
Ill-jILE Cop),

OPLAN

CONSULTANT SYSTEM

Deliverable No.: B002

JUL 0618

Prepared by:

479 JAYCOR

Prepared for:
Naval Research Laboratory

* Washington, DC 20375-5000

In Response to:

-RD= N TAMENWT A Contract #N0014-86-C-2352
Approved for public re'letao$

*DistributionUaiiatd m'

12 May 1988

INTRODUCTION

) CKLOG (Calculus forKnowledge in LOGic) is a system, f y C.V. Srinivasan- It is
'used for knowledge representation and p*bleri -lVfig in OPLAN-CONSULTANT, an
expert system for Naval Operational Planning.The User Interface for the CKLOG System

. was createdlby Karr Weiss.-The CKLOG System and The User Interface are both written
in Common Lisp and run on the Symbolics Lisp Machine.

This document is divided into two parts: The CKLOG System and The User Interface. The
CKLOG System section explains three major concepts in CKLOG - contexts, event
numbers, and classes. With each concept description is an explanation as well as the data
structure used in the code to represent the concept. The classes portion is further
subdivided into parts explaining the notions of dimensions, instances, and relations.

The User Interface section is a manual on how to use the Lattice screen display and mouse
commands to work with the data representations of CKLOG's major concepts. The first
part describes the screen layout, explaining the purpose of the various panes in the
window. The second and third parts describe how to manipulate context information and

* event number information, respectively. The fourth part describes how to manipulate class
information. This portion is further subdivided into five parts. The first three parts explain
the effects of clicking on each of the three mouse buttons. The fourth part explains how to
use dimension defining facility. The fifth part explains how to use the class finding,facility. " /"'"J" '-r '" <

Accesic, , Cr

NTiS CPA&I

DTIC -148 D

' ' Di~~Jst I S'' e

-~~

0

DTICCOPY
-PECTED

N 1

% .k00

2

THE CKLOG SYSTEM

Contexts

All knowledge in the CKLOG system is defined in a context. A context describes the
environment in which the knowledge is represented. The data structure that contains this
environmental information is defined in the code as CNTXTN. The fields of the data
structure and their initial values are as follows:

(p NIL) ;parent context
(Is NIL) ;left son context
(rs NIL) ;right son context
(seq NIL) ;sequent, or name of context
(subs NIL) ;substitutions used in problem solving
(offsp NIL) ;offspring used in problem solving
(tr NIL) ;true residues in context
(?r NIL) ;unknown residues in context
(fr NIL) ;false residues in context

- (enums NIL) ;event numbers defined in context
(open T) ;flag telling whether or not goal is still open
(vars (LIST EN--HEIGHT!)) ;variables defined in context
(constants (LIST EN--HEIGHT!)) ;constants defined in context
(classes (LIST EN--HEIGHT!)) ;classes defined in context
(undone* (LIST NIL)) ;field currently undefined
(updates* (LIST NIL)) ;list of updates
(history* (LIST NIL)) ;list of commands
(future* (LIST NIL)) ,list of undone commands
(+times (LIST NIL)) ;plus time expressions in context
(etimes (LIST NIL)) ;absolute times defined in context
(-times (LIST NIL)) ;minus time expressions in context
(pad (MAKE-HASH-TABLE :TEST #EQUAL :SIZE 128)) ;scratch pad hash table
(ws (MAKE-HASH-TABLE :TEST #'EQUAL :SIZE 512))) ;world state hash table

There can be multiple contexts at once. With multiple contexts, CKLOG can search
different worlds to try to solve a problem. These contexts can be created for new searches.
CKLOG can test out a solution to a problem by creating offspring worlds, and then trace

0back to the original environment without disturbing the cunent state of affairs.

The Context Lattice represents the relationship between these environments. They are
linked together as a binary tree. The parent field of a context indicates which context is the
root of a given context, and the left-son and right-son fields point to the context's
descendants.

F F 1

a l10 :1 l

Event Numbers

All knowledge in the CKLOG system is defined with an event number associated with it.
This event number can have an absolute time or can be relative to another event. The data
structure that contains this temporal information is defined in the code as ENUM-DESN.
The fields of the data structure are as follows:

(en NIL) ;name of event number (enum)
(before NIL) ;event numbers before enum
(after NIL) ;event numbers after enum
(same NIL) ;event numbers at the same time as enum
(jbefore NIL) ;event number just before enum
0;after NIL) ;event number just after enum
(context CONTEXT!) ;context in which enum is defined
(events NIL) ;events associated with enum
(time NIL) ;absolute time associated with enum
(retime NIL) ;relative time associated with enum
(condns NIL)) ;conditions associated with enum

Absolute event times specify the year, month, day, hour, minute, and second of an event.
This can be used as a time stamp for an event taking place at a certain date, or as a time
value to be added or subtracted from an event date. An example of this would be in
describing an event due to occur two weeks after another event.

Relative event times are represented by time expressions. These can describe simple
ordering relationships, such as (after EnO), (before EnI), (justafter En2), and
(justbefore En3). When a time expression specifies an after relationship, as in (after
En0), it means that there exists a point in time, t, such that t is after EnO. Other events
may occur between these two points. Before relationships are similar. When a time
expression specifies a justafter relationship, as in (justafter En2), it means that there
exists a point in time, t, such that t is justafter En2. No other events may occur between
these two points. If t is justafter En2, then En2 is justbefore t.

Time expressions can also describe an interval, such as (between EnO Eni) and
(during En2 En3). The expression (between EnO Enl) means that there exist three
points in time, EnO, En1, and t, such that t is after EnO and before Enl. Other events may
occur between EnO and Enl. The expression (during En2 En3) specifies all points
starting at En2 and up to but not including En3.

Time expressions can describe an equation involving two event numbers, such as (plus
EnO EnI) and (minus En3 En2). The event numbers can be absolute or relative. If
both are absolute, then CKLOG solves the equation and create a new event number
occurring at the solution time. If one or neither is absolute, then the equation isn't solvable
until more information is acquired, and the associated event is stored in the time lattice
according to what information is known. This information includes the fact that all event
numbers are after EnO, the beginning of time for CKLOG, and before En10000000,
CKLOG's infinity. In the time expression (plus EnO Enl), the associated event number
is located in the lattice after both EnO and Enl. In the time expression (minus En3 En2),
all that is known is that the associated event number is located in the lattice before En3."I

6

F 4

Classes

As previously stated, a context is the world in which information exists. An event number
is the time at which a piece of information was entered into the world. A class is the type
of object which the information describes. The data structure that contains this object
information is defined in the code as CLPROPS. The fields of the data structure are as
follows:

(gens (LIST EN--HEIGHT!)) ;generalizations of the class
(spes (LIST EN--HEIGHT!)) ;specializations of the class
(ins (LIST NIL)) ;instances of the class
(subcl (LIST NIL)) ;enum associated w/creation of a subclass of the class
(enum (LIST ENUM!)) ;event number associated with creation of the class
(cl NIL)) ;name of the class

Classes are defined hierarchically, from the most general to the most specific. An example
of this is the general notion of a physical object, then a more particular notion of a region,
then more specifically a water region, which can be further refined to a lake, and finally
reduced to a cubic volume. These refinements are called specializations of the general
concept, which in turn is called a generalization of the smaller concepts. A class can be
both a specialization and a generalization, such as water-region - a specialization of

* region and a generalization of lake. A class can have more than one specialization -

water-region and air-region can also be specializations of region. A class can have
* more than one generalization - both water-region and air-region can be generalizations

of cubic-volume.

When a class is a specialization of another class, such as region is a specialization of
physical-object, and when that class has a specialization of its own, such as water-
region is a specialization of region, then water-region is a also specialization of
physical-object. Likewise, both region and physical-object are generalizations of
water-region.

Dimensions

Once the types objects in the world are described, information can be created about the
different kinds of objects. For example, a region has a location. In CKLOG, this would
be stated as (has-location region location). The converse of this can also be declared
as (location-of location region). These two statements are called dimensions. A
dimension can be thought of as a basic sentence with a subject, verb, and object. A

* •dimension belongs to the subject class, so in the above example, (has-location region
location) is a dimension of the class region, and (location-of location region) is a
dimension of the class location.

A dimension also has an upper bound and a lower bound associated with it. The upper
'v bound of the dimension (has-location region location) is 1, since a region can have

* •only one location. The lower bound is also 1, since a region must have a location. For the
converse dimension, (location-of location region), the upper bound is unlimited,
since a location may be associated with many kinds of objects defined in the world. The

*. lower bound is 0, since a location may be undefined for all the objects in the world.

When a dimension is defined for a class, all the specialization of that class inherit the
dimension. Using the same example as above,.water-region inherits the (has-location
region location) dimension.

A dimension can also haveflags which provide further information about the way the
subject and object relate to each other when they are of the same class. The flags are
symmetric, reflexive, irreflexive, and transitive. A dimension with a symmetric flag has
the quality that the subject and object can be interchanged. An example of this is
(adjacent-to region region), since regions are adjacent to each other. When a
dimension is symmetric, the converse dimension is the same as the original.

In a dimension with a reflexive flag, the subject and object can denote the same entity. An
example of this is (supports force force), since in a military situation a force would
certainly support itself. In a dimension with an irreflexive flag, the subject and object
cannot denote the same entity. An example of this is (is-within region region), since a
region cannot be vAthin itself.

A transitive flag follows the rule that if A = B, and B = C, then A = C. This is best shown
by example: (is-within region region). If regionA is within regionB, and regionB
is within regionC, then regionA is within regionC.

Instances

An instance of a class is the attaching of an actual object to its type. An example of this is
the instantiation of water-region with Pacific-Ocean. Pacific-Ocean is also an
instance of the class region, since region inherits whatever properties are associated with
water-region. To clarify the situation, Pacific-Ocean is called an immediate instance
of water-region. There may be many instantiations of a single class, such as the further
instantiation of water-region with San-Francisco-Bay.

Relations

Just as an instance is a fleshing out of a class skeleton, a relation is a fleshing out of a
dimension structure. A relation takes a dimension and plugs instances into the class slots.
Naturally, the instances must be of the appropriate class. The instantiation of a dimension
into a relation can be seen in the following: (is-within Pacific-Ocean San-
Francisco-Bay).

S
11K'p1 11 1 1 1 11 1 1 11 1%

0 IIIIII 1 1 1 11111, 1

1 6

THE USER INTERFACE

Screen Layout

The interface for the CKLOG system is brought to the screen by typing the keys
SELECT-A. The screen is entitled LATTICE, since its primary function is to display the
three types of lattices of information in the CKLOG system: Context, Time, and Class.
The main portion of the screen is occupied by the display area. (Figure 1)

File Info

On the left side of the screen are various information panes. The top pane is labeled File
info. It displays prompts for two file pathnames: a loading file and a saving file. After the
prompts appear default pathnames for the files. If the user wants to load a pre-written file
of commands with which to build a domain, he moves the mouse over the default file name
and clicks. If the left mouse button is clicked, the whole default pathname is erased and the
prompt awaits a full pathname. If the middle mouse button is clicked, the default pathname
becomes editable, and the user can change it using standard EMACS commands. These
two options are documented on the black bar at the very bottom of the screen. When the

4.. user moves the mouse over almost any item on the screen, documentation appears in this
area.

After specifying the file pathname, the user must type the END key to signal the end of
input. At this point, the user must click the mouse on the next line of text which says Click
here to load in order for anything to happen. If this is not done, no file is loaded even
though its pathname has been specified. The user can load the file at any point in the
interaction with the CKLOG system.

The other file option is to save domain-building information to a specified file. This means
that any commands which build the user's world that are defined during the interaction can
be saved to a given file. This file may then be loaded during another session, and the user
can resume interaction with an identical world. Specifying the file pathname is the same as
with the loaded file. The END key must be typed to signal the end of input. The user
must then click the mouse over the words Saving ON in order to start recording commands
to the specified file. When this is done, these words turn to bold and the words Saving
OFF are no longer in bold. The default is to have no saving to a file. At any point in the
interaction, the user can turn saving on or off. This is useful when testing out temporary
commands.

Definitions

This pane, located under the File info pane, has different uses depending on what kind of
lattice is being displayed. It stays blank for the Context Lattice, but is used for both the
Time Lattice and the Class Lattice. Its uses are described later in the sections on the
particular lattices.

Find Class

The next pane under the Definitions pane is used only for the Class Lattice, and is
discussed in the Class Lattice section.

-j L

4cc
UU

InI

0 ao

.' 0L

2C (A-U a

LO L

0 ** Ag

mMessages

The bottom pane on the left side of the screen is used whenever the CKLOG system needs
to print out a message. All commands send messages reporting the results of their
execution. Since this pane is fairly small, messages often have unusual line breaks. The
pane is scrollable, so all messages written to it during a session can be viewed at any time
by moving the mouse over the gray bar on the left side and clicking the appropriate button.
When the mouse is located any place along the scroll bar, the black documentation bar at
the bottom of the screen instructs the user on how to click.

Command Menu

The user has the choice of viewing three different lattices: the Context Lattice, the Time
Lattice, and the Class Lattice. Selection of a lattice is done by moving the mouse to the
appropriate command in the menu line at the bottom of the screen, and then clicking on the
command with the left mouse button.

Also included in this list is the Undo command. When clicked on, a menu pops up at the
location of the mouse offering three choices: Undo last command, Redo last Undo, and
Undo current context. (Figure 2) Undo last command removes any effects of the last
command that the user evoked. If saving is on, it does not remove the last command from
the file. This must be done manually. Redo last Undo reinstates the removed information.
It also does not affect the saving file. Undo current context removes all information that
has been defined in the current context. As with the other Undo commands, there is no
effect on the saving file.

, 5.%

.5,

CC

UU

0 CD

u')

'U L

0

.4.
Film

I i l 1 1 1 1 0 , 1

I' I I I,.Ii -

Context Lattice

When the user clicks on the Context Lattice command, the contexts names are drawn on
the display pane with lines showing their relationships to each other. The current context's
name is shown in bold. (Figure 3) Placing the mouse over a context name causes
appropriate documentation to appear at the bottom of the screen. Clicking on the left mouse
button causes the moused context to become the current context, if it isn't already. The
display of its name changes to bold.

Clicking on the middle mouse button causes a window to pop up at the top of the screen,
displaying all the values of the fields of the moused context. (Figure 4) To remove this
window, the user must click anywhere outside of it.

Clicking on the right mouse button makes a new context after the moused context. The
moused context is first changed to the current context if it isn't already, and then a new
context is created after it. The display is redrawn to reflect this change. Since the context
lattice is a binary tree, only two contexts can be created after a given context, occupying the
fields of left-son and right-son. If the user attempts to add a third descendant context, an
error message is printed on the message pane.

Time Lattice

When the user clicks on the Time Lattice command, the names of all defined event
numbers are drawn on the display pane with lines showing their relationships to each other.
(Figure 5) A single line represents a before-after connection, while a double line
represents ajustbefore-justafter connection. Placing the mouse over an event number
causes appropriate documentation to appear at the bottom of the screen. The only action
that can be taken with the mouse is to click on the middle button. This causes a window to
pop up at the top of the screen, displaying all the values of the fields of the moused event
number. (Figure 6) To remove this window, the user must click anywhere outside of it.

When the Time Lattice is displayed, the Definitions pane offers a prompt to enter an
expression. Upon clicking on the prompt, the user can type a time expression enclosed in
parentheses, and then click on the words Define or Abort. (Figure 7) Define
incorporates the new event number into the Time Lattice and redraws the display to reflect
this change. Abort wipes out the user's entry, causing no change to be made to the lattice.

V

t~p'I

o.

o

J-

r 7 '/"~* ' "-7-""fl"'"'X""~fr't#""rrAV /""M/7/," ""/'4~'4'""4~'47/1#4 l

'VA

I U)

0 r o-
r. . r,

4, 0 00'0 0 a-0
(1 SI- c .

a V , .I
.0C) .. u C

'VV
SI?

N. C V. 0 'u o 31

0 w 0 CV-.

4,'VC . l..

EO C

I.ai
Em

$L

01

......
..

............

CD

co U
W LL

-j - W ;!!! :!.. ..

C
WAI

V)) V 4, C £
LD 64 MS aM . , J40LC

a- L.1 60 V) ~0 3 V 0 U U il CgI.

CS

[C

CS N C__ __

CD

CD w C

C.c

Cc

Q a-o c4 a
Q Cs- . U C) c

L r =-D 4

aL do c w
vi v a OW o RD o

a Lo w - - s - Co c U: L~a N N c v
00U 3 C C W L)

CL C
..

o-.w w a e So a m~

um U E.!E *a c 0 40 U

16i'lial

SL

......... ...

...
.._._.. .

..

-c -

.. ..x. . .

4 A- 1. L -

c~~~~ r1 u-Ift
..u~ . ..

L~ L Q C

c o v- !- c v wN 4) 2 Q o

* J3 Q .

C

ww

C-

ww

.U2

c 0 C

-L -CO 41 COD,

a, x1 .02 Lo (A W2 CD

1,- 11 C 1 0 co !
0d I -. 01 41 0 .. 0 c w

'~W v 1
c~.4 c* f-U c

c4. cJ1 2 W LIoI 0=
100 E L 0I

0 oa 0 .

9

Class Lattice

When the user clicks on the Class Lattice command, nodes representing the defined classes
are drawn on the display pane with lines showing their relationships to each other.
(Figure 8) For purposes of clarity, class names are assigned to node numbers, such as
N1, N2, etc. A legend relating the node numbers to the class names is drawn on the right
side of the screen. Classes are drawn in a top-down hierarchy, with the most general
classes at the top while increasingly specialized classes are drawn below. Since the Class
Lattice can get very long, only two levels of classes are shown at a time. Nodes within the
same level are staggered to facilitate visibility.

Clicking Left

Placing the mouse over a node name causes appropriate documentation to appear at the
bottom of the screen. Clicking on the left mouse button redraws the Class Lattice with the
moused node as the root of the tree, allowing two levels beneath it to be drawn. (Figure
9) When a new node becomes the root, the previous root's name is displayed at the top of
the legend in bold. Clicking on this name returns the display to its previous configuration.
Selecting successive new roots and returning to old ones is one way to browse through the
Class Lattice. The other way is by using the Find Class command, about which more later.

* Clicking Middle

Clicking on the middle mouse button causes a menu to pop up at the location of the mouse
offering four choices: Show dimensions, Show inherited dimensions, Show immediate
instances, and Show adopted instances. (Figure 10) Show dimensions causes a
window to pop up at the top of the screen, listing all the dimensions defined for the class
associated with the moused node. Show inherited dimensions lists all the dimensions for a
class as well as all the dimensions which it has inherited from its generalizations, separating
the two with a horizontal line. (Figure 11) If there are no dimensions, then a message
will indicate this in the message pane.

Show immediate instances pops up a menu at the location of the mouse, listing all the
instances defined for the class associated with the moused node. Clicking the mouse on
one of these instances causes a window to pop up at the top of the screen, listing all the
relations defined for this particular instance. Show adopted instances pops up a menu
listing all the instances of a class as well as all the instances of its specializations, separating
the two with a horizontal line. (Figure 12) Clicking the mouse on one of these instances
also lists the relations defined for it. (Figure 13) If there are no instances or no relations,
then a message will indicate this in the message pane.

Clicking Right

Clicking on the right mouse button pops up a menu at the location of the mouse offering
two choices: Set specializations and Create instances. (Figure 14) Set specializations

• creates new specializations of the class associated with the moused node. A prompting
window pops up asking the user for a list of specializations of the given class, a list of
additional generalizations besides the given class (the default is no additional classes), and
an event numiber to associate with this new piece of information being entered into the
world (the default is the current event number). (Figure 15) Once this entry is
completed, the class lattice is redrawn to reflect the addition to the hierarchy.

Create instances behaves in a similar manner. A prompting window pops up asking the
user for a list of instances of the given class, and an event number to associate with this

. ..0

01

I'.n

'SC.

S.C

7._fr 9 #~~:.A~Tfr~7r ~L

'ILI

rrr 0 0,
0 0 (CVr"LCoI

rz 0oowIS

uj -r nuaA

I~~~~~ I I' i u l I

OK 0 0 a a In
0 - -

- :- L r :1 W

0 W- I U 0
a-am u a -

M -0 c. a a - -
CY 0.~ a. 0 C cC . S S

0 A 0
I 1 -;. uS

a u
- -

r.

r

u

0 1,111 ~a a. a o . n a.
k~~ ~~~ -1111l -ali~l

*12.

Z. Om- Wm

N N
-U -- -C -

Lfl L) 1 1C0

I ~ ULJ 0 1 ~ UJ N

NC'L

r

r

1 r

0-I

IJ. .,

-1 CI 1 N

0 >LUUc c

:D co4 r Y C

LA L. L UL)

M DL. N 0 0 a c0c
Ca~CL M owi U

-u 0 a ca Vxc c-
4II -. -u C UL0 C' V a c

.................. a .. - . r.

0 I

U) II w II I II I -N 0q 0f- 0 44C
Urrrrr~rr ~ W CLr~

- 0% --

oc

r

0')

C,.)

NE

w
* U)

w

CL 0 0

C.)

00U

0 mL

U) V c

L0

.......... . .

..-

..

-.
.. . . .

- - ., .

CD U. <
w w~------------ -------........

oo~~jr,~ jozoc~c~I C

_j x 2 0

ww ~ ~ (.- wW c~c i

wm..........

I~~~. .~CC U, , O

02

0')u'2 Q

0-O

0 w

Fil IF OD It MF 011 2 F1 11,1 E!2

= Ft FF1 l IFII OF W

cmOC'N

N _ _ 6_ r
2 2 M

m ma 0M -Q rm m In

Vm
'i-Z M

co m

vi 0
00

113

0C

0c

V) WF II, I IC ul F Iq l

-

.

L.J

.

.. ...x.

.. .

........

.

~L

v L.

......

C

*V D

CD CY

(00

ra

r

01O

* 0 0 ~
LUJ -- .2 ;z u

r - - t - .-
o! 0 cu 4 UC ,- m

co. am co - 'U cm m I I

1 . 00 0 m co a,

0 *.u 0 0u Z 4 0 C
> - -) 4 - LU .

JK zd 2; Ci. -- Cmc- m m
U in ~ in . U 'WO A

00

00

'V.c

5,c

.5..L

0 M.x

0 5 D0a4 .
.1 0 -V-C VZC9

0 W w- uw E2,!

o - EU <

u 0
N

4- 0

AK 11 A 1 -

10

new piece of information (the default is the current event number). (Figure 16) Once this
entry has been completed, the new instances can be viewed by clicking on the middle
mouse button and selecting either of the Show instances commands.

Defining Dimensions

When the Class Lattice is displayed, the Definitions pane provides a map of the relationship
between the different components of a dimension. It shows how the subject, given the
relation, implies the object, and how the object, given the converse relation, implies the
subject. This map is used to create dimensions.

When the user clicks on either the word SUBJECT or OBJECT, the clicked word turns to
bold and the nodes on the lattice go intc. n argument selection mode. This means that
when a node is clicked on, none of the ordinary mouse clicking behavior occurs. Instead,
the class represented by that node becomes either the subject or the object of the dimension
which is being defined, depending on which the user selected. After the node has been
clicked on, the class name of the moused node is displayed in the appropriate position on
the map, and the mouse clicking mode returns to normal.

When the user clicks on either the word RELATION or CONVERSE, a prompting
window pops up asking for the name of the relation, a list of the upper and lower bounds,

* •and a list of flags, if any. (Figure 17) Since the relation is a symbol, not a list, it is
C- necessary to type the END key in order to mark the end of input. When defining bounds,

NIL is used to mean many or non-countable. Once this entry is completed, the dimension
is defined and the Definitions pane is cleared.

Finding a

When the Class Lattice is displayed, the Find Class pane is activated. This function
provides a fast display of a given class, bypassing the two-level browsing technique. The
user enters the name of a class, types the END key, and clicks on the words Click here to
find. The lattice is drawn in its entirety until it gets to the node of the given class, which is
drawn in bold. (Figure 18)

.o

Sr 0

0 WC5 z 0: w

cc - cr o w o u -r. -r w

U

r 0

.- -

u
c

rr

0 U

UU

C,

w

0n0

0

mWWSn n rn r r r 0r,

mIT.

~~Lo
Q

j3 o. . .

3

..

Q~ 0

L..
L
C c9.w 3

..............

.

G- KI
.0

'9-Ma

"'9-

..-- ---- --

ww
(0(nL

M

=MW

r

-l N

C,,%

co w

N N
* rm

rI
N,

ID
N

-D C -

w 00 00

E Ca
ClCa

- 0 of -i 0

04 0) W
4

C
,U

0.0 0~ > , w. .0 a a co
0 , 0a. w J) - j .

C U) 00 -

L CLI L W cc

Cy L. 04 0 a U. lL W c ic
(a U- Ci 0 El CoE U, 0w ~ 11IV .e 0 , c - -)W ElW W) I EL

X c x.3 of 0E tacom .
'4 E) El.4 U fl0 .fl ~ -g- ~ -jU,- V) - ~ U

CONCLUSION

The user interface for the CKLOG system enables the user to access and manipulate data
representing information in an environment. The environment, or context, can be
displayed in relation to other environments that relate to it. New contexts can be created,
and the pointer to the context describing the current world state can be moved along the
context tree.

The user can also view and manipulate event number information. The event numbers can
be displayed showing their relationships to each other, and new event numbers can be
entered into the world.

The user can access and perform a variety of operations on class information. All
information about a class can be displayed via a series of menu selections. Classes can be
added to the hierarchy, dimensions can be set up relating one class to another, and
instances of classes can be created. There are two methods for browsing through the Class
Lattice - by changing the root of the lattice, or by using the Find Class facility.

* Finally, all commands that the user enters can be undone or saved to a file. A file of
gdomain-building commands can be loaded into the system to restore all the information in a

domain. Messages are printed on the screen to notify the user of the results of a command.

. ".

'p

