., MASSACHUSETTS
LABORATORY FOR ﬁ INSTITUTE OF
COMPUTER SCIENCE | TECHNOLOGY

0T fFILE COPY
MIT/LCS/TM-351

I/O AUTOMATA:
A MODEL FOR DISCRETE
EVENT SYSTEMS

Ly R AR

AD-A196 047

SR 4 e orees iy g .

[t

Nancy Lynch

DTIC

ELECTEN
) B, MAY 2 31388

cH

March 1988

545 TECHNOLOGY SQUARE. CAMBRIDGE, MASSACHUSETTS 02139

88 5 20 V6 2

K mmmwmmwwﬁmwwwwwrlwr v:mrwwwvuqu

~ Unclassified
m’v Eﬂ'{SlnﬁilﬁN OF THIS PAGE 2
—— ‘
REPORT DOCUMENTATION PAGE <

e

1a. REPORT SECURITY CLASSIFICATION 1b RESTRICTIVE MARKINGS
Unclassified

YTt Y . ————

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION / AVAILABILITY OF REPORT

Approved for public release:. distribution

2b. DECLASSIFICATION/ DOWNGRADING SCHEDULE is unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUTABER(S) :
MIT/LCS/TM-351 NOOO14-85-K-0168 and WN00014--83-K-0125

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

If li ‘

MIT Laboratory for Computer (1f applicable) Office of Naval Research/Department of Navy

——dCionce.

6¢. ADDRESS (City, State, and ZIP Code) 7b. ADORESS (City, State, and ZIP Code) .
545 Technology Square Information Systems Program .
Cambridge, MA 02139 Arlington, VA 22217 ;

8a. NAME OF FUNDING / SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER »
ORGANIZATION If licable
DARPA/DOD (F applicable)

8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
WORK UNIT

PROGRAM PROJECT TASK
1400 Wilson Blwvd. Hj&ENTNO. NO. NO ACCESSION NO.
Arlington, VA 22217

11. TITLE (include Security Classification)
1/0 AUTOMATA: A MODEL FOR DISCRETE EVENT SYSTEMS

pe S =SS |

12. PERSONAL AUTHOR(S)
Lynch, Nancy

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) {15 PAGE COUNT
Technical FROM TO 1988 Marcn 21

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP concurrency, asynchronous computation, automata, discrete
event systems, reactive systems

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

The input/output automaton model has recently been defined in (LT1, L%2), as a tool
for modelling concurrent and distributed discrete event systems of the sorts arising in
computer science. Since its introduction, the model has been used for describing and
reasoning about several different types of systems, including network resource allocation
algorithms, communication algorithms, concurrent database systems, shared atomic objects,
and dataflow architectures. The simplicity and generality of the model and its similar-
ities with other new models (RW, CMI) suggest that it will prove useful in other applica-
tion areas, such as control theory and manufacturing.

.

This paper is intended to intrpduce researchers to the model. It is organized as
follows. Section 2 contains an overview of the model. Section 3 contains formal defini-
tions and some hasic results., Section 4 contains an iklustrative example, candy machines.
Section 5 contains a second example, a system that.elects a leader. Finaliy, (continued)

20 DISTRIBUTION/ AVAILABILITY OF ABSTRACT =] 21 ABRTRACT SECURITY CLASSIFICATION
& uncuassipieounuMiTED O SAME As RPT. [oTic users |- Unclassified

22a. NAME OF RESPONSIBIE INDIVIDUAL . 22b TELEPHONE (Include Area Code) | 22¢ OF'ICE SYMBOL
Judy Little, Publications Coordinater (617) B£53-5894

DD FORM 1473, 8a MAR 83 APR edition may be used until Bxhausted. SECURITY CLASSIFICATION OF THIS PAGE
All other editions are opsolete, .

#U.S Government Printing Offies: 1908-807.047

Unclassified’

N Y VS N PR R N VR VR AN R VR UM S TR RO RN YW RO YON WO PO TOS WU YOr O U PO IO AN SO * 0.6 ga*

19 Section 6 contains a survey of some of the uses that have so far been made A
of the model. i

N (46 .{..('.-.:p

\
“]
-
)
-
ol
P |
Acocession PFor L ,.-
NTIS GRA&I w B
DTIC TAB a o
Unannounced a o
g Justification _ |
5
By
Distribution/
—— _;_,._.__.__‘__—..—-———.1 -.
Availabdbility Codes '

[“jAvail end/or
{D1at Special

W\

SO O A SO N O I e

Nancy Lynch
Massachusetts Institute ot Technology)
Cambridge, Mass. 02139

)
I/0 Automata: A Model for Discrete Event Systems! ﬁ

X

./ 1. Introduction //’/—“\

~—_3The input/output automaton model has recently been defined, in [LTt;LT2}, ;s a tool for modelling
concurrent and distiibuted discrets event systems of the sorts arising in cumputer sciencs. Since its
introduction, the model has been used for describing and reasoning about several different types of
systems, including network resource allocation algorithms, communication aigorithms, concurrent
database systems, shared atomic objects, and datafiow architectures. The simplicity and generality of the
model and its similarities with other new models ¥RW,CM1} Suggest that it will prove useful in other
application areas, such as control theory and manufacturing.

This paper is intended to introduce researchers to the model. It is organized as follows. Section 2
contains an overview of the model. Section 3 contains formal definitions and some basic resuits. Section
4 contains an illustrative example, candy machines. Section 5 contains a second example, a system that
elects a leader. Finally, Section 6 contains a survey of some of the uses that have so far teen made of

themodel. / i, \
{ R 5, —

2. Overview of the Model
/O automata provide an appropriate model for discrete event systems consisting of concurrently-
operating components. The components, as well as the entire system, may be "reactive” in the sense
that they interact with their environments in an ongoing manner (rather than, say, simply accepting an
input, computing a function of that input and halting). Although /O automata can be used to model
synchronous systems, they are best suited for modelling systems in which the components operate
' asynchronously.

Each system component is modelled as an "I/O automaton®, which is a mathematical object somewhat
like a traditional automaton. However, an /O automaton need not be finite-state, but can have an infinite
state set. The actions of an /O automaton are classitied as either "input”, "output®, or "internal”. The
automaton generates output and intemal actions autonomously, and transmits output actions
instantaneoustly to its environment. In contrast, the automaton’s input is generated by the environment
and transmitted instantaneously to the automaton. Our distinction between input and other actions is
fundamentai, based on who determines when the action is performed: an automaton can establish
restrictions on when it will perform an output or internal action, but it is unable to block the performance of

1This research was supported in part by the National Science Foundation under Grant
CCR-86-11442, by the Office of Naval Research under Contract N00014-85-K-0168 and by
the Defense Advanced Research Projects Agency (DARPA) under Contract
N00014-83-K-0125.

T OTYENR S YT

0 P P

A5 5

AR R L N N A N R R SRR NI T

RN AR T ORI TR SN ERERXARNAE KK AR SR T Y fa ot gt At ? Aa"atat ittt g e 107t atd ot _af)

,

an input acti»n.2

3

The fact hat our automata are unable to biock inputs distinguishes our model from i{oare’'s CSP
(Communict ting Sequential Processes) [Ho]. There, input blocking is used for two purposes: as a way of
eliminating « ndesirable inputs, and as a way of blocking the activity of the environment. Ou model does
not have an'' way of blocking the environment, but does have other ways of coping with bac! inputs. For ,
example, supose that we wish to constrain the behavior of an automaton only in case the environment 3
observes ce tain restrictions on the production of inputs. Instead of requiring the automator to block the
bad inputs, ‘ve permit these inputs to occur; however, we may permit the automaton to extiibit arbitrary
behavior in case they do. Alternatively, we may require the automaton to detect bad inputs and respond
to them wit error messages. Thus, we have simple ways of describing input restrict.ons, without :
including inp st-blocking in the model.)

<

/O automata may be nondeterministic, and indeed the nondeterminism is an imponan: part of the A
model's des:riptive power. Describing algorithms as nondeterministically as possible terds to make
results abou the algorithms quite general, since many resuits about nondeterministic algorithms apply a
fortiori to ali algorithms obtained by restricting the nondeterministic choices. Moreover the use of
nondetermin sm helps to avoid cluttering algorithm descriptions and proofs with inessential de tails.

L e e -

‘ /O autom ata can be composed to yield other /O automata. Our composition operator ccnnects each
;jf output actior: of one automaton with input actions of any number (usually one) of other autoinata. In the
resulting system, an output action is thus generated autonomously by one comdjonent and
instantaneously transmitted to all the other components having the same action as an inp at. All such
components are passive recipients of the input, and take steps simultaneously with the outpu: step. As in
CSP, we us simultaneous performance of actions to synchronize components, but we per nit only one
component t determine when the action occurs. X

oo P B

Since VO wtomata are intended to model complex systems with any number of primitive components,)
each automslon comes equipped with an abstract notion of "component”; formally, these con ponents are
described by an equivalence relation on the automaton’s output and intemal actions, where a | the actions
in one equivalence class are to be thought of as under the control of the same primtive system

: component.

f When /O automata are run, they generate "executions” (altemating sequences of states ¢ nd actions).
- Among all the executions of an automaton, we are primarily interested in the "fair" executicns — those
that pemit ¢ ach of the automaton’s primitive components to have infinitely many chance:. to perform
output or intynal actions. The fair executions of an automaton give rise to the "fair behariors” of the
d automaton —- the subsequences of the fair executions that consist of external (i.e., input and output))
v actions. It i this set of sequences that we believe embodies the interesting behavior of an /O

) automaton; t s, our semantics is a "trate™ semantics. The set of fair behaviors of an I/O au omaton can
i) consist of bo h finite and infinite sequences of actions, and is not necessarily closed under tlie operation
L of taking prefixes.

. #The shared-1 Yemory model described in [LF] has had a strong influence on the present work. In particular, the i ability to block
f inputs appears : s the “read-anything™ property in [LF]. \

T g A, g GO G, p e T TR Vg T e LRI R AR TR e LT LR e
SRS R R MO S B SOOI MM A WY xmmw&mﬂﬁk;ﬂﬁﬁﬂ(A A AR

.

P

A “problem® to be solved by an /O automaton is formalized essentially as an arbitrary set of (finite and
infinite) sequences of external actions. Our notion of what it means for an automaton to "solve” a problem
is particularly simple: essentially, an automaton is said to "solve” a problem P provided that its set of fair
behaviors is a subset of P. It might not be obvious to the reader that this definition is nontrivial; for
exampie, if an automaton had no fair behaviors, then our definition woulid say that it is a solution to every
problem. However, this anomaly does not arise, since our automaton definitions imply that every
automaton has a nonempty set of fair behaviors.> The fact that inputs are always allowed gives another
reason why our definition of solving a problem is nontrivial: for every possible pattern of inputs that might
arrive from the environment, the automaton is required to provide some response such that the resuiting
sequence of actions is in the problem set P. That is, the automaton is required o respond appropriately to
every possible input pattern.

The model permits description of algorithms and systems at different levels of abstraction. Abstraction
mappings are defined, mapping automata that inciude implementation detail to more abstract automata
that suppress some of the detail. Such mappings can be used as aids in correctness proofs for
algorithms: it automaton A is an image of B under an appropriate abstraction mapping and A solves
problem P, then B also solves P.

The model allows very careful and readable descriptions of particular concurrent algorithms. We have
developed a simple language for describing automata, based on "Precondition” and "Effect” specifications
for actions. This notation, similar to Dijkstra’s "guarded commands® has proved sufficient for describing
all algorithms we have attempted so far. However, the model does not constrain the user to describe all
automata in this manner; for example, the model is general enough to serve also as a formal basis for
languages that include more elaborate constructs for sequential tflow of control.

Our model also allows precise statement of the problems that are to be solved by modules in
concurrent systems. As described above, such problems are formulated as sets of finite and infinite
sequences of extemnal actions. We have not so far developed any particular language or notation for
describing such sets, but have used a variety of notations (e.g. temporal logic or generating automata) as
they have seemed convenient. Our model is general enough to serve as a semantic model for many
different languages for describing sets of action sequences.

The model can be used as a formal basis for algorithm comrectness proofs — proofs that particular
algorithms solve particular problems in the sense described above. in fact, a current major thrust of our
research involves producing correctness proofs for substantial-sized and complex concurrert aigorithms.
We use a variety of techniques for such proofs, primarily based on notions of composition and
abstraction. In every case, we try to utilize the modularity that is suggested by informal descriptions of the
algorithm in our formal correctness proofs. So far, our proofs have been done by hand, but it appears
that machine-checking of some ot our proots might be possible using current automatic proof technology.

The model can aiso be used for carrying out complexity analysis, proving upper and lower bounds on
the complexity of solving particular problems, and proving impossibility results.

3Even a trivial automaton having no actions at all has one fair behavior — the empty sequence of actions.

AL \ 4 by ! 4 (g y TR LT N L I TN T TS TR RN M AT W
B I A AR AN O TS A S O I DR e AR DO M A R N T P AR P A .

.....

;J
)
;
‘
§
3

 al

-~

h .-“}\..’

=g RIS AR VR AR AR TR R MAM AR R VARV R U YV YW W S A N Y O Y R O AR PR P O AW NPT V. W WU WY WS WY

%
|

3

3. Definiti »ns and Basic Results
This section containg some of the basic definitions and results about the model. Thi; material is
adapted frora [LT1].

3.1, Actions and Action Signatures

We assure a universal set of actions. Sequences of actions are used in this work, for d3scribing the
behavior of modules in concurrent systems. Since the same action may occur several times in a
sequence, i is convenient to distinguish the different occurrences. Thus, we refer to a particular
occurrence «f an action in a sequence as an event.

The actions of each automaton are classified as either "input®, "output”, or "internal”. The distinctions
are that inpit actions are not under the automaton’s control, output actions are under the automaton'’s
control and externally observable, and internal actions are under the automaton's cortrol but not
externally ot servable. In order to describe this classification, each automaton comes equipped with an
"action signeature”.

An action signature S is an ordered triple consisting of three pairwise-disjoint sets ot actiors. We write
in(S), out(S) and int(S) for the three components of S, and refer to the actions in the three sets as the
input actions, output actions and internal actions ot S, respectively. We let ext(S) = in(S) \, out(S) and
refer to the cctions in ext(S) as the extemnal actions of S. Also, we let local(S) = out(S) w int(3), and refer
to the actions in local(S) as the locally-controlled actions ot S. Finally, we let acts(S) = in(S' L out(S) v
int(S), and rifer to the actions in acts(S) as the actions of S. An external action signature is an action
signature consisting entirely of external actions, that is, having no internal actions. If S is an action
signature, th3n the external action signature of S is the action signature extsig(S) = {in(S),out(S),d), i.e.,
the action si(inature that is obtained from S by removing the internal actions.

3.2. Input/Output Automata
Now we :re ready to define the basic component of our model. An input/output automaton A (also
called an //O automaton or simply an automaton) consists of five components:
¢ an act-on signature sig(A),

o a set «tates(A) of states,
+ a nonempty set start(A) ¢ states(A) of start states,

e a tran:ition relation steps(A) ¢ states(A) x acts(sig(A)) x states(A), with the property that for
every state 8' and input action = there is a transition (s',x,s) in steps(A), and

 an equivalence relation part(A) on local(sig(A)), having at most countably many equiviilence
classes. ‘

Wae refer t) an element (s',x,s) of steps(A) as a step of A. The step (s'.x,s) is called an inptt step of A if
x i8 an input action. Output steps, internal steps, external steps and locally-controlled steps are defined
analogously. It (s',x,s) is a step of A, then = is said to be enabled in s'. Since every input action is
enabled in every state, automata are said to be input-enabled. The input-enabling property means that
the automatn is not able to block input actions. The partition part(A) is what was described in the
introduction as an abstract description of the "components” of the automaton. It is used to define
faimess.

IR RGN S TR Y NN IO N AR (NN AN NN A XA R NN L N L N S NN R U Y o N UL UL WY PUWU WL e e W W W DA UM

An execution fragment of A is a finite sequence sgn,.S,m,,...%.S, Of an infinite sequence
80:%4,8¢, 7., S OF altomating states and actions of A such that (s, .S,) is a step of A for every
I. An execution fragment beginning with a start state is called an execution. We denote the set of
executions of A by execs(A), and the set of finite executions of A by finexecs(A). A state is said to be
reachable in A if it is the final state of a finite execution of A.

A fair execution of an automaton A is defined to be an execution a of A such that the following
conditions hold for each class C of part(A).
1. If e is finite, then no action of C is enabled in the final state of a.
2. if o is infinite, then either o contains infinitely many events from C, or else o contains
infinitely many occurrences of states in which no action of C is enabled.
.‘ Thus, a fair execution gives "fair tums" to each class of part(A). We denote the set of fair executions of A
by fairexecs(A).

* The schedule of an execution fragment a« of A is the subsequence of o consisting of actions, and is
denoted by sched(a). We say that B is a schedule of A if B is the schedule of an execution of A. We
denote the set of schedules of A by scheds(A) and the set of finite schedules of A by finscheds(A). We
) say that f is a fair schedule of A if P is the schedule of a fair execution of A and we denote the set of fair
A schedules of A by fairscheds(A). The behavior of an execution or schedule a of A is the subsequence of
1;;, a consisting of extemal actions, and is denoted by beh(a). We say that B is a behavior of A if § is the
RO behavior of an execution of A. We denote the set of behaviors of A by behs(A) and the set of finite
behaviors of A by finbehs(A). We say that f is a fair behavior of A if B is the behavior of a fair execution
of A and we denote the set of fair behaviors of A by fairbehs(A).

o 3.3. Schedule Modules

T In order to describe problems to be solved by automata, we need to describe sets of sequences. More
precisely, a problem will be specified by a pair consisting of an action signature and a set of sequences
over the actions in that signature. (In most interesting cases, the action signature will be an external
action signature.) The mathematical object used to describe a problem is called a "schedule moduie”.

A schedule module H consists of two components:
 an action signature sig(H), and

¢ a set scheds(H) ot schedules.
" Each schedule in scheds(H) is a finite or infinite sequence of actions of H. Let finscheds(H) denote the set
:.{ of finite members of scheds(H).
3 "
.‘ﬁ The behavior of a schedule B of H is the subsequence of B consisting of external actions, and is
B2 denoted by beh(B). We say that P is a behavior of H if B is the behavior of an execution of H. We denote
Ry the set of behaviors of H by behs(H) and the set of finite behaviors of H by finbehs(H). We extend the
'}‘ definitions of fair schedules and fair behaviors to schedule modules in a trivial way, letting fairscheds(H) =
‘,1'. scheds(H) and fairbehs(H) = behs(H).
kN
& We usae the term modu'e to desianate either an automaton or scheduie module. |f M is a module, we

sometimes write acts(M) as shorthand for acts(sig(M)), and likewise for in(M), out(M), etc. i B ‘s any
sequence of actions and M is a module, we write B|M for Blacts(M).

Y W WY

EAR |4 L 0 - w . N P A MY AT "R Lh YR
s A I N A I s O N A A N I RS N S UL TR

There are several natural schedule modules that we often wish to associate with an automaton. They
correspond lo the automaton’s schedules, finite schedules, fair schedutes, behaviors, finite tehaviors and
fair behaviors. For each automaton A, let Scheds(A), Finscheds(A)) and Fairscheds(A) be the schedule
modules having action signature sig(A) and having schedules scheds(A), finscheds(A) and fairscheds(A),
respectively. Also, for each module M, let Behs(M), Finbehs(M) and Fairbehs(M) be the schedule
modules having action signature extsig(M) and having schedules behs(M), finbehs(M) anc fairbehs(M),
respectively. (Here and elsewhere, we follow the convention of denoting sets of schedulss with lower
case names and corresponding schedule modules with corresponding upper case names.)

3.4. Solving Probiems

Now we are ready to define our notion of "solving".4 This notion is intended for describing the way in
which particular automata solve particular problems (formalized as schedule modules). However, it is
convenient to state the definition more generally. Let M and M’ be modules (i.e., either automata or
schedule madules) with the same external action signature. Then M’ is said to soive M if fairbehs(M')
tairbehs(M).

In the most interesting case, M’ is an automaton and M is a schedule module. However, the more
general formulation allows us to carry out proofs in several stages: in order to show that &én automaton
solves a problem, we can show that the automaton "solves” another automaton, which in tun solves
another automaton, and so on, until some final automaton solves the problem. A variety of techniques
can be used to show that an automaton M' solves a schedule module M; we will mention same of these
below.

3.5. Implementation

One way of showing that one module solves another is to use an intermediate result about inclusion for
the sets of finite behaviors. Thus, we define an analog of the "solving” definition for finite behaviors only.
Let M and M’ be modules with the same extemal action signature. Then M’ is said to implement M if
finbehs(M') ¢ finbehs(M).

it is often possible to show that one automaton impiements another using a mapping between

automaton states. Suppose A and B are automata with the same external action signature, and suppose
t is a mapping from states(A) to the power set of states(B). The mapping f is said to be a possibilities
mapping frcm A to B if the following conditions hold:

1. For avery start state s of A, there is a start state t of B such that t € f(s).

2. For avery reachable state s’ of A, every step (s',r,s) of A, and every reachable state t' e f(s’)

of B:
a. It x € acts(B), then there is a step ({',n.t) of B such that t € (s).

b. If x ¢ acts(B), thent’ € f(s).

Lemima 1: Suppose that A and B are automata with the same external action signalure and
there i3 a possibilities mapping from A to B. Then A implements B.

It is possible to show that one module M’ solves another module M using this lemma together with

“This concent is called satisfying in [LT1).

additional results showing correspondences between faimess properties of M and M'. Some such
additional results are given in [LT1] and [WLL].

3.6. Composition
The most usetul way of combining |/O automata is by means of a composition operator, as defined in
this subsection.

3.6.1. Composition of Action Signatures
Let | be an index set that is at most countable. A collection {S};, of action signatures is said to be

strongly compatibie® if for all i, | € |, we have

1. 0ut(S) N out(Sl) =,

2.in(S) N acts(sl) = @, and

3. no action is in acts(S,) for infinitely many i.
Thus, no action is an output of more than one signature in the collection, and intemal actions of any
signature do not appear in any other signature in the collection.

The composition S = I',_S; of a collection of strongly compatible action signatures {Sj};; is defined to

be the action signature with

* In(S) = Ui in(S) — U 0ut(S)),

* out(S) = U, out(S), and

*int(S) = U ink(S).
Thus, output actions are those that are outputs of any of the component signatures, and similarly for
intemal actions. Input actions are any actions that are inputs to any of the component signatures, but
outputs o! no component signature.

3.6.2. Composition of Automata
A collection {M},., of modules is said to be strongly compatible it their action signatures are strongly
compatible. The composition A = I, A, of a strongly compatible cCollection of automata {A};,.| has the

following components:
* 8ig(A) = IT;,, sig(A),
o states(A) = [T, states(A)),®
o start(A) = IT,_, start(A),
* steps(A) is the set of triples (8,,.%,) such that for all i € |, if x € acts(A) then (3,[i],x.3,{]]) €
steps(A), and if x ¢ acts(A) then 8,(1] = 8,{i],” and

 part(A) = Uy, Part(A).

3Such & collection in said to be compatible il k satisfies the first two of the three listed properties. Some of the results below follow

sirfiply from compatibilty, while others require strong compatibility. Here, we simplify matters by considering the stronger definition
only. The consequences of the two definitions are described more carefully in [LT1] and [LMW].

“Note that the second and third components listed are just ordinary Cartesian products, while the first component uses a previous
definition.

7We uss the notation 37]i] to denote the i component of the state vector 3’

Since -he automata A, are input-enabled, so is their composition, and hence their ccmposition is an
automaton. Each step of the composition automaton consists of all the automata that have a particular
action in their signatures performing that action concumrently, while the automata that ds not have that
action in (heir signatures do nothing. The partition for the composition is formed by taking the union of the
partitions for the components. Thus, a fair execution of the composition gives ‘air turns to all of the
classes vithin all of the component automata. In other words, all component automata iin a composition
continue o act autonomously. If o = 8y, ¥, ... is an execution of A, let oA, be the sequence obtained by
deleting "igl when % is not an action of A;, and replacing the remaining 5’, by 51 Til.

The following basic results relate executions, schedules and behaviors of a compositior to those of the
automata being composed. The first result says that the projections of executions of a composition onto
the components are executions of the components, and similarly for schedules, etc. T1e parts of this
result denling with faimess depend on the fact that at most one component automat>n can impose
precondit ons on each action.

Lemma 2: Let {A};, | be a strongly compatible collection of automata, and iet A = IT,_ A, If

€ @recs(A) then alA; € execs(A)) for all i € |. Moveover, the same result holds fo- finexecs,
faire cecs, scheds, finscheds, fairscheds, behs, finbehs and fairbehs in place of execs

Certain converses of the preceding lemma are also true. The following lemma says th:it executions of
componeiit automata can be patched together to form an execution of the composition.
Lemma 3: Let {A}, . be a strongly compatible collection of automata, and let A = IT,_|A,. For
alli ¢ |, let o, be an execution of A. Suppose p is a sequence of actions in ext(A) such that B|A;
= be)(ay) for every i. Then there is an execution a of A such that B = beh(a) and o; = oA, for alf
i. Moreover, if o, is a fair execution of A, for all i, then a may be taken to be a fair execution of
A

Similarly, schedules or behaviors of component automata can be patched together to form schedules
or behaviors of the composition.
Lemma 4: Let {A},, | be a strongly compatible collection of automata, and let A = IT,_ A,. Let
P be a sequence of actions in acts(A). if B|A, € scheds(A) for all i € |, then B e scheds(A).
More over, the same result holds for fairscheds, behs and fairbehs in ptace of scheds.

The pravious lemmas are often useful in proving that certain automata solve certair: problems. In
particular, sometimes correctness conditions are formulated to say that every behavior of :in automaton is
also a behavior of a given composition A. One way of showing that a given sequence of actions is a
behavior >t A is by first showing that its projections are behaviors of the components of A and then

appealing to the preceding lemmas.

3.6.3. Coinposition of Schedule Modules
Corresjonding to our composition operator for automata, we also define a composition operator for
schedule modules. The composition H = I1,_H, of strongly compatible schedule moditles {H}, _ | is
defined to be the schedule module with
* sig(H) = IT;¢, sig(H),
* schads(H) is the set of sequences B of actions of H such that f|H, is a schedule of H; for
everyiel

i

The folowing lemma shows how composition of schedule modules corresponds to composition of

automata.

Lemma 5: Let {A}),,, be a strongly compatible collection of automata and let A = I1,_ A,
Then Scheds(A) = IT,, ,Scheds(A,), Fairscheds(A) = I, Fairscheds(A;), Behs(A) = I, Behs(A))
and Fairbehs(A) = [T, Fairbehs(A).

3.7. Preserving Properties

Although automata in our model are unable to block input actions, it is often convenient to restrict
attention to behaviors in which the environment obeys certain “well-formedness” restrictions. A useful
way of discussing such restrictions is in terms of the notion that a module "preserves® a property of
behaviors: as long as the environment does not violate the property, neither does the moduieé. Such a
notion is primarily interesting for properties that are "prefix-closed".

A set of sequences P is prefix-closed provided that whenever a. € P and B is a prefix of ¢, it is also the
case that p € P. A module M is said to be prefix-ciosed provided that behs(M) is prefix-closed. Let M be
any prefix-closed module and let P be a prefix-closed set of sequences of actions in ext(M). We say that
M preserves P it B = B'n € finbehs(M), n € out(M) and B’ € P together imply that B € P. Thus, if a module
preserves a property P, the module is not the first to violate P: as long as the environment only provides
inputs such that the cumulative behavior satisfies P, the module will only perform outputs such that the
cumulative behavior satisfies P.

3.8. Hiding Actions

Here we define an operator that "hides” some of the output actions of a module by converting them to
internal actions. We begin with a hiding operator on action signatures: it S is an action signature and X is
a subset of out(S), define hidey(S) = S', where in(S’) = in(S), out(S’) = out(S) — Z and int(S’) = int(S) L E.
Now we use the hiding operator on signatures to define a hiding operator for automata and schedule
modules: if M is a module with signature S, and X ¢ out(S), then let hide,(M) be the module M’ that
coincides with M except that sig(M') = hidey(sig(M)).

4. Candy Machines
In this section, we illustrate many of the preceding definitions using examples of simple candy
machines. (This class of examples is popular in the CSP literature, so this choice should facilitate
comparison of the models.) These examples show how our model is used to define simple
nondeterministic processes. They also show how problems can be stated, and how it can be proved that
certain automata solve certain problems. Finally, they show how processes can interact in the model,
athough the style of interaction is very simple (normally a strict alternation of button pushes and candy
_dispensations).

4.1. Candy Machines

in this subsection, we describe three specific candy machines as /O automata. Candy machine model
CM-1 has the following action signature.
Input actions: PUSH1, PUSH2

Output actions: SKYBAR, HEATHBAR, ALMONDJOY
intemal actions: none

fQa b AL D L g XA * o rp g Y FPUTITENU N e
[] LN T EYCR PO R TOK] FPERTO T o Vi Al 4% NI NN TR RN O Y ™ aN tRY VA 44 Yo 1Se e e VY

Y We will sometimes abbreviate the two push actions as 1 and 2, respectively, and the three
dispensation actions as S, H and A. The state of CM-1 consists of one variable "button_pushed", which
takes on values 0, 1 and 2, initially 0. Next we describe the transition relation of CM-1. It shouid not be
hard for the reader to translate the given description into a transition relation: (s',x,s) is a step of the
automaton exactly it the precondition of = (if any) is satisfied in s’ and s is a possible result of running the
code in x's "Effect” starting from s’

¢ PUSH!1
\ Effect: button_pushed := 1

PUSH2
i Effect: button_pushed := 2

‘ SKYBAR
‘. Precondition: button_pushed = 1
) Effect: button_pushed := 0

HEATHBAR
Precondition: button_pushed = 2
Effect: button_pushed := 0

N ALMONDJOY
N . Precondition: button_pushed = 2
v Effect: button_pushed := 0

< Thus, when the customer pushes button 1, CM-1 can dispense a SKYBAR. When the customer
y pushes button 2, CM-1 can dispense either a HEATHBAR or an ALMONDJOY, but not both. The
i partition for this automaton, part(CM-1), is defined to group together ALMONDJOY and HEATHBAR and
to keep SKYBAR in a singleton set.

A s

Candy machine model CM-2 is identical to CM-1 except that its HEATHBAR action has Precondition
“false”. This candy machine never dispenses HEATHBARS, but is able to dispense SKYBARs and
ALMONDJOYs. Model CM-3 is identical to CM-1 except that all three candy dispensation actions have
Precondition “false". Thatis, it never dispenses candy. As one might expect, it is not a very useful candy
machine from the point of view of the customer.

- -
Pl

4.2. Specifications for Candy Machine Behavior
Now we describe some interesting notions of cofrect candy machine behavior.

BT

Ll 8

4.2.1. Sate Candy Machine Behavior

Some basic requirements for a candy machine can be described by the schedule module SAFE-CM.
SAFE-CM has the same action signature as CM-1, and has as its set of schedules the set of sequences
over the symbois 1,2,S,H,A satisfying the following condition: every S is immediately preceded by a 1,
and every A or H is immediately preceded by a 2.

In order to show that CM-1 is a safe candy machine, i.e., that it solves the problem described by
SAFE-CM, we must show that all fair behaviors of CM-1 satisty the given requirement. Note that this
requirement, (as usual for safety requirements) holds for an infinite sequence if and only if it holds for all
finite prefixes of the infinite sequence. Therefore, it suffices to show that all finite behaviors of CM-1

L8 I TRt T T WL o2t

R
]
K
N
1

J z s Wy P A .0 4 { » - - » T AT YA T N s tN etk Ty "4 A
NI S T A A0 V) Py --Ar.'i i‘o' m}_mf:’:fﬁf:f:ﬁ:ﬁf o LN

Caile - and o gl - ol ‘o el A s o e v alla e e,

PP N Y R R R R R R O A R T R T T R O e R R TIC a NRTO WUV, N T g Wy YW (2] g0 2l afesa Gay iysa by

i satisfy the given requirement.

* Wae proceed by induction on the length of a behavior, using an inductive hypothesis that characterizes

the state of CM-1 in terms of the preceding events, i.e., button_pushed = 1 it the last event in the
sequence is PUSH1, 2 if the last event in the sequence is PUSH2, and 0 otherwise (i.e., if the sequence
4 is empty, or if the last event is a dispensation event). The inductive step considers cases based on the
five possible events. For instance, it SKYBAR occurs, its Precondition implies that button_pushed = 1
just prior to the dispensation; thus, the immediately preceding symbol in the sequence is 1, as needed.
The other cases are similar. It follows that CM-1 is a safe candy machine.

It is also easy to see that CM-2 is a safe candy machine. However, saying that CM-1 and CM-2 are
safe candy machines is not really saying enough, since the same is also true for CM-3. CM-3's fair
behaviors are just the finite and infinite sequences of 1's and 2's, which trivially satisfy the required
condition. Although CM-3 is a safe candy machine, it is not a very interesting one. Therefore, we will
give a stronger specification below.

i 4.2.2. Well-Formedness

;%i In discussing correct candy machine behavior, it is helpful to consider certain "well-formedness”
conditions on the interaction between the machine and its environment. For example, we may want to
restrict attention to interactions in which push and dispensation events alternate strictly. Define a
sequence of candy machine actions to be well-formed it it consists of alternating input and output (push
and dispensation) actions, starting with an input action. Notice that CM-1 has behaviors, in fact fair
behaviors, that are not well-formed, e.g. 11S118... is a non-well-formed fair behavior of CM-1. This is not
surprising, since CM-1 does not (in our model) have the power to insure that its environment preser es
well-formedness. However, it is easy to see that any safe candy machine, including CM-1, preserv2s
well-formedness, according to the definition of "preserves” given in Section 3.

4.2.3. Live Candy Machine Behavior

A stronger set of requirements than SAFE-CM can be described by the schedule module LIVE-CM.
LIVE-CM has the same action signature as CM-1. Its set of sequences are those that are safe candy g
machine sequences and that in addition satisfy the following condition: °lIf the sequence is well-formed,)
then every push event has a later dispensation event."® |

CM-3 is not a live candy machine, because it has fair behaviors, such as the sequence with the single
element 1, that do not satisfy this condition. (This sequence satisfies the well-formedness hypothesis, but 1
does not satisfy the liveness conclusion.) On the other hand, CM-1 is a live candy machine, which we
can prove as follows. Suppose not; then there is a fair behavior of CM-1 that is well-formed and that
contains a push event that is not foliowed by any later dispensation event. By well-formedness, the only
possibility is that the sequence is finite and ends with the given push event. Say, for example, that the
push event is PUSH1. Then by the state characterization given above, the state after the given scheduie
has button_pushed = 1. Then the SKYBAR dispensation action is enabied in this state. But the definition
of a fair execution implies that no action of CM-1 can be enabled in the final state, which yields a

*This can be expressed using temporal logic, in the form W — UP — ¢D), where W is the set of well-formed candy machine

sequences, P is the set of sequences beginning with a push action, and D is the set of sequences beginning with a dispensation
action,

Vg b h g IR R R QU Vel Sa8 a it Vol v R Wl Aad €aR Vol el au R Vaf ol Ralt.g tu) Sa8 Vol Sah. R o ol ‘gl Gl . B So R 5ol & "0l 0ol*

11

contradiction.
CM-2 is glsv a live candy machine, even though it has less nondeterminism than CM-1. The proof is :
similar to that for CM-1. ,
For the raasons discussed in Section 2, LIVE-CM does not admit trivial solutions. Anything that)
satisfies the specification must be able to respond to any pattern of pushes (since it is an IO automaton, "
with the input-enabling condition). Moreover, responses have to be safe, and if the pushes arrive in a \

well-formed way, responses must in fact be made.?

4.3. Custoiners 3
We now clescribe particular customers that might interact with a candy machine. It is convenient also]
to describe such customers as /O automata also. Customer CUST-1 continues to request candy bars ad !

infinitum, nondeterministically choosing which button to push. CUST-1's action signature is the
"complement” of that of the candy machines’:
Input actions: SKYBAR, HEATHBAR, ALMONDJOY

Output actions: PUSH1, PUSH2
internal actions: none

PAO N

i The state of CUST-1 consists of one variable "waiting®, which takes on values “yes" and "no”, initially
; "no". CUST-1's actions are as follows.

' SKYBAR ‘
: Effect: waiting := no]

HEATHBAR
Effect: wailing := no X

ALMONDJOY
Effect: waiting := no |

PUSH1
. Precondition: waiting = no .
’ Effect: waiting := yes h

PUSH2
Precondition: waiting = no
Effect: waiting := yes '

E e

The partition part(CUST-1) puts PUSH1 and PUSH2 together in one equivalence class. It is easy to

%One might sk the technical question whether it might be reasonable to efiminate the wed-formedness hypoth.esis in the live
candy machine behavior specification. If we did this, ‘then we would arrive at a stronger specification for a live candy machine, one
1 that requires that the machine must always issue candy sometime after each push, regardiess of whether the pustes happen in a
wel-formed ma.ner. While this might be a reasonable requiremaent for a candy machine, CM-1 does not satisfy &. For consider the 4
{non-well-formed) behavior 121212... of CM-1. This contains push events that are not followed by dispensation everts. However, .
we claim it is & fair behavior of CM-1, since each class in the partition partiCM-1), (S} and (A, H}, has infinitely maity points in the ’
sequence at which no action in that class is enabled. (it might be heipful for the reader to imagine that there are two “processes” :
inside the carcly machine, where process 1 is in charge of dispensing SKYBARS and process 2 is in charge of dispensing)
ALMONDJOYS and HEATHBARS. Every time process 1 tries to perform its task, it happens that the value of buttcn_pushed is 2, .
80 it cannot do anything. Similarly, every time process 2 tries to perform its task, the value of button_pushed is 1. So neither
process can c:use any output to occur.) Since we have exhibited a fair behavior of CM-1 that contains a push but no later ")
dispensation, CM-1 does not satisfy the proposed stronger specification.)

n

- , g - . . ‘
S A AT P A Ve W N e T W e BT N T 0Ty AT N 0T S i S W it T Tt S TR L VS NS ERA R LG C RSt ¢

see that CUST-1 preserves well-formedness; in fact, it never pushes unless all previous pushes have
. been followed by dispensations. Also, in any well-formed fair behavior, after any dispensation event, '
' CUST-1 eventually pushes a button once again. A

Customer CUST-2 is somewhat more selective than CUST-1. It pushes button 2 repeatedly just until !
the machine dispenses a HEATHBAR. Then it pushes button 1 forever. Formally, CUST-2 has another :
variable "heathbar_received” in its state in addition to "waiting”. This variable takes on values "yes" and
"no", initially "no". The actions of CUST-2 that ditfer from those of CUST-1 are as follows.

HEATHBAR
Effect: waiting := no; heathbar_received .= yes

PUSH1 \
Precondition: waiting = no; heathbar_received = yes '
Effect: waiting := yes :

PUSHZ
Precondition: waiting = no; heathbar_received = no
Effect: waiting := yes

e

it is easy to show that CUST-2 implements CUST-1, using a possibilities mapping f that maps each
state s of CUST-2 to the singleton set containing the state of CUST-1 that only contains the “waiting"
variable of s. In fact, it can be shown that CUST-2 solves CUST-1, according to our formal definition of
"solves". A straightforward proof can be based directly on the definition of fair execution and the fact that ’
for every state s of CUST-2, some output action is enabled in s for CUST-2 exactly if some output action
is enabled in {(s) for CUST-1.

Customer CUST-3 is similar to CUST-1 except that it is required eventually to take a transition to a
"satiated” state from which it no longer requests any candy bars. Formally, CUST-3's state has an K
additional "satiated"” variable besides the "waiting” variable of CUST-1; it takes on values "yes" or "no", \
initially "no®. CUST-3 has an additional internal action BECOME_SATIATED, defined as follows. b
BECOME_SATIATED

Precondition: satiated = no
Effect: satiated := yes

Also, each of PUSHt and PUSH2 has the additional Precondition "satiated = no". The
BECOME_SATIATED action is in a class by itself in part(CUST-3).

CUST-3, such as the empty sequence, that are not fair behaviors of CUST-1.

4.4, Candy Machines and Customers
Now we consider the composition of candy machines and customers. First consider the composition of
CM-1 and CUST-1. Since each component preserves well-formedness, the composition has only well-
formed behaviors. We claim that all tair behaviors of the composition are infinite. Suppose not: then
consider any finite fair execution. By well-formedness and a simple assertion characterizing the states
after finite executions, the state of the composition after the execution either has waiting = "no" and
button_pushed = 0, or has waiting = “"yes” and button_pushed = 1 or 2. In the former case, PUSH1 is é

Note that CUST-3 implements CUST-1, but does not solve CUST-1; there are fair behaviors of . i

enabled, while in the latter case, either SKYBAR or HEATHBAR is enabled. But the definition of a fair

13

execution implies that no action of the composition can be enabled in the final state.

In fact, it is not hard to see that the fair behaviors of the composition of CM-1 and CUST-1 are exactly
the infinite well-formed sequences in which each dispensation action dispenses an appropriate candy
(according to the most recent push).

The composition of CM-1 and CUST-2 yields exactly the sequences of the form 2,A,2,A,... 2, A2,A..., or
2A2A,..2A2H1S8,18S,.. as its fair behaviors. The composition of CM-1 and CUST-3 produces
exactly the even-length finite well-formed sequences in which each dispensation action dispenses an
appropriate candy. Also, the composition of CM-2 and CUST-2 yields the single sequence
2A2A,..,2A2A... as its only fair behavior. All of these, and similar characterizations for the behavior
of the other compositions, can be proved by straightforward methods similar to those "ised above.

The previous arguments about the behavior of compositions of automata are based directly on the
internal structure of the component automata. Sometimes it is possible to break up such a proof, using
properties of the behavior of the component automata to prove a property of the composition. Formally,
in order to prove that the composition of the automata {A},. solves a problem, one might prove that each
component automaton A, solves a schedule module H;, and then prove that the composition of the {H},.,
solves the problem.

For example, we reconsider proving that every fair behavior of the composition of CM-1 and CUST-1 is
an infinite well-formed sequence of actions in which each dispensation action dispenses an appropriate
candy. Let LIVE-CUST be the schedule modute whose signature is the same as CUST-1's, and whose
schedules are exactly those in which 1. the customer is not the first to violate well-formedness, and 2. if
the sequence is well-formed, then it is either infinite or eise finite and ending with a push event. Then it is
easy to see that CUST-1 solves LIVE-CUST. We have already argued that CM-1 solves the schedule
module LIVE-CM described earlier. So it suffices to prove that every behavior of the composition of
LIVE-CUST and LIVE-CM is an infinite well-formed sequence of actions in which each dispensation
action dispenses an appropriate candy. This is not difficult to show: well-formedness holds because
neither component is the first to violate it, appropriate responses follow from the specification of LIVE-CM,
and the sequence is infinite because neither component stops at its own tumn.

5. Choosing a Ring Leader

Now we give a brief sketch of another example, the election of a leader in a ring of processors. This
example exhibits much more interesting concumrent activity than the candy machine example. it shows
how one can use the model to reason about interesting concurrent alyorithms, and suggests how the
model can ba used 10 cafry out complexity analysis and prove lower bound and impossibility results.

Wae assume a ring of n processors, each starting with a unique identifier chosen from a universal totally
ordered identifier set |. Each processor can communicate with each of its neighbors in the ring, using a
pair of one-way channels. The processors do not know the size of the ring, nor the specific subset of |
that is actually being used as identifiers. The object is for a unique processor to perform a "leader" output
action. This problem has been widely studied in the distributed algorithms research area.

Each processor and each communication channel is modelled as an /O automaton. Each channel

AR CIOA M Ja ey »

AR VAN A UARTAN A R AR R R SR Tt B 7 5V % e A N P

14

automaton has input actions of the form SEND(M) and output actions of the form RECEIVE(M).'® its
state is a multiset, consisting of those messages that have been sent but not yet received: initially, the
multiset is empty. The transition relation is as follows:
SEND(M)

Effect: messages := messages U {M}
RECEIVE(M)

Precondition: M € messages
Effect: messages := messages — {M)

The partition puts each ditferent RECEIVE action in a separate equivalence class; this has the effect of
hypothesizing that every message that is sent eventually gets received.

Each processor is also modelled as an /O automaton, having SEND output actions and RECEIVE
input actions. In addition, it has a LEADER output action by which it can announce that it has been
chosen as the leader processor. it may aiso have intemnal actions.

A collection of channel and processor automata is composed into a single system automaton, and then
the hiding operator is used to produce a new system automaton in which the only external actions are
LEADER actions. The problem to be solved by the system can be described by the schedule module
whose external action signature has no input actions and only LEADER output actions, and whose set of

schedules consists of the set of sequences of length exaclly 1. That is, in a correct behavior, exactly one
LEADER event occurs.

We now describe a particular algorithm for solving this problem, based on that of LeLann (Le]. Each
processor sends its identifier clockwise around the ring. When a processor receives an identifier, if the
identifier is less than its own, the processor discards the received identifier. If it is greater than its own,

the processor passes the received identifier clockwise. [f it is equal to its own, the processor performs a
LEADER output action.

In more detail, the state of a processor with identifier i has a variable "pending® which holds a subset of
I, initially (i}. It also has a variable “leader-status”, which takes on values from {"unknown", "elected”,
“announced"} and has initial value "unknown”. The steps are as follows.
RECEIVE()), j e |

Effect: if j > | then pending : pendlngu{j}
it j = i then leader-status = "elected

SEND()),je |
Precondition: j € pending
Effect: pending := pending — (j}
LEADER

Precondition: leader-status = "elected”
Effect. leader-status := "announced”

Each action is in a separate ciass of the partition. it is not hard to camry out a correctness proof of this

°Since the model uses a global naming scheme, the actual action names would have to be subscripted with information
identilying the particular channel.

e

SR

2

.,.,.,
7

I; '}‘1 o

o

’ 1
A
at

algorithm using the model. The safety proot (i.e., that no more than one LEADER event aver occurs)
involves proving an invariant assertion relating the identifiers that appear in different places in the ring,
both as processor id’s and in messages. More specifically, it must be shown that if i < j, then a processor
with identifier i, & processor with identifier j, and a message containing identifier i cannot appear in that
order, reading clockwise around the ring.

In order to prove liveness (i.e., that some LEADER event eventually occurs), another invariant is used,
expressing conservation of the message comesponding to the maximum identifier. Then a "variant
function® is defined, describing the progress that has been made toward election of a leader: for each
state, the variant function yields the remaining distance the maximum identifier needs to travel before
reaching its originating processor. The value of this function is shown never to increase during execution,
and at any point where it is nonzero, the faimess properties of /0 automata imply that sorne event will
eventually occur to decrease the value. Thus, eventually, the function value reaches zero, which implies
that a LEADER event occurs.

The mod3l can be used to carry out complexity analysis. For any execution of the a'gorithm, the
number of SEND or RECEIVE events can be used as a measure of the amount of commuication; it is
not hard to see that n? is a worst-case upper bound on this number, where n is the number cf processors
in the ring. Also, for any execution, time can be measured as follows. Assign a "real time" t¢ each event,
as large as possible, subject to the requirement that for each class of the partition, the time between
successive "turns” for that class is at most 1. Then the real time assigned to the LEADER ovent can be
taken as a time measure for the entire execution. it is not hard to see that 2n + 1 is a worst-case upper
bound for the time measure.

The given algorithm is not optimal in its communication requirements; for example, [P] contains an
algorithm with an O(n log n) upper bound. The algorithm in [P} can also be formalized and analyzed
using our model. Also, [Bu] proves an Q(n log n) lower bound on the worst-case amount of
communication; this result also is describable in our model.

6. Other Applications

The model has been used to describe and reason about many different kinds of algorithms, both in
systems applications and in the algorithms research literature. In this section, we describe some of these
uses.

6.1. Network Resource Allocation

Our first vse of the model was for describing network resource allocation algorithms. [LT1] presents a
network arbiter design and proves its correctness, using /O automata. The algorithm is based on a
resource pe-forming a treewalk of a spanning tree of the network graph. The conditions proved include
safety properties (mutual exclusion) and liveness properties (no lockout).

The correctness proof is done in three levels of abstraction. The problem definition is presented as a
high-level schedule module, in which inputs are requests and retums, and outputs are grants, all for a
particular resource. The intermediate level is a description of the algorithm in terms of graph theory,
formalized as an automaton together with a restricted set of executions. Finally, the complete distributed
algorithm is Jescribed as a composition of automata at the lowest level. It is shown that each level solves

R pp

(

p

L \7,‘\. p"':“v‘!i [N _g‘l“'lh‘i.‘ ‘Q.‘.“

¥, 47 AW ARa Y Y SOV AT R TR TR T KN IO RN N KD - AUNUNUFUNY VUL WL WUW WU WU BN Tor R s - e 8

16

the level above it, and thus that the distributed algorithm solves the arbiter problem.

Most of the interesting reasoning about the algorithm is done at the intermediate level, in terms of
graphs. This reasoning is close to the intuitive reasoning one would normally use to understand and
explain the algorithm. The interesting work involves showing that the intermediate level solves the high-
level problem statement. In contrast, showing that the lowest level solves the intermediate level is a long
but straightforward case analysis.

[LT1] also contains an analysis of the time complexity of the algorithm, demonstrating an O(n) worst-
case upper bound, where n is the number of nodes in the network, and an O(d) worst-case upper bound
when a request does not overlap with any others, where d is the diameter of the network. The time
analysis proof follows the proof of "no lockout® very closely, suggesting that there may be a general
correspondence between liveness proots and proofs of upper bounds on time.

We have also used the model to study other network resource aliocation algorithms. For example, in
{LW]. we give an aigorithm for the "Drinking Philosophers” problem: in this problem, users request sets of
resources by name, with the same user possibly requesting diiferent sets of resources each time he
makes a request. {CM2] contains an algorithm for this problem, constructed by modifying a particular
Dining Philosophers algorithm. Our algorithm, based on the one in [CM2], is described as a composition
of automata that solve the Dining Philosophers problem and automata that carry out additional
bookkeeping. Our use of composition allows us to use any Dining Philosphers algorithm as a
“subroutine”; some choices can be shown to yield better time performance for the resulting Drinking
Philosophers algorithm than is yielded by the algorithm of [CM2).

6.2. Synchronizers

In [A], Awerbuch describes a synchronizer algorithm — a distributed algorithm designed to convert
programs written for synchronous networks into versions that can be used in asynchronous networks. In
this algorithm, the network nodes are partitioned into clusters, and different strategies are used to
synchronize within clusters and among clusters. The aigorithm is clever, but faily complex, and is
presented without formal proof. In [FLS), we provide a new presentation and a proof for Awerbuch's
algorithm. The algorithm is decomposed into separate automata for intercluster and intracluster
synchronization. The intercluster synchronizer is further decompaosed into a piece executing at each
node. In fact, Awerbuch’s actual program for each node is described as the composition of two automata,
one participating in interciuster and one in intraciuster synchronization.

6.3. Communication

In [WLL], we present a correctness proof for the intricate distributed minimum spanning tree algorithm
of [GHS]. The techniques used are based on the hierarchical structure used in [LT1]. However, instead
of a linear hierarchy of algorithms, we use a /attice of algorithms. The complete algorithm has several
different projections onto higher level "subalgorithms”, where each subalgorithm represents one task
performed by the main aigorithm. The proof involves showing that the subalgorithms all solve the
minimum spanning tree problem and that the full algorithm “solves” all of the subalgorithms. In showing
the latter, we make use of many properties of the separate subalgoritims. We develop the basic theory
needed for lattice-structured proofs; some work on a similar theory appears in [LaS].

£

N0 il]
(S 2 S S SR A A 9, 0.|'|,|“.| XN

N

|
d
1
1
1

-

FIRCT AN ST L) WA WL WU VLTS W WAL WL AT W AR W W S L LW Y 2% a® 02 02 o€ byt By® §0 0t 0ot gt @O Hat Rt 8 a0 020 028 A8 b

17

More recently, we have been using I/O automata to characterize correct behavior for phy:ical channels
and data lir ks. We are attempting to prove that certain types of data link behavior can be irplemented in
terms of cortain types of physical channels, while other types cannot. Preliminary resiits show that
interesting data link behavior seems to require at least some stable storage (whereas previous work
shows that a single stable bit at each end suffices). Aiso, it appears that the data link prot.xcol must use
unbounded size headers to achieve reasonable behavior, in case the underlying physical channels are
not FIFO.

6.4. Concurrency Controi

We have been using the model as the formal foundation {or a naw theory of atomic transactions.
Transactiors arose originally in database systems, but are now used as a basic constru:t for general
data-oriente d distributed programming. Use of tran<actions in general-purpose languages has required
their extension to allow nesting; nested transactions permit more concurrency thar single-level
transactions;, and permit localized handling of failures.

In [LM], v/e use 1/O automata to model nested transactions, state the correctness conditions that they
must satisfy, describe an exclusive locking algorithm for nested transactions, and carry out :1 correctness
proof. In la‘er papers, we extend this treatment o more general locking algorithms and time stamp-based
algorithms. We also prove correctness of algorithms for management of "orphan” transactions —
transactions that continue to execute even though some ancestor in the transaction nesting structure has
been aborted. We are able to use /0 automata to decompose the orphan algorithms so that concurrency
control and recovery are handled by one module, and orphan management is handled by another.
Correctness properties for the two kinds of modules are proved separately, and then comtiined to yield
correctness properties for the complete algorithm.

We have had similar success in describing correctness of algorithms for replicated data ryanagement.
We are ably to decompose certain replicated data algorithms into modules that handle concurrency
control and recovery at the level of individual data replicas and modules that implemaent the data
replication algorithm. A book [LMW] is now in progress, describing this theory.

Although the model has proved to be a very usable too! for describing these results, its full power has
not yet beer used in this work. In particular, only finite executions have so far been considered, and only
safety prope rties have been proved.

6.5. Share:1 Atomic Objects

A topic o recent research interest has been the study of wait-free implementability of concurrently-
accessible (tomic objects in terms of other atomic objects. An object is said to be atomic, roughly
speaking, if it responds to concurrent invocations of operations as if the operations were executed
indivisibly & some time between the invocation and response times. So far, most of the work has
focussed or read-write registers for use by various numbers of readers and writers. iAany of the
algorithms a ‘e very complex and difficult to understand precisely.

The pape [L], which initiated this research area, contains an interesting formal model bas 3d on partial
orderings of operations. However, most of the subsequent papers do not use Lamport's model, but
instead inciude their own models and definitions. The muiltiplicity of modeis has contributed to making the

L]
n
v
)
.
]
>

R

P

g W T T T N e v
t N‘Q % i\?"} N

v 3 b . N o e - me ,
RN S N N R UMW NI A M ‘O,Q'GI.‘.Q..l.l. W, .l‘o q,i.r] ;,l!., e , . O \ ‘

2

(%

papers very difficult to read.

In [BY}, Bloom uses the /O automaton model as the basis for stating correctness conditions for atomic
read-write registers, for describing a new aigorithm (which implements 2-writer n-reader registers from
{-writer n+1-reader registers) and for proving the algorithm correct. He describes the solution as a
composition of automata for each of the reader and writer protocols and automata for the 1-writer
registers used in the implementation. The combination is shown to impiement the desired 2-writer
register. The work is rigorous and clear; we hope that a similar presentation will help clarity some of the
other algorithms.

New work by Herlihy on impossibility results for atomic object implementations [He] also uses the 1/0
automaton model.

6.6. Dataflow

in [LS], we formulate the semantics of dataflow networks in terms of /O automata. We define the
notion of "determinacy” (i.e., that the sequence of output actions is uniquely defined by the sequence of
input actions), a notion that is considered important in dataflow computation. We state a theorem that
expresses Kahn's main result about dataflow networks [K] — that the semantics of networks of
determinate components can be uniquely detined using the least fixed point operator applied to certain
equations involving behavior of the individual components. We then prove a theorem showing the
equivalence of our operational semantics and Kahn's fixed-point semantics.

Bibliography
[A] Awerbuch, B. Complexity of Network Synchronization. JACM 32(4), October, 1985, pp. 804-823.

[BI] Bloom, B. Constructing Two-Writer Atomic Registers. 6th ACM SIGACT-SIGOFS Symposium on
Principles of Distributed Computing, Vancouver, British Columbia, Canada, August, 1987, pp. 249-259.

[Bu] Bums, J. A Formal Mode!l for Message Passing Systems. Technical Report TR91, Indiana
University, May, 1980.

[CM1] Chandy, K.M., and Misra, J. A Foundation of Parailel Program Design. Addison-Wesley, 1988.

[CM2] Chandy, K.M., and Misra,J. The Drinking Philosophers Problem. ACM-TOPLAS 6(4), October,
1981, pp. 632-646.

[FLS] Fekete, A., Lynch, N., and Shrira, L. A Mcdular Proof of Correctness for a Networ: Synchronizer.
.2nd Intermational Workshop on Distributed Algorithms, Amsterdam, The Netherlands, July,1987.

[GHS] Gallager, R., Humblet, P. and Spira, P. A Distributed Algorithm for Minimum-Weight Spanning
Trees TOPLAS, Vol. 5, No. 1 (January, 1983), pp. 66-77.

[GL] Goldman, K.J., and Lynch, N.A. Ouorum Comsensus in Nested Transaction Systems. 6th ACM

SIGACT-SIGOPS Symposium on Principles of Distributed Computing,Vancouver, British Columbia,
Canada, August, 1987,

‘-"
.
b
hY)
y

S rryyL.
_‘J_J_’!'bi b lr.'x?;

Ve

b5 ol

- ‘{' ‘:'
aA_n

&

[He] Herlihy, M. Impossibility and Universality Results for Wait-Free Synchronization. € ubmitted for
publication.

[Ho] Hoar3, C. A. R. Communicating Sequential Processes. Prentice-Hall, 1985.

[K] Kahn, G. The Semantics of a Simple Language For Parallel Programming. /nformation Processing
74. North-Holland Publishing Co., 1974.

[L] Lampcrt, L. On Interprocess Communication, Parts | and 1. Distributed Computing 1(.2), 1986, pp.
77-101.

[LaS] Lary, S. and Shankar, U. Protocol Verification via Projections. /EEE Trans. n Software
Engineening SE10(4). July, 1984.

[Le] LeLann, G. Distibuted Systems, Towards a Formal Approach. IFIP Congress, Toronto, 1977, pp.
155-160.

[LF] Lynch, N.A,, and Fisher, M.J. On Describing the Behavior and Implementation of Distributed
Systems. Theoretical Computer Science 13, 1981, pp. 17-43.

[LM] Lynch, N.A, and Merritt, M. Introduction to the Theory of Nested Transactions. ICDT'86
International Conference on Database Theory. Rome, Italy, September, 1986. pp. 278-305. Also,
MITA.CS/TR-367 July 1986, to appear in Theoretical Computer Science.

[LMW] Lyr.ch, N., Merritt, M., and Weihl, W. Atomic Transactions. In progress.

(LS] Lynct, N.A., and Stark, E.W A Proof of the Kahn Principle for Inout/Output Automata. Submitted
for publication.

[LT1] Lynch, N.A., and Tuttle, M.R. Hierarchical Correctness Proots for Distributed Algorithms. In
Proceedings of 6th ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing.
Vancouver, Eiritish Columbia, Canada, August, 1987, pp. 137-151.

[LT2] Lynch, N.A., and Tuttle, M.R. Hierarchical Correctness Proofs for Distributed Algorithms.
Master's Thesis, Massachusetts Institute of Technology, April,1987. MIT/LCS/TR-387, April, 1987.

[LW] Lynch, N.A., and Welch, J.L. Synthesis of Efficient Drinking Philosophers Algcrithms. In
progress.

(P] Petersan.'G.L. An O(nlogn) Unidirectional Algorithm for the Circular Extrema Protlem. ACM
TOPLAS (4), October,1982. pp. 758-762.

[RW] Ramadge, P.J., and Wonham, W.M. Supervisory Control of a Class of Discrete Event Processes.
University of Toronto. November, 1985. Systems Control Group Report #8515.

[WLL] Welzh, J., Lamport, L., and Lynch, N. A Lattice-Structured Proot of a Minimum Spanning Tree
Algorithm. Submitted for publication.

SR Y

YA e Y e N S N Ve P ~ " SN \
o T ST A BT i o S P AT L R P B PN T P o T,

S O W N Y S N R T ey R . Wity o Y AT N

TRIEIWR T, WU W U WO N TR R N AU O MO WY WO AU UV VU WA VY WUV W Y UV VN VUV UV IV, el afad

|)

Table of Contents
1. Introduction
2. Overview of the Model
3. Definitions and Basic Resuits
3.1. Actions and Actlon Signatures
3.2. Input/Output Automata
3.3. Schedule Modules
3.4. Solving Problems
3.5. Iimplementation
3.6. Composition
3.6.1. Composition of Action Signatures
3.6.2. Composition of Automata
3.6.3. Composition of Schedule Modules
3.7. Preserving Properties
3.8. Hiding Actions
4, Candy Machines
4.1. Candy Machines
4.2. Specifications for Candy Machine Behavior
4.2.1. Safe Candy Machine Behavior
4.2.2. Well-Formedness 10
4.2.3. Live Candy Machine Behavior 10
4.3. Customers 11
4.4. Candy Machines and Customers 12
5. Choosing a Ring Leader 13
6. Other Applications 15
6.1. Network Resource Allocation 15
6.2. Synchronizers 16
6.3. Communication 16
6.4. Concurrency Control 17
6.5. Shared Atomic Objects 17
6.6. Dataflow 18

OOV OONIAITNNEWWWOO

OFFICIAL DISTRIBUTION LIST

Director

Information Processing Techniques Office
Defense Advanced Research Projects Agency
1400 Wilson Boulevard

Arlington, VA 22209

Of fice of Naval Research

800 North Quincy Street
Arlington, VA 22217

Attn: Dr. R, Grafton, Code 433

Director, Code 2627
Naval Research Laboratory
Washington, DC 20375

Defense Technical Information Center
Cameron Station
Alexandria, VA 22314

National Science Foundation
Office of Computing Activities
1800 G. Street, N.W,
Washington, DC 20550

Attn: Program Director

Dr. E.B. Royce, Code 38
Head, Research Department
Naval Weapons Center
China Lake, CA 93555

12

copies

copies

copies

copies

copiles

copy

RV
.
“
[3
d
’
f
-
f
»
§§

.
NS

oY A

o i

e

LS

&

'(l‘.l

e

x
14

