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Parallel Algorithms for Gr6bner-Basis

Reduction

Carl Ponder
Computer Science Division

Electrical Engineering and Computer Sciences
University of California, Berkeley

Berkeley, CA. 94720

September 25, 1987

Abstract

We present a variety of ways to parallelize Gr6bner-basis reduction,
ranging from incorrect to ineffectual. We-demonstra" the superiority of
the method used by Zacharias [-1,which is not readily piarallelizable. W1
discuss the efficiency issues of generating reduced Grabner-bases. 4 - , ,t

Categories and Subject Descriptors: G.4 [athematics at Computing]:
Mathematical Software; 1.1.1 [Algebraic Manipulation]: Expressions and
Their Representation; 1.1.2 [Algebraic Manipulation]: Algorithms; J.2
[Computer Applications]: Physical Sciences and Engineering.

General Terms: JAlgorithmsg design.

Additional Key Words and Phrasesk Computer algebra; Gr6bner bases;
parallel computation, polynomial ideals, simplification.

1 Introduction

Gr6bner-basis reduction would be a powerful tool for solving problems in con-
nection with systems of multivariate polynomials [2] [3] [4] if it weren't so
costly. Two important uses are for solving systems of nonlinear equations with

arbitrarily-many variables and arbitrary degree, and for simplification of poly-

nomial expressions subject to polynomial equality side-relations. A number of

important problems can be reduced to Gr6bner-basis computations, although

this is not necessarily an efficient reduction [2]. It can be used in conjunction

with other (more specialized) techniques as part of a general equation solver [5].

Informally, given a field K and set of variables { ... , zn}, and an ordering

relation between the products of the variables, the Gr~bner-basis reduction maps

N"
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each (finite) set of polynomials over the ring K[z, ... ,z,,] to a canonical (finite)
set of polynomials from the ring, which generates the same ideal within the ring.

Buchberger presents a simple algorithm for producing the reduced basis.
As we shall see, the algorithm cost can be quite large. The (at least) doubly-
exponential time complexity 16) holds up in practice. As a result, any opportu-
nity to speed up this potentially highly-useful process is welcome.

We programmed some plausible ways to run the algorithm in parallel, in-

cluding a method suggested by Watt [7). Experiments suggest that an efficient
serial method such as used in the Macsyma package (1] is difficult to beat, in
practice, with any modest amount of parallelism. These disappointing resulub
are explained in this paper.

2 Gr bner-Basis Reduction

Formally, we describe the Gr~bner-basis reduction process as follows: Given a
field K, let R = Kjz, .... x,] be the ring of polynomials in n indeterminates
or variables over K. Often we take K as the rationals. A monomial term has
the form or = kzx' ... z4',k E K. The degree of a monomial is the sum of its
exponents el+...+e,. The degree of a polynomial is the maximum degree over all
its monomials. Let "<" be a total order on the monomial terms that is preserved
under multiplication by a variable. Each polynomial can then be thought of as
a lead term (the dominant monomial) plus the remaining monomials. Two
possible orders < are lezicographic and total degree.

In lexicographic ordering, we order the variables x,... so zx, < xr < ... <
Z, for some permutation 7r. For two monomials a $ 9, we say a < 3 if a is of
lower degree than 3 in the most dominant variable in which the exponents of a

and 3 differ. In total-degree ordering, a < 0 if the (cumulative) degree of c is
less than that of 3; ties are broken lexicographically.

The ordering generalizes to polynomials by internally placing the monomials
terms in decreasing order. A polynomial c is < a polynomial 3 if the leading
term of o is < the leading term of 3. Ties are broken by comparing the next
terms in sequence.

The Gr5bner-basis reduction consists of two steps: generation of S-polynomials,
and reduction to normal form. Given polynomials p and q, the S-polynomial of
p and q is ap - bq where a and b are chosen so that ap and bq have the same
leading monomial, which is the least common multiple of the leading monomials
of p and q. Thus we make the leading terms cancel.

A polynomial p can be reduced (with respect to a basis B) to a polynomial q
if q < p and there is a monomial c and a polynomial r E B such that p- cr = q.
A polynomial p is in normal form if it cannot be reduced with respect to B.

The Gr~bner-basis reduction algorithm begins with an initial basis B, and
proceeds by generating pairwise S-polynomials of the elements of B, entering
them into B, and reducing each element of B with respect to the remaining

2



elements of B. It completes when all the basis elements in B are reduced with
respect to each other and the S-polynomial of each pair in B reduces to zero.

The (Buchberger) algorithm is shown here in figure 1. In section 4 we will
show some* ways of parallelizing this algorithm. Although there may be better
approaches, we have not found substantially better algorithms to achieve the
same result. We discuss the complexity of the Gr~bner-basis reduction problem
in the next section.

Input: A set of polynomials F over R, an ordering <
Output: G, a set of polynomials representing the reduced basis of the

ideal generated by F.

G:=F;

B: = f{(fl, f2) Iflf E G, f, 0f 2 )
While B $ 0 do

let (fl, f2) := a pair in B;

B : B - {(fl, f)};
h SPolynomial(fi,f<,<);
h' :=NormalForm(G,h);
if h' i 0 then

B B U {(g. h')1g E G};
G G U {h');

Figure 1 - Buchberger's algorithm for performing Gr5bner-basis reduction

3 Complexity

Tight upper and lower bounds on the complexity of Gr6bner-basis reduction are
not known. The algorithm in figure 1 may not be the most efficient. Bounds on
the size of the reduced basis are presented in [8] and [6]. Given a basis B, the
cardinality m is the number of polynomials in B. The degree d is the maximum
degree over all the polynomials in B. The alphabet is the set of variables, and
has size n. The dimension s of the ideal is the minimum cardinality of any
generator for it. Let B' be the reduced Gr6bner-basis of B. An upper bound
on the degree of B' [8] is

O(((n + 1)(d + 1) + j)(n+1>2+ )

One worst-case lower bound on the degree of B' [8] is

dn'(d2 + 1)

and another worst-case lower bound on both the degree and cardinality of B'
[6] is

3
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These bomids consider only the size of the basis produced. The size provides a
strict lower bound on the time required to produce the reduced Grabner-basis,

but there is no reason to believe any algorithm can achieve any such efficiency.
In practice, finding the reduced Gr~bner-basis of a small set of polynomials

can take a huge amount of time. For example, in test case #6 we had three
polynomials in five variables, where the maximum total degree of any monomial
is two. Computing the reduced basis took over 6 minutes on a VAX 8600, not
including garbage-collection time.

Predicting how long the reduction will take is rather difficult. Between test
cases #5 and #6, the differerce in computing time was a factor of over foute~r,
caused by the introduction of a single variable:

x 2 + Y2 +Z 2 -

- 2 _ Y + z - 2 - s j
2 2 - 1

(The basis is taken over K(t)[z, y, z] in the first example and K(s, t)[z, y, z] in
the second). The cost of the reduction is highly sensitive to the form of the
initial (input) basis. Two sequences of reductions to the same final basis may
take wildly different amounts of time if they produce two distinct intermediate
bases at any stage.

In most cases the length of time required to reach the final basis will depend
upon the order in which the S-polynomials are generated and reduced (2]. The
ordering of the terms of the polynomial will direct the order in which reductions
are performed. The choice of total degree or (which) lexicographic order will
make a significant difference in the time taken (see section 7). For example, in a
set of polynomials with a dependent variable, taking that variable as dominant
in a lexicographic order will cause it to be eliminated entirely, producing a
simpler basis. This should take longer in any other ordering, since that variable
will only be eliminated as a secondary priority.

Buchberger's algorithm amounts to a search for the reduced basis by testing
at each stage whether new S-polynomials reduce to 0 or not. Each step of
producing and entering a reduced S-polynomial causes the intermediate basis
to converge toward the final basis, although the process is very slow. The
Buchberger algorithm doesn't specify which choice of two polynomials are to be
operated on. We will see later how two algorithms that order the S-polynomial
operations and reductions differently will differ in the number of such operations

44



they perform. Under different test cases each can generate fewer S-polynomials
or require fewer reductions than the other. A fruitful direction may be to
find some good heuristics that can be used to steer the derivation in a more
efficient direction. In some ways it is reminiscent of the Simplex algorithm,
which repeatedly selects a pivot equation and runs until an optimal state is
found. The discovery of efficient alternatives to Simplex coupled with our poor
understanding of the complexity of Gr6bner-basis reduction leaves the nagging
suspicion that there may be methods superior to Buchberger's, at least for
cases of practical interest. Intuition can sometimes be helpful in suggesting
subdivisions of problems which save enormous amounts of computation.

4 Parallel Variations of Buchberger's algorithm

We have seen that the Gr5bner-basis reduction in general has been shown to be
inherently hard. The algorithm stated by Buchberger is quite simple. The struc-
ture of the inner loop suggests that it might be made to run in parallel; further,
regarding the algorithm as a search allows us to suppose much of the work is
divided between unrelated activities, such as generating pairwise S-polynomials
and reducing yarious basis elements against each other. For example, confirm-
ing that a basis is in reduced Gr~bner form can be parallelized quite effectively.
The S-polynomials can all be generated and reduced against the basis elements
simultaneously, while the basis elements are reduced against each other. The
basis is in reduced Gr5bner form if and only if all the S-polynomials reduce to
zero and no basis element is reducible. This leads us to propose these three
ways to parallelize Gr~bner-basis reduction:

(a] Compute the S-polynomials in parallel, and reduce the basis in serial.

[b] Generate the S-polynomials one at a time, and use the result to reduce
each basis element simultaneously.

[c] Divide the process into alternating stages of S-polynomial generation

and reduction, and use parallelism in each stage.

We can add two other unrelated ways of using parallelism:

[d] Repeatedly find the reduced Gr~bner-bases of different subsets of the
basis and merge them, until the basis converges.

(e] Simultaneously reduce the basis under different orderings.

% .



On first examination method [c] appears to be the most promising. In fact,
this was proposed by Watt [7] in his Ph.D. dissertation. Methods [a] and [b)
look quite a bit weaker. We will see the faults of method [c] and discuss [a]
and [b] as alternatives. In section 6 we vill show some empirical results. [e] is
deferred to section 7.

Consider [d]. An important fact about the Buchberger algorithm is that key
polynomials are formed which cause the basis elements to reduce drastically.

For example, once a variable is isolated so it appears only in the head term of
a polynomial it will cause all other instances of the variable to be eliminated.
This elimination property suggests that the basis should be kept as far reduced
as possible so reductions can take effect as soon as possible. Splitting the basis
will deprive some polynomials of the chance to get reduced until a later stage.

It is likely that such a technique would take much longer to converge because of
this. Alternately, the separate bases can be merged and the result fully reduced,
but this converts the algorithm to one more like [a].

G':= 0;
G := F;
while G i G' do

G' :=G; ,

B ={(fl, f2) Ifi, f2 E G, f, 6 f2l

H G;
forall (fl, f2) E B do

h := SPolynomial(f 1 ,f2 );

h' :NormalForm(G,h);
if h' $0 then H :=H u {h'};

forall h E H do

h' := NormalForm(H - {h),h);
if h' $ 0 then G := GU {h'};

return G;

Figure 2 - Watt's parallel algorithm

The method [c] proposed by Watt was expressed as the algorithm shown in
figure 2. Unfortunately it doesn't work. The logic seems fairly straightforward:
simultaneously generate each S-polynomial and reduce it with respect to the
previous basis. Add these new elements to the basis, and fully reduce the

basis by simultaneously reducing each basis element with respect to the other
basis elements until nothing reduces any further. The problem is that reducing
basis elements with respect to each other produces the wrong results. A crude
example is to start with the same element twice:

6
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+ y
The reduced Gr~bner-basis is the set {x+i}. But reducing the two polynomials
with respect to each other causes both to vanish, giving an empty basis. This
is wrong. The essential detail is that each polynomial must be deleted as it is
reduced; Buchberger's algorithm enters the reduced version back into the basis
immediately, to help reduce the remaining elements. Alternatively, the newly
reduced element may be held outside the basis to be added later. Such an
approach resembles suggestion [d], and would probably delay convergence.

Suggestions [a] and [b) are attempts to salvage the ideas from [c]. Tests of
these ideas are presented in section 6. It is essential that they keep the basis
fully reduced after the S-polynomial(s) stage; otherwise convergence is delayed.
It was found that on most of the test cases either space was exhausted or the
computation took too much time if the basis was not kept reduced.

The insistence on keeping the basis fully reduced limits our ability to paral-
lelize. We cannot simultaneously reduce all the elements with respect to each
other. Thus we have some implicit serialization going on; we need to treat each
basis element with respect to a set that is changed by our treatment of the
previous basis element. Let us look at the other methods in detail.

Suggestion [a] computes the S-polynomials in parallel:

G' := 6;
Repeat until G = G'

G' := G;

Simultaneously generate all S-polynomials from basis G,
and reduce the result w.r.t. G; p

Insert each S-polynomial into C;
Fully reduce G;

Return G;

There are two problems with this. First. each new S-polynomial might reduce
the basis enough that the other S-polynomial operations are redundant. This
will again delay the convergence. Second, reducing the basis in serial will add a
serial step to the process, limiting the effect of parallelization. As we shall see,
the performance of this algorithm was generally poor.

Suggestion [b] computes each S-polynomial one at a time, assuming that the
basis is changing significantly each time a S-polynomial is produced and used
to reduce the other basis elements. It is reduced against the basis, and used to
reduce each of the remaining basis elements in parallel. This may produce new
reduced elements, which are then put through the same process:

7
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Repeat until G no longer can change
Choose two polynomials f & g from G;
Take their S-polynomial h;
Reduce h w.r.t. G;
Simultaneously reduce each element of G w.r.t. h;
Insert h into G;
Reduce G w.r.t. itself-

Return G

The problem with this is that in the later stages of the process, most S-polynomials
will reduce to zero, so the parallel step will not be used. In the earlier stages of
the process, most S-polynomials will have degrees too large to be used for reduc-
tion, even after they are reduced. The only time the parallelism pays off is when
the "magic" S-polynomials appear which cause the basis to begin collapsing. As
we will see later on, the performance is again quite unimpressive.

5 Comparison with the Zacharias Implementa-
tion

Gail Zacharias [1] wrote a Macsyma package for performing Gr~bner-basis re-
duction. It employs some interesting tricks which give it better performance
than the serial or parallel versions of the algorithms presented previously. These
"hacks" interfere with parallelism, so cannot be used in the other algorithms.

The basis is not kept in fully reduced form. Newly formed S-polynomials
are fully reduced by the old basis, but the old basis is not immediately reduced
by the result. This is done as part of the later stages. If one element's head is
reducible by the other, the S-polynomial will be the reduction of the first with
respect to the second. Thus full reduction is accomplished over several itera-
tions. The Zacharias algorithm eliminates the step where the new S-polynomial
is used to reduce the basis elements. This is the pivotal step in our second
parallel algorithm, which turns out to be a liability.

When the S-polynomial nperation reduces one of the elements, we do this
destructively so subsequent S-polynomial operations simply pick up Lhe reduced
version. This is incompatible with our algorithm for producing all S-polynomials
in one parallel sweep, since all these destructive operations would interfere with
each other. The basis must be held in a reduced form between S-polynomial
sweeps in our first parallel algorithm. When we do not do so, the process often

does not converge within a reasonable amount of time. In some sense we are

reducing the basis and generating S-polynomials "at different rates". If we

do not do enough reduction, the S-polynomial operations will expand the basis

indefinitely. If we do all the S-polynomial operations in parallel, we slow the rate

8



of reduction since reductions are not performed immediately. We must make up
for this by taking extra effort to reduce the basis between S-polynomial sweeps.

The S-polynomial of two basis elements z and y is not formed if there is
a third basis element z such that the leading term of z is < the LCM of the
leading terms of z&,, and the S-polynomials of z, z and y, z have been formed.
This criterion is is used in Czapor and Geddes [9], along with the restriction
that the S-polynomial of z&y is not formed if the two have no common factor.
The Zacharias package only partially implements the second restriction. Czapor
and Geddes report a fairly consistent factor of two speedup due to these restric-
tions. If anything, these restrictions should reduce the amount of parallelism by
reducing the number of S-polynomials generated at each step.

6 Empirical Results

We show the performance aspects of three algorithms. These are referred to as
Zacharias, Parallel Reduction, and Parallel S-polys, respectively. The first is
the program written by Gail Zacharias, using the techniques described in the
previous section. The second is method [b] which uses each new S-polynomial to
reduce the reraining basis elements in parallel. The third is method (a] which
produces all S-polynomials in simultaneous sweeps. Both the Parallel Reduction
and Parallel S-Poly methods keep the basis fully reduced.

The programs were tested by coding them in Franz Lisp and loading them
into Zacharias' Macsyma package for Grfbner-basis reduction. These were
loaded into Vaxima version 2.11 running under Franz Lisp Opus 42 and Unix
4.3 BSD, on the Vax 8600 -Vangogh" at UC Berkeley. The test cases used are
labeled 1-12, and are shown in the appendix. Strict lexicographic ordering was
used, following alphabetical order

Table I shows the running time of the three algorithms, in seconds. The se-
rial time is shown for all three, which is the total time (minus garbage-collection
time) to reduce each basis. The "parallel" time is computed by timing each it-
eration of the parallelizable loops, and only counting the slowest iteration. The
Zacharias algorithm generally ran much faster than the other two, as much as
36 times fster in case #9. It only ran slower in case #4. Case #12 exhausted
memory space in the parallel algorithms.

The "parallel" algorithms exhibited very little parallelism. The speedups in a

table 1 are generally insignificant. Table 2 shows the maximum and average
parallelism for their executions. The "maximum" parallelism is the number of
iterations performed by the parallel loop in a given activation. In the Parallel
Reduction algorithm a low parallelism meant that there were few polynomials
in the basis with degree higher than the new S-polynomial. In the Parallel S-
Polys algorithm a low parallel;cm .ntant that the basis consisted of few elements
at any given time. The "average" parallelism is the serial time divided by the
parallel time. It tended to be very small.

9
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Table 3 shows the number of S-polynomials generated and reductions per-
~formed by the algorithms, as well as the total number of terms in the result.
~The speed does not correlate well with either the number of S-polynomials or

however, depends on their sizes. The total number of terms in the final basis is

a strong hint of the time taken, although there may be very large intermediate
polynomials which collapse down by the end.

The number of S-polynomial operations gives an idea about the size of the -
• basis. In no case did it get very large. This is a disturbing observation about the .

~problems; the algorithm can take a long time even though the basis is always.
; small and remarkably few S-polynomial operations occur. Since these "sparse""

problems are so expensive in practice, the "bad" cases will probably be even "
worse. As the number of polynomials, their degrees, and the number of variables
increases, it is likely that the number of terms in the intermediate polynomials

. ,p.

will grow much more quickly.,,
There seems to be very little easy paralleiism in the light of our studies. %"

Most of the time is probably spcia scanning the terms of a polynomial to find

7p

monomials that reduce. This operation changes the lower-order monomials. so"
subsequent reductions may be possible. This cannot be done to each monomial

I •'

simultaneously since new monomials get introduced with each reduction. The
process will still be serialized by the introduction of new, possibly reducible,

monomnials with each step. -%
An interesting fact to note is that the relative number of S-polynomial and

reduction operations changes from case to case. As we stressed before, simul-
taneously taking all S-polynor ias of the basis will probably slow convergence
since we lose the benefit of reducing the basis immediately each time an S-
polynomial is generated. But cases #4 and #10 violate this intuition fewer

Spolynomials get generated under the Parallel S-polys algorithm than under
the other two. Furthermore, in case #4 it even uses fewer reduction operations.
It goes to show that choosing an optimal order for forming S-polynomials and
reducing is not an easy thing to do.

10%
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Table I - Comparative running times (in seconds)

Test Zacharias Parallel Reduction Parallel S-Polys
case time serial time parallel time serial time parallel time

1 0.316 0.600 0.600 0.416 0.316
2 0.416 1.083 1.066 1.250 0.933
3 0.216 0.383 0.366 0.383 0.333
4 1.716 1.316 1.233 0.833 0.766
5 27.266 125.533 119.616 171.750 108.250
6 381.950 1102.650 1040.467 1376.117 1001.434
7 11.350 34.850 32.817 36.867 36.867
8 31.416 569.983 569.033 541.300 523.050
9 9.416 416.450 277.817 342.516 337.033

10 69.417 727.817 714.700 147.550 133.717
11 173.234 641.867 641.334 547.917 386.267
12 3473.466 * * * *

Garbage-collection time has been deducted from the execution.
In case 12 the two parallel schemes exhausted memory space before finishing.

T£able 2 - Estimated parallelism in Parallel S-poly

and Reduction algorithms

Test Parallel Reduction Parallel S-Polys
case maximum average maximum average

1 3 1.00 6 1.32
2 4 1.02 3 1.34
3 4 1.05 3 1.15
4 5 1.07 6 1.09
5 4 1.05 3 1.59
6 4 1.06 3 1.37
7 3 1.06 1 1.00
8 3 1.00 1 1.03
9 4 1.50 3 1.02

10 5 1.02 3 1.10
11 6 1.00 15 1.42

%11
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Table 3 - Other execution statistics

Test Zacharias Parallel Reduction Parallel S-Polys # of terms
case S-Polys Reductions S-Polys Reductions S-Polys Reductions in result

1 3 10 10 35 9 33 12
2 1 24 4 65 6 110 23
3 1 25 5 50 6 54 12
4 14 225 12 92 9 82 15
5 2 188 4 187 6 362 210
6 2 189 4 189 6 365 918
7 2 108 1 43 1 43 7
8 1 14 2 23 2 23 130
9 10 330 5 215 6 286 26

10 9 100 8 90 6 92 131
11 14 159 25 251 28 303 110
12 10 250 1 ?? ? *

• Case #12 generated too many terms to deal with, well in the thousands.

7 Reducing Under Alternative Orderings

An alternative way to introduce parallelism is to simultaneously reduce a basis
under different orderings, using whichever result comes first. This approach is
referred to as collusion in [7]. Table 4 compares the time to reduce for several
of the test cases (the table is incomplete because some cases took an excessive
amount of time).

Cases 2, 3, 5, 7, and 11 were very sensitive to the ordering used. Case 11 is
interesting in that no "intuitive" pairwise ordering between the variables seems
to explain the results. Cases 5 and 7 appear to be strongly sensitive to the
dominant variable. In the remaining cases 1, 4, 8 and 9 the ordering was of %
little consequence. There may be useful heuristics for selecting a reasonably
efficient ordering given the form of the expressions in the initial basis.

Using one processor for reduction under each ordering would generate a
solution in as much time as the fastest of the orderings. This would yield a
reasonable speedup for cases 2, 3, 5, 7, and 11 compared to using the wrong
ordering. If the number of processors is considered, cases 2 and 3 would gain
at most a speedup of 4 for 6 processors, which is hardly worth the effort. Com-
paring the minimum time to the average time in cases 5, 7, and I1 shows that
the "average" order would still take at least as long as the fastest time times
the number of processes.

This technique is only useful if anl reduced Gr~bner basis is sufficient. For
example, if we want to know if two sets of polynomials generate the same idea],

12 %
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Table 4 - Times (in Seconds) to Reduce Under Different Lexicographic Orderings
Test Time (Max Time)/(Min Time) Ordering

1 0.316 1.26 z>y>z >t >s
0.233 z>z>y>t >s
0.300 y > x > z > t > s
0.250 y> z>z>>fs
0.250 z > >t > s
0.250 z>y>x>t >s

2 0.416 4.09 x > y > z
0.416 x> z>
1.700 y > x > z
0.583 y > - > x
0.849 z > x > y
0.499 z > y> x

3 0.216 4.86 x > y > z
0.182 x > z > y
0.550 y > x > z
0.866 y > z >
0.482 z :-z > y
1.049 z > y >

4 1.716 1.02 z > y
1.749 y > r

5 27.266 16.00 x > y > z
29.033 x> z >y
27.900 y > x > z
27.399 y > z > x

436.250 z > x > y
424.983 z > y > .

7 11.350 8.41 x > y
1.349 y > x *_ _

8 31.416 1.05 x > y
33.049 y > x

9 9.416 1.13 x > y > z
9.817 x > z > y

10.450 y > x > z
10.617 y> z >x
10.133 z> >y
10.183 z>y>x

11 173.234 66.22 x > y > z
18.450 x> z >y
72.434 y> > z
7.967 y > z > x
2.616 z > x > y

2%



we reduce both and check to see if the reduced forms are identical. If we reduced
each under a different ordering, it is unlikely that the reduced forms would come
out identical. This leaves two possibilities:

[a] Reduce both bases under various orderings, take whichever results
complete first, and convert them to bases u-ider a common ordering, or

[b] Simultaneously reduce both bases under each ordering, and terminate
when both have been reduced under the same ordering.

Consider [a]. It is not known whether or not it is "easy" to convert a reduced
Gr6bner-basis under one ordering into a reduced Gr6bner-basis under another.
The number of expressions can change, and the degree can jump from d to d ' 1 ,
where n is the number of variables (8]. Table 5 shows the time it took to reduce
directly under a "slow" order, vs. reducing under a "fast" order and re-reducing
under the "slow" one.

Table 5 - Time (in Seconds) to Reduce Directly vs. Indirectly
Case 7 Case 11

Direct Reduction
Ordering: X > y x > y > z
Time: 11.350 173.234

Indirect Reduction
First Ordering: y > X z > X > y
Second Ordering: x > y x > y > z
Time: 1.283 2668.434 1

Table 5 shows that the indirect route can be 9 times faster or 15 times slower.
The potential speedup might make this collusive approach seem plausible, but
the number of alternative combinations of first and second orderings grows too
quickly.

Alternative [b] is viable under the conditions that seem to be present: the
times to reduce a basis can vary dramatically with the ordering used, and con-
verting a reduced basis to a different ordering can be as hard as the initial basis
reduction. How well it works would depend on the nature of the input: whether
some ordering is suitable for quickly reducing both.

8 Conclusions

We can draw the following conclusions at this point:
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* "Obvious" ways of parallelizing Grgbner-Lasis reduction, such as generat-
ing S-polynomials or performing reductions in parallel sweeps are ineffec-
tive. Reducing under different orderings has some limited potential.

* Algorithmic "hacks" are effective in speeding up the process to a small
degree; these give better performance than parallelism does, and seem to
be themselves difficult to parallelize.

There is still room for exploring other ways to parallelize Gr6bner-basis re-
duction; we have explored the obvious ways and they are not obviously effective.

Gonnet and Monagan [5] describe a general equation-solver which uses Gr6bner-
basis reduction (to solve the algebraic cases) in conjunction with other methods.
Parallelism could be used to simultaneously try Gr6bner-basis reduction in con-
junction with resultant or other approaches. Parallelism may also be applied to
other portions of the general equation-solver, such as searching for inconsistent
subsets of a system of equations. These higher-level heuristic approaches seem
more likely to provide payoffs in general problem solving.
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10 Appendix - test cases 1-12

X x- ats
Case 1: y2 j a2t2(1 _ s2) w.r.t. {x,y,z,t,s}

z2 -b(j _ t )

(4x2 + Xy2 :+1/4
Case 2: 2x2 z + z + 1/2  w.r.t. {x,y,z}

-z2z + x12 + y2

2 _ -Y2/2 - x2/2}

Case 3: xz + zy - 2z w.r.t. {x,y,z}
z 2 .- y

15
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x 4 y 4+ Y6  Z 2 y4 _ X4y2 + X6 _y4 + 2: 2 y 2 X4 1
Case 4: X3y4- zy 4/2 - x 3 y2 + 3x5/2 + zL12 -P

w.r.t. {x,y}

Case 5: Y w.r.t. {X,y,z}

Case 6, y y2 -y + z -X 
2 _ w.r.t. {X,Z)

X2 :y 2 - 1 J

2 y 2(y2 + 2) +(b2-3a 2)y2.- 2by2 (y + ) +2a2 b(yz)-)a 2 2 +.i2(a 
2 .-b2 )

Case 7: 4y 3 + 4y(y2 + x 2) - 2b y2 - 4by(y +±x) + 2(b2 - 3a2 )y + 2a2b
4xy 2 - 2by 2 - 202: + 2a 2b Wrt XY

(ax2 +bxy +c: 4-dy + ey +f w.r.t. {xy}
Case 8: bx2 + 4dy +2e + gy 2 + hy+k I

Case 9: 9x 8- ~ y6x + 3x+ 3y2 - 7y--+joy + jZ2 -g: - 4

Cs9:lo 2xy:+ 6 ::-6x+9y2YYz+z
5z. 524-8xy -4 : 8x49y 2 -6yz +2y -z- 7z 45

w.r.t. {x,y,Z}

X2 +2 ayz + g
Case 10: y y2 + 6:: +-h w.r.t. {x,y,z}

Z2 + czy + k

X 2 + ayz + dx

Case 11: y 2 + bzx + ay W.r.t. {x~y,Z)

Z2 + C~y 4fZ

a 
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( 2 +yz +dx4-I
Case 12: 2 y+ zz+ ay + I w.r.t. {x,Y,z}
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