
ItVi IDITV ri AiPMirATiepu 7%c Y,73AiC 10011%I~

REPORT DOCUMENTATION PA
lb. RESTRICTIVE MARKINGS

A D-A 196 100 3 DISTRIBUTION/ AVAILABILITY OF REPORT

unlimited
2b. DECLASSIFICATION I DOWNGRADING SCHEDULE

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

6. NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a. NAME OF MONJTORING ORGANIZATIONThe Regents of the Unlverst (if pplicable) SAA
of California SPAWAR

6c. ADDRESS (City, State, and ZIPCode) 7b. ADDRESS (City, State, and ZIP Code)
Berkeley, California 94720 Space and Naval Warfare Systems Command

Washington, DC 20363-5100

Ba. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBERORGANIZATION I(if aipplicable)

SDAPA I

8c. ADDRESS(City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS
1400 Wilson Blvd. PROGRAM PROJECT TASK WORK UNIT

Arlington, VA 22209 ELEMENT NO. NO. NO. ACCESSION NO.

11. TITLE (Include Security Classification)

* THE ANkLYSIS OF DISKLESS WORKSTATION TRAFFIC ON AN ETHERNET

12. PERSONAL AUTHOR(S)

* Riccardo Gusella

13a. TYPE OF REPORT 13b TIME COVERED 14 rlATC 1 c REPORT (Year, Month, Day) 5 PAGE COUNT
technical FROM TO,, * N____Tr- 1__7** 49

16 SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse uf necessary and identify by block number)
FIELD GROUP SUB-GROUP

'9 ABSTRACT (Continue on reverse if necessary and identify by block number)

Enclosed in paper.

DTIC
(7 EL ECT E
~K~JUL2 31988 f

20. DISTRIBUTION lAVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
GUNCLASSIFIEDAUNLIMITED 03 SAME AS RPT. 0 DTIC USERS unclassified

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c OFFICE SYMBOL

DD FORM 1473, e4 MAR 83 APR edition may be used until exhausted. SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete.

L mlmmmm mdm'i mmmm - --

Productivity Engineering in the UNIXt Environment

The Analysis of Diskless Workstation Traffic on an Ethernet

Technical Report

S. L. Graham
Principal Investigator

(415) 642-2059

"The views and conclusions contained in this document are those of the authors and
should not be interpreted as representing the official policies, either expressed or implied,
of the Defense Advanced Research Projects Agency or the U.S. Government."

Contract No. N00039-84-C-0089

August 7, 1984 - August 6, 1987

Arpa Order No. 4871

tUNIX is a trademark of AT&T Bell Laboratories

The Analysis of Diskless Workstation Traffic on an Ethernet

Riccardo Gusella

Computer Systems Research Group
Computer Science Division

Department of Electrical Engineering and Computer Sciences
University of California, Berkeley

Berkeley, CA 94720

ABSTRACT

This study analyzes the communication traffic on a medium-size Ethernet
local area network that connects file servers to diskless workstations. Our meas-
urements differ from those of other studies in two important aspects. First, the
Ethernet traffic is much higher than the L:affic measured in earlier studies.
Second, the measurements are more accurate than any previous ones. For each
packet, all the protocol information was extracted and recorded on tapes along
with the packet arrival time. Less than one percent of the total number of packets
was lost. The clock used to timestamp the packet records had a one-microsecond
resolution.

In this paper we describe the measurement methodology, present the traffic
statistics, and compare our traffic characteristics with those reported in a 1979
study by Shoch and Hupp. We detail the behavior of each of the protocols respon-
sible for a significant proportion of the total traffic. Our study suggests that pro-
tocol behavior is sub-optimal. Traffic patterns are highly skewed: a single client
workstation, under normal usage, can generate for and request from a file and
paging server data amounting to more than 20 percent of the total raw Ethernet
bandwidth. In addition, protocol timers cause numerous, unnecessary retransmis-
sions.

The accurate tracing time has allowed us to study extensively the packet
ititerarrival time and has provided strong grounds for the hypothesis that the
arrival process is non-random. Based on projections from our analyses, we con-
jecture that network bandwidth may be a scarce resource in applications that
involve high-performance virtual-memory diskless machines. We believe that a
key prerequisite for the success of future diskless workstations will be the design
of fast interactive communication protocols that function effectively under high
network load.

1. Introduction
With the development and increasing use of distributed systems, computer communication

traffic over local area networks has changed. Conventional remote terminal access and file
transfer are no longer the dominant applications. More and more computing systems are built

The measurements described and analyzed in this paper were taken at the Computer Science Division of the
University cf California, Berkeley. The trace ansaysis was performed while the author was visiting the Computing
Science Research Center of AT&T Ben Laboratories.
This work was sponsored in part by AT&T Bell Laboratories, in part by CSELT Sp.A. of Italy, and in part by
the Defense Advanced Research Projects Agency (DoD), Arpa Order No. 4371 monitored by the Space and Naval
Warfare Systems Command under contract No. N00039-34-C-0089.

around diskless workstations and file servers. These workstations are economical, expandable,
easy to manage, and more suitable for offices, where a large disk subsystem would produce noise
and heat. Often they provide a virtual memory environment and need to page to a remote paging
device. Whereas older protocols only had to respond to the slow, interactive terminal traffic and
provide throughput for the bulk transfer of data, newer ones have to provide much faster response
time for file access and quick network access to the backing store.

As a result of modifications aimed at increasing the performance of computer systems, now a
single packet often only contains a portion of the object being transported. For instance, at the
time the Ethernet was designed, file pages were 512 bytes or 1K bytes in size;5 4, 55 now, 4K bytes
appears to be the standard. A SUN3's memory page is 8K bytes, which is transferred to the pag-
ing device in a single transaction during paging or swapping. Additionally, new programming
interfaces have increased users' need for bandwidth. Dumping the image of a graphic display may
require the transfer of millions of bits. In the case of diskless workstations, these transactions are
pertormed through network protocols, which, at the physical level, involve the transmission of a
number of frames in quick sequence.

The Ethernet, designed at the Xerox Palo Alto Research Center (PARC) at the beginning of
the seventies 17 and subsequently modified for higher speed, 15 is one of the most successful local
area networks. It combines simplicity and low cost with reasonably high bandwidth. The charac-
teristics of its traffic have been repeatedly studied starting with basic measurements performed
about eight years ago at Xerox PARC by J.F. Shoch and I.A. Hupp. 51 Shoch and Hupp suggested.
and it is now commonly accepted, 27 that the Ethernet under "normal" workloads is lightly loaded
and that hosts and host interfaces, rather than the network, are the protocols' performance
bottlenecks. As we shall see, the developments in distributed systems and user interfaces have
substantiaLly modified the characteristics of the Ethernet t-affic.

These developments require a re-evaluation of network and protocol performance. This
paper describes and analyzes traffic measurements, taken'at the University of California at Berke-
ley (UCB), aimed at determining the performance of an Ethernet local area network in thle pres-
ence of file system access performed by diskless workstations. An essential part of the analysis is
the interpretation of network communicatior protocol behavior.

The next section describes the Berkeley user community and the specific network studied.
Section 3 describes the measurement methodology; an important goal of this study was to design a
measurement system that would generate the most accurate picture of the traffic possible. Section
4 presents the general statistics of the measured traffic and compares our traffic with the traffi:
that was described eight years ago by Shoch and Hupp. Since we contend that it is not possible to
describe and understand the network behavior without careful analysis of its protocols, Sections 5,
6, and 7 examine in detail the three protocols that transported the largest amount of data: the
Transmission Control Protocol as part of the Defense Advanced Research Projects Agency
(DARPA) family of protocols, the SUN Network Disk protocol, and the SUN Network File System
protocols. In this, we depart from the analysis of Shoch and Hupp, who were solely concerned
with general Ethernet properties and statistics. (We describe the protocols' features in the context
of data analysis; our descriptions are, for lack of space, necessarily incomplete. When necessary,
the references will provide full details on the subject.) Eazh section concludes with a summary of
the main data and our interpretations. Finally, in the last two sections we compare our results
with those of projects more recent than the Xerox PARC measurements and we present the conclu-
sions of our study.

2. The Berkeley User Community and the XCS Network
By and large the UCB computer science user community is similar to those of other universi-

ties and large research organizations.*, User activities include program development, text editing,
experimentation with computation-intensive programs, and operating system research, which

? The description refers to the Computer Science user community at the University of California at Berkeley and
its facilities at the time of the measurements in Spring 1986.

S3-

frequently requires rebooting machines.

The UNIXt operating system is by far the most common environment in use. It includes
UNIX 4.3BSD and UNIX 4.2BSD developed by the Computer System Research Group, SUN
UNIX, which is based on 4.2BSD, and DEC ULTRIX, also derived from 4.2BSD. Berkeley UNIX
4.2BSD includes an implementation of the DARPA family of protocols based on the Transmission
Control Protocol (TCP)45 and the Internet Protocol (IP). 6 Berkeley UNIX 4.3BSD, a subsequent
release, adds the Xerox Network Systems (NS) family of protocols.1 6 SUN UNIX includes an
implementation of the Remote Procedure Call protocol (RPC)36 as well as two protocols to support
SUN's file system implementation: the Network Disk protocol (ND) 37 and the Network File System
protocol (NFS). 38

Although most professors and some students own workstations (mainly SUN, MicroVAX,
and Xerox Star workstations),14 many students still use standard terminals. Most students share
offices and their equipment. Therefore, workstations in student offices, unlike those owned by
professors, tend to be in use during most of the day. While most diskless workstations are located
in professors and students' offices, those in the xcssun cluster are in a public room accessible by
those students who do not have any workstation in their offices.

Most users read their electronic mail on three VAX's: ucbarpa, ernie, and kim. Often work-
station users use a window to connect to one of these machines and therefore generate character
traffic from the workstation to the VAX's.

FIGURE 2-1. UCB NETWORKS AND GATEWAYS

132 136
cad cc

cad cros jade 150 u-

ecalde

There are a large number of local area networks, mostly Ethernets. A portion of the traffic
on each independent network is directed externally, towards other !ocal area networks or wide area
ones, most notably to the Berkeley Arpanet Interface Messag,. Processor (IMP). Figure 2-1
displays a subset of the networks in the UCB campus: those that are most often used by Computer
Science Division users. In this map, circles represent local area networks, and boxes represent
gateways. (Not all the gateways are represented in the figure.) The networks are identified by
both their subnetwork number* and by their symbolic name. All of them are 10 Mb/s Ethernets
except for ucb-ether, which is a 2.94 Mb/s Ethernet. All gateways, except for spur-gw, which is a
SUN workstation, are VAX's. Networks 0, 130, 131, and 150 belong to the Computer Science

I UNIX is a trademark of AT&T Bell Laboratories.
It Both MicroVAX's and Xerox Star machines have local disks.
t The host part of class B IP addresses, which are divided into network and host parts (two 16-bit quantities), is,
in 4.3BSD, further divided into two 8-bit fields: a local area subnetwork number and a host number.29

-4.

Division. Networks 132 and 136 belong respectively to the EECS Department and the Computer
Center of the university. Network 134 is used by the administration of the Electrical Engineering
and Computer Sciences Department; and network 137 functions as a bridge among many otherwise
separate local area networks.

The Ethernet we chose to study, a single-cable Ethernet which UCB system administrators
have denominated XCS network, covers three floors of Evans Hall, from the fourth to the sixth,
where professors and students have their offices. The network, which is also numbered as subnet-
work 131 in Figure 2-1, connects about a hundred machines: 41 diskless SUN workstations
arranged in clusters arowid six file servers; 23 XEROX Star workstations; three VAX's, two of
which, calder and dali, act as gateways, i.e. hosts that interconnect networks; several MicroVAX's;
and a few Symbolics and TI Explorer LISP machines. There is a third gateway: a SUN work-
station, spur-gw, between the spur network and XCS. Table 2-1 shows the six clusters of SUN
workstations. (The machine names appear as they are spelled [or misspelled!) at Berkeley.)

There are three machine rooms, one on each floor The machine we used for the measure-
ments is on the fourth floor; the SUN file servers dim, snow and xcssun are on the fifth floor; while
the other three file servers sequoia, lassen, and teak are on the sixth.

3. The Measurement Methodology
We constructed a measurement system that did not affect the network under analysis. For

the data collection we used a large machine, a VAX 8600 with 32M bytes of physic.l memory,
which was only lightly loaded. This VAX, vangogh, had two network interfaces: a DEC DEZ'NA
connected to the XCS network, and an Interlan interface connected to subnetwork 130 j.ht c. -div
network). We configured the kernel to route output messages to the Interlan interface and to
ignore the other interface. Therefore, the traffic generated by the few occasional users and by the
various Berkeley UNIX daemons did not affect either the XCS network or the DEUNA network
interface, which was programmed to act only as a receiver of all packets. No other machine on the
Berkeley campus was informed of the existence of the network address corresponding tc the
DEUNA interface. Thus, no traffic on the XCS network was directly addressed to vanygh.
(Vangogh was, however, reachable on subnvtwork 130.)

The DEUNA interface uses internal buffers to hold received packets until they are
transferred using DMA to the host buffer memory. Vangogh, informed by an interrupt of the suc-
cessful transfer, extracted the Ethernet packet header and the portion of the data that contained
protocol information, and time stamped the record with a microsecond accurate clock.

The DEUNA driver employed a double buffering technique: it kept two large buffers in ker-
nel memory where it stored the packet information that it was colleczing. When the first buffer
was full, it switched to the second one while a sleeping kernel process was awakened to asynchro-
nously transfer the data in the first buffer to a trace file on disk. This process alternated between
the two buffers.

When a trace file reached the size of 130M bytes- this size was chosen because it fit in one
standard tape at 6250 bpi, and three files fit on one disk drive dedicated to the measurements- the
kernel driver automatically switched to another one. Dumping the data onto tape presented no
problem since it took only four minutes. In contrast, it took abou. eight hours to fill up one file
during the night and about a hundred minutes at the daily peak of network activity during the late
afternoon.

An important goal of our measurements was to reduce the packet loss to a minimum. We
were able to know how many packets were lost by reading counters that the DEUNA maintains in
its internal memory. These include a counter for the number of packets received, a second for the
number of packets lost due to internal buffer overflow, and a third for the number of packets lost
due to host buffer overflow. The internal buffer can overflow when the data arrival rate over the
Ethernet exceeds the DMA transfer rate over the UNIBUS. (Notice that this is possible since the
Ethernet bit rate of 10 Mb/s corresponds- taking into account header overhead, preamble genera-
tion time, and interpacket spacing- to a maximum rate of 1,220K bytes per second when all

-5-

TABLE 2-1. CLUSTERS OF SUN WORKSTATIONS t

RE SERVEk CLIENT WORKSTATIONS Cpu TYPE MEMORY SIZE ETHERNET INTERFACE

dim SUN2 3M bytes 3Com
chip SUN2 2M bytes 3Com
mike SUN2 4M bytes Sun Intel
rob SUN2 2M bytes 3Com

lassen SUN2 4M bytes Sun Inel
baobab SUN2 2M bytes 3Com
pawlonia SUN2 4M bytes Sun Intel
pine SUN2 2M bytes Sun Intel
maple SUN2 4M bytes Sun Intel
rip SUN2 4M bytes Sun Intel
sleepy SUN2 2M bytes 3Com

sequoia SUN3 4M bytes Sun Intel
ash SUN3 4M bytes AMD Am7990 LANCE
elm SUN2 4M bytes Sun Intel
fir SUN2 4M bytes 3Com
liveoak SUN2 4M bytes Sun Intel
madrone SUN3 4M bytes AMD Am7990 LANCE
mahogany SUN3 4M bytes AMD Am7990 LANCE
oak SUN2 4M bytes Sun Intel
redwood SUN2 4M bytes Sun Intel
shangri-la SUN3 4M bytes AMD Am7990 LANCE
walnut SUN2 4M bytes Sun Intel

snow SUN2 2M bytes 3Com
bashful SUN2 2M bytes 3Com
doc SUN2 2M bytes 3Com
dopey SUN2 2M bytes 3Com
grumpy SUN2 2M bytes 3Com
happy SUN2 2M bytes 3Com
pinocchio SUN2 2M bytes 3Com
sneezy SUN2 2M bytes 3Com

teak SUN2 4M bytes Sun Intel
bansai SUN3 4M bytes AMD Am7990 LANCE
eucalyptus SUN3 4M bytes AMD Am7990 LANCE
geppetto SUN3 4M bytes Sun Intel
ginko SUN3 4M bytes AMD Am7990 LANCE
larch SUN2 4M bytes Sun Intel
palm SUN3 4M bytes AMD Am7990 LANCE
yew SUN3 4M bytes AMD Am7990 LANCE

xcssun SUN2 2M bytes 3Com
jupiter SUN2 2M bytes 3Com
mars SUN2 2M bytes 3Com
mercury SUN2 2M bytes 3Com
neptune SUN2 2M bytes 3Com
pluto SUN2 2M bytes 3Com
saturn SUN2 2M bytes 3Corn
uranus SUN2 2M bytes 3Com
venus SUN2 2M bytes j 3Com

packets transmitted are of maximum length, while the maximum UNIBUS data transfer rate in a
VAX equals to about 800K bytes per second.) In addition, packets can also be lost because the

host may be slow in emptying the host buffer.

During the development and testing of our driver, we noticed that the number of lost packets
decreased as we allocated more memory to the host buffer pool. By allocating space sufficient for
storing 55 packets, we were able to reduce the percentage of packets lost because of internal buffer

t Those who wonder what happened to the missing planet in the xcisun duster will be relieved to kz.c." *u,,,, e t. h
was on loan for Smalltalk development and was "orbiting" on the spur network. We shall not comment on the
fact that pinocchio is among snow's dwarfs.

-6-

overflow to less than one percent of the number of packets received, and the fraction of packets
lost because of host buffer overflow to less than one in 30,000.

The DEUNA interface, like most other Ethernet interfaces, only reports the number of colli-
sions that occur as it tries to transmit packets.t Our DEUNA was programmed to receive all pack-
ets and vangogh never used it to transmit. Consequently, it was not possible to record on the
traces the packet collisions as they occurred.

We started the measurement phase of the project by first erforming a feasibility study on a
SUN workstation set up in stand-alone mode to continuously monitor the traffic and display traffic
statistics. This phase took about two weeks; two more weeks were needed to modify the DEUNA
device driver and test the changes. The measurements themselves spanned a period of three weeks
during April and May 1986. We recorded a total of about 6,500M bytes of data.

In this paper we have chosen to analyze a typical weekday for the XCS traffic: 24 hours,
starting at 1 am, Tuesday May 6, 1986. Since for speed considerations the packet filter in the
DEUNA device driver was extremely simple, we have processed the original traces to arrange tle
various protocol information in a uniform way before performing the data analysis. At the same
time, by subtracting from the packet arrival time the DMA transfer time and the Ethernet
transmission time, we have reconstructed the times when each packet transmission started, i.e. the
times when the status of the Ethernet channel changed from idle to busy due to a packet transmis-
sion.

Although vangogh's clock was very accurate, the reconstructed times are subject to the varia-
bility of the DMA, which depends on the UNIBUS utilization; to the queuing time in the DEUNA,
which depends on the packet arrival rate; and to the interrupt response time and the queuing time
on the host. During the development of the measurement system, in order to assess the accuracy
of our timing information, we programmed a workstation to transmit packets, which vangogh
recorded, at regular intervals. (For greater accuracy, the workstation kernel rather than a us.r
process sent these imessages.) We reconstructed the sending times from the traces and computed
the standard deviation of the estimated inter-packet times. As expected, the standard deviation
was minimal during low network utilization, but as high as two millisezonds at high network load.
However, this relati,'ly large variance was due to a small number of arriva,s that were del2yed
because of two factors: 1) the transmission of some of the packets was deferred because the chan-
nel was busy; and 2) the transmission was rescheduled because a collision occurred. Therefore, if
we plotted the interarrival times of the packets in the experiment, a graph with a narrow and sharp
peak would result.

4. General Statistics

The 24-hour trace under study consists of 11,837,073 records- one for each packet. The
total number of bytes transmitted is 7,060,163,648 (this figure includes header, checksum, and
data bytes). Although the mean network utilization- the proportion of time in which one
transmitter was active- is a mere 6.5 percent, during the period of high traffic in the late after-
noon, it is very common to have relatively long intervals of mean utilization ranging around and
above 30 percent. By contrast, the 2.94-Mb/s Ethernet measured by Shoch and Hupp5 ' - a net-
work with about 120 machines- carried less than four percent nf the total number of bytes we
observed. Therefore, the first, most significant difference between our data and previous measure-
ments is the higher utilization of the communication channel.

As observed before, the packets lost by our network interface amount to less than one per-
cent. Most previous measurements projects5, 14 suffered from much higher packet loss, in the
range of 10 to 15 percent and more. Furthermore, the timing information in our traces is very
accurate, which enables us to study the interarrival times extensively. Therefore, the second criti-
cal difference is the accuracy of the data gathered.

t We assume that our readers are familiar with the principles of Carrier Sense Multiple Access with Collision
Detection (CSMA/CD) of Ethernet.

-7 -

4.1. Utilization

Figure 4-1 displays the network utilization in the 24-hour period under study. Each vertical
line represents the fraction of time during a one-minute interval in which a transmitter was active.
Thus, the packet headers, the data bytes, and the packets' checksums, as well as the 8-byte pream-
ble, which is transmitted prior to each packet to synchronize the receiver and the transmitter, are
all counted in calculating the utilization. Notice, however, that we do not take into account the
bandwidth wasted on collisions. Although not supported by actual measurements [as we observed
in Section 3, our network interface did not report the number of collisions], we believe that there
are two factors that keep the number of collisions low. First, as we shall see in the following sec-
tions, each station generates packets in bursts that are followed by relatively long silent periods.
Second, the interval between packets in a burst is much larger than the Ethernet minimum inter-
frame spacing, which decreases the chances that packets from another burst will collide with ones
from the first.

FIGURE 4-1. ETHERNET UTIUZATION (ALL PACKETS)

20%

1:00am 4:00 7:00 10:00 1:00pm 4:00 7:00 10:00 12:59am
Time of Day

Figure 4-1 shows that the utilization, measured over one-minute intervals, rarely exceeds 20
percent. If, however, we examine the utilization more closely over smaller intervals, we see that
in fact the Ethernet behavior is quite bursty and frequently reaches levels over 30 percent. This is
shown in Figure 4.2, which displays the network utilization from 9:15 pm to 9:45 pm over one-
second intervals.

FIGURE 4-2. ETHERNET UTILIZATION (ALL PACKETS)

30%

:l l I I l i
9:15pm 9:20 9:25 9:30 9:35 9:40 9:45pm

Time of Day

This traffic would overload Shoch and Hupp's 2.94-Mb/s Ethernet, and would aiav saturate the
IBM 4-Mb/s ring network. Furthermore, we found that hardware changes- faster computers and
more intelligent network interfaces- raised the utilization rate. For instance, the communication
between just two computers, the SUN file server sequoia (a SUN3/180) and the client workstation

-8-

maarone (a SUN3/50), can load the Ethernet more than 20 percent and displays peak transfer rates
as high as 275K bytes per second, as shown in Figure 4-3.t

FIGURE 4-3. ETHERNET UTILZAT7ON (TRAFFIC BETWEEN SEQUOIA AND MADRON'E)

9:00pmo 9:05 9:10 9:15 9:20 9:25 9:30pm

Time of Day

This behavior has been observed in experimental environments where two machines sent
artificially generated data to each other. 14, 29 However, its presence in a real-world environment
compels us to re-evaluate the notion that under normal traffic an Ethernet is lightly loaded. 5 1

Unless protocol and system designers explicitly take into account messange latencies generatec by
higher loads, they may develop facilities that behave sub-optimally. For example, if prctocol
timers are set to a value that is too small in the presence of network contention. they could e-tire
prematurely, before an acknowledgement or a response packet is received, leading to unnecessary
message retransmission.

4.2. Packet Length

Figure d and Figure 4-f display respectively the number of packets and number of t-ytes
transmitted as function of the packet iength.L-

In Shoi, and Hupp's Etherne" the packet size distribution was bimodal and most of the
traffic volume was carriel by a small number of large packets; the mean and median packet
lengths were 122 and 32 bytes respectively. In our network, based on a modern environment of
diskless workstations with virtual memory operating systems, the mean packet size is 578 bytes and
the median is 919 bytes. However, since iie matxnum packet sizes of the two Ethernets are dif-
ferent- 554 for the 2.94-Mb/s and 1500 for the 10-Mb/s Ethernet- a more revealing comparison of
the these values can be obtained by dividing each mean and median by the corresponding max-
imum packet length. In the case of the Xerox PARC Ethernet the mean is 22.0 percent, and the
median 5.8 percent, of the maximum packet size; in our Ethernet, the mean is 38.5 percent and the
median 61.3 percent.

In Figure 4-4 and 4-5 we can identify three areas: the region near the origin, mainly deter-
mined by the small packets generated by the interactive terminal traffic and the protocol's ack-
nowledgements of TCP; the region in the middle, characterized by the parameter-passing packets
of the RPC-based NFS protocol; and the region on the right, which accounts for most of the pack-
ets and most of the bytes, and whose components are, in decreasing order, ND, NFS, and TCP.

The smallest packet sizest those less than 50 bytes, together transport 30.4 percent of the

t Madrone's users were developing a language-based editor in a LISP environment. The editor is written in Franz
.isp for the most par,. a!t ough it includes a large component of the SunView windowing mechanism. The size
of the ob,ect file is around 3M bytes. Therefore, madrone compiled both LISP and C programs, and ran big LISP
processes within the SUN window manager. Often large LISP images were dumped.

4

V" In the remainder of this section. when we mention packet lengths, we refer to the length of the data portion of
the Ethernet packet, i.e. the full packet length minus 14 header bytes and 4 checksum bytes.

The minimum size packet transported by the 10-Mb/s Ethernet is 46 data bytes.

-9.

total packets but only 2.9 percent of the total bytes. A notable portion, 30.8 percent, of these
packets is used to carry requests for ND protocol transfers. Yet 66.8 percent of them are used by
the character and acknowledgement traffic of TCP.

FIGURE 4-4. PERCENTAGE OF PACKETS VS. PACKET LENGTH

21.4% 40.8%

ND

8%

6%

.TT4% NFS

2% T7

h I
.

46 64 144 576 696 1072 1500

Packet Length

The packets whose lengths are between 124 and 168 by'tes are used almost exclusively by the
NFS protocol, which is based on request-response remote procedure calls. They account for 8.3
percent of the total packet count, but for only 2.2 percent of the total byte count. We believe that
this segment of packet lengths will acquire more and more weight in the future as applications
based on request-response protocols develop. 14, 48

FIGURE 4-5. PERCENTAGE OF BYTES vS. PACKET LENGTH

75.7% 11.3%

Nu NP1

4%

3%

2% rC"

r NPI
1%

.1 T N 1
46 64 144 576 696 1072 1500

Packet Length

Finally, the packets whose lengths are larger than 576 bytes comprise 50.2 percent of the
total packet count and 93.1 percent of the byte traffic. TCP transports 1.4 percent of the packets
and 2.6 percent of the bytes. ND and NFS transport 40.8 and 6.2 percent of the packets and 75.7
and 14.6 percent of the bytes respectively.

- 10-

4.3. Network Protocols

Table 4-1 lists the number of packets and bytes transferred and the mean packet size for each
of the major protocols in use on XCS. The entries in the DATA BTFS column of Table 4-1 are
computed by summing up the lengths of the data field in the Ethernet packets. The mean packet
sizes in the last column are instead computed from the full packet lengths. We observe again that
the remote file system protocols, ND and NFS, have relatively large mean packet sizes and
comprise most of the bytes transferred, whereas the conventional character traffic of TCP has a
relatively small mean packet size.

TABLE 4-1. PROTOCOL STATISTICS

PROTOCOL PACKETS DATA BYTES BROADCAST MEAN

NUMBER PERCENTAGE NUMBER PERCENTAGE PACKETS PACKET SIZE
nd (ip) 6,158,602 52.03 5,245,577,140 76.61 323 869.75
nfs (ip) 1,880,402 15.89 1,179,797,526 17.23 0 645.42
tcp (ip) 3,379,564 28.55 356,640,214 5.21 0 123.52
udp (ip) 111,553 0.94 36,474,286 0.53 17,182 344.97
ns 133,491 1.13 18,791,982 0.27 20,681 158.77
,rp 110,705 0.94 5,098,296 0.07 108,830 64.05
icmp (ip) 41,682 0.35 2,657,490 0.04 14 81.76
chao- 12,645 0.11 1,583,944 0.02 2,887 143.26
rarp 18 0.00 840 0.00 9 64.61
other (ip) 25 0.00 1,228 0.00 0 67.12

other 8,386 0.07 473,388 0.00 6,923 74.45
Toral 1 11,837,073 I 100.00 6,847,096,334 100.00 156,849] 596.45

The table is somewhat misleading in that it lists protocols that reside at different layers of the
ISO OS architecture. For instance, NFS, wnich uses UDP as its transport protocol, covers por-
tions of the transport and session layers. Since we have classified NFS independently, the figures
for UDP in Table 4-1 corresp.."d to the component o' UDP that is not used by the NFS protocol.
We have chosen to divide the traffic according to protocol's functions rather than according to the
ISO model in part because it is difficult to place each protocol at one particular layer, in part
because our classification serves as a basis for the rest of the ar ,lysis in this study.

One of the reasons for which the disk and file access protocols generate such a large portion
of the traffic is that the physical memories in our workstations are rather small- ranging from 2M
to 4M bytes (see Table 2-1)- in comparison to the demands of the software run today. In particu-
lar, as more protocols are added to it, the size of the kernel increases, graphic libraries are very
large, and common programs' working sets grow as software becomes more sophisticated. The
activity of the ND protocol is particularly dominant. As we shall see in Section 6, most of this
activity is system activity, which includes paging and swapping, accounting, and the like. This
observation questions the common belief that the bulk of system operation is directly related to the
user-generated workload; rather, it appears to be caused by the system's own managerial tasks
unrelated to user activity. We shall deal with these issues in more detail in Sections 6 and 7.

Both ND and NFS, as well as TCP, UDP, and ICMP, use the protocol IP as the underlying
network layer. The IP protocol alone is responsible for 97.76 percent of the total packet count and
for 99.62 percent of the total byte count. In the next two sub-sections, we analyze the traffic com-
munication patterns of IP packets for two reasons. First, it is very convenient because an IP
packet header provides both the network and host numbers for the source and destination
addresses. Second, IP traffic accounts for virtually all of the traffic.

Table 4-1 shows also the number of broadcast packets for each protocol. A packet is classi-
fied as a broadcast packet if all bits in the destination address of the Ethernet packet header- a
48-bit quantity in a 10 Mb/s Ethernet- are set to 1. There are relatively few broadcast packets,
1.33 percent of the total. Of the total number of broadcast packets only 10.96 percent are IP
broadcast packets; however, they transport one half of the bytes that are broadcast.

The Address Resolution Protocol 43 (ARP), which is used to convert protocol addresses

(most often IP add-esses) to 48-bit Ethernet addresses, accounts for 69.4 percent of the broadcast
packets. A station that does not find the Ethernet address in a locally maintained cache will

broadcast a request packet containing the protocol address to all hosts in the network. The host

that identifies the protocol address as its own address will reply (a non-broadcast packet) to the
inquiring station. In our networP 94.3 percent of the ARP packets are request packets with no

corresponding responses. We discovered that in most cases they are sent by machines that do not

understand subnetwork addresses. These machines (the LISP machines on our network) generate

broadcast IP addresses that are not understood by the other hosts and therefore never receive a
response ARP packet. If these problems, which prevent ARP host caches from functioning, were

corrected, the percentage of broadcast packets would significantly decrease. From the data and

these observations, we conclude that the broadcast mechanism exerts a negligible influence in an
Ethernet. Researchers have used this fact to support two antithetical conclusions: for some there is
room to expand the usage of the broadcasting mechanism; 12. 25 for others, the mechanism is
unnecessary and its use should be discouraged. 47

4.4. Traffic Patterns

Table 4-2, constructed from the source and destination fields of the IP packet headers in the
traces, helps to understand the source-destination traffic patterns. SUN file servers are in bold-
face, VAX's in capital letters, and MicroVAX's and LISP machines in italics.

The table is divided into two parts. Each line on the left side lists the traffic between a
source and a destination machine as a percent of the total IP traffic in the traces. The right side
lists the traffic between the same two machines in the opposite direction. Vertically, lines are
arranged in decreasing order of total number of bytes transmitted (the sum of the values in
columns four and eight); horizontally, within one line, the entry with the higher number of bytes
transmitted has been placed on the left. Notice that the entries of Table 4-2 comprise 79.2 percent
of the number of IP packets and 96.5 percent of the number of IP bytes, or 77.4 percent of the
total number of packets and 96.1 percent of the total number of bytes.

The traffic is highly unbalanced. The two machines at the top of the table are responsible,
alone, for 19.6 percent of the number of packets and 27.4 percent of the total number of bytes.
The top three lines comprise almost 41 percent of the total byte count. This fact should be con-
sidered carefully by system administrators, who often make poor assumptions about the traffi: pat-
terns under which a local area network will operate. It would be, for instance, a bad idea to place
two machines that generate a high number of packets at the opposite ends of an Ethernet cable as
this will increase the time window for detecting collisions. In particular, the logical position for
file servers would be the center of the cable near to each other [one would have to modify this
statement in the case of multi-cable Ethernets].

SUN workstations dominate the traffic as they exchange among themselves almost 95 percent
of the total byte count; VAX-to-VAX traffic contributes only two percent of the total; and SUN-
to-VAX traffic accounts for another two percent. Notice that the Xerox Star workstations use the
Xerox NS family of protocols and therefore are not listed in Table 4-2. However, as one can infer
from the statistics in Table 4-1, at Berkeley, in that period, they were mostly used as stand-alone
systems.

From the PAcKETS and BYTES columns we can obtain a rough idea of the traffic protocol mix
for each pair of machines. For the machines at the top of the table, ND and NFS account for most
of the packets exchanged; for machines at the bottom of the table, TCP accounts for most of the
packets exchanged.

4.5. Intra-network Traffic and Inter-network Traffic

By looking at the addresses in the IP packet headers, we can divide the traffic into three
categories: 1) traffic that remains within XCS (local traffic); 2) traffic that goes outside of XCS but
remains within the UCB boundaries; and 3) traffic directed to or generated by machines outside
the Berkeley local area networks. (Occasionally, we see a few packets with wrong IP addresses:
for instance, some of the MicroVAX's generated several packets with IP destination addresses that

-12-

TABLE 4-2. SOURCE-DESTINATION TRAFFIC STATISTICS (VALUES IN PERCENT)

SOURCE DEsTINATION PACKETS BYTES SOURCE DESTINATION PACKETS BYTEs
sequoia madrone 10.6721 16.2099 madrone sequoia 8.9428 11.2363
ginko teak ^-6637 3.7717 teak ginko 2.3927 3.3442
snow bashful 2.4901 3.8745 bashful snow 21357 2-4291
Icssun saturn 1.5745 2.4607 saturn xcssun 1.3454 1.5245
xcssun jupiter 1.4763 2.2784 jupiter xcssun 1.2436 1.4227
xcSSun mars 1.3162 1.9891 mars xcssun 1.1699 1.3374
sequoia liveoak 1.1917 1.6308 liveoak sequoia 1.1292 1.3437
snow doc 1.1155 1.7239 doc snow 0.9725 1.1336
xcssun uranus 1.0317 1.5645 uranus xcssun 0.9351 1.1289
xcsun venus 1.0351 1.5800 venus xcssun 0.8784 0.9903
sequoia redwood 0.8715 1.3349 redwood sequoia 0.7375 0.8908
dim chip 0.9121 1.4677 chip dim 0.8784 0.6947
xcssun neptune 0.7684 1.1713 neptune xcssun 0.6804 0.7934
snow happy 0.7626 1.1218 happy snow 0.7182 0.8402
xcssun mercury 0.7328 1.1022 mercury xcssun 0.6417 0.7301
teak eucalyptus 0.6399 0.9453 eucalyptus teak 0.5373 0.6406
snow grumpy 0.6496 1.0380 grumpy snow 0.4696 0.4780
sequoia elm 0.5641 0.7050 elm sequoia 0.6008 0.7007
teak bansai 0.4867 0.6830 bansai teak 0.4854 0.6467
pine lassen 0.5269 0.8095 lassen pine 0.3811 0.4871
sequoia fir 0.4943 0.6688 fir sequoia 0.5594 0.6202
ash sequoia 0.5800 0.7641 sequoia ash 0.4073 0.5100
baobab lassen 0.5219 0.786, lassen baobab 0.3819 0.4E59
rip lassen 0.5401 0.8877 lassen rip 0.2803 0.2748
walnut sequoia 0.4802 0.7739 sequoia walnut 0.2535 0.2370
maple lassen 0.4319 0.7130 lassen maple 0.215f 0.1967
pawlonia lassen 0.4217 0.6911 lassen pawlonia 0.2155 0.1996
geppetto teak 0.3389 0.5005 teak geppetto 0.2716 0.3510
palm teak 0.3700 0.5991 teak palm 0. 204C 0.2044
mike I dim 0.2861 0.4012 dim mike 0.216: 0.2694
lassen fi"k-o 0.4155 0.3432 ginko lassen 0.4002 0.2928
larch teak 0.3247 0.5775 teak larch 0.0966 0.0330
lassen sleepy 0.2227 0.3412 sleepy lassen 0.1944 0.1694
snow pinocchio 0.2291 0.3747 pinocchio snow 0.1286 0. 1041
snow sneezy 0.2203 0.3487 sneezy snow 0.1360 0. 126
snow dopey 0.2076 0.3255 dopey snow 0.1303 0. 1219
dim rob 0.1863 0.2776 rob dim 0.1374 0.1450
sequoia shangri-la 0.1912 0.3001 shangri-la sequoia 0.1133 0.0282
sequoia DALI 0.1783 0.2857 DALI sequoia 0.0892 0.0070
allsnice KIM 0.1690 0.2711 K M allspice 0.0856 0.0079
e '%vv-150 KIM 0.1330 0.2159 KIM envy-150 0.0672 0.0056
ginger MIRO 0.1116 0.1822 MIRO ginger 0.0605 0.0047
ginko INGRES 0.7641 0.0709 INGRES ginkc. 0.5332 0.0543
3I ERNIE 0.5104 0.0550 ERNIE JI 0.6032 0.0516
shangri-la INGRES 0.2444 0.0853 INGRES shangri-la 0.0975 0.0095
uranus VANGOGH 0.2112 0.0625 VANGOGH uranus 0.1623 0.0294
CORY dikdik 0.2268 0.0494 dikdik CORY 0.2661 0.0276
xcusun pluto 0.0386 0.0643 pluto xcssun 0.0199 0.0095
sequoia ginko 0.0549 0.0515 ginko secuola 0.0432 0.0136
3i CORY 0.2499 0.0344 CORY 31 0.3598 0.0283
RENOIR elm 0.1817 0.0395 elm RENOIR 0.2191 0.0190
RENOIR ash 0.2743 0.0286 ash RENOIR 0.3197 0.0272
CORY plato 0.0514 0.0506 plato CORY 0.0356 0.0048
achilles KIM 0.3296 0.0258 KIM achilles 0.2363 0.0225
chip ERNIE 0.3594 0.0281 ERNIE chip 0.2126 0.0193
RENOIR redwood 0.1955 0.0284 redwood RENOIR 0.2254 0.0176
UCBARPA JI 0.2773 0.0222 3I UCBARPA 0.1884 0.0203
RENOIR fir 0.1870 0.0235 fir RENOIR 0.2219 0.0174
CORY aristotle 0.2255 0.0212 aristotle CORY 0.1650 0.0176
neptune DOROTHY 0.3489 0.0273 DOROTHY neptune 0.1018 0.0113

- 13 -

had the high-order 16 bits equal to zero. These anomalies are part of a more general class of prob-
lems related to the generation of return IP addresses and will be discussed in Section 5.)

All of the file system traffic (either carried by the ND or NFS protocol) is local. Although it
would be possible to place client workstations and their file servers or ND servers on different net-
works, given the large amount of data that these protocols carry, gateways would be a potential
problem. Should they run out of buffer space during the periods of peak utilization, they would
drop packets, increasing the protocols' response times. UDP traffic, most of which is generated by
the routing daemons, is also almost entirely local. Inter-network traffic consists of character and
file transfer traffic, which is transported by the TCP protocol. In the remainder of this sub-section
all data is expressed as percentage of the total number of TCP packets and total number of TCP
bytes.

TABLE 4-3. SOURCES AND DESTINATIONS OF TCP TRAFFIC (PERCENTAGES)

DESTINATION

XCS ucb outside Total

XCS 10.37 40.66 0.37 51.40
17.33 33.12 0.16 50.61
32.77 15.58 0.00 48.35

SOURCE ucb 23.58 25.62 0.00 49.20
0.25 0.00 0.00 0.25

outside 0.19 0.00 0.00 0.19
43.39 56.24 0.37 100.00

Total 41.10 58.74 0.16 100.00

Table 4-3 divides TCP traffic according to the source and destination networks of IP
addresses: we label with xcs the traffic that was directed to or coming from hosts in the XCS net-
work; with ucb all the traffic, except for the XCS traffic, that remains within the UCB networks
boundaries; and with outside the traffic that oi iginates or is directed outside UCE. For each com-
bination of source and destination addresses, we show two figures: on the top, the percentage of
the total packet count and, on the bottom, the percentage of the total byte count. First we see that
only 10.37 percent of the total TCP packet traffic is local; 89.01 percent is inter-network traffic
within UCB; and the remaining 0.62 percent is inter-network traffic going to or coming from non-
UCB networks. The table also shows that approximately half of the total TCP traffic is generated
by hosts on XCS and half by hosts on other UCB networks. Only a negligible portion is generated
by hosts outside UCB. The reason for these numbers is that file transfers across wide area net-
works between distant machines are rare. Most traffic to distant machines is generated by
electronic-mail applications, and at Berkeley, as we have seen, users read and send their mail on
machines that do not reside on the XCS network.

Table 4-4 breaks down the local and UCB inter-network TCP traffic. Blanks in the table
indicate that no traffic between the given endpoints passes through XCS. Section 2 describes the
listed networks and Figure 2-1 shows a partial topology of the Berkeley domain. Both ucb-ether, a
2.94-Mb/s Ethernet, and the spine subnet connect the most important VAX's used by Computer
Science division users. This is reflected in the high proportion o2s traffic on XCS to and from these
two networks. The table indicates that more traffic flows from XCS to ucb-ether rather than in the
opposite direction (21.28 vs. 11.15 percent of the total byte count). One of the reasons for this is
that some SUN file systems were not, at the time of the measurements, backed up and users often
explicitly copied important data on VAX's file systems.

A good deal of traffic on XCS originates on spur, another network of SUN workstations.
Since spur's only gateway, spur-gw, is on XCS, spur's traffic must go through XCS in order to
reach other networks. However, because the two networks are used by different research groups,
with different sponsors, traffic between XCS and spur is low.

We call the traffic that originates on machines outside XCS and is directed to machines

- 14-

TABLE 4-4. SOURCE AND DESTINATION NETWORKS OF TCP TRAFFIC WrTHN BERKELEY CAMPUS

DESTINATION

XCS ucb-ether cs-iv cad ec cc spine spur othe

XCS 10.37 22.16 3.14 2.21 4.50 0.40 7.77 0.42 50.7
17.33 21.28 3.64 1.12 2.08 0.18 4.18 0.50 0.14

ucb-ether 17.45 4.51
u__-__h_ 11.15 2.66S2.54 0.06

CS-div 2.81 0.07

cad 1.59 0.87
1a_ 0.99 0.50

2.92SOURCE CCcs 3.20

0.35 0.04
cc 0.17 0.02

spine 7.39 1.125.63 0.80

0.48 6.20 0.06 1.2f 0.05 1.40spur 0.21 17.80 0.03 3.08 0.02 0.64

0.04
other 0.02_

outside XCS traffic in transi:. This traffic is represented in Table 4-3; it accounts for 15.5F percent
of the packets and 25.62 percent of the bytes. Table 4-4 shows that the spur network is almost
exclusively responsible for the traffic in transit.

TABLE 4-5. TCP TRAFFIC SWITCHED BY XCS GATEWAYS (PERCENTAGES)

GATEWA.Y DATA TRANzMITTED DATA RECEIVED

PACKETS BYrs 1 PACKETS BYTES

dali 28.02 19.87 23.84 19.13
calder 12.19 8.99 25.56 37.04
spur-gw 9.71 22.78 8.26 5.22
Total 49.92 51.64 57.66 61.39

Table 4-5 shows the percentage of total TCP traffic that the three gateways on XCS switched.
The three machines together switched more than 400 million TCP bytes, or 100 million more than
the total traffic of Shoch and Hupp, and Calder alone routed 164M bytes, more than 50 percent of
the Xerox PARC total. This is possible (recall that the total TCP byte count in Table 4-1 amounts
to 356.6M bytes) because a single TCP packet in transit is counted twice: as an incoming packet on
some gateway, and as an outgoing one on another. We observed 540,876 packets in transit, which
transported more than 95M bytes.

Table 4-6 displays how this transit traffic is divided among the gateways. As we have seen,
the bulk of the traffic in transit is due to TCP traffic created by the spur network. Notice a curi-
ous phenomenon: most of the communication from spur to the VAX's is switched by calder to
ucb-ether (see Figure 2-1). However, most of the return traffic is switched by dali from the cs-div
network (recall that most of the Computer Science VAX's are on both ucb-ether and cs-div).

4.6. Interarrival Time

Figure 4-6 illustrates the distribution of packet interarrival times over one day. We compute
the interarrival time as the difference between the times when the transmissions of two subsequent
packets began. Note that due to the high arrival rate, there are a small number of interarrival
times greater than 100 ms. By contrast, in measurements taken at MIT 19 there is a significant per-
centage of arrivals with interarrival times above 200 ms.

-15 -

TABLE 4-6. DISTRIBuInON OF TRANSIT TRAFFIC AMONG GATEWAYS

DESTINATION

calder dali spur-gw Total
calder 0.00 9.44 9.44
cald 0.00 3.71 3.71

SOURCE dali 0.03 32.95 32.98
_OUCE _al 0.01 12.10 12.11

40.41 17.17 57.58
spur-gw 78.41 5.77 84.18

Total 40.44 17.17 42.39 100.00
78.42 5.77 15.81 100.00

FIGURE 4-6. PERCENTAGE OF PACKET ARRIVALS (ALL PACKETS)

10%_

1% -

.1%

.01%-

.001%-

0 50 100 150

Interarrival Time (ms)

Analytical or simulation studies often model the arrival process as a Poisson process or as a
batch Poisson process (sometimes called a compound Poisson process). [The absence of correlation
between arrivals, which is one key assumption of the Poisson model, is essential to obtain closed-
form analytic solutions. 6] In the first case, a semi-logarithmic scale graph of the interarrival time,
like the one represented in Figure 4-6, would be a straight line In the second, it would be a
straight line with a peak- the batch- at the origin.

The Poisson model is inappropriate because it assumes that there is no correlation between
arrivals. Preliminary investigation shows that the arrival process is highly bursty and that the
independence assumption is almost certainly not justified. 20 Figure 4-6 shows that there is a high
probability that one arrival will be followed by a second one within a deterministic time, which
depends or, the protocol, the packet sizes, and the traffic intensity. Three facts explain this: first,
the objects transmitted by network protocols are much larger that the maximum packet size on the
Ethernet; second, request-response protocols (both ND and NFS can be so classified) generate
interarrival times whose distributions have pronounced modes; and third, the sources of packet
traffic are bursty. 26 .53 Another reason for rejecting the Poisson model as well as the batch Poisson
one is that the mean of our arrival process is not constant (see Figure 4-9). Furthermore, in

- 16-

Figure 4-7, where we show the detail of the interarrival times in the region from 0 to 40 ms, we
see that there are a number of peaks located between 0 and 7 milliseconds. In this paper, by
studying the various protocol components of the traffic separately (see Sections 5.2.5, 6.4, and
7.7), we show that we can characterize interarrival time constants that are not visible if the arrival
process is studied globally. However, within the limited scope of this article, we do not try to
answer the difficult and challenging question of what the most appropriatc model for a network of
diskless workstations is. A related paper will deal with these issues in greater detail. 24

oFIGURE 4-7. PERCENTAGE OF PACKET ARRIVALS (ALL PACKETS) DETAIL

10%- 2

3

4

1% -

.01% -

SI I

0 10 20 30 40
Interarrival Time (ms)

We have numbered the peaks in Figure 4-7; as observed above, they represent patterns of
interarrival time. Each of these peaks, which is distinct from each other, has a width of no more
than a third of a millisecond. This is in accord with the analysis of the timing errors in our meas-
urements that we performed in Section 3 All of these peaks are generated by the ND protocol
and will be explained in Section 6.4. They correspond, in order, to peaks 1, 3, 5, 6, 8, and 12 in
Figure 6-6.

Figure 4-8 displays the cumulative distribution of the interarrival times. The numbers refer
to the peaks in Figure 4-7. Notice that 50 percent of the packets are followed within 3 ms by the
next packet, 84 percent are followed within 10 ms by another, fnd 99 percent within 90 mil-
liseconds. Shoch and Hupp observed values three times as large.

There are several factors that contribute to this variation. First, the network utilization is
higher, which makes the mean interarrival time lower. The mean packet arrival rate is 137 packets
per second and the mean interarrival time is 7.299 ms, while the corresponding figures for the
Xerox PARC Ethernet were 25 packets per second and 39.5 ms fespectively. Second, the bit rate
in our Ethernet is 10 Mb/s while it was 2.94 Mb/s in the case of the older Ethernet. Third, the
newer protocols, in particular the ND protocol, have been optimized for the shortest response time.
Finally, our SUN's and MicroVAX's are faster than the Alto computers on the Xerox Ethernet and
many of our Ethernet interfaces [SUN Intel and AMD Am7990 Lance] provide much higher per-
formance than the Experimental Ethernet controllert in exclusive use at Xerox PARC eight years
ago.

t The Experimental Ethernet controUer for the Alto was half-duplex. The time required to switch to receiving
mode after packet transmission could have caused packets to be missed by the receiver. 52

- 17-

FIGURE 4-8. CUMULATIVE PERCENrAGE OF PACKET ARRIVALS (ALL PACKETS)

10D%

8()%
70% .~.......A * *' ****

.37- 7.... 7....................

80%

70% 7 7 ...4 M i-:i :..... *-:

30%i. ' "" " '?.... "- "..... 7 i.........

20%7..

53O.

20%

10%.
10% ~7

.1 .2 .3 .5 1 2 3 4 5 67 10 20 30 50 100

Interarrival Time (ms)

4.7. Packet Rate
Figure 4.9 displays the packet arrival rate averaged over one-minute intervals. It shows that

the rate is a function that varies with the time of day. Observe that, despite the non-uniform
packet size distribution (Figures 4-4 and 4-5), the packet arrival rate is a very good estimator of
the network utilization (Figure 4-1).

FIGURE 4-9. PACKET ARRIVAL RATE (PACKETS/SEC)

400..

200I

1:00am 4:00 7:00 10:00 1:00pm 4:00 7:30 10:00 12:59am
Time of Day

In order to obtain a better understanding of the variation in the packet arrival rate, we
counted how many packets arrived over one-second intervals and then counted how many of those
one-second intervals had the same number of packet arrivals. Figure 4-10 and Figure 4-11 plot
these numbers for two time periods: between 7 and 9 am, at low network utilization; and between
9 and 10 pm, when network utilization is at its highest. The highest number of packets received in
one second was 343 in Figure 4-10 and 572 in Figure 4-11; in both cases we have truncated the the
graphs for the sake of graphical presentation.

The first three peaks in Figure 4-10 occur at packet arrival rates of 2, 4, and 6 packets per
second. Odd-numbered arrival rates are less frequent because, our protocols tend to reply to each
request packet. In the case of TCP there are transmission/acknowledgement pairs, while for ND
and NFS there are request/response pairs. The oscillations in Figure 4-11 are instead due to the

- 18-

small number of samples available for each sampling point.

FUTRE 4-10. NunBER OF INTERVALS BETWEEN 7 AND 9 AM

200-

150-

100-

50-

0-

0 50 100 150 200

Number of Packet Arrivals in One Second

Given that the sampling interval of one second is larger than the protocol time constants,
which are in the order of tens of milliseconds, the number of arriv ,ls in one second can be thought
of being independent of the arrivals in the following second. Under this condition, the number of
arrivals in one-second intervals could be modeled by a discrete Poisson distribution. The shape of
the two figures confirms this hypothesis.

FIGURE 4-11. NUMBER OF I TrERVALS BETWEEN 9 AND 10 PM

25

20-

15-li

10-

0_ III II

100 200 300 400 500

Number of Packet Arrivals in One Second

4.8. Summary

Our measurements show that packet traffic in a diskless workstation envirolnient differs
sharply from the traffic in other environments.

First, we noticed how the network utilization has increased due to the new file system and
disk protocols. For significantly long periods during the busiest hours of the day, Ethernet utiliza-
tion amounts to about a third of its raw total bandwidth. Studies have shown that, at this level,
network latencies will begin to increase. 30 For instance, according to Gonsalves, 22 who measured
Ethernet delays at varying, artificially-generated network loads for different packet lengths, the
queuing time at traffic intensity 0.3 is larger than 5 ms when all packets transmitted are 64 bytes

- 19-

long, and about 19 ms when the packet length is 1500 bytes.t We shall see in Section 7 how the
increased latency affects the NFS protocol.

Second, the communication patterns are skewed. Although in the Xerox Ethernet more bytes
were directed to network servers, the percentage of traffic between any two single machines was
small compared with the total traffic.tt Not only have we seen that two single machines can load
our Ethernet to one fifth of the raw network bandwidth, but they can also generate 20 percent of
the total packet count. This phenomenon should be attributed both to differences in users'
behavior and to differences in hardware efficiency. In particular, low performance network inter-
faces (such as the 3Com Ethernet interface which only has buffer space for two packets and does
not allow DMA to the host's memory) will not achieve high throughput. These observations
strongly suggest that, under our traffic characteristics, the Ethernet may well become a perfor-
mance bottleneck.

The fact that terminal and file transfer traffic carries more data in our network than it did in
the Xerox network should be attributed to two related factors. First, our workstations have larger
bitmap displays and a very flexible user interface; as a result, users keep several windows open
during one session and log on to a number of machines. Second, the topology of the network
envirunment within a single organization most often involves more than a single Ethernet. As a
result, often a network carries transit traffic that is originated from and destined to machines not
connected to it A portion of the file transfers are due to the fact that the SUN file systems were
not backed up. The question arises whether local disks (used for the file system rather than as
backing store) would have modified the network traffic due to file copying. We do not believe,
however, that the local disks of the Alto workstations used at Xerox PARC modified significantly
the proportion of the traffic due to remote file copy.

Third, the median of the packet size distribution has increased because of the large amount
of file page traffic. The distribution itself is no longer bimodal.

Fourth, request-response protocols associated with fast network interfaces have reduced pro-
tocols' time constants. The arrival process shows z significant departure from a Poisson process.

Although these general observations offer many insights, we can gain further knowledge by
analyzing the protocols that are responsible for most of the traffic. In the following three sections
we shall describe the network protocols by focusing on TCP, ND, and NFS. We shall limit the
analysis to those features of the protocols that are relevant to understanding communication traffic.
Thus, the file access properties of ND and NFS will not be covered in detail.

5. The DARPA Family of Protocols
The DARPA family of protocols spans several layers of the Open System Interconnection

(OSI) model developed by the International Standards Organization (ISO). At the application
layer, it includes a virtual terminal protocol (TELNET), a file trarsfer protocol (FTP), and a mail
transfer protocol (SMTP). In Berkeley UNIX 4.2 the first two are implemented as user programs,
felnet and ftp, while the latter is implemented by the mailing daemon sendmail. At the highest
layer, Berkeley UNIX also provides a remote login protocol (riogin, riogind), another remote file
copy protocol (rcp), and a remote execution protocol (rexec). Together they provide a comprehen-
sive set of network services over both local and wide area netvorks. All of these protocols are
built on the communication mechanisms provided by the Transmission Control Protocol, a session
and transport layers protocol, and the Internet Protocol, a network layer protocol.

t The transmission tune of a 1500-byte packet is roughly 1.2 mis.
++ We infer this from Figure 5 of Soch and Hupp's paper, as the authors do not present quantitative data for
their communication matrix.

-20 -

5.1. The Internet Protocol and the Internet Message Control Protocol
The Internet Protocol was designeL for the Arpanet, a packet switched network. The protocol

performs two major functions: addressing and fragmentation. Since packets, which in the Arpanet
terminology are called internet datagrams, can take one of several routes, each packet header indi-
cates the source and destination addresses. The protocol treats each datagram as an independen:
entity unrelated to any other internet datagram. At this level, there are no connections or virtual
circuits. In the process of being forwarded to its destination, a large packet could be routed to a
network that only allows smaller packet sizes. The IP modules are then responsible for the frag-
mentation and reassembly of datagrams.

There are no mechanisms to improve the end-to-end data reliability. There is no flow con-
trol: if a network becomes congested the IP modules may choose to drop incoming datagrams.
There is no sequencing and packets may arrive out of order. There is no error control; only the IP
header is checksummed.

An internet module resides on each host engaged in communication and in each gateway.
O..casionally a gateway or a destination host will communicate with a source host, for example, to
report an error in datagram processing. For such purposes they use the Internet Control Message
Protocol (ICMP). 44 ICMP uses the basic support of IP as if it were a higher level protocol; how-
ever, ICMP is actually an integral part of IP, and must be implemented by every IP module.
ICMP messages are sent in several situations: for example, when a datagram ca, - ot reach its desti-
nation, when the gateway does not have the buffering caiacity to forward a datagram, and when
the gateway can direct the host to transmit traffic on a shorter route.

The Internet Prc:ocol ii a host-to-host protocol in that there is no provision for addressing a
particular process running on a host. The IP header contains a type field, which is Lsed at the des-
tination hosts to demultiplex the data carried by internet datagrams to higher-levei protocols. The
most common o these protocols are the Transmission Control Protocol and the User Datagram
Protocol (UDP). The modules associated with these protocols are responsible for addressing
processes within each host. (Notice that SUN Microsystems has defined a non-s:zrdard, new IP
type for its Network Disk protocol, which uses IP as its transport protocul. Since ND carries disk
blocks between a machine's kernel and remote disk servers, a host-to-host protocol is appropriate.)

It is important to notice that IP addresses, 32-bit quantities, are conventsnally divided into
segments that represent network and host numbers respectively. While there are ,;everal different
representations, 2 1 2 ,3 9, 40 .46 the one most often used at Berkeley, which allows the logical division
of a local area network into subnetworks, divides the IP address into four 8-bit quantities: an inter-
net network number, a local network number, a subnetwork number, and a host number. There
are provisions in IP for transmitting broadcast messages if a network allows it. Although there are
proposals for an extension, 18 currently network gateways do not forward broadcast messages to
networks other than the one where the message originated.

We noticed that a number of packets with erroneous IP destination addresses were transmit-
ted. In some instances, we saw ICMP packets whose source address was the IP broadcast
address.t Some I? packets were broadcast although their IP destination address was not the broad-
cast address. We observed packets with the address of the software loopback interface, which is
used by a machine when a packet is sent to its own address, as source address. A few IP packets
whose destination was the broadcast address were not broadcast on the Ethernet.

All these anomalies have very little statistical significance, but packets with wrong addresses
can cause a good deal of trouble. Whenever an IP packet with a wrong address is received by a
machine, the IP module on that machines returns to the sender an ICMP error message. If the
faulty packet is broadcast, every receiving station will attempt to reply simultaneously causing

t Some implementations of TCP/IP simply reverse the source and destination addresses of an ICMP echo message
when constructing the echo reply to send to the requesting machine. When the destination address of the echo
message is the broadcast address, Berkeley UNIX instead substitutes the address of the network interface that re-
ceived the echo ICMP message for the IP source address of the echo reply.

L

- 21 -

network congestion. In view of these problems, which are particularly severe on gateways, at
Berkeley system administrators are considering the establishment of requirements that a host must
satisfy in order to be connected to a network.29

Of all ICMP packets received, 63.43 percent were redirect messages for the network. A
gateway sends a redirect message to a host that wants to communicate with a second machine when
the gateway's routing table shows that the IP message should be sent to another gateway that is on
the host's network. The redirect message advises the host to send its traffic for the second
machine directly to the gateway on its network as this is a shorter path to the destination. As
many as 8.87 percent of the ICMP messages were destination unreachable messages and only 0.13
percent were source quench message. Since the latter are sent by hosts or by gateways when their
receiving capacity limit has been reached (or exceeded) to inform the sources that they should
reduce the transmission rate, we conclude that there is adequate buffer space on the hosts for
today's IP traffic at the throughput levels of SUN UNIX and Berkeley UNIX 4.3BSD.

As shown in Table 4-1, the IP protocol accounts for the large majority of 'Packets transported
by our Ethernet. The three most important components are those of TCP, a traditional
connection-oriented protocol; ND, a specialized request-response protocol; and NFS, which is based
on a remote procedure call protocol. In the remainder of Section 5 we shall describe the traffic
characteristics of TCP and UDP; and in Sections 6 and 7, those of ND and NFS.

FIoURE 5-1. ETHERNET UTtLZATION (TCP PROTOCOL)

4 %

2% !

1:00am 4:00 7:00 10:00 1:00pm 4:00 7:00 10:00 12:59am
Time of Day

5.2. The Transmission Control Protocol

TCP is a connection-oriented protocol that provides reliable process-to-process communica-
tion service between two machines in a multi-network environmert. Reliability is achieved by
using sequence numbers for the data transmitted and requiring positive acknowledgement from the
receiving side. Unacknowledged data is retransmitted after a timeout interval. A receiving TCP
module uses the sequence numbers to correctly order packets recti,,ed out of order and to elim-
inate possible duplicates. Damaged packets, which are discarded, are detected by verifying that
the received data generates a checksum value equal to the one added to each transmitted packet.
TCP provides flow control by returning with every acknowledgement a window that indicates the
number of bytes for which the receiver has allocated buffer space.

5.2.1. Utilization

In Figure 5-1 we show the network utilization due to the TCP protocol. The most striking
aspect of this protocol is that, despite the high number of packets transmitted, it generates very
low network utilization. The activity peak between 9 and 10 pm is due to file system dumps per-
formed across the network. Notice that the file system dumps may not be good indicators of TCP
throughput since, in the presence of disk contention, data may not be generated so fast as to keep
TCP buffers always full. In addition, the programs used for the dumps may be inefficient.

- 4-- -.,

5.2.2. Data Size
Many TCP packets carry character traffic (characters of UNIX shell command lines) from

diskless workstations on the XCS network to VAX's on other networks. Therefore, many packets
are short. This is displayed in Figure 4-4, which also shows that TCP traffic is essentially bimodal.
Figure 5-2 shows the size of the objects transported by TCP packets, i.e. the length of the data
portion of TCP packets. More than a third of them transport no data. They are acknowledgement
packets (each carrying a 20-byte IP header, a 20-byte TCP header,t and 6 empty cata bytes!) tha:
are sent from the receiving host to the transmitting one. Although a portion of the one-byte
objects is due to editors that put tty devices in raw mode and do not buffer character transmission,
most of them are keep alive messages. Keep alives, which involve two messages, are implemented
by periodically retransmitting the last byte of a conversation (a one-byte message) in order to get
an acknowledgement (a zero-byte message) from the other side of a connection.'t

FioU-E 5-2. PERCEN-rAGE OF TCP PACKETS vs. DATA SIZES

. 38.4% 4.8%

2%

1%

0 1 4 24 94 256 512 1024

Size of Data Transported by TCP PacLets

Notice that the longest obiect is 1024 bytes long. TCP throughput would increase if, when
needed, maximum size packets were used.

The two peacs at 24 and 84 bytes depend almost exclusively on packets transmitted by con-
nections established by xterm in the X window system, 50 which. at the time of the measurements.
was used on XCS's MicroVAX's. Each 24-byte message carries a single byte of information encap-
sulated in a structure used for the management of graphical representation. It is the traffic of 24-
byte data messages that generates the small peak at 64 bytes in the global packet size distribution
in Figure 4-4.

Berkeley UNIX 4.2 as well as 4.3BSD, but not SUN UNIX, employs the so-called trailer
encapsulation. 33 In this encapsulation, when a message to be transmitted is sufficiently long, the
protocol information is placed at the end of the packet so that the received data can be page-
aligned and copy operations can be reduced to manipulation of page pointers. The number of TCP
packets with trailer encapsulation transmitted in one day is 18,826.

In the past, when TCP was mainly used on time-sharing machines with many active
processes, there was concern about the kernel memory to allocate for transmission buffers and
status information. Today, with single-user machines, and decreasing memory costs, the the win-
dow size of TCP has increased. In our data, window sizes of 2K and 4K bytes were most common
and some lisp machines used windows as large as 16K bytes.

t Since IP and TCP allow options to be inserted in their packet headers, the headers may vary in size. The 20-
byte size corresponds to headers without options. The overwhelming majority of TCP packets carry IP and TCP
headers without any options.
t This is not a specification of TCP but an addition of the Berkeley UNIX implementation of the protocol.

- 23 -

5.2.3. Connections

In order to provide data demultiplexing, TCP uses a set of addresses, called ports, within
each host to address individual processes. The source machine address, the source port number,
the destination machine address, and the destination port number uniquely identify a TCP connec-
tion. The reliability and flow control mechanisms of TCP require status information for each con-
nection.

FIOUE 5-3. NUMBER OF TCP CONNECrIONS AND AcrvE TCP CoNNECnoNs

12 o0

I I .I I I I I

1:00am 4:00 7:00 10:00 1:00pm 4:00 7:00 10:00 12:59am
Time of Day

The top line in Figure 5-3 shows the total number of TCP connections while the bottom line
only shows the number of active TCP connections on our network. Therefore, the segmen.ts
between the two curves represent idle connections. Each point in the graph corresponds to a
minute of network activity. A connection is considered active if at least one data byte is transmit-
ted during the counting interval of one minute; it is considered idle if only acknowledgements or
keep-alive packets are transmitted.

Observe how the number of idle connections sharply decreased when, just before 4 pm,
ucbarpa, one of the largest VAX's of the Computer Science division, crashed. During the next
hour these connections were slowly re-established as workstation users like to have a window con-
nected to a VAX even though they may not use it. (One of the reasons for the high difference in
the number of connections before and after the crash, is that ucbarpa is itself a gateway, and is
directly connected to the Berkeley Arpanet IMP.) The oscillations that are visible in the hours
from about 2 am to 10 am are due to a few ftp connections left open between a LISP machine and
several VAX's. We sample every minute while ftp sent keep-alives every two minutes. Notice also
how the number of idle connections decreased when a user on a MicroVAX- dikdik- logged out at
about 5:20 in the morning. The user had several (idle) connections to machines in the Electrical
Engineering department. Finally, notice hcw the funcdor. Jhat represents the number of active
TCP connections, unlike that for the total number of connections, resembles the function that
describes the network utilization (Figure 4-1).

5.2.4. Higher-Level Protocols
TCP follows the convention of port numbers that are known in the internet environment and

to which network servers bind permanently. These well-known port numbers facilitate the pro-
cedure for establishing connections. Each server uses a specific higher-level protocol; therefore, by
looking at those ports, we can identify the higher protocol traffic components of TCP. Table 5-1,
in which the entries are listed in decreasing order of the sum of bytes transmitted from both
servers and clients, lists the major components of TCP traffic. All of these protocols can be classi-
fied as application layer protocols in the OSI model. The DATA columns show the percentage of

- 24 -

total data bytes (using the sizes of the TCP data fields) transported by the TCP packets.

TABLE 5-I. TCP PROTOCOL STATISTICS (PERCENTAGES)

PROTOCOL SERVERS' SIDE CLIENTs' SIDE

PACKETS BYTES DATA PACKETS BYTES DATA
login 32.99 21.99 13.61 43.52 20.28 0.42
rcp 3.38 3.73 4.04 4.79 32.89 55.89
printer 0.60 0.32 0.08 0.80 5.57 9.46
ftp 0.40 3.07 5.25 0.42 1.03 1.52
telnet 2.84 1.65 0.72 3.86 1.80 0.05
sMtp 0.13 0.08 0.04 0.15 0.14 0.13
Total 40.34 30.84 23.74 5-.54 j 61.71 _67.47

The servers' side lists the data that was transmitted by the various network protocol servers
(often running on hosts on networks other than XCS), while the clients' side shows the data that
user processes sent to servers on XCS or other networks. In some case, as for example for the
login server, there is one server per machine. In others, there are only one or a few per local area
network such as the case of the printer server.

In Table 5-1 two remote login protocols, login and telnet, and two remote file transfer proto-
cols, rcp and ftp, are listed. This reflects a fundamental trend in, we believe, the majority of local
area environments. Even within the scope of a single organization, the need to transmit informa-
tion and share data on different hardware and software systems, forces system administrators to
maintain, anc users to employ, a variety of programs

These protocols encompass 93.88 percent of the total number of TCP packets, 9:.55 percent
of tk'e total TCP bytes, and 91.21 percent of the total TCP data bytes. The remote login protocol
is responsible for the majority of packets ari bytes sent on the network. This is the combined
result of both the multiwindow environment of personal workstations, which enables one to simul-
taneously open many connections, and the fact that most VAX's are on other networks. Notice,
however, that the rcp protocol accounts for most of the data bytes transferred- 59.93 of the total.
This again depends on the high number of acknowledgement and keep-aiive packets that are sent
on idle login connections, whereas rcp is used to copy files.

It is interesting to note that rcp is used primarily to transfer data from the client's side to the
server's side (55.98 vs. 4.04 percent of data bytes). We have verified, by identifying sources and
destinations of data transferred on the rcp port, that most of the bytes were moved from the SUN
workstations to VAX's. Therefore, rcp traffic is primarily generated by remote file copying pro-
grams invoked on XCS workstations to "push" files to VAX's, which do not share any file systems
with SUN workstations, on networks other than XCS. (The rcp protocol is virtually unused to
transfer files between SUN's as the remote file sybtern implementation of ;UN UNIX allows work-
stations to mount file system from various file servers.t)

An analogous situation occurs with the printer protocol: users send files to the various
departmental printers located on VAX's. Notice that instead the situation is reversed with the
second file transfer protocol: ftp. Its traffic is generated for the most part by users who, from
LISP machines, use ftp to both log on to the VAX's and to "pull" files.

Notice that the low-level activity of the mail protocol (smtp) is mostly due to the fact that
users tend to send electronic mail or reply to received messages from the machines where they
receive their mail. Few at Berkeley receive their mail on personal workstations.

t We did observe some rcp traffic between the workstations in the xcssun cluster and xcssun itself.

- 25 -

5.2.5. Source Destination Traffic
Table 5-2 shows the source-destination traffic patterns for the TCP protocol. The table is

divided into two parts. Each line on the left side lists the traffic between a source and a destination
machine as a percentage of the total TCP traffic. The right side lists the traffic between the same
two machines in the opposite direction. The entries are sorted in decreasing order of total bytes
transferred between two machines. We use different fonts to represent different classes of
machines as we did in Table 4-2: boldface for SUN file servcrs, roman for diskless SUN work-
stations, capital for VAX's, and italics for MicroVAX's and LISP machines.

TABLE 5-2. SOURcE-DESTINATION TRAFFIC STATISTICS

SOURCE DESTINATION PACKETS iYTES SOURCE DESTINATION PACKETS BYTEs
sequoia DALI 0.6130 5.7727 DALI sequoia 0.3066 0.1423
allspice KIM 0.5809 5.4781 KIM allspice 0.2942 0.:594
env-150 KIM 0.4565 4.3613 KIM envv-150 0.2305 0.1131
ginger MIRO 0.3836 3.6810 MIRO ginger 0.2080 0.0959
snow DALI 0.3694 3.4527 DALI snow 0.1887 0.0870
allspice DEGAS 0.2876 3.0297 DEGAS allspice 0. 1573 0.0724
Icssun JI 0.3023 2.7848 1 xcssun 0.1618 0.0746
ginko INGRES 2.6259 1.4316 INGRES ginko 1.8324 1.0975
I ERNIE 1.7547 1.1105 ERNIE Jl 2.07-7 1.0424
shangri-la INGRES 0.8401 1.7246 INGRES shangri-la 0.3351 0.1920
uranus VANGOGH 0.7259 1.2630 VANGOGH uranus 0.5580 0.5940
paprika SIN 0.2013 1.7225 SIM paprika 0.1329 0.0611
CORY dikdik 0.77% 0.9974 dikdik CORY 0.9149 0.5577
31 CORY 0.8590 0.6941 CORY 11 1.2368 C.5721

RENOIR elm 0.6246 0.7984 elm RENOIR 0.7531 C.312
VANGOGH war:hog 0.1508 1.0918 warthog VANGOGH 0.1051 0.0569
RENOIR ash 0.9430 0.5779 ash RENOIR 1.0990 0.5499
CORY plato 0.1765 1.0230 plato CORY 0.1223 0.0977
achilles KIM 1.1329 0.5206 KIM achilles 0.8124 0.4540
chip ERNIE 1.2338 0.5673 ERNIE chip 0.7286 0.3883
RENOIR redwood 0.6719 0.5741 redwood RENOIR 0.7750 C.3560
UCBARPA il 0.9530 0.4478 J! UCBARPA 0.6475 0.4097
RENOIR fir 0.6427 0.4742 fir RENOIR 0.7628 0.3508
CORY aristotlc 0.7748 0.4286 aristotle CORY 0.5669 0.3562

One immediately notices that the imbalance present in Table 4-2, which showed IP traffic, is
not present in Table 5-2. No single machine transmits more than six percent of the total TCP byte
count. Unlike the transfers of Table 4-2, however, there is a pronounced imbalance, at least in the
first few table entries, between entries on the left and right sides of a same lines. (On the first
line, for instance, sequoia sends 5.77 percent of the bytes to dali, but receives only 0.14 percent of
the bytes from it.) This can be explained by observing that the file system protocols ND and NFS,
which account for most of the total IP traffic, generate balanced traffic. In NFS files are read and
written, and in ND, which among other things administers the workstation's backing store. paging
traffic is first written and then read from remote disks. In the case of TCP instead, file copying,
which carries the bulk of the data, goes, for each pair of machines, mainly in one direction.

Observe that all entries, except three, refer to communication between workstations and
VAX's- an indication that TCP is mostly used for internetwork traffic.

5.2.6. Interarrival Times

Figure 5-4 shows the interarrival time distribution for the TCP protocol. We compute the
interarrival time as the difference between the beginning of the transmissions of two subsequent
TCP packets. On the left side of the graphs we list the percentage of the TCP packets, on the
right the percentage relative to all packets. The initial peak is due to keep-alive messages and
occurs at about 0.4 ms. The peaks numbered 2, 3, 4, and 5 occur after an interval where there are
fewer interarrival occurrencies. These peaks correspond to TCP packets that are queued as they
are generated during the transmission of one of the many 1K-byte ND packets (see Figure 4-4).

- 26 -

Had we observed the arrivals of packets at the network interface queues, rather than at the net.
work after the Ethernet transmission deference has taken place, we would have seen a distribution
closer to that of an exponential distribution.

FIGURE 5-4. PERCENTAGE OF TCP PACKET ARRIVALS (AT RzIHT AS PERCENTAGE OF ALL ARRIVALS)

1% -. 4%

_01%

.01%_

0 10 20 30 40 50
Interarrival Time (mns)

Figure 5-5 plots the cumulative interarrival time distribution for TCP packets. We have
marked on the graph the positions of the peaks in Figure 5-4. Notice that 50 percent of the pack-
ets are followed by another within 11 ins, 10 percent are followed by another within 2 Ins, and 90
percent within 52 ins. TCP is slow compared to ND and NFS, which exclusively carry local tra:-ic;
since packet acknowledgements come mainly from machines on other networks, gateways add their
switching time to the propagation delays of most. TCP packets.

FIGURE 5-5. CUMULATIVE PERCENTAGE OF TCP PACKET ARRIVALS (A~T RIGHT AS PERCE.NTAG;E OF ALL ARRIVALS)

100% 28.56%

90%................................. .. L....... 25.70%

80%..... 22-.84%

70% 7"...... 19.99%
6 % *...... 13

50% 7............... 14.28%

40% 11.42%

30% 8.57%

* ~ ~ . *
* *2..

10%............................... 2.86%
......

.1 .2 .3 .5 1 2 3 4 5 6710 20 30 50 100

Interarrival Time (mns)

- 27 -

5.3. User Datagram Protocol

The User Datagram Protocol provides an unreliable, connectionless mechanism for processes
to send messages to remote ones. UDP, like TCP, uses IP as its transport protocol and provides
data demultiplexing with port numbers. UDP allows broadcasting through the mechanism provided
by IP.

UDP is used in the SUN implementation of the Remote Procedure Call protocol, which tran-

sports NFS requests. Thus, NFS uses UDP indirectly. Since we have classified and studied NFS
independently, in this subsection we look only at the fraction of UDP traffic that is not due to NFS
packets.

Although Table 4-1 has already shown that the UDP traffic component is a small fraction of
the total XCS traffic, Figure 5-6 shows that it is almost independent of the overall network traffic.

A study of the port numbers used by UDP shows that 81.9 percent of the total UDP bytes are sent
by the routing daemons that run on each machine and maintain kernel routing tables. These dae-
mons exchange information periodically and the number of packets they send is relatively indepen-
dent of the traffic.

An analysis of the inter-network traffic for this protocol reveals that 99.7 of the packets
remain within the XCS network.

FiGLRE 5-6. ETHERNET UTI.IZATION (UDP PRoTocoL)

0.14 %

0.07% I

1:00am 4:00 7:00 10:00 1:00pm 4:00 7:00 10:00 12:59am

Time of Day

5.4. Summary

IP traffic comprises the great majority of XCS traffic. TCP and UDP account respectively

for 28.55 and 16.93 percent of the total packet traffic, or, combined, for about half of the total IP
packet traffic. However, most of the UDP traffic is generated by SUN's Network File System Pro-
tocol, which we shall analyze as a separate case in Section 7. The remaining part of the UDP
xi,,l,., though important for its routing management functions, is statistically negligible.

We observed IP packets transmitted with wrong source or destination IP addresses. They can
cause a good deal of trouble in gateways; IP modules should, be able to detect these incorrect
addresses, and perhaps ignore them, without flooding the network with ICMP error packets.

Most TCP packets are small. They carry character traffic on connections from XCS's work-
stations to the Computer Science Division's VAX's. Many connections are idle and generate
keep-alive packets that result in a large number of 46-byte packets being sent.

The maximum data size carried by a TCP packet is 1K byte. With the new fast machines
available today, for which the cost of fragment reassembly is reduced, TCP throughput would
increase if larger packet sizes were used.

The TCP interarrival time function approximates the behavior of an exponential distribution.

- 28 -

6. The Network Disk Protocol

The SUN UNIX operating system aliows diskless client workstations to perforn file system
activities over the network on remote file servers by using the ND and NFS protocols. The ND
protocol is used by a special disk device driver on a diskless workstation when disk 1/0 operations
are requested. This pseudo-device transforms disk block read and write operations into ND mes-
sages that are sent to a remote disk server (which normally is also an NFS file server). A server,
upon receiving a message, performs the actual disk I/0 and sends the response back to the c'ient.
Therefore, the ND protocol provides remote disk block access.

The major disadvantage of this type of remote file access is that it does not allow file system
write sharing. In fact, since each client stores disk blocks in a locally-maintained buffer cache in
order to reduce the number of expensive network accesses, concurrent write operations can create
inconsistencies between a client's file data structures and the physical disk image, causing clients to
crash.

The NFS protocol provides shared remote file access and thus avoids the problems of the ND
protocol. However, some features of the UNIX file system, such as the /dev directo-y, which con-
tains special files associated with hardware devices, are difficult to implement in a hared, remote
file system. Moreover, the performance of NFS, which is implemented with a remote procedure
call protocol and is itself a rather complex protocol, is not as good as that of ND.

SUN Microsystems employs both protocols in order to get both performance and fiexibility.
Whereas NFS provides access to general file systems for which read/write sharing is required, ND
is used tr implement each client's root file system, a distinci one for each client; tc access the pag-
ing and swapping area of each workstation; and to access shared portions of the file systems such
as /bin that, by containing read-only executable files, do not give rise to inconsistencies. Although
there are plans to extend the SUN UNIX system to allow shared root file sy' ,ems, remote shared
swapping, and remote device accesses, 49 the systems running in the local area network we meas-
ured relied on both NFS and ND.

Fiouix 6-1. ETHEm.. rr UTILZATION (ND PROTOCOL)

15 %

I I I I I I I

1:00am 4:00 7:00 10:00 1:00pm 4:00 7:00 10:00 12:59am

Time of Day

The transport protocol for ND packets is the DARPA IP protocol. Raw IP datagrams have
two advantages over UDP datagrams. First, duplication of checksumming is avoided since in IP
only the header, and not the entire packet, is checksummed. (Notice that when the physical net-
work medium is the Ethernet, the data-link layer- normally in hardware- checksums the data that
it transmits.)t Second, the kernel-level interface to the IP layer is simpler.

; Our measurements confirm that the Ethernet error rate is on the order of 10.6

- 29 -

6.1. Utilization

Figure 6-1 displays the network utilization attributable to the ND protocol. The graph looks

very similar, both in shape and in magnitude, to that of Figure 4-1, which showed the overall Eth-
ernet utilization.

The ND protocol is used to access three different classes of partitions on remote disks: the

read/write private and paging partitions of each individual client, and the read-only public parti-

tions, which are shared by client workstations.

FIGURE 6-2. ETHERNET UTIUZATION (ND PRoocoL PRIVATE PARTrnONS)

4%..

2%....

""I i I

1:00am 4:00 7:00 10:00 1:00pm 4:00 7:00 10:00 12-59am

Time of Day

A workstation's ND private partition contains the root file system, the directory /etc (in par-

ticular the password file),t the directory /dev (containing the smecial device files), the /tmp direc-
tory, and the mounting joints for other directories in the system. Furthermore, files and direc-
tories containing information pertaining to each workstation (i.e. varying from system tc system),
which in UNIX reside on /usr, are, in a diskless SUN environment, s)mbolic links to the ND
private partition. This applies, for instance, to files such as /usr/adm/acct, " r.ch collects staisti:s
about the processes that are executed on the system. Therefore, /usr/adm. /usr/spool, and similar
directories are symbolic links that point to corresponding directories in the root rile system under
the directory /private. Accesses to the files in these directories are performed through the ND pro-
tocol and generate the network utilization displayed in Figure 6-2.

FIGuRE 6-3. ETHERNET UTILIZATION (ND PROTOCOL: PUX3uC PARTrnO NS)

2%

1:00am 4:00 7:00 10:00 1:00pm 4:00 7:00 10:00 12.59am

Time of Day

The public partitions provide shared access to programs and libraries so that diskless work-

stations can save space in their private partitions. This is accomplished by means of a public file

+ SUN's yellow page service was not in use on Berkeley's SUN workstations at the time of the measurements. 56

- 30-

system at the server that each diskless client "mounts" on the directory /pub. A client then uses
symbolic links to access the public files; for instance, the directory /bin would be a symbolic link to
the directory /pub/bin. The SUN workstations at UCB were configured so that the public partitions
at each file server contained, among other things, the UNIX kernel image, which is loaded into
memory at boot time: the directory /bin; and the /lib directory. Figure 6-3 displays the utilization
of the Ethernet due to ND protocol from public partitions. The traffic from public partitions is
roughly constant throughout the day, suggesting that it is primarily generated by system related
tasks- UNIX specific periodic services- independent of users' activity.

The ND protocol is also used by disldess workstations to access their paging partitions to
which the virtual memory system of the SUN UNIX kernel directs swapping and paging traffic. In
the SUN UNIX virtual memory, processes compete for memory pages from a common page pool.
Therefore, if one process requests more memory space and the system free list is empty, the
pagedaemon looks for pages owned by other processes to free (and writes ther to the paging dev-
ice if dirty). This system generates little swapping ac:ivity- the suspension of processes by saving
their entire state information on the backing store- but a high amount of paginf traffic when work-
stations' physical memories are not sufficiently large. Figure 6-4 shows the utilization generated by
paging activity. Notic- how the shape of the graph is similar to that of the overall ND utilization
(Figure 6-1), and that of the total Ethernet traffic (Figure 4-1).

FIGURE 6-4. ETHERNET UTILIZATION (ND PROTOCOL: PAGING PARTITIONS)

1:00am 4:00 7:00 10:00 1:00pm 4:00 7:00 10:00 12:59am

Time of Day

One might find it surprising to discover that the ND protocol accounts for most of the net-
work traffic. The relative importance of the ND protocol components can be explained by 1) small
physical memories on most client workstations, which cause excessive paging activity; 2) small
available file buffer caches, which force the kernel to discard page!, belonging to commonly used
programs; and 3) the tendency of the UNIX operating system to extensively use the directory /tmp,
which in the SUN environment resides in the root partition.

6.2. Packet Length
The packet size distribution for the ND protocol is strictly 6imodal. Read-request and ack-

nowledgement packets are small- 48 bytes;t write requests and read responses are 1K-byte pack-
ets.

The protocol, which consists only of the two operations read and write, is very simple and is
entirely driven from the client side. The data are transferred in 1K-byte packets and workstations
or file servers can only send six packets in sequence before being forced to wait for an ack-
nowledgement. Figure 6-5 shows the packet transactions for 8K-byte read and 8K-byte write
requests. The client read request generates six reply packets, which the client must acknowledge,

t In most cases SUN3 clients (see Figure 4-4) add two extra enpty bytes to the structure that is sent in an ND re-
quest, resulting in 50-byte request packets. At times, however, they send 48-byte ND requests.

-31 -

FIGURE 6-5. NETWORK DISK PROTOCOL TRANSACTIONS

8K-Byte Read Transaction 8K-Byte Write Transaction

Client Server Client Server

Read Request Write Request (Data)

Data Data

Data Data

Data Data

Data Data

Data Data

Data Acknowledgement

Acnowledgemenl Data

Data Data

Data Acknowledgement

before the server can send the remaining two packets. In the case of an 8K-byte write request, the
client first sends six data packets and then must wait for the server to acknowledge before sending
the last two packets. (System administrators may change the default number of six, but this was
not done at Berkeley at the time of our measurements.)

6.3. Partition Activity

Table 6-1 shows, for each file server, the activity of the ND protocol concerning the private,
read-only public, and paging partitions. The third column shows the number of packets directed to
a particular partition that were sent or received by a file server. Column four shows the
corresponding data bytes transported by those packets., The following two columns show the
number of read operations- each possibly involving more than one packet- that were requested
and the number of file bytes that were read. Analogously, the last two columns show the number
of write operations performed and the number of bytes written by client workstations to files in the
private and paging partitions (there are no writes to the public partition since it is a read-only par-
tition).

One immediately notices the high proportion of paging activity. For sequoia, for instance, it
accounts for 67.3 percent of the packets and 68.0 percent of the data bytes. Although the number
of read operations to the paging partition is much larger- almost twice as many in the cases of
sequoia, xcssun, and lassen- than the number of writes, the difference is not as large for the actual
bytes transferred. In fact, in the xcssun, snow, teak, and dim clusters the number of bytes read
from the paging partitions is even lower than the number of bytes written. The reason for this
behavior is that the maximum read request is limited to 8K bytes, whereas the maximum write
request can be as large as 63K bytes. (In the case of the private and public partitions, the max-
imum request is always 8K bytes.)

Whereas the high level of paging activity certainly depends on the small physical memories in
use on our workstations, the fact that virtual memory pages are written to the paging device and
rarely, if ever, read back may result from system inefficiencies. Since space allocated for each pro-
cess on the backing store is organized as a contiguous sequence of blocks, disk transfers are partic-
ularly efficient because disk arms need not seek between accesses to a process's data. It is not
clear, however, that with today's fast file systems 3s the backing store provides significantly shorter
access time. Alternatively, virtual memory could page to and from the file system. 41 This would

t Observe that from this information, by solving a sytan of two equations in two unknowns, one can derive the
number of small and the number of large ND packets. (For SUN3 clients tlere will be a small error since most
[not s1ll of their request packets are 50 bytes while the servers' acknowledgements are 48 bytes.)

- 32 -

TABLE 6-1. ND PARTITION STATISTICS

FILE DISK PACKETS BYTES No. OF 1BYTES No. OF B'-Es
SERVER PARTITION TRANSMITTED TRANS MITTED READS READ WRITES WRTTEN

dim prlvate 79.616 66.216,.960 6492 17.132.544 12.390 45262.48
public 118,691 78,758.,544 47,292 73,064,448 0 0
paging 64253 54,795.664 7,349 22.284,288 4,995 29.440.000

lassen private 328,862 281.048,480 6,805 29.558,784 31.521 235.704,320
public 68,725 57,246,192 6,874 53,947,392 0 0
paging 61.951 52.087.252 8.055 25.254.912 4.084 23.863.296

sequoia private 624.707 528.920.186 27.741 141.309.952 53.767 357.571.584
public 169,585 141.736,620 18.001 133.559.296 0 0

_ paging 1,634.613 1,428,094,430 100.009 735.089.664 60,558 614.388.736
snow private 253.085 208,381.296 26.503 74.147.840 36.869 122085.376

public 191,459 165.155,472 22,147 155,968.512 0 0
paging 378,960 322.268,104 46.897 139.692,032 29,588 164,410.368

teak private 366,909 311.844,622 12,905 58,514.432 34.415 235.686,912
public 108.364 93.586,666 11,523 88,346.624 0 C'
paging 414.886 364.721,138 18.936 153.397.248 17.554 191.,410,176

xcssun private 438.281 364,654,000 46.419 134,524,928 59.209 209.091,584
public 246.215 210,523,472 52.163 198.705,152 0 0
paging 607,558 515,442,672 76,513 229,871,616 49,914 256.449,536

have the additional advantage, from the point of view of the network traffic, that a process's text
pages need not be written to the backing store the first time they are paged out.

It is important to notice that, although there is a monstrous level of paging traffic, due to the
way processes compete for each others' pages, SUN UNIX, as well as Berkeley UNIX, generaies
very little swapping activity. Researchers who have measured Berkeley UNIX or SUN UNIX vir-
tual memory performance and have found little swapping, have often erroneously concluded that
virtual memory activity would have a negligible effect on network traffic should network file sys-
tems replace local disks.31. 2

The careful reader will have noticed that the sum of the packets in the third column of Table
6-1 is 6,156,720 - 1,882 fewer than the number of packets listed in Table 4-1. The missing pack-
ets had incorrect IP addresses. Incorrect addresses are not defects of the ND protocol, but L man-
ifestation of the anomalies in the Internet Protocol described in Section 5.1.

6.4. Interarrival Time
Figure 6-6 is a plot of the packet interarrival time between ND packets. Analogously to what

was said in Section 5.2.6, the interarrival time is the difference between the beginning of the
transmissions of two subsequent ND packets. Figure 6-7 shows the cumulative interarrival time
distribution. In both figures, the vertical axis on the left shows the percentage of ND packets and
that on the right the percentage of all packets received.

We have numbered the significant peaks in Figure 6-6 and explained them in Table 6-2. The
second column of Table 6-2 lists the client-server pairs whose communication contributed substan-
tially to the peaks listed in the first column. The third column shows the ND partitions to which
the traffic was directed; partitions are listed in decreasing order of importance where more than
one partition was involved. The fourth column classifies transactions as read or write operations
and identifies message sequences, using the names introduced in Figure 6-5, that were responsible
for the peaks. The last column shows the percentages of the tota! peak area that the listed message
transactions account for.

These peaks represent patterns in the communication behavior and time constants that are
determined by the type of transaction, the disk speed, the CPU speed, and the network interface
used. As expected after seeing the influence of the paging activity, the largest component of many
of the peaks is the ND paging partition traffic.

Peaks numbered 1, 3, 5, 6, 8, and 12 are also clearly identifiable in Figure 4-7. This means

- 33 -

FIoUR 6-6. PERCENTAGE OF ND PACKET ARRIVALS (AT RIGHT AS PERCENTAGE OF ALL ARRIVALS)

-10%

6 -1%
1%-- 5

1% 13

14

-. 01%
.01%-

I I I I I I

0 10 20 30 40 50
Interarrival Time (ms)

that no packet belonging to o.her protocols was transmitted between two ND packets in a good
portion of arrivals that contributed to these peaks.

FIGURE 6-7. CUMUJITIVE PERCENTAGE OF ND PACKET ARRIVALS (AT RIGHT ASPERCENTAGE OF ALL ARRIVALS)

100% 52.03%i ! i ! i i12' 4 1!i .e:'
90%y i. 46.83%

80% i 7. 41.6 2%

70%

0%

30% "......... * 1 .6 1%

5 0 %:.".". ..,'. .- '7i 1

40% 20.81%

.1 .2 .3 .5 1 2 3 4 5 67 10 20 30 50 100

Interarrival Time (ins)

While madrone and sequoia exchanged about 20 percent of the total packet count, as we have
seen in Table 4-2, they accounted for more than 40 percent of peaks I and 3, for almost 50 percent
of peak 2, and for about 35 percent of peak 4. Madrone's and sequoia's dominance was due to the
fast processors (Motorola 68020) at both the client workstation and the file server, and their fast
network interfaces.

Data/Data message sequences betwcen madrone and sequoia- two SUN3"s- account for a
large portion of peak 3, which occurs at about 2.2 ms. Since it takes 0.888 ms to transmit a IK-
byte ND packet," protocol overhead for SUN3's amounts to about 1.3 Ins. Some Data/Data

+ The ND packet length is 1072 bytes, the Ethernet header is 14-bytes long, the packet's dtecksum 4-bytes, and
there is a 9.6-microsecond interpacket spacing.

-34-

message sequences between madrone and sequoia are delayed and have interarrival time of about 3
ms (peak 4). There are three possible reasons for the delay: first, there could be queuing at their
network interfaces, which are used by other protocol modules; second, the network channel could
be busy when the two machines generate messages for transmission; and third, the two machines
could be loaded.

The Data/Data transactions at peak 5, which occurs at around 3.4 ins, are generated mostly
by machines in the snow and xcssun cluster. All of these machines are SUN2's; the associated pro-
tocol overhead is in this case 2.6 ms.

TABLE 6-2. ND IN"TERARRIVAL TuiE PEAKS

PEAK MACHINES PARTITION(S) MESSAGES PERCENTAGES

1 madrone-sequoia paging Read Ack/Data 22.60
madronesequoia paging Write Ack/Data 20.56

2 madrone-sequoia paging Read Ack/Data 29.13
madrone-sequoia paging Write Ack/Data 18.14
madrone-sequoia paging Read Data/Data 23.55

3 madrone-.sequoia paging Write Data/Data 19.97
ginko-teak paging Write Data/Data 6.96
madrone-sequoia paging Read Data/Data 15.29

4 madrone-sequoia paging Write Data/Data 13.14
madrone-sequoia paging Read Data/Req 6.11
baobab-lassen private Write Data/Data 5.AS
bashful-snow paging keac Data/Data 7.78

5 saturn-xcssun paging/public Read Dat'Data 6.12
jupiter-xcssun public/paging Read Data'Data 6.12
bashful-snow paging/private Write Data/Data 5.65

6 fmko-teak paging Read Data/Data 16.16
iveoak-sequoia private Write Data/Data 7.63

7 madrone-sequoia paging Write Data/Data 9.54
madrone-sequoia paging Read Data/Data 6.88

8 madrone-sequoia paging Write Data/Data 9. -'
madrone-sequoia paging Write Data/Data 8.50

9 madrone-sequoia paging Read Data/Req 5.9.

oashful-snow paging Write Req/Data _ .__K
10 ginko-teak private/paging Write Data/Ack 12.60

palm-teak private Write Data/Ack 8.18
11 chip-din public Read Req/Data 53.80
12 chip-dim public Read Data/Req 66.55
13 chip-dim public Read Data/Req 25.89

madrone-sequoia paging Read Req/Data 9.35
14 ginko-teak paging Write Data/Act, 6.68

_ bashful-snow paging Write Data/Ack 5.97
15 chip-dim t public j Read Data/Req 71.61

As represented in Figure 6-5, while a Write Data/Data message sequence is generated by
client workstations, the Read Data/Data one is generated by servers. The fact that ginko, a client
workstation, is a SUN3 and teak, its server, a SUN2, explains why the communication between the
two machines shows Write Data/Data sequences that occur mostly at peak 3 and Read Data/Data
sequences that occur mostly at peak 6.

The file server dim had a slower non-standard Fujitsu disk, which was exclusively used by
the client chip as a public file system partition. The absence of disk contention generates the sharp
peaks numbered 11, 12, 13, and 15.

Figure 6-8 displays the interarrival times of ND requests, either read or write requests,
issued by client workstations. The graph therefore shows the distribution of times between ND
transactions. Table 6-3 gives the main components of the peaks listed in Figure 6-8.

As in Figure 6-6 peak 3 was due to SUN3 machines and peak 5 to SUN2 machines for the

- 35 -

FioulE 6-8. PERcErAGE OF ND TRANsc'rioN

1% 2

.10

I I I I I I I I I I

0 10 20 30 40 50 60 70 80 90 100
Interarrival Time (ms)

TABLE 6-3. INTERARRIVAL TnmE PEAKS OF ND TRANSACTIONS

PEAK MACHINES PARTITION(S) TRANSACTIONS PERCENTAGES
1 madrone-sequoia paging Read/Read 22.55

jupiter-xcssun public Read/Read 4.71

2 madrone-sequoia private Write/Read 4.71
saturn-xcssun public Read/Read 4.40
bashful-snow public Read/Read 4.35
madrone-sequoia private Write/Write 15.64

3 ginko-teak private Write/Write 1G.76
madrone-sequoia paging Read/Read 8.23

4 madrone-sequoia private/paging Write/Read 31.53
ginko-teak private Write/Write 14.46
madrone-sequoia private/paging Read/Write 26.70
bashful-snow private/paging Write-Write 9.42

6 madrone-sequoia private Write/Write 30.66
ginko-teak private Write-Write 19.46
madrone-sequoia paging Write-Write 14.60

7 jupiter-xcssun private Write-Write 11.09
mars-xcssun private Write-Writt, 9.82

8 chip-dim public Read-Read 81.88
9 "chip-dim public Read-ReaXd 53.48

madrone-sequoia paging Read-Read 19.52
madrone-sequoia paging Read-Reid 15.10

10 bashful-snow paging Write-Write 10.33
saturn-xcssun paging Write-Write 7.95

same type of Read/Read message sequences, in Figure 6-8 we can see that the time between read
transactions is much smaller for SUN3's than for SUN2's (peak 1 at 0.4 ms vs. peak 2 at 2.4 ms).
There is no contradiction between these time values and those we derived for the protocol over-
head, because client workstations may generate many ND requests in parallel. However, only a
few of these requests are transmitted in quick sequence, since file servers cannot sustain high data
rates from several client workstations.

- 36 -

6.5. Summary
The Network Disk protocol accounts for most of the network traffic. Paging activity contri-

butes the largest proportion of ND traffic. Three inzer-related reasons appear to explain the high
level of paging traffic. First, XCS workstations have small physical memories; second, the virtual
memory algorithms of SUN UNIX, 2. 3 designed when the cost of memory was high compared to
the cost of disk space, try to make maximal use of the memory even at the cost of generating some
extra 3/O traffic; and, third, today's software demands larger virtual address spaces because of its
graphic interfaces.

The portion of ND traffic that is directed to the public and private partitions is file system
traffic and should be added to that of NFS in quantifying parameters for analytical modeling.

The study of ND interarrival times gave us insights into both protocol overhead and the way
machine speed affects response time. The ND protocol is responsible for all of the peaks marked
in Figure 4-7, which displayed the interarrival rime for all packets in the network.

The protocol is very fast: 90 percent of all ND packets are followed by the next packet ,,ithin
18 ms. Three factors contribute to this remarkable speed. First, caches- combined witi' read-
ahead policy- work effectively at the server, so that most read operations need not access the disk;
second, writes are delayed and a server can send acknowledgements as soon as the data have beer
received; and third, the protocol is extremely simple, since it uses the IP transport mechanisms to
bypass much of the kernel's code for higher-level protocols.

Perh,.s the main drawback of ND is the absence o' a selective retransmission capability
Tre loss of a single packet in a multi-packet transfer /we have seen singk transactions that transfer
as many as 631" bytes!) requires restarting the entire transaction. A second disadvantare is that,
whiic many ND transactions involve the transfer of 8K bytes, the pr-:ocol requires that an ack-
nowledgement be sent every 6K bytes. If no acknowledgement were required for an 8K-byte
transfer, its transfer time would decrease by roughly ten percent. (One explanation for this six-
packet limit is that SUN may have believed that the relatively slow SUN2 machines with the 3Corr
network interfaces, which have buffer space for only t%%o packets, could not sustain high data rate,
for long time intervals.) Finally, a third disadvantage of the ND protocol is the way data is organ-
ized in a packet. Given that the decision was made to t-zansfer data in multiples of 1K byte. hac
the protocol information been put at the end of the packet, a baeht ,u i t.,,iie protocols- the data
can be page-aligned- would have increased the throughput.

7. The Network File System Protocol
This section analyzes the network performance of the NFS protcol, which provides diskless

workstations with remote access to shared file systems over a local area network. It does not
directly address the file access properties of SUN remote file system implementation; while the pat-
terns of file access are very important in file server design, they are outside the scope of this study.
Understanding the traffic characteristics of the NFS protocol is particularly important because,
unlike most of the ND protocol traffic, it represents user rather than system activity.

In order to implement a fully distributed, sharable file system that could overcome the prob-
lems that disk block access introduces at the level of ND (ND only allows sharable partitions that
are read-only), SUN Microsystems modified the file system data st:uctures. A new interface was
designed- the Virtual File System (VFS) interface- that, by providing an additional level of
indirection, allows multiple different underlying file system implementations- local or remote- to
be accessed uniformly. If a file is local, the VFS layer calls the local device driver, or, in the case
of an ND partition, sends a message to the remote disk server. If a file resides on a disk on a
remote file server, the VFS layer accesses the Network File System routines with a request that is
to be processed remotely. Therefore, the new layer allows file operations at the user level to be
transparent as to where the actual file is stored.

- 37 -

7.1. Protocol Layers
The NFS protocol. defined ir. terms of Remote Procedure Calls, which in the SUN UNIX

environment are implemented using the UDP protocol, is responsible for the communication
between a client workstation and a file server. Since UDP is an unreliable datagram protocol, the
RPC layer handles retransmissions in case of packet loss.

An RPC is an abstraction that extends to a distributed system the well-understood mechan-
isms for transferring control and data within a computer program using procedure calls. 8 3 6 57

When a remote procedure is invoked, the calling process is suspended, and the parameters are sent
to a remote machine where the procedure is invoked. The results are then sent back and the cal-
ling process resumes execution as if returning from a single.machine procedure call. In the SUN
UNIX implementation, there are no explicit acknowledgements: the RPC response message is used
as an implicit acknowledgement. If no response is received within a short interval from the
transmission of the RPC request, the request is sent again.

SUN UNIX has increased the maximum UDP packet size, which was 2K bytes in UNIX
4.2BSD, so that a single RPC can transport 9K bytes of data. For example, in case of a client 8K
byte read request, the server fetches the data from the file system and issues a single RPC
response. The RPC module on the server side adds an RPC header and passes the request to the
UDP module. The UDP module adds a UDP header and passes the data to the IP module. IP
takes care o' the transmission over the Ethernet channel by fragmenting the message into five
1500-byte packets and one last 920-byte fragment packet. The receiving IP module on the client
side reassembles the message, passing it up to the UDP and RPC modules only after the last packet
has beer received and the message full\ reassemble.

The NFS protocol is therefore much more complicated than the ND protocol. Whereas the
latter is a specialized protocol designed to move data from a remote disk to the file system cache
on a client worksta:,on, the NFS protocol relies on a number of other protocols. Furthermore,
NFS, in order to work with heterogeneous file systems, converts the information it transmits into a
machine-indcpendent format. 34

TABLE 7-1. NFS FuNcTIoNs

FUNCTION] DESCRIMON

getattr Returns the attributes of a file.
Used to implement the stat system call.

setattr Sets the attributes of a file.
(mode, uid, gid, size, access time ...)

lookup Returns a pointer to a file in a directory.

Parses the file's path name one component at a time.
readlink Returns the string associated with a symbolic link.

read Reads data from a file.
write Writes data to a file.

create Creates a new file.
remove Removes a file.
rename Renames a file.

link Creates a file which is a link to another.
symlink Creates a symbolic link.

mkdir Creates a directory.
rmdir Removes a directory.

readdir Reads entries in a directory.
For efficiency reasons reads many entries in a single call.

statfs Returns file system informaion such as

block size, number of free blocks.

- 38 -

7.2. NFS Procedures

Table 7-1 lis's the NFS protocol procedures with a brief explanation of their function. There
are, among others, procedures to read and write data, to create files, to convert file names into
pointers to files, to return file attributes, and to create, remove, or read directory entries. If files
are accessed on remote file systems, the kernel's VFS layer transforms the system calls that operate
on files into one or more of the remote procedure calls in Table 7-1.

To make the protocol withstand network and file server crashes, NFS file servers are state-
less: a server does not maintain state information about any clients. Notice, in fact, that there are
no file open and close procedures. As a consequence, path name translation, which converts a file
name into a pointer to the file, is performed in NFS by issuing one RPC per path name com-
ponent. Furthermore, when a procedure returns successfully, the client can assume that the
requested operation has been completed and any associated data is on stable storage. If a server
waited to write the data (file pages, inode r.formation, and the like) to the disk, the client would
have to save those requests in order to resend them to recover from a server crash.

7.3. Utilization

Figure 7-1 shows the network utilization, over one-minute intervals, of the NFS protocol.
The pattern of NFS communication generally follows that of the total Ethernet traffic although the
graph's spikes indicate that it is more bursty. The one-minute average utilization is well below five
percent, with occasional bursts in the range of five to ten percent and one peak at 12 percent after
10 pm.

FIGURE 7-1. ETHERNET UTILIZATION (NFS PROTOCOL)

10%

55%

I I ,ii I i

1:00am 4:00 7:00 10:00 1:00pm 4:00 7:00 10:00 12:59am

Time of Day

Figure 7-2 displays the network utilization, over one-second intervals, generated by NTFS
traffic between the client workstation madrone and the file server sequoia. The network activity is
intermittent, as it follows the usual pauses in user behavior. In addition to occasional one-second
peaks at 15 percent, there are times when the network utilization stays at around 10 percent for
several seconds. This corresponds to a throughput rate of about 120K bytes per second. Although
used less heavily, other workstations displayed similar data transfer rates over short intervals.

7.4. Packet Length
The packet size distribution generated by the N'FS protocol reflects that NFS is based on

remote procedure calls. There are a large number of short packets whose lengths are distributed
around 144 bytes; these are requests and responses transporting NFS and RPC headers. The data
fragmentation performed by the IP module during file read and write operations generates a main
peak at 1500 bytes, and minor peaks at 696, 920, and 1276 bytes, which are due to the last frag-
ments of fragmented messages. These peaks are displayed in Figures 4-4 and 4-5.

The distribution of packet lengths is bimodal: however the two modes are different from the

- 39-

FIGURE 7-2. ETHERNET UTILIZATION (NFS TRAFFIC BETWEEN SEQUOIA AND MADRONE)

............................. ...

10910.................

5%

6:05pm 6:10 6:15 6:20 6:25pm
Time of Day

modes of ND and TCP.

7.5. NFS Procedure Statistics
Table 7-2 breaks down NFS requests by functions. Three of the NFS routines, mkdir, rmdir,

and symlink, are not listed in the table; in one day, we observed only 18, 16, and 3 of these calls,
respectively. From this table we derive several observations.

TABLE 7-2. NFS FUNCTIONS STATISTICS

FUNCTIC. PERCENTAGE OF ALL
NFS REQUESTS

lookup 48.53
read 33.69
readlink 5.35
getattr 4 55
write 4.34
readdir 2.33
create 0.80
remove 0.23
setattr 0.06
rename 0.06
link 0.04
statfs 0.02

Since path name translation is performed one component at a time, lookup operations dom-
inate, representing 48.53 percent of the total NFS requests.

On the average, there are 7.8 read operations for each write operation. A UNIX file system
study. 58 in which user requests were traced at the system call interface, reports that there are
about 2.7 reads for each write operation. One would expect our read/write ratio to be smaller, not
larger, than theirs, since, by looking at the network activity, rather than at the system call a-tivity,
we do not capture file read operations that hit the local file caches. We have seen that all write
operations go to the server. However, mainly because of their small sizes, our caches are not very
effective; thus, the number of reads we observed is close to the number of file system reads issued
at the VFS level. Our higher read/write ratio is explained by two factors. First, especially in the
paging in of text files, user read requests are large and each request corresponds to more than one
NFS packet (recall that page-outs are handled through the ND protocol). Thus, we have a higher
number of reads Second, the accounting information written to the file /usr/adm/acct each time a
process terminates is handled in diskless SUN workstations by the ND protocol; therefore, we also
have a lower number of writes.

An NFS client caches file data. Repeated use of these data requires a verification from the

V_

- 40 -

file server that the data are up to date. This is done with the getattr NFS procedure call. The
developers of the NFS protocol discovered that the getattr call accounted for 90 percent of the tetal
number of calls made to the server. 49 The situation was remedied by adding a so-called attribute
cache at the client side, which keeps file attributes for 30 seconds after the), arrive from the server.
The number of getattr procedure calls we observed is 4.55 percent of the total.

There are a large number of readlink operations. Most of them are due to programs
accessed in the ND public partitions. For instance, when a user needs to execute the file /bin/is,
the NFS layer issues for the server a lookup request in the root directory with parameter bin. The
information returned by the server informs the client NFS layer that /bin is a symbolic link. NFS
then issues a readlink requests to which the server replies with the name stored in the symbolic
link: /pub/bin. At this point, the NFS routines return the information to the VFS layer, since a
new path name translation must be started. The VFS layer recognizes that /pub is the mounting
point of an ND partition and accesses the file using the ND routines.

The many readlink requests, despite relatively few files in the ND partitions, indicate that
client ND caches may not be very effective. This is in accordance with our analysis of the traffic
from public ND partitions (Table 6-1). One of the reason. for this ineffectiveness is the large size
of frequently used programs and graphics libraries. For instance, libsuntool.a occupies 640K bytes,
the C compiler library, libc.a. which is stored in an ND public partition, alone occupies 350K bytes
and the compiler commonly requires IM byte of physical memory.t The size of the UNIX kernel
text on a diskless workstation is approximately 500K bytes; SUN UNIX normally allocates ten per-
cent of the total available memory for caches and buffer pools. Therefore, the user of a 4M-byte
machine is left with only about 3M bytes of memory ior user processes, a good portion of which is
taken by SUN's graphics programs. Under these conditions, we sliould expec- both poor cache
hit-ratio and hea'; paging traffic.

Three of the NFS routines, read, write, and readdir, may transmit in one cal' more data than
fits in a single Ethernet packet. In this case, as we have seen, the IP layer fragments the mes-
sages. The average number of packets for the read responses, write requests, and readdir
responses is 2.9 , 3.11, and 1.56 respectively.

The fact that the number of fragments for the reacdL- calls is small indicates that most direc-
tories that users list contain only few files. Furthermore, since the response time of the UNIX Is
command or directories with many entries is particularly slow on disi., Ns workstations, many
users avoid listing large directories.

7.6. Protocol Timers

We have observed that an excessive number of NFS requests were retransmitted. Although
some of these retransmissions depended on factors not related to the NFS protocol, such as lost
packets, many retransmissions were caused by RPC timers expiring before the entire message was
received because of delayed packets and delayed server responses. Table 7-3 lists NFS functions
and the percentage of their calls that were retransmitted.

Most of these retransmissions occurred 0.7 seconds after the original transmission. Notice
that the proportion of write requests that were resent (6.0 percent) is higher than that of read
requests resent (1.1 percent). The reason for this is that reads are buffered (i.e. pages are cached
at the server, which implements a read-ahead policy) while writes always go to secondary storage.

Figures 7-3 and 7-4 show the number of retransmissions in 12 two-hour intervals for the NFS
read and write operations respectively. In the foreground, in white, we show the number of
retransmissions; in the middle, in grey, the number of operations; and in the background, in black,
the average network utilization in each of the two-hour periods. Although the granularity of the
data in these histograms only partially displays the correlation, we have also looked at smaller time
intervals. These findings led us to conjecture that both network and disk contention are responsi-
ble for these retransmissions.

+ These sizes were measured on a SUN3 workstation.

-41 -

TABLE 7-3. NFS RETRANSMISSIONS

FUNCTION RETRANSMISSIONS AS PERCENTAGE OF
CALLS TO EACH PROCEDURE

write 6.04
read 1.14
readdir 0.57
readlink 0.41
getattr 0.27
lookup 0.19

FIGURE 7-3. PERCENTAGE OF READ RETRANSMISSIONS FIGURE 7-4. PERCENTAGE OF WRITE RETRANSMISSONS

2.5-

20-
30

15- 20

10-
10 - rip "

5 0

0-m

2 4 6 8 10 12pm2 4 6 8 10 12am 2 4 6 8 10 12pro2 4 6 8 10 12am

Time of Day Time of Day

7.7. Interarrival Time
Figure 7-5 displays the NFS packet interarrival time distribution, Figure 7-6 the cumulative

interarrival time distribution. In the two figures, the interarrival time is the difference between the
beginnings of the transmissions of two subsequent NFS packets. In both figures, the vertical axis
on the left shows the percentage of NES packets and the one on the right the percentage of all
packets received. We have numbered the peaks in Figure 7-5, and reported their position in Fig-
ure 7-6. Tables 7-4 characterizes the traffic that generated those peaks. For each peak, the table
lists the pairs of machines whose communication accounted for a significant proportion of the
peak's area. In column three the table shows the type of message sequence that accounted for a
portion of the peak. Three different message types are used: Reques, for an RPC client request;
Response, for an RPC server response; and Fragment, for IP fragments.t The fourth column
shows the percentage of the total peak area that each message sequence accounted for.

Again, as in the case of ND, the communication between madrone and sequoia is the largest
component of virtually every peak. Furthermore, most of the peaks with lower labels (correspond-
ing to lower interarrival times) are mostly due to SUN3 machines.

The first significant occurrence of Fragment/Fragment message sequences occurs at peak 5 at
around 3.1 ms. For the ND protocol and the same pair of machines the Data/Data message
exchanges generated interarrival times as low as 2.2 ms. The time difference between these two
measures is due in part to the longer messages (50 percent longer in the case of NFS), in part to
higher protocol processing time. Using calculations analogous to those of Section 6, we estimate
that the protocol overhead amounts to about 1.9 ms for this type of message sequence, for SUN3

t Recall that the first IP fragment of a fragmented UDP message carries the UDP packet header, while the subse-
quent fragments only transport the IP packet header. We use the type Fragment only for fragments following the
first.

- 42 -

FIGURE 7-5. PERCENTAGE OF NFS PACKET ARRIVALS (AT RIGHT AS PERCENTAGE OF ALL ARRIVALS)

10%-
1% %

412 13

.1.1-

-. 01%

.01% -
-. 001%

II I I i I

0 10 20 30 40 50
Interarrival Time (ms)

CPU's (it was 1.3 ms for the ND protocol).

FIGURE 7-6. CUMULATIVE PERCENTAGE OF NFS PACKET ARRIVALS (AT RIGHT AS PERCENTAGE OF ALL ARRIVALS)

100% ,15.99%

.......... 4.17%

60% "... " 9 .53%

40%:..... •-......... :......... -7... ' - 7 "". "......: 6.35%

30% -.......... -. - - - 4 .77%o
20%.. 3.18%

, 2 1.59%

.1 .2 .3 .5 1 2 3 4 5 67 10 20 30 50 100

Interarrival Time (rns)

Peak 7 allows us to compute the equivalent protocol overhead for SUN2 machines. [Notice
that the predominant message sequence is a Response/Fragment one, which indicates that SUN2's
request fewer data per transaction from file servers. This sequence is otherwise equivalent to a
Fragment/Fragment sequence.] The peak occurs at about 4.1 ms; the overhead amounts to about
2.9 ms. (In the case of SUN2 machines the computed ND protocol overhead for Data/Data tran-
sactions was 2.6 ms.)

It is important to notice that, although packet protocol overhead is higher in the case of NFS,
the increased packet size tends to reduce the per-byte overhead. Since each NFS packet transports
50 percent more data than ND packets (in the case of Data/Data and Fragment/Fragment message

- 43 -

sequences), the per-byte protocol overhead is about the same as that of ND: 1.3 microseconds per
byte for a SUN3 and 2.2 microseconds per byte for a SUN2. Therefore, the lower NFS protocol
throughput must be due to other causes.

TABLE 7-4. NFS IN-ERARRrVAL TME PEAKS

PEAK MACHINES MESSAGE TRANSACTION PERCENTAGES

madrone-sequoia Request/Response 9.79
1 elm-sequoia Request/Response 5.41

shangri-la-sequoia Request/Response 3.26
2 madrone-sequoia Request/Response 25.95

madrone-sequoia Response/Request 8.63
sequoia-shangri-la Fragment/Request 19.53

3 elm-sequoia Fragment/Request 11.22
ginko-teak Fragment/Request 5.87
madrone-sequoia Fragment/Request 17.72

4 madrone-sequoia Fragment/Fragment i0.90
shangri-la-sequoia Fragment/Fragment 4.81

5 madrone-sequoia Fragment/Fragment 46.73
liveoak-sequoia Fragment/Fragment 9.85
madrone-sequoia Fragment/Fragment 18.80

6 bashful-snow Fragment/Fragment 8.47
liveoak-sequoia Fragment/Fragment 4.46
ginko-teak Response/Fragment 4.19
bashful-snow Response/Fragment]4.65

7 saturn-xcssun Response/Fragment 7.58
doc-snow Response/Fragment 7.12
madrone-sequoia Request/Response 59.19

8 liveoak-sequoia Request/Response 12.07
elm-sequoia Request/Response 4.53
madrone-sequoia Fragment/Fragment 18.71

9 madrone-sequoia Request/Response 15.82
bashful-snow Fragment/Fragment 6.06
madrone-sequoia Request/Response 11.39

10 bashful-snow Fragment/Fragment 7.44
madrone-sequoia Fragment/Fragment 7.00
ginko-teak Fragment/Request 4.37
madrone-sequoia Response/Request 27.36

11 bashful-snow Fragment/Fragment 7.33
ginko-lassen Request-Response 4.43

Figure 7-5 shows a slowly decreasing curve, which indicates that NFS operations tend to be
more spread over time than the ND ones. There are several reasons for this behavior. First, the
NFS ratio of physical disk accesses to number of operations is higher than that of ND; second.
while ND's writes are delayed, NFS uses synchronous writes; third, the more complex protocol
message interactions in NFS communication create greater time variability; and fourth, NFS remote
procedure calls are synchronous, i.e. the client process is blocked until the response is received.

An additional reason for lower performance, one not evident from the traffic measurements,
is that NFS client caches are less efficient than ND ones. Their data must be validated before each
access. The attribute cache discussed above only alleviates the problem.

7.8. Summary
Interactions with other protocols and its relationship with the Virtual File System layer make

the Network File System protocol complex. The protocol is based on remote procedure calls,
which, by handling timeouts and retransmissions, provide a reliable transport layer for NFS. RPC
timers appear to expire prematurely in the case of long NFS requests, such as 8K-byte read and
write operations, leading to unnecessary retransmissions and wasted network bandwidth.

NFS time constants are larger than those of ND. The following numbers capture NFS's

-44-

longer time constants: 50 percent of the packets are followed by another within 7.2 ms (within 3
ms in the case of ND), while 90 percent of the packets are followed by another packet within 47
ms (within 18 ms for ND). Alternatively, only 35 percent of NFS packets arrive within five mil-
liseconds of each other, compared to 76 percent of ND packets.

However, there is evidence that bulk transfers for the two protocols occur at about the same
byte rate. NFS communication between a SUN3 client and a SUN3 server achieves throughput of
about 120K bytes per second.

8. Related Work

Although several local area network measurement studies have been performed since the
paper by Shoch and Hupp to which we referred in Section 4, only a few have addressed the central
issue of this study: how an environment of diskless workstations influences the Ethernet traffic
characteristics. We review below some of the works that are most directly related to the point of
view we have taken in our analyses.

L. Barnett and M.K. Molloy at the University of Texas at Austin5 traced the traffic on the
campus backbone Ethernet. The network connects some 80 machines, including a number of SUN
diskless workstations and their file server. Barnett and Molloy focused on a description of their
monitoring facility and on comparisons to other ones, rather than on the analysis and interpretation
of the measurements. The accuracy of the study's measurements was limited. It only classified
data link layer protocols, in particular the IP protocol. Notably, the authors point out that the
lo.-' area traffic can be much higher than previously reported (8.7 million packets were observed
in one day . However, they fail to identify the reasons for this higher networl utilization.

D.R. Cheriton and C.L Williamson14 measured the traffic properties of an Ethernet at Stan-
ford University tha' connects about 50 diskless SUN workstations running the V operating sys-
tem. 11 A program called netwatch was used on a diskless workstation to collect the traffic statistics
(in the form of counting events) and another, timeipc, to measure protocols' throughput between
two workstations. The authors focused on the performance of the VMTP request-response proto-
col, 13 a general-purpose protocol used for all network communication in V. They did not quantify
the network utilization (which was rather low) since they were n.ainly concerned with the interac-
tive characteristics of their system, such as the message transaction rate, the durati3n of transac-
tions, and VMTP's retransmission behavior. The measured V systems did not have virtual
memory; as a result, most of the traffic was due to file accesses and V's distributed system ser-
vices, for example, the naming service. Although VMTP is designed to provide higher throughput
than current protocols, the authors observed throughput between SUN3's in the range of OOK to
150K bytes, about the same we saw for NFS between madrone and sequoia. They express the
opinion that the current generation of protocols is not suitable for future high performance work-
stations.

E.D. Lazowska et al., 31 in the context of a modeling study, measured a network of diskless
SUN2's and their file servers. Surprisingly, they claim that their workstations, equipped with 2M
bytes of physical memory, display a ratio of 4:1 between file access and paging.t

J. Ousterhout et al. 42 studied distributed file system issues using a trace-driven approach.
Their traces were collected on large single-machine time-sharing UNIX systems. The authors' main
conclusion is that large file caches can dramatically reduce disk I/O traffic; therefore, network
bandwidth will not be a limiting factor in building network file systems- "...a network-based file
system using a single 10 Mb/s Ethernet can support many hundreds of users [workstations] without
overloading the network." They also conclude (citing Lazowska et al.) that paging is rare in
UNIX 4.2BSD systems.

In a study on network file system caching in the Sprite operating system, M. Nelson et al.41

concluded that even without client caching, SUN2 machines require network bandwidths on the

" They measured their system by instrumenting the UNIX kernel rather than by looking at the network and it is
conceivable that they might not have captured the entire paging traffic.

- 45 -

order of 80-Kb/s and SUN3's on the order of 250 Kb/s (recall that we observed I Mb/s between
SUN3's with NFS client-side caching!). In this case the difference can be explained by the fact that
they ran benchmarks consisting of compilations, sorting tasks, and text formatting jobs rather than
simulating the full workload generated by a user running processes in a window environment. In
this work- a follow-up of the trace-driven study of Ousterhout et al.- the authors are more cau-
tious about the Ethernet's ability to sustain the data rate generated by fast machines; nevertheless,
they seem more concerned about throughput than about response time.

P.J. Leach et aL have designed an integrated distributed system where diskless workstations
and file servers communicate via a 12 Mb/s baseband token passing ring network. 32 Preliminary
performance measurements indicate that the average network utilization is low: less than 1/12 of
the total network bandwidth was used. However, paging alone consumes ten percent of the net-
work bandwidth when running artificial workload tests. Since in the described implementations the
maximum packet size was 550 bytes- their network interfaces allow packets as large as 2048
bytes- higher utilization will be achieved by future, more efficient implementations.

Gonsalves describes measurements on two Ethernets: a 10 Mb/s Ethernet and a 2.94 Mb/s
Ethernet.22 The workload was artificially induced; many computers generated uniformly distributed
packets. The packet arrival rate (i.e. the mean of the uniform distribution) was adjusted so as to
generate a particular network utilization. Each experiment was repeated with different packet
lengths. His main objective was to verify the validity of performance models. Gonsalves found
that simple models yield poor results.

The performance of TCP and UDP has been studied by Cabrera et al.9 They timed the data
transferred between user-level processes running on machines on the same network. Therefore,
their measurements are user-oriented in that they reflect both network and system overhead. In a
second investiga:ion, Cabrera et al. 10 looked closely at the overhead in the UNIX kernel due to
TCP and UDP protocol processing. They used a kernel monitor2 3 to statistically profile the kernel
routines. Both studies seem to indicate that the lowest cost per byte is achieved with a transferred
data size of 1024 bytes. This is the reason why UNIX file transfer programs such as rcp and ftp
transfer 1K byte of data at a time.

9. Conclusions

In this study we have analyzed the behavior of the Ethernet local area network in an environ-
ment of diskless workstations running the UNIX operating system. We have closely compared the
traffic characteristics of a medium-size 10-Mb/s Ethernet with those of an older 2.94-Mb/s Ethernet
whose traffic was studied at Xerox PARC at the beginning of the decade. This comparison is
meaningful since most other local area network traffic studies have not discovered a significant
departure from the conclusions of Shoch and Hupp. As a result, system designers currently
develop network software and hardware under the implicit assumption that the network load is
light.

The most striking conclusion of our study is that diskless workstations may indeed generate
enough traffic to substantially load a local area network of the current generation. The communi-
cation between a client and a file server generates bursts of activity lasting several seconds that can
occupy more than a fifth of the Ethernet's raw bandwidth. The rhean network utilization is low
(6.5 percent averaged over 24 hours) but bursts generate short-term peak utilization above 30 per-
cent. A system built around diskless workstations is highly interactive, and short-term network
utilization, rather than the long-term average, is more likely to affect users' behavior. Therefore,
we consider response time more important than throughput in studying the performance of today's
systems.

Our measurements show that a workstation's traffic falls into three broad categories: charac-
ter traffic from the workstation to other machines; paging traffic generated by the workstation's
virtual memory to a remote paging device; and file access traffic to remote file servers. A
workstation's behavior will depend on the characteristics of each of these three types of traffic.
These components were easily identifiable because a different protocol was employed for each com-
ponent. Character traffic generates many small packets but no substantial network utilization.

- 46.

Small physical memories and, possibly, sub-optimal performance of the virtual memory algorithms
hA've greatly increased paging traffic. File access to a remote file server generates bursts of traffic
lasting several seconds, which may demand bandwidths in the order of 120K bytes per second, or
anout ten percent ot we Ethernet raw bandwidth.

The analyses of the interarrival time for each of the three categories of traffic have revealed
that, despite the high packet arrival rate, there are very few occurrences of back-to-back packet
arrivals- packets whose interarrival time is close to the minimum data link layer interframe spacing
of 9.6 microseconds for a 10 Mb/s Ethernet. This is explained by a number of facts. First, there
is a high probability that a packet is generated by the same machine as the previous packet.
Second, subsequent packets generated on the same machine are mostly due to IP fragmentation in
NFS and to protocol-specific fragmentation in ND. Third, as currently implemented by network
layer protocols, fragmentation is expensive and even machines as fast as SUN3's cannot keep their
network interfaces busy. Based on the previous observations, we argue that, in order to increase
the protocols' responsiveness, packet fragmentation should be performed in hardware, or in
firmware, on Ethernet interface boards.

Although we have not obtained performance measurements on the number of collisions, we
believe that the observed packet arrival times- with spacings among subsequent packet arrivals that
correspond almost to a full packet transmission- contribute to keep the number of collisions and
protocol latencies small. As network interfaces and protocols are developed that can transmit data,
for the same type of user requests, at the rate of the Ethernet data link layer, we would expect
that a higher percentage of bandwidth will be wasted in resolving collisions and that protocols'
response time will increase. Thus, on the Ethernet, as protocols become more efficient, they must
also become mo-e sophisticated to deal with increased latency.

Even though it is difficult to c antify the network bandwidth necessary to support diskless
workstations- this is largely a subjecuve parameter that depends on the performance demanded by
users- it seems clear that response time is the single, most important performance characteristic for
evaluating these bandwidth requirements. We have seen that bursts of file system traffic may tran-
sport data on the order of one to two million bytes. Because of coupling betweer CPU speed and
new application interfaces, future software applications will need to move even F'eater amounts of
data. For this reason, the development of effective caches, as demonstrated by current research
efforts and by our measurements, is a very important objective. Yet larger caches will no: .nhm-
inate users' need for larger amounts of bandwidth. Soon it will be necessary to make precise Geci-
sions as to which and how many workstations can be placed on a single-cable Ethernet. Network
topology and gateway issues will also become more important.

The Ethernet local area network is a mature product. It provides an extremely effective and
low-cost communication medium for interconnecting computers within a local area. Designed
when users' communication needs were quite different from today's, the Ethernet has been adapted
to provide effective bandwidth to distributed systems based on diskless workstations. Although
pushed by improper system configurations on machines with high-performance network interfaces,
the Ethernet still functions satisfactorily. Based on the measurements described in this study, we
believe that until faster network protocols become available, the Ethernet will provide an effective
communication means for workstation users. However, when pr9tocols are developed that are
capable of pushing data at the speed of the Ethernet data link layer, a faster technology for local
area communication will be necessary.

10. Acknowledgements

Many people contributed to this study. In particular, little would have been accomplished
without the support of Domenico Ferrari of the University of California at Berkeley, and Sandy
Fraser of the Computing Science Research Center of AT&T Bell Laboratories.

Domenico Ferrari, Mike Karels, and Keith Sklower helped considerably during the measure-
ment phase. Joseph Pasquale and Songnian Zhou also helped during the initial interpretation of
the data. Sam Morgan, who read and commented on numerous draft versions of this paper, pro-
vided invaluable technical support throughout the analysis phase. Peter Danzig, Domenico Ferrari,

-47 -

Brian Kernighan, and Dave Presotto commented extensively on the final draft. Among those who

also read a draft of the paper, Eric Grosse, Julian Onions, and Howard Trickey provided helpful

comments. Finally, Bob Henry, Ed Sitar, and Norman Wilson deserve mention for their help in

setting up the vainous pitces of hardware used in this study. The data analysis required the mani-
pulation of large data sets. The programming language AWKI greatly simplified the task. Almost
all of the figures in this paper were constructed using GRAP. 7 Brian Kernighan solved all the
problems encountered during their preparation.

II. References

1. A.V. Aho, B.W. Kernighan, and P.J. Weinberger, The AWK Programming Langage,
Addison-Wesley (1987).

2. 0. Babaoglu, Virtual Storage Management in the Absence of Reference Bits, Ph.D. Thesis,
Computer Science Division, University of California, Berkeley (Nov. 1981).

3. 0. Babaoglu and W.N. Joy, "Converting a Swap-Based System to do Paging in an Architec-
ture Lacking Page-Referenced Bits," Proc. of the 8th Symposium on Operating System Princi-
ples, pp. 78-86, ACM (1981).

4. R. Ballance, private communication (Aug. 1987).

5. L. Barnett and M.K. Molloy, "ILMON: A UNIX Network Monitoring Facility," USENIX
Conference Proceedings, Washington, DC, pp. 133-144 (Jan. 1987).

6. F. Baskett, K.M. Chandy, R.R. Muntz, and F.G. Palacios, "Open, Closed, and Mixed Net-
works of Queues with Different Classes of Customers," Journal of the ACM 22(2), pp. 248-
260 (April 1975).

7. J.L. Bentley and B.W. Kernighan, "GRAP- A Language for Typesetting Graphs," Commun-
ications of the ACM 29(8), pp. 782-792 (Aug. 1986).

8. A.D. Birrell and B.J. Nelson, "Implementing Remote Procedure Calls," ACM Transactions
on Computer Systems 2(l), pp. 39-59 (Feb. 1984).

9. L.F. Cabrera, E. Hunter, M. Karels, and D. Mosher, "A User-Process Oriented Perfor-
mance Study of Ethernet Networking under Berkeley UNIX 4.2BSD," Tech. Report No.
UCB/CSD 841217, University of California, Berkeley, Computer Science Division (Dec.
1984).

10. L.F. Cabrera, M. Karels, and D. Mosher, "The Impact of Buffer Management on Network-
ing Software Per,-xrmance in Berkeley UNIX 4.2BSD: A Case Study." Tech. Report No.
UCBICSD 85/247, University of California, Berkeley, Computer Science Division (June
1985).

11. D.R. Cheriton, "The V Kernel: a Software base for Distributed System," IEEE Software 1(2)
(April 1984).

12. D.R. Cheriton and T. Mann, A Decentralized Naming Facility, Technical Report STAN-CS-
86-1098, Computer Science Department, Stanford University (April 1986).

13. D.R. Cheriton, 'VMTP: a Transport Protocol for the Newt Generation of Communication
Systems," Proc. of SIGCOMM '86, pp. 406-415, ACM (Aug. 1986).

14. D.R. Cheriton and C.L. Williamson, "Network Measurement of the VMTP Request-
Response Protocol in the V Distributed System," Technical Report No. STAN-CS-87-1145,
Department of Computer Science, Stanford University (Feb. 1987).

15. Digital Equipment Corporation, Intel Corporation, and Xerox Corporation, The Ethernet: A
Local Area Network Data Link Layer and Physical Layer Specifications, Version 2.0 (July 15,
1982).

16. Xerox Corporation, Internet Transport Protocols, Xerox System Integration Standard, Stam-

ford, CT (Dec. 1981).

17. R.C. Crane and E.A. Taft, "Practical Considerations in Ethernet Local Network Design,"

- 48 -

Proc. of the 13th Hawaii Intl. Conf. on Systems Sci., pp. 166-174 (Jan. 1980).

18. S.E. Deering and D.R. Cheriton, Host Groups: A Multicast Extension to the Internet Protocol.
Stanford University (Dec. 1985).

19. D.C. Feldmneier, Empirical Analysis of a Token Ring Netwcrk, Tech. Memo. MIT/LCS/TM-
254, M.I.T. Laboratory Computing Science (Jan. 1984).

20. K. Fendick, private cummunication (Oct. 1987).

21. Gateway Algorithms and Data Structures Task Force, Toward an Internet Standard Scheme for
Subnetting, RFC 940 (April 1985).

22. T.A. Gonsalves, "Performance Characteristics of two Ethernets: an Experimental Study,"
Proc. of SIGCOMM '85, pp. 78-86, ACM (May 1985).

23. S.L. Graham, P.B. Kessler, and M.K. McKusick, "An Execution Profiler for Modular Pro-
grams," Software - Practice and Experience 13(8), pp. 671-685 (1983).

24. R. Gusella, A Study o,^ the Interarrival Time of Network File Access Protocols, (in preparation).

25. R. Gusilla and S. Zatti, "An Election Algorithm for a Distributed Clock Synchronization
Program," IEEE 6th International Cc"-'rence on Distributed Computing Systems, Boston (May
1986).

26. R. Jain and S.A. Routhier, "Packet Trains - Measurements and a New Model for Computer
Network Traffic," IEEE Journal on Selected Areas in Communications SAC-4(6) (Sept. !986).

27. R. Jain and W.R. Hawe, "Performance Analysis and Modellirg of Digital's Netwzi,'ng
Architecture," Digital Technical Journal(3.. Digital Equipment Corporation I Sep:. 986;.

28 M.J. Karels, Another Internet Subnet Adc.ressing Scheme, University of California, Berkeley
(Feb. 1985).

29. M.J. Karels, private communication (Dec. 1986).
30. S.S. Lam, "A Carrier Sense Multiple Access Protocol For Local Networks," Computer Net-

works 4(1), pp. 21-32 (Feb. 1980).

31. E.D. Lazowska, J. Zahorjan, D.R. Chcriton, and W. Zwaenepoel, "File Access Performance
of Diskless Workstations," ACM Transactions on Computer Systems 4(3), pp. 238-270 (Aug.
1986).

32. P.J. Leach, P.H. Levine, B.P. Douros, J.A. Hamilton, D.L. Nelson, and B.L. Stumpf, "The
Architecture of an Integrated Local Network," IEEE Journal on Selected Areas in Communica-
tions 1(5), pp. 842-857 (Nov. 1983).

33. S.1. Leffler and M.J. Karels, Trailer Encapsulation, RFC 893, University of California,
Berkeley (April 1984).

34. B. Lyon, SUN External Data Representation Specification, SUN Microsystems (1984).

35. M.K McKusick, W.N. Joy, S.J. Leffler, and S.J. Fabry, "A Fast File System for UNIX,"
ACM Transactions on Computer Systems 2(3), pp. 181-197 (Aug. 1984).

36. SUN Microsystems, "Remote Procedure Calls User's Manual," UNIX Documentation.

37. SUN Microsystems, ND(8), UNIX User's Manual, Section 8 (1983).

38. SUN Microsystems, Network File System Protocol, Protocol Specifications (1984).

39. J. Mogul, Internet Subnets, RFC 917, Stanford University (Oct. 1984).

40. J. Mogul and J. Postel, Another Internet Subnet Addressing Scheme, RFC 950, USC Informa-
tion Sciences Institute (Aug. 1985).

41. M. Nelson, B. Welch, and J. Ousterhout, "Caching in the Sprite Network File System,"
Report No. UCBICSD 871345, University of California, Berkeley, Computer Science Division
(March 1987).

42. 1. Ousterhout, H. Da Costa, D. Harrison, J. Kunze, M. Kupfer, and J. Thompson, "A
Trace-Driven Analysis of the UNIX 4.2BSD File System," Proc. of 10th ACM Symposium on

- 49 -

Operating System Principles, Orcas Island, WA (Dec. 1985).

43. D.C. Plummer, An Address Resolution Protocol, RFC 826, Massachussets Institute of Tech-
nology (Nov. 1982).

44. J. Postel (ed.), Internet Control Message Protocol, RFC 792, USC Information Sciences Insti-
tute (Sept. 1981).

45. J. Postel (ed.), Transmission Control Protocol, RFC 793, USC Information Sciences Institute
(Sept. 1981).

46. J. Postel (ed.), Internet Protocol - DARPA Internet Program Protocol Specification, RFC 791,
USC Information Sciences Institute (Sept. 1981).

47. D. Presotto, private communication (July 1987).

48. A.P. Rifkin, M.P. Forbes, R.L. Hamilton, M. Sabrio, S.Shah, and K. Yueh, "RFS Architec-
tural Overview," USENIX Conference Proceedings, Atlanta. pp. 248-259 (June 1986).

49. R. Sandberg, D. Goldberg, S. Kleinman, D. Walsh, and B. Lyon, "Design and Implementa-
tion of the Sun Network Filesystem," Usenix Conference Proceedings, pp. 119-130 (June
1985).

50. R.W. Scheifler and J. Gettys, "The X Window System," ACM Transacron on Graphics(63)
(1986).

51. J.F. Snoch and J.A. Hupp, "Measured Performance of an Ethernet Local Network," Com-
munications of the ACM 23(12). pp. 711-721 (Decembe: 1980).

52. J.F. Shoch, Y.K. Dalal, D.D. Redell. and R.C. Crane, "The Ethernet," pp. 549-572 in Local
Area Networks: An Advanced Course, ed. D. Shepherd, Springer-Verlag (982).

53. J. Sventek, W. Greiman, M. O'Dell, and A. Jansen, "A Comparison of Experimental and
Theoretical Performance," Computer Networks(8), pp. 301-309 (August 1984).

54. D. Swinehart, G. McDaniel, and D. Boggs, "WFS: A Simple Shared File System for a Distri-
butcd Environment," Proc. 7th ACM Symposium on Operating System Principles (Dec. 1979).

55. K. Thompson, "UNIX Time-Sharing System: UNIX Implementation," Be." Systcm Technical
Journal 57(6). pp. 1931-1946 (July-Aug. 1978).

56. P. Weiss, Yellow Pages Protocol Specification, Sun Microsystems (1985).

57. B.B. Welch, 'The Sprite Remote Procedure Call System," Report No. UCB/CSD 86/302,
Berkeley, Computer Science Division, University of California (June 1986).

58. S. Zhou, H. Da Costa, and A.J. Smith, "A File System Tracing Package for Berkeley
UNIX," Report No. UCB/CSD 85/235, University of California, Berkeley, Computer Science
Division (May 1985).

