s UNCLASSLF LED s FILF Cop
\ SECURITY CL;SSIHCAHON OF THIS PAGE (When Dala‘Enleu‘d)‘
X 00 REPORT DOCUMENTATION PAGE BEFORE COMPLE1 ING FORM
‘Q o T REPORT NUMBER 2. GOVT ACCESSION NOJ| 3. RECIPIENT'S CATALOG NUMBER
\ | o AFIT/CI/NR 88- 1Q§

% . & TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED
(8 AV IMPROVED OATA ColLAcTiod) AUD MS THESIS

; AN o Processinvg TYSTEM §. PERFORMING 03G. REPORT NUMBER
o '=i

;.‘_": 7. AUTHOR(%) 8. CONTRACT OR GRANT NUMBER(s)

,‘,{' ".. {

N 6 QoHU R. OHAR

(]

fc‘ 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK
-.l ,(AREA & WORK UNIT NUMBERS
e AFIT STUDENT AT: TE XAS TECH UnIVELS .T)/

)
o

y V1. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
(1988
‘ -'f\ 13. NUMBER OF PAGES
b 24 0
} .-\ 4. MONITORING AGENCY NAME & ADDRESS(/f different from Controlling Oflice) 15, SECURITY CLASS. (of this report)
o AFLT/NR UNCLASSIFIED

h Wright-Patterson AFB OH 45433-6583

{] 15a. DECL ASSIFICATION/ DOWNGRADING

" SCHEDULE

&"P'

> 6. DISTRIBUTION STATEMENT (of this Report, .
d
-~ DISTRIBUTED UNLIMITED: APPROVED FOR PUBLIC RELEASE D I l(:
D 4
H ELECTE
! :n, 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, It different ltom Report)

Ty

.’

‘:;f SAME AS REPORT D

" 4 A
™

::ﬁ '8 SUPPLEMENTARY NOTES Approved for Public Helease: \IAW AFR 190-]

e LYNN E. WOLAVER NM 14
(o Dean for Research Professional Development’

M Air Force Institute/of Techno]ogg

® Wright-Patterson AFB OH 45433-6bB3

Sy 19. KEY WORDS (Continue on reverse side if necessary and identily by block number)

.g}'.

e

B ‘\:

e

n\ 20. ABSTRACT (Continue on reverse alde If necessary and identify by block number)

Bl ATTACHED

)

Ay

)

» 40

D

.‘

. ? ‘. -
o U
IJ FORM
E‘, DD ,2n 73 1473 EoiTion oF 1 NOV 65 15 0BSOLETE UNCLASS{HE”
°® ' SECURITY CLASSIFICATION OF THIS PAGE (When Dafs Entered)
f - - ",‘ . ; ?

!) R R T
) I'n_;-,, . . o-r . R X %

g’ . , ‘ o
A ! - . L
.‘::gm!.. e A b T R AR AN ‘ W

.....

%
XN
o
{"h-‘
)
'éﬁ AN IMPROVED DATA COLLECTION AND PROCESSING SYSTEM
Wby
o
oA by
S; JOHN R. O'HAIR, B.S. in E.E.
4
o A THESIS
g IN
3‘ ELECTRICAL ENGINEERING
."‘F-
) Submitted to the Graduate Faculty
5 of Texas Tech University in
(Partial Fulfillment of
» the Requirements for
v) the Degree of
e
R MASTER OF SCIENCE
&> IN
$
2 ELECTRICAL ENGINEERING
LS
J;‘
3
{ Approved
i
e

Chairperson of the Co

e £ Tt~
: Moo 7. 20

et At

Accepted

[BTAXLE

B .‘ Cl
__ﬂ;’v“\;-‘_ J“)

Dean of the Graduate School

May, 1988

Al A

o

S

-
-

5 . - S A ,
SOOI Th ATy, % Uy Ty W Uy U 47 Ny W 3
T T b s AT

.........

70,10, €0, 0 St O OO IO ORISR
R X e KR K XK TR A R KK KKK RIS

¢
[\
e
"'
>
~":\‘
o ABSTRACT
-‘\:
(;.-n; Title: An Improved Data Acquisition and Processing System
"™)
ot Author: John R. O'Hair, 1Lt, USAF
RS
s:: ’ Degree Awarded: Master of Science in Electrical Engineering
k] Texas Tech University, 240 pages, 1987.
\
o This work details the development of a software control system to be used to collect data on
)
i i instabilities occurring in transistors during turn-off (commonly, Reverse Bias Second Break-
‘:Z down). The system uses a Zenith Model 158 PC compatible microcomputer with a Hewlett-
é ! Packard Interface Bus (HPIB) 61062AA interface card linked to a Tektronix 7612D Programmable
P Digitizer (7612D) for data capture, processing and storage. The control system performs the func-
WA, v & g g p
,;Q"; tions necessary to read the breakdown data from the 7612D, process said data and provide output
+ 3 J
s to the operator in one of several forms. Output of graphic data requires a Hewlett-Packard 7470A
¢
o (or compatible) Graphics Plotter. Numer.: output can be written to any standard line printer or to
o . .
N disk for later printing.
-
o
R
(
w
Ca
:
g
e
L Accesion For
.)
{. NTIS CPiA kN
o OTIC 7.3 o
-\:} Unarnonn e i oTIC
:': Justdocnion copy
A T T e INSPECTED
L By e] °
» Dt lu
-‘\" L_. - -_,..’ s |
’J}" pr it ¢ ooges
i o e
_'f'-; {8 ! |
|

Y
" l' l. “ "
)
————

L
a

CAI S

.
o @y

»

(ol O 0 e % W Em o e T O W L A AR I T 0 AT L Bt N AN e T R 1 \ AACH
B A R A e Mt P KA OO 7 AN RATERSR AN AR AR RN,

ACKNOWLEDGEMENTS

I would like to thank Dr. William M. Portnoy for his assistance throughout my stay
at Texas Tech. I extend my deepest appreciation to the other graduate students in the Pulse
Power Conditioning Laboratory for their help both in academics and on the project reported
in this thesis. I gratefully acknowledge the guidance and help of my parents who have
supported me in all my undertakings, and lastly, and most importantly, I thank my Lord,
Jesus Christ, for his nurturing and care.

. -,
. "

Lo
’

X
:":(.
@
%:E:%
:,::‘
n‘:"
B TABLE OF CONTENTS
l
o ACKNOWLEDGEMENTSc.oouiumiuiiiieiiiiriieeiie e stenieesiesessenesssneneeseseeens ii
W LIST OF FIGURES........ccccotiiiiiiniiiniiiiinieie ittt srs e eaansns e v
' CHAPTER
-
A I. INTRODUCTION
W,
,:::.:' | S o L S 1
3:::.:: Background. ..ottt ena 1
i'ffn' I TEST APPARATUScooviuieieieinereeceeeeeeeseseeeseesesesenesenenenae 3
v Incorporating the Zenithccooviiiiiiiiiiiiiiiiniiiins 4
)
R II. SOFTWARE DEVELOPMENT
:i: BASIC Programmingcccouieiiiiiiiniiiiiiniinin e, 7
~ Y MS-PASCAL Programminguoeeeerevvenneeesernsnnnnnnnss 10
A3 Turbo Pascal Programmingcooveieiiiiiiiiiiiiiiiiinieninnnns 15
' ','.’_; SYStEm SOFtWAIE ...ceeeriiruiiniieeriiinieeeeiiiiieeetreaneeeeneanans 16
e < e
:;‘_ Data Acquisition Programs...........c.oiveiiiiiieieinennnne. 16
(‘ 7 Ancillary Programsccceeeiieniiinieiieinnennnenennnn. 19
P 2 Files Created and Individual Structure.............ccceeneeen. 24
P IV. VERIFICATION OF SOFTWARE SYSTEM
:i: : Accuracy of Measurement.........coeveeeeeinenerncnnenennannns 27
% VerifiCation......cocvuiieiuiiiiniiiiiiiiiainincinieieeniienenaens 29
' V. CONCLUSIONcoovteireireereeteesnenteenseanseeesaesssassesssesseessens 40
" \.
e LIST OF REFERENCESvvenressssaesssanesessssaresssssssssssssssasssssssssssnnes 41
‘»
\ ;{3,: APPENDICES
A. OPERATING INSTRUCTIONSiiiiiiiiiiiiieeiiaieeieeaeininenns 42
» \'
VR B. TAKEDATA.BAT PROGRAM LISTING......ccccceirrieiirrececcnnnnenn 48
E: C. HARDWARE.PAS PROGRAM LISTING......ccccocovecrinnneriiincnnnnns 52
, :_'f D. GETDEVIC.PAS PROGRAM LISTING......ccccoiinriiiinieninniniiinanes 65
o E. STORDATA.PAS PROGRAMLISTING.........ccvuieiniinininnennnnenens 79
:E}_ F. PROCESS1.PAS PROGRAM LISTING......ccccituiiiirnininnecaaeaenenenns 94
; Ej_‘l' G. PROCESS2.PAS PROGRAMULISTINGccocvvvviiininrnncninnennnnn. 107
Y
w3 H. PROCESS3.PAS PROGRAMLISTINGccccoviiniininreninneninnenes 118
LJ I. REPEATER.PAS PROGRAM LISTING.......ccociiiiiiininiriieinnnn, 127
:l ."' ees
: iii
o
t
et
! !
o
e
P

', W00 0 ~ , L . - _ .
A P S NS) LM TSONN M NSO i RacH CNC P MMM TN AR (N Q 7 d 1
"5'-‘.'::'!-5190.1'-.“u.l?».i',u.\,!.l.l WO .tfo,l?:.l'.n.ﬂ.'o.'ft.‘h‘.‘!u‘!o.‘!r&!a Wty .Qﬁ‘fof‘,n".c.‘!o.'ft.‘!c'.‘!o"!oA!af*!nﬁ*‘,efl!::tfﬁ‘!v"?.ﬁ*!o:l:qtc' it

o ¥4

"“.-aw
(] 2 ?

oo

@ Ky

ol
L4

. v ar L ey e
- - . | 4
'i‘.’ ;ttA fr‘-sb,

Y| ¥ p) \n
RGCATLAT IRRARARF(

v

-
-

LARCRR P o
U
".l.:g" -’t‘,o'tn"‘.t'

4
‘v" v

i

e,

" i
0."20.':!. 24

()

ZgE R -

T A
PORAAAN KDL

iv
PLOTDATA.PAS PROGRAM LISTING........cccocevviiiniiiiienininnnnn, 133
TABULATE.PAS PROGRAM LISTING........cccccceviiiiinniniinnnnin, 187
SORTABLE.PAS PROGRAMLISTING.........ccocitmiiniunininininnnnn. 202
EDITLIST.PAS PROGRAM LISTINGccccoiviiniiiinininnianinnnn. 221
PRCSLTWO.PAS PROGRAM LISTINGc.covvviiiiiiiiniiiniinnnn. 231

T

Q) Q) OB Wt SRR Wy W RN R ettt
i l”.‘:.'n.l‘!‘l';‘l‘!‘l‘t‘l‘!‘l"‘l':.l.! .'!’ﬂ'..n"‘n. 'Q'T’l"‘k“-'t".'x.‘.'l‘. A9.‘:‘..:=‘..u|! H"dg‘ﬂ".!‘_‘ﬂ"”"ti"’:":ﬂ?’,""?z'

W
‘l

E*.,

Wb

o

’. s

'O‘Q"l

Wb

0

(:.'?n, LIST OF FIGURES

s

:::'v. 1. NPN Transistor showing voltage and current conventions..............coevvevnenen.e. 2

. L
::"'5: 2. Schematic of a simplified data acquisition system incorporating
Ih_s. the Zenith MiCTOCOMPULET.vuuiuiiiiiiitiiiiiiiiiireitiiiirirneeeraeneenaaneenens 5

\

e 3. Drawing showing DOS memory allocation along with MS-PASCAL

\,:_ working area memory alloCAtON.vuriiereniineeretneneneunenreeraenanenannns 11
e

o) . .

- 4. Normal Pascal program hierarchy compared to modified hierarchy.................. 13
(S. Example of Plot tyPe L. . ciuiuiniiiiiiiiiiiiiiiie e 20
N o
',;"',: 6. Example of PIOtLYPE 2. .u.iuuieeniiieienitneretareineanaeenneenneraaaeneenneenenanneenns 22

ALY
e 7. Example output from SORTABLE.COM. Sorted on forward
Kol and reverse base drives, respectively.......c.oiiiiiiiiiiiiiiiiiiii s 23

®
N 8. Storage filename INtEIPretationccevueinereenitieneieereeenerueeeeareeeaenereenanes 26

’1_: 9. Sample plots along with photograph of Collector-Emitter Voltage

o and Collector Current. The figure shows the entire test cycle from

R TUT turn-on to turn-off. In data acquisition, the time of interest is

{ during the peak in the Collector-Emitter Voltage. This is the region

P, where breakdown Will OCCUL.......cccvveverieeiiieiiitie it cereeeete e e e 30

n}

e 10. Sample plots showing safe turn-off. This is a blow-up of the peak

=Y region in Figure 9. Forward bias setting is 1 A. Reverse bias is

SR 005 A oo 31

11. Sample plots again showing safe turn-off. The rate of drop in the
Collector-Emitter Voltage is now more precipitous indicating nearing

-

,"_J': the edge of safe operation. Forward bias setting is 3 A. Reverse

qj-"_: bias SENZ IS 0.05 A ...eeeevrueniiiirrruriieeeeiereenieeeeertnnneeseernaaaaesesennnas 32
e

o 12. Sample plots showing breakdown. Forward bias setting is 3 A.

™ Reverse bias setting is 0.1 Ao 33
g

O 13. Sample plots showing breakdown. Although breakdown does occur,

o it takes considerably longer to happen. Forward bias setting is 3 A.

o Reverse bias setting i 0.06 Acuvvinieiiiiiiiiiiiiiiiiiiniienarenencrnanaenenss 34
L J

oY 14. Verification of P and E by graphical means. Forward bias setting is 1 A.

o~ Reverse bias setting is 0.06 Aouiiieniiiiiiiuiiiiiiiiireneeeeneiaereieaees 36
S

j-:.';' 15. Verification of P and E by graphical means. Forward bias setting is 2 A.

o Reverse bias setting 1S 0.1 A....cccoviviiiiiiiniiiiniiiiicinnneiiee e 37
)

&

K) v

)

l,.

%)

I

o

" N

3

' 1 OO Vol O RO (\
2 !l':!l':.l h".a."n."..l'u'l‘l'l‘n 0 l‘:‘“:"‘:‘t‘;‘“:"_’:"!:. \J!;‘.:?.!&’:‘.A‘al‘:!:‘.‘0‘!’0%%%”!'.t

gt e Al bt nUn Vit gV 1, Up¥legt e ety
..t?e.l‘v.‘?-.'fo.!,'.."_o.",u.‘?c’*?:f0'0!'?1"’%"!!‘.0.'%’":!19:! Wttty

‘t'v”l"‘..""
L3P IR RN

T e T s PN .
ey N

(Zes

nfare

1 {*3“':

’I;‘l‘:‘l‘ i

Y
‘-"::
i
o

16.

17.

18.
19.

vi
Verification of P and E by graphical means. Forward bias setting is 2 A.
Reverse bias setting is 0.2 A....cccoovieiooreomoeeeeeeeeeeeooos oo, 38
Verification of P and E by graphical means. Forward bias settingis 2 A.
Reverse bias setting is 0.4 A....ccocooeivieomoeveeveeresoesooeeesooeeeeeoe 39
Integration SChemec.ooeeeeiiiiiiiiiiine e eeee e e e 114
Example of sorting functionocooooiiiiviiieiinniioeeeeeee e 212

¢

)

Z CHAPTER]
g.;. o ’ SET - II\I'I/-'I;(’)DUCTION
e - o A
: :\ Focus
~$ The focus of this effort has been to continue with the work previously done at
s Texas Tech Univérsity in the area of Reverse Bias Second Breakdown of transistors. Past
'.i‘} work has centered around the development of a complete data acquisition system to exam-

a5 ine the above menkioned phenomenon. ¥This endeavor has concentrated on improving one
o major aspect of the}systcm, data collection and processing.
_) In the following, discussion shall be limited primarily to the work undertaken by
.';:.:I the author, and only enough background material as is necessary to provided a complete
:Z:‘; picture of the project shall be included; therefore, the reader should first familiarize his or
Z; herself with the work done previously before continuing (1,2,3,4).

::C '« —*The data collection system consists primarily of a Tektronix 7612D Programmable
:\ Digitizer with two Tektronix 7A16P Programmable Amplifiers, Hewlett-Packard HP-85
.E\ Microcomputer, HP-9895A Flexible Disc Memory, HP-/74‘_7_QA\§lotter and Zenith Model
K< 158 Microcomputer with Hewlett-Packard Interface Bus-(EIPIB) 61062AA interface card.
a2 This setup, except for the Zenith. Microcomputer, has been used in all the past work, al-
::,? though the digitizer was not integrated during the earliest works.

:5 The specific objective of this effort was to utilize the new Zenith Microcomputer in
2 the collection system as efficiently as pgs_ﬂ;s Thus gaining the maximum improvement to
the overall system possible with the Zenith Microcomputer addition.

- Work was broken into three phases. Phase one consisted of integrating the new
Zenith Microcomputer into the data collection system. Physical placement, hardware
checkout and software development are covered here. Phase two consisted of initial data
measurements, and phase three consisted of verification of said data. Of the three phases,
phase one consumed the most time and effort, and, for that reason, reporﬁgg of the work

" @ LA LI @ AT

] done during that phasc reprcscnts the bulk of this the? f/ S R »
) Ca : -
) ’ . v AR " s N ’}_1) \

\ Background

' X
LN

Reverse Bias Second Breakdown, as it is referred to here, is an instability that oc-

[}

curs in transistors during turn-off. The most common environment for breakdown is a
transistor being used to switch an inductive load, but this instability does occur under many
other operating conditions.

- e en

P

‘e’ £ p , v l.‘l
i. "(r'h"{’:“&. .."l.’!.l.". ‘

P

1}
~§ w* " ".&IM-..-\-x-NQ .-\' ,\‘1,‘- - q
WG T M A I AT 0

P

0 ‘\‘R.‘g"‘."\' "‘,. AR AN
. * ‘0 \ 'Q.‘.'. Rl AL n.l’o‘l‘o, ". O ‘4‘0“‘!‘."’.. ‘D..‘ MALONN,)‘ n LN 0"‘

T A ——— - VT IV IRPT R A T L\ o DO T KT R WU WOWU WU U TS TON
e
0“0
'C"'
N

w¥ s
@
'.:"-
S
e 2
o . e . . .
oL The breakdown instability is characterized by a sudden decrease in Collector-Emit-
s’, " ter Voltage (Ve) and increase in Collector Current (I). The change in Ve is on the order
&
u N of 500 Volts in 10 to 20 nanoseconds. This precipitous variation is used to trigger the
A j protection circuit described in the afore mentioned references.
"
) ; To force the Transistor Under Test (TUT) into breakdown, it is first turned on by a

forward current pulse into the base of the transistor. After approximately 5ms, a reverse

current pulse is applied to the base of the transistor. A forward pulse is defined as being in
the direction of Iy, and a reverse pulse is in the opposite direction (see Figure 1).

B

4)

- A

PR
lam)
o

’
LY

iy By ';;,l"l

Lons

L

L

e
'l '.7 > L)
R
A
(¢

SRS
. }-'}:‘_'l

Voe

(g Figure 1. NPN Transistor showing voltage and current con-
~7 ventions.
-,

If breakdown occurs, it appears shortly after the application of the reverse current
pulse, when the transistor is attempting to turn off. The time interval between the applica-

tion of the reverse current pulse and breakdown is of specific interest in this research. Ob-
serving the values of I, V¢e and Vpe during the time interval provides crucial information

Y
W
" & in the evaluation of breakdown. From I; and Ve, the instantaneous Power, P, and the
ot
) Energy at Breakdown, E, can be determined. These last two values, combined with the
N

“ :}_ preceding three, define, for the most part, the conditions of breakdown.
oo This work concentrated on developing a system which would collect I, Ve and

-1 Ve and calculate P and E in as efficient a manner as possible given the equipment at hand.

oL
/ 5

4% %

o

o
i

r A T AT T A e T R T T AL TN L S, N N N A LG o
O N R S RN R N N o RO A e A

4.5987¢/ DAL LN DA Dok od

=

i
|

55 @
AL

22

CHAPTER 11
TEST APPARATUS

-
I
A_K

A more detailed examination of the equipment used in the data collection system is

Pd
FS PR ”

now in order. Previous efforts used a HP-85 Microcomputer as System Controller tied

L

') into the rest of the system via a HPIB plug-in module. Waveform data could be digitized

S

! f.}l by a Tektronix 7612D Programmable Digitizer (7612D) in which case the data could be di-
:::: rectly read into the System Controller across the HPIB, or it could be digitized by, first,
!’.‘-

taking a photograph of the waveform trace captured on an oscilloscope and then digitized

e N

(A

by placing the picture on a graphics tablet and manually transcribing the waveform.
The system also contained a HP 3467A System Voltmeter, a IIP 3497A Data Ac-

2

LN

"\ quisition Control Unit and a HP 9111A Graphics Tablet; however, these devices are no
'}_ﬁ longer used as the functions they perform and the data they provide can all be obtained by
: using the 7612D alone. As far as data collection is concerned, the system requires only the
s 7612D, once it has been properly interfaced into the system controller.

f;?-:j: In the most recent work done prior to this effort, the 7612D interface had been
::Ijj completed, and it was the primary source of data acquisition for that work. The software

that was developed to control the interface between the HP-85 System Controller and the

Ll

7612D is adequate for the task of taking data; however, it is an exceedingly slow system.

:‘: At the start of this effort, a Zenith Model 158 Microcomputer (referred to hereafter
‘ ,‘ as the Zenith) was added to the system. The goal of this addition was to correct the one
D major deficiency of the past system, speed. It was hoped that the Zenith would be able to
\.:-_',‘ handle the task of data acquisition and processing in a near real time fashion, something
:::! .)-: that was entirely lacking in the past configuration of the system.
k! v There are several factors, relevant to this discussion which have an impact on the
'0: speed of the data acquisition system. First, the HP-85 uses a microprocessor which is not
:\-{ji as sophisticated or powerful as the microprocessor used in the Zenith. The HP-85 micro-
:::jﬁ-: processor operates at sub-megahertz clock speeds as compared to the Zenith microproces-
v \ sor, the Intel 8088, which operates at between 4.77 and 8 MHz. Although raw clock speed
;_ is not a complete indicator of processing spced, the order of magnitude difference between
,"j-.-s the HP-85 and the Zenith is a rough indication of the improvement in computational speed
f; E_-;i that could be gained by upgrading the system to include the Zenith.
"‘": Another factor which affects the speed of the acquisition process is the program-
® ming language available for collection control and data manipulation. The HP-85 uses
! 3
o
5
VY

°
¥ c.‘)

43

Sy
et

)
‘l.o. %"

AT ATt A A IR 1T o T A e e MR AR w N e LR S NN A T A R CR TR
._A , ‘.‘V:f - W *'*- .‘I 'F.). %, 50,%8,%0,% » A6 Py BN N “F‘.) h‘ s Q.n,,; ‘.’ A Sl AR

N a RCa - A e Rt A% YT D ek Sl Aot B A 0 A s A AR ACh Al ath ath ahd ald abh oth o)
i3}]
“

u '\

.

s ‘
o

:‘ e BASIC as its upper level programming language. Non-compiled BASIC, like that used in
(V_ x the HP-85, tends to be much slower than the more powerful compiled languages available
~.: to the Zenith such as PASCAL or FORTRAN. Combining the programming language with
..‘-Q'{; some shortcomings in the way the HP-85 talks to the HP-9895A disk drive, the process of
:‘. data transfer and storage becomes bogged down.

») Another deficiency of the HP-85 that the Zenith was meant to correct was shortage
:';‘C-E of memory. The HP-85 contains approximately 32 kilobytes of direct access memory
f:& known as Random Access Memory (RAM). This limited amount of memory made it im-
": possible to read in more than 1024 points for each curve on the 7612D. The 7612D is ca-
! pable of taking up to 2048 samples on two separate waveforms simultaneously; therefore,
. for a given time interval, half the sampling bandwidth was lost. The Zenith is capable of
: v taking in the full 4096 points available, having 640 kilobytes of RAM at its disposal.

’

o Incorporating the Zenith

'{ﬁ', The Zenith was, at first, designed to be an addition to the acquisition system and
:E not a replacement for the HP-85. Because of certain difficulties encountered, this proved to
:}: be impossible within the timeframe of this work.

Figure 2 shows the expected change from the old system to the new. The HP-85

: .'{: was to remain the System Controller up to the point of actually transferring the data from
] :i the 7612D. At that point, the Zenith would takeover, transfer the data to itself, relinquish
K S_‘; control to the HP-85 and begin processing the data in a real time fashion. In theory, ac-

cording to the supposed capability of the HPIB, this plan should have been possible. It

'\-:‘.'\- was, however, not.
';::: The HPIB is Hewlett-Packard's emulation of the IEEE-488 standard set in 1978.
:::: This standard contains the proper protocols to transfer active control of the bus to another
[i controller, called the Active Controller. This transfer facility is what would be necessary to
-\ . . .

-l use both the HP-85 and the Zenith on the same bus at the same time.
28 As the Zenith stands now, it contains the HPIB inter.ace card which is responsible
--'\ir 3 3

o for carrying out all communications over the bus. Control of bus communications 1s done
® via a set of software commands inside the Zenith which were provided with the interface
N card and corporately are referred to as the Command Library. In order to use the Com-
=~ . .

W mand Library, the HPIB interface card must be set as the System Controller; however,
:::j' when set as the System Controller, the Zenith is unable to pass control of the bus to an Ac-
ST

L J

w -

.

.;_:.

L] '.r-

I".-‘

e

S

o

P
b
b

p :'. " - “w "w L Nt " E

e A A e R e e

. 1
b
PG
B ..: 5
':I
k. N tive Controller (in this case, the HP-85). With the Zenith set as System Controller, it is
5 impossible to employ both computers in the data acquisition system.
o W If the Zenith is not set as the System Controller, but the HP-85 is (as shown in
\",: Figure 2), then the Zenith cannot use the Command Library. This library is absolutely es-
e sential to do any type of communication through the bus. It would be impossible to trans-
ol fer the data from the 7612D without the aid of the Command Library.
=
.
s Simplified Data Acquisition System

‘.

£ 7N

O HP-85: System Controller
o
~ Ll T
AN 1 1
.] 1
—_— ' 1
SN '
o |
,f::" Zenith: Data f[-----------~- »1 Tektronix 7612D: Data
b Processor ' Digitizer
2
:, ---------- Control Paths RBSOA Tester:
D Data Transfer Path Data Producer
::’.: Figure 2. Schematic of a simplified data acquisition system
Mg incorporating the Zenith Microcomputer.
f : ‘
i An effort was made to obtain the source code used to develop the Command Li-
i ::'; brary from Hewlett-Packard. It was hoped that a modification of the code could be ar-
:'_:;:; ranged so that communication via the bus would be possible without the interface card be-
ing set as System Controller. Hewlett-Packard was not forthcoming with the information,
. and the line of research was discontinued.
K j,‘\ Without being able to pass control from the Zenith to the HP-85 while the Zenith
3
"’C was System Controller and being unable to get the information into the Zenith when it was
3
L
A
TN
)
VS
v l'"
St
@
v
N :f;
R ne A At PO

NN
¥ (d . .

X Y T L YR AT e

W0

......

e

6

-
LA
X

Talels

not the System Controller, it was decided to scrap the idea of using both computers in the
improved system and concentrate on using the more capable Zenith, only.

BF ~ Terelule el

- o It L
KT YT p 22T

- PN e I ”
b) LA ARSI

TOLLS

LSRR Yty

.

@V Ve G @

P ol

F) @ 2

-

v, I‘:‘l‘. ‘.o." !"I!“:g":. .:.

n) 1, O K A A P (NS0
QeI DR AT SRS DSOS AR I HIIRIRINIRIRIIAD W

................

',.-
P oo
s :

.

‘5:':-.

‘

R CHAPTER III

:c_;- SOFTWARE DEVELOPMENT

o

;\:'_ BASIC Programming

] With the decision to use the Zenith as the sole controller, it became necessary to de-
ir‘" velop a complete software system which could perform all the needed control and process-
? ing tasks. It would have to supply the test apparatus with the instruction it needed to ac-
'n j quire the specific data of interest, and the software would have to conduct all the applicable
RS processing and information storage, retrieval and output functions. In short, the system
‘ 2 would have to be able to do everything that the HP-85 could do. Re-invention of the wheel
' ;:j was, however, something to be avoided.

i $\',$ The first step toward developing the system software was to first determine in what
o language to program. The HPIB interface card's Command Library was capable of being
) o used with a number of upper level computer languages including: Pascal, BASIC and C.
*ﬁ; All of these languages can be run on the Zenith given the proper compiler or environment.
::;: It should be noted that the control software for the HP-85 was written in BASIC.

AN From the beginning, time had been a crucial factor in all d- cisions made concerning
. : this project. The quicker, the faster, more capable, Zenith could be brought on line, the
AN better. As control software was already available in BASIC on the HP-85, initial effort
” were directed toward transferring the BASIC source code from the HP-85 to the Zenith in
o the hope of running the code, or a slightly modified version of the code to control the ac-
_..' quisition system.

"‘:E The actual source code for the HP-85 is stored on the HP-9895A Flexible Disc
i :.'j Memory which is connected to the HP-85 via the HPIB, but the Zenith was also connected
L to the bus. It was thought that the Zenith might be able to transfer the files from the HP-
, F 9895A to the Zenith's own floppy disk drive by accessing them using the HPIB card. The
:: ? code could then be run on the Zenith using the BASIC line interpreter, GWBASIC®,

::; Normally, the HP-85 talks to the disk drive using control codes stored on a special
:J' Read Only Memory (ROM) chip. If the Zenith were to properly address the HP-9895A, it
;—;. would have to use these codes, but they are inaccessible from the Zenith. Additionally,
4 e none of the manuals for either the disk drive, the mass storage ROM or the HP-85 con-
{-\(tained information on the necessary codes. Hewlett-Packard was again contacted and
':.\-’. asked for information regarding the control codes for the HP-9895A, but they were unable
:, to provide the necessary information. Instead they offered a disk drive controller software

7

L DA D)

¥ Yy 22 W) ; 3 Y 7. Y- ,7¥, O O p a8 Y T B "
b ORI) D . (D }
Yo%, A’!lo'.l"!ls 4 !ls‘.h foleols, .l-"'u"'-"h"'n"h‘!h'!'n“,'- .ll'!h‘,.'o..'t‘. :‘:‘o"h‘g'a‘!'l‘.:'t‘!'o‘.‘n'!h‘:'t‘-':‘.‘. .h‘!‘t':'o!.'q‘!h?'.'s‘"o'.'.‘:h'"o.'-h‘,:'u,‘!'o :‘o ph :'0 .%lf.‘t':‘:

N 8

"

K N package (part no. HP 88500B) which they claimed would talk to any of HP's HPIB disk

{ drives. When the software arrived, it proved to be incompatible with the HP-9895A.

' :_:f Again Hewlett-Packard was contacted, and asked why the package would not work. After

0 a somewhat lengthy delay, a Hewlett-Packard representative responded by stating that the

: - package would not work on the HP-9895A disk drives and that it had never been intended i

\ to do so. Further, HP did not and would not ever have a package available to control those

z. disk drives from an IBM PC compatible. It was, therefore, not possible to directly access
w the source code on the HP-9895A.
‘ While directly accessing the files on the HP-9895A was impossible, it was possi-
(ble to perform a one time only transfer of the files from an HP-85 to an IBM PC compatible
e at an off-site location. The files were first transferred to a newer HP personal computer
,,r: and then to another IBM PC compatible computer. Copies of the source code were then
i transported on five-and-one-quarter-inch floppy diskettes to the lab where this effort was
e being undertaken.
As mentioned earlier, time was a strong factor in the decision process. So, the

quickest possible method of using the source code which had been transferred into the
Zenith was attempted, running unmodified code in GWBASIC. This met with failure.
(On examination of the code, it was discovered that the HP BASIC that was running

[T A BB

o on the HP-85 was significantly different than the GWBASIC that was used on the Zenith.

- The first problem with directly running the software was in the file format in which the
- source code was transferred. The HP-85's screen can only display 40 columns of data or
- text in any particular row. This is also how the data is stored on the HP-9895A disk
e drives. If a BASIC line was longer than 40 characters, the line was wrapped around to the

next row down. When the code was read in from the HP-9895A to the HP-85, the line or

::" word wrap was ignored as far as the function of the program was concerned.

) GWBASIC interprets lines slighily different than does the HP-85's BASIC. Where

E the HP-85 will ignore the word wrap, the Zenith, using GWBASIC, will not. GWBASIC
3 requires every row to begin with a line number. If the line number is missing as in the case
b of the transferred files where line wrap has occurred, GWBASIC will declare an error and
e stop reading in the source code. To illustrate this, here is an example:

v

- 70 FOR I=CURSROW to 64 @ DISP @

1

W NEXT I

‘A

L

K}

X

b

L

.

¥

ot Al R LS OO0

. OO0
o M":,o":t"’:'!f\".o!'. AT B

AN A
-t'.:!’-)'.’.c?l,o. XN "c','f”ﬂo'ﬂk"»ﬁ

L

S
L -h j 9
A2
This is the format of the files that were transferred over from the HP-85, but the Zenith
{ using GWBASIC would require the following format for an input source code file.

Loty

o

70 FOR I=CURSROW to 64 @ DISP @ NEXT I

-

=
A
.) However, just because GWBASIC reads the file in does not mean it will run it unmodified.
E,p To correct this problem, a program which would remove the word wrap from the

HP-85 source code files that were in the Zenith had to be written. If there had been only a
few files, it would have been possible to correct the files using a screen text editor; how-

b

2

ever, there were 20 files for a total of over 2000 lines of code. After writing the program

S,

?_:{"; and running the source code files through it, again an attempt was made to run the HP-85
:j',: software using GWBASIC. At this point, it was discovered that GWBASIC was incom-
g patible with the HP-85's BASIC.

When a copy of the HP-85's source code was first obtained for the Zenith, it was
L known that, at the very least, certain sections would have to be rewritten. It had been
X thought that the time involved in this rewrite would be minimal; however, with the discov-
K ﬁ ery of the compatibility problems in the source code and the resulting requirement to rewrite
(the source code line by line, it became evident that this avenue of approach was no longer
‘;'.f.;; worthwhile. The expense in time and the resulting product could not be justified when the
.,'_ entire control software could be re-programmed using another language in less time and
‘"j end up with a more versatile and faster system.

:) At this point, it was decided to begin developing software using one of the lan-
i::‘..}' guages which was supported by the Command Library, Microsoft Pascal (MS-PASCAL).
::'e: MS-PASCAL has several distinct advantages over BASIC. First, it is a compiled language
:::::: which means much faster execution. It is a structured language which allows for more
) complex programming with easier debugging. Lastly, and probably most importantly,
_,i-s MS-PASCAL allows the program to utilize math coprocessors if they are installed in the
:_‘: computer. In the case of the Zenith, an 8087 Math Coprocessor is installed.

_‘ ?_3' A little background on the 8087 Math Coprocessor before proceeding. The 8087 is
; designed to do nothing but floating point mathematical operations. It does these operations
,u;-.' typically over 100 times faster than they can be done by the standard 8088 Microprocessor.
N :: In heavy math applications, the 8087 can speed the operation of the application by as much
ey as 15 times. This increase in speed is critical if data acquisition system is to be able to pro-
0) cess in real time.

=2

®

4

T L !

'Y""‘l"'.l‘""l Ay
el

v 02

o

-

o, 4

Rt K
NS > X
=y

o™ e
P

T T

,,-,..
>
e

.

A

Y G P
@
A

s
bty

P
€

rt Rl S

I‘,..

Ay e
yr f

o h‘

e

el
XL

2

L
)

l..

R

A Y ¥,
. .!::.!:‘l‘ 'c"':‘

10

It should also noted that BASIC, any type of BASIC, cannot utilize a math
coprocessor. It becomes obvious that any new code that needs to be written should be

written in a language that can use an 8087. MS-PASCAL could, and so, it was selected for
use in programming the new system software.

MS-PASCAL Programming

At the start of the programming effort, a set of requirements was created. Any
software developed was expected to met all of the stated requirements. What follows is a
list of these requirements:

1.

® N v oA

The system must perform initial setup procedures which include: poll bus
to insure the 7612D is on line and functioning, calibrate the 7612D, set the
system time-out error checking level, check for any other devices on-line,
identify those devices and prepare them for use.

Perform the necessary bookkeeping functions, such as: set up and maintain
an index of devices, keep track of how many tests have been run on a par-
ticular device, maintain a record of which forward and reverse base drive
current settings have been used and keep a count of the number of break-
downs compared to the number of tests on a given device at a particular set-
ting.

Allow the 7612D to acquire Ve and I; and then enter these waveforms into
the Zenith for processing and storage.

Process Ve and I to obtain P and E.

Store all data on floppy disk.

Repeat measurements in as efficacious a manner as possible.

Plot specific waveforms from selected tests on the HP-7470A plotter.
Compile and output a table of breakdown values on a particular device.
Breakdown values include: Ve and I; at the moment the protection circuit
fires, the forward and reverse base drive values, the energy at breakdown
and the time to breakdown.

Work was directed toward obtaining each requirement in the order they are pre-
sented above. Prior to achieving the last two goals in requirement 1, it was determined that
the only device to be used in the data acquisition process would be the 7612D; therefore, it
would not be necessary to check for any other devices on-line or identify those devices and

prepare them for use. Those requirements were dropped.

T4

OO

e RO COONOBO00S b) ORI '
h‘!'».":“h‘ (MM .'l‘.%"'0".’:"0;".*s".h‘.h‘.'l‘.'u‘-'a"'...':"‘. Y A‘Sﬁ‘,.’l‘.‘i‘i'« .'I !'G."‘."l’:'.. X '.0,0'éo‘k.,n..ﬁtt'l‘,s 0‘0.’?0 “.t'.""h

OO » (L { M W% M) B

LAl TV SR Sah g iecad

11

) The first snag in programming was encountered after approximately 550 lines of
(,», : code had been written. A stack overflow error was encountered. Stack overflow occurs
"% when the amount of memory used by the variables contained in the stack exceeds a specific
.3:: limit. This problem is demonstrated in Figure 3 below.
N
'{ T
)
e Video Ram
W ROM g
[
:% , . System Use 2 Constants T
(— 3 Data g
o DOS = £
o g 8 Stack 5
; 'Q: Y Unused M 8-. Expands as =
;‘ % emory w Program Executes 7]
uhy 3 @ g
d N Application)
o é. Applicatio § Memory £
ﬁ = s Expands as NS
Sode 5 Application g Program Executes
i ke Code Area 2 \ Heap ¢
{ DOS v
Y The Heap does not always
5N expand, but it can.
et
N Figure 3. Drawing showing DOS memory allocation along with
! MS-PASCAL working area memory allocation.
2
;:':. At the time the error was encountered, it was unclear as to the cause. The individ-
"' nal procedures within the system software did not appear to contain enough variables or
::,‘ functions to fill the stack space. Without really understanding the problem, a solution of
® sorts was found, but it allowed only an additional 200 to 250 lines of code to be added.
::“ Later, the probable cause of the problem was located. At the end of each program's
;:;‘ execution, an error message, "Error Code: 2001, Null Pointer Assignment,” would be dis-
"'J played. Since the program was finished running, the error message was merely annoying;
® however, the source of the message was investigated. Microsoft, the maker of the Pascal
_"\ / compiler, was contacted. Their analysis of the problem was that a variable pointer had not
j :.';' been cleared before the end of the program.
o
3y
W
:'. ()
Uy

\l‘

0O L) ; - T ! ng X A "
3 GOSN TR S SR R Tl Ve SN b S Tkt gTh OO0 0O DAOOE OO ONONON] ! &
_05‘.9;3,",“’ Y .l.3‘.-.“.n.’el'»*AQ'%.IQ0'.?!.'.4'0,0'\“ 4'ﬂ’n.‘,\’\..n'n‘a'l.:'b’!'l.‘.l :‘l,:’l.:'ln‘:‘h“‘ !'59:' “' “' .".‘.Q .!' " ”I...-'o ?ﬁ"":‘?‘a‘!l;".*'..‘.n‘?’s.’.J!.!"':”."."-‘:‘"r.!':.,.:.!.,'

DEASU WY i

AL AT

-
Pl
Ry XN

s

., .'- ".-{l "l

— e
2
1

ity
&% %

Sty

LA

P00

1]

f .‘l
Talala ey

TIA@ RS AN @ TS

.

4,
X
)

G @ S

ol
»
i

12

No pointers were used in the program under development at that time or at any time
during the course of this project. The only possible source of a pointer assignment was the
Command Library for the HPIB.

From this information, a theory was developed. Apparently, the functions con-
tained in the Command Library use pointers, and the developers forgot to clear their pointer
assignments before closing the functions. Without the specific pointer designations, it is
impossible to clear the assignments.

As the program executes, it calls the Command Library functions. Each time there
is a function call, pointer assignments are made which use up stack space. The stack space
cannot be reclaimed unless the assignments are released. They are not; therefore, as
execution continues, more and more stack space is used, until the available stack space is
filled and the program crashes.

Whether the theory is correct or not, it was not possible to extend the program
length beyond the limit encountered. So, an alternative method was developed which
proved to be a workable solution to the stack overflow problem. The Disk Operating Sys-
tem on the Zenith (ZDOS) provides a batch file utility which can be used to call separate
programs in a sequential fashion. ZDOS, also, has an ability to create loops in the execu-
tion structure of the batch file. With this capability, it is possible to break the system soft-
ware into several separate programs which execute sequentially and perform all the neces-
sary data acquisition and processing tasks.

As each program executes, it fills up the useable stack space, but when execution is
completed and the program ends that stack space becomes available for another program to
use. Thus, if the original program is broken at the point just prior to the stack overflow,
the memory is cleared by the ending of one program and the beginning of another before
the problem is encountered.

Each program in the sequence does, however, require a certain amount of informa-
tion from the previously executed programs. This information would be kept as global
variables in a normal Pascal program. In order for the new programming scheme to be ef-
fective, a method for passing data between the programs, quickly, efficiently and without
requiring user interference had to be developed.

Another very useful utility now comes into play. One of the common utilities on
almost any IBM PC compatible is a RAM disk. This is a program which sets up a segment
of user memory for use as a RAM disk. RAM disks behave exactly as normal disk drives
do, meaning they can be written to and read from in the same fashion as floppy or hard

B R R D I YRR

Y X R A
7,

LGS

Jale @

e

.
- v ¢
Jl".l‘l

P

,‘_
'l l ‘j 3 a &
KA I

g

Oy A
':"n"t‘ .‘r.'n.‘.‘

-
L)
S

0

o
-
.
e
o
o
by
s
¥

disks, only much faster. Using the utility, RAMDISK.SYS, a new drive was setup on the
Zenith. A text file called PASSER.DAT was created to contain those global variables nec-
essary to the execution of the software system.

With the RAM disk to contain the necessary global variables, an extended program
architecture or hierarchy was created. In an application such as this, where there are dis-
tinct steps that do not require a high degree of interaction with other parts of the program
and execution follows a set order, the batch file system performs just as well as any other
program structure available. The difference between the new and old hierarchy is shown in
Figure 4.

Normal Pascal Hierarchy Modified Pascal dierarchy

Program Level - Highest Normal Level in - il poS Level - Batch file calls Programs as if
Pascal they were Procedures

Procedure Level - Called by Program
Level

Program Level - Same as Normal Pascal
Sub-Procedure Level - Called by Other Heirarchy from here on
Procedures. Structurally the same as
Procedure Level, can even be called by
Program Level

Figure 4. Normal Pascal program hierarchy compared to modi-
fied hierarchy.

The RAM disk was given the drive designation G:, and all communications with
that disk are preceded with that address designation. (On a Zenith Model 158, the drive
designations A through F are already used whether a physical drive for the specific desig-
nation is present or not. For example, on the machine used in this work only drive desig-
nations A,B and C actually refer to a physical drive. D,E and F are completely unused.
RAMDISK.SYS automatically uses the first unassigned drive designation available, but
even though D,E and F were unused, they were assigned in the Zenith hardware/software
reserved designations.)

PASSER.DAT consists of various parameters kept on set lines and positions in a
text file. The first line contains a string of ten toggle switches. The toggles are simply

®
Lt
) .&:’:
32. 14
At characters like "Y" or "N." Depending upon the state of a particular letter, an action may or
f:' . may not be taken in a given program. This is one way of letting all the succeeding pro-
o) nt grams know what actions need to be taken depending upon what has previously occurred.
. In the system completed in this effort, only five of those toggles are used. The other five
ol are for use by follow-on programming efforts and lends the system some expandability.
;: :_- Lines two and three of PASSER.DAT contain the device number and the system
...t-_: time-out error value, respectively. The device number is an integer used as an index value
N :E which references the device record contained in the device index file, INDEX.DEV. With
the device number it is possible to obtain all the information currently stored on a specific
P device in the index file. It also tells the preceding programs which device is currently in-
";S stalled on the tester. The system time-out error value is a real number value which tells
:;: each program that performs Input/Output (I/O) functions over the HPIB how long to wait
Sty for a response before declaring an error.
;: Line four contains the most recent base drive forward and reverse bias current set-
.:'.:j tings. These values are stored as part of all the files created during the acquisition and pro-
3 -’-\ cessing phases. They represent the variables in the test, and it is important that all data
s taken during a particular test run be labeled with these values as a protection against
{ oy mistakenly grouping and processing files from different tests with different settings.
‘f.s Lines five and six contain file designations. The fifth line contains the name and
s

location of the bookkeeping file which contains a listing of the various forward and reverse

-
S

O

bias settings, a comment line for descriptive information and a count of the number of times
a particular device was tested at given bias settings and the number of times the device en-

'*-:-' tered into Reverse Bias Second Breakdown. The sixth and final line contains the root file-
'.j‘:.:'.' name for storage of incoming data and the files created during processing.

oo The individual system control programs are stored on the hard disk until needed.
,.E;_: Although storing the files on the hard disk results in slower overall program execution,
;'“'_' since between each program the computer must stop and load the succeeding program into
'f', memory before it can be executed, the delay is so minimal that it is barely noticeable. Pri-
" marily, this is due to the relatively small size of the programs (less than 50 kilobytes each)
) .;', and the inherent speed of the hard disk.

f "2: The two main advantages achieved by using a batch file execution scheme are, first,
-»E: it is very versatile in the application at hand. If at any time it is decided to add additional
LAY processing or analysis steps, all that need be done is write an additional program in any
:f\‘ compiled language (such as PASCAL, C, FORTRAN or Compiled BASIC), place the
T

-\.:,_:

%

.J.

5

T A L T T gt et S I LR R T ST LS L D R R RN PO LI T * 0
; v ORI ‘- e “Lafa e :_‘-f‘ e :.g."fn! .’/-I\.‘\':d'}:"- - \;‘-’,\-‘\ ', Jii\d'\,"y-.‘ WLy, o, \“\ G Mo
Ad Ld 3 fe, - d - 't gl o o o) « B " N

-
-

‘ executable version of the program into the appropriate directory on the Zenith's hard disk
(and include a statement in the controlling batch file to call the new program at the appropri-

3 &ﬁ ate point in the overall acquisition cycle.
_'::;' The second main advantage attained by the batch file approach is the alleviation of
:f; the problem that led to its adoption in the first place, stack overflow. With this execution
" scheme there are no limits to the size of the system software package save the size of the
ot available secondary storage on the Zenith.
,.:j
e Turbo Pascal Programmin
(As mentioned above, the new hierarchy allows the use of any compiled language as
:~j a programming tool. Each language typically offers features not found or difficult to use in
‘:: :j other languages. This makes the different languages convenient for use in particular appli-
,E:‘._ . cations. Sometimes compilers for the same language produced by different publishers will
L also have different features which makes it more advantageous to use one compiler over
'*:_f.r another. For instance, MS-PASCAL has the ability to use libraries created by third parties.
A :E This is the feature that allows the Zenith to use the HPIB Command Library and control the
oo 7612D.
{ ' Another Pascal compiler which has some other advantages for use in program de-
5& velopment is Borland International's Turbo Pascal (or Turbo for short). Turbo is, gener-

L

ally, a much friendlier development environment. Where MS-PASCAL requires the
programmer to create the source code in a separate text editor, Turbo provides an integrated

VSRS

_ text editor and compiler.
o After developing the source code for MS-PASCAL, the programmer must exit the
A?. text editor and attempt to compile the code. MS-PASCAL can take up to three or four min-
. ‘:f.: utes for a 300 line program. If any errors are encountered, they are printed out all at once.
o The programmer must then either get a hard copy listing of the errors or attempt to remem-
E. £ ber them all, enter the text editor, make the necessary corrections, exit the text editor and
EE :: attempt to compile the program again.

In Turbo, the editor and compiler are bundled together. After the source code is

o developed, two key strokes will bring the programmer into the compiler. To compile, only
'; ,% one key needs to be pressed, and the compilation begins. A typical 300 line program
. :j would take less than 15 seconds to compile. If any errors are encountered, the compiler
5 stops, enters the editor and brings the programmer to the exact location in the source code

where the error occurred. This makes debugging a much simpler process.

3
,l.

~(
L)

@ I Ui
AT SRR

I
Y
Bl

5.

-

o % Y, - w %) . TR 3 5 i ~w YW <] LW ;
;) J 0 N 9,954 y =0
R R R e S Y G R R et e R NERRY

AT T Ay YV e T S T S R TV T T PR S

k']

16

Although Turbo had several features that made it desirable, it could not use external
libraries; therefore, it could not be used to communicate between the Zenith and the instru-
ments on the HPIB. For those applications where control of the HPIB was not necessary,
the greater ease-of-use of Turbo made it the compiler of choice. These applications in-
cluded data storage, processing and output. Thus, those programs not concerned with
HPIB control were all written and compiled using Turbo.

System Software

The collection and processing system software consists of 12 individual executable
programs and one batch file routine. The batch file routine controls data acquisition which
involves only seven of the 12 programs. The remaining five are referred to as the ancillary
programs and perform necessary maintenance tasks as well as providing data output in
various forms. A complete commented listing of all of the programs and the batch file are
contained in the appendices.

Data Acquisition Programs
The batch file routine, TAKEDATA .BAT, performs the function of the main pro-

gram block in the normal Pascal hierarchy. It keeps the flow of program execution orderly
and well defined. It, also, checks the amount of storage available on the floppy disk drive
where all data will eventually be stored, it will cause those files which have been created on
the RAM disk during one data acquisition cycle to be copied over to the floppy disk drive
and then delete those files from the RAM disk to conserve space. At the end of the
acquisition cycle, it will check for the existence of a file on the RAM disk called
CONTINUE.ANS (created by the program REPEATER.COM). If the file is found, the
batch file will loop back to the beginning of the data acquisition cycle and start the process
going again. If the file is not present, the cycle is ended and any remaining files contained
on the RAM disk are copied over to the floppy disk drive and the batch file execution is
terminated.

The first program called by TAKEDATA .BAT is HARDWARE.EXE. This pro-
gram is compiled using MS-PASCAL and is used to set the system time-out error value,
create the file PASSER.DAT and calibrate the 7612D. Calibration is done by obtaining a
zero level line on both Channel A and Channel B of the 7612D by setting the input coupling
to GND and manually triggering the 7612D (11). These zero level lines are then read in as
a series of 2048 points for each channel.

A,

n'i'c"‘!.l‘:’l.!. X

Wmmmmmﬂ- oy
o

g
%1 17
I Each point consists of one byte. The value of the byte indicates the vertical deflec-
tion where each division on the Tektronix 7A16P Programmable Amplifiers is divided into
3 32 levels, the difference between successive levels being equal to a binary increment of
d_::-'_ one. So, for the lowest point of the vertical deflection, the byte value would be 00000000,

I.\~
‘}}_’_‘,’ (decimal equivalent = 0). This is equivalent to the largest negative number displayable by
v the 7612D. The highest point would have a byte value of 111111117 (decimal equivalent =
3::: 255) which is the largest positive number displayable by the 7612D. The midpoint be-
5, tween the high and the low would be 011111119 (decimal equivalent = 127). This mid
::::f point value is really the equivalent of zero with deviations from it being the same as excur-

sions from zero.

N T

_ﬂ.,.: Since the data contained in the 7612D is binary in nature, it would be nice to be able
o~ to read and manipulate the data in that state; however, neither MS-PASCAL or Turbo Pas-
:{3 cal are very efficient at handling single byte binary numbers. Both compilers do have a fa-
° cility to handle ASCII characters, and single byte binary numbers can be referenced by their
e ASCII equivalent.

:‘Z An ASCII character is a symbol which is used to refer to a particular single byte bi-
_x“,,'.j nary value. For instance, the byte, 010000015, is referenced by the symbol, "A." In the

(extended ASCII character set used by both MS-PASCAL and Turbo, all 256 possible sin-

,_3-_2 gle byte binary values have a corresponding symbol.

. E(\ It is possible to read a single byte binary value, such as a data point, into a program
E \:-‘j as an ASCII character. The program will handle it exactly as an ASCII value which means
D it can be written to disk or read from disk as if it were text. By treating the data from the
E;‘ 7612D as ASCII values, it is possible to read the binary data and handle it within the pro-
,,.:::' gram easily. When it comes time to evaluate or use the data, it can be read from where it
2:3 was stored on disk and translated into decimal form by the built-in procedure "ORD." The
° data can then be handled as integer values.

j HARDWARE.EXE first reads in the total 4096 points from Channels A and B.

::;Sf The program reads those points in as two sets of 16 128 character long ASCII strings. The

; program will read the data one 128 character string at a time and write each string out to the
° RAM disk one at a time until all the points have been entered. This method of reading the
f,:_'-_ data from the 7612D has been found to be the fastest available given the limitations of the
f-::: 7612D, MS-PASCAL and the HPIB Command Library. The total operation requires less

:-::j: than a second and a half. All of the programs which read data from the 7612D use this

® procedure.
I

3t
¢

L b AT AT NI Vel ol Oy) ; P
o (2 NS R e M A M K P A e SR KRR R R e S R

AN
B A AT

)
AN _*.

{3
~

l»'l_l’

-
» [s 2 m
. .|'.._‘,. A

ll-l I.I'
),‘.".'.'.‘.' L
NN now LN

T
e
PO i

e

5

2
2%

7

5

e,

re

-‘.‘?:."'

2

:'Q

" P | "\"‘é’\‘\ % S T L I BV N S Y M "y BN YL LY
o > o e N
....... (2 ,‘l.!' Pttty Pad . flvt) ..qh .'-.nm. oy \'J'. X

18

The first 2048 characters (points) of the file created on the RAM disk is then read
into an array in the program, the ASCII characters are translated into their integer equiva-

lents, all 2048 points are then averaged and the average compared to the equivalent zero
value of 127. If the average is within 1, Channel A is considered calibrated.

The second 2048 characters are then read and processed the same way. This is the
data from Channel B. If neither channel needs to be calibrated, HARDWARE.EXE ends
and the batch file takes over. If one or both of the channels need to be calibrated, a mes-
sage is outpul o the operator to adjust the position knob on the 7612D in whatever direc-
tion is necessary. The operator then re-triggers the 7612D, and the program reads the data
as before. This continues until both channels on the 7612D are calibrated.

The program GETDEVIC.COM is called next. This program is responsible for
setting up and maintaining the index of devices contained on the file INDEX.DEV. The
program provides a listing of all devices currently kept on INDEX.DEV and prompts the
operator to input the device number corresponding to the device being tested. Using this
value, the program retrieves the proper bookkeeping and storage filenames from IN-
DEX.DEV. The filenames are then written out to PASSER.DAT in lines five and six.

Just prior to the program GETDEVIC.COM the batch file enters the top of its exe-
cution loop. This means that HARDWARE.EXE is executed only once during a given data
acquisition session. Where a data acquisition session is defined as the period of time be-
tween the operator beginning TAKEDATA.BAT until the operator terminates the session
when queried if he or she desires to continue or not. Because the loop marker is prior to
GETDEVIC.COM, it is likely that when GETDEVIC.COM is called it might not be the first
time through the acquisition process. If there has been no change in the test device (i¢, the
TUT has not been replaced), then there is no needed for GETDEVIC.COM to run as
PASSER.DAT contains the proper bookkeeping, storage filenames and device number. To
save time and avoid having to go through GETDEVIC.COM when it is not necessary, the
first toggle switch in the first line of PASSER.DAT has been assigned to toggle the execu-
tion of GETDEVIC.COM on or off. The program is still loaded into memory; however,
the first step it takes is to read PASSER.DAT. If the toggle is set to "N," then the program
will not execute, and control is returned to the batch file.

STORDATA.COM is the next program to be executed. It is responsible for setting
up, maintaining and updating the bookkeeping file. The program executes once during
each acquisition loop, and it is, also, responsible for setting the condition of toggles 2,3
and 6. These toggles control the execution of the programs which read the data in from the

;;_‘- ‘_'&"\h'\- AR AR Y vt
A A |.|“n'| 0.5, 0% 3%, O.n.v

.....

£,
Rz

»
¥

e am g e o SR,
e I Jah

LS

PTr—

AP LSAL

[o
J'

Y
R,

L

o >

j» . " '.
A Ak

L]
(
%

T CARERE
B ©]

-

19

7612D and process it. Toggle 2 is used to control the execution of PROCESS3.EXE
which reads Ve from the 7612D. Toggle 3 informs the succeeding programs whether or

not breakdown has occurred, and toggle 6 controls the execution of PROCESS1.EXE
which reads Ve and I;. Toggle 6 also controls the execution of PROCESS2.COM which
calculates P and E from Ve and I;. After STORDATA.COM, PROCESS1.EXE, PRO-

CESS2.COM and PROCESS3.EXE execute in that order. The function of these programs
are given above.

The final program to execute in the data acquisition phase is REPEATER.COM.
This program performs two functions. First, it queries the operator as to whether or not he
or she would like to continue. If the answer is affirmative, the program creates the file
CONTINUE.ANS on the RAM disk which will tell the batch file to proceed to the begin-
ning of the loop and start again. A negative answer will cause nothing to happen and the
batch file will terminate after some clean up procedures such as copying the new book-
keeping file to the floppy disk drive from where it was temporarily placed on the RAM
disk. The second function is to update the INDEX.DEYV file. During the data acquisition
loop, the storage filename might have been altered. The alteration must be kept to maintain
a proper record of storage filenames.

With the execution of REPEATER.COM, the batch file program has reached the
=nd of one data acquisition cycle. Repeated measurement would follow the same steps
save the call to HARDWARE.EXE.

Ancillary Programs

There are five programs included with the system software which are not used during the
data acquisition process. Three of the five are concerned with providing data
output. One is used in maintenance of the file INDEX.DEYV, and the last is to either calcu-
late or recalculate P and E from Ve and L.

The three output programs are PLOTDATA.COM, TABULATE.COM and
SORTABLE.COM. The largest of these programs is PLOTDATA.COM, and the source
code used to generate the program represent roughly a third of the entire programming ef-

fort. As its name implies, it is used to generate a plot of the data. The program is capable
of generating one of two different outputs. The first plots the waveforms for V¢e, I, P

and E as well as printing out the breakdown values for Ve, I and E, time to breakdown,
forward and reverse base current bias settings, device number and test series number.
Figure 5 is an example of one of these plots.

v, o« - - - v - LA"E | -
e T N L AT AT
v ,c-n'!‘n w "."' .. . 4%, 4%)

s

.\‘a" LN
AT NV, WY, '-.- .‘(‘\ \p‘.l‘ ‘«‘.l"h

A Y e Ve

.
PN PR 3

{ \h

AN AR PRI

L

\

O] N T RS,
COOSIUOBA N B OGN

Y '1 od4£31301d jo ojdwrexy °g unJiy
d Puo 1 *p Buiesouj ousz ------- (6pUOOas) Buyy
S-I'9 G-V SUOE SXkS'I 0
[. i + A (00+300 D
11 s@1uag 1 ®21A23(AOO+32Y -
Y00+300 °y 1264dA3Y Y00+300 °E $P-Dmuo 4 -Wm
I A
o D "‘
sButq3eg spb1g Cea =7
3 o o 5
VOO+3E2°L W1 A20+3.8°1 39 =
SS0-390Y "§ 2wl [20-321°6 *ABusuz 22
| r20-321 8 =3
SBN[DA UMOPMDBJ AEO+362 2 ‘2]
> g | I3 puo Ig %
(spuooag) awi) (SPUODSg) Bwi) b3
S SIWY SUOE S-S 0 S8 G309 S-AU0E S-3S71 0 e
- } { " 10-360 *r- - = = 00+360 ¥~ 4
B ShaEnntthaha et el <
oz
> 3
3 < X
0 o .
0 - .
3 (33
0 s
o
| 10+350 *1 v — . = LeoemL
JUBDUINT] UO}0D[0] 8003 [OA U833 TW3-U0q03] 07
R
X
X
2
N
2
N
e v e
© ot R R K O i R 2 J@ES A s @ Rl @ NSNS @ B @ Brr

‘
V\

4

Ty
)3

-~ w
3 LR T B

O)
Eb BEDF

T

77

.‘.
-

zd@lL

) . p— e,
NRAREA] SN

L Rt

FEANEA @RS N,

R Rhkhh Rkl Y e

5

1@ wow

s

e .f\,'_ #‘_&J'_.-(‘,,.J' 57

21

The time to breakdown is defined as the time interval over which the instantaneous
power is being integrated. The test series number is the order of occurrence of the test run
where the data being plotted was collected. For example, if the test series number was six,
it would mean the data being plotted was from the sixth test made on that particular device.

The second type of plot available is one which plots out all of the previous
information, and in addition, plots Vpe. The waveforms for Ve and I are superimposed

upon on another, and Vy, takes the place of I.. An example of this plot format is shown in
Figure 6.

The two other programs involved in producing outputs are TABULATE.COM and
SORTABLE.COM. TABULATE.COM does not directly produce output but merely tabu-
lates the breakdown values for all the tests done on a particular device and write these val-
ues to disk. On disk, these values are not stored in a fashion which can be directly read.
This is where SORTABLE.COM comes in to play.

SORTABLE.COM is a routine to sort and output the assembled breakdown values
created during TABULATE.COM. It provides the ability to sort the file created in TABU-
LATE.COM on one or two key values. The sorting can be done using any of the break-
down values as keys. It is, therefore, possible to produce several different output based
upon the same tabulated file. SORTABLE.COM can provide output either to a text file on
disk for use in latter printing or directly to a line printer. An example of
SORTABLE.COM's output can be seen in Figure 7.

The last two programs contained in the software system are EDITLIST.COM and
PRCSLTWO.COM. EDITLIST.COM is used to create, repair, maintain and add to the
file, INDEX.DEV. This capability was found to be necessary during software develop-
ment as there are numerous ways for INDEX.DEV to be damaged, and without it, none of
the programs will execute properly. It was, therefore, imperative to create a program with
the capability of restoring any data lost with the damage of INDEX.DEV.

The final program, PRCSLTWO.COM, is merely a repeat of PROCESS2.COM.
Except, it is capable of working outside the batch file environment. It is used to either cal-
culate or re-calculate the values for P and E.

Files Created and Individual Structure

An important element of the system software is the files it creates. The first file
created is PASSER.DAT which was discussed in detail earlier. The next file created or
used is the bookkeeping file.

Y A
> _..:-_.’\-_,.2_¢ V\N‘-“-‘\'-‘\-

ey R I S R AR T SR TR

[4Y]
p o~
-z ad£110]d jo sjdwrexy -9 aindig
quauung Buissoug ouaz vttt (Spu02ag) awfy]
uo Buiesouy ouaz =--—~------- - 3.0 °€ ~3€5 °1 0
d Pup A Buy) y4 mu":.o m.wwe.. s 4 mw.mwm R
1] s@1u8§ 1 321A8(ADO+32Y E-
VO0+300 *v e6Jd2A3y VY00+300 °E *P+omd0o o
o F
sbutqaag sot C e
13384 g o o
. J . 33 (7]
VOoO+3EC "L W1 AC0+3.9 "1 YA
S60-390y g dWI] 20-321 6 1ABuau3
| r20-321°8
SBNTDA UMOPMDBaU AE0+362 2
IPA P g I3 puo lg
(SpPUOO®g) BWT| (SpUocoag) awy]
IV S3IEY SUGE SHs'! 0 S-3r1'9 §-309% SUOE S-S 0
— } + i 00+376 °L- ===k D L LT} i\l
.J.... === A00+360 'y~
c|+ o ol >
< 3 <
0 9 o
- D
ct 3 v
(/)] [)
llllllllllllllllllllllllllll R (/1]
~00+316 '€ N%WM N
aboa10A JE®3131WT3-BSDY
Pt e R 3 e e Ja) A TN TR o es : Ea e SRS
R ORI o MR e o] @ e e Qs @S @ N o

DOOSMGORNN) OO0 X0 SODROBOND
0y T e g e st e et

)
s

AN

are!

'

ot od

:

Wes
{.l.“.: o ht

£y

-‘
-
-

<

a

=

- TN

"L Xaan YOI

%
o

PSR goX

5 i)

;' "

5%
>

537

2

3

Do
P

g 4|

1@

LY

(gLl
.):.f_ P

?"f

7@ Sy
LA ALY

-

e
v

o

"

................

For primary key of Forward Base Current = 1.00E+00 A
For secondary key of Reverse Base Current = 6.00E-01 A
Collector-Emitter Voltage 1.34E+02 V
Collector Current 247E+00 A

Energy at Breakdown 1.19E-01J
Time at Breakdown 1.21E-04 Sec

For primary key of Forward Base Current = 2.00E+00 A
For secondary key of Reverse Base Current = 1.00E-01 A
Collector-Emitter Voltage 1.59E+02 V

Collector Current 5.80E+00 A
Energy at Breakdown 1.14E-01]
Time at Breakdown 7.58E-05 Sec

For secondary key of Reverse Base Current = 2.,00E-01 A

Collector-Emitter Voltage 1.62E+02 V
Collector Current 6.36E+00 A

Energy at Breakdown 1.10E-01J
Time at Breakdown 7.01E-05 Sec

For secondary key of Reverse Base Current = 4.00E-01 A

Collector-Emitter Voltage 1.61E+02 V
Collector Current 6.36E+00 A

Energy at Breakdown 1.0SE-01J
Time at Breakdown 6.79E-05 Sec

For primary key of Forward Base Current = 3.00E+00 A
For secondary key of Reverse Base Current = 6.00E-02 A
Collector-Emitter Voltage 1.52E+02 V
Collector Current 2.98E+00 A
Energy at Breakdown 147E-01J
Time at Breakdown 1.25E-04 Sec

For secondary key of Reverse Base Current = 1.00E-01 A
Collector-Emitter Voltage 1.63E+02 V

Collector Current 5.33E+00 A
Energy at Breakdown 1.13E-01J
Time at Breakdown 7.80E-05 Sec

DAL P o DB i S 0 Yk £ A Y 5 A OB GRS NORSON ot)
R e RN Qe T ¢ SRR D I A A M H AL B VDR R

Figure 7. Example output from SORTABLE.COM. Sorted on
forward and reverse base drives, respectively.

0

23

a0t
X0

)
C“"

For secondary key of Reverse Base Current = 8.00E-01 A

Collector-Emitter Voltage 1.64E+02 V
Collector Current 6.47E+00 A
Energy at Breakdown 1.03E-01J
Time at Breakdown 6.49E-05 Sec

For secondary key of Reverse Base Current = 4.00E+00 A

Collector-Emitter Voltage 1.67E+02 V
Collector Current 7.23E+00 A

Energy at Breakdown 9.12E-02)
Time at Breakdown 5.46E-05 Sec

Figure 7. Continued.

The bookkeeping file is a text file and contains, first, a listing of forward and re-
verse bias current settings. The settings are written in ten lines of two numbers. The first
number in the line is the forward bias setting, and the second is the reverse bias setting.
Initially, all the values are zero, but as tests are performed using different settings, one by
one the zeros are changed to actual values. A maximum of 10 forward and 10 reverse set-
tings are allowed for a total of 100 different combinations. Following the settings segment
of the bookkeeping text file is a comment line. This is an 80 character string which is used
to record operator comments about the TUT. Its use is completely optional.

The last segment of the bookkeeping file is 10 lines of 20 numbers each. The first
line corresponds to the first reverse bias setting (bias settings segment, line one, second
number). All of the numbers on this line correspond to tests made on the TUT using that
particular setting. The first two numbers of each line correspond to the first forward bias
setting (bias settings segment, line one, first number), the second two numbers to the sec-
ond forward bias setting (bias settings segment, line two, first number), the third two to the
third forward bias setting and so on. In this way, each two numbers are connected to one
forward and one reverse bias setting. The first number in each pair of numbers represents
the number of times the TUT broke down at the corresponding bias settings. The second
number represents the total number of time the device was tested at those settings.

The last segment is used to help determine device threshold tolerances. It is an
added feature above and beyond what was really necessary in the system, but it is thought
that in future efforts it might be useful. Whether or not the feature is used, the program

D)
L) .%
Nl

b
1 ~
.,
o 25
b which controls it, STORDATA.COM, must be run as part of the data acquisition process as
(. that program also performs other functions vital to the overall system.
v: : The filename for the bookkeeping file has the following general structure:
:i X DEVxxxLL.BK. The "xxx" represents the device number (for device 1, "xxx" = 001), and
O, the "LL" specifies the inductor attached to the collector.
“ : The next set of files created are all related to each other by a common root name,
EZ‘ BDxxxLLq.yyy. This root name is explained in Figure 8. The filenames for all the data
; \E taken on one particular test run are all the same except for the character represented by "q."

< The changes made to "q" are, also, explained in Figure 8. All of the test runs on a particu-

\F

*\ termine which group of files belongs to a particular device and/or test run, as well as what

:: is contained in the file.

75 Files A, B and C (where A, B and C refer to what replaces "q") all have the same
. basic format. The only difference is in file A which contains an extra line placed at the very
.:ﬁi beginning of the file. The line contains a single character a "Y" or a "N." Examining the
:'.?_: character is an easy way of determining if breakdown occurred during the test run or not.
'-:f "Y" indicates breakdown. "N" indicates no breakdown and, probably, safe turn off.

Line two of file A is exactly the same as line one of B and C. It contains the for-

ward bias current setting and the reverse bias current setting. The next line contains, first,

: the Volts per Division setting of the appropriate plug-in on the 7612D, second, the hori-
(- _ zontal scale factor (time between each sample) and, last, the probe correction factor. The
T') probe correction factor is use to make sure the scale is properly set on the vertical deflec-
}_3 tion. It is set to one on files A and C since correction is automatically done by the Channel
'; 23 A plug-in. The file B value should be set to 10 which is the correction factor necessary to
:'j convert the value of the vertical deflection in volts to amperes. The final "line" is a string of

o 2048 ASCII characters which are the actual data points.

i File E contains a column of 2047 numbers. The numbers represent the cumulative
‘ ; energy up to and including the particular time step corresponding to the numbers position in
-{ the column (ig, The fifth number is the total energy up to and including the fifth time
?__ step.).

:E’ File P is a mixture of the formats from the preceding files. The first line contains
-:I the forward and reverse bias settings. The second line contains the total cumulative energy
‘,;'- to breakdown, horizontal scale factor and vertical scale factor, respectively. The third line

- is a string of 2048 integers which are the result of multiplying the ordinal (integer) values

-

2

2

L

()
..o
)

lar device will have the same "xxx" value but different "yyy.” This allows anyone to de-

i

A n 9, ’ 4%, e v P L LY. g " " W W X Sy o W T TR
RS Ty < o 9 A T T D Al L Wy e T
Loy l..). ‘ ¥, .- 0 ’a.l.w'::’ ':'l :u'l.. "y, h’- l>.'l'- .!.l'! o, I.!“ l' !‘l ‘ P Ll LA LN .- A l'*ll .‘ -' AL ' (3 b ‘ -. ."

.
-

0 P 9 v . . WOV IR Lk ate i gt T
4

iy 26
Wt of the ASCII characters in files A and B. These integers represent the unscaled values of
Y Instantaneous Power.

i Data Specification

) G:BDxxxLLg.yyy

A amd
A | T~ Test Series
:'Q W Drive Specification Number

{r Device Number Letter Symbol
o Corresponding
" to Inductor Value

e Data Specification Key

A: File contains Ve waveform data

{w B: File contains I; waveform data

hiny C: File contains Ve waveform data

E: File contains Cumulative Energy values

P: File contains Instantaneous Power waveform data

Figure 8. Storage filename interpretation.

2 . The final file created by the software system is the file created by TABU-
v LATE.COM. The file is a direct access file with a maximum of 999 records, one for each
’ N possible test series number. Each record consists of an integer value which contains the
(o particular test series number for the data contained in the record. Additionally, each record
.;5 contains six real number values corresponding to the forward and reverse bias current set-
) r‘fiﬁj tings, the Collector-Emitter Voltage at breakdown, the Collector Current at breakdown, the
~ Energy at breakdown and the time to breakdown.

oy - - - v . P
SO 0) OO - 9, i 7 0 OO0 000 Y, [/AX 0)
R AR e Al .“:‘l‘n l':ti':'."n"':'."'t:"t:"h'tls':le_'.' dnntliatntes QAR SRR .ﬁ‘a‘l',h'.‘:".""’ ey,

A}
\.01.
» SIS0, 080,99, 07 0,0 8, Ot N OO D ORI RN PN OO0

B9 W0 » ATa A% 4% 3% (9.970.578,570,8 8,

.= .

49
e CHAPTER IV

(. VERIFICATION OF SOFTWARE SYSTEM
o
:).:, Accuracy of Measurement
:g" Prior to detailing the steps used to verify the correctness of the data and the pro-
'3‘ cessing thereof, the issue of the accuracy of the data and how it effects the calculated values
:E \ needs to be discussed. The principal source of inaccuracy is the 7612D and the 7A16P
o combination. Once the data has been digitized, the transfer to the Zenith and the ensuing
7;' ",‘., calculations performed on the data are basically error free (i¢, The round off errors encoun-

(tered during the computations are negligible compared to the error introduced by the
¥ \,’ 7612D/7A16P combination.). For this reason, discussion of the accuracy of the measure-

N ment and data processing results will focus on the accuracy of the 7612D/7A16P.

:E There are two main sources of error introduced in the digitizer. First, there is the
o Digital-to-Analog (D/A) conversion error. Second, there is the error due to the 7612D's
‘ Zj:EI electrical characteristics. Basically, the second source of error is a catch-all for the error noi
‘ ':'.ij? accounted for in the D/A conversion error.

‘ _"’ Looking first at the D/A conversion error, according to reference 11, the erroris a

{ function of the frequency of operation of the D/A circuitry. This means that depending
Eﬁ upon the sampling period selected by the operator, the error will change. Typical operation
N *3_': of the 7612D in the data acquisition process involves using sampling periods of between 20
:Ij,: and 40 nanoseconds (ns). Using values provided in reference 11 and interpolating, yields

:) an estimated Signal-to-Noise Ratio (S/N) of 32dB, or an error of approximately 0.1%.
: ;C':-.\ This will be the typical worst case D/A conversion error and will be used to estimate the

":E'.‘ total measurement error.

y The error due to the 7612D's electrical characteristics is provided by reference 11.
® The stated value is 2%.

p b Combining the two sources of error gives the total measurement error, €y, as 2.1%

o

3 _\; which can be approximated simply as 2%. The data taken from each channel will be esti-
w

v mated to have this error. Thus, all of the plots created by directly using the data from

Channel A and B will contain up to 2% error, as will the breakdown values, Ve and I,

which are calculated directly from the Channel A and B data.
The error found in P and E must be calculated. Let a A and ag be the actual value of

the data being measured (jg, no error) and e, and eg be the amount of error in the mea-

-

Vi @ TS @ N OO O

PSS

27

[R AN

P

S

NGRS L UL R SOt
e e e e

£

)
\

»
o
. 28
::..‘ surement. Then, (a Ate A) would be the value stored on Channel A of the 7612D and read
(’ e by the Zenith. Likewise, (ag + eg) would be stored on Channel B.
bR In the case of calculating P, the data from Channel A is multiplied by the data from
,:. Channel B.
V:J (aA+eA)(aB+eB)=aAaB+aAcB+chA+cAeB . (l)
! o2
Wy
' .é But, the worst case for e A is, e A =Ep2A where € A is the total measurement error, ey, for
::._' Channel A, and the worst case for eg is, eg =€gag where €g is e for Channel B. Thus,
(for the worst case,
AN
-
':- aAaB+aAeB+aBeA+eAeB=aAaB+aAeBaB+aBeAaA
Lo +e48,Epap -)
®
: % The total error, ey, in the calculation of P can be found by using the formula,
v
\
Pl (Actual - Estimated) _
(Actual = €mp - 3)
) N 2
,_.- The "Actual” value is the a Adp term while the "Estimated"” value is a AR +25Epag +
Pd
e agEaap +Epa,€pap. The total error in the power calculation is then,
%
h:-.\: Cmp = EA + EB + EAEB . (4)
‘3.:: However, the value, € AEB» is negligible and can be neglected. The end result for the
o power calculation total error is,
g
-
-cr emp = €5 +E€g = 0.02+002 = 004 = 4% . 5)
gl The total error of the energy calculation, eye, can be determined in a fashion similar
y to that used above for the power calculation. Instead of the subscripts A and B referring to

- the channel, let them now refer to value of the Instantaneous Power and the time, respec- |
tively. Thus, eme becomes,

»

N‘

w * {
vt |
b -

Ny

3 e - . ‘ } .))

W Uy ARy A0 e R Ty 8 N R e T e " 0 % 0 y . ARAK

AT e T T e e et S e Attt LA S NINACKA

w5

AL AL AL

%

. Salandat pas Vo g ate pup v

29
eme = E5 + &g = 0.04 +0.000035 = 0.04 =4% . ©)

Where the value, €g, is provided by reference 11.

Verification

An important step in the overall development of the software system is proving that
it works. Verification is done as a two step process. The first step being to prove that the
data is accurately read from the 7612D and that it is properly scaled. The second step is to
demonstrate that the processing of that data to find P and E is done correctly.

The first step is the easiest to prove as it can be done pictorially. Figures 9 through
13 show a side by side comparison of data taken in from the 7612D and a photograph of
the same waveforms displayed on a Tektronix 7834 Storage Oscilloscope using two 7A19
Amplifiers, a 7B85 Delaying Time Base and a 7B80 Time Base. The photographs are
shown in the lower right-hand corner of the figures. Ve is the bottom trace in the pho-
tographs, and I is the upper trace in the photographs (The bottom trace is defined as the
trace beginning at the lowest point on the left edge of the photograph.). All other data is
labelled.

A comparison of the photographs to their respective plots demonstrates that Ve and
I are accurately digitized and fed to the Zenith. As near as can be told, given the blurred
lines of the photographs, the vertical scale factor of the plots are also correct. It is indeed
quite likely that the data transported from the 7612D into the Zenith is more accurate than
the data shown in the photographs. This is due to the width of the lines when compared to
the size of the photograph. The natural blurring that occurs adds a degree of inaccuracy to
the data seen in the photograph when compared to the digitized 7612D data.

Figures 9 through 13 directly verify only two of the five possible output wave
forms. Vpe is indirectly verified as it is obtained in exactly the same fashion that Ve is,

and Vpe even comes from the same channel on the 7612D. Another photograph of that
waveform is not really necessary.

Verifying the calculated plots, P and E, is not quite as simple. Starting with the
safe assumption that Ve and I are accurate, one can prove by induction that the Instanta-

neous Power plot is indeed accurate. The inductive argument that if one point on the plot is

30

N

I ‘lu
Ty

e

E-1°0

«

N300 [[Iat UMOPYEIq AUDYM UOLIII BY) ST SIY], "aTTIOA JINTWF-1010[[0)) 3ys ut yead oyr Fuunp s1
1SaIalut Jo 3wn 3y ‘uonisinboe wiep uj “JJo-uIn} 0y uo-wIM I], WOY (94 1531 ANUS oy smoys am3y

%,

BN B A L e

(Spuooag) awg}

4 . o

€-308°y €-3L0°€¢ £-3€5°1 0
e ele’o-
>

3

0

D

)

[10]

(1/]

—a L osz'nn

VT

JUBUJN] J0303110]

2107 JOIDJI[O)) puk 33ul0A 1onwE-10309]j0D Jo ydesdojoyd ynm Juope siojd sjdwreg -6 amndig

(spuooag) awi]

€-3ri’g €-308°¢ €-3(0°€ €~3E5°1 0
" } B T 4 ﬁo
J

b i T
ASSS 'Bl-

sa1nor
S330M

e

N

A [1825°0
REGLT 'S5S1
I3 pue 14
(8puUODBS) Bwy)
€~3r1°9 €-300°y €-3.0¢ E~3ES°1 o] .
L 521~
<
(o]
—
r
]
(1 cevest

aboj310A J®331W3-u03081107)

0
A‘!.

"V S0°0 St Sumias selq 351949y "V | SI Sumas seiq premio ‘¢ am3i4 ui uoidal
, yead a3 jo dn-mojq e st siy) Jjo-winy es Suimoys s10(d sjdwes "] aun3iy
s L - (Spucoasg) awlj

31
oot o
R

W

Ve

ot

v-3r8°1 y-36E°1 S-31¢°8 S-308°v 0
k [l | i
T

1} T T

fo
APCE L

sanor
S370M
s

W,
A0

a
NG)
!'n‘..'ﬁ!'n‘-

!
)

L £L811°0
ADSE "8851

w
O\
u‘!.

o
W

J3 pun Iy

(S8pUODdg) BWYy] (6puUodBag) Bwl]l

o)
-~
Kl

et

st 0 00s ‘¢l

| | L T T

y-3v8°1 v-36€°1 S-312°8 S-308°Y 0 v-ave°1 ¥-38€°1 S-312°8 S-308°r 0
l 1 L [L 1 1

(%)
N)

i B

Wt
'u't‘a. l"a

4
]
LN

saJaaduy
S310A
'0 .!‘. I:!

R
Ox) \.‘.

o

| yeo°it et 1 ecsont
IUdUUN]g JO393T 107 sbojjop 4833 1W3-u03031 107

. 4 0 ‘. ¥y | "L
',’u"’l'. 1?'.0'. Al

ey
AT

G
‘l‘!‘l‘-.l's\

]
»

o = -
g .N&l‘l o 5 & S NSy s .\n\-\-ﬂnnlnl. 4l-¢<--4 s Tade T a s IIAPASLINAS o Tl - AL L
vl ; 07, ®{(»&;A«A~W¥w)a ..wdé&ﬁ:um..‘mamWVner» ﬁﬁ>u0whﬂﬂ»

Y
\
e

2 - oy :
5531 @ .vAthLl\\\nﬂnlltu.l 2 o TP, i x| @}

<

"V S0°0 St Sumias Seiq 381943y Y ¢ SI Sumias seiq premiod ‘uonesado ajes jo
a3pa ayi Buureau Supestput snondidad dsow mou st 23eI0A JBIWET-10195][0))
sy urdoap jo dier sy, jo-wm ajes Jumoys utede siojd sjdwes {1 aundig
S Sl _ (SpUODBG) BWT |

y-3v8°1 y-36€°1 S-3(2°6 S-308 v 0
_ “ — ”

o

3 L reurt o
U H MGEC *LLB)
3 puo Ig4
(6pPUODBS) Swt | Amncoowmv swt |
r-3v8°1 y-38€°1 g-3128 9-300°Y 0 y-3r8°1 ¥-36€°1 6-3IC'6 S-309°v 1]
i 1 L [1°] 1] I i } i 0000

LJ T]))] T

]
4, V.

RSN

A

| 1ES 1 ._.. 8€6 °091
sbo3 (oA ud331WI-UOj308(10]

JUBUUNT JO30BT 0]

A

"\

w

Ml

il

%

- 5'1.

A

«*

3 01, Ve,

v B _
R

L

s PAOMY - .r- 14- A -n« -w..f- nﬂ- .l-.-‘

ANSANES MANS
50 @A QLA o
N Vo » - -t

.‘\.- ® N

.
e’ 2

5-361°8

S-3r1°9

(6puU0DBg) Bwi}

S~360°Y

"V 1°0 St Sumas seiq as1aady 'V ¢ SI Sulnas

S-30°C
—

o

seiq pJemio,] ‘umopyeauq Sumoys siofd ojdwes g1 undiy

(SpUoODOag) Bwl)

.

~

r

s!lﬁﬂ'c

o

S-361'8 G-3r1 e S-360°v 6-3v0°¢ 0
"' - | “ L

L

o‘

"

ALLE O~

s

Py
%,

|-.|.,

sanor
S33DM
",

[

’ ',
8 L 4

1
A

93 punly

(SpUODBg) BWI |

c-361'8 S-3ari‘g S-360°Y g-3r0 "2 0

l. fOETT10

y X

AOOS 2802

l:"

e_.o'b.

»

YEIE O~

jm—

aboa31op “B331W3I-Bspg

1

PR

e 5

-

9s1 ‘e~ —1 1
g S s . Par g g) e g o) S

S310A

L

=~ 18L"1

31 puo 33\

,J-Jr---.-q-.lu)< |\| \\‘\. \.llri”‘.-lv-. -nw-ld .".-

X "
e ™ Yt - -

P e & L S 4 L o y 3 a
LS L0 @O R ey O LG @ L0

be

Sl

AB88 ‘Y-

b ™

ety

S310A
N H
040N

.’_:’l [}

| VIES ‘Y]
AE1E TLL

O

»
A

B v e
A g
»! bl

-
.

sy
SRR

¥
ki

&

e -

W ETOR '1
(/
‘."ﬁ“;'

]

BAL '

"W 900 St SuINIs SeIq ISIAANY

"V € St Sumas seiq premlo ‘uaddey 01 Jo3uo] AjqeISpISUOd SAe) 3 ‘INdd0

$0p umopyeauq ySnoyny “umopyealq Suimoys sjoid ajdwes ‘¢ undry
AR (A . (6pPUODBG) BWT}

34

LY

On} QOO0
O l‘-‘s‘»‘t"-'l“ ':’"#.l't.

y-3EY °1 ¥-3.0°1 G-381°L G-365°¢ 0

L v Lol

gy
ASEY "1~

o

WO T U U TUR TR YO O

)
‘k“'\.‘

vy
X

sal1nor
S339DM

n#ﬂo

\
u"

X
o'l.c.

. \a.c,.wp,wv .

L regvi’0
#2SL "0202

I3 puolyg

- .
0!:'0'.. ZUA LSRR

(spuoo@g) auwtl} (6puUOOag) BwI]
r-3€r°1 ¥-3.0°1 S-301°L S-365'¢ 0 y-3€v°1 ¥-3L0°1 S-301°L G-385°E 0
L L L L
¥ a

v6gy ‘0~
AS21 €~

b ¥ —

T TR TR T IO I IR TN o WY T Wy wowrowo wer

S310A
o, O. o‘... .‘o'.‘c'-’?\‘l‘!‘,'c'l”

saJdaduwy
S310A

)

A \ o ..’u‘

K
25
g8
o 3
0 o
-

CA%,
]

m aboa1op <42331W3-3sPg J1 puo 33,

-
ol

R

o
W)

2 v’l".‘l R

<
‘:l ",

- € A ¥ - - s 1 A _f_a & w . - .
hd D W o v ® s o s T e s ST O QYA SIS, @ Ll G BES S s S b @)

- o o Y Bl s s AT T TS -

b

8,
-

Eaah oty

DT EY al

L XX,

LE A R W e B Y

-

e
W b e o g]

i g

"y
&

o,

A A
PR R A AR AN NS

L W

3 SRR

He N

N o
YOI A

a.ﬁ

Rl T e

e > et A
P

LN A

4 "‘» ;lr‘ w

‘l

"h‘h'o“;

35

correct then all the points are correct is valid in this instance since all of the points were
generated in exactly the same manner; therefore, any error introduced in the calculation
would be found in all of the data points used to create the plot.

To verify P, Figures 14 through 17 are used. A perpendicular line is drawn up-
ward from the x-axis at a set time value for Ve, I and P on each plot. Next, a horizontal
line is drawn to vertical axes, and the magnitude of the described point is calculated. The
values for Ve and I are multiplied together to get the expected value of the power, Pe. Pe
is then compared to the value determine from the plot for Instantaneous Power, Py,. The

resulting error in all cases was less than 2%. This value is well within an error range

which can be attributed to human error. Thus, the plot for Instantaneous Power is verified.
The breakdown values for V¢ and I were verified in a like manner. A horizontal

line was drawn from the point where breakdown occurred for V¢e and Ic. The values so

obtained were compared to the values printed out under "Breakdown Values." The average
error was less than 2%, and the values are considered verified. The lines described in this
procedure are not shown in the figures.

The last item to be verified is the Energy plot. To prove the accuracy of the plot a
deductive argument is used. The Energy plot is actually the summation of the individual
areas under P for the 2047 time intervals. If the total energy is proven to be accurate then
the individual calculation of the area must be accurate, too.

Using the safe assumption that P is accurate, an approximation of P was made by
forming a right triangle mounted on a rectangular base. The hypotenuse of the triangle was
a line approximating the falling value of P. The height of the triangle was determined by
drawing a vertical line approximately parallel to the rising edge of P but slightly offset to
take into account the missing notch of the triangle at the top. The length of the vertical line
represents the sum of the height of the triangle and the rectangle. The height of the rectan-
gle was determine by measuring the distance from the x-axis to the point of the sudden
drop in P. The base is the distance between the long vertical line and the point where the
sudden drop in P intersects the x-axis. With all the dimension known, a calculation of the
area which represents the total energy was performed. The resulting error between the en-
ergy measured as stated above and the total energy value printed under "Breakdown Val-
ues" averaged less than 2%. Although the extreme closeness of the results is mainly luck,
it does provide a basis from which it can be stated that the Energy plot is accurate.

9:0., Nl. o, 'ﬂ‘n'.'.t, ot '«. " .v WOty | .n".\!"', .-.'.c!' ™ "J.u. o N ‘Em'm ' '.:' R “'i"'d:‘t

"'g \.';".. v

36

M 000'96Z1 = 9jdusu] jo 3oy
M Tv8'89€ = 913umxay jo By
298 p-g81°'1 = (own) plusjaseq = g

*V 90°0 S! Sumas seiq 25199y "V | St Sumyos seiq
plemioy ‘suesw [eaydeld £q g pue 4 JO UoneoyYUIA ‘H] undL|

%590 = §9000 = _sEma ;- 4
q- %3
16110 = 4
[66110 =
= .—-——
= “:

“y.go-Jlg= g

Y4 _ 4,
[Wq - 24|

M 682€96 = (LzooXezsest) = (UnNM™a)=?

MoLEose = W

A 628651 = WA

%Vl =¢100 =~

d
d
V 1209 = Wi

(spuooag) auwi]

-322° 312" - ~3.0 0
’ w_NN“ mw_uwo mW:.o mmm t ast 6=
L 1 L) ¥

<

0

—

cr

_\L o

0051

aboq10A J®331W3-3sDg

r-322°1
\

(spuooag) Bw}|
g-312°8

S-3ri°8 §-3.0°E 0
1

. £0
; AR

6-3ic’e

f1611°0
Um _UCD H n.._ KESO “¥Q91
(spuoco®g) Bwr]
&~3r1/0 S-3L0°E 0

VEIED
AS21 e~

sauaduy
§310A

VEGS°11

AGQS “¢81

J1 puo 39

'y
et

ey

o

U
‘15;.1'!

GOON0AGAGNS
1',"1!!’.-.'?"":‘!’1".

O)
GO0

O X
ittty

.C'c)l'

!
A

P L ,
DO e XX RN AR

W ARIOG
.l’-‘.l'.-‘.Q.;

2

0 OO0
t!l‘-,l'a.l':'.l‘o!l'&l'

l':!l'o_l'!!l.x.“

Nt T g Uy g 7y Vg ¥
.l,'.l!..!) a?l':? |'o!l.!!":!

W
l‘v’ Y,

"V 1°0 St Sumias seiq 381949y 'V g SI Sumas seiq
preamio,] ‘suesw feoiydeid £q g pue d JO uonedoyusA ‘S| ungLy
(spuooag) awty]

37

g 4 SBI® WP SWOY S0 0
BYEO = POO0D = me—ee = T2} — t t [0
|“a - ®al . AB8Y 0-
rserio = *a
[9p110 =
M LTSI = didueuy jo By = Ly S =
M L8TLS6 = 9(8umooy Jo By = Uy € a
28 -HGIyL = (Gwn) whuopaseq = 'q ¢ (Ly.go- By lq= Wy \ o &
w
%Y1= p100 » i = %
I“q-2dl
M ILEESYT = (ELBLeon = (UnWA) = °g d
M Log1ovl = Mg 3 L reeri o
0 = W . w
viws= Y AsLeor = W e 1 A660 0112
q puo *d
(SpuoSBg) BdW| (spuooag) awt|
-361 1 - -360° -300° 0 c-31° s-3r1'e §-360Y S-I02 0
L U S 16L 0 b e} - hrh —— €951
1 <
o 0
0] —
cr
0 o
]
| Lyl Tttt ani 0s. 881
IUSJINg 4039871107 8603 [0\ 4233 1W3-U030B] 0]
Q“-” [ok 8 % ¢ v - M = o -‘AH(!N\- ol e - TP Cr o x

\)
‘!’n!

e
WA

o

"V 7°0 S! SuInss selq 9194y 'V T St duias

Se1q piemIo,] ‘sutow [eorydesd £Q g pue g JO UonEsLIA ‘9] iy
(SPUODBSg) DBW})
wg _g, 3.1 §-3r1°8 S~360°Y §-390°C 0

3 L
i) ™

[“g - *al 1 alze-1-

38
N
At)

) l.\~ n!

%5t = SL00 =

-
(=
by
U

-
-
=
—
-

TS
" L]
-
=
)
l’!

“
o.l >

L
. |

Gy
4 5 =
4 7 C a
“ly.go-plq= Wy 2 &
En— - ..—0
|“d4 - 24l
M 69L6sTT = (Se0'LXLs8 oD = (UD(MA) = °d
MsLyseil = Yy 3 10110
A

| ALsgror = W Um UCOH& ABEZ 8122

(6puocoag) aul) (Spuooag) BWI)|
g-36186 S-3r1 8 S-360°r S-3r072 0 §-3618 S-3r1°9 S-360°r S-3r0°2 0

} } } } 689 's- I R— M- ¥000 °0
AEGS°1-

M L60'E911 = Idusuy jo sy
M 6EL'6E0T = 9j8umday Jo 3y
%3 ¢-gE0’L = (dwn) pduagoseq = Iq

%T1=T100 ~

A |
|'.,|'.,'¢‘! v,

)

O
.... N

LX) l‘:‘l‘n

&

e

o

veeoL= "

W

L 4
€

ety

-
-
=z
=%
g,

{;
v.‘!!

R

<
»

AN
Sy,

S3TOA
S310A
%

WAV,

v
sauaduy

P
<

B o Y S S b

-
04 !'»..

L 1 A vies rt
X PRk T ateoLl
abp3 10\ U333 1W3-8sDg 31 puo 33,

)
o

[)
X)

AL

A\

»‘, ~\ g

L SRR SE ANy
.l iy ? X ;
o"n Vo d ,90.‘

Ax

'k ".’A".'t’

PEEREELE Voo o b " N LR R AL o €, X A LA, | P e Afr r.-.uf Tt ms T
Lo LA K e T R - o . LNy SRR
aﬂlh.w\l . Ni!v ; -L..\..l ,.Jl!aﬂ-” ,-uﬂ;-&&www,-. s e 4 x)] m.lvbv 3 .r .\ll.‘“w\”r.. ;).uﬂ/#(l.

.ll“ vvvvvv g c“.\

39

"V $°0 St Sumas seiq 981949y Y g St Sumes
seiq premio, ‘sueaw [eowydesd £q g pue 4 Jo uonedyuap L[undiy
(6puU0oag) Bwty

w, s-3619 S-1 9 §-360°V [o
Bl = L100 ~ ——— =T T " - 10
|“a - ®al AB8Y ‘0-
fpsoro = "
[ZL01°0 =
M LIZOPIT = 3i8usu] Jo sy = 1y m.. =
M SI0T01 = oiBueiooy Jo sy = Uy c e
s ¢-3p9'9 = (own) Ydusj oseq = 'q ¢ y.s0-Jplqg= Uy % o
w
. d d
%910 = 91000 ~ =%
"4 - 24l
M P6916LT = @Lgon@oLyon = (YDA = °d
MmeoLssLl = Mda | rysoreo
v sigol = Vi Aoyl = Ya e 1 AYYL 812
3 punlg
(6pUODBS) BWI] (spuooeg) Buwr]
5-361 '8 S-3r1 '8 §-360 °r s-31072 e 5-361°8 S-I19 §-360 ¥ S-310°2 0
- } —+ } SL€ ‘s~ k e g e Moy yeprpra" =3 £Eg=g=praeye . VEIE0-
olllJ e e el et F AOS2 8-
e . >
< 3 <
0 T o0
— 1 0 ~
cr 3
o)
@
SRR ERp e ———— ! |
_ - :
L c18°1 "y VSLE ¥
U MU AEIE ‘0Lt
abpy 10\ J®331WI-BSDYg] pup A
z
\.M
5
BE
S
(']
)\'. .
e :-.s.-N.u.\l.u.-l. dwu\.»&.\\i&-h. - 1 \yny . gt -ni-v-. -y] J\J >~ .1.“-.&-._‘-,_ At D o
M e R] o e R QR e it e i o

ks ‘ ‘
o
e
RO CHAPTER V
(CONCLUSION
o
.:{:E From the beginning, the focus of this work has been to improve upon the old data
o collection and processing system used in previous efforts. The major shortcoming of the
) old data system was the speed with which data could be collected and processed. The ad-
;... dition of the Zenith Microcomputer to the acquisition system has served to correct that defi-
W ciency to a fairly great degree. In the old system, which used the HP-85 as the System
s. ’_tf Controller, the bottleneck in the acquisition process was the speed of the HP-85. The
1 Zenith's superior performance capabilities were used to alleviate the bottleneck, and in-
‘_S crease the number of data points that could be read from any particular test to the maximum
. 9: provided by the 7612D.
-'"i{ Initial efforts were directed at using both the Zenith and the HP-85 in the acquisition
system, but that became impossible given the hardware/software limitations of the HPIB
£ interface card in the Zenith. The Zenith then became the sole controller of the system and
i:: new software was created to allow the Zenith to perform the necessary tasks.
f.:" The new software was originally written for the MS-PASCAL compiler, but com-
- plications with the memory allocation of the stack made it impossible to write a single inte-
(- = grated program which could perform all the required tasks. A new approach was under-
‘;-:: taken which corrected the difficulties encountered, but it, also, allowed the use of any
3.-.‘:: compiled language for those tasks not requiring the use of the HPIB. As a result of the
1o extended capability of the new approach, large portions of the software system were writ-
2 . ten for and using a different, easier-to-use compiler, Turbo Pascal.
:'.'E Once the system was completed, a series of tests were made upon a Texas Instru-
) .',-'- ments 2N5886 transistor, and the results obtained were used as a basis for verifying the
; ';. software systems accuracy.
, ._':- On whole, the new data collection and processing system does what it should. It
.'fj meets all of the requirements it was specifically tasked to meet, it allows for the acquisition
::.: of individual and multiple test runs as quickly as the data can be set up on the 7612D and it
et accurately collects and processes the data given it.
. .
o
&
® 40
o
t'.:‘t
0
e
o
. ;‘::r

oL

"'. el e S - G TN TLN TR £ - ~ FvURTYLTWU mﬁ\mvmwrmmww

3
.
o
M
:: ¥ LIST OF REFERENCES
"N
i
(‘ 1. Dale James Skelton, "Reverse Bias Second Breakdown in Power Switching
N Transistors, " M.S. Thesis, Texas Tech University, 1982.
j 2. Scott Allen McMullen, "Energy Considerations in Second Breakdown," M. S.
',t; Thesis, Texas Tech University, 1984,
b 3. Michael E. Katsaras, "Turnoff Transients in Power Switching Transistors,” M. S.
:& Thesis, Texas Tech University, 1986.
1
2' 4. C.M. Graves, "A Data Acquisition and Conditioning System for Analysis of
" Transients in Semiconductor,” proposed title of M. S. Thesis, Texas Tech
o University, Unfinished.
!.. 5. Tom Swan, Mastering Turbo Pascal. Hasbrouck Heights, New Jersey: Hayden
‘ Book Company, 1986.
1 : 6. Elliot B. Koffmann, Pascal. Reading Massachusetts: Addison-Wesley Publishing
e Company, 1982.
o
! 7. HP-IB Command Library for MS-DOS. By Hewlett-Packard Company: U.S.A,,
; :\\; 1986.
¥ 8. Turbo Pascal Reference Manual. By Borland International, Inc.: Scotts Valley,
(1.
- CA, 1986.
{ 9. Microsoft Pascal Compiler User's Guide. By Microsoft Corporation, 1986.
Rl 10. Microsoft Pascal Reference Manual. By Microsoft Corporation, 1986.
d
;: _ 11. 7612D Programmable Digitizer Operators Instruction Manual. By Tektronix, Inc.:
) Beaverton, Oregon, 1983.
'
2
it
o<
L
-
-?
7
) "'
g5
L
99
R
D ‘r':
-2
n:‘
o
o 41
o
B
e

" AT f L N (NG O O Ty 0
a sf.'h' e c\ B, " ‘F . . "3 1\!‘“‘.‘!"'.'-0.‘.l:*!‘.l.‘:l!':i.‘:"' SO ':0.‘21"“". "'c o '.%‘l ! »f."t'.'u,.'u‘ ANARA Y, :'n

- e e,
4 >

£ 8N

o P

[T TR o
s
2

-
o

oo
f"f l;u‘

APPENDIX A
OPERATING INSTRUCTIONS

‘.J.{';' =N

“l

-

LA

X

&

xS
&

{ X

i
29
» l'_l':((li')d A

w

é’c‘
=

PR

I Lt) @B
AR

42

) O

OO OO 3T, WY OGO 0!
l".x-.’:’....?'.l,‘..ﬂ!.’!’.“6’.’?’.'., ‘g,l'-ft'.’.’t‘l”!l‘!!!‘ RN :’l‘!‘t‘t'h"’q'}:’ L

‘:zzn 43

e Read all of the following instruction before attempting to use the test system.
f. In the following, instructions regarding Tester Power-Up and Power-Down Se-
'.:{ quences for the Reverse Bias Safe Operating Area Tester were developed by Michael
w X Katsaras as part of his work toward his Master's Thesis but was not included in the final
ig,_ version of the thesic Before proceeding, the reader should familiarize his or herself with
“ . references 1 and 3. Also, a thorough understanding of the operation of Tektronix 7612D
LA and 624 Monitor is necessary. Finally, it would be beneficial if the operator understood the
» 3 basic workings of an IBM PC compatible using DOS.
o
(Tester Power-Up Sequence
*-,';{ 1. Make sure there is a transistor in the TUT socket. Do not attempt to turn
-.'\ power on without a transistor loaded. (Note: The transistor can be changed while the
‘ power is on.)
” 2. Make sure base current controls are all set to minimum.
‘ : 3. Make sure collector supply control cable is connected. Make sure the col-
: lector supply voltmeter is connected to the power supply (current limited outputs). Make
- sure the load inductor is connected.
' " 4. Turn power to tester on. Turn collector current monitor biasing supply on
::,s's (if collector current levels are expected to be higher than 10 A). The "power" indicator
::' should be on at this ime. Wait 30 seconds, until the H.V. switch tube (front panel) warms 1
' : up.
‘ S. Turn on the collector supply. No voltage should be measured by the
) voltmeter.
! '.Q,‘ 6. Turn on the external trigger power supply for the 7612D, located on the
o back right rear of the 7612D.
’-- The tester is now ready for operation.
5
- in k g
\ 1. Connect the Ve probe to the A input on Channel A of the 7612D.
' -;-:; 2. Connect Vi to input B, Channel A.
_’ 3. Connect the I monitor to input A, Channel B.
- 4. The Iy, monitor can be connected to input B, Channel B, but it is not really
jg necessary.
.
%
b
-
o
"
. .
: ‘

e =
[OF Wy W

.
-
Y
- 44
N 5. Connect the Scope Trigger to the external trigger input on the 7612D. (The
L little blue box attached to the front of the 7612D.)
! .r 6. Set the 7612D to external trigger, negative going slope (to see turn-
X :’f’; off/breakdown region) for both channel A and B.
=) 7. Select the desired time step for both channel A and B. It is imperative that

the settings for both channels be the same. If they are not, the data acquisition programs

Z0%

o will not run.
8. Select the appropriate forward and reverse bias settings.
K- 9. Press the manual start. According to the instruction written by Michael

Katsaras, "Three things should happen: a) The '‘Clamp Supply Indicator' should light, b)

X L)

Taking a Measurement

1. Turn the Zenith computer on. The mainframe power switch is located on
the back of the chassis on the right side. The monitor power switch is located on the front
of the monitor.

2. Although the data acquisition software will prompt the operator to check to
be sure there is a formatted disk in drive A:, it is easier to do so now, before entering the

:{ the clamp supply voltmeter should indicate the H.V. clamp setting, and c) the collector
s supply voltmeter should indicate the collector supply voltage. To set the collector supply,
:' choose controls [forward and reverse bias settings] which do not cause breakdown and
‘ adjust the voltage during the five second delay after the 'manual start' button is pressed.”

‘ T- Assuming all of the above has been accomplished and no problems were encoun-
“{' tered, the operator is now ready to begin taking data.

e

¢

A

- Q S’l‘. ,‘-- [‘:"n

N
N acquisition process. Further, it is recommended that the operator have on hand at least one
. §: additional blank formatted disk. To format a disk, place an unformatted (new) disk in drive
¢ A:, type FORMAT A: and press <RETURN>.

':' 3. The Zenith must be configured with at least a 32 kilobyte RAM disk. The
\ .H: drive designation must be drive G:. To check the availability of drive G:, type G: and press
b 3.' <RETURN>. If the prompt symbol changes from C:\> to G:\>, then drive G: is active.
;t Type C: and press <RETURN>. If the message "Invalid Drive Specification" appears
..~ when "G:" is typed, then the following line must be added the CONFIG.SYS file in the
x4 root directory of drive C:, "DEVICE = RAMDISK.SYS 32". This line will set up a RAM
,:.f-: disk at the first available drive address. On a Zenith, this is drive G:. The file
(RAMDISK.SYS must also be present in the root directory on drive C:.

o

v 2

.

-

'

1:‘4

P

", -g.-’y.—"r“ A AT AT AT ’N,."." T A A N
. ‘f g, -o Ay s A% L 0. } "‘.'Y’Y'VRN‘J { A L A AN P

o A T AT OO MM AR R A [Ty S ") A, 3 LY RSN
-"‘--ﬁ A AR AL LR R R

0

DS

S P S\ AT
. e Te TR L RO
‘l.'.-.'.\"\,,s [N ';".‘ Ryl !“.'".'.'.'.

1

Fry @
o ®

~~~~~~

45

4. At the C:\> prompt or any C:\xxxxxx> prompt, type TAKEDATA and
press <RETURN>. The data acquisition process now begins.

5. The first thing displayed is a reminder to place a formatted disk in drive A:.
If this has not already been done, do so now.

6. Next, the operator is queried for the system time-out error value or the sys-
tem time-out. This is the length of time in seconds that the Zenith will wait for a response
from any of the devices on the bus before declaring an error. Typical values used in the
development of this software have been three to four seconds.

7. The calibration cycle is then entered. Follow the instructions on the screen
exactly. Remember, this is a loop. It may be necessary to go through the cycle several
times before calibration is complete. When instructed to adjust the position knob on the
Channel A or B plug-ins, a value of less than five is a yery small adjustment. It is, also,
easier to calibrate the 7612D if the Volts/Div is set on 5 Volts/Div on both plug-ins.

8. When calibration is completed, the program will then display a listing of all
files stored on drive A:. It will also display the amount of storage space available. If there
is less than 50 kilobytes, replace the disk with a blank formatted disk.

9. From this point on, follow the instructions that are printed on the screen.
When an affirmative or negative answer is requested, enter a single "Y" or "N". The letters
need not be capitalized. If a mistake is made, no damage will result as all query responses
are "idiot" proofed. Numeric entries, on the other hand, are not "idiot" proofed. So, be
sure the number is correct before hitting the <KRETURN> key. The values can be edited
prior to hitting the <RETURN> key by backspacing to the point where the error was made
and re-typing. Textual entries, sentences and words, are also not "idiot" proofed, but they
are typically not critical to program execution, and if an error is made, it can be corrected
latter.

It is recommended that the operator become familiar with the operation of the entire
system by taking data on one of the older, no longer needed, test devices.

Creating Output
The operator should be familiar with the use of the HP-7470A Graphics Plotter be-

fore proceeding. The HPIB peripheral drive should be loaded with the HPIB set to be
LPT2. This function is performed in the CONFIG.SYS file with the line, "DEVICE =
HPIB.SYS LPT2=705". If that lire is not present and alternative method is to type
HPIBMODE LPT2=705 at the C:\> prompt.

"
-----------

R L




<o
Lo

Vaf Cal A%, aba ain dia BaY WM""“““W‘T

N
e
%
)
:g 46
o
( Obtaining a Plog
-‘_._:} 1. Place the floppy diskette containing the device data to be plotted in drive A:.
o All of the BDxxxLLq.yyy files for the particular device and series to be printed must be
: '"::f present on the same disk for the data to be plotted. If the wrong disk has been inserted and
: : the data is not present, the software will tell the operator , and allow him or her to replace
':0',,; the disk with the proper one.
;:"'. 2. Place a plotter pen in the right hand stall of the HP-7470A and turn the
: ‘.:q‘ plotter on.
" 3. Load a sheet of plotter paper into the plotter.
NS 4. Type PLOTDATA while in the CARBSOA directory, press <KRETURN>
! :,, and answer the questions that are asked. A plot will then be generated, but be patient. The
{ :: process takes five tc seven minutes.
A
.‘ Creating a Table of Breakdown Values
= 1. Place the disk containing the data from the first test run in drive A:.
\_: 2. Type TABULATE while in the C:\RBSOA directory and press
7 <RETURN>.
( 3. Answer the questions asked and a file will be created on the C:\RBSOA di-
Y rectory with the name BDxxxLL.TAB. This is the file containing the tabulated breakdown
) data. If the operator desires, the file can be copied to floppy diskette and then deleted from
'_L the CA\RBSOA directory to save room on the hard disk, but this is not necessary.
] The operator has created a TAB file, but this cannot be directly printed out.
*ﬁ'\; Obtaining a Sorted Output of Breakdown Values
(. 1. Type SORTABLE while in the CARBSOA directory and press
"': <RETURN>.
g} 2. Answer the questions asked. If output to the line printer is desired, tell the
:ﬁ program to output to "LPT1", and be sure the line printer is on and ready to receive data.
\ V) Otherwise, tell the program the name and destination for an output text file.
. : 3. There is no limit to the number of time SORTABLE.COM can be runon a
'.' given TAB file. So, different sort keys can be used without trouble; however, be sure to
,.: use different output names, except in the case of the line printer, or the previous file will be
::: overwritten by the new output file.
o
\..:
L,
i
! »
W
e
]
g

o N T F y Y S ¥ ) f ] L ¥ 0960 TR O % ( F 1
T T 1 e o e T T T U e R e e Pt

.............




..................

)

R

®

s

W: 4
s Using EDITLIST.COM
(. This file is used to edit and maintain the device listing contained in the file IN-
(2 DEX.DEV.

,;1 1.  Type EDITLIST while in the CARBSOA directory and press <RETURN>.
Y 2. Answer the questions asked.

. ) 3. Make the changes or additions desired.

S

\'E Using PRCSLTWO.COM

& ? This file is used to calculate or re-calculate the values for P and E. Its use can speed
( the execution of TAKEDATA as it can allow the operator to remove the call to PROCESS2.
) o This is not recommended. The principle use for this program is to re-calculate P and E if it
A :,‘_-_Z is feared the files have been corrupted. PRCSLTWO.COM can also be used in the case of
‘*Z'* a program crash after V. and I have been read but before PROCESS2 could run prop-
‘ : erly.

5,: v 1. Be sure the disk containing the files BDxxxLLA.yyy and BDxxxLLB.yyy
. -r: for the desired device and test series is in drive A: and that there is sufficient disk space 40
b kilobytes, at least, for the storage of BDxxxLLE.yyy and BDxxxLLP.yyy.

*:" 2. Type PRCSLTWO while in the C\RBSOA directory and press
. ~ <RETURN>.

;g 3. Answer the questions asked.

N

s Powering Down the Tester

_ ; 1. Make sure all bias settings are set to minimum.

) " 2. Turn off the collector supply first, then wait at least five seconds and turn
o off the tester.

- 3. Turn off the collector current monitoring supply and the external trigger
power supply.

| .,: 4. Turn everything else off.

A

If.'.r .

B

o
AR T S P T P L X P A E ‘&vcvc',km&"c 0N
o a0 I. ' W) ". o ’5‘ ,- (] A.l 7' ut AN ' " % ’ *" , \.&&iga ’ ?‘"-...I




j

o Py

FEs;

s
M

X .o.}’qﬂ, ;
C ]

EH e ~ -
S S S 2
R AT L

A‘J'rn

d

‘e '(".' oL

PR

r
RN

P

APPENDIX B
TAKEDATA.BAT PROGRAM LISTING

3
«

'lﬁ‘.i
ad NN

3 Fallof

x

ey «wos«”
* {' :'
A

e
’:'-‘f-r"

‘-__-
o By
?ﬁ"i"{. e

@

Y

« n

Oy
A

Ly
o

48

]
20 ®

I e S e

o

o

L)

:’t. ,

WO PGSR, St b \ s TP gt A QOO RN S
e T e e T s ot




3! ':"
R
.
2
":5' 49
s Bach file program: TAKEDATA BAT’
O ECHO off
,:  Stops DOS from echoing the following lines to the screen, except for
! &j those commands with "ECHO" in front of them. These are remarks to
'.‘3 be printed to the screen.
A CD\RBSOA
i"‘ "  Changes active directory to C:\RBSOA.
. ECHO Before proceeding be sure you have a formatted disk in drive A:.
el ECHO If you are not sure if the disk is formatted or not, type ~C to
A ECHO terminate this program; otherwise, press any other key to continue.
NN PAUSE
'{;E « Execution halts until operator presses a key.
AN HARDWARE
t + Calls the program HARDWARE.EXE, and executes it.
-7 ‘loop |

» Top of the acquisition loop.
ECHO Here is the directory on Drive A:.
DIR A:/W

« Prints the directory on drive A: to the screen.
Y ECHO If there is less than 50 kBytes free on this disk, replace it with a blank,
b ECHO formatted disk before continuing.
D) PAUSE
:.:.‘ IF EXIST G:CONTINUE.ANS DEL G:CONTINUE.ANS
e « This line deletes the file CONTINUE.ANS if it exists. The file is used to
j .,,:' control loop execution. ‘
o CLS
:Z:_::l * Clears the screen. '
< IF NOT EXIST G:HALTER PGM GETDEVIC
o
°
T * The "+" mark denotes the beginning of a comment not found in the software used
: in running the system. These comments are placed purely as an aid to understanding how
o the programs work and why they were written the way they were.
-,
s
2%
p-2v]
[ ]
SO
N s
B T s T R R R R AR R AR



------- o pel oth " Poa e mat v b et et ¥ 4 ¥ v LA A At BSa e Ate AT Ale Aba Al Ale Aty §

o~
.

e«

R
@

» ,;3

t3 50
‘ 3 » If the file HALTER.PGM does not exist, then execute the program GET-

Y DEVIC.COM. HALTER.PGM is created when a program in the ac-
3’ quisition loop requires information and the operator refuses to provide
',:h- it. The operator has at least two opportunities to do this and is warned
_'f before the file is created. In the acquisition loop, prior to program ex-
3 D) ecution, a check is made for the existence of this file.

R 2 CLS

* ECHO Acquire the Collector-Emitter Voltage on Channel A and the Collector

:'.3 ECHO Current on Channel B. These waveforms will be read in so be sure they

( ECHO are what you want before proceeding.

* ;?: PAUSE

: ": » Pauses execution while the operator obtains the desired waveforms on the
ot 7612D.

R CLS

" \'{: IF NOT EXIST G:HALTER.PGM STORDATA

e » Calls and executes STORDATA.COM.

o CLS

d'. IF NOT EXIST G:HALTER.PGM PROCESS1

o « Calls and executes PROCESS1.EXE.

¢ é CLS

oy ECHO Calculating Instantaneous Power and Energy, please wait . . .

o IF NOT EXIST G:HALTER.PGM PROCESS2

_‘ * Calls and executes PROCESS2.COM. If Ve is to be taken, there is a
A pause built into the end of PROCESS2.COM.

o CLS

e IF NOT EXIST G:HALTER.PGM PROCESS3

e « Calls and executes PROCESS3.EXE.

EE CLS

y ;: IF EXIST G:BD???L?2.* COPY G:BD??77L.77.* A:

’f: » If the file BDxxxLLq.yyy exist, it is copied to drive A:, and then the next
‘., line deletes those files just copied. This save storage space on the
e RAM disk.

j ot IF EXIST G:BD???L??.* DEL G:BD?77L77.*

K IF NOT EXIST G:HALTER PGM REPEATER

X

s

L

3

‘il

v'

i)

RO sl A BN R e M R e o T TN



5

s b XA

'_‘. N5 ",

-

L O
s

o 8=

LAY
lj}j'}.'.;' )

1Y
»
"-r
-

« Calls and executes REPEATER.COM.
CLS
IF EXIST G:CONTINUE.ANS GOTO loop

« If the file CONTINUE.ANS was created in REPEATER.COM, then the
batch file jumps back to the top of the loop and execution begins

again.
CLS
COPY G:DEV7?7777.BK A:
» Copies the bookkeeping file to the floppy diskette in drive A:
ECHO Session Finished.

IF EXIST G:HALTER.PGM TYPE G:HALTER.PGM
* Prints the contents of HALTER.PGM if it exists. This tells the operator
the reason for the halting of the program.
IF EXIST G:HALTER.PGM DEL G:HALTER.PGM

CPro o "".'.b"._,',-" . EACATRES SR 1 Tt S NG 1 SRR ARy TN
o AR R RGN e S O wr L e A




20 APPENDIX C
~% HARDWARE.PAS PROGRAM LISTING

|"' ‘

| '-fﬂ‘
n \
ot
. |
R

0'0

Q '. 4
" u" e 02" h

¥, (N 0 ¥ Q
"v ke ~‘:'ol RS ity "n.,"i’u.l't" s R e RS RN



g_ S o S T T

‘ -

3

b 53
N

BCs PROGRAM Data_Acquisition INPUT,OUTPUT);

Y
( « This program is used to first, pole the bus for the 7612D, and then, cali-
: N brate it. Written for the MS-PASCAL Compiler. The reader should
LY

’:‘j.: be thoroughly familiar with the HPIB Command Library Reference
N Manual, as well as the manuals for MS-PASCAL (Reference and
", User's) and the 7612D Programmable Digitizer Operator's Instruction
5' Manual. This statement goes for all of the programs written for the
b MS-PASCAL compiler (HARDWARE, PROCESS1 and PRO-
O CESS3).

\ \
“ {*******************#******************************************#*******}

’

g {SINCLUDE: 'TODECL.EX')

o « Declares the Command Library global variables.

,‘.:! {**********************************************************************}

®

‘€8

i ) . .

p j:: bus =7,

B
- TYPE

K4 STR3 = STRING(3);

Ko STR9 = STRING(9);

R

s

’ VAR

§ \'

‘. L]

o 1: INTEGER;

o endline : STRING(2);

: command : STR3;

i: 3 passinfo : STRING(10);

a5 pass : STRING(12);

. A
o passer : TEXT;

L2 timeout : REAL;

- « These are the global variables used in this program.

::.‘!. {*******************u**********************************uu***********}
:

)

[ ]
Y

"

W

"

~

T RA S T Yot Vg
LNy ':Hl QOO




........

702 @ r 2 rs sz M
Y ‘b" ® ‘:-‘ ‘l' .l, ‘l.. ..‘."l;

kW Yo S

o o o
">
fo Yo

L ISyl X
} A859 o

Y

.?
Lol

i
A

A,
a“‘
)

-

2 oo \ DA Y > 1 00 0 U, VP ) ¥ SO
VR e e R A .ﬁ'?m‘fu‘?o:'!nfl?::".nf"a:"o."v.' DO RN A

54

{$INCLUDE: 'IOPROC.EX'}
* Declares the function names used in the Command Library. This way no
declaration of external functions is necessary to use the HPIB interface
card.

{**********************************************************************}

PROCEDURE error_handler (error : INTEGER; routine : STR9; A : CHAR);

» This procedure is used to check the error condition of the interface bus. It
returns a statement as to which function the error occurred in and what
the error was.

VAR
estring : STRING(40),
cmd : INTEGER;

BEGIN
IF error <> noerr THEN
 The value "noerr" is a predeclared constant from IODECL.EX. Its value
is zero.
BEGIN
Errstr(cmd,estring);
* The procedure Emrstr() returns the statement describing the error.
WRITELN(Error in call to ',routine);
WRITELN(error:6, ',estring);
IF A ='N' THEN
» The character "A" is used to cause the procedure to halt and allow the op-
erator to correct the problem before going on. It tells the operator
whether the error is one that needs to be corrected or not.
BEGIN
WRITE('Press <RETURN> to continue . . . ');
READLN
END;
IF A ='Y' THEN
BEGIN

) ‘ WX O30
.i"fi't.i!:fl, W] .l'ofl‘:,lﬁfo'-‘

.........

........




e ]
R

bt

<
o 55
b " WRITELN('CORRECT ERROR - Press <RETURN> to continue.");
( READLN
Wy ‘ END

) END;

.
f > {**********************************************************************}
i
R FUNCTION DOSXQQ(command,parameter : WORD) : BYTE; EXTERN;
a » This is an external function declaration, meaning the function is contained
K N in a library. DOSXQQ happens to be in one of the standard libraries
N for MS-PASCAL which is automatically searched during LINK, the
RN step used to create the executable file. Otherwise, the library would
"' need to be specified during LINK. The function allows the program
,:.;' to place calls directly to DOS.

i; {**********************************************************************}
(,- . PROCEDURE BLOCK;
0 % » This procedure does nothing but perform ten WRITELN statements. The
\ *... procedure is used to make the screen display more readable by break-
oy ing up blocks of text.

2
§| . VAR
N 1: INTEGER;
o

A
e BEGIN
m FOR1:=1TO 10DO

o WRITELN

- END; {END PROCEDURE BLOCK)

1@

2
©
%
g

{**********************************************************************}

Y
Sy e,
[

= %, % P

PROCEDURE hardwarecheck(VAR tout : REAL);

A @222

k)

-

QH C { ¢ W W (_‘ ’ ", W 7 T, " L ,-‘I.-rr-.j{ LSS AL (-(_vr_,-: e WM
; T o A e A A A R R R )




"] 56

Y {Checks bus looking for active devices.}
( {MOD 1 - checks 7612D)

W VAR

o0 R :REAL;
) sent13 : STRING(13);
: sentl : STRING(12);
; sent2 : STRING(2);

¢ sent3 : STR3;

( sent5 : STRING(S);
X
¥

';e: e
h - .,

sent7 : STRING(7);

: rec : STRING(20);

e * These string values are used to hold commands to be sent the 7612D and
receive a response back.

N Icmd : INTEGER,;

N » The integer value "cmd" is always used to receive the error code number
gﬁ' from the IO functions in the Command Library. This value is passed
{ y to the procedure error_handler for error checking.

S8 test : BOOLEAN;
ans : char;

[
) |

Ui

BEGIN {HC 1}
cmd = IOEOI (7,1)’ [********** TheSC fOlll' hnes set ***************}
endline[1] := CHR(13); (******&x EQJ enable (last byte of ****kkkkuuki:k)
endline[2] := CHR(10); (transmission sent with EOI active) and EOL char-}
cmd := JOEOL(7,endline,1); {as <CR> <LF> (carriage return, line feed). }
cmd := IORESET(bus);
* Resets bus to known state.

v g "
z o WF

a

- -

, y .j error_handler(cmd, TORESET ''N');

W * Performs an error check on the function IORESET.

‘ cmd := IOCLEAR(7); {clears bus to known levels}

‘C):: WRITE(CENTER SYSTEM TIMEOQOUT (in seconds) . . . ");

‘::; * First operator response requested.

:.(.: READLN(tout); {tout = time-out in seconds} 1
o |
‘;'.

Lt

:'E":: |
i

° ;
By ?

;l;.. i ko m - o P . . . e, } . B -~
R T




R

e

o >7
::3.‘, * The value "tout" is the time in seconds the system will wait for a response
(‘_ _ from any device before declaring an error.

“ : cmd := IOTIMEOUT(7,tout); {defines time-out as tout}

'-f._' error_handler(cmd, IOTIMEOUT',N");

R cmd := IOREMOTE(bus);

.j‘ » This function is used to tell the 7612D to listen to the bus for command
!::5" A input and to disable the front panel.

W error_handler(cmd, IOREMOTE ',N);

la sent3 :="ID?';
(" e The letters "ID?" are placed in the 3 character string "sent3. "ID?"isa
o query used to tell the 7612D to respond with its name.

s test := FALSE;

.,,*‘ REPEAT

f'-  Top of a loop used to allow the operator to correct any problems and re-
e test the bus/7612D interface.

noid cmd := JOOUTPUTS(70200,sent3,3);

3 » The string "sent3" is actually sent to the 7612D here. This is done to

": check the 7612D to'be sure the power is on and the bus is functioning
&:._ properly.

:.r;'( IF cmd = 0 THEN

P :':_},' BEGIN

o WRITELN(The 7612D is ready for use. ');
} » If there is no IO error, this message is printed.

__,: test := TRUE;

?‘é:j END;

e error_handler(cmd, IOOUTPUTS','N")

< UNTIL test;

P » End of loop. If there has been no error or the error has been corrected,
Vol then the loop will stop execution.

0 cmd := IOLOCAL(7);

« Returns control of the 7612D to the front panel of that device rather than
"'-\.j the bus.
o END; (HC 1)
ot

. J
&

ot

=

L

o

‘_,‘,

(. S' L ~

~

Y [ T BN e LT N AT AT AT A LN LA L
S A R R




. ey WL W
B IG s e hiandebe an. gl Al 4 et - WIS UW T T 7Y T LT S IS T I T W Y I W ey

“ 58
)
:'y {**********************************************************************]
’l.
{
1 # PROCEDURE Calibrate;
:‘_‘: » This procedure is used to check the calibration of the 7612D. Theoreti-
,»j cally, the zero point of the curves can be set by direct software con-
" trol. This was not possible when following the information given in
{:I' the 7612D operator's manual. So, this procedure for manual
'., ! calibration was developed.
A
X
(‘!'.! VAR
o totA,totB : REAL,;
2 test : BOOLEAN;
b line : STRING(128);
X state,L,R,C,cmd : INTEGER;
°
::‘ response : STRING(40);
:: incoming : CHAR;
n readit : STRING(6);
b cal : TEXT;
{
L -
ple BEGIN
t tf ASSIGN(cal,'G:CALIBRAT.DAT");
‘: * Makes "cal" the file designation for the file named "G:CALIBRAT.DAT".
'3 test := TRUE;
P WHILE test DO BEGIN
. * This is the beginning of the calibration loop. It will continue to execute
:"; until the condition "test" is false.
o REWRITE(cal);
‘j_‘: WRITELN('Set input coupling to GND on both Channel A & B. Then trigger');
:Z: WRITELN('the scope so there is a double flat line trace.’);
}: WRITE('Press <RETURN> when ready to continue . . . ');
° READLN;
o BLOCK;
W
::; readit := 'READ A",
“l
(¢
A%
®
X
:5»
K
'y
ot
L]
¥
‘:o 3

100, V1y Oy 4% 0y 175 8T 1y W'y ¥ CH R POTICON : TN 0 \ QR0 9,
A T R o A St SR R R RS S




9:-;.{:'4"

s

‘;Z? (R

» 7y
al (‘

. . v sl
- ".. t.?;:,’?,:

A A
PELALCA, S

Yot @ oy

‘o
RN

,
R
AR

Rl

...... “Rta @ o V. SN AR REL AR AR -AR. AR AN SE ~ www

59

« This is the command to be sent to the 7612D. It tells the digitizer to read
out the data stored on Channel A.
cmd := IOOUTPUTS(70200,readit,6);
» The command is sent.
FORR :=1TO 3 DO BEGIN
« This loop reads in the first three characters put out by the 7612D. They
are control characters unnecessary for the function at hand and are

discarded.
I:=1;
cmd := IOENTERS(70200,incoming,I)
END;
state :=0;
totA = 0;

cmd := IOMATCH(7,CHR(10),state);
 This function turns off the end of line check. The Zenith will ignore the
normal characters indicating end of line. Otherwise, the lines about to
be read in could terminate prior to their real end when data is read that
has the same binary value as the end of line characters. In order for
the data to be correctly read in all of the lines must contain a total of
128 characters each.
FOR R :=0TO 15 DO BEGIN
 The three steps are taken 16 times.
I:=128;
cmd := IOENTERS(70200,line,I);
* A line of length 128 is entered into the string variable "line" from the bus.
This is the data points from the 7612D.
WRITE(cal,line)
« The line value is then written to the file referred to as "cal.”

END;

« The result of the above 16 lines of 128 characters being transferred is a
text file of 2048 ASCII characters on the RAM disk. The characters
represent the binary values of the data read from the 7612D.

state := 1;

cnud := IOMATCH(7,CHR(10),state),

AL N ORI ) LN ORI
"'n"‘s‘.'»' SOOI ) Q'“l‘..:' :‘.:"'l."::'.‘g’. .:Y'.-?lﬁv!!fc'bf-‘ifs’.

A

EASTALLTY ATAT )
& [ >/ YLRY A ‘t"".‘l,‘"'_ .I\’I'-.l.i ':‘:.A' :



I
1 ‘h-
)
)
60
j:-ﬁ.j: « 1O matching is turned back on.
( 1:=40;
o cmd := IOENTERS(70200,response,1);
.,,: « The trailing values for Channel A, control and error checking values, are
: read.
v readit := 'READ B';
N cmd := IOOUTPUTS(70200,readit,6);
oA » The entire cycle just conducted with Channel A is repeated for Channel B.
o FOR R := 1 TO 3 DO BEGIN
( 1:=1;
[ cmd := IOENTERS(70200,incoming,I)
4:3 2
e state :=0;
O totB :=0;
®

cmd := IOMATCH(7,CHR(10),state);
FORR :=0TO 15 DO BEGIN

4

o I:=128;
v cmd ;= IOENTERS(70200, line,T);
( WRITE(cal,line)
. CLOSE(cal);
L« » The file referred to as "cal" now contains 4096 characters representing the
data from Channel A and B.

N WRITELN('Please wait. I am thinking.");

« This line tells the operator the program is working, the data has been read
3 : and processing is beginning.

o RESET(cal);

5‘?_ + The file referred to as "cal” is re-opened, the cursor position is moved to
| : the top of the file and the file is ready to be read.

Q state :=1;

[ ] cmd := IOMATCH(7,CHR(10),state);

N I:=40;
P cmd := IOENTERS(70200,response,I);

L J

L

x-

¢

>

Nl

$I

@

o

o

(S .t R R KT A= + " AT A A" A~ A" k"~ R~ . - -
s e e T N GO R TN e Tt N e e B )
4:" LI N .‘ M) ,.-.'.' .l S e .’ ! l NN as*- -"" . 2 3 i""

PRI TOR TEI%Y »
..... %, by .‘!ﬁ'a\ bR LY, l.‘n’.‘!’.‘!‘t'n‘"



61

« Some final control characters are read from the 7612D returning it to nor-
mal functioning.
FOR R :=1 TO 2048 DO BEGIN
READ(cal,incoming);
e The first 2048 characters in "cal" are read one at a time. (Channel A data)
C := ORD(incoming);
 The characters are converted to there equivalent integer value.
totA = totA + C
 The integer values are summed.
END;
WRITELN(T'm thinking . . .. Believe me I"'m thinking.");
* This line is written to tell the operator that the processing of the data from
Channel A is finished and processing of data from Channel B is be-
ginning.
FORR :=1 TO 2048 DO BEGIN
* The steps done to sum the data from Channel A are repeated again, but for
the data from Channel B.
READ(cal,incoming);
C := ORD(incoming);
totB :=totB + C
END;
CLOSE(cal);
WRITELNC('It just didn"t look like it.");
* This line tells the operator that the processing is complete.
WRITELN;
cmd := IOLOCAL(Y);
totA := 10tA/2048;
totB := totB/2048;
* The average value of the data read from the 7612D is calculated.
IF ((totA < 126) OR (totA > 128)) THEN BEGIN
* If the value is + 1 of 127, which is the equivalent of the zero point, then
calibration is complete on Channel A. Otherwise, the following is
printed and the calibration loop is executed.
WRITELN('Channel A needs to be calibrated. ');

.........................

----------------
-----

d -

. a® ., L




W)

e )™

BN

o

S
B L%
N 62
N ‘A".)
g 3_% totA = -(totA - 127);
{ WRITELN('Adjustment amount . . . ',totA:4:2);

X "‘5 WRITELN('Positive, turn knob clockwise; Negative, turn knob counter-clockwise")
o END;
. %

_.*_;": IF ((totB < 126) OR (totB > 128)) THEN BEGIN

' o If the value is + 1 of 127, which is the equivalent of the zero point, then
calibration is complete on Channel B. Otherwise, the following is
printed and the calibration loop is executed.

WRITELN('Channel B needs to be calibrated. ');

totB := -(totB - 127);

WRITELN('Adjustment amount . . . ',totB:4:2);

WRITELN('Positive, turn knob clockwise; Negative, turn knob counter-clockwise')

END;

IF ((totA > 126) AND (totA < 128) AND (totB > 126) AND (totB < 128)) THEN

,----
Pd o
s

—*A#

- P A
oot

»
5

o
T ¢ If neither Channel A or B needs to be calibrated, then the file "cal" is
.
S04 erased from the RAM disk and the loop is terminated.
o BEGIN
’-' . DISCARD(cal);
ot WRITELN('Calibration completed.");
WY test := FALSE
. L]
el END
N ELSE BEGIN
. WRITE('Press <KRETURN> after adjustment is made.");
Yo READLN;
f o BLOCK
g END
9 END
SN
ay END;
oS
f::i {****#*****************************************************************}
V..’v.
':::Z: BEGIN {Main Program}
:j;j » The procedure described above are called and executed here in the Main
:::j:‘ Program.
C
e
-
por

ST R L R s I N R A e A A S R A O A AT PE L R R R
. . ! W T T W S Syt Mgt NS ‘\,u(“'&: NN S U R VA S -:E\ -
%N V% WP 0%, W% ﬂm.‘h.‘&u. S, WA, 'C‘h‘t'&"’.\ KRS ‘A"Zt\.‘&&\;s.%k‘.‘\.\n‘rn'm;’:\. AP




LN Rl __"rmlmrm“mm'mmmmm"hﬂ

!
L3
b 63
0%
, hardwarecheck(timeout);
{ Calibrate;
" : » The following line create the file, "PASSER.DAT," which is used to pass
"'ﬁ global variables between the programs in the acquisition cycle.
v,j} ‘ pass := 'G:PASSER.DAT";
\ ASSIGN(passer,pass);
:: passinfo[1] :='Y";
s « The first character in the first line of PASSER.DAT is set to "Y." This
0o character is used to control the execution of GETDEVIC. HARD-

FJ

WARE executes only once at the beginning of the acquisition cycle,
GETDEVIC must execute after HARDWARE because the file
PASSER.DAT does not contain complete information, and GETDE-
VIC must also execute whenever a change to the last two lines of
PASSER.DAT is needed. So, the first character of line one is set at
the creation of PASSER.DAT to "Y."

passinfo[2] := 'N;

passinfo[3] := 'N;

T s P i

AAARAINTSL 1B

-

)

y passinfo[4] := 'N';

{ . passinfo(5] := 'Y";

‘ﬂ » The next four characters in the first line of PASSER.DAT are set. The
N fs actual value is not all that important. These are set as seen mainly

A9

from a requirement of later programs that no longer exist.
FOR1:=6 TO 10 DO
passinfo[I] :='Q';
« The last five characters in the first line are set. There is no requirement
that they be set to any particular value.

-

REWRITE(passer);

Wt WRITELN(passer,passinfo);

N 2 » PASSER.DAT is opened and the first line, referred to as "passinfo," is

- written on the RAM disk.

: WRITELN(passer,’ 0');

j: » The second line is written in PASSER.DAT. This contains the device
- number for the TUT. It is set to zero here since GETDEVIC needs to

:: run to place the proper value in this position.

&,

o
L5

g

w‘_:

l\.
) R.
J."

®

W A Ty 0 = X
et R e,



‘f. XSS

,4,
- - -
-

K

>

waa

S~ FoFeleter

e

PN 1™ SN AL P e anleg

Py
)

oy, :‘J‘l

O,

64

WRITELN(passer,timeout:6:3);
* The time-out error value is written to PASSER.DAT.
WRITE(passer, 0, 0
* The beginning values for the forward and reverse bias settings are writ-
ten. They are both zero at this point. STORDATA will replace these
values with the proper settings.
CLOSE(passer)
END. {End Program}

W P e % e i Ta T g Oy I I I T e e e P B T e e S e e AL R Y ST N WL 20 N N Ve BG NG AT 18
NG TN A N T T > ; ) ) ;
Ty e 20 AN BN ?l HY DS RN ~!‘- AN o ." MOMCIUN PO M IS ,lu',.!t’..t‘!ﬁ !0.‘.' !'@ .\A A Q.!.l.-.l 'h ?‘!‘n!ﬁ!’ A l.’h !’l‘.h ."'




. ~', 2 aa bl Ak o o o 3 SR fa Aadindi i o k- a B o e Ao Bt Al AE. At AL Al _al —al sk Yol SAR A IR Lo A A Lok S oA oo A d A A 2ou 4 A )
N)
i)
[\

i
3
@

SEANAN

-

-

’.i—‘d“-o-o- P 3
b g

-

® L,

a . x v

APPENDIX D
GETDEVIC.PAS PROGRAM LISTING

- -
BN P XXX

4

N
-

R T

.

)i

Py

- &
At

LY cezzze ity

- . &

1@ Yy

65

-
-
-
am B €.

- o
h "

-

BRI, i T

< N T " T T P SRl 2 OO
':!‘!h“'s','-':‘o'!'-‘,ﬁ PR " l..'l"'l‘!'l.!':‘:::‘!t.le.t..-::.a.t.-‘0. M "'0'.'3,".“‘!%'» l"‘.l‘t.:.!.:.a'l,n.l ' -’ N 4".:'0.!':?":!!".:':‘& i': ’l,t ,o't’:"f:"s:"

ATy )




O

L

[y

‘ 66
X

,’: PROGRAM getdevice;
t « This program is compiled using Turbo Pascal (8087 Compiler). It is
: :'-. used to create and maintain a file of records. The records are used to
5 keep track of the devices being tested. The file is called INDEX.DEV,
:‘ :: and it is kept on the C\RBSOA directory. The reader should have a
X S thorough understanding of Turbo Pascal. For information on Turbo
WY Pascal, see the Reference Manual.

N
) “~
P ‘\\

STR3 = STRING(3];
STR13 = STRING[13];

.

o
:.:'i STR80 = STRING[80];
b PASSARRAY = ARRAY]1..10] OF CHAR;
firl » This data type could be declared as a STRING; however, it was found
A .\. that referencing individual elements, characters, directly was difficult,
; :k unreliable and basically impossible using the standard STRING type.
R Declaring the TYPE PASSARRAY allowed for direct access to spe-
(' ! cific array elements.

'l VAR

- passinfo : PASSARRAY;

E{: » "Passinfo” is the ten character string found at the beginning of
:) PASSER.DAT. It was important to be able to address specific char-
ﬁ acters directly so this is of TYPE PASSARRAY. Later programs use
_ é a different method to do this.

pass : STRING[12];

L] passer : TEXT,

‘S}«.‘ bookkeeper,storage : STRING[13];

'Cz device : INTEGER,;
s ForBias,RevBias,timeout : REAL;

® answer : CHAR;
i ','_::

0; {******u**u*******************************************************u*}
s

-’

23

u

%

e e

-
e X 9

W
b

]
Ol
5
4

B A AR T AN T MO NN . O R DA T R I X i OO MK
oA D IR l'.'l‘-.:'u \ l"'-'!‘l'.‘a'f'n"'b‘!‘u‘. -". FOL N WM -" .,!“.a":v .::"::"ﬂ"::“d:\. ‘ﬁ.‘fl'l..:".l):",l Q'?Aq‘21‘!..'02:‘l,o'l:\",Q’lﬂ'h’ﬁl’&t’\‘l.o'l?q.'

AL AR A A SO L ER A MY LI LR L DR LR L M L P L M LR DA




e e
Lt b pNLY RWise ol oe

o, @Y,

Y L%

¥
” .l‘l‘-

‘ P ———
a5 E

s

L
)
0.'

T % 1% AR V. oy -\
W %,

A 0%,

n"-l'

67

PROCEDURE halter(errmsg : STR80);
» This is the same procedure used in HARDWARE.PAS modified for
Turbo Pascal. It performs the same function, orderly discontinuance
of the entire acquisition cycle when program continuance would result
in a crash.

VAR
name : STRING[12};
going : TEXT[15];

BEGIN
name := 'G:HALTER.PGM';
ASSIGN(going,name);
REWRITE(going);
WRITELN(going, There was some type of error in Program Getdevic.");
WRITELN(going,errmsg);
WRITELN(going, PROGRAM HALTED');
CLOSE(going);
HALT
END;

{**********************************************************************}

PROCEDURE Devices (VAR devic : INTEGER; VAR bookout,storout : STR13);
» "Devices" is used to create and maintain the device file. It allows the op-
erator to see a complete listing of the file and add records, if desired.
From the list provided, the operator selects the device record corre-
sponding to the device under test. It passes out to the main program
the names of the storage and bookkeeping files applicable for the de-
vices selected.

CONST
first : BOOLEAN = FALSE;

--N---.;-\---_--«u,‘w--‘--\w-- -\5
..... & \. C- "')‘ )' ».! .'o."o.l'ro. l‘o N q‘.al‘n .¢ r 'o'i"’"; ‘!'nﬁ O'a LATIA ) 02'!‘0'!‘0':‘! ;.0".

a.'




"y
)
o
e
P
s
e 68
%
e TYPE
g"‘ﬂ" STR40 = STRING40);
: STR13 = STRING[13];
'.,‘ DEVICES = RECORD
::,"-.. « Declaration of the record type to be used in the file INDEX.DEV.
;.) DEV : INTEGER;
o descrip : STR40;
0% book : STR13;
Ay
o stor : STR13
¢ END;
-e-\ VAR
@ index : FILE OF DEVICES;
P indexrec : DEVICES;
SN error,Count,MaxLineCount,LineCount,addedevices : INTEGER;
s test : BOOLEAN;
Faln
\E;: induct,ans : CHAR;
(' ] Four : STRING[4];
4 1 Three : STRING(3];
p * Two : STRINGI[2];
. Onel,0ne2 : STRING[1];
SaSghl
AN BEGIN
- ¥<
-_f\.\ test := TRUE;
e addedevices := 0;
-. -
d “' ASSIGN(index,'C\RBSOA\INDEX.DEV");
: W e The text variable "index" becomes the file designation for the file IN-
.\j::', DEX.DEV.
‘lf.‘&-t
; o {$1-)
A g » This compiler option turns off the IO error checking normally done. It
L . ..
N permits the program to keep running in the event the next command
o causes an IO error; however, the error condition must then be checked
;::: within the software.
o RESET(index);
. 4
MY
Y
¥ _‘.:
-h-‘:
\v
o . v
:.‘- -.’ d‘ w‘ L '& "".\},\J,' = -._;- ...’- - -‘.'-ﬁ o N Wy, ) > ) ) _4. . ‘ !
e N R o e NN o A N A ARG G o i V20,0000, 80, Ty s YR \




K-
b
5
o 69
’ ' {$1+)
(r IF IOresult < 0 THEN BEGIN
: » The error condition is checked. An value of "IOresult” other than zero
l.’ indicates an error. In this case, the error is assumed to be file not
fﬂ found. So, the file is created in the lines below.
» WRITELN('C:INDEX.DEV not found. Assumed first time used. ");
:5 WRITELN('Creating CARBSOA\INDEX.DEV.");
K first := TRUE;
o REWRITE(index)
( » The file INDEX.DEV is created.
4 ELSE BEGIN |
:‘E WRITELN('You will be asked for the device number for the device under test.");
o ans :='Q’;
-; WHILE NOT ((ans ='y') OR (ans ='Y") OR (ans = 'N') OR (ans = 'n")) DO BEGIN
‘:;. » This "WHILE NOT" loop is used throughout all of the system software.
:-'jf-. It can only be exited if the operator responds with either an upper or
= lower case "Y" or "N." It is the typical "idiot" proofing used on all
;:c' yes or no responses. It also ensure that the value of "ans” is known
;} . when the loop is left.
:':, : WRITELN('Do you want to see a listing of all currently cataloged devices in’);
S WRITE('the index file CARBSOANINDEX.DEV? (Y or N) ... ");
P READLN(ans)
:_:: « Reads the operator's response from the keyboard.
g END;
= IF ((ans = 'Y") OR (ans ='y")) THEN BEGIN
.._, « If the answer is yes, then a listing of all the devices kept in INDEX.DEV
,- is printed out to the screen.
’ LineCount := 1;
Count :=0;
SEEK(index,LineCount);

WHILE NOT EOF(index) DO BEGIN
« Until the end of the file INDEX.DEV, the steps between here and the
"QQ" symbol are executed.

- -

AL PN S

L)
b
$
B
S
A
[
=
.
A\ ]
h" °,
VTt Lt N N T T AT AT N AT T AT T T e gAY A T T M N T e N L A I o e R R S RN e} IR I A N R AL |
-,-':'-\'\4"*!"‘\.‘.' hCRA }«'.- ..Q Lo N *‘"" % ‘?-{‘\*:.-(\VN)‘* e ‘.-'.‘-.'\ .‘-., 0 e ; ‘,' (o - :"‘ ." SR \!‘ T S




it ~ -
7

%‘_.5

SRS

-’q

--
oy
AAED,

l"l L P2 4

el
222

Yy

£

-:'4.

™

TSNS

el ® R o,

-

oy
P

-----

N

1.8,

|

70
READ(index,indexrec);
* Reads one record from INDEX.DEV.
WITH indexrec DO BEGIN
WRITE(DEV,'");
WRITE(descrip:40,' '),
WRITE(book,' *);
WRITELN(stor)
* The individual fields in the record read from INDEX.DEV are printed to
the screen on one line.
END;
LineCount := LineCount + 1;
*» The value "LineCount" is incremented by one. This is the record location
pointer used in retrieving the next record.
Count := Count + 1;
» "Count" is used to cause the reading of device records to pause after 21.
This lets the operator read them at his or her own pace.
IF Count = 21 THEN BEGIN
« If this is the 215! line since the last pause or the beginning of the list the
reading will stop until the operator hits <KRETURN>.

Count :=0;
WRITELN('Press <RETURN> for more devices.");
READLN
END
+ Q.
END;
WRITELN(CEnd of indexed devices.")
END;

IF ((ans = 'N") OR (ans = 'n)) THEN
+ If the operator did not want to see a listing, he or she is now asked for ‘
the number corresponding to the device under test. This is the same !
number that is printed in the field "DEV."
WHILE test DO BEGIN
» This numeric response is "idiot" proofed somewhat (It will not detect a
wrong number). The operator response is read in as a string then

AT AN N

‘!’q .2"""!“.. h

%! '!- !.‘ \ "n. T" '0." -. .v '0.‘ l'o.' ‘“:- e C'w et "'te



T
" "

S,
ol ol o

- g

e o @ R 2 A

o L e
{Jw.-h
P

Pilaly
.

‘- {'

AV RN
et
I.J.l.l

Y X ] 4

,. ey e
DA ® k";“l.‘\)l.fl.f\_&.. .’f'f\. PR

- _

EA®

71
converted to numeric format with error checking done to be sure the
entry is indeed a number.

WRITE('Enter the device number. ');
READLN(Four);

YV AL(Four,LineCount,error);
» Conversion to numeric format is done here.
IF error = 0 THEN test := FALSE
» If there is no error (jig, error = 0), then the loop is exited by setting "test"
equal to "FALSE".
END
END;
ans :='Q’;
IF (first OR NOT test) THEN ans := 'N'
« This is a complex test done to see what has occurred above. The value
"first" is BOOLEAN. If it is false, then this is not the first time the
file, INDEX.DEV, has been used. In that case, the value "ans" will
be set to "N." The other condition of the test is checking the value of
"test." If it is false, then the device number has already been input and
"ans" can be set to "N" so the next part of the procedure will not exe-
cute.
ELSE BEGIN
« If "first" is FALSE and "test" is TRUE, then the following will be exe-
cuted. Otherwise, the value of "ans" has already been set.

WHILE NOT ((ans ='y") OR (ans ='Y") OR (ans = 'N') OR (ans ='n")) DO BEGIN
WRITE('Was the device you are going to be testing in the list? (Y orN)...");
READLN(ans)

END

END;
IF (((ans = 'n") OR (ans = 'N')) AND test) THEN BEGIN
» If"ans" is set to a negative answer and "test" is TRUE (indicating that the
device number has not as yet been specified), then the following, until
the "QQ", is executed.
LineCount := FileSize(index);




A

‘ ,

N

i 72
:. , « "LineCount" holds the value representing the total number of records
L stored in INDEX.DEV.

_(3,}‘ IF LineCount = 0 THEN LineCount := 1;

[ e The first record in INDEX.DEV is number 0. This is not used in the
| *% system software, and this statement forces that record to be skipped.

4- , test := TRUE;

b WHILE test DO BEGIN

o * This is the top of a loop designed to let the operator double check the de-
) { vice entry he or she is about to make. Until “test” is FALSE, the loop
(| will execute. End of the loop is denoted by "QQQ".

"y WITH indexrec DO BEGIN

K E‘{ WRITELN(Enter the Device Description for Device Number ', LineCount);

;ﬁ‘ WRITELN('XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXxX - X"s indicate 40

;" - Characters.");

o READLN(descrip);

,\_":;-;j » Reads in a 40 character long description of the device under test.

_:'_::: DEV := LineCount;
A"" » Gives the device number,"DEV", the value of LineCount. This way the

,_-: device record can be referred to and accessed using only the device

. :, number.

:-‘ WRITELN('The following is a list of inductor value codes. Please enter the ');

oy WRITELN('the SECOND letter corresponding to the value of the inductor being
used.");

e WRITELN(CLG . .. 44 pH);
N WRITELN(LH . . . 146 uH);
s WRITELN(LI . . . 267 uHY);

> WRITELN(LJ . .. 426 pH');

- WRITELN(LK ... 1mH);
o WRITELN(LL . . . 2.16mH’);

_ ‘:?, READLN(induct);

:ﬁ * Since different inductors are used, a way to reference them needed to be
)

Ll
H 4
A 4

incorporated into the system software. It had to be known from the
start what the inductance was. So, a two letter code was developed to
be used as part of the storage file and bookkeeping file names. The

L

»

e
Al _\ ) b

FA@ s
AEAN

<@ K
SR

:.':"
(Y

..\,."- 0 ) Wy X LAY 4 r - 3 - - -

Wy M T \ TR 0) ALY, ¢+ :
"":‘0'- l':'l':‘l.'-‘l.. U W M l‘,l‘ .......... e"';t’lh o "'ft! n“'d"a\"' Iy Q'!‘A:":"."g n"‘t:‘.»:'.ﬂ".l e:":..’:..? v ‘:"-l -:“.".J‘ ‘-!'":"'




SO
W)

AT, AL LAY

o P o e

o

AN

F U ~

&
s

4_,‘
RSN ST |

P

CXNR SN,

- g - XL X ¥ X
b N leTof Jros ¥ 1-’ ¢

TRt @SS

- - - -

,,__,
LGN

-

,_'..,
B @ .

.....

73

first letter "L" indicates the load is an inductor. The second letter lets
it be known what the value of the inductance was. The reason the
second letter does not start with "A" or end with "Z" is to allow other
inductances to be added at either end. It was deemed unlikely that
values in between the present ones would be used.
induct := UPCASE(induct);
« Translates the character "induct” to uppercase, if needed.
INSERT(induct,Onel,1);
« Places "induct" into the one character string "Onel".
IF DEV < 10 THEN BEGIN
« Creates the storage and bookkeeping filenames for the case of a device
number less than 10.
STR(LineCount,One2);
book := CONCAT('G:DEV00',0ne2,L',Onel, .BK’);
stor := CONCAT('G:BD00',0One2,'L',Onel,'.000")
END;
IF (DEV > 9) AND (DEV < 100)) THEN BEGIN
« Creates the storage and bookkeeping filenames for the case of a device
number greater than 9 and less than 100.
STR(LineCount,Two);
book := CONCAT('G:DEV(',Two,'L',Onel,.BK");
stor := CONCAT('G:BD0',Two,'L',Onel,".000")
END;
IF ((DEV > 99) AND (DEV < 1000)) THEN BEGIN
« Creates the storage and bookkeeping filenames for the case of a device
number greater than 99 and less than 1000.
STR(LineCount,Three);
book := CONCAT('G:DEV',Three,L',Onel, .BK");
stor ;= CONCAT('G:BDO',Three,'L',Onel,'.000")
END;
WRITELN('Here is the entry for Device Number ', DEV);
WRITELN(DEV:3,' ‘,descrip:40,' ',book,’ ',stor);
« This line lets the operator see the entire device record just created before it
is added to INDEX.DEV.

“ o) 4.-,:‘--_'*-? LR AR Sy P ot A T A I T B %0 LTy LN T e Y Sl
- " s el

‘I.’.I. W WAL ARG '!"'n. S A 1, .’p.l.-'.a o.t 8,50, %0, %0,

-ﬂrﬂ

gl

't




S

-
-

o B2

,.'U'.

L -‘- K

- g e L e P - o
PSS
Ir " .'x'\"‘l:'- ,’n

PR o ()
1@ U-'
* AR LY ) te

"a

AN

o
t s a

L T -l .- v la
.(..:-'-\]. ‘./I'r"'/_.: ‘.r ‘.’.‘./' ) T‘;"
a8 Pt A !

438
.

..{‘:“.;. v
Lo L Yo

-

15

------
...........

-'d.'
A

74
END;
ans :='Q";
WHILE NOT ((ans = 'y") OR (ans ='Y") OR (ans = 'N") OR (ans = 'n")) DO BEGIN
WRITEC('Is the entry alright? (Y or N)...");
READLN(ans)
« Asks the operator to verify the accuracy of the record just created.
END;
IF ((ans ='y') OR (ans ='Y")) THEN BEGIN
» The device record is added to the INDEX.DEV.
addedevices := addedevices + 1;
SEEK(index,LineCount);
WRITE(index,indexrec);
ans :='Q"
WHILE NOT ((ans = 'y") OR (ans = 'Y") OR (ans = 'N') OR (ans = 'n")) DO
BEGIN
WRITE('Do you want to add another Device to the file? (Y orN) ... ");
READLN(ans)
» The operator can add another record, if so desired.
END;
IF ((ans = 'n") OR (ans = 'N')) THEN test := FALSE
ELSE LineCount := LineCount + 1;

END
ELSE BEGIN
ans :='Q’;

WHILE NOT ((ans ='y") OR (ans = 'Y") OR (ans = 'N') OR (ans = 'n")) DO
BEGIN

WRITE('Do you want to try again? (Y orN)...");

READLN(ans)

« If the operator was not satisfied with the last record created, the operator
is asked if he or she wants to try again. A negative answer halts the
program.

END;
IF ((ans = 'n") OR (ans = 'N')) THEN
HALTER('Operator unwilling to try to define device.")

o

A R T R R R o AR RS e



"
» ‘ ¥
o
3 7s
i END
< END;
4 :;. * m
: : IF (((ans ="Y") OR (ans ='y")) AND test) THEN BEGIN
“'-:?_ * This test uses the value placed in "ans" when the operator was asked if
2::-\ the device under test was in the list provided when the contents of
:ﬁs INDEX.DEYV was printed to the screen. A positive response means
( the device was in the list, and if "test" is TRUE, then the device num-
| ::j ber has not yet been specified.
oy test := TRUE;
e WHILE test DO BEGIN
‘ - » The device number is now entered using the same error trapping routine
< used before and a check is made to see if the device number is within
the range of values in INDEX.DEV.
- WRITE(Enter the device number. *);
o READLN(Four);
. 2 VAL(Four,LineCount,error);
:{f} IF error = 0 THEN test := FALSE;
o MaxLineCount := FileSize(index);
P IF MaxLineCount < LineCount THEN BEGIN
. WRITELN('Device Number exceeds current index limit (ie, no such device).");
ﬂ_"- WRITELN('Try again.');
o test := TRUE
% END
®. END
i END;
:I:_:: ; test := TRUE;
o WHILE test DO BEGIN
. ?__,  This loop displays the record for the device selected anc. asks the operator
. ;:,’." if it is correct. If it is, the storage and bookkee,ing filenames are
) :f:j placed into the STRING varicoles "storout” and "bookout" in order to
: E‘: be passed out of the procedure to the main program, and the loop
. ow
%
b,
.. .
.::::

RPTrE
O S N MU A S

-“‘.‘ﬂ‘ -"{'t

. N N e TR AT Rt NPT N S S S ST ST
- _,;\{. o ‘"".a‘ .,.'x_, f\ﬂ“’)“'- ,}. . -! DA e T ':,‘-'r N -.:- SR SN '\'\-‘.\ )
B ¥ x A '» £ v ' e, N - L N id '4

........




----------

K.
i 76

" : ends. If the device is incorrect, the operator is asked for a new device
( number, the record for the new device is displayed and the operator is
| &: again asked to verify the record.
:::;’,‘ ¢ .EK(index,LineCount);
;‘_:j WRITELN('This is the device you selected.");
MY READ(index,indexrec);
Sy WITH indexrec DO BEGIN
AN WRITE(DEV, *);
SEE WRITE(descrip:40, *;

WRITE(book,' ');

" WRITELN(stor)
i o,
;‘_3 ans :='Q’;

WHILE NOT ((ans ='y') OR (ans ='Y") OR (ans = 'N') OR (ans ='n")) DO BEGIN
“‘:‘:“: WRITEC('Is this the correct device? (YorN)...";
;‘;; READLN(ans)

L END;

e IF ((ans ='"y') OR (ans = 'Y")) THEN BEGIN
g,,,‘ test := FALSE;

N : WITH indexrec DO BEGIN
R devic := DEV;

s bookout := book;

Q storout := stor

8 END

= END
‘ :’.:: ELSE BEGIN
o test := TRUE;

B ::::: WHILE test DO BEGIN
::I:}_ WRITE(Enter the correct device number. ');
~_._ READLN(Four);

o VAL(Four,LineCount,error);

E IF error = 0 THEN test := FALSE
(2. END;
[ test := TRUE

."«. ‘e
._‘ :~
2
woL
b
®

i

o

v ™

! TS JR ) 7 7 LY y e B A% G i s %, An SN W L a i ¥ % T W \ y 3 4
ol ] (1O ) ! . h Bg¥ % 1659 () (NN
RSO L ! OO MANIR 4 A X N OGN B L A L .'M%.O':b?t At At l.«‘?’o!f?.‘ AN




n"‘l"

o

R

X)

.
)

2 END

END;

:_ CLOSE(index)

.\_:c: END;

e

“ ~7 { i< 3k e 3¢ 2k 2k 3 3k 3 2k e o 3 e e e e e ke 30e e e o s 3 2 s e e e ke ke ke ke abe e o 3 Ak e e 26 e sk e e 2 3 2k e 2 2 e A e 3k ofe e ke o e ok ok ofe 3 e ke 2 ok ok }
"

o BEGIN {MAIN PROGRAM}

&

pass := 'G:PASSER.DAT;

*.* ASSIGN(passer,pass);

‘E:.;‘." RESET(passer);

;, * The file PASSER.DAT is opened, ready to be read.

: ' READLN(passer,passinfo);

\:' READLN(passer,device);

N READLN(passer,timeout);

! N.-E READ(passer,ForBias,RevBias);

v * The first four lines of PASSER.DAT are read into GETDEVIC. The last
,( o two lines are not needed.

o CLOSE(passer);

b IF ((passinfo[1] = 'Y’) OR (passinfo[1] = 'y)) THEN BEGIN

k N « If the first character in the 10 character string in PASSER.DAT isa "Y"
‘; or "y," then the device under test is a new device, different from the
:E: last device tested, or this is the first time through the acquisition cycle.

In either case, new bookkeeper and storage filenames need to be
placed in PASSER.DAT lines five and six.

ZE)
il d

r
+

¥

g_‘ Devices(device, bookkeeper,storage);
\ ,\ » The new names are found.
,‘ 3':: WHILE NOT ((answer ="y") OR (answer = 'Y") OR (answer = 'n") OR (answer
o ='N')) DO BEGIN |
o » The bookkeeping file needs to be transferred from drive A: or created, if
> .
bl this is the first test for the device. This answer to this question tells
p :;::Z: the program STORDATA where to look for the bookkeeping file.
:Z:::j WRITELN('Has the book keeping file for this device been transferred to the ');
V
o
B
K ‘.\‘_:- I
b f"
1 '\‘-:‘

O ORI e X R
.:"‘ s l‘-'l‘k'.‘c‘l‘t"‘q'.‘n‘t‘-"‘u’.‘a'i T Mo ’s‘. a‘. «';';'b‘-"'t .“.'.O..‘O..‘



e 78
W WRITE(RAM disk (drive G:)? {If you are not sure, answer "N"} (Y orN) ... ");
( READLN(answer)
END;
IF ((answer ='Y") OR (answer ="y')) THEN passinfo[7] := 'N;
IF ((answer = 'N') OR (answer = 'n')) THEN passinfo[7] := 'Y";
« The seventh character in the first line of PASSER.DAT is used to convey
the necessary information to STORDATA.
REWRITE(passer);
WRITELN(passer,passinfo);
WRITELN(passer,device);
WRITELN(passer,timeout);
WRITELN(passer,ForBias,RevBias);
WRITELN(passer,bookkeeper);
WRITELN(passer,storage);
CLOSE(passer)
» The new PASSER.DAT file overwrites the old one.

) S

"
2o e

5
«

, £ Rk PN i,
{‘.{'v"‘x ° *Tv 27 ) ‘)."'.' p ."‘. 1.7,

Pl el y

END
END. {MAIN PROGRAM}

l..‘:, e

s

gy

- 0 LT T a2 U N IO o o . \ -
sy \ LY D TONT T AT Ry Oh /0 O X) YK d
'l';'o‘.“p.‘n"‘t"‘ﬂ!‘n'. N SRS A AN M K M 0"::'. n:,'a:!'.l‘ X ":‘?‘.’ he'hy, ‘.\' ) f&"-.n’l.o 8 ’O C ,:',_',Q‘,l.t'i:ﬂl,:'..’:'i,t't,q'.’g'\,| ."l," ’. WY l.:'...A 8 A NSH :'r

!



PR A A A Y

T
«

AJJ}’}J“.

L T

-

-

-
U@ LY. T

= a
o
E

-

faestoleatmt it i oy

APPENDIX E
STORDATA PAS PROGRAM LISTING

79

Qo) ¥ 8 OO Ok
R I b S e I S SR DRI D




7t 80
‘N‘j PROGRAM Bookkeeping;
(.. - » This program is responsible for creating and maintaining the
::::: bookkeeping file. Written for the Turbo Pascal Compiler with 8087
?:: Support. )
A
i TYPE
N ST10 = STRING[10};
L ST13 = STRING[13];
C STR80 = STRING{80];
b
‘::n:‘ VAR
2:':: keeper,stor : STRING[13];
" stopper : TEXT;
“'3 passinfo : STRING[10];
3"1: break,recordit : CHAR;
device : INTEGER;

>

A

ForBias,RevBias,timeout : REAL;

«

vy —
PR

{**********************************************************************}

by on

PROCEDURE halter(errmsg : STR80);
 This is the same procedure found in all of the previous programs in the
acquisition cycle. It is exactly the same as the procedure in GETDE-
VIC.

S

- - -
*
ARG

VAR
name : STRING[12];
going : TEXT[15];

ot 2o

cAES S

-t K N

BEGIN
name = 'G:HALTER.PGM';
ASSIGN(going,name);
REWRITE(going);

W ey %y Ay
' ‘:7_.‘_.'_ DAAAL J

A J ‘.
‘l ..

< .i:Jtif

k]
h Y P S | Tl Wl T 2T AT A Y | (Y. "' Vel X 9 ‘ ] v
‘ ¥ o 2y ", ) O R T ) . ” ) DOOGAII00
2 QLA O BRI ':‘.4‘-.1‘:. AL ! 'o!“-. S u?l':s‘;ﬁ'lh"f"‘l..&.'!l.".0‘.,“0:‘ 4 !‘:‘YM.";"".‘ 3 '-".‘!‘t‘!":‘:".h'.‘n"-‘c"'h’-“‘ e



“

WRITELN(going, There was some type of error in Program Stordata.');
WRITELN(going,errmsg);
WRITELN(going, PROGRAM HALTED");
CLOSE(going);
HALT
END;

{**********************************************************************]

PROCEDURE pass_in_out (VAR info : ST10; VAR DEV : INTEGER;
VAR timeo,fBias,rBias : REAL;
VAR bookkeeper,storage : ST13; IN_OUT : CHAR);

» This procedure is used in all of the succeeding acquisition cycle pro-
grams. Itis used to read or write the file PASSER.DAT. Depending
upon the character "IN_OUT," the procedure reads the values in
PASSER.DAT or writes new values to PASSER.DAT. The values
read are passed to the main program as global variables. The same
variables, possibly altered, are passed back to this procedure prior to
the end of the program to be written to PASSER.DAT.

VAR
pass : STRING[13];
passer : TEXT;

BEGIN

pass := 'G:PASSER.DAT";

ASSIGN(passer,pass);

IF IN_OUT =T THEN BEGIN

« If this test is met, then the values are read from PASSER.DAT.

RESET(passer);
READLN(passer,info);
READLN(passer,DEV);
READLN(passer,timeo);
READLN(passer,fBias,rBias);

e I

R N RN T T R A Fu G ARG TR N
‘n’. W WA A { AT :“'n\!h :'o !' 0 *‘ A :‘? Wb !\M. '0. !l. o!l -!t‘:?i'm m‘n 0 l’u‘-‘o‘. i'-'l‘




N
!:::
. .
o
| 82
E‘ READLN(passer,bookkeeper);
{ READLN(passer,storage);
' f CLOSE(passer)
e END;
e IF IN_OUT = 'O’ THEN BEGIN »
. « If this test is met, then the values are written to PASSER.DAT.
o REWRITE(passer);
b WRITELN(passer,info);
E: WRITELN(passer,DEV);
(’ . WRITELN(passer,timeo);
s WRITELN(passer,fBias,rBias);
v 23 WRITELN(passer,bookkeeper);
?4 WRITELN(passe_r,storage);
‘ CLOSE(passer)
o D
:_':' END; (End Pass_In_Out}
v
(" : { o 2 ke ade o sk e 3fe ok s ke S o e 3 2 e e e ke s e ok Sk ke ok 2k 3 e 2k e 3k 3k e 2k ke ke e e 3k e ke e s 3 e e e e e sk 3k sk e e e e e ke ok e e A e ok e ok ek Xk }
:._:: PROCEDURE findbookkeeper(bk : ST13; newdevice : CHAR),
| :;: » This procedure is concerned with first, finding out if the bookkeeping file
:: exists. If it doesn't, then it creates a new bookkeeping file on the RAM

EL)

disk. If it does exist, the procedure will find it and transfer it to the

s RAM disk if it hasn't been already.
o,
; ,1-\

1.
7 VAR
,.,, transfer,ans : CHAR;
‘:\ book,temp : TEXT;
%i abk : STRING[13];
s R,I : INTEGER;
N
b BEGIN
ASSIGN(book,bk);

IF ((newdevice ='y") OR (newdevice = 'Y")) THEN BEGIN

R G u L
© X2777 0 M@ r L2 ]| ®

. e

»
B S
- .'t ,. .‘. .'

L PO T T LM T L RO N N0 Y L A LN Oh o R AN ) 0 g
!. L "" ‘). S “'* 9 R’I \ 2 AN l..,'p ,.‘I !‘u T u.'.!'!'n.," l q"::‘e‘. _ -'9!2‘!!“5'!"11"0. !:‘-‘,'.!":!‘!:u .‘:5‘,":"”"'

Rl mulC A ST S N T iy M T o B A



83

"3

E » The variable "newdevice" is actual the seventh character in the first line of

e PASSER.DAT. If that value meets the test, then the following, until

ic the "Q" symbol, is executed.

PN ans :='Q’ |
4 1 WHILE NOT ((ans ='y') OR (ans ='Y") OR (ans = 'n") OR (ans = 'N')) DO BEGIN ‘
WRITE(IS this the first time this device has been tested? (Y orN) . .. ");
oW READLN(ans) i
’t: , END;

'ﬁ: IF ((ans = 'Y") OR (ans ='y")) THEN BEGIN
k‘- d WRITELN('Creating new book keeping file . . .*);
e REWRITE(book);
e FORI:=1TO 10DO
y :_f:} WRITELN(book, 0 O

o « If this is the first time the device has been tested, then a new bookkeeping

._; file is created. The file's first 10 lines are "0 0." These numbers will

! ::::: be changed as forward and reverse bias settings replace them. This al-

\ :-:': lows for 10 different forward and 10 different reverse bias setting.

Yo WRITELN(book, None.");
{ ¢ The next line will contain the comment line, but for now, holds only the

; N word "None."

"'-_L;, FORI:=1TO 10 DO BEGIN

g FORR :=1TO$ DO

WRITE(book, 0 0');

-
-

0

i WRITELN(book,’ 0 0

p .‘\‘,::: + The final section of the bookkeeping file is 10 rows of 20 columns of ze-
\j.': ros. See Chapter 3, Files Created and Individual Structure for more on
M T

o this section.

e END;
o CLOSE(book)
¥ END; (IF ((ans ='Y...)

b

3 * Q
o8 IF ((ans = 'N') OR (ans = 'n’)) THEN BEGIN
1 .
! ‘3-: « If this was not the first time the device had been tested, then the follow-
:”‘ ing, until the "QQ" symbol, will be executed.
'

]

2

Cal

M)

Nt

Lot

W

o

Mol o ~ i ‘ . . ULk . .
[P Y Mt Ml ) MINNN e ORI OO J v 35, ?
OO SOSONGACAUICIONC f:-'?!:'90-'!0.'?»3‘.-3'903'?-39:3'.'03'?u:‘59‘."3'30:'?':‘!0f",o:"c:"o:"0."0:‘36:":.."#" n‘af.'f'\".v:!:n‘!n‘x"!u‘f«:‘!0-‘.':‘.'f‘ftf‘:':‘!':‘fh_‘3':‘3*:‘3‘:"

nnnnnnnn




‘o ol
-«

o
e

>

~

A 84
o

‘. abk := bk;

( DELETE(abk,1,1);

o INSERT(A',abk,1);

j:: » These two lines change the bookkeeping filename from

.l::' G:DEVxxxLL.BK to A:DEVxxxLL.BK and places that new name in
» the STRING, "abk."

\ ans :='Q};

o WHILE NOT (ans = 'Y") DO BEGIN

:\ « This is the top of a loop which looks for the file on drive A: and copies
( the file to the RAM disk.

M- WRITELN('Insert the disk containing ',abk,' in drive A:");
'.};ﬁ » This line tells the operator to place the disk containing the bookkeeping
P file in drive A:.

g :" WRITE('Press <RETURN> when ready.");

Y N READLN;

N ASSIGN(temp,abk);
o ($1-)
(5- RESET(temp);
o5 {$I+)
b TF loresult = 0 THEN BEGIN
4 }’ + The program now looks on drive A: for the bookkeeping program. If it
o finds the file then it will be copied to the RAM disk by the next four
_ lines. The value "ans" will be set to "Y" and this WHILE loop will
_, end. Otherwise, the loop is re-executed and the operator can place a
i different disk containing the correct file in drive A:.
ey REWRITE(book);

WHILE NOT EOF(temp) DO BEGIN

:E READ(temp,transfer);

;:‘.' WRITE(book,transfer)
: f.'.'~ « The file is transferred from A: to the RAM disk, G:, one character at a
LA time until the End Of File is reached.

- END;

: ~ CLOSE(book);
! : CLOSE(temp);

)

ol

- .
..-
L e Wy

IR

) YO )

¥ d L i) () L% N » | Byl ‘!
VN K| » LSRR AN AN '&I‘o l‘o‘l‘:\‘v l‘u.‘l'-‘l’o .:'lh'o'!‘l‘»'I'.'I'..Q‘!.s‘?‘x !.0.. AN R :'-. ‘!‘-h.:‘t'l‘!‘:'.‘ﬁ



S g sy uag s CIILY W [PTRLPTIC v LAk Al Al VAR aa@ all il el Sa® Aa o R amb iud Al A RE AN Ak Vug hap -

=

D)
o
- . v
a0
Ay 85
W
b:" ans := IY'
END
ELSE BEGIN

X7

« If the "loresult" was not zero (jg, there was an error), then the screen is
cleared and the line below is written to the screen.

- - o-;n
K
X

CLRSCR;
= WRITELN(ERROR ACCESSING FILE ON SPECIFIED DRIVE.);
3 ans :='Q};
o WHILE NOT ((ans = 'y") OR (ans ="Y') OR (ans = 'n') OR (ans = 'N')) DO
' BEGIN

gy

o * This gives the operator a chance to decide to try again or not. If the an-
f::'.: swer is no the program is halted using the procedure HALTER.

T WRITE(Try again? (Y or N)...");

o READLN(ans)

b END;

::j.:

IF ((ans = 'Y') OR (ans ='y')) THEN ans := 'Q’;

o IF ((ans = 'N') OR (ans = 'n)) THEN

"’3 HALTER(User initiated Halt.)

- END (ELSE}

o END {WHILE NOT ((ans ="'Y"...}

: :::; » End of the loop which transfers the bookkeeping file to drive G:.

02 END (IF ((ans = 'n...)

I v * QQ

5-. END (IF newdevice...}
j_:': o If "newdevice" had been "N," then the entire procedure would have been
iy skipped, and it would have been assumed that the file had already been
?‘ transferred to the RAM disk. This is done so that on repetitive tests the

' \‘:{: procedure does not execute when it is not needed.

E;’_ END; {END PROCEDURE]}

N

‘ég {**********************************************************************}

»

X :.- PROCEDURE updatebk(bdstring : ST13; VAR fBias,rBias : REAL; VAR bd : CHAR),

: ;:3 « This procedure is used to maintain and update the bookkeeping file.

;5 )

AN ARNT N by .t?-‘.t‘.l?c.-.t.‘n.-, o 'zf-!u!o.n':h!-!:!t!:!a!a .i s !‘.l?-.--! ..o.m:e»:e.?:?-‘.e.o.!.s '.,. SO XM LN



S
L]
o
9 ‘o
S
o 86
o
N
(.‘,-. TYPE
QSE:: setting = ARRAY[1..2,1..10] OF REAL,;
¥
“:,y": intarr = ARRAY/[1..2,1..10,1..10] OF INTEGER;
R
») VAR
S : setting;
N testcount : intarr;
: long : STRING[80];
{ Y. X,IR,C : INTEGER;
'{f temp,book : TEXT;
t: STRING[13];
o transfer,ans : CHAR;
o
BEGIN
| ASSIGN(book,bdstring);
odN RESET(book);
"- ‘.
( ans :='Q’
o WHILE NOT ((ans ='y') OR (ans ='Y") OR (ans = 'n") OR (ans =. 'N')) DO BEGIN
~ [
:‘ WRITE(Did break down occur? (Y or N) ... );
:: "i READLN(ans)
' » The response here serves two purposes. First, it tells the rest of the pro-
o cedure what type of update needs to be done. Second, the response
f will be stored as the first letter in the first line of the storage file,
:::;'. BDxxxLLA.yyy. The response is yery important to the programs,
s -, PLOTDATA and TABULATE.
2 END;
o CLRSCR;
e
! '\-_‘-:; bd := ans;
X WRITELN('Here are the current forward and reverse bias settings."); ,
hd - WRITELN('Forward Bias . . . ',fBias:0:6,' Reverse Bias . . . '1Bias:0:6); ;
>
e * These lines print to the screen the current values for the forward and re- |
,3:: verse bias setting stored in PASSER.DAT. If they are not correct, they |
, :: must be changed. As it was not envisioned that the settings would
@
2N
b
’i
b7
1o I
W
“\
k"" - AN -

- AL ALY AN 0 D O O N " P R N O 0 ‘
h AR SR (OO J .. ) OO
A A”v W l‘l‘!‘i’r ) \Q.ﬁ.. IR AT A7 M e .'" W ., d'n,l’o?":e‘ lf":‘."o"!:t‘.'a{“&!l X .C:','Q ¥ "‘ " "."'c. ".‘. ¢ 5y o"!‘" .!‘l.s.'ltg.tf’!l..l'

.............



DRSCTA W CL WL R WL WU L WO W WA U PO T PUR YOR Y ON ICR e tva 8'a &' B a4, B Al aTav AN Sal e s 2 vam o 24,

KX
e
oo
[}
% 87
x*": remain constant for a large number of tests in a row, the update process
:\3 is executed every acquisition cycle whether needed or not.
] ans :='Q}
:_':j FOR1:=1TO 10 DO
b READLN(book,s[1,1],s[2,1));
* The first 10 lines of the bookkeeping file are read in to the 2 by 10 array
N 5.
:-_:':: WHILE NOT ((ans ="y") OR (ans = 'Y") OR (ans = 'n") OR (ans = 'N')) DO
NN BEGIN
( WRITELN('Is the Forward Bias Setting correct for the measurement just taken?');
- WRITE( (YorN)..."%;
:: READLN(ans)
"s:. » The question refers to the bias setting currently in PASSER.DAT.
O) END;
B IF ((ans ='y") OR (ans = 'Y")) THEN BEGIN
! ?‘:E » If the setting is correct, the breakdown counts in section three of the
'*).'- bookkeeping file are updated as outlined in Chapter 3, Files Created
(. and Individual Structure.
o X:=1
:§€ WHILE fBias <> s[1,X] DO X := X + 1
E.‘ - * The columx? position of the z.xppropljiate breakdown couTlt pai.r is located
:') by matching the current bias setting to the one contained in the array
B
'\-') END9
e IF ((ans = 'n") OR (ans = 'N')) THEN BEGIN
~.-"" « If the setting is not correct, then a listing of the settings stored in the
R bookkeeping file is printed to the screen.
' -:::_-i WRITELN(Here are the Forward Bias Settings currently on disk (zero = no setting).");
T FORI:=1TO 5 DO
o3 WRITE(s[1,1]:0:6," *);
®. WRITELN;
E{ FOR I:=6TO 10 DO
‘.' ‘1::’,w WRITE(s[1,1}:0:6,' ');
o WRITELN;
| ]

oS T
"(’I.

s
e

" T ] QU

Y- () o Y, M OO T O DO AN
A A TE A LYY ‘ w -@’”9"*.o"!zﬁfo":\!',tf‘.:'l:-"?:’v



2t

o
]
4
:
(3
.
<
L3
3
o
1
;
-
.
.
[»
.

@

d

s

S 88
L™,

! ans :='Q";
{ WHILE NOT ((ans ='y") OR (ans = 'Y') OR (ans = 'n') OR (ans = 'N")) DO
~

o BEGIN

}_I: WRITELN('Is the setting used on this test in the above list?"):

Ny WRITE( (YorN)...");

v READLN(ans)

i IF ((ans = 'n') OR (ans = 'N')) THEN BEGIN

f N « If the current setting is not contained in the bookkeeping file, then the
{ operator is asked to input the new setting.

-, WRITE('What is the current setting? . . . ");
A READLN(fBias);
&’_'i I:=1;

® WHILE s[1,I] < 0 DO

< I:=1+1;

N .
; ¥ s(1,I] := fBias;
‘: :?' X:=1

» The new setting is placed in the position of the first zero value in the ar-

~~

ray "s." The column location of the breakdown count pair is also ob-
tained.

N
P

7,

END;
IF ((ans ='y") OR (ans = 'Y")) THEN BEGIN
WRITE('Please enter the value of the current setting. . . . ");

L
>

L)

e~ READLN(fBias);
N X:=1;
N WHILE fBias < s[1,X] DO X := X + 1
,.:. « If the current setting is in the bookkeeping file, the operator is again
o
:'.j asked to input the current setting. The setting is compared to those kept
:‘ in the array "s." When a match is found, the location is used to provide
- the column of the breakdown count pair.
. » This method of file update is not elegant, logical or simple, but it does
f-';: work. More trouble was involved in changing this procedure than it
- was worth. So, it wasn't.
o END;
'
o
L)
o
e
il
[ ]
o
L) l'
Ko

&

P A T T T
X .,u .a"" "

- N fp e A W s
ke A ﬁ-ﬂ&“ﬂ R oA

T s y R Y Il
24 i LR e e R AT T N NN A NP e A N AN TN N



-
=,
3

‘
%
3 .
; $ END; (If ((ans = 'n'...forward bias)
!_ ] ans :='Q";
X i‘ WHILE NOT ((ans ='y') OR (ans = 'Y") CR (ans = 'n') OR (ans = 'N")) DO
s BEGIN
ﬁ‘."t' WRITELNC(ISs the Reverse Bias Setting correct for the measurement just taken?');
: WRITE( (Y or N) ...");
ey READLN(ans)
3:::. 4 END;
::,"3;' * The exact same method used to update the forward bias setting was used
i N to update the reverse. The only difference is that instead of using the
W s{1,X] values, the s[2,Y] values were using. Where Y is the row
: ""_- position of the breakdown count pair.
e IF ((ans =y) OR (ans = 'Y")) THEN BEGIN
" Y =1;
G0N WHILE rBias < s[2,Y]DOY :=Y + 1
R END;
3:_33 IF ((ans = 'n’) OR (ans = ‘N')) THEN BEGIN
O

WRITELN('Here are the Reverse Bias Settings currently on disk (zero = no setting).");
FORI:=1TOS5DO

~

EE; WRITE(s[2,1]:0:6, ");
b WRITELN;
el FOR I := 6 TO 10 DO
__. WRITE(s[2,1]:0:6, );

\: WRITELN;
y _33_‘; ans :='Q";

o WHILE NOT ((ans ='y') OR (ans ="'Y") OR (ans = 'n') OR (ans = 'N')) DO
° BEGIN

"E\ﬁ WRITELN(Ts the setting used on this test in the above list?");
o WRITE( (Y orN)...");
. g: READLN(ans)

° END;

o IF ((ans = ') OR (ans = 'N")) THEN BEGIN

l-;:Z; WRITE('What is the current setting? . . . ");

T READLN(zBias);

5

X
A
[ ]

B P T LR P AL RN “u e P S W - ~ AT AR W M) - AR L
St o N BN RN M o R I AT 40 SR S
": (5 00 ) ‘,l (] 'l () z '. ',‘{‘ "Q'(},\.’ ‘4‘ LhNP X0 s q‘ &l! A 2‘..' "n (X i .-":-\"«'.. X DJ,‘O.“I .th 'l,.\. .I ... '» D.!* a3 IAL N W A



90

1:=1;
WHILE s{2,I] < 0 DO
I:=1+1,
s{2,1] := rBias;
Y:=1
END;
IF ((ans ='y') OR (ans ='Y")) THEN BEGIN
WRITEC(Please enter the value of the current setting. . . . ");
READLN(1Bias);
Y .=1;
WHILE rBias < s[2,Y] DO Y =Y + 1
END;
END; {If ((ans = 'n'...reverse bias}
e The column and row position for the breakdown count pair have now
been found.
» The following is involved with updating or not updating the comment
line. If desired, the line can be changed.
WRITELN('Here is the current comment line for ',bdstring,".");
READLN(book,long);
WRITELN(long);
ans :='Q’;
WHILE NOT ((ans = 'y") OR (ans = 'Y") OR (ans = 'n) OR (ans = 'N')) DO
BEGIN
WRITE('Do you want to change the comment line? (Y orN) ... ");
READLN(ans)
END;
IF ((ans ="'y") OR (ans = 'Y")) THEN BEGIN
WRITELN(Enter new comment line.(Maximum of 80 characters)');
READLN(long)
END;

» This ends the section concerned with updating the comment line.
FORR:=1TO10DO
FORC:=1TO10DO
FORI1:=1TO2DO

s, Q 0 by S
’ cfi‘:elfoft,'u!:?ofO’t!“o!‘?»!“h“.‘o. !




P
e
L
%
f: < 91
" READ(book,testcount[I,C,R));
(7 o * The third section of the bookkeeping file is read and place in a 3 D array.
\‘f{ IF ((bd ='y") OR (bd = 'Y")) THEN BEGIN
::;‘:' testcount{1,X,Y] := testcount[1,X,Y] + 1;
N testcount{2,X,Y] := testcount[2,X,Y] + 1
D} END:
' ?: o If breakdown occurred both the number of breakdowns,
;E "testcount[1,X,Y]," and the total number of tests, "testcount[2,X,Y],"
;. * are increased by one.
{ IF ((bd = 'n") OR (bd = 'N)) THEN
o N testcount[2,X,Y] := testcount[2,X,Y] + 1;
‘}E  If breakdown didn't occur, then only the total number of tests is in-
(. creased.
. CLOSE(book);
o REWRITE(book);
,E“ » The bookkeeping file is closed and then re-opened in preparation for it
E:E being overwritten with a new, updated, version of the bookkeeping
{ file.
-~ FORI:=1TO10DO
i WRITELN(book,s{1,1]," *.s{2.1]);
-. » The bias settings are written to the bookkeeping file on the RAM disk.
"' WRITELN(book,long);
~7 « The comment line is written.
fo FOR R := 1 TO 10 DO BEGIN
oy FORC :=1TO9DO
.’ FORI:=1TO 2DO
-:' WRITE(book,testcount[I,C,R],' ');
:‘_:': WRITELN(book,testcount[1,10,R],' ',testcount[2,10,R])
o END;
- « Section 3 is then written.
o bd := UPCASE(bd);
_‘_i: CLOSE(book)
"R END;

b

0 ! 0y Q %Y (» ‘ P T N T T T N\ T R A Bl hy
“ BRSO AN s':.!h'-'o‘!h‘!::‘!za‘! BN, .h‘!':‘!“‘,.’g"%‘!'o‘!'n‘!b Tt il tnetiin i utnsten tn e e mlinte. stitnilittes



g

)

[}

"

1)

o 92
)

;‘ $ {************#*t*t*****###*t**#*******##*#*t*#**##t*#**t*********##****}
{

e BEGIN (MAIN PROGRAM})

o

e

- pass_in_out(passinfo,device,timeout,ForBias,RevBias, keeper,stor,T);

v « The global variables from PASSER.DAT are read.

: :.\:; findbookkeeper(keeper,passinfo[7]);
i 3 » The bookkeeping file is created or copied over to the RAM disk.

>

updatebk(keeper,ForBias,RevBias,break);
 The bookkeeping file is updated.

A&

-

oY DELETE(passinfo,3,1);
B INSERT(break,passinfo,3);
a : e The "Y" or "N" response to wether or not breakdown occurred is placed
® in the third character of the first line of PASSER.DAT.
e recordit :='Q";
"‘ WHILE NOT ((recordit = 'y") OR (recordit = 'Y') OR (recordit = 'n') OR
P> (recordit = 'N")) DO BEGIN
"‘ WRITE('Do you want to keep this run? (Y or N) ...");
; :,: READLN(recordit)
i.,:: END; .
:—;‘5 » The operator is asked if he or she wants to store the data currently dis-
¥ played on the 7612D.
IF ((recordit = 'y") OR (recordit = 'Y')) THEN BEGIN
o DELETE(passinfo,6,1);
% INSERT(Y',passinfo,6)
END
: o If the data is to be kept, the sixth character in the first line of
N PASSER.DAT is set to "Y." This will cause PROCESS!1 to read the
a8 data and place it in two files on the RAM disk similar to as was done in
N HARDWARE, Procedure Calibration. The character will also tell
,‘ PROCESS?2 to read those two files and calculate the Instantaneous
- Power and Energy.
N ELSE BEGIN
i DELETE(passinfo,6,1);
g
&
.
o

- = o e

'),7 ‘-v‘- 'v".‘r',,'p "q""v"'-'"-ﬁ’v"#"\-f'-ﬁ""“-‘"“"."-f\\ "",\*'n AN, O ™ i " { A\ 0 $ - n { Y A
A s e dd I s L L 0 . L TR0 e AT RIS A DAL SR KRN TN i R R R LN O

----------------



.‘-

) @ SRS

X
)\ l‘..:(.

>

i S 1

-
-5

'f

=

A

4

Al

N
_faf

*

-
h N N §,
Vo oh 00, 40 110, 0

93

INSERT(N',passinfo,6)
END;

« If the operator does not want the data, then "N" in position 6 of the first
line of PASSER.DAT will tell both PROCESS1 and PROCESS2 not to
execute.

recordit := 'Q";
WHILE NOT ((recordit = 'y") OR (recordit = 'Y") OR (recordit = 'n') OR
(recordit = 'N')) DO BEGIN
WRITE('Do you want to measure the Base-Emitter Voltage? (Y orN)...");
READLN(recordit)
END;

* The operator is asked if he or she will measure Vp,e. If the answer is no,
the second character in line one of PASSER.DAT will be set to "N"
and the program will not execute. If the answer is yes, then the char-

acter is set to "Y" and PROCESS2 will pause as it finishes calculating
P and E to allow the operator 10 acquire Vpe. Then, Vpe will be col-

lected and written to a RAM disk file like Ve and L.
IF ((recordit = 'y') OR (recordit = 'Y')) THEN BEGIN
DELETE(passinfo,2,1);
INSERT('Y',passinfo,2)
END
ELSE BEGIN
DELETE(passinfo,2,1);
INSERT('N',passinfo,2)
END;
pass_in_out(passinfo,device,timeout,ForBias,RevBias, keeper,stor,'O")
» The changes in the global variables are passed back to this procedure
which then writes a new PASSER.DAT, destroying the old.

END. {MAIN PROGRAM}

' o)) OB DD D OOAOHOBONO OB
R A A A K T A Ry N O DR

‘!'l‘




Sy

ol

- >
AL

APPENDIX F
e PROCESS1.PAS PROGRAM LISTING

29

-~

v’..-l‘

L JRIPAIA
- R R

94

-
-

"

-
| @ "L

-,
7
]

*

e

2 g WY

T A NN G A By 5 k) Q O] () i QIS fostatyd!
SRS T L 5 v L ¢ N S R R il el aluh Rt an Ryt




W
R 95
R
Wb PROGRAM Process_Level_One(INPUT,OUTPUT);
(;.1‘: * This program reads the data captured on Channel A and B. It writes the
.:,\ : data out to two separate files, one for each channel. This program is
1%y
! > written for the MS-PASCAL compiler.
o
t ) {***********************************************#********#***t*#*******}
L
b
o ($INCLUDE: 'IODECL.EX'}
"T‘Z » The file IODECL.EX contains the declarations necessary to the Com-
mand Library. These declarations are included as part of the code for
& this program by using this statement.
2N
: ::;- {*****************************************#*******#********************}
.
o~ CONST
o
J‘__
iy bus=7;
U
{

TYPE

PP,

WfeCulal

STEXT = TEXT(45);

STR13 = STRING(13);

ST10 = STRING(10);

STR9 = STRING(9),

LST80 = LSTRING(80);

setting = ARRAY(1..2,1..10] OF REAL;

A

2%

%
»

s, OSSN

N VAR
8 : bookkeeper,storage : STRING(13);
o passinfo : STRING(10);
.'-, answer,process : CHAR;
e device : INTEGER;
Z. ForBias,RevBias,timeout,Hscale : REAL;
R
]
o

s

-

- 0'.

R )

W, A NN WA A R IO ‘ Nty
BN R A O e M A S O e K M KA\ SO U DS BRSO DKM




- Ll g D T T e b 2 —r WY “—'—vw‘“v—"ﬂﬂ‘r—"mj

E’ ) 96
:;' {********#************t************#***##*******#**###***#***#******#**}
Rl
{
o {$INCLUDE: 'IOPROC.EX')
) "
K\ . * Includes all the external function declaration necessary to use the Com-
B
mand Library.

:!!“ 1brary

t
.}{ {****************************************************************#*****}
& :’,'_S

~ .

X PROCEDURE ENDXQQ; EXTERN;
(!" » External procedure which is part of extended MS-PASCAL. Allows the
:: program to be terminated prior to the normal ending. Performs the
{ :7‘:: same function as HALT (not HALTER) in Turbo Pascal.
N
i. ¥ ! {**********************************************************************}
®

I:':
] ;-Z: PROCEDURE halter(errmsg : LST80);

' ﬁ  Same procedure as in the preceding programs. Halts the data acquisition

£ software.
(

S VAR

"
h :: name : STRING(12);

o going : TEXT(15);

T BEGIN

7 name := 'G:HALTER.PGM;

N ASSIGN(going,name);

} REWRITE(going);

{::; WRITELN(going, There was some type of error in Program Processl.");

o

'.j:j WRITELN(going,errmsg);

WRITELN(going, PROGRAM HALTED.");

° CLOSE(going);

i3 ENDXQQ

END;

o

<

. T

%

. -

L.

e

R o




®

" at

o
..l 9 7
: {******************************* ************************##*************}
‘al]
{
s
A PROCEDURE pass_in_out (VAR info : ST10; VAR DEV : INTEGER;
o X VAR timeo,fBias,rBias : REAL;
"y VAR bookkeeper,storage : STR13; IN_OUT : CHARY);
:;). « Same as in STORDATA see that program for details.
3
3‘ :"

>t VAR
"u, pass : STRING(12);
( passer : STEXT;
%
L BEGIN
ol pass := 'G:PASSER.DAT};
H

' ASSIGN(passer,pass);
' ‘ S‘f IF IN_OUT =T THEN BEGIN
o RESET(passer);

Lot
9 READLN(passer,info);

e
( READLN(passer,DEV);
D READLN(passer,timeo);

3

: :;.: READLN(passer,fBias,rBias);

:,- READLN(passer,bookkeeper);

e READLN(passer,storage);
N CLOSE(passer)

) END;

s IF IN_OUT ='0' THEN BEGIN
i REWRITE(passer);

f‘ WRITELN(passer,info);
i WRITELN(passer,DEV);
s WRITELN(passer,timeo);
N WRITELN(passer,fBias,rBias);

e WRITELN(passer,bookkeeper);
: ;‘-::; WRITELN(passer,storage);

' .::,’. CLOSE(passer)

‘ »':.': END

@

./'1:

Y }.:P

(.

Yo

L J

X

Ve AP : w VW ™ " Ar L U] O TN oW TR W %R
‘.:'!:.-"! ‘,' L n'! s'. DO ) ‘Yf’(“' RN .'A ‘ AR AN RN t % ':?s'c. !!l'u%.'& DMLY




X END; {End Pass_In_Out)

. [Frrkrhb bk Rk kR Rk R Rk ok d k|

A PROCEDURE error_handler (error : INTEGER; routine : STRY; A : CHAR);

») « Same procedure as that found in HARDWARE. See that program for
i details.

j\f_‘ VAR

ok estring : STRING(40);

s BEGIN
o~ IF error <> noerr THEN

P BEGIN
° Errstr(error estring);

Ve WRITELN(Error in call to ',routine);
WRITELN(error:6,' ‘,estring);
¢ "-G: IF A ='N' THEN

e BEGIN
A% WRITE('Press <RETURN> to continue . . . ');
o READLN
s END;
ol IF A ='Y' THEN
:) BEGIN
<~ WRITELN('CORRECT ERROR - Press <RETURN> to continue.");
oY READLN
N END

o END

1 END;

'C\. {**********************************************************************}

PROCEDURE setup(tout : REAL),

LS TN R N S IS UL P B 1P T e I N
e LA L S A L,
b0t 20 Dt o AVRT VT, ST, -

A N R )
S
2

N LA e .
i L ' -\"*
» ALY TR VAT T W 0T TV

o

\ ! A YN AT G W N,
RS e G SRR




T

»,"l

R

@

St

)::. \

e 99
:33:'. » Sets the bus to a known state. Makes sure that the IOTIMEOUT is set.
o
{ Sets the 7612D to remote so it is ready to receive later commands from
) the bus.

Lot

o~

e VAR

N c¢md :INTEGER;

;i' " endline : STRING(2);

N'

'::I A

e BEGIN
( ’ cmd := IOEOX(7,1);

AN error_handler(cmd, IOEOI ','Y");

1 ;1‘, endline[1] := CHR(13);

W endline[2] := CHR(10);

‘ cmd := IOEOL(7,endline,1);

':f-"- cmd := IOREMOTE(?7);

::: error_handler(cmd, TOREMOTE ','Y");
L c¢md := IOTIMEOUT(7,tout)
o END;
o

. .‘:‘: ke 3k 2 3¢ o 3l e 2 e 2k ke e ke 3 2k e 3k e e e e 3k 3k ke ke ke e e 3k o e 2k 3k e e 3k 2k e e 3 ke 3k e ke 2 A 3 3k 2k 2 e s e 3k 2k 3k e Ak e e 3k 3k ke 3k e ok 2k ok ok ok
- ( )
% .
)

oo PROCEDURE horscale (VAR Hsc : REAL);

P « This procedure re e horizontal scale of the both channels of the
pA This procedure reads the horizontal scale of the both channels of th
¥ ?:;'.j 7612D. The values must be the srme or the program will abort.

v,

h}.-:

why VAR

9 response : STRING(2S);

N ::9 ILcmd : INTEGER;

E:: HscA,HscB : REAL;

i vsc : STRING(S);

@

Vo BEGIN

:’ vsc := 'HSFA?;

\Oy cmd := IOOUTPUTS(70200,vsc,5);

. Sl

.\.

::. o

:’:;: 8

il

Yt

e 0 b % T y n w { R * h » » (X - » X
':"!."n:"h"m"': v.i':ﬁi‘n. '::','l:' X -'-"!:"h‘ 0t a et e n ‘.'2‘2'.‘!'é.'t‘!\'t‘:‘!h‘:':‘.h taslelnste ittt 0N



)
QS
‘.:: 100
o » Sends the query to the 7612D which causes it to return the Horizontal
( - Scale Factor of Channel A. The value is in seconds between data sam-
1 ples.
Lo 1:=25;
7~ cmd := IOENTERS(70200,response,]);
f . « The characters preceding the scale factor are read.
L, cmd := IOENTER(70200,HscA);
a  The horizontal scale factor is read.
By cmd := IOENTERS(70200,response,l);
o The trailing characters are read to release the 7612D.
R vsc := 'HSFB?';
5 cmd := IOOUTPUTS(70200,vsc,5);
e « The procedure is repeated for Channel B.
"o I:=25;
j; cmd := IOENTERS(70200,response,l);
3 cmd := IOENTER(70200,HscB);
‘ ::: cmd := IOENTERS(70200,response,I);
; IF HscA <> HscB THEN BEGIN
o » The scale factors are compared. If not equal, the program is halted.
o WRITELN(Horizontal Scale Factor are not equal. They must be.");
) WRITELN('Program Halted.");
HALTER('Horizontal Scale Factor are not equal.")
q END
o ELSE Hsc := HscA
1 :E:; » The horizontal scale factor is passed out to the main program.
v END;
.1
R
::: {**********************************************************************}
w
:.:. PROCEDURE ChannelA(HscA ,fBias,rBias : REAL; stor : STR13; breakdown : CHAR);
e « Channel A's data is read and written out to RAM disk.
55
L VAR
-l line : STRING(128);
e
-2
bz
’. )
. .."
L]

MW N R e
Ll




QK
0 X
) 101
W store : STEXT;
.;._\. state,LR,C,cmd : INTEGER;
: :: response : STRING(40);
’;. incoming : CHAR;
o vsc : STRING(S);
e VV,probeA : REAL;
ey readit : STRING(6);
by going : STRING(14);
L
( BEGIN
i WRITELN(Reading data from Channel A.);
K _':'5 probeA :=1;
K 2:: * Multiplication factor for the probe attached to Channel A. In this case,
» the plug-ins on the 7612D recognize the attenuation factor on the probe
"’::-t. and automatically compensate for it. So, no scaling is needed. If the
: ';:f probes are changed, then these values need to be re-examined.
> FORI:=1TO9DO
| goingl[I] := stor[I];
e going[10] :='A";
- TOR1:= 10 TO 13 DO
: ; going[I+1] := stor([I];
e These last five lines take the storage filename, "stor,” which was read
&N from PASSER.DAT and transferred to this procedure and makes a new
. j'_: storage filename called, "going.” "Going" has an additional letter "A"
X 3;: after the inductor designation signifying that the file contains the data
ot from Channel A, namely V... For more information see Chapter 3,
:_ Figure 8.
i ASSIGN(store,going);
,"'~ REWRITE(store);
{‘ WRITELN(store,breakdown):

.-1 WRITELN(store fBias,' 'rBias);

'2’ ¢ The breakdown "Y" or "N" character is written in the first line of the file.
7 Next, the forward bias and reverse bias settings are written in line two.
:; vsc :='VSL1?%

[ )

e %

' . . ) e . .
D00 008 0 % NN \ OO
P \ WY :
DTN e i e SO DRRA TN .:’M eanti et it

OO DM OO OO O QOO OAOUOONNNOOON A GO
thantnlinhniy :“' ‘fﬂ"f0..,.\'.’.'5“|"‘|"e|'|:Q'l._g.l.!':‘,"Q’ .',‘.\._g'lel'l‘l'.!\'.?g’l‘,!‘.. ;'AJ.Q,'.:' W



AN
I
.
L
,n 102
v:‘g’ cmd := IOOUTPUTS(70200,vsc,S);
{ 1:=5;
W N cmd := IOENTERS(70200,vsc,D);
,._E: cmd := IOENTER(70200,VV);
™ . I:=40;
D) cmd := IOENTERS(70200,response,l);
oy * The last seven lines read the value of the Volts/Div setting on Channel A.
::'( WRITELN(store,VV,' ' HscA,' ',probeA);
r :_:; » The value of the vertical scale, the horizontal time scale and the probe
t multiplication factor are written to the storage file in line three.
O readit := 'READ A’;
N cmd := IOOUTPUTS(70200,readit,6);
o « The 7612D is ordered to transmit the data on Channel A.
:-‘5 FOR R := 1 TO 3 DO BEGIN
Nt I:=1;
" ﬂi cmd := IOENTERS(70200,incoming,I)
22 END;
o » The first three characters in the data stream sent by the 7612D are
( o stripped. They are unused control characters.
» \j,‘: state := 0;
o cmd := IOMATCH(7,CHR(10),state);
5:'.‘.; » The end of line test is disabled. This prevents the data strings about to be

:)_ read from being terminated before the required 128 characters have

! ‘ been read. The data is binary. If one of the bytes has the same value
f ::', as the character used to sense the end of line, then the line would end
ﬁ: prematurely if the checking were left on.

,&' FOR R :=0TO 15 DO BEGIN

o I:=128;
g cmd := IOENTERS(70200,line,I);
i WRITE(store,line)

0‘ » Sixteen sets of 128 characters are read from the 7612D and then written
o to the RAM disk. The process takes less than one second per channel
E';_; this way. If the characters were read one at a time, instead of in strings .
;_:: it would take over 30 seconds to read all of the data.

i

i

®

e

i

)

N . . . . e e o X . i ) . i
PR » 2 A A" A Ry W 0 W M, (AL CMTRI I % e POV Sx
B e BT B e T T P R o R R KRR KR R R AR K )




‘...

R

| J

H W

.‘“ *,

E': : 103
o END;

oy CLOSE(store);

:":‘o state := 1;

D)

:: cmd := IOMATCH(7,CHR(10),state);

.:._ » The check for the end of line character is turned back on. It would be
! )) dangerous to leave ii off except when absolutely necessary.

oo I1:= 40;

QN

! .\"; cmd := IOENTERS(70200,response,l)

"y * The trailing control characters are stripped of the output from Channel A.
{ END;

o

e

'*-'_:; { **********************************************************************}
»

o

° : PROCEDURE ChannelB (HscB.fBias,rBias : REAL; stor : STR13);

-7  This procedure performs the same function as "ChannelA." Only the
e

3] differences are noted.

o

B ,';5,‘
’( VAR

line : STRING(128);

o store : STEXT;
& state,I,R,C,cmd : INTEGER;

incoming : CHAR;

o vsc : STRING(S),

8 VI,probeB : REAL;

W] readit : STRING(6);

S going : STRING(14);

response : STRING(40);

1

N

< BEGIN

WRITELN('Reading data from Channel B.");
probeB := 10;
FORI:=1TO9DO
going(I] := stor{I];
going[10] :='B';

.-'_1 . frfx" r'.-

.
PR
L
PR
RN

- P
.U"l'fl"’l'\‘l".h,':'."
A RN

(AR

SN

why

a
)

LRy S W e ST I S el R W - [ [y ' \ .
R T T T T O NN T I RO IR




P ol A

e

-‘u 5

- DA A

. f'.‘\;.;-‘ VR

Do

'-'r{ L

®

--.__...
£

€

‘&.‘ &

L (]
“l,‘?::.

» "B"isinserted as "A" was in the preceding procedure.
FORI1:=10TO 13DO
going[I+1] := stor[I];
vsc :='VSR1?;
cmd := JOOUTPUTS(70200,vsc,5);
1:=5;
cmd := IOENTERS(70200,vsc,I);
cmd := IOENTER(70200,VI);
I:=40;
cmd := IOENTERS(70200,response,l);
readit :='READ B";

e The data from Channel B is read instead of Channel A.
cmd := IOOUTPUTS(70200,readit,6);
ASSIGN(store,going);
REWRITE(store);

WRITELN(store fBias,' 'rBias);
WRITELN(store,V],' ", HscB,' ',probeB);
FORR :=1TO 3 DO BEGIN
I:=1;
cmd := IOENTERS(70200,incoming,I)
END;
state ;= 0;
cmd := IOMATCH(7,CHR(10),state);
FORR :=0TO 15 DO BEGIN
I:=128;
cmd := IOENTERS(70200,line,I);
WRITE(store,line)
END;
state := 1;
cmd := IOMATCH(7,CHR(10),state);
1:=40;
cmd := IOENTERS(70200,response,l);
cmd = IOLOCAL(7);
CLOSE(store)

Q

~‘ AT A ,
WLabbeb o Bt . ‘et l"':‘.'l‘!‘:‘:'l ""!':'!':‘!'n‘:l:‘-‘u‘:'é:’.‘e'l.:'i':‘:‘:'l‘:'

N

1}
K

104

Vo 0
LK e A




- - 3 -
RIS L

T 554 A

ol "

Y O

oy s
ST

Ly

PR

-
%

A

Lurhfgoey
ﬁ.-:'{:'fb'i

_,‘_
rZ

- "
AL

L] @ Bt Rt e X L, Y, G
,.':._‘:l I.(U‘h b
e Rl e b NG

J @ N8 5 S
il

&
.l

£

Ry

RN

Al

¥
D
W

.‘0

OO -
e
- '—v’ 'l‘

Ao Al cab gl ‘ol Al gl tul Aol Sall ol Bal wal Gl Sl Gl Sl wolk Gl Gath Gud 0l SAN SaB TN ok vas uam Saf VR ok AR €K C.B ol w8 wum ek tal Sl YaR Tak Tah Va .4 ¢ p val tam FiR N

105
END;

{**#**************##*********************#**********#***#**t*t*#**#****}

PROCEDURE addone(VAR stor : STR13);
» This procedure adds one to the test series number at the end of the stor-
age filename. See Chapter 3, Figure 8 for more on the series number.

VAR
1:INTEGER;

BEGIN
IF ORD(stor[13]) = 57 THEN BEGIN
IF ORD(stor[12]) = 57 THEN BEGIN
IF ORD(stor{11]) = 57 THEN BEGIN
» If the series number is 999, then ... .
WRITELN('Too Many Indexed Devices. Program Halted.");
HALTER(Too Many Indexed Devices.")
END
ELSE BEGIN
I:=ORD(stor[11]) + 1;
stor[11] := CHR(I);
stor[12] := CHR(48);
stor[13) := CHR(48)
¢ If the series number is x99 (where x is O to 8), then the "x" is increased
by one and the two nines are set to zero.
END
END
ELSE BEGIN
I:= ORD(stor{12)) + 1;
stor[12] := CHR(D);
stor[13] := CHR(48)
o If the series number is xy9 (where y is 0 to 8), then y is increased by one
and the nine is set to zero.

B OOOLONCOOINONON0 B AL AL TN ) ) e 2] * XL 0 Q QWG (MK)
atiediaties i iag e et e N e et st et e A e SR R RN AR



\
K
°
AT
g 106
'_J
';: END
N
{ END
W ELSE BEGIN
#! »
:' I:=ORD(stor{13]) + 1;

stor[13] := CHR(I)

.ﬁai

) o If the series number is xyz (where z is 0 to 8), then z is increased by one.
s END
e .
NN END;
R
(‘ . {**********************************************#**********#****#*******}
o
N BEGIN
3 X pass_in_out(passinfo,device,timeout,ForBias,RevBias,bookkeeper,storage,T);
' . ! IF ((passinfo[6] = 'Y") OR (passinfo[6] = 'y")) THEN BEGIN
T addone(storage);
K
WO setup(timeout);
1:3:'; horscale(Hscale);
5 ChannelA(Hscale,ForBias,RevBias,storage,passinfo[3]);
_ n  Passinfo[3] is the third character, first line, of PASSER.DAT. It is used
“;’t to hold the "Y" or "N" indicator of breakdown stored in the first line of
§ :3\ the Chanrnel A storage file.
'; ~',..\ ChannelB(Hscale,ForBias,RevBias,storage)
2 END;
Q pass_in_out(passinfo,device,timeout,ForBias,RevBias,bookkeeper,storage,'0');
U
::::. ENDXQQ
oy END. {End Program)
o
i
N
15
S
0
®
P
N
LA
ro
&
-

AR A OO AN Mk M ML MO M ) AT - W N '
BRIttt sttt ndatatnguintintntatniatinintulatniatn gttty

ACAS AP PALL A A LRl LA 0 Lty LR LB LML N NE LR LI M LA L 2hf Ly L B L JRRA S L B




:;:;": ® H’J’-};
Exd ..

—

[ APPENDIX G
oo PROCESS2.PAS PROGRAM LISTING

107

) - . o . . ‘ o
M i IR OO0 0 OO N NSOAD OSOGO000 OO0 DU AN OSNASOACAGI0N00
“,'l‘.'n'. ¢ ) ':'.’A'nfa’-'.d'-'.\’g?l’:?l'-'d'u?l'a‘ ?d‘.'o?l,',i'ue"hl’n.t?o:l?q'..fs:*ﬁ!‘ft.i!t"”.’:.w:l"tl.-"e B ettty '4!}'@?.'5’.‘&‘ (ROCHK B ft.‘ofbtoﬁ:v‘téofl_-sf*g‘,’.lfé,qfs.v'.‘,!

Y ERETY) PN WSS IR R Y XY

)



.:t' \
g
-
R
;:: ‘ 108
AL
;::S: PROGRAM Process_Level_Two; {For use in Batch processing only!}
{  This program is used to calculate the Instantaneous Power and Energy
e
::% from the data stored on the RAM disk in PROCESS1. The program is
W " written for the Turbo Pascal compiler with 8087 support.
i
1Vl
») TYPE
e ST10 = STRING([10};
"i‘:.':' STR13 = STRING[13};
:.El' , STR80 = STRING[80];
( ! datarray = ARRAY[1..3,1..2048] OF INTEGER;
e ene = ARRAY[1..2047] OF REAL;
o
B,
A VAR
- passinfo : STRING[10];
NS device : INTEGER;
.:‘:f timeout,ForBias,RevBias : REAL,;
:j bookkeeper,storage : STR13;
{ W VIP : datarray;
o globEnergy : ene;
ol
el
o
* .N'"; {************************ e ke e o o o ok ***************************************}

2

.’\_'_)

PROCEDURE halter(errmsg : STR80);
 This is the same procedure found in all the previous programs. See
HARDWARE or GETDEVIC for more.

R

.:%.’?.__

- -
(]
."

VAR
s name : STRING[12];
el going : TEXTI[15];

BEGIN
o name := 'G:HALTER.PGM';
Ve ASSIGN(going,name);

-~

A et A M i e RSO Ot DD P TR IR AR T T AT I\ VN OO 0
e N e ORI e SO B ORI AD R !h‘!h‘.!".e"'fﬁ' raln ettt !0'."!«"!«50!cf‘!ﬂ‘?at‘?o?i?.vft'e‘.'t,‘cA!:! '_of‘!:'.i?ofﬂ



B
dul
.
R
’;:'::Ec 109
e REWRITE(going);
' WRITELN(going, There was some type of error in Program Process2.");
‘:::“": WRITELN(going,errmsg);
M WRITELN(going, PROGRAM HALTED');
;::}: CLOSE(going);
) HALT
4 ~, END;
9
‘2 {**********************************************************************)
.
ot PROCEDURE pass_in_out (VAR info : ST10; VAR DEV : INTEGER;
any VAR timeo,fBias rBias : REAL;
oo VAR bk,stor : STR13; IN_OUT : CHAR);
‘ « This is the same procedure seen in STORDATA and PROCESS1. See
Pt STORDATA for more.
B2
5. f VAR
ey pass : STRING([13];
S ry passer : TEXT;
I
é BEGIN
L1 pass := 'G:PASSER.DAT’;
:) ASSIGN(passer,pass);
g IF IN_OUT = T THEN BEGIN
:0 ) RESET(passer);
X § READLN(passer,info);
. READLN(passer,DEV);
:'. o READLN(passer,timeo);
':CS READLN(passer,fBias,rBias);
Iy READLN(passer,bk);
e READLN(passer,stor);
b CLOSE(passer)
i, END;
2 IF IN_OUT =0’ THEN BEGIN
(N
3
A
:' v‘*.

)

ORI G S TN ST S I S M N S S T D T T T 2 S S 8T
TR T R et e Tt el ettt e s et e e

3 K] L 8. MNP N W



n‘.\'

.

®

B

RN, 110
)

,:::! REWRITE(passer);
{ WRITELN(passer,info);

i WRITELN(passer,DEV);

*’-":&': WRITELN(passer,timeo);

}‘; '-’*% WRITELN(passer,fBias,rBias);

Y WRITELN(passer,bk);

:::.:: WRITELN(passer,stor);

CLOSE(passer)

i END
(‘"" END; {End Pass_In_Out)

L X

‘P",,‘( {**********#***********************************************************}
P

o':, PROCEDURE Calculate (stor : STR13; VAR energy : ene);

O « This procedure is the meat of this program. Ve and I are read from the
j_«. RAM disk, the values are multiplied together to produce the Instanta-
;;::: neous Power, P, and P is then integrated. Integration is started at the
oy one time step back from the point where Ve is 5% of its maximum
(\- . value and continues until the time step just after the point where P is
""‘3'2 3% of its maximum value on the descending edge. An energy array is
:' }: passed to the main program. There are 2047 elements in the array.
'.& » Each element represents the cumulative energy calculate to the corre-
3 _ sponding time interval. The array contains zeros to the point where in-
K :ﬁ tegration begins and zeros after integration ends.

3

N VAR

° R,I,Vmax, VstartPos,PstopPos : INTEGER;

E 3 going : STRING[14];

c_’,‘? VIP : datarray;

'; ;:;: incoming : CHAR;

o Pmax,Pstop,eMax,Vstart, VscP,VI,VV,HscA,HscB,probe A ,probe B, fBias,rBias,

e | intmed],intmed2 : REAL;

s:‘ X store : TEXT([25];

:':'I.

i

s

-

180 T T T b B Oy g 1y U B0 T 8 Y ~ IS ' '
2 Aty gy OO0 00 O R OOOGUOOOOO0 OO LX) OG0 OO U N Q00 DA
A AIBSAORIHNNN ﬂ,!l’, l?.v'!:‘l". ..Q::I’.’It. " :,1!0.‘,0,‘!1.‘?b,ltg,‘fl,‘?t."l.’.l. :..0!..‘!;“!.‘0_"l:‘.l!"|:Q,9!'.|:|.i.v.‘§:.._=g."' 4.'l',.‘.h‘.‘a"i’"h‘,.‘.?q‘!to'_"."tb"’o!’,!,’;\:‘: A ..t.“""’r




. -
o
ond 111
o BEGIN
(:- . eMax :=0;
. . FOR R :=1 TO 2047 DO energy[R] := 0;
; ﬂ" » The energy array is initialized.
'f Y going := stor;
) INSERT('A',going,10);
Ss ASSIGN(store,going):
:: 1 RESET(store);
i% » The storage filename held in "stor" is placed into the string "going" and
( an "A" is inserted after the inductor value. "stor" = G:BDxxxLL.yyy;
_,\j "going" = G:BDxxxLLA.yyy. This is the file containing the data from
;’,}j Channel A (Vce)-
\ ;.' READLN(store);

’

READLN(store, fBias,rBias);
READLN(store,VV, HscA,probeA);

 The first three lines of "store" (the file designation of "going") are read.
FOR R :=1 TO 2048 DO BEGIN

+e£6ﬁﬂé.

)
{: READ(store,incoming);

- I ;= ORD(incoming);

2:;§ VIP(1,R] :=1- 127

;: : s The 2048 data points are read. The ASCII values are converted to integer
A" values and then correction is made for the zero offset. The zero offset
%. is explained in detail in Chapter 3, Data Acquisition Programs.

i END;

'}-Z CLOSE(store);

g going := stor;

:; INSERT('B',going,10);

:::;,‘ ASSIGN(store,going);

o RESET(store);
R4 + The file containing the data from Channel A is closed, and the file con-
taining the data from Channel B is open.

READLN(store, fBias,rBias);

‘ gs READLN(store,VI,HscB,probeB);

Y .z'

W

<

%

8

j"l "

A

i |

OO OO OOBCAUOOGOOGRGOOOCHONIND GCGOND OBOBONININ IO, 0 0%
RIS RO ’n'.'o’"o‘.‘«!.’m‘J-’«'\f.'n"'n‘:'ﬂ:'é:'n‘:'n‘:'A,. N .’:'-'A‘ !'A_‘:’n‘:'o‘.:’“"n‘!h!: -‘;‘!'s\:k‘g'l:‘?'!‘!'t"':‘.h‘?::“.':':l:".. * .‘?I:"l:‘,'!',':t" Y ‘..‘?:!":!

A 4,0, Ah,



112

LN X

- « The first two lines of the file are read. Reminder, the Channel A data file
('_" contains an extra line in the beginning; otherwise, the files are identical
'::::v in structure.

l"' IF HscA <> HscB THEN BEGIN

-

WRITELN('Horizontal scale factors not equal. Program Halted.");

; A) HALTER('Horizontal scale factors not equal.’)
, "y » The horizontal scale factors are compared. If they are not equal, the pro-
"',f’.; gram is halted. It is absolutely imperative that the data have the same
L7 time scale as the data points are simply multiplied together to get P. If
( the time scales are different, then the data points on Ve and I will not
i ::'. correspond to the same point in the test cycle, and a multiplication of
:::: the two values would be meaningless.
o END;
s FOR R := 1 TO 2048 DO BEGIN
_.;-_ZJ READ(store,incoming);
b I := ORD(incoming);
o VIP[2.R] :=1-127
° + The data points for I are read, converted the integers from ASCII and
" B corrected for zero offset.
o END:
CLOSEC(store);
VscP := probeA*probeB*VV*V1/1024;
2 « The vertical scale factor for P is calculated. There are 32 discrete levels
E_';E in each Volt/Div setting. When the vertical scale factor is created this is
N taken into account by dividing by 32 * 32 = 1024.
s FORR := 1 TO 2048 DO
e VIP[3,R] := VIP[1,R]*VIP[2,R];
? ?..j + The Instantaneous Power is calculated. VIP[1,R] = Ve; VIP[2,R] =;
2 VIP[3,R] = P.
e Vmax := -128;
o FORR :=1TO 2048 DO
o IF Vmax < VIP[1,R] THEN Vmax := VIP{1,R};
s * The maximum value of Ve is found.
;h:_- Vstart ;= 0.05*Vmax;
|
A
o)
g
¢ _:"
1]
-
("4
I‘ ]

DO Y 1, T, 7 R, T « MO WL Ay Y O o eV R O A M N Y T M ™ W N @ € n
4 e M N T N OO 0 ! SRS Ca R g R s T e L T R R SN SN 4
’l‘!‘l e, .!-‘ LAl 50 Re 5, ’! A’.'u‘!‘n'!'a a -:'.': A !...s! e, 0"-‘. n'! oi.‘ u ASTRF M A M ™ b ¥ |‘. g .n s R ‘ X e M N 2‘




[
LAY,

1%

s ’r‘f'r‘&
AP

Pl alifalal ar ey
[} -~ v
PR CT

‘l
V 'h'\ %
L

------

15'.!': l

113
VstartPos := 1;
WHILE Vstart > VIP{1,VstartPos) DO
VstartPos := VstartPos + 1;
 The starting position of the integration is found by finding the time step
where 5% of the maximum value of V. is passed, and letting the start
position be the point just prior to where this occurred.
Pmax := -100000.00;
FORR :=1 TO 2048 DO
IF Pmax < VIP[3,R] THEN Pmax := VIP[3,R];
» The maximum value of P is found.
Pstop := 0.03*Pmax;
* The threshold value of 3% of the maximum value of P is calculated.
PstopPos :=1;
WHILE Pmax < VIP(3,PstopPos] DO
PstopPos := PstopPos + 1;
« The position of the maximum value of P is determined.
WHILE Pstop < VIP[3,PstopPos] DO
PstopPos := PstopPos + 1;
PstopPos := PstopPos + 1;
» The position of the time step where P descends passed the threshold
value is determined.
FORR :=1TO 2047 DO
energy[R] :=0;
FOR R := VstartPos TO PstopPos DO BEGIN
IF (VIP[3,R]+VIP[3,(R+1)]) < (ABS(VIP[3,R])+ABS(VIP[3,(R+1)])) THEN BEGIN
IF VIP{3,R] > VIP[3,(R+1)] THEN BEGIN
intmed] := VscP*VIP([3,R];
intmed2 := VscP*VIP[3,(R+1)];
eMax := eMax + (0.5*SQR(intmed1)*HscA/(ABS(intmed1 )+ ABS(intmed2)))
- 0.5*SQR(intmed2)*HscA/(ABS(intmed1 )+ ABS(intmed2))
END;
IF VIP[3,R] < VIP[3,(R+1)] THEN BEGIN
intmed1 := VscP*VIP(3,R];
intmed2 := VscP*VIP[3,(R+1)];

Y ‘\.’- ~ I R | 8] T N I T T N P Y R T v

oo s % R '.‘!'4‘.'.".' Y aavadint st ) .n' .0”:' 2y 0.' A # l.n'. .o

s':’t K t"‘t'




e
£

oz

-~ v

v o 4 t‘}é.

114

o

eMax := eMax + (0.5*SQR(intmed1)*HscA/(ABS(intmed1 +ABS(intmed2)))
+ 0.5*SQR(intmed2)*HscA/(ABS(intmed1 +AB S(intmed2))

’t..‘-
.

W END

o END

) ELSE BEGIN

. i IF ABS(VIP[3,R]) > ABS(VIP[3,(R+1)]) THEN

d 2 eMax := eMax + VscP*(VIP[3,(R+1)}*HscA + 0.5¥HscA*(VIP[3,R]

-VIP[3,(R+1)]));
IF ABS(VIP[3,R]) = ABS(VIP[3,(R+1)])) THEN
eMax := eMax +VscP*VIP{3,R]*HscA;

B
j' Jj IF ABS(VIP{3,R]) < ABS(VIP[3,(R+ ")]) THEN
:‘j eMax := eMax + VscP*(VIP[3,R]*HscA + 0.5*HscA*(VIP[3,(R+1)]-VIP[3,R]))
\ :4' END;
energy[R] := eMax
AP
o * The energy is calculated. The formula used is simply the area of the
'_’_:C:: rectangle formed by the time step and the lesser of the two vertical dis-
a3
¥ placements, plus the triangle. The steps above are used to determine if
{ the vertical displacement are equal or not, and if not, then which is
Ef.: greater. The following illustration (Figure 18.) gives a pictorial view
oy of the integration scheme used.
o D;Iermmz in maginitude
first and secoud point.
B2 T
s E
b Case of first Case o i Caseof 4
< Bon scomnd poin equal larger
’ ".‘: . first
%
3 t
3
" ..J I"ﬁme Steptl
o Figure 18. Integration Scheme.
L
R
e
v
R
Lol
L
Lok ¢
[
.
.
-~
SR .- T N O T e U AL P A L S S SRS ST - . » A ) e
R 5 - S TS S T A T




l'..l

'
i
ey
e
N
. 115
P The scheme also includes a check for P crossing negative where
. negative energy results (ig, the transistor is supplying energy), but this
)
;‘\.',»' is not shown in the figure.
'::Q END;
P going := stor;
") going[1] :="A’
’ LY
?f: INSERT('P',going,10);
“;.; ASSIGN(store,going);
Y REWRITE(store);
(_ , WRITELN(store fBias,rBias);
o> WRITELN(store,eMax,HscA,VscP);
' _»l‘: » The storage file for P is open on drive A:, the forward and reverse bias
; ot ‘* settings are written in line one, and the total energy, horizontal scale
° factor and vertical scale factor are written in line 2.
Bor FORR :=1 TO 2048 DO
1
-;'.“ WRITE(store, VIP[3,R],' ');
::- » A series of 2048 integer values are then written, all separated by a space.

{'

The Instantaneous Power is written unscaled to disk (ie, the integer

~

X o product of the integer multiplication of the Channel A and B data is
j\-j written to disk). P is not converted to real numbers in an effort to save
,,-,\ storage space on disk. To convert the values stored on this file into the
" actual watts calculated, simply multiply the individual integer values by
= the vertical scale factor.
i E‘; CLOSE(store)
e END;
ey
.. " {********** **********************************************************#*}
o
S PROCEDURE WriteToEnergy(stor : STR13; energy : ene);
QN « This procedure writes the energy array created in the last procedure to
L s
F o disk in its own file.
,o-
VAR
oy going : STRING[14];
.
B ::,‘*-
"
aits
\I
o

¥ '\-\\\ o e '\-’p'v'\-‘\-'\-\-'r'i ¥9.07°0,0%,
nl‘ ‘ ” 0 l ﬁ .P"J '- 'r s ] i'\ focfritfe ity en'y, h"in‘!'- !0.‘.0- ?h‘.':&. o!”‘!’u %N !.J. . ;J !QA'!O . o !‘e !\:‘-'o -".3



R
'
R
g
i:;:k‘ 116
Wt store : TEXT;
o R : INTEGER;
ey fullstr : STRING[25];
AN outstr? : STRING[7};
outstrS : STRING(S];
-') outstr : STRING{12];
| i
3:::" BEGIN
o stor[1] :='A";
( . going := stor;
INSERT(E',going,10);
",;E ASSIGN(store,going);
‘ .('\ REWRITE(store);
° e The energy storage file, A:BDxxxLLE.yyy, is opened.
o FORR := 1 TO 2047 DO
_.*:3': IF energy[R] = 0 THEN WRITELN(store, 0')
2: « If the value in the energy array is zero, the character "0" (zero) is written
(’ to disk rather than the number zero. The number zero is written as
2: "+ 0.0000000000000000E+000" rather than "0." By writing the
;; }: value as a character, 24 bytes of storage space are saved per zero.
s ELSE BEGIN
" STR(energy[R],fullstr);
;s;:. outstr7 := COPY(fullstr,2,7);
e outstr5 := COPY(fullstr,19,5);
e outstr := CONCAT(outstr7,outstrS);
:’9 WRITELN(store,outstr)
;:o . « For a value not equal to zero, the number is converted to string, and the
;: - middle numbers are removed. There is no loss of accuracy in doing
3 .\_:‘; this as the energy is accurate only to the second or third decimal place,
Wy and those values are kept. This saves an additional 13 bytes of storage
?-.1: space per number. The result is a file of around 28 kilobytes rather
8 f than 45 kilobytes or more.
¢::? END;
QW CLOSE(store)
4,
¥
5'.‘
L
N
-
o
i

PRt r e et Ty T Uy B ity (Y, SN T (IMCRNT MR T 0 I MDD
ARt R e i ettt ety e B R R S D S L R K] Wty

------------------



END;

{***************************************#*****************&*******#****}

BEGIN {MAIN PROGRAM}
pass_in_out(passinfo,device,timeout,ForBias,RevBias,bookkeeper,storage,T);
IF ((passinfo[6] = "y') OR (passinfo[6] = 'Y")) THEN BEGIN
Calculate(storage,globEnergy);
Write ToEnergy(storage,globEnergy)
END;
IF ((passinfo[2] = 'Y") OR (passinfo[2] = 'y")) THEN BEGIN
« This statement is used to place a pause in execution so the operator can
obtain the Base-Emitter Voltage on the 7612D. The pause only exe-
cutes if the operator has previously indicated in STORDATA that this
waveform is to be collected.
WRITELN('Obtain the Base-Emitter Voltage waveform on the 7612D and');
WRITE('press <RETURN> when ready toread itin...");
READLN
END;
pass_in_out(passinfo,device,timeout,ForBias,RevBias,bookkeeper,storage,'O")
END.

09 3 k) o
nLt > T ‘l\"‘!‘l‘n‘i‘)‘

Yy




o

s APPENDIX H

i. 3 PROCESS3.PAS PROGRAM LISTING
Il

{

)

)

-i~ o g
-I'{r“l."l XX

19

o
AN 'f‘- Il

20y

PN

P

-
Jan

e

x7

T x
pol

e

118

el

ol

'. -
A ?l .l"\_‘-\f;u

.{',.-*o

0 0 O, 0t QORI 0
X -‘u t‘.,\ .c:.,a‘..u‘. Vel OO SRR e ‘.,‘lﬂ.,c\..n'.,c‘. o"‘ helthteh ‘.,s'.,n'. c"‘ bt i XRIONI Y c'.,o‘ At c‘m‘:fc' Ry




ol
o
. -
R
«'-) 119
’:':' \ PROGRAM Process_Level_Three(INPUT,OUTPUT);
{ A%
{ » This program reads data from Channel A and writes it out to file
v "BDxxxLLC.yyy" on the RAM disk. The data is expected to be Vpe
»
o and is treated as such. The program is written for the MS-PASCAL
::: compiler.
»
:i":' {*t***************************u***********************t************u*}
o
'o"\
s {SINCLUDE: 1ODECL.EX'}
(' - * This is the same declaration included in HARDWARE and PROCESS].
Vo See HARDWARE for further information.
b
] :.": {**********************************************************************}
N
®
N CONST
j;:'z bus =7,
X

STEXT = TEXT(45);
STR13 = STRING(13);
ST10 = STRING(10);
STR9 = STRING(9);

35

‘-
-

. Qx LST80 = LSTRING(80);
1o setting = ARRAY(1..2,1..10] OF REAL; -
. =
o bookkeeper,storage : STRING(13);
- passinfo : STRING(10);
o answer,process : CHAR;
o device : INTEGER;
" ‘ ForBias,RevBias,timeout,Hscale : REAL;
o
o

l® Txnvs
pLAA

l‘.:’
Ay
1"(' A0 ) l.l.l o0 )’ O r LSOO AEYy W, 0 8% ¢
IO .:f.-! .l!‘:of::uf'.'?'u'm!if PR St b S .v?l.l!lwf‘.':q otetriodigntendss ] 0 TR L D RS ATk KA Y

ey
-

ATET LT



Q: 120
)

: ‘*l' {***********************#***********#*********#************#**t***t****}

{$INCLUDE: 'TOPROC.EX'}

w  This is the same procedures declaration included in HARDWARE and
: PROCESS]1. See those programs for further information.

¢

’: {*********************************************#******************#*****}
Y
kY PROCEDURE ENDXQQ; EXTERN;

»

 This extended level procedure is used to halt program execution prior to
the normal program end. Its function is similar to that of HALT in
Turbo Pascal.

e s A

.
v h»"".q L4 ?

{**********************************************************************}

LA

PROCEDURE halter(errmsg : LST80);
« This is the same procedure use in all the preceding programs. See
HARDWARE or GETDEVIC for further information.

- -
v.) .
Ut

Al

o
:: \.E VAR

’E . name : STRING(12);

" going : TEXT(15);

2

e BEGIN

-E; name :='G:HALTER .PGM;
g ASSIGN(going,name);

L3 REWRITE(going);

:_:Z'v WRITELN(going, There was some type of error in Program Process1.");
2, WRITELN(going,errmsg);
- WRITELN(going, PROGRAM HALTED.);
‘ ° CLOSE(going);

ol ENDXQQ

:' . END;

R,

o

-
&

X

®

W

(A3

", -ffr(ff.(r--r a .r,‘ € o Wi W T ~ W . Y, .
W .» (] o 4, F (o T A - A . _ ) ]
; '. $ \, 3 H n..‘ AlLA ':J‘-.A‘.o.i‘l,i‘:.l'o 5‘.. LT ‘0.“1!“0!"0..! o 8 .l'q, ",t'

-

DO Xttt LG .nl!nvt’-n't il 0 .n‘-‘



2

e o Lo A

e P Ry P

SRR

° »L-.«-J- "

710 SN

121

[*#**********************************#*************************#*******}

PROCEDURE pass_in_out (VAR info : ST10; VAR DEV : INTEGER;
VAR timeo,fBias,rBias : REAL;
VAR bookkeeper,storage : STR13; IN_OUT : CHAR);
o Again, this is the same procedure used in previous programs. See
STORDATA for further information.

VAR
pass : STRING(12);
passer : STEXT;

BEGIN

pass := ‘G:PASSER.DAT';

ASSIGN(passer,pass);

IF IN_OUT =T THEN BEGIN
RESET(passer);
READLN(passer,info);
READLN(passer,DEV);
READILN(passer,timeo);
READLN(passer,fBias,rBias);
READLN(passer,bookkeeper);
READLN(passer,storage);
CLOSE(passer)

END;

IF IN_OUT ='O' THEN BEGIN
REWRITE(passer);
WRITELN(passer,info);
WRITELN(passer,DEV);
WRITELN(passer,timeo),
WRITELN(passer,fBias,rBias);
WRITELN(passer,bookkeeper);
WRITELN(passer,storage);
CLOSE(passer)

A 1% Wy ¥
'l’.‘l‘ ..' .Iol‘q A%y

&y, O]

I KO0 Q'l M .q “l:“.. '.‘Nl“

! 4 & "
c.l' .0'4 "J l'n y l' !'M "9 l'v i'hi'o“ " h e UK X KN ﬂ't."i,“l. "." iy " "n.l'v.d'




P

7

P

P e
A O

-
P

AL

C
LAAARAN

3
% ._/.V

AR

.'.
£

122

END
END; {End Pass_In_Out}

{***************************************************************#******}

PROCEDURE error_handler (error : INTEGER; routine : STRY; A : CHAR);
* This is the same procedure used in HARDWARE and PROCESS1. See
HARDWARE for further information.
VAR
estring : STRING(40);

BEGIN
IF error <> noerr THEN
BEGIN
Errstr(error,estring);
WRITELN(Error in call to ',routine);
WRITELN(error:6," ',estring);
IF A ='N' THEN
BEGIN
WRITE('Press <RETURN> to continue . .. ");
READLN
END;
IF A ='Y' THEN
BEGIN
WRITELN('CORRECT ERROR - Press <RETURN> to continue.");
READLN
END
END
END;

[**********************************************************#***********}

PROCEDURE setup(tout : REAL);

1

e e e il LT P p ;
P I < R A A A X TR TR T N LAC TR S T



RN

it

o

E:E:: 123
:'g'.:, » This is the same procedure used in PROCESS1. See that program for
(‘ - further information.

AN

é‘_ VAR

N ,": cmd :INTEGER;

\ endline : STRING(2);

R

?x BEGIN

p X cmd := IOEO(7,1);

A error_handler(cmd,'IOEOI ''Y";

B endline[1] := CHR(13);

R endline[2] := CHR(10);

;5"5:" cmd := JOEOL(7 endline,1);

Py cmd = JOREMOTE(7);

P error_handler(cmd, JOREMOTE ','Y");

f{ﬁ cmd := IOTIMEOUT(7,tout)

4 3 END;

'k xS
Q‘ __ {**************’ll*#*****************************************************}
-

;r’: PROCEDURE horscale (VAR Hsc : REAL);

» This procedure is used to obtain the horizontal scale factor from the
X 7612D.

hH -

- VAR

S ,;; response : STRING(25);

; - ILemd : INTEGER;

: i: HscA,HscB : REAL;

e vsc : STRING(S);

o

e BEGIN

2 vsc := "HSFA?;

e cmd := IOOUTPUTS(70200,vsc,5);

RO « The 7612D is queried for the horizontal scale factor.
3' %

{3

R

0 (07 ! ORI OHNIETIR e DS NN D DR (D s T S D D I T T N
R R AR AT XN DL DI S KK ISR O KA ORISR AR AL A A

LY

DOOTUOUONIXI0 ()
A e ek %

BOO0S0

.



........................

i
e
°
4% 0
g
A 124
b
ia::. 1:=25;
- cmd := IOENTERS(70200,response,I);
0 « The characters preceding the desired number are read.
:_-;3 cmd := [OENTER(70200,HscA);
‘o + The horizontal scale factor is read.
'_—)‘ cmd := IOENTERS(70200,response,l);
;& * Trailing control characters are striped
::."u vsc := 'HSFB?;
e cmd := IOOUTPUTS(70200,vsc,5);
{ 1:=25;
' : cmd := IOENTERS(70200,response.]);
; is cmd := IOENTER(70200,HscB);
o N cmd := IOENTERS(70200,response,I);
e » The process is repeated for Channel B. This is done only to be sure the
"ﬁ' N scale factors are the same. Channel B should be unchanged and still
Y contain the data from I;. With that data still there, this comparison en-
‘: E sures the data has the same horizontal scale factor.
{ IF HscA <> HscB THEN BEGIN
;}:} WRITELN('Horizontal Scale Factor are not equal. They must be.");
" WRITELN(Program Halted.");
'y f HALTER('Horizontal Scale Factor are not equal.”)
A

* The program is halted if the Channel A and B scale factors are unequal.

Uk

‘o:: ’ END

Y y ELSE Hsc := HscA

&

5’. [k ok ok Rk ok ok ook ok ok ok o ootk Rk ok ok ok kR ko )
iy

5 4 PROCEDURE ChannelA(HscA,fBias,rBias : REAL; stor : STR13);

i » This procedure reads the data from Channel A and places it on the RAM
.,{‘ disk. It is identical to the procedure of the same name used in PRO-
‘ ?ﬁ CESS1 with the two exceptions. First, the output filename is different
:, :: (BDxxxLLC.yyy instead of BDxxxLLA.yyy). Second, the first line
-:‘f

&

&

;::"

kY% v

L

s

A N Yyileletyd! SRR AN O Cr OO0 OOBSEANOQONONNOCGOO000
x’!‘l‘!‘n‘.'n'.'u‘:‘|‘:‘:"‘.:"\:"»i"::' NRNOTI NI AN .0".'."’15’:"!:.‘2!“6‘?':! '!c','et"n":c"..:' Sl !:’i’s' BRARKINE NN ARAOR MR ACUMICNA

"""""



--------

i

Al

i

!':':': 125
g used to hold the "Y" or "N" indicator of breakdown in BDxxxLLA.yyy
(x;;u is deleted.

n..‘!

o

b VAR

4! line : STRING(128);

; ) store : STEXT;

::; state,LR,C,cmd : INTEGER;

ol response : STRING(40);

:;R incoming : CHAR;
( vsc : STRING(S);

j,\.} VV,probeA : REAL;
:“ readit : STRING(6);

-.: going : STRING(14);

O

i BEGIN

Lo

s probeA :=1;

N FORI:=1TO 9 DO
) going(T] := stor(I);

:’Q going[10] :="C’;

o FOR1:= 10 TO 13 DO

o going[I+1] := stor(I};
ASSIGN(store,going);

;"i . REWRITEC(store);

o WRITELN(store,fBias,’ ' rBias);

R 3 vsc := "VSL17%

;" cmd := JOOUTPUTS(70200,vsc,5);
o I:=5;

¥ ._§ cmd := IOENTERS(70200,vsc,D);

o cmd := IOENTER(70200,VV);

N4 I1:=40;

4 cmd := IOENTERS(70200,response, );
WRITELN(store,VV, HscA,' ',probeA);

3
)
L .
‘ }.5 readit :='READ A';
cmd := IQOUTPUTS(70200,readit,6);

LA e S S A I e Vet bttt TR Aty R
B R R K R R R e TR R N RSB AR P RN

(AL AN AL RN LR Y




e

o

:;3

E:, 126
o FORR :=1TO 3 DO BEGIN
( I:=1;

" cmd := IOENTERS(70200,incoming,)
;::' END;

ARy 0

?:. state :=0;

' cmd := IOMATCH(7,CHR(10),state);
5 3 FOR R :=0TO 15 DO BEGIN

: I:=128;

o cmd := IOENTERS(70200,line,I);
( ‘ WRITEC(store,line)
0 END;
M CLOSEC(store);
::s. state ;= 1;

e cmd := IOMATCH(7,CHR(10)state);
o I:=40;

g

cmd := IOENTERS(70200,response,]);
cmd := IOLOCAL(7)
END;

A

X

{**************************#*******************************************}

x

--‘.'—..“»--,"".
K - -
Xl

BEGIN
pass_in_out(passinfo,device,timeout,ForBias,RevBias,bookkeeper,storage, T);

‘ “‘..

i IF ((passinfo[2] = 'Y") OR (passinfo[2] ='y')) THEN BEGIN

\ setup(timeout);

) horscale(Hscale);

L : ChannelA(Hscale,ForBias,RevBias,storage)

:'.{;: END;

' ‘_: pass_in_out(passinfo,device,timeout,ForBias,RevBias,bookkeeper,storage,'O‘);
N ENDXQQ

L END. {End Program}

2

vo!

u’{_l
L

Ay

Tt s

. e i) P R L O LR TR R & Y Wate¥ A LSRN Ol Ry ; A
LA AT R A SO0 I : \ \ e T, R ) O ’
Ul ‘* '.ﬁ ‘.-‘a o <‘x L) p'. (3 < 4 ’ 9, - ’ \.l » l'l '!, IA‘:‘. l“".'.'!‘ 4% ‘l» "" . 'l-"’!‘ Q""-.n 'ﬁ\‘ 4 'c“.u A .: y ":":..".."“".‘.:.“".‘.:tﬂ-

»

)




8 ﬁ:;: APPENDIX I
s REPEATER.PAS PROGRAM LISTING

L

Wl
»
v', ";

S

PR

_{\ L
SRV

IS‘<‘-:_'§-

e e s
-

i

: @
(2N

L
a

‘V

o Y,
"‘I.'
NG Ny

A
A

127

o

ok o
T N
ST - ",7?1

AR e

i

-t
4

-

) " s
o2,

l.ln i)

" LA, " »4.' y ACRCRL
} oY .hv.’S " u’\ XN '.\’.. .'u . A % ‘. .k.' .‘". it N ON O..:’.':. ...‘5‘.0 I‘!‘“! .o !.- ..l,.‘. ..' I‘! LN ‘c " }‘ XN " BAN X \. !I




A‘\" ) . malde ks sallheallh ol SITORTN . 5 SR et ata o Tws N U W N e e oy

33:' . PROGRAM repeater;

{ * This program is used to query the operator as to his or her desire to con-
b tinue. It, also, is used to update the file, INDEX.DEV, with the stor-
.j: age filename currently kept in the file PASSER.DAT. The test series
o number may have been incremented during the acquisition cycle, and
) rather than test for this condition, the name currently held in
W PASSER.DAT is loaded into the storage filename field in the record of
[~ the device under test.

( TYPE
STR13 = STRING[13];

o VAR

o
Ak bk,stor : STR13;
N DEV : INTEGER;

) {***************************************#**************************#***}

5 o PROCEDURE repeatprogram(VAR device : INTEGER; VAR storage : STR13);

* This procedure asks the operator if he or she wishes to take another mea-

~,: surement. If the answer is yes, then the file, CONTINUE.ANS, is
Y created on the RAM disk. The existence of this file is used by the batch

file to determine if it should enter into a loop.

- VAR
- ans : CHAR;
e pass : STRING[12]:
bookkeeper : STRING[13];
{3 name : STRING[14];
Q passer,cont: TEXT,
- passinfo : STRING([10];
W :E timeout,ForBias,RevBias : REAL:
-

BEGIN

P A
'.'s'.'r‘.]
AL AL S

%

O ..

Lo

Y

.

e e P e e o e R P TS S R ’ T AT AL A K e B SRR,
B i P ) J 1 Lol L PN PO B AN «-a*"t!‘l.'-\!‘u.n!’a‘,ﬁ-“f‘v »‘Q-A»':“

---------



W
o't
o
R
:" Y 129
) o
0 name := 'G:CONTINUE.ANS’;
{ ASSIGN(cont,name);
; Wy * The file designator "cont" is assigned the value of "G:CONT-
| ';».:- INUE.ANS."
i 2 pass := 'G:PASSER.DAT";
) ASSIGN(passer,pass);
S RESET(passer);
k ::‘f: READLN(passer,passinfo);
; :;' READLN(passer,device),
e READLN(passer,timeout);
}"‘ READLN(passer,ForBias,RevBias);
-?"4 READLN(passer,bookkeeper);
W READLN(passer,storage);
P CLOSE(passer);
:Zf:.f » The file, PASSER.DAT, is read.
% ans 5=
: ‘:'3:'- WHILE NOT ((ans ='y") OR (ans = 'Y") OR ¢ans = 'N') OR (ans = 'n')) DO BEGIN
(" o WRITE('Do you want to continue taking measurements? (Y orN)...";
s READLN(ans)
- END;
i IF ((ans = 'y) OR (ans = 'Y')) THEN BEGIN
ans :='Q’;
y WHILE NOT ((ans ='y") OR (ans ='Y") OR (ans = 'N') OR (ans = 'n')) DO BEGIN
._5.‘;1 WRITELN('Repeat measurement on same device? {Reminder: New Inductance
\J:: ORY;
. .: WRITE(Temperature = New Device} Same device? (YorN)...");
. READLN(ans)
' ::: e If the measurement to be taken will be on the same device, then the pro-
g gram GETDEVIC will not need to run; therefore, the above question is
« :::'j,': asked, and depending upon the answer, the first character in the first
“__ line of PASSER.DAT will be set so GETDEVIC will or will not exe-
r,"' cute as needed.
o END;
2 IF ((ans = 'Y") OR (ans = 'y')) THEN BEGIN
,.
o
g
X
e
e |
E:EEI: |

T i) 1 W 0, X ' : » P " - : A .
DOOAGBON 0 N leh ) D ) y ; D
KRR U b vl ,0:0‘0.0'0."2"0."::"::" (R A A MR N L R N RN K BB S K LSRR A

..................




A 130

‘P passinfo[1] := 'N';

. passinfo[7] :='N'

END;

IF ((ans = 'N') OR (ans = 'n')) THEN BEGIN
passinfo[1] :='Y";
passinfo[7] :='Y'

[ ,“‘ 5 A, A, 0
LLLLL ) DAAHIES

¥ END;
o REWRITE(cont);
- WRITELN(cont,'Continue.");
( * The file, "CONTINUE.ANS", is created.
fri CLOSE(cont)
‘.Fﬁ END; (IF ((ans = 'Y"...}
el REWRITE(passer);

° WRITELN(passer,passinfo);
1 :g?: WRITELN(passer,device);
; N:"_: WRITELN(passer,timeout);
‘”‘: WRITELN(passer,ForBias,RevBias);
(! ' WRITELN(passer,bookkeeper);
::':: WRITELN(passer,storage);
:-3-‘: CLOSE(passer)
! :-)‘ * The file, PASSER.DAT, is re-written with the new information.
o
3 -
' :;t

"‘ 4 {*********#************************************************************}
[
:::‘, PROCEDURE IndexUpdate (device : INTEGER; store : STR13);
' ::::  This procedure is used to update the file, INDEX.DEV, with the altered
;" storage filename.

7l
o TYPE
:¢_; STR40 = STRING[40];
s STR13 = STRING[13];
s DEVICES = RECORD

o

[ ]

i

o0y

<.,(,\ N

7

:l-’:;\' EAPIIRRY. . Wttt ettt ‘t:f‘-:t':.'::’:‘:l‘.'.:"::"’ nbirltlnle el et




Koy ‘-;h‘.-o'

P"Q..."",.
r

L)
e
R

. l.')s"'
) I B

-«:
v il
AR S

»

‘U' .7:._. e

-
'

-

-.‘Q-.on.-
X

x

*~l
P s L4

A

o

2

Py

olaln

(@ 2w

-
p Sy

w
=

n
l.. .‘0'

o -

Mo 3G, GO FRR NNy ' 0 ] ) Q) 3
s "u St o .I'o!l':.‘l':‘,l":?t':?o’:‘lﬁz. Wty SOOI HSDAOABATS N

"
L]
2, 0% 0% 80, 4%, 0%, »

.........

131

DEV : INTEGER;

descrip : STR40;

book : STR13;

stor : STR13
END;

VAR
index : FILE OF DEVICES;
indexrec : DEVICES;
error,LineCount : INTEGER;

BEGIN
ASSIGN(index,'CARBSOA\INDEX.DEV');
{31}
RESET(index);
{$1+}
IF IOresult < 0 THEN BEGIN
WRITELN('C\RBSOA\INDEX.DEYV not found. What happened?');
WRITELN('Program Halted.")
* An error check is made to be certain the file INDEX.DEYV is present. If it
is not, the program will do nothing further.
END
ELSE BEGIN
error .= FileSize(index);
IF device > error THEN BEGIN
o If the device number is larger than the number of devices stored in IN-
DEX.DEYV, then the program will do nothing further.
WRITELNC(FileSize ',error,’ device 'device,' Error in update to device.");
WRITELN('Program Halted');
HALT
END;
SEEK(index,device);
READ(index,indexrec);

QSOOI NN
.!‘4\..‘c't'.”‘ﬂ‘,‘ﬂ!';.t‘ﬁ

()
. I'»'




i
.r,"-

3

)
»

~*
S

‘A@
»

X A
e
S5y

733
SENS,

Pl PP -~
e 2 7 .
'L(.'.J

v L

-.—.
-
'

. ‘“ :l “ .‘.

-
"‘_‘
e

9

AT

ORI A LA TR PR %r\:. ":‘

I n,Y R AL LIRS
e s P e A P D e e

132
« If no errors have been encountered, the record for the device under test is
retrieved.
WITH indexrec DO

stor := store;
 The storage filename taken from PASSER.DAT replaces the storage file-
name in the device record.
SEEK(index,device);
WRITE(index,indexrec)
» The updated record is written to INDEX.DEYV in direct access mode (no
other records are disturbed).
END;
CLOSE(index)
END;

{**********************************************************************}

BEGIN {Main Program}

repeatprogram(DEV stor);
IndexUpdate(DEV ,stor)

END.




j }:

i--.--

£

Ll

2

+ o o o o e e I g e s
-:

o L -
PEAYY_ 5

Qoo 5

e APPENDIX J
PLOTDATA PAS PROGRAM LISTING

]
-

P~

&+

e

A

-
A

FiaiSeTe
“

e
£y 0 %
}v“c |

]

". l‘r.- Pty .’
o N O

>

@y

133

.

3%,

. A‘_._
g P

3 'l

: "

B A AN TR . . i 03 v W, AN AT A CLOUTLTLD o
"": )' f v “"h"" .,"\ WAL S ?"‘:"‘!"‘J‘ K “.5‘ "-‘?él'o!t'-,t'& l!"b.l'u..l.él':!"o l‘:‘"v I‘-‘Q‘:'O’!‘l'-'\‘»‘i‘! 'p“"h'l'!d‘u‘b‘!‘i"."‘. A‘.‘l’!‘n‘.‘a‘!‘ol'g" Q"-! Hiie



L " 2 = 3 o s OO wee ——————
:Q"‘l

B
)
()
Ei %
22% 134
KON PROGRAM plotdata2;
. v  This program is used to create plots on the HP-7470A Graphics Plotter.
¥, : The waveforms of a single test run are printed in one of two formats.
Ko This program requires that the HPIB Peripheral Driver be installed with
s the plotter bus address (705) set equivalent to the output device
.:?, "LPT2." The reader should be thoroughly familiar with the HP-7470A
| User's Manual.
0
Pt TYPE
(, STR13 = STRING[13};
:_ STR11 = STRING[11};
s STRY = STRINGI[9];
o datarray = ARRAY([1..3,1..2048] OF INTEGER;
X VAR
: : storage : STR13;
kY ts : STR11;
{::.::.. testmain : BOOLEAN;
o) Ignorit,answer,plotall : CHAR;
i% MaximumA ,MaximumB,MaximumP,MinimumA ,MinimumB MinimumP,DEV,SER,
e tI1,t12,MaxC,MinC,PmaxPoint : INTEGER;
\ ForBias,RevBias,Ener,Hscale,Vscale,Ascale,Bscale,ScaleC : REAL;
k 'f? { 2k 3k 2k 3k 3 3 3 2 ke ok 2 3k 3 ok s 2 3k 30 s 2 ke e 2 3 3¢ 2k 2k 3¢ 3 3 e 2k s 3 3k 2 2k 3k 3 3 3k 3 2 2k ke 3 sk 3 ke e 3 3 e 3k e b 3 ke e s 2 Sk e ae e o e e ok }
N
.,.. PROCEDURE NumToSt9 (X : REAL; VAR Y : STR9);
-'.':.;" » This procedure is used to prepare real numbers for output as strings. The
};:' ) values are limited to three significant figures in scientific notation
K format.
: VAR
. fullstr : STRING[25};
5,:' one : STRING([1];
i thr : STRING[3];
3 3 four : STRING[4];
ey
N
i
b

0 i AN Q 4,0t 2
NI AR e



ATTERETTRTR VT VS U D Ue LW ™ J TR TR AT TR TR TR T R T T TR WG Y Y Y R Y WY WY sy

g

e

o

AN

i?" 135
o)

YR error,] : INTEGER;
( - num : REAL;

:‘:: BEGIN

A STR(X fullstr);

», DELETE(fullstr, 1,1;

p ;', one := COFY (fullstr,6,1);

___ » The third digit to the right of the decimal place is loaded into the one
o character long string "one."
( ' V AL(one,num,error);

"'Ej « The character in "one" is translated into numeric format and loaded into
%‘ "num."

W DELETE(fullstr,6,12);

: . DELETE(fullstr,8,1);

Ll Y := COPY(fullstr,1,9);

‘: ::\-; » The extra characters in the original number passed to the procedure are
*‘: deleted. The shortened form of the number is placed in the nine char-
{ acter long string, "Y." The number is shortened from

:-E " X xxxxxxxxxxxxxxxxEtxxx" to "tx.xxEtxx."

s IF num >= 5 THEN BEGIN

_Z « If the digit in the third place to the right of the decimal point is equal to or
;) i over five, the digit to the left is increased by one. This serves to round
‘v.: ; the new number. The rest of this procedure is involved in performing
" j this function.

\ _,: four := COPY (fullstr,2,4);

,, VAL(four,num,error);

:: o num := num + 0.01;

';..,. IF num = 10.00 THEN BEGIN

2 « This section increases the exponent if it is needed.

d num := 1.00;
o thr := COPY(Y,7,3);
:-3 VAL(thr,Lerror);
o _-; I:=1+1;

9 STR(I, thr);

A

-o, ey D OO IO DO 2O IO OO OOONION WO \ i 0 DO
OO " R B N R

RSESIORURS SOOI IR O



-----

‘ J
: o,
& 136
i IF (I < 10) AND (I > -10)) THEN INSERT('0',thr,2);
(:i:.' . INSERT(thr,Y,7)
e END;
E‘ STR(num:3:2,four);
KX DELETE(Y,2,4);
f.- INSERT (four,Y,2)
i END
i ,
o
g } { 30 3k 2k ok 3l 2k 2k 2k 3 3 e 2 2 6 e 2k ke ke ok 2 e 3k 3k 2 e 3k s 2 3 s 2k ke 3 3 e 2k 2 2k 2k 3k 2 A 2k s 3k 3k ake sk 3k 3k e 3k 3k 3k K 3k 3k 2k 3k ok 3k 2k e 3k Ak ke ok e ok ok }
s
28 PROCEDURE PlotWhat(stor : STR13; VAR plotYorN : CHAR);
! * This procedure is used to determine what files on drive A: are available to
Ei: be plotted. It then compares the listing of files available to the user's
:-');C request for plotting options. If the right files are not available, the user
éf' is told and asked to replace the disk in drive A: with one that should
( Y have all the necessary files.
« VAR
N ans : INTEGER;
%N ExA ExB,ExC,ExD,ExE,ExP : CHAR;
; going : STRING[14];
! '.:: test : BOOLEAN;
‘: . store : TEXT;
!
- BEGIN
;s:' 3 WRITELN(Place the disk containing the data to be plotted in drive A:");
b WRITE('Press <RETURN> to continue . . . );
A READLN;
test := TRUE;
:.:' WHILE test DO BEGIN
';:f » This WHILE loop is used to look for available files and compare those
e files with the ones necessary to fulfill the operator's plotting request. If
':!:' /
;.::.~
i
$
8 5\,

t
ERROOCR WO 00000 By te 100l aly Bl il ety il el g R bRy 80 ) VIANINR } WY
S eheb el et Bati ittt il il i ittt el G S R R e




R 137

23 all the files are present, the loop ends; otherwise, it continues until the
files are found or the operator quits.
ol going := stor;
ey INSERT('A',going,10);
K ASSIGN(store,going);
') ($I-)
' RESET(store);
P, IF IOresult <> 0 THEN ExA :='N’
R ELSE ExA :="Y};
CLOSE(store);
o The last seven lines (excluding "{$I-}") are used to check drive A: for
BDxxxLLA.yyy. If the file is present the variable "ExA" is set to "Y."

8 o

--.»-h.""“ ~

A If the file is not present, "ExA" becomes "N."
going := stor;

;':‘ INSERT(B',going, 10);

:.3"1' ASSIGN(store,going);

N RESET(store);

{"_' IF IOresult <> 0 THEN ExB :='N'

ELSE ExB :="Y";
CLOSEC(store);

o

C o

ft: f « A repeat of the previous check is done for BDxxxLLB.yyy.
2 going := stor;

N INSERT(C going, 10);

':: : ASSIGN(store,going);

~‘ : RESET(store);

, ) IF IOresult <> 0 THEN ExC :='N'

ELSE ExC := Y},

s CLOSE(store);

f » Again, for BDxxxLLC.yyy.
LA going := stor;

INSERT(E',going,10);

j :Q? ASSIGN(store,going);

o RESET(store);

IF IOresult <> 0 THEN ExE ;= 'N'

E'o ;‘

"

o

°

5

' ¢

R e R T O R e e




L T LB s - - -

138

::» ELSE ExE :='Y";
{ CLOSE(store);
" « BDxxxLLE.yyy.
33: going := stor;
;:; INSERT('P',going,10);
v ASSIGN(store,going);
' RESET(store);
K. IF IOresult = 0 THEN ExP :="Y"
s ELSE ExP :='N';
( CLOSE store);
: » Lastly, for BDxxxLLP.yyy.
;’. {$1+)
.;h' ans :=3;
r WHILE NOT ((ans = 0) OR (ans = 1) OR (ans = 2)) DO BEGIN
, » This WHILE loop is part of the first loop. It is used to ask the operator
\ 3 for the particular plotting option required. It is primarily an “idiot"
x,,' proofing loop.
r CLRSCR;
$ WRITELN('With this program, you can plot in one of two different formats.");
,f; WRITELN('First, you can plot Collector-Emitter Voltage, Collector Current,’);
! WRITELN('Instantaneous Power and Cumulative Energy up to the point of second’);
- WRITELN('breakdown. Second, all of the above plus Base-Emitter Voltage can ');
& WRITELN(also be plotted.");
i WRITELN; WRITELN;
“ J WRITE('Enter 1 for the first case, 2 for the second and 0 to quit. .. ");
™ READLN(ans)
b END;
1 IF ans = 0 THEN HALT;
> IF ans = 1 THEN BEGIN
° IF ((ExA ='Y") AND (ExB ='Y") AND (ExE ='Y") AND (ExP ='Y")) THEN
ié BEGIN
" PlotYorN :="N’;
n test := FALSE
o
N
X
K
.
p{s

-

Wy AT AT, AN ALY TN N T AT M o LG 30.0) P ~ FAD 4
U O I X IO Il ,l,o!l,nk_ Why 0.. P T T N e !'0‘.'!,.’19:'!.;':?!'!,.'a?:'t‘,!'o\. AR fai

8ROV,




..........

&
x
s
; % 139
i 4 « If the operator chooses option 1, then the files for Ve, I, E and P must
(_. be present (BDxxxLL{A,B,E,P}.yyy). If they are present, the main
:":', program is informed of the selection by "PlotYorN" and the first
’.’3 WHILE loop is ended.
T END
) ELSE BEGIN
, :C: WRITELN('Not all of the files need are on the disk in drive A:");
'E;’ WRITELN('Replace the disk in drive A: with the correct one.");
e WRITE('Press <RETURN> to continue . . . ');
_ READLN
:;;E » If not all the files are present, the above message is printed, and the loop
PN will be executed again from the beginning.
END
e, END;
R IF ans = 2 THEN BEGIN
:,?: IF ((ExA ='Y") AND (ExB ="Y") AND (ExE ="Y") AND (ExP ='Y") AND
oo (ExC ="Y")) THEN BEGIN
" PlotYorN :='Y";
A test := FALSE
%::‘:' « If option 2 is selected and all the files are present (V¢e, I, E, P and
’ Vbe), the main program is informed by "PlotYorN" and the loop is
2 ended.
S END
.;::: ELSE BEGIN
S WRITELN(Not all of the files need are on the disk in drive A:);
' ) WRITELN('Replace the disk in drive A: with the correct one.’);
s 3 WRITE('Press <RETURN> to continue . . . ");
el READLN
-5.;\:\ « If all the files are not present, the above is printed to the screen, and the
®. loop is executed, again.
s.";? END
e END
= END
) END;

BT

A
o

-

", ), OO0
IR K




;'.:;o

i

L J

;l.) L

-'sff?: 140
i
(L.'. { a5 2k 2k 25 2k 3k 25 2k 2k ke 2 2k e 2 2k e 2 2k e 2 a2 2 2 e ke 0 e 3 2k s sk 2k 2k 3k 3k e 20 Ak 3 3k 2k 2k 3k ahe ake a2 e ke e 3k 2 a2 ok e e e 3 e 3 ke ke e ke ke ok ok }
A

o PROCEDURE listdevice(VAR stor : STR13; VAR device series : INTEGERY);

's'*:  This procedure is common with some minor variation to all of the ancil-
) lary programs except EDITLIST. The procedure is responsible for
i§§ listing the device records in INDEX.DEV upon request, querying for
:,-": device and test series numbers which describes the particular test run to
:E be plotted and returning the storage filename modified to contain the
( series number for the desired test.

'

p TYPE

Eii STR40 = STRING[40};

® STR13 = STRING([13];

o DEVICES = RECORD

W DEV : INTEGER;

3 descrip : STRA0;

( book : STR13;

\ store : STR13

::‘_EI END;

=

' VAR

:z‘,:. index : FILE OF DEVICES;

R indexrec : DEVICES;

'::, i‘ error,LineCount : INTEGER;

name : STRING[18];

s one : STRING[1];

e : two : STRING[2];

N thr : STRING(3};

) test : BOOLEAN;

wf:f ans : CHAR;

“ ;‘E I,Count : INTEGER;

3R

(¥ BEGIN

2

e

h

o

S e L L I by g8y i O T i Ty OO O O e oy D000 '
*‘o.‘.u"l-‘?t."h‘?:a"h" HOOOAGI (X '0. !'0‘..;‘:'0‘- A"‘O"'l"'i.!'l.:'l“'b‘!'h"'l‘t‘l‘u':..'! .t.'.»‘fu'?ve‘!h‘m*?'-'. l‘!'t‘n’l‘!’l‘!’l“’l LW




‘. L g g gaa a - cA s 4 4 e ) Ses gia BY. Bt B (77 : - P Fowy PR Rr TR apl So8 &

e
2
""\j 141
R name := 'CARBSOANINDEX DEV;
s ] ASSIGN(index,name);
o RESET(index);
:EE WRITELN('You will be asked for the device number corresponding to the storage file');
o~ WRITELN('for the data taken on the device of interest. You will also be asked for');

.-
,r\J
'

WRITELN('the storage series number which is the last three numbers in the file name.");

-

\ :..*: WRITELN(The value shown in the listing is the highest currently stored.");

N ans :='q’

:f WHILE NOT ((ans ="'y") OR (ans = "Y") OR (ans = 'n") OR (ans = 'N")) DO
_ - BEGIN

R :-: WRITELN('Do you want the see a listing of all currently cataloged devices?");

WRITE('See list? (YorN)...";
READLN(ans)

END; (WHILE NOT ((ans ="y'"...}

IF ((ans = 'Y") OR (ans = 'y")) THEN BEGIN

R M EGE

_.:«  If the operator wants to see a list of the devices in INDEX.DEYV, this
A
> section will do it.
( LineCount := 1;
i
" Count :=0;
¥
oy SEEK((index,LineCount);
o8
0 WHILE NOT EOF(index) DO BEGIN
n READ(index,indexrec),
O » The record at the cursor location defined by “LineCount" is read.
d
_ﬂ’ . WITH indexrec DO BEGIN
Sl WRITE(DEV,' 9;
L] WRITE (descrip:40,' ");
I' L]
g WRITE(book,' );
)
o WRITELN(store)
plt * The fields in the device record are printed on the screen.
e END;
ol .
2 LineCount := LineCount + 1;
o
bl * The cursor location pointer is increased by one.
’51 Count := Count + 1;
@

BRI TNY e AN IO W0 o O MU BN A M M I WL M OO MO MM 10 M X0 O QOCROO0N
o urete R R R A R Attt ettt ettt e e tnstn sttt in e it it et ettt b et

-------




LR
‘-‘"

e
wh % ‘.'15'51.

g _aw gy,
y
ERP R

By Ay Iy 4
>

L o c‘»‘k-.k) a0

h!

5% ‘r“r_,#"-

=
'@ S

9 . Ty O ""HIH’I"I‘(W“W"WW“YW’?F—W

142

» "Count" is used to keep track of the number of records displayed on the
screen.
IF Count = 21 THEN BEGIN
* When "Count" reaches 21, 21 lines are displayed on the screen. At this
point, a pause is executed to give the operator a chance to review the
records, and the "Count" is set to zero.
Count :=0;
WRITELN('Press <RETURN> for more devices.");
READLN
END
END;
WRITELN(End of indexed devices.")
END; (IF ((ans ='Y"...}
test ;= TRUE;
WHILE test DO BEGIN
+ This loop is designed as a type of "idiot" proofing. It prevents a device
number which is too large from being accepted. It could have been
done differently and more efficiently, but wasn't. Any upgrades might
look at this.
WRITE('What is the device number? (Integer Value Only!)...");
READLN(device);
IF device < 1000 THEN test := FALSE
ELSE WRITELN(Integer too large. Try again.")
END;
test := TRUE;
WHILE test DO BEGIN
+ "Idiot" proofing for the series number.
WRITE("What is the series number? (Integer Value Only!)...");
READLN(series);
IF series < 1000 THEN test := FALSE
ELSE WRITELNC('Integer too large. Try again.")
END;
SEEK(index,device),
READ(index,indexrec);




~i » The specific device record is retrieved.
g_“ WITH indexrec DO
K N stor := Store;
Qo » The storage filename is placed in "stor."
7 CLOSE(index);
' DELETE(stor,1,1);
s INSERT('A',stor,1);
i DELETE(stor,11,3);
I ~ INSERT('000',stor,11);
(;- » The drive designation on the storage filename (previously G:) is changed
‘:' to A:, and the series number is deleted and replaced with "000." The
K ' > series number will be replace with the one selected by the operator ear-
o lier in the lines below.
, : ) IF series < 10 THEN BEGIN
o STR(series:1,one);
'f.z:j INSERT(one,stor,13)
".;:j « If the series number is less than 10 (one digit), it is transformed into a
( one character string and inserted into the last position of the storage
:5 filename.
*:: END;
R IF ((series > 9) AND (series < 100)) THEN BEGIN
:) STR(series:2,two);
e INSERT(two,stor,12)
.,.::  Repeat of the above, but for the case of a two digit series number.
)
s END;
o ' IF ((series > 99) AND (series < 1000)) THEN BEGIN
:'.j; STR(series:3,thr);
5 INSERT(thr,stor, 1 1)
ol « For the case of a three digit series number.
Lo__ END;
s DELETE(stor,1,1);
o4 INSERT(A',stor,1);
:f" END; {Procedure listdevice)
:
e
S
.
s
.

- r_'r o Tt e Tt w T > Wt -
VO YA el o)
P \A ! ' 3 v 3OS L

-----

o e - -
L A Y
.«\,'p’\'. "n\" :

;\‘\ ERRAT _3‘."; ‘;ﬂ -\,:(\:_ \v:.-."
! 23 L)y LNy . »

.....

NS T N A
e A SRR e



3
o
j'.:: 145
Z VAR MaxA MaxB,MaxP,MinA MinB MinP : INTEGER;
_‘., VAR HscA,VscP,ScaleA,ScaleB energy,fBiasA rBiasA : REAL;
e VAR Ign : CHARY);
) » This procedure plots the waveforms for Ve, Ic and P. Ve and I¢ will
:htl be superimposed in the upper left plot.
\
| ﬂ.s VAR
§¢ RS : INTEGER;
oy going : STRING[14]};
( o incoming : CHAR;
:\":" VIP : datarray;
o) VI,VV,HscB,HscP,probe A, probeB, fBiasB,rBiasB, fBiasP,
e 1BiasP,ZeroA,ZeroB,ZeroP,
. numouty,numoutx,DA,DB,DP : REAL;
'.:E store, LPT2 : TEXT;,
bt BEGIN
(o ASSIGN(LPT2, LPT2);
20 REWRITE(LPT2);
:'_ going := stor;
o9 INSERT('A',going,10);
2 ASSIGN(store,going);
E:Z: incoming :='Q;
b ($1-)
f{: RESET(store);
' o The file containing V. is opened for reading here. If the file is not pre-
j. sent, the operator is given the opportunity to fix the problem.
! WHILE Ioresult <> 0 DO BEGIN
\\E WRITELN('There has been an error accessing file ',going);
?J_ WRITELN(Please check to be sure the proper disk is in drive A:");
) WRITE(Enter "Y" to continue, or "N" to halt program. . . . );
4 READLN(incoming);
28 IF ((incoming ='y’) OR (incoming = 'Y")) THEN RESET(store);
2,,_ IF ((incoming = 'N") OR (incoming = 'n")) THEN HALT
e
P
o

T BN Rt e e S 0 PR A (S AR A0 gl i U (o QO X N R P I L A T, NS
... s, ) *’H : {’ NS " RO s \ oy .:,\'Q. AL Q.l‘:!.‘l ol l.t!“i 'o‘l»l‘!‘

2 Cht A (3 2% aR Lot ML BN FoM e R 90




XA
X

LAY
LY

a
i

:‘E—".f‘,:‘
) 4 .{
AP

- v o
i ®

¥
"~
LSS

X LLLens
w 'ti‘*-.-'.”"

'“0

-r-y--

n.il.l Orlitelat 0’0.,0. o

A9

146

END;

{$I+)
READLN(store,Ign);
READLN(store fBiasA,rBiasA);
READLN(store,VV,HscA probeA);

+ The first three line of the file are read. Notice that the first character of
the first line is placed in "Ign." The breakdown "Y" or "N" character is
now in "Ign" which is passed to the main program. The forward and
reverse bias settings are read from line two, and the Volts/Div, hori-
zontal scale factor and probe scaling factors are read from line three.

ScaleA := VV*probeA/32;
« The vertical scale factor for V. is calculated.
FOR R :=1TO 2048 DO BEGIN
READ(store,incoming);
VIP[1,R] := ORD(incoming)
» The data points are then read, but they are not corrected for the zero off-
set factor of 127. It is not needed in this application.
END;
CLOSE(store);
going := stor;
INSERT('B',going,10);
ASSIGN(store,going);

A repeat of the above reading process is done for the file containing I.
The only difference is that the first line of this file corresponds to the
second line of the preceding file.

{$I-)

RESET(store);

WHILE Ioresult <> 0 DO BEGIN
WRITELN('There has been an error accessing file ',going);
WRITELN(Please check to be sure the proper disk is in drive A:');
WRITE('Enter "Y" to continue, or "N" to halt program. . . . ");
READLN(incoming);
IF ((incoming ="y') OR (incoming = 'Y")) THEN RESET(store);
IF ((incoming = 'N') OR (incoming = 'n')) THEN HALT

I I I A I I I AL oL . O ' N Y
"Jfl,[’ A'..g'i R ‘q" . .!‘n l.' " \ * g!... (¥ o

] 3 M X I'- 5. 4%

\2
I
L

}S.

'\




LYt P THEPT L T TLPY W EPY Y " - a MaB Bmd el Ll AR G af Ak iaf il AN vad Ll Sak Lo b D ek taR .2 "al -ad - T

5 K]

¥
N
o
948
A
00 147
P S
B END;
[ %'y
(. {($I+}
' b
- READLN(store,fBiasB,rBiasB);
E: READLN(store,VI,HscB probeB);
o ScaleB := VI*probeB/32;
v IF HscA <> HscB THEN BEGIN
) X WRITELN('Horizontal scale factors not equal. Program Halted.");
i HALT

» The horizontal scale factors are compared. If they are not equal the pro-
gram will halt and the data cannot be plotted.

iy - .
22

*\
res END;
53 FOR R := 1 TO 2048 DO BEGIN
! READ(store,incoming);
0 VIP[2,R] := ORD(incoming)
ol * I.isread.
e END;
': \ E CLOSE(store);
{ i going := stor;
e INSERT(P',going,10);
o ASSIGN(store,going);
‘39 : * The read process is done one more time for the file containing P.
2 ($I-)
,'.f, RESET(store);
) WHILE Ioresult < 0 DO BEGIN
o WRITELN('There has been an error accessing file ',going);
® WRITELN('Please check to be sure the proper disk is in drive A:');
§ WRITE(Enter "Y" to continue, or "N" to halt program. . . . ');
. READLN(incoming);
‘}' IF ((incoming = 'y’) OR (incoming = 'Y")) THEN RESET(store);
. IF ((incoming = 'N') OR (incoming = 'n')) THEN HALT
* END;
> {$1+)
Ty READLN(store,fBiasP,rBiasP);
‘_ ) READLN(store,energy,HscP,VscP);
2
¥
s
®
Dy
o

..' - oy - o .y . U0 e L . . v
B A N S T AL 0 T I DTSRRI P T KR L R e SRR R RO SN AN

.........




> -
-

g
°
p N
>~
o 148
: » The forward and reverse bias settings are read from line one, and the total
(1 energy during breakdown, the horizontal scale factor and the vertical
. scale factor are read from line two.
! FORR :=1TO 2048 DO
b READ(store, VIP[3,R]);
. » The Instantaneous Power is read.
‘o CLOSE(store),
;‘ IF ((fBiasP <> fBiasA) OR (fBiasP <> fBiasB) OR (fBiasA <> fBiasB)) THEN BEGIN
; WRITELNC(Error in reading in files. Forward Bias Settings not equal.");
{ WRITELN(Program Halted.");
L HALT
; _\‘ * A check is made to be sure all the forward bias settings read from the file
' are the same; otherwise, the program stops and the data cannot be plot-
° ted.
‘n‘;_'. END;
IF ((rBiasP <> rBiasA) OR (rBiasP <> rBiasB) OR (rBiasA <> rBiasB)) THEN BEGIN
'-} WRITELN(Error in reading in files. Reverse Bias Settings not equal.’);
{ WRITELN('Program Halted.");
"N
ol HALT
i::. » Same as last check only for the reverse bias settings.
a0 END;
g IF ((HscA <> HscB) OR (HscA <> HscP)) THEN BEGIN
R WRITELN(Error in reading in files. Horizontal Scale Settings not equal.");
\%‘ WRITELN('Program Halted.");
k' ¢ HALT
o » The horizontal scale factors are compared. If they are not the same the
, program halts.
o END;
<
Lo MaxA =0,
¢ MaxB :=0;
- MaxP := -32766;
o MinA := 256;
- MinB := 256;
MinP := 32767,
”
by ¥
¢
N
i
v
@
S |
» l’
) v RS LT (e TR R ST AV S VR Y R he R RSN LA A A RO AL SN '

0 L A Y e X A
Ot A LA O i O e A S L OO 0 ot It [N L SN D LA I XS OO ST AT




i

ot 149
g FOR R := 1 TO 2048 DO BEGIN

- IF (MaxA < VIP[1,R]) THEN MaxA := VIP[1R};

A IF (MaxB < VIP[2,R]) THEN MaxB := VIP[2R];

‘ { IF (MaxP < VIP[3,R]) THEN MaxP := VIP[3,R];

A IF (MinA > VIP[1,R]) THEN MinA := VIP[LR];

" IF (MinB > VIP[2,R]) THEN MinB := VIP2,R};

ey IF (MinP > VIP(3,R]) THEN MinP = VIP[3,R]

js;" ’ * The maximum and minimum values of Ve, I, and P are found.

0 END;

[ DA := MaxA - MinA;

- DB := MaxB - MinB;

j ; DP := MaxP - MinP;

hun * The difference between the maximum and minimum value for each data
o set is calculated. This is used in producing a scaled plot which is as
Q{;; large as the space allows.

& FOR R := 1 TO 2048 DO BEGIN

Y VIP[1,R] := VIP[1,R] - MinA;

( VIP[2,R] := VIP[2,R] - MinB;

VIP[3,R] := VIP[3,R] - MinP

LY

’”ﬁz * The minimum values of Ve, I and P are now zero. All data points have
o been corrected for the new offset.

D) END;

§t DA := 2000/DA;

| ";:’,.'E DB := 2000/DB;

b DP := 2000/DP;

o » The maximum vertical deflection of the plotted output is 2000 plotter
i ::f» units. "DA", "DB" and "DP" are now scale factors which when multi-
: E‘_'; plied by the offset data points will convert the integer data point values
o to plotter units.

.‘-‘R ZeroA := ABS((127-MinA)*DA);

R
-

7

ZeroB := ABS((127-MinB)*DB);
ZeroP := ABS(MinP*DP),

» The above three lines calculate the zero crossing location of Ve, I and
P.

0%

L)
I

,-
R ot il s

r
13
[y




0,1:'.:;

i

o

"D

\

;?::\v' 150
)

X IF MinA < 127 THEN BEGIN
WRITELN(LPT2,LT 2,1';

?'.':.. numouty:= 4400+ZeroA;

e WRITELN(LPT2,PA 1240,',numouty:0:4);

i WRITELN(LPT2,'PD 4800,’,numouty:0:4)
“‘) » If the minimum value of V. is below 127 (= 0), then the data goes neg-
‘ o ative and the zero crossing dashed line created by the above four lines
;:?: is produced on the plot.

) END;
( IF MinB < 127 THEN BEGIN
: % WRITELN(LPT2,LT 1,1%;

s ﬁ‘a numouty:= 4400+ZeroB;

i WRITELN(LPT2, PU 1240,',numouty:0:4);

3__, WRITELN(LPT2, PD 4800, ,numouty:0:4)

P * The same is done for L.

» :3,:3 END;
A IF MinP < 0 THEN BEGIN
(s WRITELN(LPT2,LT 2,1);
;" : numouty:= 1410+ZeroP;
b WRITELN(LPT2,PU 1360,’;numouty:0:4);
e WRITELN(LPT2,'PD 4800, ,numouty:0:4)

« Again, for P,

¥
'-, U
P

At

e END;
R WRITELN(LPT2,'LT");
Fo numouty := 4400+(VIP[1,1]*DA);

._7 + The value "numouty" is the vertical plot coordinate. The 4400 offset
E" value defines where the plot is placed vertically on the sheet. Vertical
‘ﬁ: placement is defined as the placement along the axis which stretches
1S
oy across the most narrow part of the paper or from long edge to long
9‘} - edge.

g WRITELN(LPT2,’PU 1290,',;numouty:0:4);
“l
‘?.:':- » The horizontal deflection will be described by "numoutx." The line

L above gives the starting point in the x-direction as 1290.

o FOR I :=2 TO 513 DO BEGIN
.

S

7
w,, 4
w.¢

o
%

---------- LR L T P N Y » L%
* > > ; PR . “' L;) ¥ ",F‘(-
Al

T T AR I B T A S A TR
Ty A n D0 T T D R B DN ST SN



ot
L)
B
0
E:§: 151
:::.L,:: R:=(1-1)*4;
{ numoutx := 1290+(R-1)*1.7;
- j.:g numouty := 4400+(VIP[1,R]*DA);
d + The location of the next point to be plotted are calculated in plotter units.
,\j WRITELN(LPT2,'PD ',numoutx:0:4,',',numouty:0:4)
: * The data for Vg is plotted. Only every fourth point are plotted to save
EE:: time in plotting. The accuracy of the plot does not suffer as there are
;:;':' still over 100 data points per inch in the horizontal direction.
R END;
( numoutx := 1290+1024*1.7;
o numouty := 4400+ VIP[1,1024]*DA;
~-’3‘_E: » The location for the graph label for V. is calculated.
"-: WRITELN(LPT2,PU";
' L WRITELN(LPT2,'PA ',numoutx:0:4,",',numouty:0:4);
; *f * The plotter pen is moved to the location.
R WRITELN(LPT2,'SI .12,21");
: J IF numouty > 4600 THEN BEGIN
, WRITELN(LPT2,'CP 0,-.9%;
o WRITELN(LPT2,LBV")
3 END
N ELSE BEGIN
WRITELN(LPT2,'CP 0,+9";
o WRITELN(LPT2,LBV')
pok END;
;‘ . » Depending upon the value of the data point at the location the label, "V,"
re will be printed above or below the plot just made.
%., numouty := 4400+(VIP[2,1]*DB);
() WRITELN(LPT2,PU 1290,',numouty:0:4);
:"i N o A repeat of the plotting process is done for I,. Notice the offsets are
.'h‘" 1290 and 4400. This will superimpose the graphs of Ve and I..
- FOR I:=2 TO 513 DO BEGIN
ok R := (I-1)*4;
_{t:‘ numoutx := 1290+(R-1)*1.7;
numouty := 4400+VIP[2,R]*DB;

R 2 R A D B T T T T T T AR T T 2

» )



"al
;:55:
;:‘ & 152
z:é:: WRITELN(LPT2,PD ',numoutx:0:4,',',numouty:0:4)
{ END;
-\-}'\» * A repeat of the labeling process is done below, but the horizontal place-
e ment is moved from point 256 to 1024, and the label is "1."
N numoutx := 1290+1024*1.7;
.") numouty := 4400+VIP[2,1024]*DB;
E‘.‘. ; WRITELN(LPT2,'PU ',numoutx:0:4,',',numouty:0:4);
’:'1. Y IF numouty > 4600 THEN BEGIN
o WRITELN(LPT2,'CP 0,-1.1%;
; WRITELN(LPT2,'LBI")
bR END
P ELSE BEGIN
s WRITELN(LPT2,CP 0,1.1');
O WRITELN(LPT2,LBI)
o
! :‘j:: +» The last plot made in this procedure is P. It is made the same way the
o plots above were done. It, also, is labeled as the other plots were.
{ numouty := 1410+VIP[3,1)*DP;
f, “:: WRITELN(LPT2,'PU 1290, ,numouty:0:4);
j‘q_‘s FOR1:=2 TO 513 DO BEGIN
W R := (I-1)*4;
D) numoutx := 1290+(R-1)*1.7;
aa numouty := 1410+VIP[3,R]*DP;
! WRITELN(LPT2,PD ',numoutx:0:4,',,numouty:0:4)
R END;
e numoutx := 1290+256%1.7;
o numouty := 1410+ VIP[3,256]*DP;
5:'5 WRITELN(LPT2,’PU ',numoutx:0:4,",',numouty:0.4);
A IF numouty > 1610 THEN BEGIN
o WRITELN(LPT2,'CP 0,-1.1');
@ WRITELN(LPT2,LBP')
i END
o ELSE BEGIN
o WRITELN(LPT2,'CP 0,1.1%);
R
‘10
s |
i

=
T
|

[ 4
a

£
"
»
-
-
-

U



TV P WV LY SL7Y WP BT WY Y W S s —

-

P

- -

\ 153
& WRITELN(LPT2,LBP)
( END;
5 WRITELN(LPT2,SI');
> WRITELN(LPT2,PU");
e CLOSE(LPT2)
t END.
N ’
)
: {********************************************************************** }
-

PROCEDURE plot2 (stor : STR13; VAR MaxA MinA : INTEGER;

- P e o e

'\: VAR HscA,ScaleA : REAL);
N » This procedure is used to plot Ve in the upper right quadrant of the out-
N put. It is created exactly as the plots in "Plot1" were, except no label is
’ d plotted.

& TYPE

5 simplearr = ARRAY[1..2048] OF INTEGER;
5
() VAR

& R,LS : INTEGER;
‘:-: going : STRING([14];

b incoming : CHAR;

i VIP : simplearr;

A VV,probeA,ZeroA ,fBiasA rBiasA,numouty,numoutx,DA : REAL;
‘f.: store, LPT2 : TEXT;,
A

(- BEGIN
o ASSIGN(LPT2,LPT2);

< REWRITE(LPT2);

- going := stor;

. INSERT('C',going,10);
b7 ASSIGN(store,going);
* incoming :='Q";
i ($1-}

RESET(store);

o

3

o

|

°

1 "0 O ‘o. o 'u. RN et ‘o'!'.. a)%‘» Q. '\5‘! ARG '.,I‘.‘l' ‘!t'::s ._ .,o y Q‘I‘..l‘..\‘..l" I c‘b‘- l‘ l‘a l‘ X '!"' ) 0‘ ‘.ufl’ i ‘l'ufl‘zft't



i
;ff 154
)
; WHILE Ioresult <> 0 DO BEGIN
t WRITELN(There has been an error accessing file ‘,going);
i:i‘s‘ | WRITELN('Please check to be sure the proper disk is in drive A:");
q: WRITE(‘Enter "Y" to continue, or "N" to halt program. . . . ");
,'::'L W READLN(incoming);
. IF ((incoming ="y") OR (incoming = 'Y"')) THEN RESET(store);
o IF ((incoming = 'N') OR (incoming = 'n')) THEN HALT
i‘:"::' X END;
(14
( » The file containing Ve is found and opened.
" ::: READLN(store,fBiasA rBiasA);
3 :; READLN(store,VV,HscA probeA);
b~ » The first two lines are read. Forward bias and reverse bias settings from
o line one, and Volts/Div, horizontal scale factor and probe multiplication
5 factor from line two.
o ScaleA := VV*probeA/32;
“-r FOR R :=1TO 2048 DO BEGIN
READ(store,incoming);
::"u VIP[R] := ORD(incoming)
. o
:‘,‘: * The data points are read.
b) CLOSE(store);
N MaxA :=0;
o MinA := 256;
i FOR R := 1 TO 2048 DO BEGIN
°® ) IF (MaxA < VIP[R]) THEN MaxA := VIP[R];
i'_ IF (MinA > VIP{R]) THEN MinA := VIP[R];
<4 END;
":E + The minimum and maximums are calculated.
e DA :=MaxA - MinA;
- « The difference between the minimum and maximum is calculated.
o FOR R := 1 TO 2048 DO BEGIN
N0 VIP[R] := VIP[R] - MinA;
i* END;
.. h
R

$ g K W Wy W o W Wy Wy .

> o

LA ¢ r.'\( L ™, 3 ) »” X
R LOREARS L) 0, ."a KA ... e, Jc’?’q\. '\,'.».vg.. ORI LY )



-

pEarfell B
A A

P v
F S

X

X,
A

”j‘d‘d“

Ve

[d

25U

‘-
o -‘.?‘l '

-
g

“;'“N’.’l s'l!..' L Rt IA'Q‘.!"?:..-

1656

* The data points are shifted so the minimum value in thz array is zero.
DA :=2000/DA;
* "DA" becomes the conversion factor from integer values to plotter units.
IF MinA < 127 THEN BEGIN
ZeroA = ABS((127-MinA)*DA);
WRITELN(LPT2,'LT 2,1');
numouty:= 4400+ZeroA;
WRITELN(LPT2,'PA 5780, ,numouty:0:4);
WRITELN(LPT2,PD 9340, ,numouty:0:4);
WRITELN(LPT2,'LT)
END;
« If the plot goes negative the zero crossing location is marked by a dashed
line.
numouty := 4400+(VIP[1]*DA);
WRITELN(LPT2,'PU 5830, ,numouty:0:4);
FOR I:=2 TO 513 DO BEGIN
R :=(1-1)*4;
numoutx := 5830+(R-1)*1.7;
numouty := 4400+(VIP[R]*DA);,
WRITELN(LPT2,'PD ',numoutx:0:4,",",numouty:0:4)
END;
* Every fourth data point is plotted. Notice the offsets, 5830 and 4400.
This places the plot in the upper right quadrant.
WRITELN(LPT2,PU");
CLOSE(LPT2)
END;

{**********************************************************************}

PROCEDURE LabelChoice2;
» This procedure is used to create the text labels for the axes, the zero
crossing line key and the graph titles for plotting option 2 made in
"PlotWhat." The procedure is simply a series of WRITELN state-
ments. To understand what is happening in this procedure the reader

"

o A ( W, o < LI LYY ~ YA G SRR )% gOm i ,
D A ST AR TRt ¢ e X X2 L AR €2 Y SN

{




1] .
P

YN
R

Pd

- Y -‘ ’

Iy

'i..
.
TSIV T T ¥

>

o :..'..'. %)
v‘.l. -

are included for this procedure.

VAR
LPT2 : TEXT;

BEGIN
ASSIGN(LPT2,'LPT2";
REWRITE(LPT2);
WRITELN(LPT2,'SI .27,.375";
WRITELN(LPT2,'PU 2790,6600;
WRITELN(LPT2,'CP -5,0";
WRITELN(LPT2,'LBV andI');
WRITELN(LPT2,PU 2790,6600";
WRITELN(LPT2,'CP -4,-.3";
WRITELN(LPT2,LBCE C;
WRITELN(LPT2,PA 7330,6600";
WRITELN(LPT2,'CP -10,0);
WRITELN(LPT2,LBBase-Emitter Voltage');
WRITELN(LPT2,'PA 2790,3610');
WRITELN(LPT2,'CP -4.5,0;
WRITELN(LPT2,LBP and E’);
WRITELN(LPT2,PA 2790,3610";
WRITELN(LPT2,'CP -3.5,-.3");
WRITELN(LPT2,LBI C;
WRITELN(LPT2,'SI');
WRITELN(LPT2,DR 0,1%;
WRITELN(LPT2,PA 5330,5450";
WRITELN(LPT2,'CP -2.5,-1.2");
WRITELN(LPT2,'LBVolts');
WRITELN(LPT2,PA 740,5450");
WRITELN(LPT2,'CP -2.5,0);
WRITELN(LPT2,'LBVolts');
WRITELN(LPT2,PA 740,5450');

RO R

:,’-"\‘ . _ﬂ.‘ e .-'_\ 'n‘r"n-:(',':.' “\11{'\.'(“ A ‘r';‘ 1‘-'( AN
A) N W » P S ol % ¢ '» .

o«

-

156
should refer to the HP-7470A User's Manual. No further comments

LAy
o L) R

R

g’t W,

" ;."




; P
ﬂﬁd¢?&$

Ay

T alw ufd
YV .

A 4

L ESS

S et

P

R
“5 f“; & A '.\/-.“\ i

o
, ;y"&

P 4
voe,

.

e
e @

-

0

ol
Rl AT

Py arhrels
Lt Y

.,"g,.,
PR
aSh L NSNS

L]

LRARY

LAl

RN R R AR R 3

W‘““"""'W‘I""W““ﬂ

157

WRITELN(LPT2,'CP -3.5,-1.2');
WRITELN(LPT2,LBAmperes");
WRITELN(LPT2, PA 740,2360";
WRITELN(LPT2,'CP -2.5,0";
WRITELN(LPT2,'LBWatts');
WRITELN(LPT2,PA 740,2360";
WRITELN(LPT2,'CP -3,-1.2";
WRITELN(LPT2,'LBJoules");
WRITELN(LPT2, DR 1,0%;
WRITELN(LPT2,'PU 5500,1200";
WRITELN(LPT2,LT 2,1";
WRITELN(LPT2,'PD 6800,1200";
WRITELN(LPT2,LT 1,1%;
WRITELN(LPT2,'PU 7050,1200";
WRITELN(LPT2,'LBZero Crossing V and P');
WRITELN(LPT2,'PU 5500,950";
WRITELN(LPT2,PD 6800,950';
WRITELN(LPT2,'PU 7050,950");
WRITELN(LPT2,'LBZero Crossing Current’);
WRITELN(LPT2,'LT");
CLOSE(LPT2)

END;

{**********************************************************************}

PROCEDURE VerticalAxis1 (MaxA ,MaxB,MaxP,MinA ,MinB,MinP : INTEGER;
VscP,ScaleA,ScaleB,energy,fBias,rBias : REAL);
* The vertical axes scales for Vg, I and P are calculated and plotted for

plot option two with this procedure.

VAR
fullstr : STRING[27];
outstr : STRING[9];
MinPlotA,MinPlotB,MinPlotP,MaxPlotA ,MaxPlotB,MaxPlotP : REAL;

Yy
haly)

R R TR



g’m‘qu“—““ hdiadbo il A iAot Sk el kaR dateta  d uld oh alh VLl ol A g 8 d A 2.3 £o0 S au. ob Vapoean o% el Mg Ut e .--\r-"v-'ww‘wuvrm‘vT
'

ot M
I
e 158
e
R LPT2 : TEXT;
o
R BEGIN
N ASSIGN(LPT2,LPT2));
~ S
: :": REWRITE(LPT2);

MinPlotA := ScaleA*(MinA - 127);
MinPlotB := ScaleB*(MinB - 127);

g

o

L5 MinPlotP := VscP*MinP;

R * The minimum value of Ve in volts, I in Amperes and P in Watts is cal-
7 % culated.

& MaxPIotA := ScaleA*(MaxA - 127);

o MaxPlotB := ScaleB*(MaxB - 127);

- MaxPlotP := VscP*MaxP;

pe * The maximum value of Ve in volts, I, in Amperes and P in Wats is cal-
&5 culated.

o WRITELN(LPT2,'SI .12,21");

T WRITELN(LPT2,PU 750,6400');
i WRITELN(LPT2,'CP -3,+.5);

s NumToStr9(MaxPlotA outstr);

o WRITELN(LPT2,'LB' outstr, V');

=3 « The plotter pen is moved to the location where the maximum value of Ve

is to be written. Depending upon the magnitude of the value the pen is

O

& ﬁ: moved a certain number of characters to the left to keep a constant right
} __..:: justification with the rest of the numbers to be printed below.

-\.-:"_: WRITELN(LPT2,’PU 750,4400";

o WRITELN(LPT2,'CP -3,+.5);

P

NumToStr9(MinPlotA ,outstr);
WRITELN(LPT2,'LB',outstr,'V");
* The minimum value of V¢, is printed. It is also right justified.
WRITELN(LPT2,'PU 750,6400";
WRITELN(LPT2,'CP -3,-.5%;
NumToStr9(MaxPlotB,outstr);
WRITELN{LPT2,'LB',outstr,'A");
* The maximum value of I is printed (right justified).

C PR PE
@ NN
v s T 2 4 o«

PO
"._a_-“-'\ 2, r‘l_
AR A AR

T

>

"L -

Y h N 1 1
u, LAt he ) 04
* J" M N s . l‘u'. -"‘.!‘D‘.:'Q‘.!'O..\ 0‘.’0‘-’

Y W W e 1 e A T R NV LN A Vo . Y N Y Wy Wy o g -
I A MR, P T W R i W e B
W s & * LTI I T S ‘ " e ‘ Aq“.n-o 0‘. A.',’ L 05 S )0 ) 5..0' o'y, l.g...!.‘.!'l.s.l



WRITELN(LPT2,’PU 750,4400;
WRITELN(LPT2,'CP -3,-.5%;
NumToSt9(MinPlotB,outstr);
WRITELN(LPT2,'LB',outstr,'A’);
» The minimum value of I is printed (right justified).
WRITELN(LPT2,PU 750,3410’);
WRITELN(LPT2,'CP -3,.5%;
NumToStr9(MaxPlo!P,outstr);
WRITELN(LPT2,'L.B',outstr,'W');
» The maximum value of P is printed (right justified).
WRITELN(LPT2,’PU 750,3410%;
WRITELN(LPT2,'CP -3,-.5;
NumToStr9(energy,outstr);
WRITELN(LPT2,'LB',outstr,'J");

» The maximum value of the energy is printed (right justified). The energy
was obtained when the file containing P was read. The total energy is
contain on line two of that file, and was passed to this procedure.
Since the total energy is the maximum energy, it is possible to use that
value to create the scale label. Also, the power and energy plots are
superimposed in both of the plot options so the scale value for the en-
ergy is written just below that for the power.

WRITELN(LPT2,PU 750,1410;
WRITELN(LPT2,'CP -3,-.5");
NumToStr9(0,outstr);
WRITELN(LPT2,'LB',outstr,'J");

+ The minimum value of the energy is printed.
WRITELN(LPT2,PU 750,1410');
WRITELN(LPT2,'CP -3,.5%;
NumToStr9(MinPlotP,outstr);
WRITELN(LPT2,'LB',outstr,'W");

+ The minimum value of P is printed (right justified).
WRITELN(LPT2,'ST";
WRITELN(LPT2,'PU 7585,3100";
WRITELN(LPT2,'CP -11,0";




T AR T 4T T, AT AT N T W T T T, T e T T e LR ] - = -~
AR ! SNy P RR a atN 2%y N Yy ; Ve 3O
1 "- oA N n LANR ] 1 < > v G, v, '.....q ‘.'» » \ K | l (2 .‘.l ‘Q‘.‘g":"". vy, N, ! X .Q‘A‘:.C.-.“:'l"

--------

160

NumToStr9(energy,outstr);
WRITELN(LPT2,LB ',outstr,'J’);
« The value of the total energy is printed in the lower right quadrant in the
"Breakdown Values" section.
WRITELN(LPT2,’PU 7585,1900');
WRITELN(LPT2,'CP -12,0');
NumToSt9(fBias,outstr);
WRITELN(LPT2,'LB ',outstr,'A");
WRITELN(LPT2,'PU 7585,1900';
WRITELN(LPT2,'CP 6.2,0");
NumToStu9(rBias,outstr);
WRITELN(LPT2,'LB ',outstr,’'A");
+ The forward and reverse bias settings are also printed over in the lower
right quadrant.
CLOSE(LPT2)
END;

{****************-\****************************************************** }

PROCEDURE VerticalAxis2 (MaxA,MinA : INTEGER; ScaleA : REAL);
« This procedure is used to print the vertical axis scale for Vpe.

VAR
fullstr : STRING[27];
outstr : STRING(9};
MinPlotA,MaxPlotA - REAL;
LPT2 : TEXT;

BEGIN
ASSIGN(LPT2,'LPT2);
REWRITE(LPT2);
MinPlotA := ScaleA*(MinA - 127);
MaxPIlotA := ScaleA*(MaxA - 127);
¢ The maximum and minimum values of Vi, are calculated.

g

i




o

e

[

Rl 161
- W

! WRITELN(LPT2,'SI .12,.21";

(' ] WRITELN(LPT2,'PU 5290,6400";

3 WRITELN(LPT2,'CP -2,0');

'- NumToStr9(MaxPlotA ,outstr);

)

! WRITELN(LPT2,'LB',outstr);

) * The maximum value of Ve is printed (right justified).
- WRITELN(LPT2,'PU 5290,4400');

N

‘ WRITELN(LPT2,'CP -2,-.5");

L NumToStr9(MinPlotA ,outstr);

( WRITELN(LPT2,'LB' outstr);

N + The minimum value of Vi is printed (right justified).
5; CLOSE(LPT2)

;:L END;

°

‘ N ; { e ol abe 2 2k 3k ok 2k 3 3¢ ke 3k dk e sk 2k 3k Ak sk 26 2k sk e 2k e s 34 3k 3k ke e 2 ke 3k 3k 3 3k 3k ke ke s 2k 2 2k 3k 3k ke e sk 34 2k 3k e 24 3k 3k 2 Ak ok ¢ 2l e ke e A sk e ke 2k 3k }
3

NeS

i E; PROCEDURE EnergyPlot(stor : STR13; Hsc : REAL; VAR PmaxPos : INTEGER);
* This procedure plots the Cumulative Energy superimposed on the In-
-f:'_: stantaneous Power.

o

T TYPE

®) ene = ARRAY[1..2047) OF REAL;

[

{ \:.3

o VAR

o store, LPT2 : TEXT;

® energy : ene;

:;{;: IR Estart,Estop : INTEGER;

oy DE,Emax,X,Y,t : REAL;

o

":-‘ test : BOOLEAN;

° going : STRING(14};

:,’:; incoming : CHAR;
_‘;:::: fullstr : STRING([25];

;\; time : STRING[10};

e,

L NS

<

3

\'-.

o

e

. -

b ) ;

Ll S AN S e
p}-..n.'/:)\‘_‘q"
s (i id] .

<

e e e e O N R R YT N RN WY L e R ey j R ”
o R p C [ ¥0.,8% (Ve AP W Vi A% 1%, .'. N ¥ """." n [ . o Xy 'n"."!n“' ..O.n;.‘&,. ..:.l‘..\l.-.l‘!::‘!.l 9 !‘:‘!

E)




&, 2 * S < ” a . 3 » i <

Y
e
162
o BEGIN
f"" ASSIGN(LPT2,LPT2);
;',“:'6 REWRITE(LPT2);
:.:sg' going := stor; .
i INSERT(E',going,10);
:'j ASSIGN(store,going);
/\",‘_: incoming :='Q";
A ($1-)
‘~,: RESET(store);
( ) WHILE Ioresult <> 0 DO BEGIN
:-j_: WRITELN('There has been an error accessing file ',going);
N :':ﬁj WRITELN(Please check to be sure the proper disk is in drive A:");
\::i:f WRITE(Enter "Y" to continue, or "N" to halt program. . . . );
. READLN(incoming);
1 *';5 IF ((incoming ='y") OR (incoming = 'Y")) THEN RESET(store);
'j,:: IF ((incoming = 'N') OR (incoming = 'n")) THEN HALT
K END,
.
'S {$1+)
'.T-::: + The file containing the energy is found and opened.
;’,’_ test := TRUE;
- FOR R := 1 TO 2047 DO
i’) ' READ(store,energy[R]);
N + The cumulative energy values are read.
o CLOSE(store);
o FOR R := 1 TO 2047 DO
o IF test THEN
R IF energy[R] > 0 THEN BEGIN
' E_"§ test := FALSE;
2 Estart :=R
.“ END;
- « The point where the energy becomes non-zero is found. This is where
¥ ‘, the plot will begin.
xx Estart := Estart - 1;
. - Emax := -100000.0;
3
)
)
[\ )"
e

L W AL G M NI T L WL AN TN NG ‘ y ' » :
) { ; L ( ) ) . Mo, %] L
e R A e A A e e R N R KA ]




PN

e

Bl ML
BRER AR R AR
LN

I I S

FORR :=1TO 2047 DO
IF energy[R] > Emax THEN Emax := energy[R];
¢ The maximum value of the energy is found.
test := TRUE;
FORR :=1TO 2047 DO
IF test THEN
IF energy[R] = Emax THEN BEGIN
test := FALSE;
Estop :=R
END;
* The first occurrence (and theoretically the only) of the maximum value of
E is found. This will be the end of the energy plot.
Estop := Estop + 1;
' PmaxPos := Estop - 2;

DE := 2000/Emax;
» The vertical conversion factor from real numbers into plotting units is
calculated.
X := 1.7*(Estart-1) + 1290;
Y :=1410;

* The start point for the energy plot is calculated in plotter units.
WRITELN(LPT2,'PU 'X:0:4,',",Y:0:4);
R:=0;
FOR I := Estart TO Estop DO BEGIN
R:=R+1;
IF R = 4 THEN BEGIN
R:=0;
X = 1L.7*I + 1290;
Y := 1410 + DE*energy(I];
WRITELN(LPT2,PD 'X:0:4,",',Y:0:4)
END
END;

» The energy plot is created. Every fourth point is plotted.
X =X+ 100;
Y:=Y-25;

W (T W
.

LAk M




1.8
...\
KA
o 164
K ¥3 WRITELN(LPT2,'PU ',X:0:4,",,Y:0:4);
( WRITELN(LPT2,'SI .12,.21');
‘ WRITELN(LPT2,LBEY;
| ::.. « The energy plot is labeled.
P t := (Estop - Estart)*Hsc;
)  The time interval over which integration was conducted is calculated.
& ""E This value is one of the values printed in the "Breakdown Values” sec-
N tion.
‘ o STR(t,fullstr);
( o The time is converted from real number to string.
0 DELETE(fullstr,1,1);
b DELETE(fullstr,7,11);
N DELETE(fullstr,9,1);

time := COPY(fullstr,1,10);
 The time is placed into the string "time" as a 10 character representation
of the time to breakdown in scientific notation. This step saves the
printing of 25 characters to get the time, and it saves space on the pa-

o~ - o -
WLl e

per.
" o WRITELN(LPT2,'SI');
162 WRITELN(LPT2,’PU 7585,3100);
N
N WRITELN(LPT2,'CP 6,0);
ey
o) WRITELN(LPT2,LB',time,'S");
N « The "time" string is printed.
o CLOSE(LPT2)
Lol END;
igh e
o
A { 3 sk 2k 3k ok o sb 3k 3 3 ok ok 3k 3k 3k 3k ok 3k 3 3 2k 3 3k 3k ke o o 3 2k o sk 3 e e e 2 ok ok o e ke e e 3k 3k ok sk e ke ae o 3 ok e e sk ok sk e ke e o ok e kel ke ke e }
3
b PROCEDURE VIBreakdown (stor : STR13; PmaxPos : INTEGER);
"‘ « This procedure is used to calculate the values of Ve and I at breakdown
'zﬁ: (specifically, at the protection circuit's firing).
e
‘\-(“
o TYPE
. Vlarray = ARRAY[1..10] OF INTEGER;
>,
)
1# .
N
LA
L0l
pvhy
[

L T~ R~ - - , P - .. -
.f’ “":':"o'l.!'l,\f,:!ﬁ,q.j,:‘.l!:'l,,g ,!'0’:'0,:'\ :'0_:'0‘:'!. L M WY g"l"-l | :'!.‘0‘!"’. .:'I.:'l.a ;\5._. (,:'0_. :‘n‘!\ !’l‘!‘;"h_":‘:::‘?::"::.‘l:“"':' n"‘i“.n ‘:‘u"'l 'vf"uﬁ‘

-----------------------




R N N T S T TV T A A T B U T T Y VT T Y U W I ow W WY P T I T I I TR WY

0

i

"

e

) 165
b
( VAR

}:: store : TEXT;

e Vlarr : Vlarray;

o coming : STRING[14];

;"" outstr : STRING[9];

LU V.LR : INTEGER;

Q_‘i test : BOOLEAN;
.\ incoming : CHAR;
H,ScaleA,ScaleB,VV,VI,probeA,probeB,Vbd,Ibd : REAL;

)

BEGIN
"% coming := stor;

° INSERT('A’,coming,10);

A ASSIGN(store,coming);
L RESET(store);

b READLN(store);
¢ READLN(store);

:i . READLN(store,VV,H,probeA);

o ScaleA := VV*probeA/32;

W N * The file containing Ve is opened the first lines are read and the vertical
scale factor is calculated.

™ Vbd :=0;

o FOR R := 1 TO PmaxPos-15 DO READ(store,incoming);

3: * The cursor position in the file is moved to the location 15 characters be-
. fore the position where the energy is at its maximum. This corre-

sponds to 15 time steps prior the region where breakdown occurred.
FORR :=1TO 10 DO BEGIN

-~

5 %

X READ(store,incoming);

" Vlarr{R] := ORD(incoming);

: - END;

* The next 10 characters are read and converted to integers.
N CLOSE(store);

. test := TRUE;

S Y ' - - " 1 "
D AR DR IORN N

"
tarea!.



@

R

"\E 166
bt R:=1;
('._"._ WHILE test DO BEGIN

::: oy Vbd := Vlarr[R}/VIarr{R+1];

‘ IF Vbd < 1 THEN Vbd := 1 - Vbd;

108 Vbd := FRAC(Vbd);

ok IF Vbd > 0.10 THEN BEGIN

i"; \ V:=R;

;‘ ; test := FALSE

P END;
( R:=R+1;

o IF R = 10 THEN BEGIN

3 :‘3-:: V:=R;

e test := FALSE

Ko

® END

S, ’

:’._‘ » A check is then made for breakdown occurring within those ten data
\t': points. If there is a 10% variation from one point to the next, then
{ _ breakdown is said to have occurred. Only the points prior to this con-
E:EE:: dition being met will be used to calculate the voltage at breakdown.

e Vbd :=0;

o FOR R :=1TO V DO Vbd := Vbd + VIart{R];

9) Vbd := Vb/V;

. "‘i: » The average value of the 10 points or the points up to breakdown is cal-
-5’. culated.

7o Vbd := (Vbd-127)*ScaleA;

® + The average is converted to volts. This is now the breakdown voltage.
:‘f coming := stor;

E‘f:) » A repeat of the above is then done for the file containing I..

. "; INSERT('B',coming,10);

o ASSIGN(store,coming);

iy RESET(store);

| ""::j READLN(store);

b READLN(store, VI, H,probeB);

. ScaleB := VI*probeB/32;

R

(s

o

o0

®

TN

N
IR . \
"if "-‘),‘\ e "y . P A A LA 0 - - - ] X R
R SRR IR e 2 AR 2 T




K T
Ry

3

i: 167
:?.h. Tod :=0;

{ FOR R := 1 TO PmaxPos-15 DO READ(store,incoming);
o FORR := 1 TO 10 DO BEGIN

K e READ(store,incoming);

' .;"* Vlarr{R] := ORD(incoming);

) END;

o CLOSEC(store);

i :ﬁ, test := TRUE;

R, R:=1;
( i WHILE test DO BEGIN

" .‘:3_- Ibd := Vlarr[R]/VIarr{R+1};

;{: IFIbd <1 THEN Ibd :=1 - Ibd;

$ Ibd := FRAC(Ibd);

. IF Ibd > 0.10 THEN BEGIN

\r-:': V:=R;

; E:: test := FALSE

END;
{ R:=R+1;

» IF R = 10 THEN BEGIN

o

i.,::: V:=R;

% test := FALSE

3‘?" END

\.r: END;

\:::.: Ibd :=0;

:{:_3,{: FORR :=1TO V DO Ibd := Ibd + VIarr[R];
o Ivd := Ibd/V;

Ibd := (Ibd-127)*ScaleB;

\S:' « After both values have been calculated, they are printed out.

N }:; ASSIGN(store,'LPT2');

® REWRITE(store);

"3:'5 WRITELN(store,’PU 7585,2700');

‘ :.‘_ WRITELN(store,'CP -12,0";

e NumToStr9(Vbd,outstr);

: ‘."" WRITELN(store,'LB',outstr,'V");

\f;

°

T T T e T e T L SRR TR R T




:::: 168
3 « The breakdown voltage is printed in the lower right quadrant.
(“ WRITELN(store, PU 7585,2700";

W WRITELN(store,'CP 6,0');

N NumToStr9(Ibd,outstr);

2 WRITELN(store,'LB' ,outstr,'A");

? * The breakdown current is printed in the lower right quadrant.

::' ) WRITELN(store, PU");

:: N CLOSE(store)

L END;
" f, { 36 3 2k ke 3k 3k e e 34 2k 2k ke 2 2 3 e 2k 20 sk 2 ke ae 3k ke ok 2k 3k 2k 3 sk 3k ok 3k 3k 2k ak e 3 ok 3k 3 3k 2 ke 3 3 3k e ok ok ke 3k ok ok ok e A 3 sk e 3k 3k ak ke e e ok ok ok kK }
¢ ',-"‘:

o PROCEDURE plot (stor : STR13;

- VAR MaxA ,MaxB,MaxP,MinA,MinB,MinP : INTEGER;

‘;: VAR HscA,VscP,ScaleA,ScaleB,energy,fBiasA rBiasA : REAL;

x VAR Ign : CHAR);

: ‘-$ + This procedure is exactly the same as "Plot]1" except the plots of Ve and
(- . I are not superimposed. I is placed in the upper right quadrant and
P Ve is in the upper left. This is plot option 1. Only changes between
E this procedure and "Plot1" will be commented.

o

~N VAR

o RIS : INTEGER;

*S going : STRING[14};

.::E incoming : CHAR;

° VIP : datarray;

-'; VL VV,HscB,HscP,probe A,probeB,fBiasB,rBiasB,fBiasP,

: :;:j rBiasP,ZeroA,ZeroB,ZeroP,

:Z?,: numouty,numoutx,DA,DB,DP : REAL;

o store, LPT2 : TEXT[25];

i< ”-:

o BEGIN

2= ASSIGN(LPT2,'LPT2);

. REWRITE(LPT2);

-q“ﬂi \ﬂ'\td\ ‘_, 4"1')

'!"J{ fnthe ’h‘.’u”ﬂ‘,’t‘f’.‘. . el .'t‘ 00 LOCCAOISRY 'c X a‘.‘t Frdles 'o -'s 0“%‘!-‘ 'n‘ h h ﬁ‘.‘t‘ ” W 'o‘ .‘ o0l ':'.‘ ‘ '!‘i"-"



............

R ]
ety
it
)
§ 170
i:';: IF ((incoming ="'y") OR (incoming = "Y")) THEN RESET(store);
( : IF ((incoming = 'N") OR (incoming = 'n')) THEN HALT
. :-d END;
= ($1+)
o~ READLN(store,fBiasB,rBiasB);
) READLN(store,VI,HscB,probeB);
o ScaleB := VI*probeB/32;
Qﬁ IF HscA < HscB THEN BEGIN
“:ﬁ WRITELN('Horizontal scale factors not equal. Program Halted.";
( HALT
B END:
i 3'.:' FOR R :=1 TO 2048 DO BEGIN
2 23 READ(store,incoming);
"o VIP[2,R] := ORD(incoming)
ot END;
, ,.:E'; CLOSEc(store);
"';E going := stor;
{ INSERT('P',going,10);
» .3: ASSIGN(store,going);
5_";:' {3I-)
:‘ A RESET(store);
WHILE Ioresult <> 0 DO BEGIN
" ~“ WRITELN('There has been an error accessing file ',going);
'::;-‘q WRITELN(Please check to be sure the proper disk is in drive A:’);
-';'C': WRITE('Enter "Y" to continue, or "N" to halt program. . . . ');
. READLN(incoming);
3: IF ((incoming ="y") OR (incoming = 'Y")) THEN RESET(store);
e IF ((incoming = 'N') OR (incoming = 'n')) THEN HALT
‘ }‘_. END;
° {$1+)
-y READLN(store,fBiasP,rBiasP);
; -;S READLN(store,energy, HscP,VscP);
b FORR := 1 TO 2048 DO
® , READ(store,VIP[3,R]); !
DAY :
s
o .,:
V‘\
@
5

M Y

S T N T VL R 5 : "o L AR ; AT T
FAC AN R W T AR A i RS AT e AT R CARY PN, (0 O >, )
N \"K " » " "y 2 7 F 90! ANS N - .J- !'u 1, ..n"" !::‘,"5?':‘!“ Ny " !'a 5 \ !‘:‘!‘n K N -‘.,lg ;)

Dt .

Jo? V.



.

X X
>
LA ITN

P4 P 7™
o Ly AR G
A oty

ub »j‘.{ :'

1.y

SRS SN

RN
. f.)“q‘ otk

RSO
0 @ NS
[ SOE R SOV Tav A |

-
!

@7
5 5‘;255‘

"y

--ﬂ,.---
P

A

L4

=

Ma i g 4

going := stor;
INSERT('A',going,10);
ASSIGN(store,going);
incoming :='Q";
($I-)
RESET(store);
WHILE Joresult <> 0 DO BEGIN
WRITELN(There has been an error accessing file ',going);
WRITELN(Please check to be sure the proper disk is in drive A:");
WRITE(Enter "Y" to continue, or "N" to halt program. . . . ');
READLN(incoming);
IF ((incoming ='y") OR (incoming = 'Y")) THEN RESET(store);
IF ((incoming = 'N') OR (incoming = 'n")) THEN HALT
END;
{$I+}
READLN(store,Ign);
READLN(store,fBiasA,rBiasA);
READLN(store,VV,HscA probeA);
ScaleA := VV*probeA/32;
FOR R :=1TO 2048 DO BEGIN
READ(store,incoming);
VIP[1,R] := ORD(incoming)
END;
CLOSE(store);
going := stor;
INSERT('B',going,10);
ASSIGN(store,going);
($1-}
RESET(store);
WHILE Ioresult <> 0 DO BEGIN
WRITELN('There has been an error accessing file ',going);
WRITELN(Please check to be sure the proper disk is in drive A:');
WRITE(Enter "Y" to continue, or "N" to halt program. . . . ');
READLN(incoming);

169

~ N n LIS "y RtV 0% Ve toul UK TR Y G Y AT ;
K g:'f':..h.. l.'::'!’» b !‘:‘. !:h- a- j 'l ”!’l.-‘i !’0‘-“ !'0.-'- ‘ oSt !‘ {“ s“'!".‘u“’# L0 l.‘!' ‘ O.’:'l':‘i':’:‘!"‘l"‘ ...

Aol "B,

OO0
Oty

i




o A L
v "
:'J et s LA S VR o

L) .N
PACNTNPNEAR L R o

L

T LN

-
‘-’

f‘ e *
.:.'LJ Pl r..'nr‘-

-
b

¥ e g %
@ LA

s ¥ B B
el @

-

"~

v.\\\i..

LAY

f('f('

----

VIP[1,R] := VIP{1,R] - MinA;
VIP[2,R] := VIP[2,R] - MinB,;
VIP[3,R] := VIP[3,R] - MinP
END;
DA :=2000/DA,
DB := 2000/DB;
DP := 2000/DP;
ZeroA := ABS((127-MinA)*DA);
ZeroB := ABS((127-MinB)*DB);
ZeroP := ABS(MinP*DP);
WRITELN(LPT2,LT 2,1";
IF MinA < 127 THEN BEGIN
numouty:= 4400+ZeroA;
WRITELN(LPT2,'PA 1240, ,numouty:0:4);
WRITELN(LPT2,PD 4800,',numouty:0:4)
END;
IF MinB < 127 THEN BEGIN
numouty:= 4400+ZeroB;
WRITELN(LPT2,’PU 5780,',numouty:0:4);
WRITELN(LPT2,PD 9340,',numouty:0:4)
END;
IF MinP < 0 THEN BEGIN
numouty:= 1410+ZeroP;
WRITELN(LPT2,PU 1360, ,numouty:0:4),
WRITELN(LPT2,’PD 4800, ,numouty:0:4)
END;
WRITELN(LPT2,'LT");
numouty := 4400+(VIP[1,1]*DA);
WRITELN(LPT2,’PU 1290,',numouty:0:4);
FOR 1:=2 TO 513 DO BEGIN
R = (I-1)*4;
numoutx := 1290+(R-1)*1.7;
numouty := 4400+(VIP[1,R]*DA);
WRITELN(LPT2,'PD ',numoutx:0:4,',',numouty:0:4)

b AT AT R A AT AT AT T '\-'

, "“ ’{ Sl AT %) \. ‘!' ..‘Q. A, 'o"ql.:.“ I.o o

172

L] q\.l ﬂ}..'&n.\

.n N ‘o A\ ‘ I‘n Iy .:‘l q. N -'ﬁ‘.

g

A




)
»r

K
o
ol
i 171
T CLOSE(store);
{ ¢ IF ((fBiasP <> fBiasA) OR (fBiasP <> fBiasB) OR (fBiasA <> fBiasB)) THEN BEGIN
,'.:‘r'.:'u WRITELN(Error in reading in files. Forward Bias Settings not equal.’);
oy WRITELN('Program Halted.);
: HALT
h END;
""" IF ((rBiasP <> rBiasA) OR (rBiasP <> rBiasB) OR (rBiasA <> rBiasB)) THEN BEGIN
,j:_'-'j WRITELN('Error in reading in files. Reverse Bias Settings not equal.”);
i WRITELN('Program Halted.");
HALT
:E END;
fowe IF ((HscA <> HscB) OR (HscA <> HscP)) THEN BEGIN
:::j:‘}’ WRITELNC(Error in reading in files. Horizontal Scale Settings not equal.’);
. WRITELN('Program Halted.);
s HALT
N END;
b MaxA :=0;
f ' MaxB :=(;
~ MaxP := -32766;
o MinA := 256;
o MinB := 256;
D MinP := 32767,
o FOR R := 1 TO 2048 DO BEGIN
O IF (MaxA < VIP[1,R]) THEN MaxA := VIP[1,R];
< IF (MaxB < VIP[2,R]) THEN MaxB := VIP[2,R];
’ IF (MaxP < VIP[3,R]) THEN MaxP := VIP[3,R];
oo IF (MinA > VIP[1,R]) THEN MinA := VIP[1,R];
o IF (MinB > VIP[2,R]) THEN MinB := VIP[2,R];
R IF (MinP > VIP[3,R]) THEN MinP := VIP[3,R]
END:
o DA := MaxA - MinA;
- DB := MaxB - MinB;

SN DP := MaxP - MinP;
o FOR R := 1 TO 2048 DO BEGIN




----------

A%
s

oy
b
e
—':f. 173
X Ej END;
1 numouty := 4400+(VIP[2,1]*DB);
o WRITELN(LPT2,PU 5830,',numouty:0:4);
X " * The offset in the x-direction for I is now 5830 instead on 1290.
R0 FOR I := 2 TO 513 DO BF "IN
) R = (I-1)*4; '
i .‘a numoutx := 5830+(R-1)*1.7;
! * numouty := 4400+ VIP[2,R}*DB;
::: WRITELN(LPT2,PD ',numoutx:0:4,",',numouty:0:4)
END;
“':" numouty := 1410+VIP[3,1]*DP;
:s,:\ WRITELN(LPT2,'PU 1290, ,numouty:0:4);
o FOR1:=2TO 513 DO BEGIN
° R := (I-1)*4;
L numoutx := 1290+R-1)*1.7;
e numouty := 1410+VIP[3,R]*DP;
_’.-'-j WRITELN(LPT2,PD ',numoutx:0:4,',,numouty:0:4)
) WRITELN(LPT2,'SI .12,.21");

h

numoutx = 1290+256*1.7;

numouty := 1410+ VIP[3,256}*DP;
WRITELN(LPT2,'PU ‘,numoutx:0:4,',',numouty:0:4);
IF numouty > 1610 THEN BEGIN

PRI
(')’ :
T 3 AR

'v
LA

A

o WRITELN(LPT2,'CP 0,-1.1;
0 WRITELN(LPT2,'LBP)

o END

N ELSE BEGIN

o WRITELN(LPT2,'CP 0,1.1";
I WRITELN(LPT2,LEP)

o END;

‘s-'j * Ve and I are no longer I:heled, but P is.

,:g WRITELN(LPT2,'SI);

o WRITELN(LPT2, PUY;

N CLOSE(LPT2)

%

[V )E

) N

.S,&."‘-“;-u’ VRS SRS LR R

AN S AN {Aiai.ﬁf‘




-
-
-
v
.
-
g
3

() ‘
by
.
8 .
)
o2 174
™
e END;
»
:. “' {**********************************************************************}
)
" PROCEDURE baseplot(Hsc : REAL; device,series : INTEGER);
:r'  This procedure produces the basic plotting elements. The elements are
’\-I things like the axes, the time labels on the axes and the "Breakdown
“\'.- Values" labeling. The items created by this procedure are the same for
H both option 1 and 2.
.
o VAR
N t1,12,13,04 : STRING[7);
all fullstr : STRING[23];
,3% time : REAL;
2 LPT2 : TEXT;
B,
k-2
o BEGIN
J., ASSIGN(LPT2,LPT2";
~ REWRITE(LPT2);
‘ 3'-__ time := 512*Hsc;
s *» The first time mark is one-quarter of the way down the time axis. It is
F calculated by this line.
‘-,. STR(time, fullstr);
= DELETE(fullstr,7,12);
L DELETE(fullstr,9,2);
e DELETE(fullstr,1,2);
2 t1 := COPY (fullstr,1,7);
3 * The first time mark is converted to string and shortened.
o time := 1024*Hsc;
4 STR(time, fullstr);
& DELETE(fullstr,7,12);
:.:j DELETE(fullstr,9,2);
-7 DELETE(fullstr,1,2);
. t2 := copy(fullstr,1,7);
=
%
o
7

P B B S S N S g
N A IR AN L
L] . bl R

" ar ‘. oa O H A N e e
{%’Vl, LIS . g ‘,‘(.\ K )-r' oY :

N



NG

i

9.u

: N * The second time mark is calculated and converted to string.
' time := 1536*Hsc;

o STR(time, fullstr);

;‘:; DELETE(fullstr,7,12);

) DELETE(fullstr,9,2);

5 DELETE(fullstr, 1,2);

K 3 := COPY (fullstr, 1,7);

s « The third time mark.

‘ "': time := 2048*Hsc;
( STR(time, fullstr);

:: DELETE(fullstr,7,12);

3 DELETE(fullstr,9,2);

o DELETE(fullstr,1,2);

° t4 := COPY (fullstr, 1,7);

! 5 » The fourth time mark. All of the time marks are the same for all three
;':: 5; graphs.
o WRITELN(LPT2,TP 520,770,9600,6750");

WRITELN(LPT2, PA 520,770);

o WRITELN(LPT?2, PU 1240,6400');
;—\r;; WRITELN(LPT2,PD 1340,6400');
Y WRITELN(LPT2,'PU 1290,6400";
: WRITELN(LPT2,PD 1290,4400,4800,4400";
e WRITELN(LPT2,'PU 5780,6400°);

o WRITELN(LPT2,PD 5880,6400);

P WRITELN(LPT2,PU 5830,6400);

A WRITELN(LPT2,PD 5830,4400,9340,4400');
o WRITELN(LPT2,'PU 1240,3410;

3{:- WRITELN(LPT2,PD 1340,3410;
e WRITELN(LPT2,PU 1290,3410');

i-o:. WRITELN(LPT2,PD 1290,1410,4800,1410');
2}; o The axes are plotted.
X + This is the beginning of the time labeling section.
v-':ﬁ WRITELN(LPT2,'PU 2790,6500);
.‘: WRITELN(LPT2,DT',CHR(10));

<

i

_
ey

A
K % P R T T T TR T VEC A " ATNONN N < 3 O ARG L ) ¥
P e S T A y \ = ) CLA0N) U, i gy B Ty
.§, KK -'2‘5 AL -‘!0 ” " e "' .' o ."!'JM', ! J,‘!t- s c."v.o.‘, ?«'..‘c X n.‘.'oe"."'o My qﬂa:"o. ,O.'!l"'lf“‘%,‘lf"t’:ﬁfﬂl!"0.‘"1. '.:',"J‘n’l‘nl'q




A XI P2 FL B

-~ = PR i e
FLASAN D" PR

Rt 7%

e R o

2 P ABE ST SIS S

TN

- - ¥
IR s

Yyl ek

- s

- e
I

a v A .'l‘

%

Pkl .‘.‘-.vi.'l »

-

P @it

e
-

¢

o
-

176

WRITELN(LPT2,DR 1,0%);
WRITELN(LPT2,'SI .12,.21");
WRITELN(LPT2,'PU 1290,4450);
WRITELN(LPT2,PD 1290,4350");
WRITELN(LPT2,'PU 1290,4200');
WRITELN(LPT2,LB0";
WRITELN(LPT2,PU 1240,4400;
WRITELN(LPT?2,PD 1300,4400;
WRITELN(LPT2,PU 2167.5,4450');
WRITELN(LPT2,PD 2167.5,4350');
WRITELN(LPT2,'PU 2167.5,4200';
WRITELN(LPT2,'CP -3.5,0");
WRITELN(LPT2,LB',t1);
WRITELN(LPT2,'PU 3045,4450");
WRITELN(LPT2,’PD 3045,4350');
WRITELN(LPT2,'PU 3045,4200;
WRITELN(LPT2,'CP -3.5,0);
WRITELN(LPT2,'LB',t2);
WRITELN(LPT2,'PU 3922.5,4450');
WRITELN(LPT2,PD 3922.5,4350');
WRITELN(LPT2,'PU 3922.5,4200';
WRITELN(LPT2,'CP -3.5,0");
WRITELN(LPT2,'LB',t3);
WRITELN(LPT2,'PU 4800,4450°);
WRITELN(LPT2,’PD 4800,4350");
WRITELN(LPT2,'PU 4800,4200';
WRITELN(LPT2,'CP -3.5,0");
WRITELN(LPT2,'LB',t4);
WRITELN(LPT2,'PU 1290,1460');
WRITELN(LPT2,'PD 1290,1360");
WRITELN(LPT2,’PU 1290,1210');
WRITELN(LPT2,'LB0");
WRITELN(LPT2,'PU 1240,1410%;
WRITELN(LPT2,'PD 1300,1410');

Fontéd 110

.v"..' . ’ )\”:',. » )q'y-)_\ . v \ L0y O L% V i w % 3 O Y ,;!u\ - 5
A A AN S T YR M KNS N S ] .0.!. gttty e “\ O SRR




AN
s
i
;;' 177
s WRITELN(LPT2,PU 21 7.5,1460');
i WRITELN(LPT2,PD 2167.5,1360');
WRITELN(LPT2,PU 2167.5,1210');
-E‘._g WRITELN(LPT2,'CP -3.5,0;
N WRITELN(LPT2,LB',t1);
o) WRITELN(LPT2,PU 3045,1460');
e WRITELN(LPT2,PD 3045,1360);
A WRITELN(LPT2,PU 3045,1210';
o) WRITELN(LPT2,'CP -3.5,0);
(‘ WRITELN(LPT2,LB',12);
ot WRITELN(LPT2,PU 3922.5,1460');
o WRITELN(LPT2,PD 3922.5,1360');
N WRITELN(LPT2,'PU 3922.5,1210');
S WRITELN(LPT2,'CP -3.5,0);
oy WRITELN(LPT2,LB',t3);
53:_: WRITELN(LPT2,’PU 4800,1460);
:;g WRITELN(LPT2,'PD 4800,1360');
' WRITELN(LPT2,'PU 4800,1210);
o WRITELN(LPT2,'CP -3.5,0');
& WRITELN(LPT2,'LB',t4);
s- WRITELN(LPT2,'PU 5830,4450";
o) WRITELN(LPT2,PD 5830,4350');
N WRITELN(LPT2,'PU 5830,4200);
o WRITELN(LPT2,LBO");
o= WRITELN(LPT2,PU 5780,4400';
e WRITELN(LPT2,PD 5850,4400"):;
R R WRITELN(LPT2,PU 6707.5,4450";
e WRITELN(LPT2,PD 6707.5,4350;
:5. x WRITELN(LPT2,PU 6707.5,4200');
s WRITELN(LPT2,'CP -3.5,0);
o WRITELN(LPT2,'LB' t1);
e WRITELN(LPT2,PU 7585,4450);
s WRITELN(LPT2,PD 7585,4350");
° WRITELN(LPT2,’PU 7585,4200);
: ;::
N
o
5

e,

'*l' T AN ") D . [N S b o ‘ f P ' v v
W, SN () . AN 30 OO () AR ¢ (38 J

S A T R R L T N S e ’;'.'1"3'!05.,a.l'ofl‘-:“:!"nfb,'u.‘!:1\'-!“»!ﬂt!“tf'?n".r,"et\?c'.ﬂo'.i?wJ'nf'fvf‘!o. USRS VAN




......

R Y Y v -y
o N
o
-~
: Y 178
': WRITELN(LPT2,'CP -3.5,0;
¢ . WRITELN(LPT2,LB'12);
e WRITELN(LPT2,'PU 8462.5,4450');
X WRITELN(LPT2,PD 8462.5,4350';
o WRITELN(LPT2,PU 8462.5,4200);
O) WRITELN(LPT2,'CP -3.5,0';
o WRITELN(LPT2,'LB',13);
ot WRITELN(LPT2, PU 9340,4450');
Ay WRITELN(LPT2,PD 9340,4350");
( WRITELN(LPT2, PU 9340,4200);
-‘ WRITELN(LPT2,'CP -3.5,0);
hi WRITELN(LPT2, LB 14);
":; + This is the end of the time labeling section. All three graphs have been
® labeled.
"ﬂ.‘r: » The following section writes the "Breakdown Values" section minus the
"'E: data.
28 WRITELN(LPT2,PA 7585,3500';
( WRITELN(LPT2,'SI .27,.375");
333'3: WRITELN(LPT2,'CP -8,0');
y ‘ WRITELN(LPT2,'LBBreakdown Values');
g:, WRITELN(LPT2,'ST);
5 WRITELN(LPT2,PA 7585,3100);
o WRITELN(LPT2,'CP -17,0";
ﬁf WRITELN(LPT2, LBEnergy:");
51'.5; WRITELN(LPT2,PA 7585,3100;
° WRITELN(LPT2,'CP 2,0');
o WRITELN(LPT2, LBTime:);
s WRITELN(LPT2,PU 7585,2700;
e WRITELN(LPT2,'CP -16,0');
° WRITELN(LPT2, LBV :Y;
o WRITELN(LPT2,PU 7585,2700);
-~ WRITELN(LPT2,'CP -15,-3');
bt WRITELN(LPT2, LBCE);
v WRITELN(LPT2,'PU 7585,2700;
e
..
0
el
L ‘

O A SN0 T N N I OO 0N A UL OO0 U )
BT IS RN I A ARG ’l:'ﬁk"*\’lel'pel'u!l'!?l‘.f".,.l':..l....I':!l‘sAl':‘l.c TG X Md.’A".H.o?«\,gﬁn.D,\ ‘,s'.ﬂo'l.:‘l."‘.t'i

sssss

)
b




@ BOcor e,

N

¥
5 A

179

WRITELN(LPT2,'CP 2,0%);
WRITELN(LPT2,'LBI :');
WRITELN(LPT2,'PU 7585,2700');
WRITELN(LPT2,'CP 3,-.3');
WRITELN(LPT2,'LBC";
WRITELN(LPT2,PA 7585,2300%;
WRITELN(LPT2,'SI .27,.375");
WRITELN(LPT2,'CP -6.5,0%;
WRITELN(LPT2,'LBBias Settings');
WRITELN(LPT2,'SI";
WRITELN(LPT2,'PU 7585,1900');
WRITELN(LPT2,'CP -18,0");
WRITELN(LPT2,'LBForward:");
WRITELN(LPT2,'PU 7585,1900;
WRITELN(LPT2,'LBReverse:");
WRITELN(LPT2,'SI .27,.375");
WRITELN(LPT2,PA 7585,1500";
WRITELN(LPT2,'CP -12,0');
WRITELN(LPT2,'LBDevice 'device);
WRITELN(LPT2,’PA 7585,1500";
WRITELN(LPT?2,'LBSeries ',series); _

« This is ends the section where the "Breakdown Values" are written.

» The next section writes the time axes titles.
WRITELN(LPT2,'SI");
WRITELN(LPT2,'PA 3045,3925";
WRITELN(LPT2,'CP -7,0";
WRITELN(LPT2,LBTime (Seconds)");
WRITELN(LPT2,'PA 3045,935";
WRITELN(LPT2,'CP -7,0");
WRITELN(LPT2,'LBTime (Seconds)');
WRITELN(LPT2,'PA 7585,3925");
WRITELN(LPT2,'CP -7,0");
WRITELN(LPT2, LBTime (Seconds)');
CLOSE(LPT2)

3, gy, U0 e s Ay 9 OIS OO IO S K T T T T A S U N
LI, AT G R e L e b BRI it d et ot e et




|
2

-
-

2L

180

- -

"
e

END;

Y

{********************************************************************** }

o
PN

PROCEDURE LabelChoicel;
* This procedure is used to print the graph and vertical axis titles for plot
option 1. The procedure is a series of WRITELN statements. See the

"

Y

BTt — e e e P
‘.
- I'd

.:"E HP-7470A User's Manual for more information.
iy
VAR

E;‘: LPT2 : TEXT;

T

N BEGIN

o ASSIGN(LPT2,'LPT2);

o REWRITE(LPT2);

b WRITELN(LPT2,'SI .27,.375');

0 WRITELN(LPT2,' PU 2790,6600');

( WRITELN(LPT2,'CP -12.5,0');

o WRITELN(LPT2, LBCollector-Emitter Voltage');
oo WRITELN(LPT2,'PA 7330,6600");

(- WRITELN(LPT2,'CP -8.5,0');

D WRITELN(LPT2, LBCollector Current’);
P WRITELN(LPT2,'PA 2790,3610°;

o WRITELN(LPT2,'CP -4.5,0';

o WRITELN(LPT2,LBP and E);

o WRITELN(LPT2, PA 2790,3610";

s WRITELN(LPT2,'CP -3.5,-.3);

34 WRITELN(LPT2,LBI ~ C);

N WRITELN(LPT2,'SI');

o WRITELN(LPT2,DR 0,17;

«: WRITELN(LPT2,PA 5430,5350);
p JE WRITELN(LPT2,'CP -3.5,0);

oo WRITELN(LPT2,LBAmperes');

WRITELN(LPT2,'PA 840,5350°);

ASLEA

.
&
o
!‘ ‘.

¥

‘ ' ) " %% '
()
-"0.".:?'?-3'?-,"03.OE"M'::.{'.

20 o, . 0, DUCU
l’.:l..‘l’" '.2.'920‘:"",0" I",l'::"':"q,:ﬁ'a:ﬂl‘

...............

B e L S S T T T Y T e M ARGt
Ok !'o‘.'a‘z't‘!::‘!'-‘?'.A""'!'l'!'n‘!h’!'o'!h‘:h‘.'u"'!'.‘t‘!‘n‘!‘o‘.!""ﬁ‘;f;‘!'A!;'of:'a"':‘!'o".‘u"':".':'

'+




A J‘~ 544

AL

o ¥y
A
“u" 2"

- e e
LA,

- o i
b i
I&.'\-‘ 1‘""‘0’ [’

sy
‘.’n‘i

Pt St

o A e
v
¥

181

WRITELN(LPT2,'CP -2.5,0');
WRITELN(LPT2,LBVolts");
WRITELN(LPT2,'PA 740,2360");
WRITELN(LPT2,'CP -2.5,0°;
WRITELN(LPT2, LBWatts');
WRITELN(LPT2,PA 740,2360');
WRITELN(LPT2,'CP -3,-1.2%;
WRITELN(LPT2, LBJoules’);
WRITELN(LPT2,DR 1,0;
WRITELN(LPT2,’PU 5500,1000';
WRITELN(LPT2,LT 2,1%;
WRITELN(LPT2,'PD 6300,1000%;
WRITELN(LPT2,'LT";
WRITELN(LPT2,'PU 6550,1000%;
WRITELN(LPT2,LBZero Crossing V, I and P");
CLOSE(LPT2)

END;

(kR ok ook ok ok ok ok ok ok ok ok ok skolokok ok ok ook ok ok ook ok )

PROCEDURE VerticalAxis (MaxA,MaxB,MaxP,MinA ,MinB,MinP : INTEGER;
VscP,ScaleA,ScaleB,energy,fBias,rBias : REAL);
» This procedure prints the vertical axis scales for plot option 1. It also
writes the energy at breakdown and forward and reverse bias settings

in the "Breakdown Values" section. It is exactly the same as
"Vertical Axis1" except for the location where the vertical scales for I; is

concerned. Instead of the values for I being under the values for Ve

in the upper left quadrant, they are located in the upper right quadrant
where the scale values for Vp,e would have been.

VAR
fullstr : STRING[27];
outstr : STRING[9];
MinPlotA MinPlotB,MinPlotP,MaxPlotA ,MaxPlotB,MaxPlotP : REAL;

DR MO
YL MN)
v ‘.t.'.u".a".@"

QOO0 000 SOOI OCGSONOGONOGSERALADNINO O8O 0 O8O60 0 0 \ !
?‘-"“e:":".','t'e:h," ! okl A".t"'f!’if?'zfu'\fh‘:' EERRAK ”s"‘»‘_!'a‘"’ SOOI "v.f:c.f','a':o OGN |:q a0 ..:‘:‘:‘OS:'A .:.‘.' Ly

UL RS MR ML) it INTIPC W T Ty DRLOAAN ICAN A AN




......... * K L} LI Ly b » . < L3 ~ - k] - & - 0 ~ O » o x K] O = Tl - mmmwwt'nr'u--‘

AT

54

@
; ¢
::! 182
N LPT2 : TEXT;
¢
i BEGIN

,: ASSIGN(LPT2,LPT2));
N REWRITE(LPT2);
3 MinPlotA := ScaleA*(MinA - 127);

84 MinPlotB := ScaleB*(MinB - 127);

MinPlotP := VscP*MinP;
+ The minimum values of Vg, ic and P are calculated.
MaxPlotA := ScaleA*(MaxA - 127);

- MaxPlotB := ScaleB*(MaxB - 127);

:.\ MaxPlotP := VscP*MaxP;
[ + The maximum values of Ve, I and P are calculated.
o WRITELN(LPT2,'SI .12,.21');
- + In the following section, the vertical scales are printed.
- WRITELN(LPT2,PU 750,6400);

3 WRITELN(LPT2,'CP -2,-.5;
{ NumToStr9(MaxPlotA outstr);
o WRITELN(LPT2, LB outstr);

B WRITELN(LPT2,PU 750,4400');
e WRITELN(LPT2,CP -2,-.5';

'. NumToStr9(MinPlotA outstr);
o WRITELN(LPT2,LB' outstr);

:f WRITELN(LPT2,PU 5290,6400");

WRITELN(LPT2,'CP -2,-.5";
NumToStu9(MaxPlotB,outstr);
WRITELN(LPT2,LB',outstr);
WRITELN(LPT2,'PU 5290,4400%;
WRITELN(LPT2,'CP -2,-.5");
NumToStr9(MinPlotB,outstr);
WRITELN(LPT2,'LB',outstr);
WRITELN(LPT2,'PU 750,3410%;
WRITELN(LPT2,'CP -3,.5;

® NumToSt9(MaxPlotP,outstr);

s y o gy ]
Col S @ T Tt @ A

r

RUOCOOON N IO IR0 OO0 Q 0, %y A%, Y O] 0 QSOONOA0NT
“'.—.".:.."""l“.l_ '."“:.":."l .:‘l.l 'l.l'».l.c..':‘l'- .'Q.‘.O.‘.:" () “"‘.!-.‘.d?"i%':,“ﬂ..‘:‘;:':!":"’:’J:‘."&!"ﬂ.": ‘n.c'.fc'..o'. l‘!"@'ﬂ'o“‘!’l'A‘Q‘»,‘..r’l‘:.""“o.l'.;.l'!.ld.t'!.l'z.l'?“4“:‘

...................... s



I"‘|

e':.o'

Y

L

RS

\v-“. 183
0N WRITELN(LPT2,'LB',outstr, W');

f" WRITELN(LPT2,PU 750,3410;

:':E WRITELN(LPT2,'CP -3,-.5);

.;Q: NumToSu9(energy,outstr);

:_EJ WRITELN(LPT2,'LB'outstr,'J");

) WRITELN(LPT2,PU 750,1410");

o WRITELN(LPT2,'CP -3,-.5;

2« NumToStr9(0,outstr);

Lo WRITELN(LPT2,LB', outstr, J");

( h WRITELN(LPT2, PU 750,1410");

s WRITELN(LPT2,'CP -3,.5";

' :Ej NumToStr9(MinPlotP,outstr);

:z" WRITELN(LPT2, LB',outstr,'W');

» End of the section where the vertical scales are printed.
o « Below the energy at breakdown and the forward and reverse bias settings
L are printed in the "Breakdown Values" section.
2 WRITELN(LPT2,'SI');

i WRITELN(LPT2,PU 7585,3100";

b WRITELN(LPT2,'CP -11,0";

s " NumToStr9(energy,outstr);

‘ot WRITELN(LPT2,LB ',outstr,J);

% WRITELN(LPT2,’PU 7585,1900");

P ry WRITELN(LPT2,'CP -12,0');

2:{2 NumToStr9(fBias,outstr);

oA WRITELN(LPT2,'LB *,outstr,'A";

o WRITELN(LPT2,'PU 7585,1900";

R WRITELN(LPT2,'CP 6.2,0";

; 3“-_‘ NumToSt9(rBias,outstr);

p :‘-_C:; WRITELN(LPT2,'LB 'outstr,’A");

o CLOSE(LPT2)

e END;

s

0. ::"' { a3k abe 3k ok s o ok 3 ok 3 ok e afe ok 3 sk 3k 3 3k o 3k afe 2 ok 3k 3k 3 af 3k ake 2k ok e o e s e o e ae e sk 3 3k e s 3¢ ok e 3k e ok s 3 ok 2 sbe e 3k o 3k e ke e 2k e ke ok 3k }
A

;

)

N

o

(W)

v

O

i

. €

A} P " 3 -

O LN i OO OO A0 o SO IS R0 M0 MMM NN MO 0 3 O 03 MO ‘ 0 g
il ‘n'*f:":.n.t,.otu"fq'lfn AR BN RN ‘O!e'i’.‘a"‘,:'\,")?s’, BRI KN XU RN N MRS NOUSK AN Vo, :':..A 0‘!’2!‘.!&'.':"

SEOHE T RGN BT AT R IA T T A T R AT IR R AR ATLAATT ATV R T e e TR A TR AT 2R T TR TR TR,




o~
P O RE P
'-“.’\ '-}l- oY%
LA S

Sy Xy
. g
L X

<. @ )
2 2 2h 2

L]
R4

TR
Ty
Sy

-

/ [d
4 &4‘-“‘:@ ®
PR

P
P AELST

A,.)
ARy 4

..............

184

PROCEDURE plotend;
 This procedure is used to return the plotting pen to its stall and present
the finished plot to the operator.

VAR
LPT2 : TEXT;

BEGIN
ASSIGN(LPT2,LPT2";
REWRITE(LPT2);
WRITELN(LPT2,'PU 0,0";
WRITELN(LPT2,'SP 0%;
CLOSE(LPT2)

END;

{**********************************************************************}

PROCEDURE Ignorproc;

» If breakdown did not occur, this procedure comes into play. If there was
no breakdown, then the "Breakdown Values" section is not needed and
not accurate. Rather than modify the program to print a different for-
mat for non-breakdown, this procedure was written. It prints the word
"IGNORE" across the "Breakdown Values" section as a reminder that
the numbers written there are irrelevant.

VAR
LPT2 : TEXT;

BEGIN
ASSIGN(LPT2,'LPT2');
REWRITE(LPT2);
WRITELN(LPT2, DR 86.67,25";
WRITELN(LPT2,'PU 5700,2700");
WRITELN(LPT?2,'SI 1,17);

L LR A0 b A AN 4 >
LA LA A KA T TR A A Pt T T e e S DRI S N T

W

() .
l"“t‘!‘




I

s

o
-ZE: WRITELN(LPT2, LBIGNORE');
" WRITELN(LPT2,DR");

N WRITELN(LPT2,'SI');

o CLOSE(LPT?)

R END;

\ ¢:\ { 2 3k 3k 3k 3k 3k 2k e ok 2k 3k sk ak 2k 2k Ak e sk ke b e 2k 3k ke 3k ok e Ak e sk e 3k 2k de e ok 3k 3k ok 3 ok 3k a3k Ak e e e 3k ok Ak ok b ak 2k dk 2k sk ok e 3k Ak ke A Ak ke ok ke Ak ok }
3

;S;‘ BEGIN (MAIN PROGRAM}
( ‘ REPEAT

‘ﬁ _";:f.' + This loop is used to allow the operator to plot multiple test runs without
’,f.:& having to load the program over and over.

“ay Ignorit :='Q";

LY. listdevice(storage, DEV,SER);

'?_: PlotWhat(storage,plotall);

; ’_: plotinitialize;

b IF plotall = 'N' THEN BEGIN
( , « If the operator selected option 1 in "PlotWhat", then this section is exe-
o cuted.

o plot(storageMaximumA, MaximumB,MaximumP,MinimumA  MinimumB, MinimumP,
‘.'L:I: Hscale,Vscale,Ascale,Bscale Ener,ForBias,RevBias,Ignorit);

3 LabelChoicel;

- baseplot(Hscale, DEV,SER);

- Vertical Axis(MaximumA ,MaximumB,MaximumP,MinimumA MinimumB,

:': MinimumP,Vscale Ascale,Bscale,Ener,ForBias,RevBias);

b EnergyPlot(storage,Hscale,PmaxPoint);

k2 VIBreakdown(storage,PmaxPoint)

J + End of the plot option 1 section.

END;

o IF plotall = 'Y' THEN BCGIN
! _:j: + Plot option 2 begins here.
X g}':j plot1(storage, MaximumA ,MaximumB,MaximumP,MinimumA ,MinimumB,

) :'::".' MinimumP,Hscale,Vscale,Ascale,Bscale,Ener,ForBias,RevBias,Ignorit);

:‘ - plot2(storage,MaxC,MinC,Hscale,ScaleC);

Ty

BBE0G

Pl
“x %

@
e T

¥
)

L




@
1IN
:}: 186
h ~' .
;EE: h LabelChoice2;
[ baseplot(Hscale,DEV,SER);
S Vertical Axis 1 (MaximumA,MaximumB,MaximumP ,MinimumA MinimumB,
,. ,;\ MinimumP,Vscale,Ascale,Bscale Ener,ForBias,RevBias);
b VerticalAxis2(MaxC,MinC,ScaleC);
. D) EnergyPlot(storage,Hscale,PmaxPoint);
‘:’ T VIBreakdown(storage,PmaxPoint)
§"' ::f « Plot option 2 ends here.
(s END;
.\"' ,
( IF ((Ignorit = 'N') OR (Ignorit = 'n')) THEN Ignorproc;
i
ot lotend;
2 ploend;
oY, answer :='Q’;
)
5 j WHILE NOT ((answer ='y") OR (answer = 'Y") OR (answer = 'n") OR (answer = 'N"))
° DO BEGIN
X WRITE(Plot another? (Y or N) . ... ");
i READLN(answer)
e END;
{ » The operator is asked if he or she wants to plot another test run. If yes,
(e the loop is executed again; otherwise, the loop ends and so does the
W
.
-;f.: program.,
:::: IF ((answer = 'Y') OR (answer = 'y")) THEN testmain := FALSE;
' IF ((answer = 'N") OR (answer = 'n")) THEN testmain := TRUE
.;::J' UNTIL testmain
ot
b END.
Y
oS
i
L
e
ey
]
2
-5
L
Wy
:
o
4 ."'
b \l
27
.‘-_
& .- LA "{‘4 ‘ '. ; '. ( .( | ‘ k. m" ?V '\ . ' s 5' ¥ , |' .g"‘ﬂ. \) ,'A‘..A",l'.fl"‘lh % ‘Q‘.\l‘q {\ '!‘. (Q %‘o‘l‘;‘!‘o '. t“ '.,0" ‘.&Q’:, AN




A e kg el ol adadl Jhadi e Bl g g Ath Al fia Bie ats Al g b el 4 T

2
>

=
>

% serererrl Y

PR
j Sl et

s Nt

APPENDIX K
TABULATE.PAS PROGRAM LISTING

-
-

L

Y “'&

A

o ¢
f:"t’lll.

O AL LU @,

-

187

« "ol

-

.

.. o ”\l"”. h - '\l*'v- ‘h" < '. A wr I X ' ol X "* W WY ", -, 2 W W T W
LRI AR AR, T 4 X 55 DN RN DM D R M S KO R SN e '-‘c"-'n'!'::!?ﬂ! nls.‘ﬂ pReRtE J'M'l.\l.o b N




5
e
E:.\ < 188
‘;i_:',! ; PROGRAM Tabulate;
( « This program is used to create the file BDxxxLL.TAB which is a
; .-:: compilation of all the breakdown values on a given device, "xxx." The
:':_‘ output is written to the hard disk directory, "C:\RBSOA." The
N;‘: program is written for the Turbo Pascal compiler.
»)
g7, TYPE
M Rarray = ARRAY(1..6,1..999] OF REAL;
o STR13 = STRING[13};
(
: VAR
_.'.:,‘,.; storage : STRING[13];
58 Ppos,rep,SER : INTEGER,;
® ForB,RevB,Voltage,Current, TotEnergy,Time : REAL;
‘}.E: BreakDown : CHAR;
e
‘ EE: {****************************************#*****************************}
{ i
:?:". PROCEDURE listdevice(VAR stor : STR13; VAR series : INTEGER),
s:::ﬁ + This is the same general procedure used in PLOTDATA. It serves to
P provide the operator with a list of the devices currently stored on the

’

D file, INDEX.DEYV, as well as allowing the operator to choose the de-
o vice to be tabulated. It returns the storage filename and the number of
test runs taken on the device.

TYPE

STR40 = STRING[40];
S STR13 = STRING[13];

2 DEVICES = RECORD

[ ) DEV : INTEGER;
L~ descrip : STR40;
o book : STR13;
s store : STR13

: A 0 OO Ky A AT ) 0 0 N )
bl A S .'-fl.’:.l':'."o.'?o. ?:'J,‘-ft';:‘!o. LR A T s i e OO ML R R K R LR TR L W R

e e A T e e S
0!

o
A
QU

)




St

[ ]

i

E:: 189
:ES END;
-

i VAR

;‘ ) index : FILE OF DEVICES;

¥ indexrec : DEVICES;

\ error,LineCount : INTEGER;

K name : STRING[18];

o one : STRINGI[1];

. two : STRING[2];

thr : STRING(3];

! test : BOOLEAN;

%.' ans : CHAR;

Y I,Count,err,device : INTEGER;

0

; BEGIN

-.: name := 'CA\RBSOA\INDEX.DEV,

o ASSIGN(index,name);
{ RESET(index);
R WRITELN('You will be asked for the device number corresponding to the storage file');
: WRITELN('for the data taken on the device of interest. *);
N WRITELN;

: ans :='q};

jj WHILE NOT ((ans = 'y") OR (ans = 'Y") OR (ans = 'n) OR (ans = 'N')) DO
R BEGIN

WRITELN('Do you want the see a listing of all currently cataloged devices?');
WRITE('See list? (Y or N)..."),;
READLN(ans)
END; {WHILE NOT ((ans = 'y"...}
IF ((ans = 'Y") OR (ans ="y')) THEN BEGIN
« If the operator wants to see a listing of the devices in INDEX.DEV, then
the following is executed.
LineCount := 1;
Count :=0;
° SEEK(index,LineCount);
X

@ A2t @ S

-
Dl

-

X
B IO PTINE * (N0 1 ' nXE ( ‘N
Aty R NI OO ENONOD D OO DEDND OED D \ DOOSIN
A A AR AT S AR KR SN AS AN, P N R I O DR N S O s M N, !',‘,u.‘fu"v:‘?v,"o."h"c."vt"tf"of"o!"nf"o”!c:{‘eft

(3 ERY BER MR Ol P L IR ML A AR c)




>

2 x

PO RVR IR PO - -
] o . &£ .2
SAAL LA A, s s p

P e
22 A @

S

e\

- -t o, o
RGO LRSS,

» 2~ A R )
REEA T2 @ LTI @ -

) ‘32".-’.-‘.-?0.0.~.-!',-!\2'!‘.'-!~§n!4'

......

190

WHILE NOT EOF(index) DO BEGIN
READ(index,indexrec);
* A device record is read.
WITH indexrec DO BEGIN
WRITE(DEV,' );
WRITE(descrip:40,' ');
WRITE(book,' ");
WRITELN(store)
END;
» The record fields are displayed on the screen.
LineCount := LineCount + 1;
» The record pointer is increased by one.
Count := Count + 1;
» The count of lines displayed since last pause or beginning of list is in-
creased by one.
IF Count = 21 THEN BEGIN
o If the number of lines displayed is 21, then the program pauses to allow
the operator to read the device records displayed.
Count :=0;
WRITELN('Press <RETURN> for more devices.");
READLN
END
END;
WRITELNC(CEnd of indexed devices.")
END; (IF ((ans ='Y"...}
test := TRUE;
WHILE test DO BEGIN
WRITE('What is the device number? (Integer Value Only!)...");
READLN(device);
IF device < 1000 THEN test := FALSE
ELSE WRITELN('Integer too large. Try again.")
END;
» The device number is entered.
SEEK(index,device);

. ' L)

W20 (OO DA O O T 0 Ty O N OO O R MO MO OO IO MY
SRR e N I I o A AR MK A KA S RN A KOO N MO AR

HQO0G
RSN




191
READ(index,indexrec);
» The record of the device of interest is read.
WITH indexrec DO
stor := store;
 The storage filename is loaded into the string variable, "stor."
CLOSE(index);
DELETE(stor,1,1);
INSERT('A',stor,1);
+ The drive designation is changed from G: to A:.
thr := COPY(stor,11,3);
VAL(thr,series,err);
IF err < 0 THEN BEGIN

WRITELNC(ETrror in reading maximum series value. Program Halted.");
HALT

END;

* The series number (last three characters in "stor") is copied into the
string, "thr." The string is converted to an integer by the built-in pro-
cedure "VAL." An error check is made on the conversion. The pro-

gram is halted if there is an error.
DELETE(stor,11,3);

INSERT('000',stor,11)

e The last three characters on "stor" are changed to "000." The string is
then passed to the main program.
END; {Procedure listdevice}

{**********************************************************************}

PROCEDURE addone(VAR stor : STR13);

+ This procedure is use to add a value of one to the series number in the
string, "stor.” The new string is then passed back to the main pro-

gram.
VAR
I: INTEGER;

Soy

0.

g

o

\'li

e

e T R B A L L AN AL U U L AR M S s ot RERKRHRRE
T i e O X T O S S L S T B S B P PSR UK I R X KOS HA RS



N
iy

Y,
‘-:.g:tivw aitintiasii ettt

192

BEGIN

IF ORD(stor{13]) = 57 THEN BEGIN
IF ORD(stor{12}) = 57 THEN BEGIN
IF ORD(stor[11]) = 57 THEN BEGIN
» If the series number is 999, then ...
WRITELN('Too Many Indexed Devices. Program Halted.");
HALT
END
ELSE BEGIN
I:= ORD(stor[11]) + 1;
stor[11] := CHR();
stor[12] := CHR(48);
stor[13] := CHR(48)
+ If the series number is x99 (where x is 0 to 8), then the "x" is increased

by one and the two nines are set to zero.
END

END
ELSE BEGIN
I:= ORD(stor[12]) + 1;
stor[12] := CHR(]);
stor[13] := CHR(48)
+ If the series number is xy9 (where y is 0 to 8), then y is increased by one

and the nine is set to zero.
END

END

ELSE BEGIN
I := CRD(stor[13]) + 1;
stor[13] := CHR(I)

» If the series number is xyz (where z is 0 to 8), then z is increased by one.
END

END;

{******************************#***************************************}

OSRIOAO I nO OO X OO ROORO0 { AOOIBININD NN
MO .:'k-"f!"f"if:"ei’i’-'. Y '30’0’~'5’0'5‘.\9',s‘lfo'!fo'lf:"f-’t‘o'b'.w'of AN MR, N 'é!.-‘:':!'l‘.:'bf:'»‘:’o‘:hg‘:\“o?!ﬁ‘} BN




193

PROCEDURE VIBreakdown (stor : STR13; PmaxPos : INTEGER;

VAR ForBias,RevBias,Vbd,Ibd : REAL; GoNoGo : CHAR);
* This procedure is used to find the breakdown values of Ve and I..

TYPE
Vlarray = ARRAY[1..10] OF INTEGER;

VAR
store : TEXT;
coming : STRING[14];
Vlarr : Vlarray;
test : BOOLEAN;
V,IR : INTEGER;
incoming : CHAR;
H,ScaleA,ScaleB,VV,VI,probeA,probeB : REAL;

BEGIN
IF ((GoNoGo = 'Y") OR (GoNoGo ='y")) THEN BEGIN
* The "GoNoGo" variable is has the first character of the BDxxxLLA.yyy
file in it. If breakdown occurred, then the value is "Y."
coming := stor;
INSERT('A',coming,10);
ASSIGN(store,coming);
RESET(store);
READLN(store);
READLN(store, ForBias,RevBias);
READLN(store,VV,H,probeA);
ScaleA := VV*probeA/32;
* The file containing Ve is opened the bias settings are read, the
Volts/Div, horizontal scale factor and probe multiplication factor are
read and the vertical scale factor is calculated.
vbd :=0;
FOR R := 1 TO PmaxPos-15 DO READ(store,incoming);

) 8,00
AOEOINI




FORR :=1TO 10 DO BEGIN
READ(store,incoming);
VIarr{R] := ORD(incoming);

END;

DL

hY

AT

,5

» The file cursor is move to a point 15 time steps before the time step

;8

where the maximum energy is found. The next 10 data points are read.

i
7,

CLOSEC(store);
test := TRUE;
R:=1;
WHILE test DO BEGIN
Vbd := V]arr[R}/VIarr{R+1];
IF Vbd < 1 THEN Vbd :=1 - Vbd;
Vbd := FRAC(Vbd);
IF Vbd > 0.10 THEN BEGIN
V:=R;
test := FALSE
END;
R:=R+1;
IF R = 10 THEN BEGIN
V:=R;
test := FALSE
END
END;

N
AL

‘;b

a,

0K
5
o

X, X
R xAL B

x

e,

o~ .
g 3
&JJ.“..‘ ;."I"I‘)‘-

-

"
<

"o
N\
oY
-

" 2iLS
RS

19

.-‘
Lo SR Y

S
o«

» The data points are checked for the occurrence of breakdown. If there is
a change of greater than 10% in the data points magnitudes from one

a¥a L}‘

step to the next, breakdown is said to have occurred.

;Ji‘ﬁﬁss

Vbd :=0;
FORR :=1TO V DO Vbd := Vbd + VIarr[R];
Vbd := Vbd/V;
Vbd := (Vbd-127)*ScaleA;
 The average of the 10 data points (or as many data points as there were

-

- -

,‘1.

l‘l‘f‘l‘l
AL
SoS

prior to the point where breakdown was judged to have occurred) are

Ca

averaged and converted to volts.
 The same procedure is now done for I¢.

ey

> ra®
A58 'y

X

-,

i

d.

¥

'
.‘.‘.
[} . . - _
-~y Q0 Attt o Y A OO O O A OO WA ALBOA0%N N n oy . Ny
i el :~','!:".¢,’::'.‘.» e e e ey e ey et e e g, g iy ey et e -':'"- s bl}'»‘.t'oﬁ'u?!‘b’hﬁﬁ st

3




P

‘g o s -
. Al
S

'.,‘

»

R e

e,

L4

L2

Palely
2
&

A
o l‘.}. ',. ..l}l

..__._.
At

<

e

SN x’*.}-\“'d g T

_ _
L J 30

coming := stor;
INSERT('B',coming,10);
ASSIGN(store,coming);
RESET(store);
READLN(store);
READLN(store,VI,H,probeB);
ScaleB := VI*probeB/32;
Ibd :=0;
FOR R :=1 TO PmaxPos-15 DO READ(store,incoming);
FORR :=1TO 10 DO BEGIN
READ(store,incoming);
VIarr[R] := ORD(incoming);
END;
CLOSE(store);
test := TRUE;
R:=1;
WHILE test DO BEGIN
Ibd := VIarr[R]/VIarr[R+1];
IFIbd <1 THEN Ibd :=1 - Ibd;
Ibd := FRAC(Ibd);
IF Ibd > 0.10 THEN BEGIN
V:=R;
test := FALSE
END;
R=R+1;
IF R = 10 THEN BEGIN
V:=R;
test := FALSE
END
END;
Ibd :=0;
FORR :=1TO VDO Ibd :=Ibd + VIarr[R];
Ibd := Ibd/V;
Ibd := (Ibd-127)*ScaleB

195




. -

—~y.

P,
L]

Oy

Coc O RERENR

Vinle

U
C -
Y

‘.
4NN
» »

‘.-1.1’

“
-

kL

L
XA
L e 2o T

[
o \‘

“hh
)
S

“lll

%Y

o

AN

AALAL

.
@
. )
b

' l\-l‘. l“ n" I
LA I ') ‘.

faddnaddoadd adld ok A bl b e h i b A B Aok ol Aol tat Al af o Abo Al Al. Aled o aoBat e sa- 2. Sek Bad o d o 8 a Ao e Ab. Al a2 "ok Uag o3 ¢ 8 3o 4 -wm'v"r‘r-j

196

END
END;

{***#****************#********************##*************#*********#***}

PROCEDURE GetValues (stor : STR13; VAR incoming : CHAR;
VAR PmaxPos : INTEGER;
VAR Emax,t : REAL);

+ This procedure locates the time step where breakdown occurred. It, also,
returns the energy at breakdown and the time to breakdown. Lastly, it
reads the first character of the first line of BDxxxLLA.yyy and returns
that to the main program (indicates whether or not breakdown occurred
during the particular test run).

TYPE
earr = ARRAY[1..2047] OF REAL;

VAR
store : TEXT;
energy : earr,
R,Estart,Estop,I : INTEGER;
going : STRING[14];
Hscale : REAL;
test : BOOLEAN;

BEGIN
going := stor;
INSERT('A',going,10);
ASSIGN(store,going);
($1-)
RESET(store);
WHILE Ioresult < 0 DO BEGIN
WRITELN(There has been an error accessing file ',going);
WRITELN(Please check to be sure the proper disk is in drive A:");




YT
s X&2
n"(.' Yoy

SRR @ 14 2 O,
. ﬁ r ] & .'
_ AR '.!‘."*; . fj' 2,

-
l"l“)‘}%

A

PChifar=l ot/ s

7

& 2L

.l“l.

N 1”1 *
. & ¢

ANN

"
o

197

incoming :='Q’;
WHILE NOT ((incoming = 'Y") OR (incoming ="'y') OR (incoming = 'N') OR
(incoming = 'n")) DO BEGIN
WRITE('Enter "Y" to continue, or "N" to halt program. . . . ');
READLN(incoming)
END;
IF ((incoming ="'y") OR (incoming = 'Y")) THEN RESET(store);
IF ((incoming = 'N") OR (incoming = 'n")) THEN HALT
END;
{$1+}
READLN(store,incoming);
READLN(store);
READLN(store,Emax,Hscale);
CLOSEC(store);
» The file, BDxxxLLA.yyy is opened, the first character is read, parts of
the second and third lines a read and the file is closed.
IF ((incoming = 'Y") OR (incoming = 'y')) THEN BEGIN
« If breakdown occurred, this will execute.
going := stor;
INSERT('E',going,10);
ASSIGN(store,going);
RESET(store);
FORR :=1TO 2047 DO
READ(store,energy[R]);
* The file containing the cumulative energy is read.
CLOSEC(store);
FORR :=1TO 2047 DO
IF test THEN
IF energy(R] > 0 THEN BEGIN
test := FALSE;
Estart :=R
END;
Estart := Estart - 1,

AT Vel Tl FolSet ! LN Ty Sy QORI OO IO R OO, T MO X MO Y ’ BOON
...... M0 T ::.‘d. Wy .0!%:',’;0', Y ".‘M'.:'i.o,!.i. i< "o".o'ﬂ:%fw".\."ﬁ?‘.“‘f.'lts,'."'a:'O.w",qh..ﬁ.:'l‘o'og'l?g l.!'h.:.\.:\.-‘:!- Fatn!




i
ol
Py
B N 198
e
' '-:--'. * The position where the energy becomes non-zero is found. This is the
L start point for determining the time to breakdown.
-u:,': Emax := -100000.0;
L.
Pl FORR :=1TO 2047 DO
' - IF energy[R] > Emax THEN Emax := energy[R];
v) * The maximum value of the energy (total energy) is found.
LYY
{ ::?- test := TRUE;
v FOR R := 1 TO 2047 DO
',
s IF test THEN
‘ IF energy[R] = Emax THEN BEGIN
‘{:‘\‘ test := FALSE;
:‘; Estop :=R
N
Ko END;
o Estop := Estop + 1;
:ﬁé * Ths location of the maximum energy values occurrence is found.
e PmaxPos := Estop - 2;
.i
i '.:}_f * The location where breakdown is said to happen is calculated.
( t := Hscale*(Estop-Estart)
i j;I:jj * The time to breakdown is calculated.
! ';:;Z_' END
A
I\ '.ﬁ'. END,
,' ‘:n. {**********************************************************************}
=
[} ';'\
' !R PROCEDURE WriteOutput(stor : STR13; Ind : INTEGER; Fb,Rb,V,LLEt : REAL;
° GoNoGo : CHAR);
"s
-  This procedure outputs the breakdown values from one test run to the
N BDxxxLL.TAB file on the hard disk.
B *-'
o
) TYPE
Tt
:::: earr = ARRAY[1..2047] OF REAL;
NS DEVICETABLE = RECORD
o series : INTEGER;
N
( B ForBias : REAL;
Ve
»
2
o
o
&%

%

CR e S R ST A & $~ q"‘ WA ,." ~ LR Ty S S N N o
o ! .w )
< ¢ ‘- p 0 L A» c. Cn by | ,'h'ﬂ. G

‘.
"'\‘ My Ly R S 5' - -F" LI S W
e L e

. , 979, Wy,

A e N L A r AN
Lot L SN DO A DO A DI DR



.

%

N 199
)'.'J RevBias : REAL; ‘

L. Vce :REAL;

:: ! Ic :REAL;

E'...' energy : REAL;

e time :REAL

B END:

\ * The breakdown values are stored in records consisting of the above
f 5 fields.

e
( VAR

' ;\2 tab : FILE OF DEVICETABLE;
i tabrecord : DEVICETABLE;

:. ﬁ“ Values : Rarray;

® goinglong : STRING[20];

ey MaxRec : INTEGER;

ot BEGIN
({ IF ((GoNoGo = 'Y") OR (GoNoGo ='y")) THEN BEGIN
o » If breakdown did not occur, then the rest of this procedure will not be
:j: executed.
z' .._ goinglong := stor;
9 DELETE(goinglong,11,3);

s INSERT(TAB',goinglong,11);

" _’ DELETE(goinglong,1,2);
,.152" INSERT(C:\RBSOAV\goinglong,1);

. ASSIGN(tab,goinglong);

o (SI-)
o RESET(tab);
& ($1+4)

. IF IOresult <> 0 THEN REWRITE(tab);
,- » The tabulated data file is opened to receive new data. If the file does not
r exist, it is created.
= MaxRec := FileSize(tab);

-" -
N

s
&




¢

NG 200
oy

, » The location of the next record to be written is determined. It will be
. place after the last entry.

i"’n IF MaxRec < 0 THEN MaxRec := 0;

e WITH tabrecord DO BEGIN

:E:: ] series := Ind;

i‘h. ForBias := Fb;

P RevBias := Rb;

SQ..':: Vee =V;

) Ic =1
( energy =E;

3 .;-: time :=t;

‘ -;2 ¢ The breakdown values are placed into the record fields of the record
ﬂ? about to be added to the tabulated data file.

o WRITELN( Series ', series);

\;: WRITELN(' Bias Settings');
" WRITELN('Forward:',ForBias:9:6,'A",' Reverse:',RevBias:9:6,'A");

k- WRITELN(  Breakdown Values');
( ] WRITELN('Voltage:',Vce:9:4,'V'," Current:',Ic:9:4,'A");

fi‘. ! WRITELN(Energy:'.energy:9:4,'T", Time:'time:14:10,'Sec’)

T » The above six lines are displayed on the screen to (et the operator know
o that data is being written to the disk and what that data is.

D END;

Al SEEK(tab,MaxRec);

e WRITE(tab,tabrecord);

1 : * The record is written to disk.

° CLOSE(tab)

- END

% END;

® {**********************************************************************}
e

:.'::: BEGIN {Main Program)

:'n:" ‘ ListDevice(storage,SER);

o FOR rep := 1 to SER DO BEGIN

a

e

®

W

'§:'-9 .9:'.?.'!!: .'l'."'.'l‘:.‘u':,'v'n‘:'l’. N:\. :":‘ -0.‘2! '.'~ :0!'::!'&','-:.' ». ".s. Wi :‘a.. -. :'.:'n ‘ .‘ L:"!:‘:!:'a:'.0'5.o‘&!‘t’!‘t’!‘hb"’!’h””;'A\’ q




0 X

A,

I W ]
A
v b

i,

-'-"‘ vy rTexl o]
SLN AL

N
2ANTE e

%

-

Py
‘bt by

A N
AR

201

» The following steps will only be taken as many times as the total number
of test taken on the device. This way there are no repeat measurements
nor any searches for files that do not exist.

addone(storage);
GetValues(storage,Breakdown,Ppos,TotEnergy,Time);
VIBreakdown(storage,Ppos,ForB,RevB, Voltage,Current,Breakdown);
WriteOutput(storage,rep,ForB,RevB, Voltage,Current, TotEnergy, Time,Breakdown)
END
END.




'y

‘,’"’QP::-. o =
o R S S 5
PR L LES

"«
i

-~
e
A

U0
OO
Y\ Q
DAt

e “ '..'.

DO

ORI
AN LA

)

I..:.._p

3

N1 (]
ATttty

APPENDIX L
SORTABLE.PAS PROGRAM LISTING

202

OAEHOBOBOEOBOROMN DAOGD O ONONCBOGOBONONNONONONOND i
‘!h"h'..(s".'n‘!'a‘!h‘?h" X 'h“ =“3«‘5.".0.‘3-‘-‘ft.‘!ﬁ‘?'-‘fh‘!!.‘!'»‘!h’!t.‘fu‘fn‘?m?u'?n‘.'on"'.‘!!:'fh’.



;:.5:, 203
o PROGRAM SortTabulatedData;

\—_—  This program takes a file created by TABULATE.PAS, sorts the data
E': contained in the file and outputs the sorted information to either a line
:;25 printer or a text file on disk.

s

») TYPE

R STR40 = STRING{40};

2;'!& STR13 = STRING[13];

e STRY = STRINGI9];

(w larray = ARRAY[1..2,1..999] OF REAL;

S Rarray = ARRAY(1..6,1.999] OF REAL;

N

N VAR

' S storage : STR13;

',’ ‘; PathN : STR40;

N DK1,DK2,Recs,K1,K2 : INTEGER;

i' W Valuarr : Rarray;

(,. Posarr : Iarray;

I3

3 {*************#******#*************************************************}
::.

PROCEDURE NumToSt9 (X : REAL; VAR Y : STR9);
+ This procedure is used to prepare real numbers for output as strings. The
values are limited to three significant figures in scientific notation

format.
. VAR
:: ~)’ fullstr : STRING[25];
:: " one : STRING[1];
:n thr : STRING[3];
_ four : STRINGI[4];
Lo
x'-. error,I : INTEGER;
;:‘. num : REAL;
e
o
o BEGIN
e
W
':: W
,,,Q'H
®
oy
g

DO X 0) EAME ! ; 3
DU Py d (] I NSNS TN AL AL A R Rt Ty b Tt et OO OUOUOUORSLOUOUNOCOO00
OO SN AT NN R L T e S s RSt AR AN AR R RN RN 1 OV RN R ) MRS NN MRS IO R IR RN



=

72

- e
@PXXr I

e,
LA AP

-ﬂr

-
-l‘v T
e s

L3
el
P ]

- -
L1 AL AP LN ob"

-.
5

P

L

ESALI NI @ T,

i Pl

- -

K7
»
s

DO

204

STR(X fullstr);
DELETE(fullstr,1,1);
one := COPY(fullstr,6,1);

* The third digit to the right of the decimal place is loaded into the one

character long string "one."
VAL (one,num,error);

» The character in "one" is translated into numeric format and loaded into

"num."
DELETE(fullstr,6,12);
DELETE(fullstr,8,1);

Y := COPY (fullstr,1,9);

» The extra characters in the original number passed to the procedure are
deleted. The shortened form of the number is placed in the nine char-
acter long string, "Y." The number is shortened from
" . xXXXXXXXXXXXXXXXEdxxx" to "+x.xxEtxx."

IF num >= 5 THEN BEGIN

» If the digit in the third place to the right of the decimal point is equal to or
over five, the digit to the left is increased by one. This serves to round
the new number. The rest of this procedure is involved in performing
this function.

four := COPY(fullstr,2,4);
VAL (four,num,error);
num := num + 0.01;
IF num = 10.00 THEN BEGIN
« This section increases the exponent if it is needed.
num := 1.00;
thr := COPY(Y,7,3);
VAL(thr,],error);
[:=1+1;
STR(I,thr);
IF ((I < 10) AND (I > -10)) THEN INSERT('0',thr,2);
INSERT(thr,Y,7)
END;
STR(num:3:2,four);

............... Pt

DA 200 MO I Y

LN D ¢ R R S OO0 \ Ty e
R e R N R O R)

0

DOOGH
.-.i.!.l s'l'




......................

"
ol
:.s 205
& DELETE(Y,2,4);

INSERT(four,Y,2)
END
END;

;‘U’

-ﬂ
">

7,
Y

LA X - -AA-s -

ek

8
2

{***************************************************************#******}

2~
;i L4
'r-\.)

PROCEDURE listdevice(VAR pName : STR40);
» This is a modified version of the procedure of the same name used in
TABULATE and PLOTDATA. It returns the location and filename of
the tabulated file for the device the user selects.

2L

o2

o
P ‘ﬁ}ﬁJ\
P

XN CONST

o FilePresent : BOOLEAN = FALSE;
k3

X o TabArray = ARRAY[1..999] OF INTEGER;
{ STR40 = STRING[40);

o2 STR13 = STRING[13];

NS DEVICES = RECORD

s DEV : INTEGER;

descrip : STR40;

ot book : STR13;

i. ??- store : STR13

o DEVICETABLE = RECORD

i Y series : INTEGER;

‘.. ForBias : REAL,;

‘sl RevBias : REAL;

“ Vce :REAL;

EE Ic :REAL;

e energy : REAL;

: % time :REAL

o END;

T

RO OO - i TR o . ; o .
RSO A ) ORONNAG) 0 O OGO IO O OB ALAAOAON 0N OOOIONNOG0OONNOND ' AOADRD D
Bt T e A BN KR KO P A KX KOO Lttt e s ettt g, :':'-'b'!‘n‘ KXY

h) 8 8 0, )

»



o R,
i |
e

i

AN 206

AN

1 W)

- VAR ,
N indextest : FILE OF DEVICETABLE; |
: R index : FILE OF DEVICES; |
W) indexrec : DEVICES;

' d pNameLen,],device,LineCount : INTEGER;

E;’i:: ‘ TabFilePres : TabArray;

O one : STRING{1];

RO two : STRING[2];
({ thr : STRING(3];

%

oo

,: BEGIN

5':;: FOR I :=1 TO 999 DO TabFilePres[I] := 0;

o » The array "TabFilePres" is initialized. The array will contain the results

. i of a search on disk for the existence of a tabulated data file.

’ t“j ASSIGN(index,'CA\RBSOANINDEX.DEV");

s RESET(index);
{ LineCount := FileSize(index);

; 35 WRITELN(Enter the pathname of the directory containing the tabulated file.");

o WRITELN(Example: A: or CARBSOA);

L4 WRITE(Pathname . . . ');

D READLN(pName);

f'i"'  The operator enters the pathname for the directory to be searched for tab-

' fi‘ ulated data files.

. _;g pNameLen := LENGTH(pName);

L  The length in characters of the pathname is determined.

':::5, FOR I := 1 TO LineCount-1 DO BEGIN

3' .:. + The program will search for all possible device numbers on the path

K specified. The FOR loop does this by iterating through the possible

() ~ device numbers defined by the size of the file, INDEX.DEV.

“,  The tabulated data filename is added to the pathname supplied by the

(f:; operator. The name varies as the FOR loop executes. These IF THEN

YOh statements control the filename.

3 IF I < 10 THEN BEGIN
z

4, (P Sl ) ' ()
.A. ‘u'.fo'.,'u‘.‘n‘ AR "u ‘5'.,~ : t':to'

'u
o.l (X

U ?, )
..l...“ |.' .’ ‘ 'n" *.‘h‘f't .' f.? ‘.! ‘.’. 0 h". " .. . . .‘ ..“ Us) “.:.!.""':.

i



207

INSERT(\BDQOxL.TAB',pName,pNameLen+1);
DELETE(pName,pNameLen+6,1);
STR(1,0ne);
INSERT(one,pName,pNameLen+6)
END;

» The base filename is added to the pathname and then the device number
replaces the "x" in the name. The process is repeated for increasing
device numbers.

IF ((I1>9) AND ( < 100)) THEN BEGIN
INSERT(\BDOxxL.TAB',pName,pNameLen+1);
DELETE(pName,pNameLen+5,2);

STR(I,two);
INSERT(two,pName,pNameLen+5)

END;

IF ((I1 > 99) AND (I < 1000)) THEN BEGIN
INSERT(\BDxxxL.TAB',pName,pNameLen+1);
DELETE(pName,pNameLen+4,2);

STR(,thr);
INSERT(thr,pName,pNameLen-+4)

END;

+ At this point the basic filename has been created; however, the character
which describes the inductor has not been determined.

SEEK(index,]);

READ(index,indexrec);

one := COPY (indexrec.store,9,1);

» The character which describes the inductor is placed into the one charac-
ter string, "one."

INSERT(one,pName,pNameLen+8);

» The letter is then inserted into the proper place in the filename.

ASSIGN(indextest,pName);

{$I-)

RESET(indextest);

IF IOresult = 0 THEN BEGIN
TabFilePres[I] := 1;

OO WO
Mot
L)) 0’0“,"0“




) 208

% CLOSE(indextest)

( END

. ($1+)

.. * A search is made for the file. If it is found, the "TabFilePres" array
A location corresponding to the device number of the file just searched for
) issetto 1.

END;

S
22l

2,
22l

+ This ends tHE FOR loop search.
LineCount :=0;
FOR1:=1TO999 DO

et n” N

o IF TabFilePres[I] = 1 THEN BEGIN
"‘3.? » A listing of the tabulated data files present on the specified path is dis-
., played.

:, FilePresent := TRUE;

:_Ej‘ LineCount := LineCount + 1;
ol WRITELN('The Tabulated file for device ',1,' is present on the specified path.");
oo IF LineCount = 20 THEN BEGIN
( LineCount :=(;
N WRITE('Press <RETURN> for more files . . . ');
b READLN

o END

2 END;
ég IF NOT FilePresent THEN BEGIN
;:.:: ’ « If no files were present on the specified path, this message is printed, and
A the program is halted.

‘ ) WRITELN('No tabulated files found on specified path. Program Halted.");
; HALT

b3 END;

A DELETE(pName,pNameLen+1,40);
"  The filename is cleared from the pathname string, but the pathname re-
i:: N mains.
i:, \ LineCount := device;
»:'ﬂ' WRITELN(End of Tabulated files on this directory.");

- WRITE('Please enter the device number of the file to be sorted . . . *);

) ."':

e

L

..

! %

L) LR e L ] *n - LY R L 3T, X el i
) Q ¥ Q Q o9 Reat g Relyh Ny Y
ROGItIGON A'.'l'.'&'.‘ﬂﬂ’!‘ﬂ. O O SOt DA OB IR OO A :‘!‘- \OOUN .‘a’!‘n‘!‘u‘!‘a"‘o"'o0',‘.5.‘-‘.,.:’! Y

0! P, = D
LT T e tn ottty

.......



i
L
W :
w 209
Whe :
: 5‘-{ READLN(device),
(" ) « The operator enters the device number corresponding to the file to be
R sorted.
.;S.',:: » The filename is reconstructed for the appropriate device.
o IF device < 10 THEN BEGIN
! ’5" INSERT(\BDOOXL. TAB',pName,pNameLen+1);
:.Q DELETE(pName,pNameLen+6,1);
,‘." STR(device,one);
Pos INSERT(one,pName,pNameLen+6)
( END;
] \i-; IF ((device > 9) AND (device < 100)) THEN BEGIN
vl’.,‘,: INSERT(\BDOxxL.TAB',pName,pNameLen+1);
(o DELETE(pName,pNameLen+5,2);
: STR(device,two);
T INSERT(two,pName,pNameLen+5)
b END:
. : IF ((device > 99) AND (device < 1000)) THEN BEGIN
(' ’ INSERT(\BDxxxL.TAB',pName,pNameLen+1);
ﬁ DELETE(pName,pNameLen+4,2);
W STR(device,thr); |
n "' INSERT(thr,pName,pNameLen+4)
* END;
: SEEK(index,device);
-. READ(index,indexrec);
@Q one := COPY (indexrec.store,9,1);
‘ "ﬁ INSERT(one,pName,pNameLen+8);
?f « The complete pathname/filename combination is passed to the main pro- |
T gram.
e CLOSE(index)
END;
N
:..j:: {*******uu********u**u*uu******u*u**************uu*uu*u*u}
b2
h PROCEDURE ReadTabulatedData (pName : STR40; VAR Values : Rarray;
>
o
7
2
i
e

AT AR W R TRy LN Iy v gus BV q “n B i ¥ 8
R SR A XL A XL O .c‘..!c!.,. LA OIS TG Yy

., Chdll AL UM AL P PL R R OR Bull [0 M Fiati it ot FAR 4 L J M a

b) ” - .
“.'— A,
:l'-'i'- “'v Ay \ ;.

D OO 0 IR M MM M i )
v't‘a".'a"‘.‘..0-'.'1."\' DR XM Yoy v':'. ¢

CUOR
cl’x""*




-
-

o
<

I A® 72

one : STRING[1];

: 210
X VAR MaxRecords : INTEGERY);
( » This procedure reads the data stored on disk in the tabulated data file into
::: a 6 by 999 array of real numbers. The array is passed to the main pro-
" gram along with the number of records in the file which tell the pro-
: gram how much of the array contains valid information.
v
el
1 TYPE
" DEVICETABLE = RECORD
oy series : INTEGER,;
(- ForBias : REAL;
,,:‘ RevBias : REAL;
‘ ": Vce :REAL;
N Ic :REAL;
L energy : REAL;
jﬁ time :REAL
.. END;
Zj:
( VAR
b tab : FILE OF DEVICETABLE;
- tabrecord : DEVICETABLE;
e going : STRING[20];
:) R,I : INTEGER;
o

\.
,: ';: two : STRINGI[2];
R thr : STRING[3];

°
y :': BEGIN
o FORI:=1TO 999 DO
¥
N FORR :=1TO 6 DO

e

° Values[R,I] :=0;
o o The array is initialized.
I"J: .
- ASSIGN(tab,pName);
| « RESET(tab);

MaxRecords := FileSize(tab);

‘. U
i
!

L]
%
)

B 0 N e 10 ‘ WS

15 ¥ o™ M S N 3, R R ey =S ) ’h 3
e D.'.l.l Ay 80,V %, .v.l‘:!lv't._l‘gslv n,l.u.l ’)' » W0, "," ..'!“':‘l.o I":.G;:.C'o, _')'::Q' '.0...0. are%yeY,” ."..i'.u. l |’l l'u.'l’!‘l‘..!.s.l‘; !'!‘l"-’:'. !‘!‘:"‘l‘.‘l‘«.’f

-----




0 |
° |
) E@‘ 1
;‘: 1-'; 21 ‘
E; ) FOR I := 0 TO MaxRecords-1 DO BEGIN ‘
( » The record fields are read into the array.
A0S SEEK(tab,I);
N READ(tab,tabrecord);
A N WITH tabrecord DO BEGIN
D! Values[1,I+1] := ForBias;
. o Values[2,I+1] := RevBias;
it Values(3,1+1] := Vce;
;._{:3 Values[4,]+1] :=Ic;
‘ ' Values[5,1+1] := energy;
Wy Values[6,1+1] := time
%) END
s END
° END;
gf_s {**********************************************************************}
3%
{ - PROCEDURE SortValues (Values : Rarray; VAR Posarray : Iarray; VAR MaxRec keyl,
x key2,DifKey1,DifKey2 : INTEGER);
R'::; * This procedure sorts the data read from the tabulated data file. A maxi-
H_"’ mum of two sorting keys can be used. The procedure outputs an array

D of real numbers 2 by 999 (thought of as 2 columns of 999 rows while
'«s . the 6 by 999 array is 6 columns by 999 rows). The numbers in the
'

. first column are the minimum to maximum values of the corresponding

E : data in the 6 by 999 array based upon the first sorting key. The num-
P bers in the second column are the minimum to maximum values of the
Z :::: corresponding data in the 6 by 999 array based upon the second sorting
‘.:::f key.

~
K ,.;- » If, for example, a series of data had 3 different values in the set of array
o element described by sort key 1 and there were a total of 10 data sets,
' ";: then the first column in the 2 by 999 array only have three values fol-
b-‘ ‘
o lowed by 996 elements with zeros. If there were four different values
: '_‘ among those kept in the column in the 6 by 999 array referenced by the
6. second sorting key, there would be four values in the first four ele-
v

P
[} :}'
5]
fro
L]
F.o7
2l

v,

‘o .'_’{.- T Al o o o e o B A NG A 0 4 o e T T M T T A 4 A S Y e e LA RN
i / ‘ WP Yo% - e s Ve v 3, Ty,
WAl e ” (o N (o PO DA O IO O O L M MO ATt e ¥ v . uy



212

ments of the second column of the 2 by 999 array followed by 995 el-
ements with a zero. This is shown more clearly in Figure 19.
» With these two arrays, the printing routine can provide the necessary

outputs.
6 by 999 Array 2 by 999 Array
1 0.2 80 0.2 |3.12
2 1 4 1 4
3 5 3.12 5 7
4 1 7 0 80
5 0.2 7 0 0
( 6 0.2 4 0 0
e
1%
o 7 5 80 0 0
N
8 1 7 0| o
: r
|‘ oY
A
A Sort Key 1 Sor Key2
® The Sort Keys refer to particular rows. These are examples.
: " Figure 19. Example of sorting function.
e
D ::-
B2
o VAR
7 LowToHigh,I,R,BrPt,PrevBrPt,ChCnt : INTEGER;
A MinKey1,MinKey1A : REAL;
L
e test,NoChange : BOOLEAN;
@

-,' A‘,

p-"‘-‘.' 1-\ q’. '.‘-‘1" \q ‘\ - -
R, ,_‘,\,.'@r_,k WL n’\'..u .:"" 0, o'. AR T e “ O 0. .v.u ‘9 "H



0
R
1:".;":': 213
:3?": BEGIN
e FORI1:=1TO2DO
o FORR := 1 TO 999 DO
f;‘,’ Posarray[I,R] := 120000.0;
o « The 2 by 999 array is initialized.
: clrscr;
:j,z. WRITELN(Here is a list of the possible sorting keys.");
'*-"j'.: WRITELN('Forward Base Current ......... 1);
YN WRITELN('Reverse Base Current ......... 2Y;
(, . WRITELN('Collector-Emitter Voltage .... 3);
vel WRITELN('Collector Current ............ &),
-":}’_, WRITELN(Energy at Breakdown .......... 5
WRITELN('Time to Breakdown ............ 6);
, ::.3 WRITELN('No Sort key ......coou...... 0Y;
| ‘,.' WRITE(Enter Sort key one . . . ");
3 READLN(key1);
*;Z‘ WRITE(Enter Sort key two . .. ");
(. READLN(key2);
:: ! * The operator is asked what values he or she wants to sort on.
1 IF key1 = key2 THEN BEGIN
'.;,. WRITELN(Keys are the same. Key 2 set to zero.");
g key2:=0
p END;
Y MinKeylA := -1.0E+9;
""\f * This value is the rising threshold of minimum values. Below this value
) the program will not search for a minimum.
::: 3 test := TRUE;
:‘:." LowToHigh := 0;
§° WHILE test DO BEGIN
._,. » This loop will determine the unique values in the first sort key.
VA LowToHigh := LowToHigh + 1;
-v MinKey1 := 1.00000E+09;
N FOR I := 1 TO MaxRec DO BEGIN
@
i
‘o
oo
j

@ =,
A R g

,,‘,
P 4

SN

A Nt TR Ata N Vo 0 TP TRTO, S % BV g ANy Thy U1 G R0y 0 AV \ 4, \
4 CohLe C A W ! " ¥, (Y] Q, 3
e R S g R L A R e R R e P T R I I



i

il

@

::: 214
I}S:?! « Each time the WHILE loop is executed a search is made for the minimum
{ value in the sort key, but the new minimum value in each pass must be
i RN greater than the previous minimum value.

y ‘-‘Z}“ IF ((MinKey1 > Values[key1,I]) AND (MinKey1A < Values[key1,I])) THEN

'{;:: MinKey1 := Values[key1,]]

) * The new minimum value above the threshold "MinKey1A" is found.

:’{:’;; END;

¥ IF MinKey1A = MinKey] THEN test := FALSE

“-3‘-* » As the WHILE loop executes, there eventually are no more new
( ‘ minimum values and this case will be met. At this point, the WHILE
’1‘:0' 2 loop will be stopped.

": ELSE BEGIN

R MinKeylA := MinKeyl;

» The new minimum value threshold is the minimum value above the old
| ::: threshold that was just found.
e Posarray[1,LowToHigh] := MinKey1

: "T + The minimum value is placed into the 2 by 999 array at the row below the
{ last minimum value (See Figure 15.).
o END
END;
o Posarray[1,LowToHigh-1] := 0;
' DifKey1 := LowToHigh-2;

:'_:-:  The value "DifKey1" is determined. This value represents the number of
: :E: rows in column one of the 2 by 999 which contain non-zero numbers.
! E_.: It is the number of unique data points found for sort key 1.

' IF key2 <> 0 THEN BEGIN

:}: « If there is a second sort key then the following is executed. It is exactly
__-‘.:: the same as the above except where the term "key1" is used above now
::-:EI: "key2" is used, and the minimum values are loaded into the second
'y column of the 2 by 999 array.
b MinKey1A := -1.0E+9;
o test := TRUE;

5.- LowToHigh :=0;
) WHILE test DO BEGIN

W
h
e

R

:

:::.:::' RN RIS ey “ LI e NI T o T AR IS0 I e, -
B T e R e S B S A e e T S S R R ST s T




i T T T T e m—m———
i 7
L
3 215
E:::;' LowToHigh := LowToHigh + 1;
MinKey1 := 1.00E+09;
e FOR I := 1 TO MaxRec DO BEGIN
"‘*\ IF (MinKey1 > Values[key2,I]) AND (MinKeylA < Values[key2,I])) THEN
SN MinKey1 := Values[key2,I]
5] END;
:i \ IF MinKey1A = MinKey1 THEN test := FALSE
oy ELSE BEGIN
;::'. MinKey1A :=MinKeyl;
( Posarray[2,LowToHigh] := MinKey1
P END
R END;
R Posarray[2,LowToHigh-1] := 0;
® ' DifKey2 := LowToHigh-2;
; :\; « This is the number of unique data points found for the second sort key.
o END;
END:
(. '::‘_: { s 3k 3 3k 3 3k ke 3 e e 3 ke o 3 le o ke o b o 3k ke 2k ok ke o 3k e 3 b e 2k ok ok 3k e a3k 3 2 ok 2k ok ok 2 2k 2k e 3k b e ak 2 abe 3 e ok e ae e e a e ae ok e ok o 3k }
2
E* PROCEDURE WriteOutPut(Values : Rarray; Posarray : Iarray; MaxRec key1,
j key2,DifKey1,DifKey2 : INTEGER);
[ " « This procedure is responsible for producing the output.
e TYPE
; -.:;", STR25 = STRING[25];
® Lab = ARRAY]J1..6) OF STR2S;
N
5
VAR
: ‘;: going : STRING[60];
p LPT : TEXT;
-.:; L : Lab;
_,‘,: fullstr : STRING[25];
:»;. time : STRING[9];

P,S,T,L,R : INTEGER;

e % o
, .«-‘:—1.
- v,

Sy’

-
o
-

Z

' e L . gy Uk - " -
3 O Wy ol 19 I ) O paty” Wt il Ve iy Vot ONIID OO IO
I \‘.."‘bl’!.l'- ) PN ."" B ALK ’l'!d‘n LA, '!‘I....I.n.l.’ l':‘l':'o.!‘l". n"'l"‘l‘!‘u‘!‘r".'u‘. oQ?‘t‘_.n_‘. a‘!‘-‘.. :‘:’a‘!‘:l‘_':I‘.',C'.'u“.'t‘?‘-:’ AN |l.‘:‘&‘f“'"!'se‘?*‘.ﬁ




=)
i
. o
10‘::\ 216
::'n::', test : BOOLEAN;
.58
.
R BEGIN
" CLRSCR;
:::l::: L[1] := 'Forward Base Current';
‘“) L[2] := 'Reverse Base Current’;
;":: L[3] :="Collector-Emitter Voltage';
;?.:' L[4] := 'Collector Current';
: L[5] := 'Energy at Breakdown';
( L[6] := Time at Breakdown';
*& + The above values are assign to the "L" array.
::: WRITELN(Enter the output destination. "LPT1" routes output to line printer,’);
:ﬁ WRITELN('or any valid file name routes output to disk as a text file.");
e WRITE('Destination: ');
Qg READLN(going);
Ko . » The operator provides the destination to the program.
- test := TRUE;
( WHILE test DO BEGIN
oA ($1-)
_:;: ASSIGN(LPT,going);
o REWRITE(LPT);
D IF IOresult <> 0 THEN BEGIN
:.‘:'_ 3 WRITELN('Something is wrong with that destination. Try Again.");
gty WRITE(Destination: ');
2 READLN(going)
. END
g ELSE test := FALSE
. ﬁ: {$1+}
. -.{33  The output device/file is opened with error checking to be sure the de-
® vice/file is ready to receive data.
;' g END;
:.- FOR P := 1 TO DifKeyl DO BEGIN
:;:‘ * The following is done iteratively for "DifKey1" times.
L WRITE(LPT,'For primary key of 'L[keyl],' =");
o
:'l".
b
"
"l‘
i

4
l.. U

X M MO SO I ) A0 OO OO TRRRIGO0 N W0 0 A QNN
Al B NN R XML R M KO NI .l'.'l'..'n'.'-%;,'.‘c'.&':'c", ',_ﬁ!!t"?ﬂ!‘a‘!‘i‘!"‘,‘c‘!’;"’c‘.ﬁ"&"ﬂ"9:':‘!’3':'!‘:!,.':'.‘a'f':i."a"-’:’!‘:'2‘:'3':':”:’1




N
i 217
e
b NumToStr9(Posarray[1,P].time);
{ WRITE(LPT time);
T » The value in the first row first column of the 2 by 999 array is printed. It
j is written as a shortened number using scientific notation. The variable
::.: "time" is a string and the name is basically meaningless.
» CASE keyl OF
9 1 : WRITELN(LPT, AY;
b 2 : WRITELN(LPT, A);
'{\ 3 : WRITELN(LPT,' V'),
C 4 : WRITELN(LPT, A);
Pz 5 : WRITELN(LPT, J;
A. '-‘:-3 6 : WRITELN(LPT,' Sec))
o END;
'Y + The proper units for the first sorting key are added to the output along
ZE with a <CR> <LF>.
o IF key2 < 0 THEN BEGIN
.‘:: + If there is a second sorting key, the following is done.
C FOR S := 1 TO DifKey2 DO BEGIN
;’ ' « The following is repeated once for each unique value of sort key 2.
y \*"T test := TRUE;
gt FOR T := 1 TO MaxRec DO
IF ((Posarray[1,P] = Values[key1,T]) AND (Posarray[2,S]
Do = Values[key2,T]) AND test) THEN BEGIN
, :\'.: « A test is made for the first occurrence of a match of both sort key 1 and
j‘: sort key 2 (sort key 1 is held in Posarray[1,P] and sort key 2 is held in
r'Yy Posarray[2,S]).
i3 test := FALSE;
: :' WRITELN(LPT);
i WRITE(LPT,  For secondary key of L{key2], = ";
.' NumToStu9(Posarray[2,S],time);
Ef WRITE(LPT time);
oy CASE key2 OF
o 1 : WRITELN(LPT,' A);
0 2 : WRITELN(LPT,' A");
::.r
05
X
.
v.:

o Yy W, o O d W . W M Vg W W MR
e o S Y
x? o \ } Afs"‘q v, " ) "

nnnnnnnnnnn



-
& 5N
-

-
-

S
.
:.o ‘ 218
:' -y.j 3 : WRITELN(LPT,' V'),
N 4 : WRITELN(LPT,' A");
e 5 : WRITELN(LPT, J');
Rz 6 : WRITELN(LPT,' Sec')
::: > END;

‘;:.) * On the first occurrence of a match of sort key 1 and sort key 2, the above
.:" - is printed. It is printed only once even if more matches are encoun-
" tered.
e WRITELN(LPT)

END;
- FOR T := 1 TO MaxRec DO BEGIN
EE.. IF ((Posarray[1,P] = Values[key1,T]) AND (Posarray[2,S] = Values[key2,T])}
)

' vr:d THEN
O * On every occurrence of a match to sort key 1 and sort key 2, the follow-
Ya9 ing is printed.
3 FORR := 1 TO 6 DO BEGIN

:h 2! IF (R < keyl) AND (R < key2)) THEN BEGIN
{ WRITE(LPT,' “L[R], ..... %
;E" NumToSt9(Values[R,T],time);
f: WRITE(LPT time);
) CASE R OF
B 1: WRITELN(LPT, A");

o 2 : WRITELN(LPT,' A";
b 3 : WRITELN(LPT, V');

Y 4 : WRITELN(LPT,' A);

® 5 : WRITELN(LPT,'J');
fj 6 : WRITELN(LPT,' Sec')

v~ A END
:f,‘:'_:  The above prints the values of the 6 by 999 array that are not referenced
e by the sort keys.
o END;
e IF R = 6 THEN WRITELN(LPT)
K74 END

P END

K .::j)

::

‘ Y

e

.
w o ,
L)

) 58 AR P“j LR ,k\‘ % N 7 3 A 3 - (‘ ® 1 ‘ o) » 0 (S o ] St \
X -*f’-"’;‘f“d’: A A ..3:. QLS '::"c. OO L 3 A RN c?_t'c..o':.'o A ..‘.',,.'!9.'!!-l...-2‘.'. 0‘:‘:‘,‘:'3':'. .l.‘a' ! :if‘::!‘n!‘.:! .! ,‘.0. n .:?'...l.v.&,:




W

CN Xl
< ?{¥;€J (‘-"

s

ot ata
2y

(
4

""».-

"
N
! :}
.\hf

N M e L N0 S L NGRRN W j p
/ W ; o \ PO Q0
AN H' ¥, !'u e T R T P o YO e O A I I Y b LS ak',l:"l:.!‘!‘!':., .‘!""lc‘.\;‘!ﬁ-‘!h !‘:.,’f‘

219

END
END
ELSE BEGIN
+ If there is no second sort key, then the following is executed.
FOR T :=1 TO MaxRec DO BEGIN
IF Posarray[1,P] = Values[keyl,T] THEN
FORR :=1TO 6 DO BEGIN
IF R <> keyl THEN BEGIN
WRITE(LPT,' “L[R], ..... )
NumToStr9(Values[R,T],time);
WRITE(LPT,time);
CASER OF
1: WRITELN(LPT,' A";
: WRITELN(LPT,' A");
: WRITELN(LPT,' V";
: WRITELN(LPT,' A");
: WRITELN(LPT,' J'),
: WRITELN(LPT,' Sec')
END
+ The above writes all of the values in a given row except the one refer-
enced by sort key 1.

A L b W

END;
IF R = 6 THEN WRITELN(LPT)
END
END
END
END;
CLOSE(LPT)
END;

{**********************************************************************}

BEGIN {Main Program}
ListDevice(PathN);

{)
ertls e




I,'.. - “ 3 p o . i - . -« 3t

::::: 220
R ReadTabulatedData(PathN, Valuarr,Recs);
( SortValues(Valuarr,Posarr,Recs,K1,K2, DK 1,DK2);
R WriteOutPut(Valuarr,Posarr,Recs,K 1, K2,DK1,DK2)
'i END.
*

P
:..?...-
oL e e

.f“‘,."

e
2

g
TARALN )
xS Pl el

%
p 3

i
o |

[4

. g

g
2 4
v

M 4 L4
LA

r

rl
- {t r'

:ri.-iu’

7

<:P:ﬂ'. P
XX Nl e

- -

AP AR il e

..._.w
PIEE

o
"~

‘)

.». c'.,u'. I';

et
l. (R

et

e
(3 c.‘ m 0.‘ h‘.b‘ 0.0

Ay .

l
’ ;‘ .l‘

RO J.‘.d.‘fﬁ.".'c.

QU0 0
B R R N T R0 AR



= J FTRTVRFTT T TR RN R AT ROY RO T TR R T T RLTY R ROV RO AT RS AT RTRRTT W

s g 4 PN
ﬁ";-.‘n..l h's z

-y

QoL PN

APPENDIX M
EDITLIST.PAS PROGRAM LISTING

N

.‘p\ -

N 221

b 0 0 Oy - { R
% b' o .‘ltg t‘ni“n " ..l:' 0' l‘.‘l'g .. *' ‘Q: t’ .. '. l..\ '.“l "“" ..l‘..l' .I I:.‘l. 3;‘I'.:i:“ltq:“;:t!.rlﬁ:l? ‘.' .

Jeafe

Q o,
a o' 'a’. o!.ft:. " ‘l'. 0



-

-

O T,

To s w8

i

- o
P\l ] K x>

Ssrasl LA

> - -
-
- -

Uy N TN L

-
-
£ s

oSt vl O A AT Ay 0l LT Vet nthed QY \
KT OO RN ’!’n'!': GO IO OB DA DOON SODRIA It s :"‘n"-"'. ‘.0":i":"‘:l".0":0'."2!?'.!,

nnnnnnnn

PROGRAM EditListDevice;

222

 This program is used to create (if needed), maintain and correct the file,

INDEX.DEYV. It consists of a single main program body.

LABEL
loop;

CONST
first : BOOLEAN = FALSE;

TYPE

STR40 = STRING[40];

STR13 = STRING[13];

DEVICES = RECORD
DEYV : INTEGER;
descrip : STR40;
book : STR13;
stor : STR13

END;

VAR
index : FILE OF DEVICES;
indexrec : DEVICES;
LineCount,series,Count : INTEGER;
test : BOOLEAN;
induct,ans : CHAR;
Three : STRING[3];
Two : STRING[2];
One,Onel,0ne2 : STRING[1];

BEGIN

ASSIGN(index, C\ARBSOANINDEX.DEV");
{(3I-}

RESET (index);

n‘! o

\
il

DN

‘:’!‘ FOU O 'A"

2% g%

WRIFNE™

"o. 10!’.

)




T Y R T Y YV R W T Y VW P TN VN I T TR T L Y T A TR TR AT TN W T W W W W WU W W WY WU WY W W —1
EEE i

223

{$1+)
IF IOresult < 0 THEN BEGIN
WRITELN('C:INDEX.DEYV not found. Assumed first time used. ');
WRITELN('Creating C:\ARBSOA\NINDEX.DEV..");

REWRITE(index);
first := TRUE
END

» The file, INDEX.DEYV, is opened with error checking. If an error oc-
curs, it is assumed the file does not exist and a new one is created.

ELSE BEGIN
« If the file exists, the following is executed.
loop:
* The "loop:" is a LABEL. It can be used as the destination point in a
GOTO. This point is the top of a control loop which allows for double
checking of whatever editing is performed. A
» The following provides a list of the devices stored in the file, IN-
DEX.DEV.
LineCount :=1;
Count :=0;
SEEK(index,LineCount);

* Record number one is sought.
WHILE NOT EOF(index) DO BEGIN
» This loop will be executed until the end of file mark is reached in IN-
DEX.DEV.
READ(index,indexrec);
+ The record at the current cursor position is read.
WITH indexrec DO BEGIN
WRITE(DEV,' );
WRITE(descrip:40," ');
WRITE(book,' *);
WRITELN(stor)
END;

+ The record fields are printed to the screen.
LineCount := LineCount + 1;




-"}"

AT IA A Yoia

L9 4

: N W
't})v_ﬂ‘_'.!. ]

PP ] ;'}

-

e

o s, Py - al

LR R R R

oy
P ]

- ‘.
[

@, L AANNS

Ll 25 sk 8 J

- e -

AL Ty ol )

L

->
Lo

> ot p
) l.gl.-l‘

"~ N Fj\f g

» '- I.'. .n-

......

224

 The cursor position pointer is increased by one.
Count := Count + 1;
* The count of the number of records displayed since the last pause or the
beginning of the file is increased by one.
IF Count = 21 THEN BEGIN
« If there has been 21 lines displayed since the beginning or since the last
pause, the program pauses to allow the operator to review the device
records.
Count :=0;
WRITELN('Press <RETURN> for more devices.");
READLN
END
END;
WRITELN(End of indexed devices.")
END;

o If this had been a new INDEX.DEY file, the following would be the first
question asked.
WHILE NOT ((ans ='y") OR (ans = 'Y") OR (ans = 'n) OR (ans = 'N')) DO BEGIN
WRITE(Do you want to add a new device? (Yor N)...");
READLN(ans)
END;
IF ((ans = 'Y") OR (ans ="'y")) THEN BEGIN
test := TRUE;
IF NOT first THEN LineCount := FileSize(index)
« If this is not the first entry, then the record pointer is set so the new de-
vice will be added to the end of the file.
ELSE BEGIN
LineCount := 1;
first := FALSE
END;
test := TRUE;
WHILE test DO BEGIN
WITH indexrec DO BEGIN

-
-

R " L P N I I T TR T
AL rE R A S CR O LR P R PR LY
A A AR AS KA S, LR .00, 0%,




il Ak A o el bl b i M Yo la b el Sa L Sl Aol bl Al b A J o d s Ale Ale 48 AR il Al all Sal “al Yol Jol Sof B A A A A S A o A B N AT A ofh a4 ath BA o G&  hs  AA" dg |

o T Tl )

-
-

225

P

WRITELN(Enter the Device Description for Device Number ',LineCount);

)
( WRITELN('XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX - X"s indicate 40
g‘ Characters.");

;;l-:: READLN(descrip);
:' : . » The operators is asked to provide a 40 character description of the device.
D) DEYV := LineCount;
vﬁ:: » The device number is set equal to the record pointer value.

WRITELN('The following is a list of inductor value codes. Please enter the );
WRITELN('the SECOND letter corresponding to the value of the inductor being
used.");

NS

2 WRITELN(LG . . . 44 pH');
N WRITELN(LH . . . 146 uH");
v WRITELN(LI . . . 267 pH');
3 WRITELN(LYJ . . . 426 uHY;
! r WRITELN(LK ... 1mH);
<% WRITELN(LL . . . 2.16mH);
o READLN(induct);
( induct := UPCASE(induct);
! L‘: » The inductor value is input.
: o INSERT(induct,Onel,1);

.';',;I » The following creates the bookkeeping and storage filenames for various
! device numbers.

o IF DEV < 10 THEN BEGIN
; :}:f STR(LineCount,One2);

:‘ book := CONCAT('G:DEV00',0ne2,'L',Onel,".BK");
® stor := CONCAT('G:BD00',0ne2,'L",One1,".000")
% END;

3 IF ((DEV > 9) AND (DEV < 100)) THEN BEGIN
“é STR(LineCount,Two);

i Yook := CONCAT(G:DEV0', Two,'L',Onel, .BK');
= stor := CONCAT('G:BD0', Two,L',Onel,.000"
END;

5 IF ((DEV > 99) AND (DEV < 1000)) THEN BEGIN
o STR(LineCount,Three);

>
e
7

e
o,

: |
‘ A w" » -’ -* -". -’.- -, —ﬂfl"( o .f Co oy 4 vr'.!q ,‘r,’\' ..- .’g ﬁ..— ’-.-‘-' ."-‘ "’.' faye ,".\.‘-._ .";'" .\),.\_."_ }‘.: .: ....,‘ ‘ “1\ .. A. A
R D R e e e ﬁmmmmmm




226
book := CONCAT('G:DEV',Three,L',Onel," .BK");
stor := CONCAT('G:BD0',Three,'L',Onel,'.000")
END;
» The bookkeeping and storage filenames are completed.
WRITELN('Here is the entry for Device Number ',\DEV);
WRITELN(DEV:3,' ', descrip:40,' ',book,' ',stor);
» The complete device record is displayed for the operator's approval.
END;
ans :='Q’;
WHILE NOT ((ans ='y") OR (ans ='Y") OR (ans = 'N') OR (ans = 'n")) DO BEGIN
WRITEC(Is the entry alright? (Y or N) ... ");
READLN(ans)
END;
IF ((ans ='y") OR (ans = 'Y")) THEN BEGIN
SEEK(index,LineCount);
WRITE(index,indexrec);
» If the entry is correct, then it is added to the INDEX.DEYV file.
ans :='Q";
WHILE NOT ((ans = 'y") OR (ans = 'Y") OR (ans = 'N') OR (ans = 'n)) DO
BEGIN
WRITE('Do you want to add another Device to the file? (Y or N)...");
READLN(ans)
END;
IF ((ans = 'n") OR (ans = 'N')) THEN test := FALSE
« If the operator does not want to add another device, then the WHILE

loop is ended; otherwise, the LineCount is increased by one and the
loop is executed, again.
ELSE LineCount := LineCount + 1;

END
ELSE BEGIN
« If the device record is not correct, then . . .
ans :='Q";

WHILE NOT ((ans ='y') OR (ans ='Y") OR (ans = 'N') OR (ans = 'n')) DO
BEGIN




-
%

e

:

e 227
:‘E.:‘ WRITE('Do you want to try again? (Yor N)...");
{ READLN(ans)

a END;

o + A "Y" answer will automatically re-execute the loop.

o IF ((ans = 'n") OR (ans = 'N')) THEN HALT

») END

"/

¥ END

o » End of the WHILE loop to add a record.

i END;
( ans :='Q’;
N WHILE NOT ((ans = 'y") OR (ans = 'Y") OR (ans = 'n’) OR (ans = 'N')) DO BEGIN
& WRITE('Do you want to edit any of these devices? (Y or N)...");

s READLN(ans)

® END;

":‘j » The program now gives the operator the option to edit any of the device
-:{;: records. The device description can be altered, and the series number
i N, can be changed, only.

- test := FALSE;

IF ((ans = 'y") OR (ans = 'Y")) THEN REPEAT
WRITE(Enter the device number (Integer Value Only!)...");

P )
O

READLN(LineCount);
o) SEEK (index,LineCount);
3 : READ(index,indexrec);
i 3 * The record for the device of interest is entered and the appropriate record
-3:.’ is retrieved.
Py WITH indexrec DO BEGIN
1;' WRITELN('Here is the current device description.');
‘; WRITELN(descrip);
e ans :='Q";
.. WHILE NOT ((ans = 'y) OR (ans = 'Y") OR (ans = 'n") OR (ans = 'N')) DO BEGIN
:Eﬂ: WRITE('Do you want to change this entry? (Yor N)...");
::;: READLN(ans)
2'{ END;
o
o
>
& n
N
R

Ny Ty VAT ' Vgt Beadtu gty g Bug Ty T8 Ty Uy Mg fte, o g 0o ¥ ) HTT T e T U g Tre NN v 0
i M L '
O T R o R

--------------------

il LN



0% and - - J e > U U LW TR T R T N T RN N W W N W R N WU WO WU S W W WY W T e
Ty b AR A "o >l T

A

. -

A 228
“: * The operator is shown the device description and asked if a change is de-
(‘ o sired.

o IF ((ans ='y') OR (ans = 'Y')) THEN BEGIN

: WRITELN(Enter a new device description.’);

a8 WRITELN('XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX - X"s show 40

'.P. Characters");

(b READLN(descrip)

it END;

1:' " » If the description is to be changed, then the operator supplies the new
” description here.

E\; * The following concerns the correction/alteration of the series number in
"'* the storage filename.

"':: WRITELN('Here is the current storage file, ',stor);

_..r, ans :='Q’
! :: WHILE NOT ((ans ='y") OR (ans ="Y') OR (ans = 'n) OR (ans = 'N')) DO BEGIN
E_f.' WRITE('Do you want to change the series number for this entry? (Y or N). .. ");

R READLN(ans) '
N END;
E:::..:‘ IF ((ans ='y") OR (ans = 'Y")) THEN BEGIN
:‘.u:, WRITE('Enter the new series number (Integer Value Less Than 1000 Only) . . . ");
e READLN(series)
: END;
::s N * The current series name is displayed, and the operator is asked to verify
_‘ "t the series number. If the number is not correct and the operator wants
TN to change it, he or she is asked to supply a new series number.
. * The following places the new series number into the storage filename.
b DELETE(stor,11,3);
.o INSERT('000",stor,11);

e IF series < 10 THEN BEGIN
. STR(series,One);

U INSERT(One,stor,13)
o END;
..;2 IF ((series > 9) AND (series < 100)) THEN BEGIN

.... STR(series, Two);
2

W

"‘*-'I " .J’J' lwn - '*'II‘#‘"Y “’ f (".\ ‘I‘ ". . "'4 . % . . ' ‘ "
B R Tt O e ot L R A R A RS




@‘m Pl FE I TS T TR TR T AT R RTERETR T UTRARARITLDAETETRARETREITEDS LT RTEETVTETT RO FO7TRCTT W07 PV R WY O Y Y T ™ |y “wmmw‘.j

.
X
:55 229
:
N INSERT(Two,stor,12)
L END;
o IF ((series > 99) AND (series < 1000)) THEN BEGIN
': }_: STR(series, Three);
s INSERT(Three,stor,11)
L) END;
; '-E': * The new series number is in place.
»,r';‘: IF series > 999 THEN BEGIN
-3 WRITELN(Series value greater than 1000. Program Halted.");
- HALT
\::j « If the series number supplied by the operator is 1000 or greater, the pro-
N gram halts with no change made to the device record.
L CLRSCR;
-; WRITELN('Here is the new device entry.");
j: WRITELN(DEYV,' ' descrip,' ',book,' ',stor);
o » The revised device entry is displayed for the operator's approval.
- ans :='Q;
:.:E WHILE NOT ((ans = 'y") OR (ans = 'Y") OR (ans = 'n) OR (ans = '‘N")) DO BEGIN
K. > WRITEC('Is this entry correct? (Y or N)...";
- READLN(ans)
2 END;
;2 IF ((ans = 'y") OR (ans = 'Y")) THEN BEGIN
o3 SEEK (index,LineCount);
o WRITE(index,indexrec)
° END
_":§ ELSE WRITELN(No changes made.’;
: -t._j « If the entry is correct, then it is incorporated in the file; otherwise, noth-
&; ing is done.
o ans :='Q";
.:E WHILE NOT ((ans ='y") OR (ans ='Y') OR (ans = 'n") OR (ans = 'N')) DO BEGIN
o WRITE('Edit another entry? (Y or N) ... ");
g READLN(ans)
9 END;
.‘;E
:} N
e
L

-
!

o

¥

' NI OO0 ) Q DOOSON0 OO 5 3 ¥ "
el DN OO O IO OO0 QOO0 OOTONIAGH OO0 AR W A ey g AT h ¢
ittt it ) ‘-.ﬁ'wfi‘»A,‘.fﬂnf"h"!?" ey 't!“.’l‘.!l‘.’l‘o.G’nfl.g!l.|!l'a!t':'I'.fl'.’.’:‘}‘:“‘.. OO RN DO RN

8,070,070, Vg 00 00 47 0 4%, N



........................

e 230

g IF ((ans = 'n') OR (ans = 'N")) THEN test := TRUE
+ If the operator is done editing, and negative response drops him or her
N from the editing loop.
" ELSE BEGIN
o ans :='Q’;
D) WHILE NOT ((ans ='y") OR (ans = 'Y") OR (ans = 'n) OR (ans = 'N')) DO
"' BEGIN
WRITEC('See list again? (Yor N)...");
READLN(ans)
END;
33 IF ((ans = y) OR (ans = 'Y")) THEN GOTO loop
END
N » If the operator wants to edit something else, he or she is also given the
) opportunity to see the list, again.
- END;
e UNTLL test;

o

C END.

Da ™ % = 7, [ e N Am - ri A 5 WA - .
W) 0 e Ol (4 0 - A RORA RS, AR ARGAS
t"'&"ﬁﬁu"‘a«&'}-’: lt"t‘!‘t‘-"i’-""-’q". 4@‘! » ...('.—k!"..)’n"‘... t“:‘" ’M”.‘.l ¢y E % .!.‘ L8, .‘5“‘!‘.‘!“'!‘:"5“ v“'f Q.'n’ﬂ‘g "’l’l‘,‘“‘,‘t'

,,,,,,,,,,,,




o

B

n
U

: [ o T R
) @ e

W =
.

.
e
(Y ()
""\l"‘t“.

¢

a"!

0 IRT ALY
»"’0":0!':".':",‘6..‘-' ‘rﬁ’#t't‘! A

RN ENT AN BN ENFTETEN T R TTOOTFTEEETEUETTTTOWITWLI TR I SR TR TENPEE r'Ys res ves "we

APPENDIX N
PRCSLTWO.PAS PROGRAM LISTING

231

RHSAIAOTIOGAC OSANOSONISERSAC) \ DDA W)
.‘!’n‘g“wf"ﬂ.'.03'515“0,".0'.'.05,0".0!9.!" Ve *,c‘)!q"::'*.q-‘hnﬁff"?s'*:! 03.?&?.’»?.‘%3.‘:3.‘a‘,.,

OO O OIS
CARBA NN N AIORRERADN IR



i

N RS RET RSV RSV AT TR TR TV IR T R RIT RO TR TR R SN ST T - e BT RO R EOTED T Y KTV RO R N B TR VR R W R R VR R VR TR Y R
17303
3y I
P
@
O 232
R
:::: v PROGRAM Process_Level_Two; {For use as a stand alone program in conjunction
(< with FASTDATA .BAT as the follow on processing step)
,:Lo::  This program is to be used to calculate or recalculate the Instantaneous
) Power and Energy. It is for use in case of a program crash or in case
K) ‘ﬁs PROCESS2 was not executed in the data acquisition cycle in #n attempt
[ j to speed the process up. (This second case is not recommended.)
: oY
L%]
X TYPE
:;‘ ( ST10 = STRING[10];
( STR13 = STRING([13];
K STR80 = STRING[80];
o~ datarray = ARRAY(1..3,1..2048] OF INTEGER;
Do
\. : ene = ARRAY[1..2047] CF REAL;
®.
:ix_:; VAR
, \ EnergyPass : ene;
X :‘_:'. tnum,device : INTEGER;
{‘ storage : STR13;
3 o
.(:';f. {**********************************************************************}
2
p{v.”

PROCEDURE listdevice(VAR stor : STR13);

&‘.'u'

» « This procedure returns the basic storage filename for the data to be used

.\_';: as input and for the output destination.
; ;_;3

° TYPE
o ;? STR40 = STRING{40];

N STR13 = STRING[13];
i: % DEVICES = RECORD

'Y DEV : INTEGER;
. descrip : STR40;

o book : STRI3;

E.E store : STR13
9 END;
yol
)
ey

®
o

o

»? ;
UOOSONACOOOOOON) QOGOK] OO0 RO OO0 OUO () OO0 080, 0
R X O NI X _'l’.%'.fl'.,a':'.u',‘u'!‘n‘!‘n'.‘o','c’.'l':.‘a‘:h':?oﬁz?o':'ﬂ";'.'.‘.‘4‘1’:':*;"’02’!"-‘u'f'a"':l‘,':‘“:f"'.'cf‘d":'f':’f‘

?. »

§95,4% A% ¢ LY
l'?'l‘.;'A'.p"u‘?'ots"'?'AQ'.‘\

(]



PARUE VEUN . JEVSMUFVELVE FTIVEUS UEV RIS YT FTVes eV Te

233

VAR
index : FILE OF DEVICES;
indexrec : DEVICES;
error,LineCount . INTEGER;
name : STRING[18];
one : STRINGJ[1];
two : STRING[2];
thr : STRING(3];
test : BOOLEAN;
ans : CHAR;
I,Count,series,device : INTEGER;

BEGIN
name := 'CA\RBSOA\NINDEX.DEV";
ASSIGN(index,name);
RESET (index);
WRITELN("You will be asked for the device number corresponding to the storage file');
WRITELN('for the data taken on the device of interest. You will also be asked for');
WRITELN('the storage series number which is the last three numbers in the file name.');
WRITELN(The value shown in the listing is the highest currendy stored.");
ans :='q’;
WHILE NOT ((ans = 'y) OR (ans ='Y") OR (ans = 'n') OR (ans = 'N")) DO
BEGIN
WRITELN('Do you want the see a listing of all currently cataloged devices?");
WRITE('See list? (Yor N)...");
READLN(ans)
END; {WHILE NOT ((ans = 'y'...}

« If the operator wants to see a listing the following is executed; otherwise,
the next section is skipped. See PLOTDATA or TABULATE for a de-
scription of this section.

IF ((ans = 'Y") OR (ans ="y")) THEN BEGIN
LineCount := 1;
Count := 0;




i
.—-w
s
Y 2 234
3-._ SEEK(index,LineCount);
(. WHILE NOT EOF(index) DO BEGIN
::EE:‘ . READ(index,indexrec);
;’;:::. WITH indexrec DO BEGIN
g.':: ) WRITE(DEV,' );
) J WRITE(descrip:40,' *);
-:;,". WRITE(book,' );
;E'. , WRITELN(store)
f::. END;
( LineCount := LineCount + 1;
; ¥ Count := Count + 1;
; > IF Count = 21 THEN BEGIN
;J':! ., Count :=0;
® WRITELN('Press <RETURN> for more devices.");
:::s READLN
N END
& END;
( WRITELN(End of indexed devices.")
e END; (IF ((ans = 'Y'...)
\;;5 test := TRUE;
s WHILE test DO BEGIN
D) WRITE('What is the device number? (Integer Value Only!)...");
R READLN(device);
:’: IF device < 1000 THEN test := FALSE
.'»}:":', ELSE WRITELN('Integer too large. Try again.")
) END;
o » The operator is asked to supply the device number. Some error checking
\ is performed.
Hox test := TRUE;
® WHILE test DO BEGIN
3—: WRITE('What is the series number? (Integer Value Only!)...");
i READLN(series);

oy
Tl s

e
x
?f“

IF series < 1000 THEN test := FALSE
ELSE WRITELN('Integer too large. Try again.")

‘,. l"

0 0 . O "
WA ’A" Bk ". ‘.’ + 'a‘ .‘ 9.‘ |" d ’Gﬁ"d“; d!‘a\.‘t,.‘ﬁ‘.ﬂ l‘»‘!’-'k"’i.;.b"‘!’ ) “u‘ '0 ‘A’,‘g',’g’ AN ';’,“‘,‘;l,‘ﬁ, V! g? o, ' o '.0,‘6‘!’ Q\ ‘(‘ ..i ‘.l ';5



Soo ok A is e b B AN BUE Aie stn he ade dI L BE. 4do Y op. '--mmw

235
END;
» The operator is asked to supply the series number of the particular test
run to be processed. Some error checking is performed.
SEEK(index,device);
READ(index,indexrec),
WITH indexrec DO

stor := store;
» The appropriate record is obtained and the storage filename is place in the
string variable, "stor."
CLOSE(index);
DELETE(stor,1,1);
INSERT('A',stor,1);
» The drive designation is changed from G: to A:.

4 DELETE(stor,11,3);
309 INSERT(000',stor,11);
oy IF series < 10 THEN BEGIN
| o STR(series:1,one);
. X INSERT(one,stor,13)
, 3::, END;
: 5, IF ((series > 9) AND (series < 100)) THEN BEGIN
29 STR(series:2,two);
2 INSERT(two,stor, 12)
b END;
&3 IF ((series > 99) AND (series < 1000)) THEN BEGIN
N STR(series:3,thr);
hd INSERT(thr,stor,11)
: END
- * The new series number is inserted into "stor."
" END; {Procedure listdevice)
e
: .:‘ {**********************************************************************}
"l
g PROCEDURE Calculate (stor : STR13; VAR energy : ene);
2




-

b * .

==
-—l
<
>

s

2

v
-

I

Nz

ST

- -

"_:. A

%

X0 o T
o 22 O PR

Il

’ T T
et DA * ah,

-----

-

T L T e S R I T T e T T S T N NN M E M AR T U N N N E T A RVE YW S WWUSNUNENY WY WU WY W 'vT

236

* This is exactly the same procedure as that used in PROCESS2. See that
program for more information.

VAR
R,],Vmax.VstartPos,PstopPos : INTEGER;
going : STRING[14];
VIP : datarray;
incoming : CHAR;
Pmax,Pstop,eMax, Vstart,VscP,VL,VV,HscA,HscB,probe A ,probeB,fBias,rBias,
intmedl,intmed2 : REAL;
store : TEXT[25];

BEGIN
eMax :=0;
FOR R :=1TO 2047 DO energy[R] := 0,
going := stor;
INSERT('A’,going,10);
ASSIGN(store,going);
RESET(store);
READLN(store);
READLN(store,fBias,rBias);
READLN(store,VV, HscA,probeA);
FOR R :=1TO 2048 DO BEGIN
READ(store,incoming);
I := ORD(incoming);
VIP[1,R] :=1-127
END;
CLOSE(store);
going := stor;
INSERT('B',going,10);
ASSIGN(store,going);
RESET(store);
READLN(store,fBias,rBias);
READLN(store,VI,HscB,probeB);

---------

T N TR R A A T D OO N ORI TMNM P RN
X .0"..0".0"‘- l.q'l.o.o e l.‘.."l‘_!'l.u 4 ’*l !‘l‘. R l‘!‘b k L) !'A‘S a3aSal !’- il !h !”'!‘!’!"‘?'?‘?ﬁ.."e“'.."i?‘,“. ,0.‘.5&.0; ?’f‘.‘ie‘!it‘




237

IF HscA < HscB THEN BEGIN
WRITELN('Horizontal scale factors not equal. Program Halted.");
HALT

END;

FOR R :=1 TC 2048 DO BEGIN
READ(store,incoming);

I := ORD(incoming);
VIP[2,R] :=1- 127

END;

CLOSEC(store);

VscP := probeA*probeB*VV*V1/1024;

FORR :=1TO 2048 DO
VIP[3,R] := VIP[1,R]*VIP[2,R];

Vmax :=-128;

FORR :=1TO 2048 DO
IF Vmax < VIP[1,R] THEN Vmax := VIP[1,R];

Vstart := 0.05*Vmax;

VstartPos := 1;

WHILE Vstart > VIP[1,VstartPos] DO
VstartPos := VstartPos + 1;
Pmax := -100000.00;
FORR :=1TO 2048 DO
) ; IF Pmax < VIP[3,R] THEN Pmax := VIP[3,R];
:? Pstop := 0.03*Pmax;
:C:‘;: PstopPos := 1;
WHILE Pmax <> VIP[3,PstopPos] DO
_;: PstopPos := PstopPos + 1;
) WHILE Pstop < VIP[3,PstopPos] DO
:: PstopPos := PstopPos + 1;
J PstopPos := PstopPos + 1;
o FOR R := 1 TO 2047 DO
:;'.;: energy[R] := 0;
o FOR R := VstartPos TO PstopPos DO BEGIN
;\ IF (VIP[3,R]+VIP[3,(R+1)]) < (ABS(VIP[3,R])+ABS(VIP[3,(R+1)])) THEN BEGIN
s
L
R’
.
ot
3;:;:: ]

Vg OIA"! - . . . .
M,- OO YO IO LS AT Bk Mp{ Mk 1 ) )
. it ‘ft‘-, !h’lh'l,l"!l’e’ﬁ‘a‘,“q ;t'-’i'o?":!l‘nf 0':! et l’a"’h‘ fv?l'ct\'vfl’e'.l'ael'*e0’:!!':’6'..":’!’5, ':!‘

¢, A MR N EHIILNT 00 8,070 U Vg 0% ViV LT
'0"':&.0'!.“’&6...':‘Q‘,‘0!"'0,'“1!0‘;’0'.21’_0‘,0_‘ {l..:'_’;:ﬁ!q, Ft’.‘;:"._l?q:i?p{‘!;,“_p‘.‘




DWW TR T

Ei ?

. .
oS

! 238

o IF VIP(3,R] > VIP(3,(R+1)] THEN BEGIN |
( intmed]1 := VscP*VIP[3,R]; i

2 intmed2 := VscP*VIP[3,R+1)}; |

o eMax := eMax + (0.5*SQR(intmed1)*HscA/(ABS (intmed1)+ABS(intmed2)))

o - 0.5*SQR(intmed2)*HscA/(ABS(intmed1)+ABS (intmed2))

X END;

“ IF VIP[3,R] < VIP[3,(R+1)] THEN BEGIN

0 intmed1 := VscP*VIP[3,R};

s intmed? := VscP*VIP[3,(R+1)];

] eMax := eMax + (0.5*SQR (intmed1)*HscA/(ABS (intmed1)+ABS(intmed2)))
-:E':' +0.5*SQR(intmed2)*HscA/(ABS(intmed1)+ABS (intmed2))

- END
e END
£ ELSE BEGIN

.- IF ABS(VIP[3,R]) > ABS(VIP[3,(R+1)]) THEN

o eMax := eMax + VscP*(VIP[3,(R+1)]*HscA + 0.5%¥HscA*(VIP[3,R]

-VIP[3,R+D)]);

- IF ABS(VIP[3,R]) = ABS(VIP[3,(R+1)]) THEN

__‘::: eMax := eMax +VscP*VIP{3,R]*HscA;

v IF ABS(VIP[3,R]) < ABS(VIP[3,(R+1)]) THEN

o eMax := eMax + VscP*(VIP[3,R]*HscA + 0.5*HscA*(VIP[3,(R+1)]-VIP[3,R]))
;‘) END;

S0 energy[R] := eMax
a4 END;
i"'. going := stor;
& going[1] :="'A"

9 INSERT(P',going,10);

:'i_s ASSIGN(store,going);

A REWRITE(store);

bl WRITELN(store,fBias,rBias);
i::'_: WRITELN(store,eMax,HscA,VscP);

o FORR := 1 TO 2048 DO

o WRITE(store, VIP(3,R]," *);

. CLOSE(store)

)
OO0, » » (- LU NS [N I . T » . Y . . .
B e e Y B e A S R R R e R R e



A

/

’

[A ®
;.'J '

239

»
P e e Y

END;

{**********************************************************************}

PROCEDURE WriteToEnergy(stor : STR13; energy : ene);
» This is exactly the same procedure as that used in PROCESS2. See that
program for more information.

VAR

going : STRING[14];
store : TEXT;

R : INTEGLCE;
fullstr : STRING[25];
outstr7 : STRING[7];
outstr5 : STRING[S];
outstr : STRING[12];

BEGIN
stor[1] :="'A’;
going := stor;
INSERT(E',going,10);
ASSIGN(store,going);
REWRITE(store);
FORR :=1TO0O 2047 DO
IF energy[R] = 0 THEN WRITELN(store,'0")

ELSE BEGIN
o STR(energy[R], fullstr);
I » outstr7 := COPY (fullstr,2,7);
o outstr5 := COPY(fullstr, 19,5);
o, outstr := CONCAT/(outstr7,outstrS);
. WRITELN(store,outstr)
?_Z END;
: CLOSE(store)

END;




240

{******************************************************#*********#***** }

BEGIN {MAIN PROGRAM]
listdevice(storage);
Calculate(storage,EnergyPass);
WriteToEnergy(storage,EnergyPass)

END.

- -

s,
[) $%,%
1::::"“'.1 Y
e :’0‘ nOCTIRON 0

AN KA RN .’o 0."’;“"‘"‘;’!‘;‘." BRI .'A"U.‘ Oa‘ Mttt " X) “v " l.‘ XK H‘Q."c toatlo |“'¢.» e ‘.."0":{2 A 5 ‘t'.\

Py )

(N
l‘; |'.




TR TS R S — e W T u-“m““"mwmmm
R R W WO WU WO T P N X TR TN o

PERMISSION TO COPY

In presenting this thesis in partial fulfillment of the
requirements for a master's degree at Texas Tech University, I agree
that the Library and my major department shall make it freely avail-
able for research purposes. Permission to copy this thesis for
scholarliy purposes may be granted by the Director of the Library or
my major professor. It is understood that any copying or publication
of this thesis for financial gain shall not be allowed without my
further written permission and that any user may be liable for copy-

right infringement.

Disagree (Permission not granted) Agree (Permission granted)

ent's signature

4 oazenlos. 1987

Date Date

Student's signature




