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I/O Automata: A Model for Discrete Event Systems1

Nancy Lynch
Massachusetts Institute of Technology

Cambridge, Mass. 02139

1. Introduction .
--- _-The input/output automaton model has recently been defined in [TtLT2],, as a tool for modelling

concurrent and distributed discrete event systems of the sods arising In co,,apuAr scien.,'. Sinco its
introduction, the model has been used for describing and reasoning about several different types of
systems, including network resource allocation algorithms, communication algorithms, concurrent
database systems, shared atomic objects, and dataflow architectures. The simplicity and generality of the
model and its similarities with other new models fRW,CM1J suggest that it will prove useful in other
application areas, such as control theory and manufacturing.

This paper is intended to introduce researchers to the model. It Is organized as follows. Section 2
contains an overview of the model. Section 3 contains formal definitions and some basic results. Section
4 contains an illustrative example, candy machines. Section 5 contains a second example, a system that
elects a leader. Finally, Section 6 contains a survey of some of the uses that have so far been made of
Smodel.

2. Overview of the Model

I/O automata provide an appropriate model for discrete event systems consisting of concurrently-

operating components. The components, as well as the entire system, may be "reactive" in the sense
that they interact with their environments in an ongoing manner (rather than, say, simply accepting an
Input, computing a function of that input and halting). Although I/O automata can be used to model
synchronous systems, they are best suited for modelling systems in which the components operate
asynchronously.

Each system component is modelled as an '1/O automaton", which is a mathematical object somewhat
like a traditional automaton. However, an I/O automaton need not be finite-state, but can have an infinite
state set. The actions of an I/O automaton are classified as either "Input', "output', or "internal'. The
automaton generates output and internal actions autonomously, and transmits output actions
Instantaneously to Its environment. In contrast, the automaton's input is generated by the environment
and transmitted Instantaneously to the automaton. Our distinction between input and other actions is
fundamental, based on who determines when the action is performed: an automaton can establish
restrictions on when it will perform an output or internal action, but it is unable to block the performance of

'This research was supported In part by the National Science Foundation under Grant

CCR-86-11442, by the Office of Naval Research under Contract N00014-85-K-0168 and by
the Defense Advanced Research Projects Agency (DARPA) under Contract
N00014-83-K-0125,
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an input actl 3n. 2

The fact hiat our automata are unable to block inputs distinguishes our model from I oare's CSP
(Communict ing Sequential Processes) [Hoj. There, input blocking is used for two purposes: as a way of
eliminating t ndesirable inputs, and as a way of blocking the activity of the environment. Ou model does
not have an, way of blocking the environment, but does have other ways of coping with bad inputs. For
example, su )pose that we wish to constrain the behavior of an automaton only in case the environment
observes ce lain restrictions on the production of inputs. Instead of requiring the automator to block the
bad Inputs, ,e permit these inputs to occur; however, we may permit the automaton to exI lbit arbitrary
behavior in (ase they do. Alternatively, we may require the automaton to detect bad inputs and respond
to them with error messages. Thus, we have simple ways of describing input restrict::ns, without

including inp A-blocking in the model.

1/0 autorrata may be nondeterministic, and indeed the nondeterminism is an imporian' part of the
model's des.riptive power. Describing algorithms as nondeterministically as possible tends to make

results abou the algorithms quite general, since many results about nondeterministic algorilhms apply a

fortiori to al; algorithms obtained by restricting the nondeterministic choices. Moreover the use of

nondetennin sm helps to avoid cluttering algorithm descriptions and proofs with inessential details.

I/0 autor 3ta can be composed to yield other I/0 automata. Our composition operator cc nnects each

output actior, of one automaton with input actions of any number (usually one) of other autonata. In the

resulting system, an output action is thus generated autonomously by one component and

instantaneously transmitted to all the other components having the same action as an inp t. All such

components are passive recipients of the input, and take steps simultaneously with the outpu: step. As in
CSP, we usr simultaneous performance of actions to synchronize components, but we per nit only one

component t,) determine when the action occurs.

Since VO iutomata are intended to model complex systems with any number of primitive components,

each automs ton comes equipped with an abstract notion of "component"; formally, these CorT ponents are

described by an equivalence relation on the automaton's output and internal actions, where a I the actions

In one equi%'alence class are to be thought of as under the control of the same prim tive system

component.

When I/0 automata are run, they generate "executions" (alternating sequences of states cnd actions).

Among all the executions of an automaton, we are primarily Interested in the "fair" executic ns - those

that pernit (ach of the automaton's primitive components to have infinitely many chance, to perform

output or int rnal actions. The fair executions of an automaton give rise to the "fair behatiors" of the

automaton -- the subsequences of the fair executions that consist of external (i.e., input and output)

actions. it t this set of sequences that we believe embodies the interesting behavior of an I/0

automaton; t; ius, our semantics is a "trace' semantics. The set of fair behaviors of an I/0 au omaton can

consist of bo h finite and infinite sequences of actions, and is not necessarily closed under ti ie operation

of taking prefixes.

2Th. shared-r nory model described in [LF] has had a strong influence on the present work. In particular, the ii ,ability to block
mput appears E 9 the "read-anything' property in [LF].
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A "problem" to be solved by an 1/0 automaton is formalized essentially as an arbitrary set of (finite and

kIfinite) sequences of external actions. Our notion of what it means for an automaton to "solve" a problem
is particularly simple: essentially, an automaton is said to "solve* a problem P provided that its set of fair
behaviors is a subset of P. It might not be obvious to the reader that this definition is nontrivial; for
exanpie, It an automaton had no fair behaviors, then our definition would say that it is a solution to every
problem. However, this anomaly does not arise, since our automaton definitions imply that every
automaton has a nonempty set of fair Dehaviors. 3 The fact that inputs are always allowed gives another
reason why our definition of solving a problem is nontrivial: for every possible pattern of inputs that might
arrive from the environment, the automaton is required to provide some response such that the resulting
sequence of actions is in the problem set P. That is, the automaton is required to respond appropriately to
every possible input pattern.

The model permits description of algorithms and systems at different levels of abstraction. Abstraction
mappings are defined, mapping automata that include implementation detail to more abstract automata
that suppress some of the detail. Such mappings can be used as aids in correctness proofs for
algorithms: if automaton A is an image of B under an appropriate abstraction mapping and A solves

problem P. then B also solves P.

The model allows very careful and readable descriptions of particular concurrent algorithms. We have

developed a simple language for describing automata, based on "Precondition' and "Effect specifications
for actions. This notation, similar to Dijkstra's "guarded commands" has proved sufficient for describing
all algorithms we have attempted so far. However, the model does not constrain the user to describe all
automata in this manner; for example, the model is general enough to serve also as a formal basis for
languages that include more elaborate constructs for sequential flow of control.

Our model also allows precise statement of the problems that are to be solved by modules in
concurrent systems. As described above, such problems are formulated as sets of finite and infinite
sequences of external actions. We have not so far developed any particular language or notation for
describing such sets, but have used a variety of notations (e.g. temporal logic or generating automata) as
they have seemed convenient. Our model is general enough to serve as a semantic model for many

different languages for describing sets of action sequences.

The model can be used as a formal basis for algorithm correctness proofs - proofs that particular
algorithms solve particular problems in the sense described above. in fact, a current major thrust of our

research involves producing correctness proofs for substantial-sized and complex concurrent algorithms.

We use a variety of techniques for such proofs, primarily based on notions of composition and
abstraction. In every case, we try to utilize the modularity that is suggested by informal descriptions of the
algorithm in our formal correctness proofs. So far, our proofs have been done by hand, but it appears
that machine-cheddng of some of our proofs might be possible using current automatic proof technology.

The model can also be used for carrying out complexity analysis, proving upper and lower bounds on
the complexity of solving particular problems, and proving impossibility results.

3Even a trMal automaton having no actions at all has one fair behavior - the empty sequence of actions.
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3. Definiti ,ns and Basic Results
This section contains some of the basic definitions and results about the model. Thi; material is

adapted fror [LT1]

3.1. Actions and Action Signatures
We assur ie a universal set of actions. Sequences of actions are used in this work, for d ascribing the

behavior of modules in concurrent systems. Since the same action may occur several times in a
sequence, t is convenient to distinguish the different occurrences. Thus, we refer to a particular
occurrence (I an action in a sequence as an event.

The actiotis of each automaton are classified as either "input", "output, or "internal". The distinctions
are that inpit t actions are not under the automaton's control, output actions are under the automaton's
control and externally observable, and internal actions are under the automaton's cor trol but not
externally otservable. In order to describe this classification, each automaton comes equipped with an
'action signature'.

An action signature S is an ordered triple consisting of three pairwise-disjoint sets of actior is. We write
in(S), out(S) and int(S) for the three components of S, and refer to the actions in the three sets as the
input actions, output actions and internal actions of S, respectively. We let ext(S) - in(S) u out(S) and

refer to the Ections in ext(S) as the external actions of S. Also, we let local(s) . out(S) u int(3), and refer
to the action 3 in local(S) as the locally-controlled actions of S. Finally, we let acts(S) - in(S' u out(S) u
int(S), and r)fer to the actions in acts(S) as the actions of S. An external action signature is an action
signature cc nsisting entirely of external actions, that is, having no internal actions. If S Is an action
signature, th)n the external action signature of S is the action signature extsig(S) = (in(S),otut(S),0), i.e.,
the action si inature that is obtained from S by removing the internal actions.

3.2. lnputl(utput Automata
Now we Ere ready to define the basic component of our model. An input/output autom ton A (also

called an I/G automaton or simply an automaton) consists of five components:
* an act-on signature sig(A),
@ a set . tates(A) of states,

* a nonrnpty set start(A) g states(A) of start states,

& a tran,;Itlon relation steps(A) a staes(A) x acts(sig(A)) x states(A), with the property tMat for
every ta* s' and Input action n there is a transition (s',i,s) in steps(A), and

* an eqt velance relation parf(A) on local(sig(A)), having at most countably many equivalence
classo 3.

We refer t) an element (s',x,s) of steps(A) as a step of A. The step (s',x,s) is called an input step of A if
xis an Input action. Output steps, internal steps, external steps and locally-controlled steps are defined
analogously. If (s',x,s) is a step of A, then it is said to be enabled in s'. Since every input action is
enabled in e/ery state, automata are said to be input-enabled. The input-enabling property means that
the automat m is not able to block input actions. The partition Dart(A) is what was described in the
introduction as an abstract description of the "components" of the automaton. It Is us d to define
fairness.

OD 1? C,
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An execution fragment of A is a finite sequence s0,n1,s,7 2 .... n,Sn or an infinite sequence
so, ,st,2 ,..., ,sn .... of alternating states and actions of A such that (si,1i+l,si,1) is a step of A for every
I. An execution fragment beginning with a start state is called an execution. We denote the set of
executions of A by execs(A), and the set of finite executions of A by finexcs(A). A state is said to be
reachable in A If It Is the final state of a finite execution of A.

A fair execution of an automaton A is defined to be an execution a of A such that the following
conditions hold for each class C of part(A).

1. If a is finite, then no action of C is enabled in tho final state of CL

2. If a is infinite, then either ac contains infinitely many events from C, or else at contains
infinitely many occurrences of states in which no action of C is enabled.

Thus, a fair execution gives "fair turns' to each class of part(A). We denote the set of fair executions of A
by fairexecs(A).

The schedule of an execution fragment a of A is the subsequence of a consisting of actions, and is
denoted by sched(a). We say that P3 is a schedule of A if 1 is the schedule of an execution of A. We
denote the set of schedules of A by scheds(A) and the set of finite schedules of A by finscheds(A). We
say that 13 is a fair schedule of A if 1 is the schedule of a fair execution of A and we denote the set of fair
schedules of A by fairscheds(A). The behavior of an execution or schedule a of A is the subsequence of
a consisting of external actions, and is denoted by beh(a). We say that P3 is a behavior of A if 13 is the
behavior of an execution of A. We denote the set of behaviors of A by behs(A) and the set of finite
behaviors of A by flnbehs(A). We say that 13 is a fair behavior of A if 13 is the behavior of a fair execution
of A and we denote the set of fair behaviors of A by fairbehs(A).

3.3. Schedule Modules
In order to describe problems to be solved by automata, we need to describe sets of sequences. More

precisely, a problem will be specified by a pair consisting of an action signature and a set of sequences
over the actions in that signature. (In most interesting cases, the action signature will be an external
action signature.) The mathematical object used to describe a problem is called a "schedule module".

A schedule module H consists of two components:

" an action signature sig(H), and

" a set scheds(H) of schedules.
Each schedule in scheds(H) is a finite or infinite sequence of actions of H. Let finscheds(H) denote the set
of finite members of scheds(H).

The behavior of a schedule 1P of H is the subsequence of P consisting of external actions, and is
denoted by behi). We say that 10 is a behavior of H if 13 is the behavior of an execution of H. We denote
the set of behavkxs of H by behs(H) and the set of finite behaviors of H by finbehs(H). We extend the
definitions of fair schedules and fair behaviors to schedule modules in a trivial way, letting fairscheds(H) =

scheds(H) and farbehs(H) - behs(H).

We use the term moduA9 to d1sionate either an automaton or schedule module. If M is a module, we
sometimes write acts() as shorthand for acts(sig(M)), and likewise for in(M), out(M), etc. If 3 ;s any
sequence of actions and M is a module, we write PIM for 1lacts(M).
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There are several natural schedule modules that we often wish to associate with an autonaton. They

correspond to the automaton's schedules, finite schedules, fair schedules, behaviors, finite tehaviors and
fair behaviors. For each automaton A, let Scheds(A), Finscheds(A)) and Fairscheds(A) be the schedule
modules having action signature sig(A) and having schedules scheds(A), finscheds(A) and fairscheds(A),

respectively. Also, for each module M, let Behs(), Flnbehs(M) and Fairbehs(M) be the schedule
modules having action signature extsig(M) and having schedules behs(M), finbehs(M) anc fairbehs(M),

respectively. (Here and elsewhere, we follow the convention of denoting sets of schedulos with lower

case names and corresponding schedule modules with corresponding upper case names.)

3.4. Solving Problems
Now we are ready to define our notion of "solving".4 This notion is Intended for describitig the way in .

which partk:ular automata solve particular problems (formalized as schedule modules). However, it is

convenient to state the definition more generally. Let M and M' be modules (i.e., either automata or

schedule mdules) with the same external action signature. Then M' is said to solve M if firbehs(M') g

farbehs(M).

In the most interesting case, M' is an automaton and M is a schedule module. However, the more

general formulation allows us to carry out proofs in several stages: in order to show that ein automaton

solves a problem, we can show that the automaton "solves" another automaton, which ii turn solves

another automaton, and so on, until some final automaton solves the problem. A variety of techniques

can be used to show that an automaton M' solves a schedule module M; we will mention same of these

below.

3.5. Implementation

One way of showing that one module solves another is to use an intermediate result about inclusion for

the sets of finite behaviors. Thus, we define an analog of the "solving" definition for finite behaviors only.

Let M and M' be modules with the same external action signature. Then M' is said to implement M if

finbehs(M') Q finbehs(M).

It Is often possible to show that one automaton Implements another using a mapping between

automaton states. Suppose A and B are automata with the same external action signature, and suppose

f Is a mapping from states(A) to the power set of states(B). The mapping f is said to be a possiblities

mapping from A to B If the following conditions hold:
1. For wery start state s of A, there is a start state t of B such that t e f(s).

2. For wery reachable state s' of A, every step (s',x,s) of A, and every reachable state t e f(s')
ofB:

a. If x e acts(B), then there is a step (t',,t) of B such that t e f(s).

b. If x * acts(B), then t' e f(s).

Lemma 1: Suppose that A and B are automata with the same external action signature and
there Ii a possibilities mapping from A to B. Then A implements B.

It Is postible to show that one module M' solves another module M using this lemma together with

*This conce" is called safbdy.ng in [LTI].

'.P
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additional results showing correspondences between fairness properties of M and M'. Some such
additional results are given in [LT1] and [WLL].

3.6. Composition
The most useful way of combining i/O automata is by means of a composition operator, as defined in

this subsection.

3.6.1. Composition of Action Signatures

Let I be an index set that Is at most countable. A collection Sj, 1 of action signatures is said to be
stongly compatible If for all 1, j I, we have

1. out(Sl) n out(S) - 0,
2. Int(S1) - acts(S1) -0 , and

3. no action is In acts(S) for Infinitely many i.
Thus, no action Is an output of more than one signature in the collection, and internal actions of any
signature do not appear in any other signature in the collection.

The composition S - rI, i of a collection of strongly compatible action signatures {Si)1i 1 Is defined to
be the action signature with

" in(S) = vi lin(Si) - Jif Iout(Si),

" out(S) - , lout(S), and

* int(S) - u,, lint(Sl).
Thus, output actions are those that are outputs of any of the component signatures, and similarly for
Internal actions. Input actions are any actions that are inputs to any of the component signatures, but
outputs of no component signature.

3.6.2. Composition of Automata
A collection {Ml)., of modules Is said to be strongly compatible if their action signatures are strongly

compatible. The composition A 'A of a strongly compaftile collection of automata {Al)il has the
following components:

* Sg(A) - 11fl sg(Af),

" states(A) - rls se(N, 6

" start(A) n l,, ,start(A),
• steps(A) Is the st of triples (lf ,ixg) such that for all I e I, if x e acts(A) then (9,[i1,i,9t2(l)

step(An), mnd If x e acts(A) then ft[] I tA,7 and

• part(A) , art(A.

5Scuh a coffe" is saId to be compatile I It satiloie the first two of the three loted propertes. Some of the results below follow %

aimply from comatibiy, while ao require so compatibility. Here, we simplify mattes by considering the s'onper definition

only. The risequences of te two dsVww are descrbed more carefully in [LT1 I and [LMWI.

Note that the sond and ftd ormnipent listed re just ordinary Cartesian products, while the first component uses a previous
ddWIbn.

'We use the noation s-i] to denote the ih component of the Mate vector i'



7 '

Since he automata Ai are input-enabled, so is their composition, and hence their composition is an
automaton. Each step of the composition automaton consists of all the automata that have a particular
action in their signatures performing that action concurrently, while the automata that d 3 not have that
action In their signatures do nothing. The partition for the composition is formed by taking the union of the
partitions for the components. Thus, a fair execution of the composition gives fair turns to all of the
classes vithin all of the component automata. In other words, all component automata in a composition
continue o act autonomously. If a - 90m 1... is an execution of A, let alA i be the sequence obtained by
deleting 7t when i is not an action of Aj, and replacing the remaining 9, by G [i].

The following basic results relate executions, schedules and behaviors of a compositior to those of the

automata being composed. The first result says that the projections of executions of a co)mposition onto
the components are executions of the components, and similarly for schedules, etc. T ie parts of this
result de;ding with fairness depend on the fact that at most one component automaton can impose
preconditons on each action.

IEIILimna 2: Lt {A.Jiel1 be a strongly compatible collection of automata, and let A - lIie iAi* If a.

e e~ecs(A) then alA i e execs(A) for all i r I. Moveover, the same result holds fo- finexecs,
faire (ecs, scheds, flnscheds, fairscheds, behs, finbehs and fairbehs in place of execs

Certain converses of the preceding lemma are also true. The following lemma says that executions of
componeit automata can be patched together to form an execution of the composition.

L mma 3: Let {A.Ji., be a strongly compatible collection of automata, and let A - [11e A,. For
all i u I, let o be an execution of Ai. Suppose 1 is a sequence of actions in ext(A) such that P3Ai
- bei(o) for every i. Then there is an execution a of A such that 13 = beh(a) and a = alA i for all
I. M xeover, if a, is a fair execution of Ai for all i, then a may be taken to be a fair execution of
A.

Similarly, schedules or behaviors of component automata can be patched together to form schedules
or behavk)rs of the composition.

U mma 4: Let {AJ.,, I be a strongly compatible collection of automata, and let A - i iA1. Let
P be a sequence of actions in acts(A). If P31Ai e scheds(A) for all I e I, then 0 E scheds(A).
More over, the same result holds for fairscheds, behs and fairbehs in place of scheds.

The prtwious lemmas are often useful in proving that certain automata solve certain problems. In
particular, sometimes correctness conditions are formulated to say that every behavior of in automaton is
also a beavlor of a given composition A. One way of showing that a given sequence of actions is a
behavior )f A Is by first showing that its projections are behaviors of the components of A and then
appealing to the preceding lemmas.

3.6.3. ComNpoeftion of Schedule Modules
Correspo nding to our composition operator for automata, we also define a compositi.on operator for

schedule modules. The composition H - rEIl H, of strongly compatible schedule modu les {H.i i is
defined to be the schedule module with

" sIg(H) a 'e sig(H),

" sch 3ds(H) is the set of sequences 13 of actions of H such that 11H1 is a schedule of H. for
everyi I.

The fol owing lemma shows how composition of schedule modules corresponds to composition of I,
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automata.

Lemma 5: Let (A. I be a strongly compatible collection of automata and let A riE IAj.
Then Scheds(A) - ri Scheds(A), Fairscheds(A) = Fairscheds( 1 ), Behs(A) - rL 1Behs(Ai)
and Falrbehs(A) = ri Fairbehs(A).

3.7. Preserving Properties
Although automata in our model are unable to block input actions, it is often convenient to restrict

attention to behaviors in which the environment obeys certain *weil-formedness* restrictions. A useful
way of discussing such restrictions is in terms of the notion that a module "preserves* a property of
behaviors: as long as the environment does not violate the property, neither does the module. Such a
notion Is primarily interesting for properties that are "prefix-closed".

A set of sequences P Is prefix-closed provided that whenever a e P and 0 is a prefix of ax, .t is also the
case that 0 e P. A module M is said to be prefix-closed provided that behs(M) is prefix-closed. Let M be
any prefix-closed module and let P be a prefix-closed set of sequences of actions in ext(M). We say that
M preserves P if f n e finbehs(M), it r out(M) and J' e P together imply that P e P. Thus, if a module
preserves a property P, the module is not the first to violate P: as long as the environment only provides
inputs such that the cumulative behavior satisfies P, the module will only perform outputs such that the
cumulative behavior satisfies P.

3.8. Hiding Actions
Here we define an operator that "hides" some of the output actions of a module by converting them to

internal actions. We begin with a hiding operator on action signatures: it S is an action signature and T. is
a subset of out(S), define hide,(S) = S', where in(S') - in(S), out(S') - out(S) - Z and int(S') - int(S) u 1.
Now we use the hiding operator on signatures to define a hiding operator for automata and schedule
modules: if M is a module with signature S, and X z out(S), then let hids(M) be the module M' that
coincides with M except that sig(M') = hide,(sig(M)).

4. Candy Machines
In this section, we illustrate many of the preceding definitions using examples of simple candy

machines. (This class of examples Is popular in the CSP literature, so this choice should facilitate
comparison of the models.) These examples show how our model is used to define simple
nondeterministic processes. They also show how problems can be stated, and how it can be proved that
certain automata solve certain problems. Finally, they show how processes can interact in the model,
although the style of Interaction is very simple (normally a strict aitemation of button pushes and candy
dispensatlons).

4.1. Candy Machines
In this subsection, we describe three specific candy machines as I/O automata. Candy machine model

CM-1 has the following action signature.
Input actions: PUSHI, PUSH2
Output actions: SKYBAR, HEATHBAR, ALMONDJOY
Internal actions: none

I;-
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We will sometimes abbreviate the two push actions as 1 and 2, respectively, and the three
dispensation actions as S, H and A. The state of CM-1 consists of one variable 'button-pushed', which
takes on values 0, 1 and 2, Initially 0. Next we describe the transition relation of CM-1. It should not be
hard for the reader to translate the given description into a transition relation: (s',n,s) is a step of the
automaton exactly if the precondition of n (if any) is satisfied in s' and s is a possible result of running the

code in i's *Effect" starting from s'.

PUSH1
Effect: button.pushed I= 1

PUSH2
Effect: button-pushed "= 2

SKYBAR
Precondition: button-pushed - 1
Effect: button_.pushed :- 0

HEATHBAR
Precondition: button-pushed - 2
Effect: button.pushed :- 0

ALMONDJOY
Precondition: button-pushed = 2
Effect: button-pushed := 0

Thus, when the customer pushes button 1, CM-1 can dispense a SKYBAR. When the customer
pushes button 2, CM-1 can dispense either a HEATHBAR or an ALMONDJOY, but not both. The
partition for this automaton, part(CM-1), is defined to group together ALMONDJOY and HEATHBAR and
to keep SKYBAR in a singleton set.

Candy machine model CM-2 is identical to CM-1 except that its HEATHBAR action has Precondition
false". This candy machine never dispenses HEATHBARs, but is able to dispense SKYBARs and

ALMONDJOYs. Model CM-3 is identical to CM-1 except that all three candy dispensation actions have
Precondition 'false*. That is, it never dispenses candy. As one might expect, it is not a very useful candy
machine from the point of view of the customer.

4.2. Specifications for Candy Machine Behavior
Now we describe some interesting notions of correct candy machine behavior.

4.2.1. Safe Candy Machine Behavior
Some basic mrlements for a candy machine can be described by the schedule module SAFE-CM.

SAFE-CM has the same action signature as CM-1, and has as its set of schedules the set of sequences
over the symbols 1,2,S,H,A satisfying the following condition: every S is immediately preceded by a 1,
and every A or H is immediately preceded by a 2.

In order to show that CM-1 is a safe candy machine, I.e., that It solves the problem described by
SAFE-CM, we must show that all fair behaviors of CM-1 satisfy the given requirement. Note that this
requirement, (as usual for safety requirements) holds for an infinite sequence if and only If it holds for all
finite prefixes of the infinite sequence. Therefore, it suffices to show that all finite behaviors of CM-1

W .1
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satisfy the given requirement.

We proceed by induction on the length of a behavior, using an inductive hypothesis that characterizes
the state of CM-1 in terms of the preceding events, i.e., buttonpushed = 1 if the last event in the
sequence is PUSHI, 2 if the last event in the sequence is PUSH2, and 0 otherwise (i.e., if the sequence
is empty, or if the last event is a dispensation event). The inductive step considers cases based on the
five possible events. For instance, if SKYBAR occurs, its Precondition implies that buttonpushed = 1
just prior to the dispensation; thus, the immediately preceding symbol in the sequence is 1, as needed.
The other cases are similar. It follows that CM-I is a safe candy machine.

It is also easy to see that CM-2 is a safe candy machine. However, saying that CM-1 and CM-2 are
safe candy machines is not really saying enough, since the same is also true for CM-3. CM-3's fair
behaviors are just the finite and infinite sequences of l's and 2's, which trivially satisfy the required
condition. Although CM-3 is a safe candy machine, it is not a very interesting one. Therefore, we will
give a stronger specification below.

4.2.2. WelI-Formedness
In discussing correct candy machine behavior, it is helpful to consider certain "well-formedness"

conditions on the interaction between the machine and its environment. For example, we may want to
restrict attention to interactions in which push and dispensation events alternate strictly. Define a
sequence of candy machine actions to be well-formed if it consists of alternating input and output (push
and dispensation) actions, starting with an input action. Notice that CM-1 has behaviors, in fact fair
behaviors, that are not well-formed, e.g. 11S I IS... is a non-well-formed fair behavior of CM-1. This is not
surprising, since CM-1 does not (in our model) have the power to insure that Its environment preser es
well-formedness. However, it is easy to see that any safe candy machine, including CM-1, preserves
well-formedness, according to the definition of "preserves" given in Section 3.

4.2.3. Live Candy Machine Behavior
A stronger set of requirements than SAFE-CM can be described by the schedule module LIVE-CM.

LIVE-CM has the same action signature as CM-1. Its set of sequences are those that are safe candy
machine sequences and that in addition satisfy the following condition: "If the sequence is well-formed,
then every push event has a later dispensation event."4

CM-3 is not a live candy machine, because it has fair behaviors, such as the sequence with the single
element 1, that do not satisfy this condition. (This sequence satisfies the well-formedness hypothesis, but
does not satisfy the Iveness conclusion.) On the other hand, CM-1 is a live candy machine, which we
can prove as folows. Suppose not; then there is a fair behavior of CM-1 that is well-formed and that
contains a push event that is not followed by any later dispensation event. By well-formedness, the only
possibility is that the sequence is finite and ends with the given push event. Say, for example, that the
push event is PUSH1. Then by the state characterization given above, the state after the given schedule
has buttonpushed - I. Then the SKYBAR dispensation action Is enabled in this state. But the definition
of a fair execution implies that no action of CM-1 can be enabled in the final state, which yields a

IThis can be wsed using temporal logic, in the form W -4 O(P -- OD), where W is the set of weN-formed candy machine

sequences, P is the set of sequences beginning with a push action, and D is the set of sequences beginning with a dispensation
aloln.
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contradiction.

CM-2 Is also a live candy machine, even though it has less nondeterminism than CM-1. The proof is
similar to that for CM-1.

For the rasons discussed In Section 2, LIVE-CM does not admit trivial solutions. Anything that
satisfies the specification must be able to respond to any pattern of pushes (since it is an I/O automaton,
with the input-enabling condition). Moreover, responses have to be safe, and if the pushes arrive in a
well-formed way, responses must In fact be made.9

4.3. Customers
We now describe particular customers that might interact with a candy machine. It is convenient also

to describe such customers as I/O automata also. Customer CUST-1 continues to request candy bars ad
infinitum, nondeterministically choosing which button to push. CUST-I's action signature is the
"complement" of that of the candy machines':

Input actions: SKYBAR, HEATHBAR, ALMONDJOY
Output actions: PUSH1, PUSH2
Internal actions: none

The state of CUST-1 consists of one variable "waiting', which takes on values "yes" and 'no", initially
'no". CUST--I's actions are as follows.

SKYBAR
Effect: waiting :-no

HEATHBAR
Effect: waking :. no

ALMONDJOY
Effect: waiting : no

PUSHI
Precondition: waiting - no
Effect: wafting := yes

PUSH2
Precondition: waiting - no
Effect: waiting :- yes

The partiton part(CUST-1) puts PUSHI and PUSH2 together In one equivalence class. it Is easy to

eOne might aisk the t hicl question whethor it might be reasonable to eliminate the wel-formednes hypothesis in the live
candy machine behavior specification. If we did this, 'then we would arrive at a stronger specflication for a live candy machine, one
that requires that the machine must always issue candy sometime after each push, regardless of whether the pusie happen in a
welkormed masner. While this might be a reasonable requirement for a candy machine, CM-1 does not satisfy it. For consider the
(non-well-formed) behavior 121212... of CM-1. This contains push events that are not followed by dispensaton events. However,
we claim it is a fair behavior of CM-1, since each class in the partition psAf(CM-I), (S and (A,H}, has infinitely matily points in the
saquence at wfich no action in that class is enabled. (It might be helful for the reader to Imagine that there are wo "processe "
inside the carly machine, where process I is in charge of dispensing SKYBARS and procesas 2 is in charge of dispensing
ALMONDJOYS and HEATHBARS. Every time process I tries to perform its task, it happens that the value of but-_f.pushed is 2,
so it cannot do anything. Similarly, every time process 2 tioe to perform its task, the value of button_pushed is I So neither
proceas can c use any output to occur.) Since we have exhibited a fair behavior of CM-I that contains a push but no later
dispensation, C M-I does not satisfy the proposed stronger specification.

*1i
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see that CUST-i preserves well-formedness; in fact, it never pushes unless all previous pushes have
been followed by dispensations. Also, in any well-formed fair behavior, after any dispensation event,
CUST-1 eventually pushes a button once again.

Customer CUST-2 is somewhat more selective than CUST-1. It pushes button 2 repeatedly just until

the machine dispenses a HEATHBAR. Then it pushes button 1 forever. Formally, CUST-2 has another

variable "heathber_received' in its state in addition to "waiting'. This variable takes on values "yes' and
'no', initially "no'. The actions of CUST-2 that differ from those of CUST-I are as follows.

HEATHBAR
Effect: waiting :- no; heathbarreceived := yes

PUSH1
Precondition: waiting - no; heathbarreceived = yes
Effect: waiting := yes

PUSH2
Precondition: waiting - no; heathbarreceived = no
Effect: waiting := yes

It is easy to show that CUST-2 implements CUST-1, using a possibilities mapping f that maps each

state s of CUST-2 to the singleton set containing the state of CUST-1 that only contains the 'waiting'
variable of s. In fact, it can be shown that CUST-2 solves CUST-i, according to our formal definition of

'solves'. A straightforward proof can be based directly on the definition of fair execution and the fact that

for every state s of CUST-2, some output action is enabled in s for CUST-2 exactly if some output action

Is enabled in f(s) for CUST-1.

Customer CUST-3 is similar to CUST-1 except that it is required eventually to take a transition to a

"satiated" state from which it no longer requests any candy bars. Formally, CUST-3's state has an

additional 'satiated' variable besides the "waiting" variable of CUST-1; it takes on values "yes' or 'no',

initially "no'. CUST-3 has an additional internal action BECOMESATIATED, defined as follows.

BECOMESATIATED
Precondition: satiated - no
Effect: satiated :. yes

Also, each of PUSH1 and PUSH2 has the additional Precondition 'satiated = no'. The

BECOMESATIATED action is in a class by itself in part(CUST-3).

Note that CUST-3 Implements CUST-1, but does not solve CUST-1; there are fair behaviors of

CUST-3, such as te empty sequence, that are not fair behaviors of CUST-i.

4.4. Candy Machines and Customers
Now we consider the composition of candy machines and customers. First consider the composition of

CM-1 and CUST-1. Since each component preserves well-formedness, the composition has only well-

formed behaviors. We claim that all fair behaviors of the composition are infinite. Suppose not: then

consider any finite fair execution. By well-formedness and a simple assertion characterizing the states
after finite executions, the state of the composition after the execution either has waiting - "no" and

button_pushed - 0, or has waiting - 'yes" and buttonpushed - I or 2. In the former case, PUSH1 is

enabled, while in the latter case, either SKYBAR or HEATHBAR is enabled. But the definition of a fair
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execution implies that no action of the composition can be enabled in the final state.

In fact, it is not hard to see that the fair behaviors of the composition of CM-1 and CUST-1 are exactly
the Infinite well-formed sequences In which each dispensation action dispenses an appropriate candy
(according to the most recent push).

The composition of CM-1 and CUST-2 yields exactly the sequences of the form 2,A,2,A,....2,A,2,A.... or
2,A,2,A,...,2,A,2,H,1,S,i,S.... as its fair behaviors. The composition of CM-1 and CUST-3 produces
exactly the even-length finite well-formed sequences in which each dispensation action dispenses an
appropriate candy. Also, the composition of CM-2 and CUST-2 yields the single sequence

2,A,2,A,...,2,A,2,A.... as its only fair behavior. All of these, and similar characterizations for the behavior
of the other compositions, can be proved by straightforward methods similar to those ,;sed alove.

The previous arguments about the behavior of compositions of automata are based directly on the
internal structure of the component automata. Sometimes it is possible to break up such a proof, using
properties of the behavior of the component automata to prove a property of the composition. Formally,
In order to prove that the composition of the automata {Ailie I solves a problem, one might prove that each
component automaton Ai solves a schedule module Hi, and then prove that the composition of the {Hi1 e I
solves the problem.

For example, we reconsider proving that every fair behavior of the composition of CM-1 and CUST-1 is
an infinite well-formed sequence of actions in which each dispensation action dispenses an appropriate
candy. Let LIVE-CUST be the schedule module whose signature is the same as CUST-i's, and whose
schedules are exactly those in which 1. the customer is not the first to violate well-formedness, and 2. if
the sequence is well-formed, then it Is either infinite or else finite and ending with a push event. Then it is
easy to see that CUST-i solves LIVE-CUST. We have already argued that CM-1 solves the schedule
module LIVE-CM described earlier. So it suffices to prove that every behavior of the composition of
UVE-CUST and LIVE-CM is an infinite well-formed sequence of actions in which each dispensation
action dispenses an appropriate candy. This is not difficult to show: well-formedness holds because
neither component is the first to violate it, appropriate responses follow from the specification of LIVE-CM,
and the sequence is Infinite because neither component stops at its own turn.

5. Choosing a Ring Leader
Now we give a brief sketch of another example, the election of a leader in a ring of processors. This

example exhibits much more Interesting concurrent activity than the candy machine example. It shows
how one can use the model to reason about interesting concurrent aldorithms, and suggests how the
model can be tsed to carry out complexity analysis and prove lower bound and impossibility results.

We assume a ring of n processors, each starting with a unique identifier chosen from a universal totally
ordered intfe set I. Each processor can communicate with each of its neighbors in the ring, using a
pair of one-way channels. The processors do not know the size of the ring, nor the specific subset of I
that is actually being used as Identifiers. The object is for a unique processor to perform a "leader" output
action. This problem has been widely studied in the distributed algorithms research area.

Each processor and each communication channel Is modelled as an I/O automaton. Each channel
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automaton has input actions of the form SEND(M) and output actions of the form RECEIVE(M). 10 Its

statb Is a multiset, consisting of those messages that have been sent but not yet received; initially, the
multiset Is empty. The transition relation is as follows:

SEND(M)
Effect: messages :- messages u (M)

RECEIVE(M)
Precondition: M e messages
Effect: messages :- messages - {M}

The partition puts each different RECEIVE action in a separate equivalence class; this has the effect of
hypothesizing that every message that is sent eventually gets received.

Each processor Is also modelled as an 1/O automaton, having SEND output actions and RECEIVE
input actions. In addition, it has a LEADER output action by which it can announce that it has been 0
chosen as the leader processor. it may also have internal actions.

A collection of channel and processor automata Is composed into a single system automaton, and then
the hiding operator Is used to produce a new system automaton in which the only extemal actions are
LEADER actions. The problem to be solved by the system can be described by the schedule module
whose external action signature has no Input actions and only LEADER output actions, and whose set of
schedules consists of the set of sequences of length exact 1. That is, In a correct behavior, exactly one
LEADER event occurs.

We now describe a particular algorithm for solving this problem, based on that of LeLann (Lei. Each S

processor sends its identifier clockwise around the ring. When a processor receives an identifier, if the
identifier is less than its own, the processor discards the received identifier. If it Is greater than its own,

the processor passes the received identifier clockwise. If it is equal to its own, the processor performs a
LEADER output action. ,

In more detail, the state of a processor with identifier i has a variable "pending* which holds a subset of
I, initially (i). It also has a variable "leader-status', which takes on values from {'unknown', 'elected", N

"announced') and has initial value "unknown'. The steps are as follows. 11
RECEIVEOj), j e I .

Effect: If j > i then pending :- pending u{j
If j - I then leader-status:- elected"

SEND(J), j e I
Precondition: j e pending
Effect: peng :- pending- {j}

LEADER
Precondition: lader-status. "elected'
Effect: leader-stamus :- 'announced'

Each action is In a separate class of the partition. It is not hard to carry out a correctness proof of this

lOftice the m a global naming scheme, the actual action nane would have to be subscripted with iformation

ldewMO the peuticular channel.



algorithm using the model. The safety proof (i.e., that no more than one LEADER event ever occurs)

involves proving an invariant assertion relating the identifiers that appear in different places in the ring,
both as processor id's and in messages. More specifically, it must be shown that if i < j, then a processor
with identifier I, a processor with identifier j, and a message containing identifier i cannot appear in that

order, reading clockwise around the ring.

In order to prove liveness (i.e., that some LEADER event eventually occurs), another invariant is used,
expressing conservation of the message corresponding to the maximum identifier. Then a 'variant
function' is defined, describing the progress that has been made toward election of a leader: for each

state, the variant function yields the remaining distance the maximum identifier needs to travel before
reaching its originating processor. The value of this function is shown never to increase during execution,

and at any point where it is nonzero, the fairness properties of I/O automata imply that some event will
eventually occur to decrease the value. Thus, eventually, the function value reaches zero, which implies

that a LEADER event occurs.

The modal can be used to carry out complexity analysis. For any execution of the a'gorithm, the

number of SEND or RECEIVE events can be used as a measure of the amount of commuiication; it is
not hard to see that n2 is a worst-case upper bound on this number, where n is the number cf processors

in the ring. Also, for any execution, time can be measured as follows. Assign a 'real time" tc each event,

as large as possible, subject to the requirement that for each class of the partition, the time between
successive "tums for that class is at most 1. Then the real time assigned to the LEADER ovent can be

taken as a time measure for the entire execution. It is not hard to see that 2n + 1 is a worst-case upper

bound for the time measure.

The given algorithm is not optimal in its communication requirements; for example, [P] contains an
algorithm with an O(n log n) upper bound. The algorithm in [P] can also be formalized and analyzed

using our model. Also, [Bul proves an Q(n log n) lower bound on the worst-case amount of
communication; this result also is describable in our model.

6. Other Applications
The model has been used to describe and reason about many different kinds of algorithms, both in

systems applications and In the algorithms research literature. In this section, we describe some of these
Uses.

6.1. Network Resource Allocation
Our first 'se of the model was for describing network resource allocation algorithms. [LT1 ] presents a

network arbiter design and proves its correctness, using I/O automata. The algorithm is based on a I
resource peforming a treewalk of a spanning tree of the network graph. The conditions proved include
safety properties (mutual exclusion) and Iveness properties (no lockout).

The correctness proof Is done In three levels of abstraction. The problem definition Is presented as a
high-level schedule module, in which inputs are requests and returns, and outputs are giants, all for a
particular resource. The intermediate level is a description of the algorithm in terms of graph theory,

formalized as an automaton together with a restricted set of executions. Finally, the complete distributed

algorithm is described as a composition of automata at the lowest level. It Is shown that each level solves
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the level above it, and thus that the distributed algorithm solves the arbiter problem.

Most of the Interesting reasoning about the algorithm is done at the intermediate level, in terms of
graphs. This reasoning is close to the Intuitive reasoning one would normally use to understand and
explain the algorithm. The interesting work involves showing that the intermediate level solves the high-
level problem statement. In contrast, showing that the lowest level solves the intermediate level is a long
but straightforward case analysis.

[LT1] also contains an analysis of the time complexity of the algorithm, demonstrating an O(n) worst-
case upper bound, where n is the number of nodes in the network, and an O(d) worst-case upper bound
when a request does not overlap with any others, where d Is the diameter of the network. The time
analysis proof follows the proof of "no lockout' very closely, suggesting that there may be a general
correspondence between liveness proofs and proofs of upper bounds on time.

We have also used the model to study other network resource allocation algorithms. For example, in
[LW], we give an algorithm for the "Drinking Philosophers" problem: in this problem, users request sets of
resources by name, with the same user possibly requesting different sets of resources each time he
makes a request. [CM2] contains an algorithm for this problem, constructed by modifying a particular
Dining Philosophers algorithm. Our algorithm, based on the one in [CM2], is described as a composition
of automata that solve the Dining Philosophers problem and automata that carry out additional
bookkeeping. Our use of composition allows us to use any Dining Philosphers algorithm as a
"subroutine"; some choices can be shown to yield better time performance for the resulting Drinking
Philosophers algorithm than is yielded by the algorithm of [CM2J.

6.2. Synchronizers
In [A], Awerbuch describes a synchronizer algorithm - a distributed algorithm designed to convert

programs written for synchronous networks into versions that can be used in asynchronous networks. In
this algorithm, the network nodes are partitioned Into clusters, and different strategies are used to
synchronize within clusters and among clusters. The algorithm is clever, but fairly complex, and is
presented without formal proof. In [FLS], we provide a new presentation and a proof for Awerbuch's
algorithm. The algorithm is decomposed into separate automata for interduster and intracluster
synchronization. The Intercluster synchronizer is further decomposed into a piece executing at each
node. In fact, Awerbuch's actual program for each node Is described as the composition of two automata,
one participating In intercluster and one In intracluster synchronization.

6.3. Communication
In [WLL], we present a correctness proof for the intricate distributed minimum spanning tree algorithm

of [GHS]. The techniques used are based on the hierarchical structure used in [LT1]. However, instead
of a linear hierarchy of algorithms, we use a lattice of algorithms. The complete algorithm has several
different projections onto higher level "subalgorithms", where each subalgorithm represents one task
performed by the main algorithm. The proof involves showing that the subalgorithms all solve the
minirum spannlng tree problem and that the full algorithm "solves' all of the subalgorlthms. In showing
the letter, we make use of many properties of the separate subalgorithms. We develop the basic theory
needed for latilce-structured proofs; some work on a similar theory appears in [LaS].

I' -- '
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More recently, we have been using I/O automata to characterize correct behavior for phy ;ical channels
and data fir ks. We are attempting to prove that certain types of data link behavior can be iriplemented in
terms of c wtaln types of physical channels, while other types cannot. Preliminary rest Its show that
interesting data link behavior seems to require at least some stable storage (whereas Iprevious work
shows that a single stable bit at each end suffices). Also, it appears that the data link prot, col must use
unbounded size headers to achieve reasonable behavior, in case the underlying physical channels are
not FIFO.

6.4. Concvirrency Control
We have been using the model as the formal foundation for a new theory of atomic transactions.

Transactior s arose originally in database systems, but are now used as a basic constru4,t for general
data-oriented distributed programming. Use of trans actions in general-purpose languages has required
their extension to allow nesting; nested transactions permit more concurrency thar single-level
transaction,,, and permit localized handling of failures.

In [LMI, %ie use I/0 automata to model nested transactions, state the correctness conditi ons that they

must satisfy, describe an exclusive locking algorithm for nested transactions, and carry out i correctness
proof. In later papers, we extend this treatment to more general locking algorithms and timestamp-based
algorithms. We also prove correctness of algorithms for management of "orphan' transactions
tranrsactions that continue to execute even though some ancestor in the transaction nesting structure has
been aborted. We are able to use VO automata to decompose the orphan algorithms so that concurrency
control and recovery are handled by one module, and orphan management is handled by another.
Correctness properties for the two kinds of modules are proved separately, and then combined to yield
correctness properties for the complete algorithm.

We have had similar success in describing correctness of algorithms for replicated data rianagement.
We are abi3 to decompose certain replicated data algorithms into modules that handle concurrency
control and recovery at the level of individual data replicas and modules that implernment the data
replication algorithm. A book [LMW] is now in progress, describing this theory.

Although the model has proved to be a very usable tool for describing these results, its ftill power has
not yet beer used in this work. In particular, only finite executions have so far been considered, and only
safety prope rties have been proved.

6.5. Share, I Atomic Objects
A topic o recent research interest has been the study of wait-free implementability of 4:oncurrently-

accessible ifmc objects in terms of other atomic objects. An object is said to be atoric, roughly
speaking, if it responds to concurrent invocations of operations as if the operations were executed
Indivisibly ar some time between the invocation and response times. So far, most of the work has
focussed or read-write registers for use by various numbers of readers and writers. Many of the
algorithms a e very complex and difficult to understand precisely.

The paper [L, which initiated this research area, contains an interesting formal model bas d on partial
orderings of operations. However, most of the subsequent papers do not use Lamport'. model, but
Instead indu de their own models and definitions. The multiplicity of models has contributed t"i making the I
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papers very difficult to read.

In [121, Bloom uses the I/O automaton model as the basis for stating correctness conditions for atomic
read-vite registers, for describing a new algorithm (which implements 2-writer n-reader registers from
1-writer n+1-reader registers) and for proving the algorithm correct. He describes the solution as a
composition of automata for each of the reader and writer protocols and automata for the 1-writer
registers used in the implementation. The combination is shown to implement the desired 2-writer
register. The work is rigorous and clear; we hope that a similar presentation will help clarify some of the
other algorithms.

New work by Herlihy on impossibility results for atomic object implementations [He] also uses the I/O
automaton model.

6.6. Dataflow
In [LS], we formulate the semantics of dataflow networks in terms of I/O automata. We define the

notion of "determinacy" (i.e., that the sequence of output actions is uniquely defined by the sequence of
input actions), a notion that is considered important in dataflow computation. We state a theorem that
expresses Kahn's main result about dataflow networks [K] - that the semantics of networks of

determinate components can be uniquely defined using the least fixed point operator applied to certain
equations involving behavior of the individual components. We then prove a theorem showing the
equivalence of our operational semantics and Kahn's fixed-point semantics.
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