7585,3 100');

WRITELN(LPT2,'CP 6,0');

WRITELN(LPT2,'LB',time,'S');

- The "time" string is printed.

CLOSE(LMT)
END;

PROCEDURE VlBreakdown (stor: STR13; PmaxPos: INTEGER);

*This procedure is used to calculate the values Of Vce and Ic at breakdown

(specifically, at the protection circuit's firing).

TYPE

6 Vlarray =ARRAY[1.L 10] OF INTEGER;

165

VAR

store : TEXT;

VIarr: Vlarray;
coming: STRING[14];

outstr: STRING[9];

V,I,R : INTEGER;
test: BOOLEAN;

incoming: CHAR;

H,ScaleA,ScaleB,VV,VI,probeA,probeB,Vbd,Ibd : REAL;

BEGIN

coming := stor,

* INSERT('A',coming, 10);
ASSIGN(store,coming);

RESET(store);

READLN(store);

READLN(store);
READLN(store,VV,H,probeA);

ScaleA := W*probeA/32;
The file containing Vce is opened the first lines are read and the vertical

scale factor is calculated.

Vbd:= 0;

FOR R := 1 TO PmaxPos-15 DO READ(store,incoming);

* The cursor position in the file is moved to the location 15 characters be-

* fore the position where the energy is at its maximum. This corre-

sponds to 15 time steps prior the region where breakdown occurred.
FORR := I TO 10 DO BEGIN

READ(store,incoming);

* Vlarr[R] := ORD(incoming);

END;

. The next 10 characters are read and converted to integers.

CLOSE(store);

test := TRUE;

0

166

R:= 1;

WHILE test DO BEGIN

Vbd:- Vlarr[RIVlarr[R+1];

IF Vbd < 1 THEN Vbd:= 1 -Vbd;

Vbd:= FRAC(Vbd);

IF Vbd > 0.10 THEN BEGINi V := R;

test:= FALSE

END;

R:=R+ 1;

IF R = 10 THEN BEGIN

V:= R;

test:= FALSE

0 END

END;

* A check is then made for breakdown occurring within those ten data

points. If there is a 10% variation from one point to the next, then

breakdown is said to have occurred. Only the points prior to this con-
dition being met will be used to calculate the voltage at breakdown.

Vbd:= 0;
FORR := I TO V DO Vbd:= Vbd + VIarr[R];

Vbd:= Vbd/V;
* The average value of the 10 points or the points up to breakdown is cal-

culated.

Vbd:= (Vbd-127)*ScaleA;

* * The average is converted to volts. This is now the breakdown voltage.

coming:= stor,
* A repeat of the above is then done for the file containing Ic.

INSERT('B',coming, 10);
* ASSIGN(store,coming);

RESET(store);
READLN(store);

READLN(store,VI,H,probeB);
* ScaleB VI*probeB/32;

167

Ibd :=0;
FOR R :=1 TO PmaxPos- 15 DO READ(store,incoming);

FOR R:= I TO 10ODO BEGIN

READ(store,incoming);

VIanfRi: ORD(incorning);

END;

CLOSE(store);
test: TRUE;

A R: =1;

WHLE test DO BEGIN

Ibd: Vhar[R]/VIarr[R+1];

IF Ibd <1 THEN lbd:=l1- Ibd;

Ibd: FRAC(Thd);

*IF Ibd >0.10 THEN BEGIN

I test := FALSE
END;

R:= R +1;

IF R= 10OTHEN BEGIN

V :=R;

test: FALSE
END

END;
V...., bd: 0;

FOR R:=1ITO VDO bd:= Ibd +Vlarr[R];

* Ibd:=I1bd/V;

Ibd: (Ibd-l27)*ScaleB;

*After both values have been calculated, they are printed out.

ASSIGN(store,'LPT2');

REWRITE(store);

WRITELN(store,'PU 7585,2700');

WRfl'ELN(store,'CP -12,0');

NumToStr9(Vbd,outstr);

* WRITELN(store,'LB',outstr,'V');

.N:

168

The breakdown voltage is printed in the lower right quadrant.
WRITELN(store,'PU 7585,2700');
WRITELN(store,'CP 6,0');

NumToStr9(Ibd,outstr);

WRITELN(store,'LB',outstr,'A');

- The breakdown current is printed in the lower right quadrant.
WRITELN(store,?U');

CLOSE(store)

END;

'i

I'PROCEDURE plot (stor: STR13;

VAR MaxA,MaxB,MaxP,MinA,MinB,MinP: INTEGER;
VAR HscA,VscP,ScaleA,ScaleB,energy,fBiasArBiasA: REAL;

VAR Ign : CHAR);
* This procedure is exactly the same as "Plotl" except the plots of Vce and

Ic are not superimposed. Ic is placed in the upper right quadrant and
Vce is in the upper left. This is plot option 1. Only changes between

this procedure and "Plotl" will be commented.

VAR

RI,S: INTEGER;

going: STRING[14];
incoming: CHAR;

VIP: datarray;
w VI,VV,HscB,HscP,probeA,probeB,fBiasB,rBiasB,fBiasP,

rBiasP,ZeroA,ZeroB,ZeroP,

numouty,numoutx,DA,DB,DP : REAL;
* store,LPT2 : TEXT[25];

-'..-BEGIN

ASSIGN(LPT2,'LPT2');

* REWRITE(LPT2);

170

IF ((incoming = 'y') OR (incoming = 'Y')) THEN RESET(store);

IF ((incoming = 'N') OR (incoming = 'n')) THEN HALT

END;
.- { $I+)}

READLN(store,fBiasB,rBiasB);

READLN(store,VI,HscB,probeB);

ScaleB := VI*probeB/32;

IF HscA <> HscB THEN BEGIN

WRITELN('Horizontal scale factors not equal. Program Halted.');

HALT

END;

FOR R:= 1 TO 2048 DO BEGIN

READ(store,incoming);

VIP[2,R]:= ORD(incoming)
END;

CLOSE(store);

going := stor;

INSERT('P',going, 10);

AS SIGN(store,going);

($I-)
RESET(store);

WHILE loresult <> 0 DO BEGIN

WRITELN('rhere has been an error accessing file ',going);

WRITELN('Please check to be sure the proper disk is in drive A:');

WRITE('Enter "Y" to continue, or "N" to halt program. ...

nREADLN(incoming);

IF ((incoming = 'y') OR (incoming = 'Y')) THEN RESET(store);

IF ((incoming = 'N') OR (incoming = 'n')) THEN HALT

END;

* {$I+)
READLN(store,fBiasP,rBiasP);
READLN(store,energy,HscP,VscP);

FORR:=ITO 2048 D

, READ(storeVIP[3,R]);

N%% % ' %.,
I S - ;3S,'S

169

going := stor;

INSERT('A',going, 10);

ASSIGN(store,going);

incoming 'Q';

RESET(store);
WHILE loresult <> 0 DO BEGIN

WRITELN(Ibere has been an error accessing file ',going);

WRITELN(Please check to be sure the proper disk is in drive A:');

WRITE('Enter "Y" to continue, or "N" to halt program

READLN(incoming);
IF ((incoming = 'y') OR (incoming = 'Y')) THEN RESET(store);

IF ((incoming = 'N') OR (incoming = 'n')) THEN HALT

* END;

15I+)

READLN(store,Ign);

READLN(store,fBiasA,rBiasA);

READLN(store,VV,HscAprobeA);

ScaleA:= VV*probeA/32;

' FOR R:= I TO 2048 DO BEGIN

READ(store,incoming);

VIP[1,R] := ORD(incoming)

END;

CLOSE(store);

going := stor;

* INSERT('B',going,10);

ASSIGN(store,going);

RESET(store);
* WHILE loresult <> 0 DO BEGIN

- WRITELN("There has been an error accessing file ',going);

'WR1TELN(lease check to be sure the proper disk is in drive A:');
"i., WRITE('Enter "Y" to continue, or "N" to halt program....

* READLN(incoming);

Si.

172

N VIP[1,R]: VIP[1,R] - MinA;

VIP[2,R]: VIP?[2,R] - MnB;

VIP[3,RI : VEP[3,R] - M~nP

END;
DA: 2000/DA;

DB := 200/DB;

DP: 2000/DP;

ZeroA: ABS((17-MinA)*DA);

ZeroB :=ABS((l 27-MinB)*DB);

ZeroP: ABS(MinP*DP);

WRITELN(LPT2,'LT 2,1F);

IF MinA <127 THEN BEGIN

numouty:= 4400-sZeroA;

* WRITELN(LPT2,'PA 1240,',numouty:O:4);

WR1TELN(LPT2,'PD 4800,',numouty:O:4)

END;

IF MinB < 127 THEN BEGIN

numouty:= 4400 ZeroB;

WRITELN(LPT2,'PU 5780,',numouty:O:4);

WRITELN(LPT2,'PD 9340,',numouty:O:4)

END;
IF MinP < 0 THEN BEGIN

numouty:= 1410+ZeroP;

5' WRITELN(LPT2,'PU 1 360,',numouty:0:4);

WRITELN(LPT2,'PD 4800,',numouty:0:4)

* END;
'S. WRITELN(LPT2,'LT');

numouty: 4400+i(VIP[1,1]*DA);

WRITELN(LPT2,'PU 1 290,',numouty:0:4);
*FORI1:= 2TO 513 DO BEGIN

R: (1-1)*4;
numoutx: 1290+i(R-1)*1.7;

numouty: 4400+(VIP[1,RI*DA);

* ~WRITELN(LPT2,'PD ',numoutx:0:4,',',numouty:0: 4)

."- 171

CLOSE(store);

IF ((fBiasP <> fBiasA) OR (fBiasP <> fBiasB) OR (fBiasA <> fBiasB)) THEN BEGIN

WRITELN('Error in reading in files. Forward Bias Settings not equal.');

WRITELN('Program Halted.');

HALT

END;

IF ((rBiasP <> rBiasA) OR (rBiasP <> rBiasB) OR (rBiasA <> rBiasB)) THEN BEGIN

:a WRITELN('Error in reading in files. Reverse Bias Settings not equal.');

WRLTELN('Program Halted.');

HALT

END;

IF ((HscA <> HscB) OR (HscA <> HscP)) THEN BEGIN
WRITELN('Error in reading in files. Horizontal Scale Settings not equal.');

WRITELN('Program Halted.');
• """ "HALT

".. END;

MaxA:= 0;
MaxB := 0;
MaxP :=-32766;

- MinA:= 256;

MinB := 256;

MinP:= 32767;

FOR R:= 1 TO 2048 DO BEGIN
IF (MaxA < VIP[1,R]) THEN MaxA:= VIP[l,R];
IF (MaxB < VIP[2,R]) THEN MaxB:= VIP[2,R];

, IF (MaxP < VIP[3,R]) THEN MaxP:= VIP[3,R];

IF (MinA > VIP[1,R]) THEN MinA:= VIP[1,R];

IF (MinB > VIP[2,R]) THEN MinB := VIP[2,R];

IF (MinP > VIP[3,Rj) THEN MinP:= VIP[3,R]

• END;
DA := MaxA -MinA;

- DB:= MaxB -MinB;

DP:= MaxP -MinP;
* FOR R:= I TO 2048 DO BEGIN

5/.2

nn0.

173

END;
numouty: 4400+(VIP[2,1]*DB);

WRITELN(LPT2,'PU 5830,',numouty:0:4);
*The offset in the x-direction for Ic is now 5830 instead on 1290.

FOR1:= 2TO 513 DO BP1N

R: (1-1)*4;

numoutx: 5830+(R-1)* 1.7;

numouty: 4400±VEP[2,R]*DB;

WRITELN(LPT2,'PD ',numoutx:0:4,',',numouty:0:4)

END;

numouty: 1410+VIP[3,1]*DP;

WRITELN(LPT2,'PU 1290,',numouty:0:4);

FOR I:= 2TO 513DO BEGIN

* R: (1-1)*4;

numoutx: 129O0i(R-1)* 1.7;

numouty: 1410+VIP[3,RI*DP;

WRITELN(LPT2,'PD ',numoutx :0:4,',',numouty:0:4)

END;
WRITELN(LPT2,'SI .12,.21F);

ynumoutx :=1290+256* 1.7;

numouty: 1410+VIP[3,256]*DP;

WRITELN(LPT2,'PU ',numoutx:0:4,',',numouty:0:4);

* IF numouty >1610 THEN BEGIN

-. WRITELN(LPT2,'CP 0,- 1. 1');
WRITELN(LPT2,'LBP')

* END

ELSE BEGIN

-~ WRITELN(LPT2,'CP 0, 1. 1');

WRITELN(LPT2,'LEP')

END;
eVce and Ic are no longer 1'4'eIled, but P is.

WRITELN(LPT2,'Sl');

WrRITELN(LPT2,'PU');

* CLOSE(LPT2)

174

4, END;

PROCEDURE baseplot(Hsc: REAL; device,series: ITEGER);

-This procedure produces the basic plotting elements. The elements are

things like the axes, the time labels on the axes and the "Breakdown

Values" labeling. The items created by this procedure are the same for

both option 1 and 2.

VAR

tl,t2,t3,t4: STRING[7];

fullstr: STRING[23];

0 time: REAL;

LM:2 TEXT;

BEGIN

ASSIGN(LPT2,'LPT2');

-~ REWRITE(LPT2);

time := 512*Hsc;

The first time mark is one-quarter of the way down the time axis. It is

calculated by this line.

STR(time,fullstr);

DELETE(fullstr,7, 12);

DELETE(fullstr,9,2);

0 DELETE(fullstr, 1,2);

ti : COPY(fullstr,1,7);

*The first time mark is converted to string and shortened.

time: 1024*Hsc;

0 STR(time,fullstr);

DELETE(fullstr,7, 12);

DELETE(fullstr,9,2);

DELETE(fullstr, 1,2);

0t2 copy(fullstr,1,7);

0

175

* The second time mark is calculated and converted to string.

time:= 1536*Hsc;

STR(time,fullstr);

DELETE(fullstr,7,12);
DELETE(fullstr,9,2);

DELETE(fullstr, 1,2);

t3 := COPY(fullstr, 1,7);
, The third time mark.

time:= 2048*Hsc;
STR(time,fullstr);

DELETE(fullstr,7,12);

DELETE(fullstr,9,2);

DELETE(fullstr,1,2);

* t4 := COPY(fullstr, 1,7);

The fourth time mark. All of the time marks are the same for all three

graphs.
WRITELN(LPT2,'IP 520,770,9600,6750');
WRITELN(LPT2,'PA 520,770');

WRITELN(LPT2,'PU 1240,6400');

WRITELN(LPT2,'PD 1340,6400');
WRITELN(LPT2,'PU 1290,6400');

WRITELN(LPT2,'PD 1290,4400,4800,4400');

WRITELN(LPT2,'PU 5780,6400');

WRITELN(LPT2,'PD 5880,6400');

WRITELN(LPT2,'PU 5830,6400');
* WRITELN(LPT2,'PD 5830,4400,9340,4400');

WRITELN(LPT2,'PU 1240,3410');
.WRITELN(LPT2,'PD 1340,3410');

WRITELN(LPT2,'PU 1290,3410');

0 WRITELN(LPT2,'PD 1290,1410,4800,1410');
" The axes are plotted.

- This is the beginning of the time labeling section.

WRITELN(LPT2,'PU 2790,6500');

* WRITELN(LPT2,'DT',CHR(10));

-, 176

WRITELN(LPT2,DR 1,0');
WRITELN(LPT2,'SI .12,.2 1');

WR1TELN(LPT2,'PU 1290,4450');

WRITELN(LPT2,'PD 1290,4350');

WR1TELN(LPT2,'PU 1290,4200');

WRITELN(LPT2,'LB0');

WRITELN(LPT2,'PU 1240,4400');

WRITELN(LPT2,'PD 1300,4400');

WRITELN(LPT2,'PU 2167.5,4450');

WR1TELN(LPT2,'PD 2167.5,4350');

WRITELN(LPT2,'PU 2167.5,4200');

K' WRITELN(LPT2,'CP -3.5,0');

WRITELN(LPT2,'LB',tl);

* WRITELN(LPT2,'PU 3045,4450');

WRITELN(LPT2,'PD 3045,4350');
(WRITELN(LPT2,'PU 3045,4200');

WRITELN(LPT2,'CP -3.5,0');

WRITELN(LPT2,'LB',t2);

WRITELN(LPT2,'PU 3922.5,4450');

WRITELN(LPT2,'PD 3922.5,4350');

WR.ITELN(LPT2,'PU 3922.5,4200');

WR1TELN(LPT2,'CP -3.5,0');
WRITELN(LPT2,'LB',t3);

WRITELN(LPT2,'PU 4800,4450');

WRITELN(LPT2,'PD 4800,4350');

* WRITELN(LPT2,'PU 4800,4200');

WRITELN(LPT2,'CP -3.5,0');

WRITELN(LPT2,'LB',t4);
WRTL(PTP 29,40)

WRITELN(LPT2,'PU 1290,1460');
* WRITELN(LPT2,'PD 1290,1360');

- WRITELN(LPT2,7LBO');

WRITELN(LPT2,'PU 1240,1410');

* ~WRITELN(LPT2,'PD 1300,1410');

177

W.rL(PTP 17.,40)
WRITELN(LPT2,'PU 2167.5,1460');

WRrTELN(LPT2,'PD 2167.5,1210');

'A WRITELN(LPT2,'CP -3.5,0');

WRITLN(LPT2,'LB',tl);

WRITELN(LPT2,'PU 3045,1460');
WPMNLTPD34,30)

p WR1TELN(LPT2,'PD 3045,1360');

WRITELN(LPT2,'CP -3.5,0');

WRITELN(LPT2,'LB',t2);

WRITELN(LPIT2,'PU 3922.5,1460');
WRrTELN(LPT2,'PD 3922.5,1360');

WRITELN(LPT2,'PU 3922.5,12 10');

* WRITELN(LPT-2,'CP -3.5,0');

WRITELN(LPT2,'LB',*,3);
WRITELN(LPT2,'PU 4800,1460');

A WRITELN(LPT2,'PD 4800,1360');

WRITELN(LPT2,'PU 4800,1210');

WRITELN(LPT2,'CP -3.5,0');
WVRITELN(LPT2,'LB',t4);

4 WRITELN(LPT2,'PU 5830,4450');

WRITELN(LPT2,'PD 5830,4350');

WRITELN(LPT2,'PU 5830,4200');

WRITELN(LPT2,'LBO');
WRITELN(LPT2,'PU 5780,4400');

* WRITELN(LPT2,'PD 5850,4400');
WRITELN(LPT2,'PU 6707.5,4450');
WRITELN(LPT2,'PD 6707.5,4350');

WRITELN(LPT2,'PU 6707.5,4200');

* WRITELN(LPT-2,'CP -3.5,0');

WRITELN(LPT2,'LB',tl);

WRITELN(LPT2,'PU 7585,4450');
WRITELN(LPT2,'PD 7585,4350');

S WRJTELN(LPT2,'PU 7585,4200');

178

WR1TELN(LP'P2,'CP -3.5,0');

WVRITELN(LPT2,'LB',t2);

N WRITELN(LPT2,'PU 8462.5,4450');
WRITELN(LPT2,'PD 8462.5,4350');

WRITELN(LPT2,'PU 8462.5,4200');

WRITELN(LPT'2,'CP -3.5,0');

WRITELN(LPT2,'LB',t3);

WRITELN(LPT2,'PU 9340,4450');

WRITELN(LPT2,'PD 9340,4350');

WRITELN(LPT2,'PU 9340,4200');

WRITELN(LPT2,'CP -3.5,0');

WRITELN(LPT2,'LB',t4);

" This is the end of the time labeling section. All three graphs have been

* labeled.

" The following section writes the "Breakdown Values" section minus the

data.

WRITELN(LPT2,'PA 7585,3500');

WRITELN(LPT2,'SI .27,.375');

WRITELN(LPT-2,'CP -8,0');

WRITELN(LPT2,'LBBreakdown Values');

WRITELN(LPT2,'SI');

WRITELN(LPT2,'PA 7585,3 100');

WR1TELN(LPT2,'CP -17,0');

WRITELN(LPT2,'LBEnergy:');

WRITELN(LPT2,'PA 7585,3 100');
* WRITELN(LPT2,'CP 2,0');

WRITELN(LPT2,'LBTime:');

WRITELN(LPT2,'PU 7585,2700');
WRITELN(LPT2,'CP - 16,0');

S WR1TELN(LP'r2,'LBV :');

WRITELN(LPT2,'PU 7585,2700');
WRITELN(LPT2,'CP -15,-.3');

WRITELN(LPT2,'LBCE');

* WR1TELN(LPT2,'PU 7585,27W0');

179

WRITELN(LPT2,'CP 2,0');

WRLITELN(LPT2,'LBI :');
WRITELN(LPT2,'PU 7585,2700');

WRITELN(LPT-2,'CP 3,-.3');

WRJTLN(LPT2,'LBC);

WRITELN(LPT2,'PA 7585,2300');

WRITELN(LPT2,'SI .27,.375');

WRITELN(LPT'2,'CP -6.5,0');

WRITELN(LPT2,'LBBias Settings');

WRITELN(LPT2,'SI');

WRITELN(LPT2,'PU 7585,1900');

WRITELN(LPT2,'CP -18,0');

WRITELN(LPT2,'LBForward:');

* WRITELN(LPT2,'PU 7585,1900');

WRITELN(LPT2,'LBReverse:');

WRITELN(LPT2,'SI .27,.375');

WVRITLN(LPT-2,'PA 7585,1500');

WRITELN(LPT2,'CP - 12,0');

WRITELN(LPP2,'LBDevice ',device);

WRITELN(LPT2,'PA 7585,1500');

WRITELN(LPT2,'LBSeries %,series);

"This is ends the section where the "Breakdown Values" are written.

" The next section writes the time axes titles.

)WRITELN(LPT2,'SI');

WRITELN(LPT2,'PA 3045,3925');

WRITELN(LPT2,'CP -7,0');
'p WRITELN(LPT2,'LBTime (Seconds)');

WRITELN(LPT2,'PA 3045,935');

WRITELN(LPT2,'CP -7,0');

* ~WRITELN(LPT2,'LBTime (Seconds)');

WRITELN(LPT2,'PA 7585,3925');
* ~WRITELN(LPT2,'CP -7,0');

* ~WRITELN(LPT2,'LBTime (Seconds)');

* CLOSE(LPT2)

180

S END;

PROCEDURE LabelChoicel;

This procedure is used to print the graph and vertical axis titles for plot
* option 1. The procedure is a series of WR1TELN statements. See the

BHP-7470A User's Manual for more information.

VAR

LPT2: TEXT,

BEGIN

* ASSIGN(LPT2,'LPT2');

REWRrrE(LPT2);

WRITELN(LPT2,'SI .27,.375');
WRITELN(LPT2,'PU 2790,6600');

WRJTELN(LP T2,'CP -12.5,0');
* . WRITELN(LPT,'LBCollector-Emitter Voltage');

WRITELN(LPT2,'PA 7330,6600');
WRITELN(LPT2,'CP -8.5,0');

WRITELN(LPT'2,'LBCollector Current');

~. WRITELN(LPT2,'PA 2790,3610');
WRITELN(LPT2,'CP -4.5,0');

WRITELN(LMT,'LBP and E');
* WRITELN(LPT2,'PA 2790,36 10');

WRITELN(LPT2,'CP -3.5,-.3');
WRITELN(LPT2,'LBI C');

WRITELN(LMT,'SI');
* WRITELN(LPT2,'DR 0,1');
5. WRITELN(LPT2,'PA 5430,5350');

WRITELN(LPT,'CP -3.5,0');

W*RrTELN(LPT2,'LBAmperes');

WRITELN(LPT,'PA 840,5350');

-- - - - - -

181

WRITELN(LPT-2,'CP -2.5,0');

WYiITELN(LPT2,'LB Volts');

WRJTELN(LPT2, PA 740,2360');

4. WRITELN(LPT'2,'CP -2.5,0');
WRZITELN(LPT2,'LB Watts');

WRrTELN(LPT2,'PA 740,2360');

WRITELN(LPT2,'CP -3,-1.2');
WRITELN(LPT2,'LBJoules');

WRITELN(LPT2,'DR 1,0');

WRITELN(LPT2,'PU 5500,1000');

% WRITELN(LPT2,'LT 2,1');
WRLTELN(LPT2,'PD 6300,1000');

WRrTELN(LPT2,'LT');

* WRITELN(LPT2,'PU 6550,1000');

WRITELN(LPT2,'LBZero Crossing V, I and P');

CLOSE(LPT2)
END;

PROCEDURE VerticalAxis (MaxA,MaxB,MaxP,MiEnA,MinB,MinP: INTEGER;

VscP,ScaleA,ScaleB,energy,fBias,rBias: REAL);

*This procedure prints the vertical axis scales for plot option 1. It also

4. writes the energy at breakdown and forward and reverse bias settings

in the "Breakdown Values" section. It is exactly the same as
"VerticalAxisi1" except for the location where the vertical scales for Ic is

concerned. Instead of the values for Ic being under the values for Vce

in the upper left quadrant, they are located in the upper right quadrant
where the scale values for Vbe would have been.

VAR

fullstr: STRING[27];

outstr: STRING[9];

* MnPlotA,Min~lotB,MinP~otP,MaxPlotA,MaxPotB,MaxPlotP: REAL;

0JLWA 6 %

182

LPT'2 TEXT;

BEGIN
A AS SIGN(LPT2, 'LPT2');

REWR1TE(LIP2);

MinPiotA: ScaleA*(MinA - 127);
MinPlotB :=ScaleB*(MnB - 127);

MinPlotP: VscP*MinP;
-The minimum values of Vce,' and P are calculated.

MaxPlotA :=ScaleA*(MaxA - 127);

MaxPlotB: ScaleB*(MaxB - 127);

MaxPlotP: VscP*MaxP;
*The maximum values Of Vce, Lc and P are calculated.

* WRITELN(LPT2,'SI .12,.21V);

In the following section, the vertical scales are printed.

WRITELN(LPT2,'PU 750,6400');

WR1TELN(LPT2,'CP -2,-.5');

NumToStr9(MaxPlotAoutstr);

WRITELN(LPT2, LB',outstr);

WRITELN(LPT2,'PU 750,4400');

WR1TELN(LPT2,'CP -2,-.5');
NumToStr9(MinPlotA,outstr);

WRITELN(LPT2,LB',outstr);

WRITELN(LPT2,'PU 5290,6400');

WRITELN(LPT2,'CP -2,-.5');

* NumToStr9(MaxPlotB,outstr);

WRITELN(LP2,'LB',outstr);

WRITELN(LPT2,'PU 5290,4400');

WRITELN(LPT2,'CP -2,-.5');

* NumToStr9(MinPlotB,outstr);

WRITELN(LPT2,tLB',outstr);

WRITELN(LPT2,'PU 750,3410');

WRITELN(LPT2,'CP -3,.5');

* NumToStr9(MaxPlotP,outstr);

183

WVRITELN(LPT2,'LB',outstr,'W');

WR1TELN(LPT2,'PU 750,34 10');

WRITELN(LPT2,'CP -3,-.5');

* NumToStr9(energy,outstr);

W RITELN(LPT2,'LB',outstr,'J');

WRITELN(LPT2,'PU 750,1410');

WRITELN(LPT2,'CP -3,-.5');
NumToStr9(0,outstr);

WrRITELN(LPT2,'LB', outstr,TJ);

WRITELN(LPT12,'PU 750,1410');

WRITELN(LPT2,'CP -3,S5);
NumToStr9(MinPlotP,outstr);

WRITELN(LPT2,'LB',outstr,'W');

- End of the section where the vertical scales are printed.

-Below the energy at breakdown and the forward and reverse bias settings

are printed in the "Breakdown Values" section.

WRITELN(LPT2,'SI);

WRITELN(LPT2,'PU 7585,3100');

WRITELN(LPT2,'CP -11,0');

NumToStr9(energy,outstr);
WRITELN(LPT2,'LB ',outstr,'J);

WRITELN(LPT2,'PU 7585,1900');

WRITELN(LPT2,'CP -12,0');

NumToStr9(fBias,outstr);

WRITELN(LPT2,'LB ',outstr,'A');

WRITELN(LPT2,'PU 7585,1900');

WRITELN(LPT2,'CP 6.2,0');
NumToStr9(rBias,outstr);

WRITELN(LPT2,'LB ',outstr,'A');

CLOSE(LPT2)
END;

184

PROCEDURE plotend;

* This procedure is used to return the plotting pen to its stall and present

the finished plot to the operator.

VAR

LPT2: TEXT;

BEGIN
ASSIGN(LPT2,'LPT2');

REWR1rE(LPT2);
WRITELN(LPT2,'PU 0,0');

WRITELN(LPT2,'SP 0');

CLOSE(LPT2)
*: END;

wp { }

PROCEDURE Ignorproc;

, If breakdown did not occur, this procedure comes into play. If there was

no breakdown, then the "Breakdown Values" section is not needed and
not accurate. Rather than modify the program to print a different for-

mat for non-breakdown, this procedure was written. It prints the word

"IGNORE" across the "Breakdown Values" section as a reminder that
the numbers written there are irrelevant.

• VAR

LPT2: TEXT;

BEGIN

* ASSIGN(LPT2,'LPT2');

REWRrTE(LPT);

% WRITELN(LPT2,'DR 86.67,25');

% WRITELN(LPT2,'PU 5700,2700');
WRITELN(LPT2,'SI 1,1');

.. . . 7V % S J U V N U V j

185

WRITELN(LPT2,'LBIGNORE');

WRITELN(LPT2,'DR');

4/.. WRITELN(LPT2,'SI');

CLOSE(LPT-2)
END;

BEGIN (MAIN PROGRAM)

REPEAT

*This loop is used to allow the operator to plot multiple test runs without
having to load the program over and over.

Ignorit:';
* listdevice(storage,DEV,SER);

Plot)What(storage,plotall);

plotinitialize;

IF plotall = 'N' THEN BEGIN
If the operator selected option 1 in "PlotWhat", then this section is exe-

cuted.

plot(storage,MaximumA,MaximumB ,MaximumP,MlininiumA,MinimumB ,MinimuMP,

Hscale,Vscale,Ascale,Bscale,Ener,ForBias,RevBias,Ignorit);

LabelChoice 1;

baseplot(Hscale,DEV,SER);

VerticalAxi s(MaximumA,MaximuniB,MaximumP,MinimumA,MinimumB,

MyinimumP,Vscale.Ascale,B scale,Ener,ForBias,RevBias);

* - EnergyPlot(storage,Hscale,PmaxPoint);

VlBreakdown(storage,PmaxPoint)

*End of the plot option 1 section.

END;

IF plotall ='YTHEN BEGIN
*Plot option 2 begins here.

ploti (storage,MaximumA,MaximumiB,MaximumP,MinimumA,MinimumB,

V MNinimumP,H-scale,Vscale,Ascale,Bscale,Ener,ForBias,RevBias,Ignorit);

* plot2(storage,MaxC,MfinC,Hscale,ScaleC);

186

LabelChoice2;

baseplot(HscaleDEVSER);

VerticalAxis l(MaximumA,MaximumB,MaximumP,MinimumA,MinimumB,

MinimumPVscaleAscaleB scale,Ener,ForBias,RevBias);

VerticaLAxis2(MaxC,MinC,ScaleC);

EnergyPlot(storage,Hscale,PmaxPoint);

VIBreakdown(storage,PmaxPoint)

• Plot option 2 ends here.

END;
IF ((Ignorit = 'N') OR (Ignorit = 'n')) THEN Ignorproc;

plotend;

answer 'Q';
WHILE NOT ((answer = 'y') OR (answer = 'Y') OR (answer = 'n') OR (answer = 'N'))

* DO BEGIN
WR1TE('Plot another? (Y or N).

READLN(answer)
END;

The operator is asked if he or she wants to plot another test run. If yes,
the loop is executed again; otherwise, the loop ends and so does the

program.

IF ((answer = 'Y') OR (answer = 'y')) THEN testmain FALSE;
IF ((answer = 'N') OR (answer = 'n')) THEN testmain TRUE

S. UNTIL testmain

END.

I•.

0 %

S

6

S

-' APPENDIX K
-; TABULATE.PAS PROGRAM LISTING

P

S
.4..

0

-p

.1*

'4'

0
187

p

p

S

188

PROGRAM Tabulate;

This program is used to create the file BDxxxLL.TAB which is a

compilation of all the breakdown values on a given device, "xxx." The

output is written to the hard disk directory, "C:-\RBSOA." The

program is written for the Turbo Pascal compiler.

TYPE

Rarray = ARRAY[1.6L.L.999] OF REAL;

STR13 = STRING[13];

VAR

storage: STRING[13];

Ppos,rep,SER : ITEGER;

* ForB,RevB,Voltage,Current,TotEnergy,Time: REAL;

BrealcDown : CHAR;

PROCEDURE listdevice(VAR stor: STRl3; VAR series: R-INEGER);

*This is the same general procedure used in PLOTDATA. It serves to
provide the operator with a list of the devices currently stored on the

file, INDEX.DEV, as well as allowing the operator to choose the de-

vice to be tabulated. It returns the storage filenamne and the number of

test runs taken on the device.

* TYPE

STR40 = STRING[401;

STR13 = STRING[13];

DEVICES = RECORD

* DEV ITEGER;
% Pa-

descrip : STR4O;
* book: STRl3;

store: STR13

0

L N l

189

END;

VAR

index: FILE OF DEVICES;

indexrec : DEVICES;

error,LineCount : INTEGER;

name : STRING[18];

one: STRING[1];

two: STRING[21;

thr: STRTNG[31;

test: BOOLEAN;
ans : CHAR;

I,Count,err,device : INTEGER;

BEGIN

name := 'C:\RBSOA\INDEX.DEV';

ASSIGN(index,nanie);

RESET(index);

WRITELN(You will be asked for the device number corresponding to the storage file');

WR1TELN(fo the data taken on the device of interest.)

WR1TELN;

ans :=V

WHILE NOT ((ans = 'y') OR (ans = Y) OR (ans = 'n') OR (ans = WN)) DO

BEGIN

WRJTELN('Do you want the see a listing of all currently cataloged devices?');
* ~WRITE(Se list? (Y or N).. .

READLN(ans)

END; (WHILE NOT ((ans ='y'...)

IF ((ans ='Y) OR (ans = 'y')) THEN BEGIN

If the operator wants to see a listing of the devices in INDEX.DEV, then

the following is executed.

LineCount := 1;

Count := 0;
* SEEK(index,LineCount);

190

WHILE NOT EOF(index) DO BEGIN

READ(index,indexrec);
* A device record is read.

WITH indexrec DO BEGIN

WRITE(DEV,' ');
WRITE(descrip:40,' ');
WRITE(book,' ');

WRITELN(store)

END;

E The record fields are displayed on the screen.

LineCount := LineCount + 1;

* The record pointer is increased by one.

Count:= Count + 1;

* * The count of lines displayed since last pause or beginning of list is in-

creased by one.

IF Count = 21 THEN BEGIN

* If the number of lines displayed is 21, then the program pauses to allow

the operator to read the device records displayed.

Count:= 0;
WRITELN('Press <RETURN> for more devices.');

READLN

END

END;

WRITELN(End of indexed devices.')
END; (IF ((ans = 'Y'...)

* test := TRUE;

WHILE test DO BEGIN

WRITE(hat is the device number? (Integer Value Only!)...

READLN(device);

* IF device < 1000 THEN test := FALSE

ELSE WRITELN('Integer too large. Try again.')

END;

* The device number is entered.

* SEEK(index,device);

0L

191

READ(index,indexrec);

* The record of the device of interest is read.

WIH indexrec DO

stor := store;
* The storage filename is loaded into the string variable, "stor."

CLOSE(index);
DELETE(stor, 1,1);

INSERT('A',stor,1);

- The drive designation is changed from G: to A:.
thr := COPY(stor, 11,3);

VAL(thr,series,err);

IF err <> 0 THEN BEGIN
WRITELN(Error in reading maximum series value. Program Halted.');

* HALT
:. .:END; END; The series number (last three characters in "stor") is copied into the

string, "thr." The string is converted to an integer by the built-in pro-
cedure "VAL." An error check is made on the conversion. The pro-

gram is halted if there is an error.

v DELETE(stor,1 1,3);
INSERT('000',stor, 11)

* The last three characters on "stor" are changed to "000." The string is

then passed to the main program.
J END; I(Procedure listdevice)

{ ** }

PROCEDURE addone(VAR stor: STR13);

* This procedure is use to add a value of one to the series number in the
string, "stor." The new string is then passed back to the main pro-

'p gram.

VAR

I : INTEGER;

V.

192

BEGIN

IF ORD(stor[13]) = 57 THEN BEGIN

IF ORD(stor[12]) = 57 THEN BEGIN
IF ORD(stor[11]) = 57 THEN BEGIN

- If the series number is 999, then

WRITELN(Too Many Indexed Devices. Program Halted.');

HALT

END

ELSE BEGIN

. I := ORD(stor[11]) + 1;

.. stor[11] :=CHR(I;
ZIP. stor[12] CHR(48);

stor[13] := CHR(48)

• If the series number is x99 (where x is 0 to 8), then the "x" is increased

by one and the two nines are set to zero.
END

END
ELSE BEGIN

I := ORD(stor[12]) + 1;

stor[12] CHR(I);

stor[13] :=CHR(48)

• If the series number is xy9 (where y is 0 to 8), then y is increased by one

and the nine is set to zero.

END

END
ELSE BEGIN

I := ORD(stor[13]) + 1;

stor[13] := CHR(I)

• If the series number is xyz (where z is 0 to 8), then z is increased by one.

END

END;

193

PROCEDURE VIBreakdown (stor: STR13; PmaxPos : INTEGER;
VAR ForBias,RevBias,Vbd,lbd : REAL; GoNoGo: CHAR);

This procedure is used to find the breakdown values of Vce and Ic.

TYPE

VIarray = ARRAY[1..10] OF INTEGER;

VAR

store: TEXT;

coming: STRING[14];

VIarr: VIarray;

test: BOOLEAN;
[• V,I,R : INTEGER;

incoming: CHAR;
H,ScaleA,ScaleB,VV,VI,probeA,probeB : REAL;

BEGIN

IF ((GoNoGo = Y') OR (GoNoGo = 'y')) THEN BEGIN
* The "GoNoGo" variable is has the first character of the BDxxxLLA.yyy

file in it. If breakdown occurred, then the value is "Y."

coming := stor,
INSERT('A',coming, 10);

ASSIGN(store,coming);

RESET(store);
* READLN(store);

READLN(store,ForBias,RevBias);

READLN(store,VV,H,probeA);

ScaleA := VV*prbeA/32;
*• The file containing Vce is opened the bias settings are read, the

Volts/Div, horizontal scale factor and probe multiplication factor are

read and the vertical scale factor is calculated.

Vbd := 0;
FOR R := 1 TO PmaxPos-15 DO READ(store,incoming);

0 , -, ".. . ,

194

FOR R:= 1 TO 10 DO BEGIN

READ(store,incoming);

VIarr[R] := ORD(incoming);

., ., END;

• The file cursor is move to a point 15 time steps before the time step

where the maximum energy is found. The next 10 data points are read.

N CLOSE(store);

test:= TRUE;
~R:= 1;

WHILE test DO BEGIN
Vbd :- Vlarr[R]/VIarr[R+1];

IF Vbd < 1 THEN Vbd:= 1 - Vbd;

Vbd:= FRAC(Vbd);
* IF Vbd > 0.10 THEN BEGIN

V:=R;

test:= FALSE

"* END;

R:=R+ 1;

IF R = 10 THEN BEGIN
"V := R;

test:= FALSE

END

'p END;

. The data points are checked for the occurrence of breakdown. If there is

. a change of greater than 10% in the data points magnitudes from one
* step to the next, breakdown is said to have occurred.

Vbd:= 0;

FOR R:= 1 TO V DO Vbd:= Vbd + VIarr[R];
p Vbd:= Vbd/V;

• Vbd:= (Vbd-127)*ScaleA;

* The average of the 10 data points (or as many data points as there were

prior to the point where breakdown was judged to have occurred) are

averaged and converted to volts.
* The same procedure is now done for Ic .

195

comning: stor,

INSERT('B',coining, 10);

ASSIGN(store,coming);

RESET(store);

READLN(store);

READLN(store,VI,H,probeB);

ScaleB :=VI*probeB/32;

Ibd := 0;

FOR R :=1 TO PmaxPos- 15 DO READ(storeincoming);

FORR: I1 TO 10 DO BEGIN

READ(store,incoming);

Vlarr[R] :=ORD(incoming);

END;

* CLOSE(store);

test: TRUE;

WHILE test DO BEGIN

Ibd: VIarr[IIR/Vlarr[R+1J;

IF Ibd < ITHEN lbd:= I- Ibd;
S Ibd: FRAC(Ibd);

IF Ibd >0. 10THEN BEGIN

V:= R;

test: FALSE
END;

R:= R +1;

IFR = 10THEN BEGIN

V:= R;

test: FALSE
END

END;
hd := 0;

FOR R: I TO V DO Ibd: Ibd + Vlarr[RI;

Ibd Ibd/V;

*Ibd (Ibd- 127)*ScaleB

196

END

END;

PROCEDURE GetValues (stor: STR13; VAR incoming: CHAR;

VAR PmaxPos: INTEGER;
VAR Emax,t: REAL);

This procedure locates the time step where breakdown occurred. It, also,

returns the energy at breakdown and the time to breakdown. Lastly, it

reads the first character of the first line of BDxxxLLA.yyy and returns

that to the main program (indicates whether or not breakdown occurred

during the particular test run).

TYPE

earr = ARRAY[1..2047] OF REAL;

VAR

store : TEXT;

energy : earr,
R,Estart,Estop,I INTEGER;

*]1 going : STRING[14];

J,.- Hscale: REAL;

test: BOOLEAN;

* BEGIN

going := stor;
INSERT('A',going, 10);

AS SIGN(store,going);

* (I-I

RESET(store);
WHILE loresult <> 0 DO BEGIN

WRITELN(There has been an error accessing file ',going);
* WRITELN(Please check to be sure the proper disk is in drive A:');

.1'.

197

incoming:=

WHILE NOT ((incoming = 'Y') OR (incoming = 'y') OR (incoming = 'N') OR
(incoming = 'n')) DO BEGIN

WRITE('Enter "Y" to continue, or "N" to halt program

READLN(incoming)

END;

IF ((incoming = 'y') OR (incoming = 'Y')) THEN RESET(store);

IF ((incoming = 'N') OR (incoming = 'n')) THEN HALT

END;

{$I+)
READLN(store,incoming);

READLN(store);

READLN(store,Emax,Hscale);

CLOSE(store);

U.. • The file, BDxxxLLA.yyy is opened, the first character is read, parts of

the second and third lines a read and the file is closed.

IF ((incoming = 'Y') OR (incoming = 'y')) THEN BEGIN
f If breakdown occurred, this will execute.

going := stor;

INSERT('E',going, 10);

ASSIGN(store,going);

RESET(store);

FOR R:= I TO 2047 DO

READ(store,energy[R]);

. The file containing the cumulative energy is read.

* CLOSE(store);

FOR R:= I TO 2047 DO

IF test THEN

IF energy[R] > 0 THEN BEGIN

• test:= FALSE;

Estart :=R
END;

Estart := Estart - 1,
' U'..

198

* The position where the energy becomes non-zero is found. This is the

start point for determining the time to breakdown.

Emax:- -100000.0;
FOR R:= 1 TO 2047 DO

IF energy[R] > Emax THEN Emax := energy[R];

- The maximum value of the energy (total energy) is found.
5%

- test :=TRUE;

FOR R:= 1 TO 2047 DO

IF test THEN
IF energy[R] = Emax THEN BEGIN

test := FALSE;

Estop:= R
END;

0 Estop := Estop + 1;

. Ths location of the maximum energy values occurrence is found.

0. 0 PmaxPos := Estop - 2;

The location where breakdown is said to happen is calculated.
t := Hscale*(Estop-Estarn)

The time to breakdown is calculated.

END

END;

PROCEDURE WriteOutput(stor: STR13; Ind INTEGER; Fb,Rb,V,I,E,t: REAL;

* GoNoGo: CHAR);

This procedure outputs the breakdown values from one test run to the

BDxxxLL.TAB file on the hard disk.

* TYPE

earr = ARRAY[1..2047] OF REAL;

DEVICETABLE = RECORD

series : INTEGER;

* ForBias: REAL;

0~ +

Jp.

Pon

N,: 199

RevBias: REAL;

Vce : REAL;

Ic : REAL;

energy : REAL;

time :REAL

END;

* The breakdown values are stored in records consisting of the above
fields.

VAR

tab: FILE OF DEVICETABLE;

tabrecord : DEVICETABLE;
Values: Rarray;

* goinglong : STRING[20];

MaxRec: INTEGER;

BEGIN

IF ((GoNoGo = 'Y') OR (GoNoGo = 'y')) THEN BEGIN

* If breakdown did not occur, then the rest of this procedure will not be
executed.

goinglong := stor,
DELETE(goinglong, 11,3);

INSERT(TIAB',goinglong, 11);

DELETE(goinglong, 1,2);

INSERT('C:\RBSOAV,goinglong, 1);
* ASSIGN(tab,goinglong);

{($1-)

RESET(tab);

{$I+)
* IF lOresult <> 0 THEN REWR1TE(tab);

The tabulated data file is opened to receive new data. If the file does not

exist, it is created.

MaxRec := FileSize(tab);

0 .

200

* * The location of the next record to be written is determined. It will be

place after the last entry.

IF MaxRec <O0THEN MaxRec:=O;

WITH tabrecord DO BEGIN

series :=Id;

ForBias Fb;

RevBias Rb;

Vce :=V

Ic :=I1;

energy := E;
tume := t;

*The breakdown values are placed into the record fields of the record

about to be added to the tabulated data file.

*WRJ.TELN(' Series %,series);

WRTELN('FowrdoBias eting'); 'Reverse:',RevBias:9:6,'A');

*WRITELN(' Breakdown Values');

WRITLN('Voltage:',Vce:9:4,'V',' Current:',Ic:9:4,'A');

W;RITELN('Energy:',energy:9:4,'J',' Time:',time: 14: 1O,'Sec')

*The above six lines are displayed on the screen to let the operator know

that data is being written to the disk and what that data is.

END;

SEEK(tab,MaxRec);

WRITE(tab,tabrecord);

*The record is written to disk.

* CLOSE(tab)

END

END;

BEGIN (Main Program)

ListDevice(storage,SER);

*FOR rep:=l1to SER DO BEGIN

1 10

PL.

201

The following steps will only be taken as many times as the total number

of test taken on the device. This way there are no repeat measurements

nor any searches for files that do not exist.

addone(storage);

GetValues(storage,Breakdown,Ppos,TotEnergy,Tim-e);
VIBreakdown(storage,Ppos,ForB,RevB,Voltage,Current,Breakdown);

WriteOutput(storage,rep,ForB,RevB,Voltage,Current,TotEnergy,Time,Breakdown)

END

END.

S

9..-

-- - - - -

APPENDIX L
SORTABLE.PAS PROGRAM LISTING

202

203

PROGRAM SortTabulatedData,

This program takes a file created by TABULATE.PAS, sorts the data

V contained in the file and outputs the sorted information to either a line

printer or a text file on disk.

* TYPE

STR40 = STRING[40];

STRl13 = STRING[13];

STR9 = STRING[9];

Iarray = ARRAY[l1-2,1-.999] OF REAL;

Rary= ARRAY[l..6,l..999] OFREAL;

VAR

* storage: STRl13;
PathN: STR4O;

DKl,DK2,Recs,Kl,K2: INTEGER;

Valuarr: Rarray;

Posarr :larray;

PROCEDURE NumToStr9 (X : REAL; VAR Y: STR9);

*This procedure is used to prepare real numbers for output as strings. The

V values are limited to three significant figures in scientific notation

format.

* VAR

V fullstr: STRINGII25];
one: STRJNG[lI;

V thr: STRINGII3];

* four: STRINGI4];
error,I : INTEGER;

nurn: REAL;

* BEGIN

-- - - - -

204

STR(X,fullstr);

DELETE(fullstr, 1,1);

one: COPY(fullstr,6,1);

*The third digit to the right of the decimal place is loaded into the one
character long string "one."

VAL(one,num,error);

The character in "oe is translated into numeric format and loaded into

DELETE~ullsti6,u12)

DELETE(fullstr,8, 1);

Y :=COPY(fullstr, 1,9);

*The extra characters in the original number passed to the procedure are

deleted. The shortened form of the number is placed in the nine char-
*acter long string, "Y." The number is shortened from
," "±x.xxxxxxxxxxxxxxxxE±xxx" to "±x.xxE±xx."

IF num >= 5 THEN BEGIN

*If the digit in the third place to the right of the decimal point is equal to or

over five, the digit to the left is increased by one. This serves to round

the new number. The rest of this procedure is involved in performing

this function.
four: COPY(fullstr,2,4);

VAL(four,num~error);

I num:= num + 0.01;
-. IF num = 10.00 THEN BEGIN

-This section increases the exponent if it is needed.
* num:= 1.00;

thr: CQPY(Y,7,3);

VAL(thr,I,error);

1:=1+ 1;

* STR(I,thr);

IF ((I < 10) AND (I > -10)) THEN INSERT('0',thr,2);

INSERT(thrY,7)

END;
* STR(num:3:2,four);

IJ 1

0

205

DELETE(Y,2,4);

INSERT(four,Y,2)

END

END;

PROCEDURE listdevice(VAR pName: STR4O);

This is a modified version of the procedure of the same name used in

TABULATE and PLOTDATA. It returns the location and filename of
* .~.*,the tabulated file for the device the user selects.

CONST

* FilePresent: BOOLEAN = FALSE;

A TYPE
TabArray = ARRAY[1..999] OF ITEGER;

STR40 = STRING[40];
STR13 = STRING[13];

DEVICES = RECORD

DEV : NTEGER;

descrip :STR4O;

book: STR13;

store: STR 13
END;

DEVICETABLE = RECORD

* series : INTEGER;

ForBias : REAL;

RevBias : REAL;

* Vce : REAL;

Ic :REAL;

energy : REAL;

time : REAL
* END;

SW

206

VAR

indextest: FILE OF DEV1CETABLE;

index: FILE OF DEVICES;

indexrec: DEVICES;
pNameLen,I,device,LineCount: INTEGER;

TabFilePres : TabArray;

one: STRING[l];

two: STRING[2];
thr: STRING[3];

BEGIN

FOR I := 1 TO 999 DO TabFilePres[I] := 0;

* * The array "TabFilePres" is initialized. The array will contain the results

of a search on disk for the existence of a tabulated data file.

AS SIGN(index,'C:\RBSOA\INDEX.DEV');

RESET(index);
LineCount:= FileSize(index);

WRITELN(Enter the pathname of the directory containing the tabulated file.');

WRITELN('Example: A: or C:\RBSOA');

WRITE('Pathname...)

READLN(pName);

* The operator enters the pathname for the directory to be searched for tab-

ulated data files.

pNameLen := LENGTH(pName);

*The length in characters of the pathname is determined.

FOR I := 1 TO LineCount-1 DO BEGIN

• The program will search for all possible device numbers on the path

specified. The FOR loop does this by iterating through the possible

* device numbers defined by the size of the file, INDEX.DEV.

SThe tabulated data filename is added to the pathname supplied by the

operator. The name varies as the FOR loop executes. These IF THEN

statements control the filename.

IF I < 10 THEN BEGIN

207

INSERT(\BD0xL.TAB',pName,pNameLen+ 1);

DELETE(pName,pNameLen+6,1);

STR(I,one);

INSERT(one,pName,pNameLen+6)

END;

The base filename is added to the pathname and then the device number

replaces the "x" in the name. The process is repeated for increasing

device numbers.
IF ((I > 9) AND (I < 100)) THEN BEGIN

INSERT(\BDOxxL.TAB',pName,pNameLen+I);

• *.DELETE(pName,pNameLen+5,2);

STR(I,two);

INSERT(two,pName,pNameLen+5)

* END;

IF ((I > 99) AND (I < 1000)) THEN BEGIN

' INSERT(\BDxxxL.TAB',pName,pNameLen+1);

DELETE(pName,pNameLen+4,2);

STR(I,thr);
INSERT(thr,pName,pNameLen+4)

END;

At this point the basic filename has been created; however, the character

which describes the inductor has not been determined.

-p" SEEK(index,I);
READ(index,indexrec);

one COPY(indexrec.store,9, 1);
* The character which describes the inductor is placed into the one charac-

ter string, "one."
INSERT(one,pName,pNameLen+8);

, The letter is then inserted into the proper place in the filename.

*:' ASSIGN(indextestpName);

RESET(indextest);

IF IOresult = 0 THEN BEGIN

* OTabFilePres[I] := 1;

208

CLOSE(indextest)

END
{$I+)

* A search is made for the file. If it is found, the "TabFilePres" array

location corresponding to the device number of the file just searched for

is set to 1.

END;

* This ends tHE FOR loop search.

LineCount := 0;

FORI := 1 TO 999 DO

IF TabFilePres[] = 1 THEN BEGIN

, A listing of the tabulated data files present on the specified path is dis-

'played.

* FilePresent:= TRUE;

LineCount : LineCount + 1;

WRITELN(The Tabulated file for device ',I,' is present on the specified path.');

IF LineCount = 20 THEN BEGIN

LineCount := 0;

WRITE('Press <RETURN> for more files...

READLN
END

END;

IF NOT FilePresent THEN BEGIN

If no files were present on the specified path, this message is printed, and

the program is halted.

• WRITELN('No tabulated files found on specified path. Program Halted.');

HALT

END;

DELETE(pName,pNameLen+l,40);
• * The filename is cleared from the pathname string, but the pathname re-

5' mains.
LineCount:= device;

WRITELN('End of Tabulated files on this directory.');

WRITE(Please enter the device number of the file to be sorted...

209

READLN(device);

" The operator enters the device number corresponding to the file to be

sorted.

ThIe filenamne is reconstructed for the appropriate device.

IF device < 10 THEN BEGIN

INSERT(\BDOOxL.TAB',pName,pNameLen+ 1);

DELETE(pName,pNanieLen+6,1);

STR(device,one);

INSERT(one,pName,pNarneLen+6)

END;

IF ((device > 9) AND (device < 100)) THEN BEGIN

INSERT(\BDOxxL.TAB',pName,pNameLen+ 1);

DELETE(pName,pNameLen+5,2);

* STR(device,two);

-~ INSERT(two,pName,pNameLen+5)

END;

IF ((device > 99) AND (device < 1000)) THEN BEGIN

INSERT(N\BDxxxL.TAB',pName,pNanieLen+l);

DELETE(pName,pNaxneLen+4,2);

STR(device,thr);

INS ERT(thr,pName,pNanieLen+4)

END;
SEEK(mndex,device);

READ(index,indexrec);

one: COPY(indexrec.store,9,1I);

_ INSERT(one,pNanie,pNaxneLen+8);

*The complete pathnamne/filename combination is passed to the main pro-

gram.

CLOSE(inaex)

END;

PROCEDURE ReadTabulatedData (pName: STR4O; VAR Values: Rarray;

210

VAR MaxRecords : INTEGER);

This procedure reads the data stored on disk in the tabulated data file into

a 6 by 999 array of real numbers. The array is passed to the main pro-

gram along with the number of records in the file which tell the pro-

gram how much of the array contains valid information.

TYPE

DEVICETABLE = RECORD

series : INTEGER;

ForBias• REAL;

RevBias: REAL;
Vce REAL;

Ic : REAL;

* energy : REAL;

time : REAL

END;

VAR

tab: FILE OF DEVICETABLE;

tabrecord : DEVICETABLE;

going: STRING[20];
R,I : INTEGER;

one: STRING[l];

two: STRING[2];

thr: STRING[3I;

BEGIN

FOR I:= 1 TO 999 DO
FOR R:= 1 TO 6 DO

* Values[R,I] := 0;

* The array is initialized.

ASSIGN(tab,pName);

RESET(tab);

MaxRecords := FileSize(tab);

* ' ' " '% - " * '" ' " " I 9 "

N211

FOR I:= 0 TO MaxRecords- I DO BEGIN

* The record fields are read into the array.

SEEK(tab,I);
READ(tab,tabrecord);

WITH tabrecord DO BEGIN

Values[1,I+1I] ForBias;

Values[2,I+l] RevBias;

Values[3,I+l] Vce;

Values[4,1+ I I Ic;

Values[5,I+l] energy;
Values[6,I+] time

END

END
o_ END;

PROCEDURE SortValues (Values: Rarray; VAR Posarray: Iarray; VAR MaxReckeyl,

key2,DifKeyl,DifKey2: INTEGER);

* This procedure sorts the data read from the tabulated data file. A maxi-

mum of two sorting keys can be used. The procedure outputs an array

of real numbers 2 by 999 (thought of as 2 columns of 999 rows while

the 6 by 999 array is 6 columns by 999 rows). The numbers in the

first column are the minimum to maximum values of the corresponding

data in the 6 by 999 array based upon the first sorting key. The num-

* bers in the second column are the minimum to maximum values of the

corresponding data in the 6 by 999 array based upon the second sorting

key.

* If, for example. a series of data had 3 different values in the set of array

* •element described by sort key 1 and there were a total of 10 data sets,

then the first column in the 2 by 999 array only have three values fol-
Alowed by 996 elements with zeros. If there were four different values

among those kept in the column in the 6 by 999 array referenced by the

* second sorting key, there would be four values in the first four ele-

-.1Z /0,X

212

ments of the second column of the 2 by 999 array followed by 995 el-

ements with a zero. This is shown more clearly in Figure 19.

,,With these two arrays, the printing routine can provide the necessary

outputs.

6 by 999 Array 2 by 999 Array

1 0.2 80 0.2 3.12

2 1 4 1 4

- 3 5 3.12 5 7

* 4 1 7 0 80

.5 0.2 7 0 0

6 0.2 4 0 0

7 5 80 0 0

8 1 7 0 0

Sort Key 1 So i(ey 2
I- The Sort Keys refer to particular rows. These are examples.

Figure 19. Example of sorting function.

• VAR

LowToHigh,I,R,BrPt,PrevBrPt,ChCnt: INTEGER;

MinKey 1 ,MinKey 1A: REAL;

test,NoChange: BOOLEAN;

:.

*1' n

213

BEGIN

FOR I:= 1 TO 2 DO
FOR R:= 1 TO 999 DO

Posarray[I,R] := 120000.0;

• The 2 by 999 array is initialized.

clrscr,
WRITELN('Here is a list of the possible sorting keys.');

WRITELN('Forward Base Current 1');
WRITELN('Reverse Base Current 2');
WRITELN('Collector-Emitter Voltage 3');
WRITELN('Collector Current 4');
WRITELN('Energy at Breakdown 5');
WRITELN('Time to Breakdown 6');

WRITELN('No Sort key 0');
WRITE('Enter Sort key one.. .
READLN(keyl);

WRITE('Enter Sort key two...
READLN(key2);

• The operator is asked what values he or she wants to sort on.

IF key l = key2 THEN BEGIN

WRITELN('Keys are the same. Key 2 set to zero.');

ke12:= 0

END;

MinKeylA -1.OE+9;

° This value is the rising threshold of minimum values. Below this value
S the program will not search for a minimum.

test:= TRUE;

LowToHigh := 0;
WHILE test DO BEGIN

• This loop will determine the unique values in the first sort key.

LowToHigh:= LowToHigh + 1;
MinKeyl := 1.OOOOOE+09;
FOR I:= 1 TO MaxRec DO BEGIN

,S

214

Each time the WHILE loop is executed a search is made for the minimum

value in the sort key, but the new minimum value in each pass must be

greater than the previous minimum value.

IF ((MinKeyl > Values[keyl,I]) AND (MinKeylA < Values[keyl,I])) THEN

MinKeyl Values[keyl,I]

The new minimum value above the threshold "MinKeylA" is found.

END;
IF MinKeylA = MinKeyl THEN test:= FALSE

* As the WHILE loop executes, there eventually are no more new

minimum values and this case will be met. At this point, the WHILE

loop will be stopped.

ELSE BEGIN
MinKeylA:= MinKeyl;

* * The new minimum value threshold is the minimum value above the old

threshold that was just found.

Posarray[1,LowToHigh] := MinKey 1

* The minimum value is placed into the 2 by 999 array at the row below the

last minimum value (See Figure 15.).

END

END;

Posarray[1,LowToHigh- 1] =0;

DifKeyl := LowToHigh-2;
:A * The value "DifKeyl" is determined. This value represents the number of

A .rows in column one of the 2 by 999 which contain non-zero numbers.

It is the number of unique data points found for sort key 1.

* IF key2 <> 0 THEN BEGIN

* If there is a second sort key then the following is executed. It is exactly

.-" the same as the above except where the term "key 1" is used above now

"key2" is used, and the minimum values are loaded into the second

* column of the 2 by 999 array.

MinKeylA:= -1.0E+9;
test:= TRUE;

LowToHigh:= 0;

WHILE test DO BEGIN
;

0.

215

LowToHigh:= LowToHigh + 1;

MinKeyl := 1.00E+09;

* FOR I:= 1 TO MaxRec DO BEGIN

IF ((MinKeyl > Values[key2,I]) AND (MinKeylA < Values[key2,I])) THEN

MinKeyl := Values[key2,I]

END;

IF MinKeylA = MinKeyl THEN test := FALSE

ELSE BEGIN

MinKeylA := MinKeyl;

Posarray[2,LowToHigh] := MinKeyl

END

END;

Posarray[2,LowToHigh-1] := 0;

* DifKey2 := LowToHigh-2;

• This is the number of unique data points found for the second sort key.

END;

END;

PROCEDURE WriteOutPut(Values : Rarray; Posarray : Iarray; MaxReckeyl,

key2,DifKeyl,DifKey2: INTEGER);

- This procedure is responsible for producing the output.

TYPE

STR25 = STRING[25];

Lab = ARRAY[1..6] OF STR25;

VAR

going: STRING[60];

0 LPT :TEXT;

-. L: Lab;

fullstr: STRING[25];

time: STRING[9];
P,S,TI,R: INTEGER;

216

test: BOOLEAN;

BEGIN

CLRSCR;

L[1] := 'Forward Base Current';

L[2] := 'Reverse Base Current';

L[3] := 'Colector-Emitter Voltage';

L[4] := 'Collector Current';

L[5] := 'Energy at Breakdown';

L[6] := Time at Breakdown';

- The above values are assign to the "L" array.

WR1TELN('Enter the output destination. "LPTI" routes output to line printer,');

WRITELN('or any valid file name routes output to disk as a text file.');

0 - WRITE('Destination: ');

READLN(going);

Wa • The operator provides the destination to the program.

test := TRUE;

WHILE test DO BEGIN

ASSIGN(LPT,going);

REWRrrE(LPT);

IF IOresult <> 0 THEN BEGIN

WRITELN('Something is wrong with that destination. Try Again.');

WRITE('Destination: ');

READLN(going)

* END

ELSE test := FALSE
15I+1

. The output device/file is opened with error checking to be sure the de-

* vice/file is ready to receive data.

END;

FOR P := 1 TO DifKeyl DO BEGIN

• The following is done iteratively for "DifKey 1" times.

WRITE(LPT,'For primary key of ',L[keyl],' =I

e_

0

217

NumToStr9(Posarray[l 1,P],time);

WR1TE(LPT,time);

* The value in the first row first column of the 2 by 999 array is printed. It

is written as a shortened number using scientific notation. The variable

"time" is a string and the name is basically meaningless.

CASE key1 OF

1: WRITELN(LPT,' A');

2: WRITELN(LPT,' A');

3: WRITELN(LPT,' V');

4: WRITELN(LPT,' A');

5 : WRITELN(LPT,' J');

6 : WRITELN(LPT,' Sec')

END;

* - The proper units for the first sorting key are added to the output along

*with a <CR> <LF>.

IF key2 <> 0 THEN BEGIN
- If there is a second sorting key, the following is done.

FOR S := 1 TO DifKey2 DO BEGIN

* The following is repeated once for each unique value of sort key 2.

test := TRUE;
FOR T:= I TO MaxRec DO

IF ((Posarray[1,P] = Values[keyl,T]) AND (Posarray[2,S]

= Values[key2,T]) AND test) THEN BEGIN

• A test is made for the first occurrence of a match of both sort key 1 and

sort key 2 (sort key 1 is held in Posarray[1,P] and sort key 2 is held in

* Posarray[2,S]).

test := FALSE;

WRITELN(LPT);
WRITE(LPT,' For secondary key of ',L[key2],' =');

* NumToStr9(Posarray[2,S],time);

WRITE(LPT,time);

CASE key2 OF

1: WRITELN(LPT,' A');

* 2: WRITELN(LPT,' A');

.J

218

3: WR1TELN(LPT,' V');

4 : WRITELN(LPT,' A');

5 : WRITELN(LPT,' J');
6 : WRITELN(LPT,' Sec')

END;

On the first occurrence of a match of sort key 1 and sort key 2, the above

is printed. It is printed only once even if more matches are encoun-

tered.

WRITELN(LPT)

END;

FOR T := 1 TO MaxRec DO BEGIN

IF ((Posarray[1,P] = Values[keyl,T]) AND (Posarray[2,S] = Values[key2,Tj))

THEN

* • On every occurrence of a match to sort key 1 and sort key 2, the follow-

ing is printed.

FOR R:= 1 TO 6 DO BEGIN

IF ((R <> keyl) AND (R <> key2)) THEN BEGIN

WRrTE(LPT,' ',L[R],'

NumToStr9(Values[R,T],time);

WR1TE(LPT,time);

CASE R OF

1 : WR1TELN(LPT,' A');

2: WRITELN(LPT,' A');

3 : WRITELN(LPT,' V');

4: WRITELN(LPT,' A');

* 5 : WRITELN(LPT,' J');

6: WR1TELN(LPT,' Sec')

END
- The above prints the values of the 6 by 999 array that are not referenced

* by the sort keys.

END;

IF R =6 THEN WRITELN(LPT)
END

* END

"0.

A "N

219

END

END

ELSE BEGIN
. If there is no second sort key, then the following is executed.

FOR T:= 1 TO MaxRec DO BEGIN
IF Posarray[l,P] = Values[keyl,T] THEN

FOR R:= 1 TO 6 DO BEGIN
IF R <> key1 THEN BEGIN

WRITE(LPT,' ',L[R],'

NumToStr9(Values[R,T,time);

WR1TE(LPT,time);

CASE R OF

1 : WRITELN(LPT,' A');

* 2: WRITELN(LPT,' A');

3 : WRITELN(LPT,' V');

4 : WRITELN(LPT,' A');

5 : WRITELN(LPT,' J');

6: WRITELN(LPT,' Sec')

END
* The above writes all of the values in a given row except the one refer-

enced by sort key 1.
END;

IF R = 6 THEN WRITELN(LPT)

END

END

* END
END;

CLOSE(LPT)
END;

BEGIN (Main Program)

* ListDevice(PathN);

'% %

220

ReadTabulatedData(PathN,Valuarr,Recs);

SortValues(Valuarr,Posarr,Recs,K1 ,K2,DK1 ,DK2);

WriteOutPut(Valuarr,Posarr,Recs,K 1,K2,DK1 ,DK2)

END.

APPENDIX M

EDITLIST.PAS PROGRAM LISTING

221

%, 222

PROGRAM EditListDevice;
This program is used to create (if needed), maintain and correct the file,

INDEX.DEV. It consists of a single main program body.

LABEL

loop;

CONST

first: BOOLEAN = FALSE;

TYPE
STR40 = STRING[40];

STR13 = STRING[13];

* DEVICES = RECORD

DEV : INTEGER;

descrip: STR40;

book: STR13;

stor: STR13

END;

VAR

index: FILE OF DEVICES;

indexrec : DEVICES;

LineCount,series,Count : INTEGER;

test: BOOLEAN;

induct,ans : CHAR;

Three: STRING[3];

Two: STRING[2];
One,Onel,One2: STRING[I];

BEGIN
ASSIGN(index,'C:\RBSOA\INDEX.DEV');

[$I-)
RESET(index);

6

223

a {$I+1

IF IOresult <> 0 THEN BEGIN
WRITELN('C:INDEX.DEV not found. Assumed first time used. ');
WRITELN('Creating C:\RBSOA\INDEX.DEV.');

REWRITE(index);
first:= TRUE

END

, The file, INDEX.DEV, is opened with error checking. If an error oc-
curs, it is assumed the file does not exist and a new one is created.

ELSE BEGIN

" If the file exists, the following is executed.

loop:
* The "loop:" is a LABEL. It can be used as the destination point in a

*GOTO. This point is the top of a control loop which allows for double

checking of whatever editing is performed.

" The following provides a list of the devices stored in the file, IN-

DEX.DEV.

LineCount := 1;

Count := 0;
SEEK(index,LineCount);

• Record number one is sought.
WHILE NOT EOF(index) DO BEGIN

• This loop will be executed until the end of file mark is reached in IN-

DEX.DEV.
READ(index,indexrec);

* The record at the current cursor position is read.
WITH indexrec DO BEGIN

WRITE(DEV,' ');
WRITE(descrip:40,' ');
WRITE(book,' ');

4.- WRITELN(stor)

END;

* The record fields are printed to the screen.

LineCount := LineCount + 1;

Se

,, - <p - .

224

* The cursor position pointer is increased by one.

Count:= Count + 1;
- The count of the number of records displayed since the last pause or the

beginning of the file is increased by one.

IF Count =21 THEN BEGIN
- If there has been 21 lines displayed since the beginning or since the last

pause, the program pauses to allow the operator to review the device

,2 records.

Count:= 0;
WRITELN('Press <RETURN> for more devices.');

READLN

END

END;

* WRITELN('End of indexed devices.')

END;

ans :='Q';
• If this had been a new INDEX.DEV file, the following would be the first

question asked.
WHILE NOT ((ans= 'y') OR (ans= 'Y') OR (ans = 'n') OR (ans = 'N')) DO BEGIN

- WRITE('Do you want to add a new device? (Y or N)...)

READLN(ans)

END;

IF ((ans ='Y') OR (ans= 'y')) THEN BEGIN

test := TRUE;
IF NOT first THEN LineCount:= FileSize(index)

* * If this is not the first entry, then the record pointer is set so the new de-

vice will be added to the end of the file.

ELSE BEGIN

LineCount := 1;
first := FALSE

END;

test := TRUiF;
WHILE test DO BEGIN

* WITH indexrec DO BEGIN

'm

0€

Vw

225

WRJTELN('Enter the Device Description for Device Number ',LineCount);

WRITELN('xx - X"s indicate 40

Characters.');

READLN(descrip);

- The operators is asked to provide a 40 character description of the device.
DEV:= LineCount

* The device number is set equal to the record pointer value.

WRITELN(Tbhe following is a list of inductor value codes. Please enter the ');
WRITELN('the SECOND letter corresponding to the value of the inductor being

used.');

Y RITELN('LG... 44 ifH');

WRITELN('LH... 146 giR');

WRITELN('LI... 267 .H');

SWRITELN('LJ... 426 gfH');

, WRITELN('LK... 1 mH');

WRITELN('LL... 2.16mH');
READLN(induct);

induct:= UPCASE(induct);

• The inductor value is input.
INSERT(induct,One 1,1);

The following creates the bookkeeping and storage filenames for various

device numbers.
IF DEV < 10 THEN BEGIN

STR(LineCount,One2);

book:= CONCAT('G:DEVOO',One2,'L',Onel,'.BK');

* stor := CONCAT('G:BDOO',One2,'L',Onel,'.000')

END;
IF ((DEV > 9) AND (DEV < 100)) THEN BEGIN

STR(LineCount,Two);

* book:= CONCAT('G:DEVO',Two,'L',Onel,'.BK');

stor:= CONCAT('G:BDO',Two,'L',Onel,'.000')

END;
IF ((DEV > 99) AND (DEV < 1000)) THEN BEGIN

* STR(LineCount,Three);

,-,w

K0i

226

book: CONCAT(7G:DEV',Three,'L',Onel1,'.BK');

stor: CONCAT('G:BDO',Three,'L',Onel,".000')

END;
. The bookkeeping and storage filenames are completed.

WRITELN('Here is the entry for Device Number ',DEV);

W*RITELN(DEV: 3,' ',descrip:40,' '',book,' ',stor);

* The complete device record is displayed for the operator's approval.

END;

ans:Q'
WHILE NOT ((ans = 'y') OR (ans = Y) OR (ans = 'N') OR (ans = 'n')) DO BEGIN

WRITE('Is the entry alright? (Y or N) .. .

READLN(ans)

END;

* IF ((ans = 'y') OR (ans ='Y)) THEN BEGIN

SEEK(index,Line~ount);

WRiITE(index,indexrec);

*If the entry is correct, then it is added to the INDEX.DEV file.
ans:Q;

WHILE NOT ((ans = 'y') OR (ans ='Y) OR (ans ='N') OR (ans = 'n')) DO
BEGIN

WRITE('Do you want to add another Device to the file? (Y or N) ..

READLN(ans)

END;

IF ((ans = 'n') OR (ans = 'N')) THEN test: FALSE

*If the operator does not want to add another device, then the WHILE
* loop is ended; otherwise, the LineCount is increased by one and the

loop is executed, again.

ELSE LineCount: LineCount + 1;

END

* ELSE BEGIN

*If the device record is not correct, then ...

ans:Q'
WH-ILE NOT ((ans = y)OR (ans ='Y) OR (ans = 'N') OR (ans = 'n')) DO

BEGIN

%

227

WRITE('Do you want to try again? (Y or N)...

READLN(ans)

END;

* A "Y" answer will automatically re-execute the loop.

IF ((ans - 'n') OR (ans = 'N')) THEN HALT

END

END

End of the WHILE loop to add a record.

END;

ans:='Q';
WHILE NOT ((ans = 'y') OR (ans = 'Y') OR (ans = 'n') OR (ans = 'N')) DO BEGIN

WRITE('Do you want to edit any of these devices? (Y or N) ...

READLN(ans)

END;

* The program now gives the operator the option to edit any of the device

records. The device description can be altered, and the series number

can be changed, only.

test := FALSE;
IF ((ans = 'y') OR (ans = 'Y')) THEN REPEAT

WR1TE('Enter the device number (Integer Value Only!)...

READLN(LAneCount);

SEEK(index,LineCount);

READ(index,indexrec);

• The record for the device of interest is entered and the appropriate record

* is retrieved.
* WITH indexrec DO BEGIN

WRITELN('Here is the current device description.');

WRITELN(descrip);

ans := 'Q;
• WHILE NOT ((ans= 'y') OR (ans = 'Y') OR (ans = 'n') OR (ans = 'N')) DO BEGIN

WR1TE('Do you want to change this entry? (Y or N)... ;

READLN(ans)

END;

228

* The operator is shown the device description and asked if a change is de-

sired.
4,% [." IF ((ans = 'y') OR (ans = 'Y)) THEN BEGIN

WRITELN('Enter a new device description.');

WRITELN('xx - X"s show 40

Characters');
READLN(descrip)

END;
• If the description is to be changed, then the operator supplies the new

description here.
- The following concerns the correction/alteration of the series number in

the storage filename.
WRITELN('Here is the current storage file, ',stor);

0 ans := V;
WHILE NOT ((ans = 'y') OR (ans = 'Y') OR (ans = 'n') OR (ans = 'N')) DO BEGIN

- WRITE('Do you want to change the series number for this entry? (Y or N).. ...,I

READLN(ans)
END;

IF ((ans = 'y') OR (ans = 'Y')) THEN BEGIN

WRITE('Enter the new series number (Integer Value Less Than 1000 Only)...
READLN(series)

END;

* The current series name is displayed, and the operator is asked to verify
'the series number. If the number is not correct and the operator wants

to change it, he or she is asked to supply a new series number.

• The following places the new series number into the storage filename.
DELETE(stor, 11,3);

INS ERT('000',stor, 11);

IF series < 10 THEN BEGIN
• STR(series,One);

INS ERT(One,stor, 13)

END;

[F ((series > 9) AND (series < 100)) THEN BEGIN

* STR(series,Two);

[0 ..

i' 3,,

229

* INSERT(Two,stor, 12)

END;

IF ((series > 99) AND (series < 1000)) THEN BEGIN

STR(series,Three);

INSERT(Three,stor, 11)

END;
E The new series number is in place.

IF series > 999 THEN BEGIN
WRITELN('Series value greater than 1000. Program Halted.');

HALT

END;

If the series number supplied by the operator is 1000 or greater, the pro-

gram halts with no change made to the device record.

* CLRSCR;

WRITELN('Here is the new device entry.');

WRITELN(DEV,' ',descrip,' ',book,' ',stor);

• The revised device entry is displayed for the operator's approval.

ans V;

'A , WHILE NOT ((ans= 'y') OR (ans = 'Y') OR (ans = 'n') OR (ans= 'N')) DO BEGIN

WRITE('Is this entry correct? (Y or N)...)
READLN(ans)

END;

IF ((ans = 'y') OR (ans = 'Y')) THEN BEGIN
SEEK(index,LineCount);

WR1TE(index,indexrec)

END
")V ELSE WRITELN('No changes made.');

• If the entry is correct, then it is incorporated in the file; otherwise, noth-

ing is done.

ans V;
SWHILE NOT ((ans= 'y') OR (ans= 'Y') OR (ans= 'n') OR (ans = 'N')) DO BEGIN

WRITE('Edit another entry? (Y or N) ...

. READLN(ans)

END;

230

IF ((ans = 'n') OR (ans = W')) THEN test := TRUE
If the operator is done editing, and negative response drops him or her

from the editing loop.
ELSE BEGIN

ans := 'Q';
WHILE NOT ((ans = 'y') OR (ans ='Y') OR (ans = 'n') OR (ans= 'N')) DO

BEGIN

WRITE('See list again? (Y or N)...)

READLN(ans)

END;

IF ((ans = 'y') OR (ans= 'Y')) THEN GOTO loop
END

E If the operator wants to edit something else, he or she is also given the

* opportunity to see the list, again.

END;

UNTIL test;

END.

5 ,

2."

":

0

~APPENDIX N

PRCSLTWO.PAS PROGRAM LISTING
-.5

.,.

231

~232

PROGRAM ProcessLevelTwo; (For use as a stand alone program in conjunction

with FASTDATA.BAT as the follow on processing step)
• This program is to be used to calculate or recalculate the Instantaneous

Power and Energy. It is for use in case of a program crash or in case

PROCESS2 was not executed in the data acquisition cycle in on attempt

to speed the process up. (This second case is not recommended.)

TYPE

ST1O = STRING[10];

STR13 = STRING[131;

STR80 = STRING[80];

datarray = ARRAY[1..3,1..2048] OF INTEGER;

ene = ARRAY[1..2047] OF REAL;

VAR

EnergyPass :ene;

tnum,device : INTEGER;

storage: STR13;

PROCEDURE listdevice(VAR stor: STR13);

* This procedure returns the basic storage filename for the data to be used

as input and for the output destination.

* TYPE

STR40 = STRING[40];

STR13 = STRING[13];

DEVICES = RECORD

• DEV : INTEGER;

descrip : STR40;

book: STR13;

store: STR13

END;

M" UM UM WM IU IVUM UrW IIVIWUluw W1UWUU

233

VAR

index : FILE OF DEVICES;

indexrec: DEVICES;

error,iLineCount. INTEGER;

name: STRING[181;

one: STIMING[l];

two: STRING[2];

thr: STPING[3];

test : BOOLEAN;

ans: CHAR;

I,Count,series,device : INTEGER;

6 BEGIN

name:='C:\RBSOA\INDEX.DEV';

ASSIGN(index,nanie);

RESET(index);

WRITELN(You will be asked for the device number corresponding to the storage file');

WRITELN('for the data taken on the device of interest You will also be asked for');

WR1TELN(the storage series number which is the last three numbers in the file name.');

WRITELN('The value shown in the listing is the highest currently stored.');

ans :=';

WHILE NOT ((ans = Y) OR (mis ='Y') OR (ans = 'n') OR (ans ='N')) DO

BEGIN

WRITELN('Do you want the see a listing of all currently cataloged devices?');

WRITE('See list? (Y or N).. .

READLN(ans)

END; (WHILE NOT ((ans ='y..

If the operator wants to see a listing the following is executed; otherwise,

the next section is skipped. See PLOTDATA or TABULATE for a de-

scription of this section.

IF ((ans = Y') OR (ans = 'y')) THEN BEGIN

LineCount := 1;

Count: 0;

234

SEEK(index,LineCount);

WHILE NOT EOF(index) DO BEGIN

READ(index,indexrec);

WITH indexrec DO BEGIN

WJRITE(DE V,t ');

WRITE(descrip:40,' ');

WRJTE(book,' ');

WRITELN(store)

END;

LineCount: LineCount + 1;

Count: Count + 1;
IF Count = 21 THEN BEGIN

Count := 0;
* WR1TELN('Press <RETURN> for more devices.');

READLN

END

END;

WVRJTELN('End of indexed devices.')

END; (IF ((ans =Y...)

test := TRUE;
WHLE test DO BEGIN

WRlTE(What is the device number? (Integer Value Only!) .. .
READLN(device);

IF device < 1000 THEN test := FALSE
ELSE WRJTELN('Integer too large. Try again.')

* END;

The operator is asked to supply the device number. Some error checking

is performed.

test := TRUE;
* WHILE test DO BEGIN

WRITE('What is the series number? (Integer Value Only!) . ..
READLN(series);

IF series < 1000 THEN test: FALSE

ELSE WRITELN('Integer too large. Try again.')

LS

235

END;
The operator is asked to supply the series number of the particular test

run to be processed. Some error checking is performed.

SEEK(index,device);

READ (index,indexrec);

WITH indexrec DO

stor := store;
' The appropriate record is obtained and the storage filename is place in the

string variable, "stor."

CLOSE(index);

DELETE(stor,1 ,1);

INSERT('A',stor,1);

- The drive designation is changed from G: to A:.

* DELETE(stor, 11,3);

INSERT('000',stor,1 1);

IF series < 10 THEN BEGIN

,-: STR(series: 1,one);
INSERT(one,stor, 13)

END;

IF ((series > 9) AND (series < 100)) THEN BEGIN

STR(series:2,two);

INSERT(two,stor, 12)

END;

IF ((series > 99) AND (series < 1000)) THEN BEGIN
STR(series:3,thr);

, INSERT(thr,stor, 11)

END

- The new series number is inserted into "stor."

END; (Procedure listdevice)

PROCEDURE Calculate (stor: STR13; VAR energy: ene);

236

This is exactly the same procedure as that used in PROCESS2. See that

program for more information.

VAR

R,I,Vmax.VstartPos,PstopPos :INTEGER;

going: STRING[14];

VIP: datarray;

incoming : CHAR;

Pmax,Pstop,eMax,Vstart,VscP,VI,VV,HscA,HscB ,probeA,probeB ,fBias,rBias,

intmedl,intmed2 : REAL;

store : TEXT[251;

BEGIN

* eMax:= 0;

FOR R := 1 TO 2047 DO energy[R] :=0;

going := stor;

INSERT('A',going, 10);

ASSIGN(store,going);

RESET(store);

READLN(store);

READLN(store,fBias,rBias);

READLN(store,VV,HscA,probeA);

FOR R:= ITO 2048 DO BEGIN
READ(store,incoming);

1 := ORD(incoming);

*VIP[1,R:=I -127

END;
CLOSE(store);
going:= stor,

* INSERT('B',going, 10);

ASSIGN(store,going);

RESET(store);

READLN(store,fBiasrBias);

* READLN(store,V1,HscB,probeB);

0N

US -Ll

237

IF HscA <> HscB THEN BEGIN

WRJTELN('Horizontal scale factors not equal. Program Halted.');

HALT

END;

FOR R:=ITO 2048 DO BEGIN

READ(store,incoming);

I: ORD(incoming);

VIP[2,R] :=I - 127

END;

CLOSE(store);

VscP: probeA*probeB*VV*VI/1024;

FOR R: 1iTO 2048 DO

VIPII3,R] :=VIP[1,R] *VIP[2,RI;

* Vniax:= -128;

FOR R: 1 TO 2048 DO

IF Vmax < VIP[i,R] THEN Vmax: VIP[1,R];

Vstart: 0.05*Vmax;

VstartPos= 1;

WHILE Vstart > VIP[l,VstartPos] DO
VstartPos :=VstartPos + 1;

Pmax: -100000.00;
FOR R:= 1 TO02048 DO

IF Pmax < VIP[3,R] THEN Pmax: VIP[3,R];

Pstop :=0.03*Pmax;

PstopPos :=1;

WHILE Pmax .c> VIP[3,PstopPos] DO

v PstopPos :=PstopPos + 1;
WHILE Pstop < VIP[3,PstopPos] D)0

PstopPos :=PstopPos + 1;

* PstopPos :=PstopPos + 1;

FOR R: 1iTO 2047 DO

- *energy[R] :=0,

FOR R: VstartPos TO PstopPos DO BEGIN

IF (VIP[3,R]+VLP[3,(R+1)]) < (ABS(VIP[3,R])+ABS(VIP[3,(R+1)])) THEN BEGIN

238

IF VIP[3,R] > VIP[3,(R+1)I THIEN BEGIN

intmedl :=VscP*VEP[3,R];

intmed2: VscP*VIP[3,(R+ 1)];

eMax: eMax + (0.5*SQR(intmnedl1)*i~scAI(ABS (intmedl)+ABS(intmed2)))

<S - ~0.5*SQR(intnied2)*HscAI(ABS (intniedl1)+ABS (intmed2))

END;

IF VIP[3,R] < VIP[3,(R+Il THEN BEGIN

intmedl :=VscP*VIP[3,RI;

intmed2: VscP*VIP[3,(R* 1)];

eMax: eMax + (0.5*SQR(intmedl1)*HscA/(ABS (intmedl)+ABS(intmed2)))

+ 0.5*SQR(intmed2)*HscA/(ABS(intmed 1)+ABS (intmed2))

END

END

* ELSE BEGIN

IF ABS(VIP[3,RI) > ABS(VEP[3,(R+1)I) THEN

eMax: eMax + VscP*(VIP[3,(R+1)]*HscA + 0.5*HscA*(VIP[3,R]

-VIP[3,(R+1)D));

IF ABS(VIP[3,Rl) = ABS(VlP[3,(R+l)1) THEN

eMax: eMax +VscP*VIP[3,R]*HscA;

IF ABS(VEP[3,R]) < ABS(VEP[3,(R+1)]) THEN

eMax: eMax + VscP*(VIP[3,R]*HscA + 0.5*HscA*(VIP[3,(R+1)].VIP[3,RI))

END;

energyiR] : eMax

END;

going: stor

* going[11 ='A';

INSERT('P',going, 10);

ASSIGN(store,going);

REWRITE(store);

* WRITELN(storejfBiasrBias);

WRrTELN(store,eMax,HscA,VscP);

FOR R:= 1 TO02048 DO

WRITE(store,VIP[3,R],' ');

* CLOSE(store)

239

END;

PROCEDURE WriteToEnergy(stor: STR13; energy: ene);

'This is exactly the same procedure as that u-sed in PROCESS2. See that

program for more information.

VAR

going: STRING[14];

store: TEXT;

R : INTEGE'L;

fullstr: STRINGII25];

0 outstr7 : STRIING[7;

outstr5 : STRING[5];

outstr: STRING[12];

BEGIN

stor[1] :=';

going := stor;

INSERT('E',going, 10);

ASSIGN(store,going);

REWRITE(store);

FOR R := I TO 2047 DO
IF energy[R] = 0 THEN WRITELN(store,'0')

* ELSE BEGIN

STR(energyllRl,fullstr);
outstr7 :=COPY(fullstr,2,7);

outstr5 :=COPY(fullstr,19,5);

* outstr := CONCAT(outstr7,outstr5);
WRITELN(store,outstr)

END;

CLOSE(store)

* END;

240

BEGIN (MAIN PROGRAM)

listdevice(storage);

Calculate(storage,EnergyPass);

WriteToEnergy(storage,EnergyPass)

END.

INS

PERMISSION TO COPY

In presenting this thesis in partial fulfillment of the

requirements for a master's degree at Texas Tech University, I agree

that the Library and my major department shall make it freely avail-

able for research purposes. Permission to copy this thesis for

scholarly purposes may be granted by the Director of the Library or

my major professor. It is understood that any copying or publication

V of this thesis for financial gain shall not be allowed without my

further written permission and that any user may be liable for copy-

right infringement.

Disagree (Permission not granted) Agree (Permission granted)

Student's signature S ent-s signature

Date Date

N

.SA

