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Abstract

The elastic behavior of the compoaents of a robot manipulator will tend to induce

(both static and dynamic errors between desired and actual trajectories and end-)

effector positions. Currently, most researchers consider joint compliance - as opposed

to link displacements - to be the dominant source of these errors. This conclusion

is based on the the fact that when compared to the yielding typically seen in gears,

motor shafts, bearings, etc., the links appear almost perfectly rigid. However, cur-

rent efforts to lighten robot manipulators 'and increase their operating speeds also
* .7w

tends to increase the significance of link elasticity. This study considers the dynamic

effects of elastic link displacements in a two-link robot manipulato as simulated bv

a hierarchy of models. In all, five separate system models are developed. The last

model, TFTFEL, allows both manipulator links to bend in a single plane and to twist.

Therefore, the effects of bending-torsion vibrations in each link may be observed when

the manipulator attempts motion with an inertially asymmetric payload grasped in

its end-effector, This elasto-dynamic behavior is simulated, and results indicate a.

definite disturbance of the joint angle trajectories. The use of structural damping to

eliminate these high frequency vibrations and increase the manipulator's accuracy is

evaluated.,
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Nomenclature

N gear ratio
T , motor torque applied to first joint 0
T2 motor torque applied to second joint
11 length of link one
12 length of link two
g acceleration due to gravity .%
p material density
I link cross sectional moment of inertia
Kp forward path gain
KT torque sensitivity
R D.C. motor resistance , ,ll

Jim motor armature inertia '0

JL load inertia at motor shaft
JT total inertia at motor shaft S
Kb motor back e.m.f. constant
K, motor voltage sensitivity
To,., gravity torque %
Od(t) desired joint angle .
O.(t) actual motor angle '
hL (t) actual link angle 0
01 (t) first link joint angle %
6 2(t) second link joint angle
A(t) generalized time coordinate, first link torsion
a(t) generalized time coordinate, second link torsion
q(t) generalized time coordinate, first link flexure
b(t) generalized time coordinate, second link flexure
F(y,) mode shape, first link torsion
A(y2) mode shape, second link torsion
1(yl) mode shape, first link flexure . 6,

1 0
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C(y2) mode shape, second link fiexure
i" vector in end-effector coord. frame to eccentric payload
e scalar distance to payload from origin of end-effector c. frame
GJ torsional rigidity
El flexural rigidity
MpL payload mass
mI mass of link one
M2 mass of link two
171 (yi, t) first link torsional displacement
172(y2,t) second link torsional displacement
w, (yl, t) first link flexural displacement •
w (y2 ,t) second link flexural displacement

small angle due to first link flexural displacement
(2 small angle due to second link flexural displacement

S""(01 +02+ (1) .. unless stated otherwise
A t cross sectional area of link one
A2 cross sectional area of link two
I., moment of inertia of payload about axis z 3

.I* moment of inertia of payload about axis y,
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Chapter 1.-,.

Introduction

When robot manipulators were first introduced into the automated manufacturing '"-.

industry, they were usually tasked with only the simplest repetitive jobs. Today,-'.'i

%* .- ..

I however, they are finding their way into many different technical industries with

various scientific as well as industrial applications. Many of these jobs place great

expectations and demands upon the manipulators - often calling for high levels of ""

~~~accuracy, reliabilty, speed, strength, and efficiency. Considering all of these require- .-..

• :. ments, and then designing a suitably swift- moving, mechanically smooth, efficient,"". "

and powerful manipulator with high end-effector accuracy is no easy task to say the

least. One is often forced into a compromis te simprovement of one characteristic

often dictates a reduction in performance in another. Consider, as a case in point,

the demand for greater manipulator strength. This problem has been typically dealt

3,



with through the application of more and stronger load bearing materials and ill.e

powerful joint motors [3]. However, this solution tends to increase the arinweight to 0

payload weight ratio drastically e.g. the Cincinatti Milicron robot for which payload

capacity is only 10% of the system's weight. The increased weight in turn creates the
.•

need for higher joint torques, higher feedback gains, and causes greater overall power

consumption. Efficiency, speed of response, and smooth operation will obviously also

deteriorate. 0

However, another option does exist. Specifically, is is possible to meet these

demands with lighter, more efficient, and knowingly flexible robots. It is true that

manipulator performance and accuracy would be severely threatened by the inevitable

structural deformations and vibrations that result when such a machine is expected

to operate at higher speeds and/or handle substantial payloads. Yet, indications do

exist that the need to be able to control this type of device is significant. For example, .. '

future applications of robotics to space exploration - some of which has already been

seen wi'h the use of the "arm" on the space shuttle - suggest the need to be able

to effectively control lighter, more slender robot arms where link flexibility poses a

serious challenge to accurate arm trajectories and end- effector positioning. Even at, '. p

this moment, the desire for very light weight high-speed robots has been expressed,

through various DOD contracts. For example, the Army is currently funding research

to develop reliable 'iigh speed manipulators for use in vehicle refueling operations.

and explosive ordnance handling [9]. Low weight is of prime concern for ease of

mobility, while long link lengths are needed for reach and powerful motor torques are
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needed for potentially heavy payloads (0 - 1500lbs.). The need for light weight. high

speed of operation, strength and accuracy coupled with the flexible displacements and

vibrations that would be expected obviously pose the need for a mechanism with a

kinematic/dynamic design that considers this and a control policy that compensates

for the elastic phenomena.

*standing of the dynamic behavior of flexible robotic systems. With this knowledge

it may be possible to develop manipulator control schemes in order to minimize the
L0

effects of link flexibility on the desired dynamic response and accuracy of the robot.

To date, a considerable amount of research concerning the effects of elasticity in

robot manipulators has been performed. Understandably, a good deal of time has

been spent analyzing the effects of joint compliance because in many of the robots in %

use today, the links themselves are short and heavy enough to justify the assumption

of rigidity. In these cases, the compliance observed is attributed to the elasticity

found in the gears, belts, tendons, bearings, and hydraulic lines. This problem has

been thoroughly investigated by Spong [12).

In the consideration of link deflections, considerable research producing dynamic

models and suggestions for control strategies has also been published. Gebler con-

siders a two joint, two link manipulator with link flexibility in a single plane coupled

with joint compliance[7]. He proposes a feed-forward control stategy to correct the WN

5do, r-
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link's tragectory. A similar analysis is performed by Tang and Wang[I 7], however they

also allow for out-of-plane bending and torsional link displacements. Their result is

an algorithm which predicts the actual position and orientation of the end-effector

of a two link robot. However, the manipulator considered has only one moveable

joint angle and carries no payload. Naganathan and Soni [14] also consider lateral

deflection in two planes plus torsional displacements in a two link manipulator. but

instead resort to a finite element model to determine the nonlinear effects of link

flexibility. Nicosia and Tomei [15], who use the Lagrangian approach to obtain a

dynamic model of a single and a double link planar manipulator, also employ the

symbolic algebraic manipulation language MACSYMA to assist their efforts. Their

study is limited to a consideration of in-plane link distortion only. Dubowsky and

Sunada [51 provide a powerful finite element routine which considers the effects of _

distributed mass and flexibility and produces a model of the dynamic behaviour of e
*5 5-5-h'

manipulators composed of arbitraily shaped links. Rakhsha and Goldenberg [16] use

the Newton-Euler approach to develop a dynamic model of a single link robot with

a payload. Lateral bending motion is considered, and the natural frequencies and

mode shapes describing the vibratory behavior are found using a constrained mode

approach [18]. Moreover, the flexibility influence is modeled as a disturbance torque

affecting the rigid body motion. This paper serves as a good foundation for more

corn'prehensive efforts. Several other works have also been completed, however the %

first to consider and analyze the limitations of a rigid-link assumption in the dynamic

analysis of manipulators was Book. For example, in 1975 he, along with Whitney •

and Maizzo-Neto [3], published a paper describing a model of a two link. two joint

6



flexible manipulator. Lateral in-plane link flexibility was allowed in each link, and

various control schemes were compared and contrasted. Specifically, individual joint

control (IJC) was compared and contrasted with the feedback of flexible coefficients

(FFC). Since then, Book has made various other contributions including models and

suggested control methods [2].

In light of these efforts, the purpose of this research was to generate explicit

closed-form models capable of simulating the motion of an arbitrary two-link revo-

lute jointed manipulator wherein single-plane and torsional link flexure may occur

while the arm is tasked to move various payloads. Dynamic behavior is also consid-

ered when the payload is grasped at a point removed from its mass center - hence .

making it inertially asymmetric. Following the analysis performed by Book in '86 [2],

first the complete kinetic and potential energy expressions for each system are found.

The vibratory displacements are represented through the method of assumed modes

[13], and each complete system Lagrangian is then used to derive the set of governing

equations of motion for each model which consists of a set of second order nonlinear

differential equations. The dynamic behavior of the systems is simulted on a VAX

8560 digital computer wherein a straightforward IJC control policy is applied. The

effectiveness of this control method is observed and compared with the same policy's

strong effectiveness on a rigid two-link manipulator with a payload. Deviations in

the joint angle trajectories and the end-effector position accuracy are examined and

again the flexibile-link robot performance is compared to that of the rigid link ma-

nipulator. Furthermore, the effects of increasing payload inertia are considered along .,.,

7
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Chapter 2

Development of System Models

In this study, five separate system models have been developed. Each model simulates

the three dimensional motion of an upright serial two-link manipulator carrying a

payload fixed at its end-effector (see fig.2). Gravitational effects are included, and 0

each model introduces various elastic degrees of freedom. Furthermore, the links are

assumed to behave as continuous slender beams modeled by the Bernoulli - Euler
@

beam equations [13], and power is delivered to the system by standard servomotors.

The first model, RR (fig. 2), simulates the performance of a two-link robot ma-

nipulator wherein the links are assumed to be absolutely rigid. This model serves to

provide a base of reference for "ideal" system behavior.

9
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In the second model, TT (fig. 3), each link is permitted to vibrate in torsion about

an axis passing longitudinally through the center of each link's cross section. The .

payload is gripped firmly at the end-effector, and the system motion is then analyzed

following an initial twist to the end of the second link. The third model, TTEL (fig.

4), extends this problem by allowing the payload to be gripped eccentrically - i.e. not

at its center of gravity. No initial torsional excitation is given in this case because

even rigid body movement will excite second link, and then first link vibration. 0

Second link in-plane flexural vibration is then added to the problem defined by

model TTEL, thus raising the number of degrees of freedom in the fourth model,

TTFEL (fig. 5), to five. Here, the payload may be gripped at or off its center of

gravity - which will tend to excite second link bending torsion-vibration. Finally,

the fifth model, TFTFEL (fig. 6), permits each link to vibrate both torsionally and

laterally thus raising the number of degrees of freedom in the system to six. In this

case, the payload may also be held at any point.

Each of these system models yields a governing set of coupled second order non-

linear differential equations of motion. The first step in deriving these equations is

the development of a proper kinematic representation for each system. Specifically, .::,
0

robot arm kinematics is concerned with analytically describing the manipulator's
.4. ,p

and end-effector's spatial orientation, which entails mathematically illustrating the

relationships between the joint variables and the operating space. This is actually a _

forward kinematics problem which results in a mathematical description of the robot's

~10

_._.

-,."4 ."'Y



position and orientation based upon a prior knowledge of the link parameters and the

joint angle trajectories as a function of time. It should be mentioned that the De-

navit Hartenburg formulation is very useful in forward kinematics for it conveniently

represents the spatial relationships between the coordinate frames of the adjacent

links forming the manipulator in a compact 4 x 4 homogeneous transformation ma-

trix [6]. Thus the forward kinematics problem is reduced to the problem of obtaining

the appropriate 4 x 4 homogeneous matrix which will yield the overall relationship

between the end-effector and the stationary base or "inertial" reference frame. In this

study, 3 x 3 rotation matrices and accompanying relative position vectors between

the origins of the joint coordinate frames is used in lieu of the Denavit Hartenburg

technique.

Once the kinematics have been formulated, the derivation of the equations of mo-

tion may begin. Note that the development of a proper control scheme is facilitated

by reference to the closed form governing equations, and the resulting dynamic be-

havior of the manipulator is therefore a direct function of the efficiency and accuracy

of them. There are a variety of methods available to develop them, however the two

conventional approaches are the Newton - Euler (NE) formulation and the Lagrange

- Euler (LE) formulation which rely on the principles of Newtonian and Lagrangian

mechanics, repectively. These two methods are favored in fundamental studies and

analysis because of their systematic methods and reliability.,%"eAL

The NE approach, which was developed in order to reduce the computational

. .



burden of numerically solving these equations, involves relatively complex vector ma-

nipulations and appears to be quite uninviting. Yet once properly applied, it allows

for a fast computational algorithm in which the time needed for calculations is lin-

early proportional to the number of joints of the robot arm and is independent of its

configuration [6]. Thus, this method allows for the real-time control of the manipu-

lator.

The LE method, on the other hand,provides a clearer and more appealing sys-

tematic method to obtain the manipulator's governing equations of motion. Based N
A

on Lagrangian dynamics, it relieves one of the burden of expressing and evaluating

complex vector relationships, and requires simply the determination of the mecha-

nism's proper kinetic and potential energy expressions. The resulting equations, as

stated earlier, are nonlinear and include coupling forces between the joints - such as

Coriolis and centrifugal forces - and gravitational effects. One also notices that the

LE formulation clearly expresses these terms as an explicit function of the manip-

ulator's physical characteristics such as link lengths and masses, material stiffness,

and payload mass. As such, the LE approach yields the explicit closed - form state

equations necessary for a dynamic analysis and control scheme design [6]. Through _

the use of conventional and compact transformation matrix relationships ( such as the

Denavit Hartenburg formulation previously mentioned ) this method also lends itself

to a smooth transition from analytic model to coded algorithm needed for computer ..

simulation of the robot's movement.

Of the methods described, the LE approach generates equations which are the %

12



most difficult to integrate numerically. Thus, this method really does not lend itself'

to use in the real - time control of a robot manipulator, for which most people rely on

more efficient NE and d'Alembert techniques. ( Variations of the basic LE method

are available, however, such as the recursive Lagrangian formulation suggested by

Hollerbach in 1980 [10] which alters a manipulator's standard LE eqautions, permit-

ting their application to real - time control schemes.) However, since the purpose of

this study has been to obtain insight to the elasto - dynamic behavior of these systems

from computer simulations of their motion, the LE method was considered to be quite

adequate. Furthermore, its systematic application allows for a simplified treatment

of the great complexities normally introduced by the material flexibility. Also, the

closed - form equations produced are then easily translateable into FORTRAN codes.

2.1 Model RR

We define the system Lagrangian, L, to be the difference between the kinetic energy

T and the potential energy V of the system. ie.

L = T- V

Here T and V are themselves functions of variables that give the position and orien-

tation of the system in a "base" or inertial frame of reference.

To obtain the kinetic energy of a rigid body in three dimensional motion relative

13
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Fig. 1

to an inertial frame of reference XYZ, a moving reference frame or "body frame" xyz

is fixed to the body's mass center G. A vector F is defined to extend from the origin

of the inert:al frame to the origin of the body frame. Another vector ,5 is defined to

extend from the origin of the body frame to a generic point p in the body. (See fig.

Then, with the vector

the velocity of the point in the body is then expressed as

... where ( is the angular velocity of the body at the instant considered.

The total kinetic energy expression becomes

T = f e J . dm

14
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Applying this method to the rigid link revolute-joint serial link manipulator of

Model RR, "body frames" of reference are first placed at the revolute joints as shown

in fig. 2.

The vectors depicted in fig. 1 are defined below:

r' = from origin of first link coordinate frame to a generic point in link 1

FI = from origin of first link coordinate frame to end of link 1

F52 = from origin of second link coordinate frame to a generic point in link2

r pL =from the origin of the inertial frame to the end of link2

Therefore,

rp 2 =el "Jr +p2

and so

VpW2 =Otinkl X tel + ink2 X :,2

VPL = Wlinkl X tel + Wink2 X e2

assuming rigid links. (Note that the superscript "o" indicates with respect to the

inertial frame of reference.)

At this point, further computations can be greatly simplified and the non-rigid

body terms which will appear later due to link flexibility can be accounted for far

15
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more easily if rotation matrix relationships are employed instead of the above vector

expressions. As the name implies, a rotation matrix gives the "rotated" orientation

of one link's coordinate frame with respect to another's. For example, R' expresses -

the rotated orientation of the first link's coordinate frame with respect to the inertial

frame of reference. It should be mentioned that the standard 3 x 3 rotation matrix

does not express the translated position of the coordinate frame origin as do the start-

dard 4 x 4 homogenous transformation matrices usually employed in robotics studies.

Instead, this displacement is represented throughout this analysis by a separate rela-

tive position vector.

Thus, the following rotation matrices are defined:

1 0 0

= 0 Col -SOl

0 SO l C O , J

where CO, and SO, are the cosine and sine of the first and second joint angles, repec-

tively.

1 0 0 -S".

2 = 0 CO2 -SO2

0 S02  CO2 J

Therefore, in this case, .

r lrp

16% %
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i=o 0, 0 -Sol -00, Y1 -yA9S0 1

o 09, -Sol 0 Y,&,COI

- %

FL= ROrej + R 2 F,2

.- 0-

-9,9 -11O 1(1 + 2 )S(O + 2)

I b9C0 + ( + b2)C(, + 92) -

Lp 1 ~e

00
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Assuming the links to be uniform, this becomes

Ti n k - pA o vp ' 6P~dy, = - 1 m ll .

Also,

1 12 f dY2 1 " 12 + 2 " " 2 "
Tlik 2 = pA1  vP2 " vv2dY2  -m 2 [(0 /1) 2 lz(O1 + 02) /3 + 011112C02(o1 + 62)]

1 11)2 +1(1*
Tpayload MpLpL 2 1 ±- 2--[ 2±11112CO2( . 2),2~w~ 2) 91

In this first model, where each link is assumed to be rigid, the only potential

energy that needs to be accounted for is that due to gravity. The rotation matrix

relationships just established allow this to be conveniently expressed as

iS

Vl~lJgildmi

Vgjflk2 gi] g' 2 dM2

Vpa yoad = MpLgrpL

"S
Finally, the system Lagrangian can be defined as follows

L = T.,kl + Tlirk2 + Tp yload - Vlnkl - Vink2 - Vp laoad

and from this the manipulator's governing differential equations of motion can be %

-r derived in terms of the system's generalized coordinates O(t) and 02(t). %"

I~d/dt {Ol/6 91 } T

18
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d/dt {aL/002 } - =L,0 T2

Omitting all of the computational steps, the resulting equations of motion for the

rigid two link manipulator (Model RR) are then obtained through the application of

these expressions. Refer to Appendix B for the equations in their complete form.

2.2 Model TT and Model TTEL

The principles used to derive the equations of motion for the previous case are also

applied in the derivation of models TT and TTEL. However, the torsional displace- 0

ments which are now permitted to occur in each link and the consequences of this

motion have to be accounted for in the system's kinematic representation and in

the kinetic and potential energy expressions forming the system's Lagrangian. This

has been accomplished through the use of the method of assumed modes [13] and

"special" rotation matrices containing the flexibility variables. 0

Specifically, the torsional displacement in links one and two have been identified

as 77,(yi, t) and 772(y2, t), respectively.

The method of assumed modes is applied to express each of these displacements

,, as a summation of the products of a generalized time coordinate and an associated
T19. ."

"- .'-'
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mode shape. In other words, let

=
00

172(Y2,t) - io(t)Ai(Y2)

where F,(yi) and i(Y2) each represent the first mode shape of a cantilever shaft

and payload in torsional vibration for i=1, second mode for i=2, and so on. The

fundamental mode shape is S

F(y) = A (y) = A, sin(13 y)

where 2 = w2 1/GJ [181. Note that Appendix A focuses on the difficulties introduced

here by the time varying inertial load present at the end of the first link due to the

movement of the second link.

In an analysis completed by Book [3], a two mode shape approximation was used to

represent flexural link displacements for the reason that the amplitudes of the higher

mode shapes were assumed to be small. In this study, all flexural displacements have

been represented with a single mode approximation. ie.

00 .

ir(y,t) = AjA(t)Fj(yi) - AI(t),l(yi) *

1 2(Y2,t) = Zai(t)A(Y2) ; C11(t)X 1(Y2)
:i=I •

Furthermore, to maintain kinematic accuracy, it was also decided to employ a

rotation matrix to account for the re-orientation of the second link's coordinate frame 5

due to the twisting of the first link.
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Specifically, fig. 3 illustrates how the second link coordinate frame experiences an

additional small rotation about axis yi- Hence, the matrix R? used in the development S

of the system Lagrangian, which was previously defined as

Ro 0~R=O ROR,

where

R= ROT(xl,O) R1 = ROT(x2, 2 ) S

has been re-defined as

R02 RolR'R12

where the matrix R' represents the rotation of the x2 y2 z2 frame about axis yi through

small angle ir (l1, t) .In other words R' = ROT(y, r77 (11, t))

R'= 1 0

-S(,71(l,t)) 0 C(,h1(1,t) )

Therefore, the complete expression for R/2 becomes

C77i S,1i S02 Sh C0.2

= SO1 Sri C01C02 - SO1Cq1 SO2 -C150 - SOC 109.

-COSrI SO1 C02 + CO1C71 SO2  CO C7 CO2 - SOISO 2

note 1i =171 (l1 t).

21 V.
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A similar matrix representation is also required to properly develop the kinetic

energy expresssions for the case when the payload is grasped eccentrically. This

situation has been represented in model TTEL by placing a point mass at a distance

from the end of link two, thus simulating an eccentric grasp (see fig.4).

Therefore, the required rotation matrix R" - ROT(y2 , 112(12, t)) can be defined as

follows: F C(772(12,t)) 0 S(172(12,t))

R0 1 0

-S(7 72(12,t)) 0 C(r12(12,t))

R" permits the calculation of the rotation matrix R' that defines the re-orientation

of the end-effector coordinate frame x 3y3z3 relative to the inertial frame of reference 11

XYZ due to the motion of each joint angle and the torsional displacements in each

link.

R= RR'R'R"

1- 71 72CO2  771S02  772 + C71772C02

R= S0 1 71 + 772S(O, + 02) C( 1 + 02) 17 2 SO9 - S(0 1 + 02)

-CO, 71 - q2C(91 + 02) S(91 + 02) -7772CO + C(o, + 02)

where r7l i7 h(11,t) and 72 772 (1 2,t)

At this point, the development of the kinetic energy due to each link's motion may

begin. As shown earlier, a vector fpi is defined to extend from the origin of the first

22



link's coordinate frame to an arbitrary point in the first link. Relating this vector to

the inertial frame through R ° yields

0 =-..

Similarly, the angular velocity :' (yl, t) due to link one's torsional vibration is related

to the inertial frame through R0 0

1 0 0 0

t (YI' 1 ) = 0 CO1 -SO 1  (yl, 01"

0 Sol COl J 0 J

0

70(y,t) = COICi(yi,t)

Thus,

= i jl p(yi)A(yi) (iP . i5p') dy1 + jI(YI) (7:7ji(yi, t) 0 7:7(y 1, t0) dy1

= -ip~Iyjdyl ± IA2j rp2(y 1 )dy1
2 o

assuming a one mode approximation.

%J1,

The expression for the kinetic energy of the second link also follows the example

set by the earlier derivation.
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rp2 = R oi + Rc + - s

... again where 77, = 71(11,,t)and j = 1(/,,t).

Furthermore, the angular velocity due to the torsional vibration of link two can.:,.

also be related to the inertial frame of reference as follows "

772(Y2, t) RO l + R 2 *

77 (11 , t ) 2(Y2, t) )S02

- C(01 +02) 2(y2,,t) + C016(11,t)"

S(o, + 02)(Y,,t) + so,C2 ,,t) .

And so, ...

v, 2= 1 1 S,-Y ~s9 2 12 9 + -2 t2 ) *(2 t)) dY2~1

Tink=2 0 z + )A2(Y2) ( 1 2e 1 2) dy2+ - I(y2) (7 71coe72 ()

In model TT, the payload is grasped at its center of gravity and is therefore

Fupresented as a rigid body mounted at the end of ink two. Hence, the kinetic energy

alo b

% %



due to the motion of the payload must account for the movement of its center of

gravity (developed in Model RR) and the body's rotation about the center of gravity

due to the twist at the end of link two.

Tpa-jload rotation - p4 12 1 q2(2

However, if the payload is not grasped exactly at its center of gravity, as shown in

fig. 4, then the kinetic energy due to the motion of the payload is found as follows

L Riq + ± 2 e 2 + RF,

where •

e

e= o]
0S

e

Tpayload - MpLVpLS VpL

2.W

The gravitational energy expressions previously obtained in model RR also apply -

to these two models, however the elastic potential energy levels due to link torsion

must now be included as well.

Vui.,,I.,. -21o GJ(y2I)(o712(y2't)/o~Yj)2 dy, .41,
-!GJA 2(t) (F'(y1 ))2 dy1
2 JO..

210 GJ(a77 ('(Y2, t)/0y 2)2 y

25



SGJa2(t) /2(A'(2)) dY2

2S

assuming uniform links.

Finally, the additional gravitational potential energy due to an eccentrically grasped

payload is easily included as

VpLgra,, = MpL 9 [ 1SO 1 + 12 S(0 1 + 02) + e (C(01 + 02) - 7271C0l - C0 1771 - 772 C(0 1 + 02))]

... where 77, = r7,(l 1 , t) and 72 = 772(12, t)

The Lagrangian for models TT and TTEL is then formed as the difference between

the sum of the kinetic and the sum of the potential energy expressions pertaining to

each. Unlike the previous derivation of model RR, the current two models incorporate w

four degrees of freedom each. Therefore, models TT and TTEL are both governed by

a set of four coupled, second order, nonlinear differential equations of motion - which

are derived as follows:

d~~~dt\ Hl-.. -.LaT

d/dt {aL/O0i} - L/O01 = T.

d/dt {eL/90} -•L/a = 0
d/dt{8L/8A1 }- OL/801 =0T ..

ddt IOLl/&i} - aL/a 1 = 0 ",'. %

. %

The resulting equations of motion are listed below in an abbreviated format. The
.

equations can be obtained in explicit form by referring to the disscussion in Appendix .
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B. S.S

I21 122 123 I24 U2 1 C 2 21
' + 0DBI +± 2 = T

'31 132 1L 134 AB3I C31

41 42 143 144 J LLBaJ C, 0

The form in which these equations appear will also be used in the following cases.

Note that the first coefficient matrix on the far left is equivalent to the system's

inertia matrix. The second matrix contains the second derivatives of the system s

generalized time coordinates. The third matrix from the left contains the system's

complex damping terms, its Coriolis and centripetal terms, and various velocity cross- 0

product coupling terms. The fourth matrix contains the system's stiffness terms, and

its gravitational terms. Finally, the far right- hand matrix contains the system forcing

functions, which in all cases are the motor torques applied at the first and second

revolute joints.

2.3 Models TTFEL and TFTFEL "

The problem defined by model TTEL is extended in model TTFEL by permitting

lateral second link flexure to occur, and model TFTFEL takes this one step further

by allowing lateral flexibility in both of the manipulator's links. As was done earlier :

to define torsional link vibrations, these lateral flexural displacements are represented

through the method of assumed modes in a one mode approximation. Moreover, the
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effect that the added degrees of freedom have upon the orientation of link coordi- I

nate frames is expressed through additional - and more complex - "special" rotation .

matrices. (See fig.5 and fig.6).

Specifically, the lateral single-plane bending of link one is designated in model

TFTFEL as wl(yl,t). The same motion of the second link is designated as w,(y2. t)

in both models TTFEL and TFTFEL. Also, the single mode approximation of these

displacements is

00 I

wi(yi,t) E qj(t)j(yi) qi(t)V'(y 1)i=i 0

w 2 (Y2 't0 = EZbi(t) c,(y 2 ) _- bi (t) el(y 2)
i=1

where 0 1(yl) and CI(y2) each represent the fundamental mode shape of a cantilever

beam with payload in lateral vibration [13]. ie.

tki (y) = 1 (y) A (sinh y si n fly)_ [ (sin /31 + sinh /31)] (csh. o

[-sil (cos ,1 + cosh 31)] (coshy - cos 3y)

where 04 = pAlw 2/EI and A is an arbitrary constant. 'J' '..

Just as rotation matrices were employed in the kinematic description of models

TT and TTEL to account for coordinate frame rotations as a result of torsional link

flexure, "special" rotation matrices are also employed in both of these models to

describe the coordinate frame re-orientations due to the lateral flexure at the link

ends.

Specifically, due to the additional lateral flexure at the very end of link two, the -

end-effector coordinate frame x3y3z3 rotates through a small angle (2 about axis x 2. I

28
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This rotation is in addition to the rotation through small angle q2(12, t) about axis Y2

that the end-effector's coordinate frame already experiences due to the link's torsional •

vibration (see figs. 7 and 7.1).

This small angle (2 is defined as follows

(2 Ow2 (Y2, t)

which in a single-mode approximation becomes

= Z (t),E(1 2) b b(t) e(1 2)

Thus, the matrix R3 used to determine the payload kinetic energy for the case

described by model TTFEL becomes
R ° = IR'R'R"R"'ll"

3 2

where

R=_ ROT(xi, 01)

R' .ROT(y,,ri(1 1, t))

1 ROT(X2 , 02 )%

R" -ROT(x 2, (2) 
V

R... ROT(y2, 72(12, t))

29".e,"
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and where

1 0 0

R 0 CG2 -S( 2  A

L 0 S( 2  C 2

ie. R" ROT(x2 ,( 2)

Employing small angle approximations, R° becomes

1 - C( 1 + 02 + 2 ) hS(O2 + 2 ) Sn2 + Crn7C(O+ 2+ (2)

R 23IllSe1 + 72S(0 1 + 02+ (2) C((2+01 +0 2) rhSO1 S7r-C712S(G +02+2)

-7hC01 - 77C(Ol + 02 +C2) S(( 2 +01 +02 ) C7'j2C(Ol + 02+ 2) - 17COISrh

It is also noted that the lateral flexibility of link two dictates no change in the

matrix R2 as it is defined in model TTEL. On the contrary, the matrix R° used in the

kinematic description of model TFTFEL differs for the fact that the effects of first

link lateral flexure must now be included in it in order to express the re-orientation

of the second link coordinate frame. In other words, the second link coordinate frame

not only rotates through small angle 'i1(l,, t) about axis yj ,but it also rotates through

small angle Cl about axis x, due to the flexure w( 11, t) at the end of link one (see 5---k

figs. 8 and 8.1).

This small angle is defined as

Ci VwAlit)]
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As a result. R2 for model TFTFEL becomes

= RR'R"R1

where

t?? ROT(xi, 9 1 )

R'- ROT(x, C1 )

R" - ROT(yi,ri(1, t))

nR ROT(x 2,0 2)

and 
.

1 0 0

R'= 0 Cc, -S 1

0 SC1  CC1o%%

Therefore,

1 71S02 71C02

R°= S(0 1 + ()1 C,) -so

-C(O1 + Ci)11, So C3

where/3= (01 +02+ (1) and r7, q,(11, t).

Moreover, an additional consequence of the lateral flexibility of the first link is

that the rotation matrix R3 used in model TFTFEL becomes even more complex

=N
R ° = oR''R'"R"'11

31 a o
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where

= ROT(xi, 01)

ROT(yi, 77 (l1, t))

R1 =ROT(--2 ,02 ) r

R. -ROT(X 2 , (2)

R.. =_ROT(y2 , n2(11,t))

Therefore,

C,/ -SrriC( 2 + (2 ) ,7S( 2 + C2 ) S7 2 + Cr/1C(02 + C2 )

C772771S(Oi + (1) + S72 S( + (2) C(3 + C2 ) SrhvlS(O1 + C ) - C?72 S(O + 2 )

-C7 2 C(6i + (1) - Srr7C(3 + (2) S(O + (2) -S 2 71 C(O1 + (1) + C77 C(3 + (2)

... assuming small angle approximations.

.,/

At this point, the kinematic descriptions for both models TTFEL and TFTFEL
% 11 S.

is complete, and it is now possible to develop the proper kinetic energy expressions

needed for the Lagrangian of each. Specifically, for model TTFEL '.

- Tliki =" p(y,)A(yi) ,6o 6 ff , dy, + 1.1 I(y,) (7:1yi,,t) . h(yi,,t)) dy,,'"1

and 
'.":

.5= ink 102 pPA~1  1i .0 i~)dy + 2 j r i (' y, 7(x )
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assuming a one mode approximation.

Moreover, the kinetic energy for the second link becomes

1 - 1 + Rof~2  -

rp2 = R 1 tel 2

where

0 0

rp2= Y2 rp2 0

% . *.

J i7iw 2 (Y 2 , t)C02 + y 2 (77l0 2 C0 2 + b 1 S0 2 ) + W2 (y 2 , t)(vC0 2 - O2 SO2I ) I -1

Irp 2 -1A SO1- S(01 + 02))2(Y2,t) - y2(O1 + 92 )S(O + 02)- w2(y2, t)( + O2)C(01 + 02) % ..( iC01 + CA0 + 02)wb2(y 2 ,t0 + Y20O1 + 62 )C(01 + 02)- w2 (Y2 ,t)001 + 62)S(0 1 + 01)

( note q, = 71,(1 1,t) ) and so,

TI~2 j2P(y2)A 2(y 2) (iP ~)d 2 ±~jI)(~Y2, t) L iy t)) dij2  A

The total kinetic energy produced by the motion of a properly grasped payload

includes the energy associated with the motion of the load's center of gravity, and %

the energy of the two rigid body rotations the load experiences due to the lateral and

torsional vibrations at the end of link two (see fig. 9). In other words,

=P Roi 1 + Roie2

33
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Z3

Y3 S

X3

k

Ij'2

-0

becomes .

Tpayoad = MPLV&,LOV-L + jI ~3T(12,t) si (l2, t) +13(O ( )/2t)"22 (12,, "0 ,

.. ... ...........

Tpayloa = SM~p VNL +2!- & (t)A2 (12 ) + " I 3 = t &

" iN

UO Rr.+ ,2 + *,

ndwhere If and I are equivilent to the moments of inertia of the payload about axis

becomes'

y3 and x3 , repectively (see fig.9),..5'

On the other hand, when the payload is grasped eccentrically, the complete kinetic

energy expression is conveniently found through the use of rotation matrix R' (recall •

that an eccentric load has been modeled as a point mass displaced a distance g from " * -

the origin of the end-effector coordinate frame).

rL=ROF + Roi:e2 + ROF

34 4
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VPL I ~e + MFt2r2+ I-Lre,2 + IL06

Tpayload = MLVpL VpL ..

This step completes the kinetic energy formulation for model TTFEL. For model

TFTFEL, the total system kinetic energy expressions are as follows

= +'tlipl

=p~ /irpF +I !/Rok

where

0 0

r'pi =Yl rpi 0

W1 (y1 ,t) tbi(yi,t)

... and

V 1 
=  

-81 (ISO1 + W 1 (Yl,t)C6 1 ) - tb(Y,t)S1 O,

il (y, CO, - wl (y1 , t)SOI) + tbhi(yi, t)Ci '
T, = p(yI)A(y,) (il i*,) dyl + - I(y,) (4Y(yl, t) 40(yi, t)) dy,

Furthermore, for the second link

0-0

r,l + Ror41 +i0 p 2R Ror '

VP02  1~e 1 Rei+Ry 2  p~2

35 S
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: ... :

I mCOtb2(Y2, t) + Y2(r,1GCe2 + k~S02) + W2(Y2, t)(i iC02 - y 8iS02)

V P2 = Y S - W2(Y2, t) 3C - lb2(Y2, t)S3 - 01(11SO1 + W1(11, t)C81) - otil )

Y~k yiC3- W2(Y2, t) 3SO+ tb2( Y2, t)C/3 + 01(11C01 - WJ1Ii tSOi) + COlibii(II,t)
where rh = rh(11, t) Thus, ,

Tt,.,A2 = 2 p(y)A 2 (y2 ) (v 2  V 2) dy 2 + j I(y2) ('(Y2,t) * ij (y2 ,t)) dy

Finally, the expression for the kinetic energy due to the motion of the payload

follows the example set in the development of model TTFEL, although in the present

case it is emphasized that the rotation matrices include the effects of first link lateral

flexure.

In other words, for a properly grasped payload

iPP-L -- Roji~e + ROFe2

0-+Rei D O

YpOL r, rei + 10L2 2+ L12 re2

1 lp1 . :. i l 2 2(12, t)/OY t %

2 OM2 Le Vp*L + I4V 72 (12, t)* 12 (12, 0t) -3 -JO2 12  )e~ 2 t

'7, MPL 3 L I.,,2(tA2111 =Tplod =MPLVpL * V° + l ( 2)'- + b--P o . P, .I. #

And for an eccentrically grasped payload

VPL = r-,e + Rofei + AO2r+ Rof! 2 + R

36
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Tp. load 2 mp L • 1L

1pL L VP

With the kinetic energy expressions determined, the complete potential energy

levels must now be evaluated in order to form each system's Lagrangian. The potential

energy due to gravity remains virtually unchanged from the expression shown in model

TTEL. However, the elastic potential energy due to lateral link flexure must now be

accounted for as well as the elastic potential energy due to link torsion in both models

TTFEL and TFTFEL.

Specifically, as a result of second link flexure in both models

112 .2-, 2
l VfIe."1i"2 = El(y,) (Ow2(y2, )/y 2 dy2 ,r,~

2dy 2

Vf Iezltnk2 E j~It~ k2~2

j=1 k=1

2 2(t ) 12)

assuming uniform links. Also, as a result of the lateral first link flexure included in

model TFTFEL, the following elastic potential energy expression is obtained

Vfl.Iin 1 E 2(t)[ "0,Y)2 dy
2 Jo

also assuming a uniform first link.

Therefore, the total elastic potential energy for model TTFEL is

Velaji - EIb 2(t) jl2 (,E,(y2)) 2 d?/ 2 %

37
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1 f0

+-GJa 2( (A'(y 1))' dY2

and the total elastic potential energy for model TFTFEL is

2J

+-Ejb2( ) ( 1 ))2 dY2+2GJA2 (t) f r, "1 d

-Ix

Since the kinetic and potential energy levels have been completely expressed as a

function of generalized coordinates with respect to an inertial frame of reference, the S

complete Lagrangian for each model is

LTTFEL = T1,~kl + Tlink2 + Tpayload -Velastic - lgratvity

LTFTFEL =TlZnkl + Tlink2 + Tpayload - Velastic -Vgravit

The derivation of the set of governing differential equations of motion for both

models is now possible. For model TTFEL, where there are five degrees of freedom,

the following expressions are applied to the system Lagrangian LTTFEL

d/dt {OLIa, } - aLIOO2 =T2 % %
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d/dt {LI8A,} -aL/A = 0

d/dt {L/a&I} - aL/ac, = 0

d/dt {aL/b} - aL/e9b, = 0

An abbreviated listing of the five resulting coupled, second order, nonlinear dif-

ferential equations is shown below. Note that the equations may be obtained in their

full form by referring to Appendix B.

I11i I12i I13i I14i Il5i i1 ] 0Blli Clli rT ,_

I21i 122i I23i I24 I25, 2 02B 21i C21i T2

'31i I32i I33i I34i I35i 1  + A 1 B 3 1i + C 31 i = 0

IV

I41i '42, I43i I44i 1 45i a, &IB 41i C 41i 0

151i I52 13i I54i ISsi bl bIB 51 i 0
". ,, .

;* . % €

L

For model TFTFEL, the application of the following relationships to the total sys-

tem Lagrangian LTFTFEL will yield the complete set of equations of motion governing ,

this six degree of freedom problem.

d/dt {OLIO0,} - OLaO,= T,

/{aL/O }- OL/802 =

d/dt JaL'Ai- OL/OA = 0
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d/dt {OL/Maa} - OL/8aI = 0

d/dt {OL/f 1 } - aL/8ql 0

d/dt {8LIAb1  - OL/Ob, = 0

As before, an abbreviated listing of these equations is shown below, and the full p

listing may be obtained by referring to Appendix B.

Ill 112 113 114 115 116 01 01 Bll Cl T1

121 122 123 124 125 126 02 0 2 B 2 1  C 2 1  T2

131 132 133 134 135 136 A1  A1B31  C 3 1  0
+ +

141 142 143 144 145 146 a, &,B41 C 4 1  0 -

151 152 153 154 155 156 41 4IB 51  C51  0 -t.

S

161 162 163 164 15 16 4B 61  C61  0

'iz
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Chapter 3

Control

The basic objective of a manipulator control scheme is to move the robot arm from

an initial position to a desired final position and configuration in an alloted period "

of time. Once this is achieved, another control scheme is usually utilized to coordi-

nate the movement of the manipulator's end-effector with the environment. In other

words, robot arm control as a category includes gross motion control which moves .S
the arm to the vicinity of some desired final position and orientation, and fine motion

control which permits the arm to interact dynamically with the object of concern.

The focus here is on gross motion control, which can be classified into three groups:

joint motion control, resolved motion control (Cartesian space), and adaptive con-

trols [6]. Under the heading of joint motion control fall such techniques as individual

joint servomechanism control (IJC), variable structure control, nonlinear feedback,

41



and feedforward control, among others. Resolved motion control includes position, P

velocity, and acceleration control methods wherein the desired trajectory of the ma-

nipulator is translated from Cartesian world coordinates to joint coordinates through

the governing Jacobian matrix. Adaptive control techniques rely on altering feedback

signals on the basis of a comparison of the observed performance of the system to the

performance of an idealized model.

These three categories include many more control techniques and variations of

control schemes than is listed here. Even so, the individual joint control method (IJC)

is still commonly applied. In the IJC approach, the motors at each joint are treated as

independently functioning servos. Thus, this control method completely ignores the

arm's nonlinear dynamics - which include the effects of Coriolis and centripetal forces.

Yet, since these effects tend to be primarily velocity dependent, the IJC approach will

work fairly well as long as the robot arm is not required to move at high speeds.

In this study, the IJC approach was first applied to the rigid two link model (Model

RR) in the form of proportional plus tachometric feedback positional controllers at

each joint (see fig. 10).

Note that the desired angular tragectory Od(t) was based upon either a "bang- 1

bang" or a ramped motor acceleration/decceleration profile (see figs. 10.1 & 10.2). P
I- "JP_

Oramp(t) at3 /(3tf) + 0(0) 0 < t < t1 /2
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Fig. 10 Joint-Motor Servocontroller

0 Tamp (t) =a {t2 -t
3 /1(3t1 ) t tf /2 + t2 /12}±() tf2 t tf_(, 1o+0o(0) t, < t < t

Obb = at2/2+0(0) 0 < t < tf/ 2

Obb att - at /2 - at 1 /4+0(0) tf12 < t < t1  "t

... where a is the maximum motor acceleration, t1 represents the target time, and

0(0) is the initial joint angle measure. Also, first estimates of the gain settings K,, and

K,, were evaluated assuming a desired critically damped linear system response ( thus

placing a double pole at a position of -P on the negative real axis of the system's root

locus plot). Better gain estimates were subsequently found through trial and error

runs of Model RR ( higher gain levels were required for heavier payloads ). Also, .

values of motor resistance, rotor inertia, maximum motor acceleration and torque,

etc., were taken from manufacturerer's specifications (Kollmorgan Co.). 5'.,

In an effort to maximize each joint angle's acceleration OL through proper gearing,
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gear ratios N were evaluated in the following manner:

JT = Jm + 1 J

Tgen = (J,. ± JLIN 2)O

... which ignores the adverse effects of friction or the influence of gravity. -

0.= Tge,,/JT

= IN

Tgen
= T;,,/(NJT) = (NJ,, + JL/N)

Maximizing OL with respect to N

dOL

-Tg,(Jm. - JL/N) -

(NJ. + JL/N)2  =

N =VJ/Jm

Finally, it was assumed that no lag existed in the feedback loops. .," ..

Once it was determined that the IJC control scheme could effectively govern the

movement of the rigid two link model, it was applied to each of the flexible-fink models

in an effort to examine the limitations imposed by the link vibrations.
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Chapter 4

Numerical Techniques

The development of the analytic form of each system model was a slow and extremely

cumbersome task - given all of the hundreds of terms involved in each of the equations

of motion. Hence, the algebraic symbolic manipulation language MACSYMA was

employed to some extent to assist in the manipulations of each system's Lagrangian. AA

Thereafter, all models were translated into FORTRAN algorithms and run on a VAX

8650 computer. %

The objective of each program was to obtain the simultaneous solutions to each

model's set of governing equations of motion. Note that in all cases, the set of

differential equations was second order, nonlinear, and fully coupled. Moreover, due . " .

to the large disparity between the high natural frequencies of structural link vibrations
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and the low frequency of each joint angle trajectory, the family of equations for each

flexible-link model was also very "stiff." As a result, the simultaneous numerical

integration of these equations proved to be difficult and very time consuming due

to the extremely small step sizes required by standard Runga-Kutta techniques. As

a matter of fact, the Runga-Kutta method is not well suited for this problem at

all. However, modern predictor-corrector techniques which have been specifically

designed for stiff systems of equations are available. One such technique, which

was developed by Gear [11] and considered to be the state-of-the-art in 1975, is

available in the IMSL libraries of most main-frame computers. Using this algorithm,

the simultaneous integration of each model's set of differential equations was able to

proceed much more quickly, depending on the accuracy of the results desired. This

technique was employed in all of the flexible-link simulations and some of the results

t iwere later compared with the solutions produced using a 5I- 6 t h order Runga-Kutta p

technique.
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Chapter 5

S

Results and Discussion

For all models, the same basic system configuration was used. Both the first and

second links were modelled as slender Euler-Bernoulli beams one meter in length and

consisting of the aluminum alloy 2014-T6 (properties found in Mark's M.E. Hand- S

book). The motors that delivered power to each revolute joint were modelled after r r

the Kollmorgan model 2045 servo, which is rated at a continous torque output of
@

2.18N - M and a peak torque output of 9.09N - M. Furthermore, the derivation

-. of the gear ratios, as shown earlier, yielded optimal overall values of 400/1 for the

base revolute joint, and 175/1 for the second revolute joint. Also, the payloads used -

ranged from lkg to 14kg, compared to a system mass of roughly 26kg (including the

mass oF the motors).
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The optimal control scheme for the flexible models proved to be the combination

of the IJC strategy and a ramped motor acceleration/decceleration profile. A "bang-

bang" motor acceleration profile worked well with the rigid-link Model RR, however

it was avoided with the flexible-link models because it was found that a step acceler-

ation input would induce very high frequency structural vibrations quite early in the

motion. This result, coupled with the system's nonlinear effects proved to make the

numerical integration of the governing equations over the course of the manipulator's

full trajectory far too time consuming even when Gear's method was used . Also, in .V

order to exclude the effects of alternating positive and negative gravitational influ-

ences, and to avoid singularity positions, it was decided to restrict the manipulator

to vertical motion with positive joint angle measures.

Generally speaking, the focus of these case studies has been to observe and com-

pare the behavior of the two link manipulator as simulated by each flexible-link model

to the behavior of an assumed rigid-link manipulator as simulated by Model RR, and

to note any general trends or effects resulting from the torsional and/or lateral flexibil- ".

ity of each link. Moreover, it was expected that these studies would clearly illustrate *IJ

the influences of eccentric load induced bending-torsion link vibrations, and thus per-

mit a comparison between the effects of this phenomena and the effects of single-plane

link bending. -

Before beginning the case studies, the rigid-link model was validated since the

equations governing this case formed the core of the gross robot arm motion simulated
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in all of the subsequent models. The derived equations of motion for model RR were

compared to the same equations as listed in Asada[1] and Fu[6]. Additionally, a

"fall" test was conducted which consisted of letting the manipulator drop loose from

an extended horizontal position with no applied motor torques, and then verifying

that it's ensuing motion due to the influence of gravity immitated the motion of a

planar double pendulum. Each of the flexible-link models were also tested by ensuring

that the rigid-link equations of motion would remain in their entirety after all of the

flexibility variables were removed from each model's set of governing equations of

motion. Finally, each flexible- link model was subject to the same "fall test" as

previously described.

Once these tests were satisfactorly completed, model RR was tasked to move from

an initial configuration of 150 at 01 and 150 at 02 , to a target configuration of 450 at 01

and 450 at 02 in a period of one second, while carrying a payload with its end-effector

(see fig. 11). The resulting transient response of each joint angle trajectory was then

saved for comparison to the same joint angle trajectories produced by the flexible link

models.

Since all considered flexibility effects were included in model TFTFEL, and the .: 2

remaining flexible-link models may be derived from it, the case studies concentrated

on the simulations produced by this model.

Perhaps the first observed consequence of the link flexibility while simulating the
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described vertical motion, was the reactive upward-displacement of the end of link

one due to the torque applied by the second joint motor, and the lack of motion of

link two. Considering the system's configuration, this result can be explained since

the inertial resistance to movement presented by the combination of the second link

and payload was greater than the first link's resistance to elastic flexure. Reducing

the length of the second link and lowering the mass of the payloads would certainly

remedy this problem, but would also severely limit the case studies planned. Also,

since most robot arm's in use today are configured with a longer second link, it was

decided to shorten-up and strengthen link one instead.
A

With a non-eccentric payload gripped at the end of link two, the vertical motion of

the manipulator towards the target configuration induced a normal downward planar

flexure of link two, as expected, and a slight upward displacement of the end of link

one ( which was on the order of hundredths of a millimeter - see fig. 12). Moreover, N.

once the target configuration was reached the end of the second link would begin to 0

vibrate about its resting position, eventually damping out (see fig. 13). It is important

to consider this behavior because the ensuing fine-motion control of an end-effector

mounted at the tip of link two would be affected by this vibration. Overall, though,

no particularly adverse influences upon the joint angle trajectories were noted in this

case. '

In contrast, the joint angle trajectories and the resulting gross motion control of 0

the two-link manipulator was significantly affected by the bending-torsion vibrations
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that developed in each link as a result of the robot arm's efforts to move an eccen- %

trically gripped payload. (Note that these vibrations move the case at hand from a

planar to a three dimensional pcoblem). Generally, the resulting transient response

of each joint angle trajectory exhibited increases in maximum peak overshoot, and

increases in settling time. There was also a noticeable, increased lag in the response

of the second joint angle 02 . These conclusions were drawn after examining the

i)erformance of the two link manipulator while moving from the described initial con-

figuration to the final vertical configuration in a period of one second while carrying

eccentrically positioned loads ( e = 8cm ) ranging in size from lkg to 14kg .

Referring to the case where the eccentric load is lkg (figs. 14,14.1, 14.2), which is

3.8 percent of the system's total mass, note the increased lag and hesitation of each

joint angle history. Furthermore, an increase in peak overshoot and a slight increase '1

in settling time is evident. Referring to the joint angle histories for the case of an

eccentric 3kg payload (figs. 15,15.1,15.2), the same behavior is noticed. In fact, all

of the loads considered produced these effects on the joint angle trajectories, and the

severity of these effects was generally noted to increase in proportion to the size of

the eccentric load (see figs. 18-21).

It is suspected that a reason for these disturbances of the transient response of

each joint angle trajectory is the somewhat higher amplitude and frequency of the

structural bending-torsion vibrations compared to the amplitude and frequency of the

planar flexural vibrations, both of which are observed to occur when the manipulator
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is closing in on its target configuration. It is at this time, when the gross motion is

Ivirtually complete and the torques are small that these vibrations have a significant

influence upon the joint angle time histories. Consider the plots of the end-effector

lateral vibrations for each case compared to the lateral planar-vibrations that occur

when the load is not held eccentrically. The increased amplitude and frequency of

the vibrations that occur is depicted in many of the plots, indicating that the amount

of time needed until they settled increased. Consider figs. 17.1,17.2, and 17.3, which

pertain to the case when a 14kg payload - which is more than 50 percent of the system

Kmass - is held eccentrically. Over ten seconds passes before the system settles and the

end-effector vibrations cease. Even when the eccentric load is small many seconds

pass before these vibrations settle down (see fig. 22). We must consider the average

dynamic error of the end-effector due to these vibrations and note that this error

is generally larger when produced by an eccentric payload (see fig. 23). Hence, the

objective of high end-effector positional accuracy and its successful fine-motion control

certainly appears to be difficult to attain in light of this phenomena. In fact, the

objective of a reliable, and immediately stable response from the robot manipulator

as a whole is not realistic in the presence of these high frequency structural vibrations.

This difficulty is especially likely since most control schemes ignore the effects of link

elasticity.

In order to reduce the detrimental effects of these vibrations and improve the accu-

racy of the manipulator, it was proposed to introduce additional structural damping

N into the system. In practise, this could be accomplished with passive damping tech-
e,
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niques such as coating the aluminum links with a polymer jacket, inserting in the

hollow links removeable rubber baffles which would still permit conduits to pass, or

utilizing layered composite materials to construct the links themselves. Note that at-

tempting to diminish the high frequency vibrations through damping methods offers

a far cheaper and easier first alternative to the use of sophisticated control techniques.

Thus, simulated positive damping was added to the differential equations gov-

erning the vibrations in both links one and two. Results from subsequent simula-

tions indicated a definite improvement in the transient responses of each joint angle

trajectory, and a reduction in the severity of the bending-torsion vibrations at the 0

end-effector (see figs. 24 & 25). Just how much damping to introduce was also eval-

uated. Referring to fig. 26, it is evident that the damping ratio required increased as

a function of the size of the payload.

Since they are a function of the joint angle velocities, Coriolis and centripetal •

effects are often justifiably ignored in the real-time control schemes of robot manipu-
'4

lators in order to speed-up the rate of the numerical solution to the system's equations

of motion. However, the arm is then restricted to slow speeds of movement, which

may not be desireable in many applications. An advantage provided in simulation

studies is that prior knowledge of the complete closed form equations of motion en-

ables one to readily identify these terms, and experiment with compensation methods.

Thus, some brief attempts were also made to account for the system's Coriolis and

centripetal effects with nonlinear feedback control methods. This is accomplished by
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Fig. 27

coupling the separate joint servocontrollers with velocity feedback paths, and treat-

ing the Coriolis and centripetal effects as disturbance torques along with the gravity

torques in each joint's control loop (see fig. 27). It was not necessary to account

for all of the Coriolis and centripetal terms appearing in the system's equations of

motion before slight improvements in performance were observed. Specifically, the

transient responses of each jo;nt angle trajectory indicated a drop in peak overshoot

and settling time, and slightly quicker speeds of movement were permitted. It should

also be mentioned that the material flexibility led to the presence of cross-product

terms between joint velocities and material displacement velocities in the equations

of motion; indeed, the system was fully coupled. mrhese terms mathematically de-

scribe the form of some of the peculiarities and reverse -effects caused by the material

elasticity. No attempts were made to compensate for these phenomena, however, this

could be attempted after examining the equations of motion as listed in Appendix B.

One suggestion, as a matter of fact, is to feed forward the flexibility terms (i.e. the
%
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~~Chapter 6 I

Summary and Conclusions
+'1~

Current trends and research efforts in the field of robotics indicate a definite desire

i ': to obtain a greater understanding of the consequences of material flexibility. An

I I  increased awareness of the effects of joint elasticity and link displacements permits the_

development of sophisticated manipulator control schemes and other techniques aimed - )

at minimizing the dynamic and static errors inevitably seen in the manipulator's 2

trajectory and end-effector positioning as a result of link flexure and vibration. In this,. .

light, much noteworthy work has been accomplished in the U.S. and abroad. Single- ,,

link robot models and two-link robot models with a variety of joints and degrees of ,

material flexibility have been derived using many methods. Resulting suggestions for '.:,

I S I

Smmstinaray, and Coear enc ulsionsealy
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It has been the intention of this study to also focus on the example of a two-

link revolute-joint robot manipulator and to develop models to simulate its motion

when each link is permitted to elastically deform. Specifically, five system models

are developed, the last of which allows each of the manipulator links to displace in

torsion and in flexure - yielding a total of six degrees freedom. The crux of each of

these models is a set of coupled governing differential equations of motion, which are

second order and nonlinear and have been derived using the Lagrange-Euler technique

and a proper kinematic description of each system. Material displacements have been

represented through the method of assumed modes in a single-mode approximation.

Moreover, proportional plus tachometric feedback positional control policies are used

to operate the servos which provide power to each system at their revolute joints.

Finally, the models are all run on a VAX 8650 digital computer wherein quick vertical

motion is simulated while the manipulator holds a payload at its end-effector.

Unlike any of the aforementioned articles, the models developed in this study also

consider the effects of carrying an inertially asymmetric payload. In fact, Model TFT- . .-

FEL simulates the elasto-dynamaic behavior of the manipulator seen as a result of the

coupled bending-torsion vibrations in each link that are driven by the manipulator's

movement while carrying such a load. Case studies are conducted to determine the

detrimental effects of this behavior on the joint angle trajectories of the manipulator.

Specifically, it is seen that the transient response of each joint angle trajectory ex-

hibits rises in maximum peak overshoot and settling time, and a hesitation in response

-especially in the second joint angles. Moreover, lateral vibrations are observed at
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the manipulator's end-effector, and it is readily apparent that the average amplitude

0and frequency of these displacements as caused by the coupled bending-torsion of the

links were greater than the amplitude and frequency of the single plane displacements

as driven by a properly positioned payload. Hence, more time would be necesary to

settle this motion to allow for accurate end-effector fine motion control. It has been

asserted that since most control algorithms ignore this phenomena completely, then

the objective of a smooth, reliable and accurate manipulator reponse as a whole is

indeed questionable. Artificial passive damping techniques used to eliminate or at

least reduce the severity of these high-frequency vibrations were also attempted, and

resulted in marked improvements in the two joint angle trajectories. It was found

that by increasing the damping ratio in the equations governing torsional and lateral

elastic link displacements, the detrimental effects of the bending- torsion vibrations

could be almost completely subdued, and the end-effector displacements would follow

as the planar vibrations had.

An additional aspect of this study is the inclusion of the complete closed-form

governing equations of motion. Having the full listing of the differential equations

wfor Model TFTFEL enables one to pose studies of the effectiveness of various control

policies such as FFC ( the feed-forward of flexibility coefficients ). Although time

did not permit full studies of this kind to be carried out, some attempts were made

Ile

with nonlinear feedback techniques with motor speed in order to compensate for the

system's centripetal and Coriolis effects. Results indicated an improvement in the

accuracy of the transient responses of each joint angle trajectory with reductions in
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target position overshoot and settling times. itq "

Overall, this study has been conducted for the purpose of deriving models which

are intended to be used as tools to aid further investigation into the effects of elastic

link displacements and how to compensate for this phenomena. Although the method

chosen to derive the governing equations for each case did not lead to the most

computationally efficient models, the resulting closed-form equations do have the

advantage of being explicitly a function of the manipulator's physical characteristics,

and therefore, much can be learned from them. Much time was also expended in an

effort to make all of the steps in the derivation as clear as possible and it is hoped that

this will also aid further studies of this kind. Finally, it should be mentioned that

although the packaged numerical technique used for the simultaneous integration

of the equations of motion in each model is highly advanced and fast compared S

to standard Runga-Kutta methods ( which are not suited for the stiff systems of 4. J^

equations seen in these flexible-link models ), it still has its limitations and tends

to be very sensitive to its many inputs. As a result, the extent of the variations in

manipulator speeds, trajectories, and payload sizes that could be tried was somewhat

limited. Perhaps efforts in nondimensionalization with respect to material stiffness

EI would increase the bandwidth of possibilities in the study of the manipulator's

motion.
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Bang-Bang Acceleration Profile
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Ramped Acceleration/Decceleration Profile
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Second Joint Angle Transient Response •
( eccentric load = 14kg )
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End-Effector Lateral Displacement
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Increase in Settling Time Vs. Mass of Eccentric Load
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Ml&xliium Peak Overshoot Vs. Mass of Eccentric Load
First Joint Angle

14.0

12.0 .

p.- 4 4

10.0

4. %

2.0.

~~88

a%



Maximum Peak Overshoot Vs. Mass of Eccentric Load
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Required Settling Time for End-Effector
Vibration
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Average Maximum End-Effector Lateral Displacement S

at Target Time
1.0

0.8

?0.6

0.4

0.2 0

non-ecentrc loa

0.0
0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0

payload (kg) t^-

N

Z

Fig. 23

92 4



Required Settling Time for End-Effector
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j Increase in Damping Ratio Required to Subdue
Bending-Torsion Vibrations
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Chapter 7

Appendix A

The boundary value problem for a cantilever bar in torsion is governed by the following

equation for its free vibration

a r 88(x,t) _020(T,t)"AiC $• - I -

(... assuming a uniform bar). If a payload is fixed to its end, we have the following boundary ,.N.

conditions:

J(o, t) =0

G o(l, t) 82(1, t)GJ oIpL- :?-:
Ox 8t2

This problem is solved through separation of variables, and special attention is payed to

the fact that the system eigenvalue also appears in the second boundary condition. The N*wI -

'I0.

resulting trancendental frequency equation is
7p'.pI 1

tan fl I-"- -
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and the natural modes are given by:

0,(x) = Asin/3 x r = 1,2... S

In our particular case, the problem is somewhat extended since IpL = IpL(02), where 02 =

02(t) is the manipulator's second joint angle. Therefore, IpL = IpL(t), and 3, which is found

iteratively using the transcendental frequency equation, is now

P= 0(02) = 0(t)

Therefore, the expression for the solution to the torsion problem using a single mode ap-

proximation

O(x,t) = q(t)o(x) , W. 1%

... becomes

O(x, t) = q(t)A sin/3(t)x

If this is the case, then the complete expression for the defined free vibration problem would 7.
become

-0 2GJq sin3z = Ijsin/3x + 2I4/ cos/3z

+ lq cos x - Iq /2 sin ,x,

Multiplying by sin /3z and integrating both sides of the equation with respect to X yields

GJq sin 2 3xdx =4 sin .3xdx

+241 sin/3x cos 
..

xdx

+ Iq3 sin/3z cos 3xdx - Iq 2  sin' idx

Since the f0 sin 2 3xd x z f0 sin ,3z cos Ozdx are of the order I at most ( where I is the length

of the bar ), we can neglect the spatial dependence on x

,-/ 
2GJq = Iq + 2q + Iq" - 1q 32  

% :
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Instead of carrying the full extent of the details surrounding this time dependent boundary

condition to the simulation, it was decided to make the simplifying assumption that /3

and / and the three terms from the above equation involving these terms were small in

comparison to 4. Note that the algorithm used in the FORTRAN code does adjust /3 for

each iteration, but the full consequences of its time dependence are neglected. This is based 0

on the following reasoning:

2

q w > q/3

or equivalently

w2-

If this inequality is satisfied, then the following relationship stands as a close estimate to -7.

the free vibration equation:

-3 2GJqsin3x = Iw 2 q sin x

... and

_#G 2

% Hence, for this assumption to be valid, we require that the following must be true:

A permitted assumption is that /3 is small. Therefore, from the frequency equation we

can obtain an estimate for in the following manner:

II 1

tan/il A pL/3

97S
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letjI= 1

tan1 ;2=

... with / small we have

therefore

21 Vfl1

If we consider as an example the case where the payload is lkg and the bar is lm

in length and configured as the manipulator links were, calculations lead to the following

values:

W2 ,3700

W 61

0.027

... and indeed w > /3. Thus, the previous approximation is justified. A similar argument

can be used in the case of the lateral vibration of the links.

'. '%q,.

p. .' '

,, *.-.?
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Chapter 8

Appendix B 0

The governing set of equations of motion for each separate model may be derived from the

full expression of the equations of motion for the six -degree-of-freedom model TFTFEL by

removing non-applicable terms.

-

Specifically, for model TTFEL, all terms involving the variables representing first link

lateral vibration, q(t) and 'k(yi), should be removed and the resulting five equations of .

motion will result. "

Furthermore, for model TTEL, all terms involving the variables that represent second

link lateral vibration, b(t) and f(y2), should be removed as well thus yielding the desired

four coupled equations of motion.

99
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Finally, for model TT, all terms involving an eccentrically positioned load are also

removed, and for model RR, only the rigid-link terms should remain.

:,. al

8.1 Equations for Model TFTFEL .

The full form of the equations of motion for the six degree of freedom model will be listed

as compactly as possible by defining the terms that appear in the matrix form of the system

as shown below. A,

Ill 112 113 114 115 116 §i 61Blj C11  T

121 122 123 124 125 126 62 i 2 B21  C1 T

131 132 133 134 135 136 A1  A 1B 3 1  C 3 1  0 .-C-,_..

A+ + :Z
141 142 143 144 145 146 & &tB41 C 41  0 .

151 152 153 154 155 156 41 4B51  C51  0 ?

%p161 162 163 164 '65 166 bB61 C6 0

+ 2A2S3[11C(02 + (1) + qOS(02 + (0)1,,

'-S%

+ 2A2 bV3 [qlOC(02 + (1 11 S (02 + ()I

100
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+ 2ML11C0 + (1) + S(02 + (lp(12qo - Ilbe) + eArl2 S8 2 -ellS(0 2 +1 (~+2)]

112 =A 2S2 + A2 S3[11 C(e2 + (i) + qwkS(0 2 + (01]

+ A2bV3[qtpC(0 2 + (1) - 11S(02 + (1))

+MpL (12 + 2e(atA - 1)12S(2 + 1112C(02 + (1))

+ MpL {S(0 2 + ( 1)(I2qo~ - 1
1

6 e) + eAII 2SG2 -e[IS(0 2 + (I + (2)1

113 =MpLer(crA + 1)11

MpLer[12C02 - Arl 2SO2S(0 2 + (2)]

114 = MpLeAAr(ctA - 1)12 CO2

-MpLeA{f(rA + 0)12 +(aA + 1C(2 + Cl + (2)}

115 A, AV 4 + A 2l11bS4 + A 2S 2 0~'

+ A2 S3iP'[11G(0 2 + (1) + qtkS(0 2 + (0)]

-A 2 btkS(0 2 + (i)V3 + A2 0kC(0 2 + Ci)S3

+ A2bi0'[10C(02 + Cl) - 11 S(82 + (1)]V3

+ ML {'(l + ~rs 1) tk(2 + 2e(aA - 1)12S(2))

+ MpL 0' Ill 12C(02 + C1) + S(0 2 + (1)(120~ - 11bk) + eAr12SO2 - ehS(e 2 +(I + C2)}

+ MpLO12C(0 2 + Ci) + e(aA - 1S(02 + CI + (2)]

+ MpLOk'IiSCteAA(zA + 1)

11 A2 11C(0 2 +i) V3 +A 2 V2

+ MpL {CYlIC(0 2 + C1) - eArS0 2) + 4(12 + e(aA - I)SC2)}%

+ MpLe'e(NA - 1)12S(2 - C'S0 2 eAr12

+ MpL c'e(aEA - 1)11 S(0 2 + Ci + C2)

122 =A 2 S2 + ML [C2 02 12(Ar)2 + 12

+ 2e(ckA - 1)12S( 2]

123 =A 2/2Ar2 S(202)S2 + A2 bAr c(2e 2 )v 2

101- -. -



-MpLr[el 2C62 - eArI2SO2S(02 + (2)]

j ~~~+ MpLr {1/2S(202)l2Ar +eAr[S(0 2 + 2)(aA - 1)S9212 -1 2C92(aA +1)C(0 2 + 2)]}

124 = -Al 2e(xA + l)MpL

125 = A2 S2iP' - A2bakS(0 2 + (j)1"a + A2 0kC(0 2 + (1)S3

+MpL {12 + 2e(aA - 1)12S( 2tP0}

+ MpPL1 {12C(0 2 + (1) + e(aAl - 1)8(92 + (1Ci 2)}

126 = A2V2 + MpLW(2 + e(aA - O)82)

+ MpLC'e(crA - 1)1 2 S(2 - MpLeA1'1 2SG2 f'

13 7 + A2r 2S2 02S2 + A2br 2S(202)V2 + SS

+ MpLr 2  21 + 2e2 + S(202)12bf}

+ 2MLr2 {el 2SO2Ar - el2SO2aA\C(0 2 + (2))

14= C'92S5

135 = -MpLrO4Ari 2SO2 + e(aA + 1)]0

-MpLr,1 2e [C92 - ArS0 2S(02 + (2)] 1

13e = A2/2Ar 2S(26 2)v2 + A2Ar 2C2 
2bV

P + MpLre[S(2e 2)12Ar - eC02]

144 =S9

145 = eMpLAt~' AA(aA - 1)12CO2 - (aA + 1)12}

- MpLAWP [Ar + (a,\ + 1)G(0 2 + (1 + (2)]

146 = -fAe(aA + 1)MpL

1= A, V5 +A 2 ,02 S 4 +A 2 0b'0k'

+ 2A2 'Pw'(C(02 + (1)S3 -bS(0 2 + Cx)Val .

+ MpL {~2+ ?P'?,'[12 + 2e(aA - 1)12S(2]}%

+ 2MpLOOt' {12C(02 + Ci) + e(ckA - 1)8(92 +(1 (2)1

102



+ 2Mpkl'eArscl(aA + 1) I

I5 -= A#2 0C(02 + (C)V + A2,'V 2 + MpLObC(e2 + (1)

+ MpLEP'f {12 + e(a\ - 1)S( 2 + e(ciA - l)S(0 2 + (1 + (2))

+ MpLV'' e(crA - 1)12S( 2 - eArl2SO2}

166 = A2V1 + MpL {EC2 + 2E'ce S(2j

f-.

Note that the mass matrix is symmetric, therefore:

121 =112

131 = 113

141 -" 114

15 115:'

At this point, the other terms can be defined as well:

61 B11 + C1

2AijiqV5 - A 2 bI1 S(02 + ()(62 + 4')V 3  S

+A 2 Ss(2ij + 02 + 40') -11(62 + 40')S(02 + (1) + 4OS(02 + (1) + qPC(02 + (1)(02 +

-A 2b'kS(e2 + CI)V

-A 2b4OC( 2 + (1)(62 + k')Vs "

-A 24jtS(02 + (1)(02 + q0')S3

A2b(26 1 + i2 + &') [90C(02 + (1) - 11S(02 + (1)] V3

103
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+A2b(2i, +i2 + 4,0') [0C(02 + CO - qS(02 + C002 + 40')~ 11C(02 + C002 + 4'0') V3

+2MpLe~iri(ASCl + A&')

-MpLbC [IIS(0 2 + C0)02 + 40') + ekAS0 2 + eArCGOA] + MpLqer(.kscl + A410')

+2eMpL(61 + 02 + 40') 1aAI\2SC2 + (CtA - 1)12bE]

+ekrMpL [irl2 Se2S(e 2 + C2) + ArCeOAS(02 + (2) + ArI2SO2C(02 + C2)(02 + bc') + 12SO021

+(201 + 02 + qtk')MpL j112S(02 + C2)(62 + 410) + C(02 + Cl)(62 + 40~')(12qok - Ile)j

+(201 + i2 + 40I')MpL [S9(02 + Cl)(12qt Jb)

+(26, + 62 + 'VP')MpL LeilhI2h + eArl2G0 2 62 - elIC(02 + (1 + C2)(62 + 40' + C)

+itkMpL P 12S9(02 + (1)(i2 + 40') + e&AS(02 + Cl + C2)]

+4PMpL e(aA - 1)C(0 2 + Ci + C2)(i2 + 4V/ + bE')

i +beMpL [&VASC 2 + (CtA - 1)bE] + Are&A11

+&'AeMpL IA~A-1)12CO2 - AA(aiA - 1)12.90202 6142

+bf/eMpL&AJ12SC2 + bE'e(ca\ - 1)12be'

-be'G02 6eArMpLh 12 'S02MpLekrl

+bE'C&-AMpLIIS(0 2 + Cl + C2)

+be'e(~a\ - 1)MpLIIC(0 2 + Ci + C2)02 + 410'+ +e

-61Ae&AMpLllC(0 2 + C1 + (2) -

+&AeMpL(a\ + 1)S(02 + Ci + C2)(62 + v ) +%E'

+qtP'MpL11bE'eAr(crA + 1)

+4VkMpLl~sce~r(aA + 1)

IN +41k'MpLil SCjeAr&A\
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+ MpLg [11 C0 1 + 12C/3 eS(#3 (2)]

j +MlgG9 1 11/2

+m 2g[li CO1 +~ C)312/2]

... Also

62 B21 + C21 M

AA6S 3 {q'PS(02 + (1) + [qkC(02 + (1 - 11S(02 + (10(2 +40

+A2 i61 [qTOC(0 2 + CO) - 11S(02 + Cl)I V3

+A2Vb61 [4tkC(02 + (l) - (62 + 410')[qi'OS(02 + CO) + 11C(02 + (0)1]

-02 C02SO2 2A r MpL + 26 2C e212Akr2MpL

+2e(6 1 + 62 + 41012 LaASC2 + (a- - 1*' MpL

+Are2I06 + AI'SO2S(02 + C2) + Ar'C0262S(02 + 2)+ ArSe2C(02 + (2)(62+C)pI R

+OMpL [-S(0 2 + C10(2 + 4tp0)1 112 + C(0 2 + C10(2 + 40l')(2qP - llbf)+ S(02 + (1)(1240 00lbe]

+61 MpLe [Anrl 2Se2 + Ar62CO2]

-OMpL elliC(02 + (I + (02 + b'+e)

+4IPMpL P 12S(02 + C00(2 + @k10 + e&AS(0 2 + Cl + (2)]

4~pLe~A - .i Cl + (02 + , +b)

+6feMpL d\S2+ @Atl - 1Sf
I~'

A1' 2MpL [i 2C(2e2)12A 4e- 12 AkS(20 2)/2 + eAi {S(02 + C2)(agA - 1)S02 -C0 2(ctA +1)C(0 2 +C2)}]

+AnlheArMpL [(i2 + be')C(0 2 + (2)(aA - 1)SO2 + S(02 + C2)&AS0 2 + S(02 + C2)(CkA - 1)C0262 ]

+AnIheArMpL [C02&)1C(0 2 + C2) + C02(ca\ + 1)S(02 + C2)(62 + b')]

-dMAectAI 2MpL + b'e&Al2MpLSC2

+be'e(crA - 1)l1&fe'MpL
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-eArZ1 2S8 2if'MpL

-eAr 2C 2 62bfIMpL

+A2 61bliS(0 2 + (I)V3

-A 2 61 (61 + 62 + 41P) [-11 S(02 + (1) + qObC(0 2 + (1] S3

+A2b~l V34kC(02 + (1) + A24V41 S3S(02 + C1)

+A2b61 (6l + 62 + 40') [q4'S( 02 + C1) + 11C(0 2 + Cl)] V3

+A2Ar 2 S(2 2)bbkV1

+6ib[liS(02 + Ci) + eArC02]MpL + qbtkeS(02 + Cl)MpL

-(Ar) 2 MpLI2 [S0 2 CO212 + C(20 2)bf + eC02Ar - caAC(282 + C2)]

-. krfMpL [c(202)12Ar + eS92 + 12 ArC(202)]

-(61 + 62 + 40,),krei2MpL [ArS(202 + C2) + S62]

-61( 61 + 62 + 4')MpL [-S(02 + Ci)1i12 + C(02 + Cl)Q 2qib - libe) + cAr12CO2 - eliC(02 + C1 + C2)I

-41001i + 62 + '0') [-12S(02 + CI) + e(akl\ - 1)C(0 2 + (I + (2)] MpL

+A4r~pC 2ArI2MpL

-6 2Akr A [C(202)I2 + e12 f{S(202 + (2)(caA - 1) + (aA + 1)S(20 2 + C2)1] MpL I

-&A6 2 e(kA - 1)ArS02 12 MpL + &A(61 + 62 + 4i')eAr(cGA - 1)I2SO2MpL

+MpL (il + 62 + 4,P")beeArI 2CO2 - MpL E!61e(aA - 1)11iC(0 2 + CI + C2)

-GijrAe(aA + 1)liS( 02 + CI + C2)MpL

+MPLg [l2Ci3 - eS(/3 + C2)] + M2gC312 /2

.. Also

AB31 + C31 0

A2bAr eC(202)V2
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-a 2 Al S(20 2)e bbV,

+A2Ar 2C2
2 4V1

+A2 r 2 62 [,AS(20 2) + 2 AC(20 2 )] S2

+A26 [Ae 2C(202) + AS(2o 2)] V2 r2  s

+2A...r 2 [AC(20 2) - AS(202)] 02V2

+Al' 2 12S(20 2 ) [V212+ CMl

+2.&r 2 2MpL Fe2C2AC(2 + 2):-eS02&AC(02+ (2) + eS02CAS(02 (02 be)]

+01 2 4'')]Pl2Mp IS A ,S0 2S(02 + (2)]

+ +2 4,b')lel2MpL [ArCOAoS(0 2 + (2) + Ar'S0 2C(02 + (2)(82 +b')

+6 rlleAMpL

%

-4ro1mpL [kriS02 + Arl2CO262 + ekA]

+62r 2 C(202)l2ArM~L

+62I'eArl2MpL [C(0 2 + +2)(62 + - 1)S02 + S(02 + (2)&ASO 2 + S(02 + (2)(aA -1)C90 2 1

621'eAII 2MpL IS0262@A11 + 1)C(02 + (2) - C02&aAC(02 + (2) + C02(crA + 1)S(0 2 + (2)(62 + be')]

-&xS0 262S5

-6,2 S~leriMpL - 622C2 02 12 Ar2MpL

0
+ i0lb 2eI'MpL - 01PkeI'scMpL

-(,k)2 rl2S2Mp A-bMpLrfI 2rs(202)/2%

-61 MpL(0 + 62 + OVK')l' 2 02
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+A4r'OS02r 2 MpL + &Av2e!~aA -1)rC0212MPL%

&A-MpL(Gl + 62 + 410)er(aA - 1)12C02

+01~ + 92 + q?,')b'S92erI2MpL

+&q\)erMpL _ 42kOrS(a\ + 1)MpL

P -Oiqt1'liS~je1'MpL(CtA + 1)

+AS6

..Also0

6,B41 + C4 1

-AS0 2 62 S5

-16ea 1rC02 12MpL + AO62e(aA - )ArSO2 62 12MpL

+ A(81 + 02 + 40P')eM L 12 [-rC\ -O 02 + A & C 2

-,\(6 1 + 02 + 4qfi')eMpL12 [Ar(aA - 1)S80 2 - &A1

+6Oi\e@A + 1)MpLilS(02 + (1 + (2)(62 + 4Vk'+ bE')

-qA,OeMpL [Ar + 6ctAC(0 2 + (1 + (2)]

+4q\,PeMpL (cA + 1)S(02 + (1 + C2) (i2 + 4V' + b'

+ctS~o + eMpL12S82 AC(02 + C2),k2r2

-(61 + 02 + 4,p')2 MpLel 2S( 2

-40(0 1 + 02 + 40')MpLe-\S(02 + C1 + C2)

-bE(i + i2 + q'k")MpLeASC2

-01 re,\I M,L + AqrtPCAMpL

* -02 r2 2eAAMpL [S(0 2 + C2)S82 -C0 2 C(02 + CA)

-&A(il + 62 + qtP')MpLel2 [ArC02 - 1]
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-( 6 I + 62+ 41')if'MpLeAl2S( 2

3 -beCe/MpLS(02 + (1 + C2) [6111 + &I

+d&4A 2tkOeC(0 2 + (1 + C2)MpL I
_42 0,'1keArscjAMpL

9i 4tP'MpL1IS~ieArA

... AlsoI

-A 2 0bS(0 2 + CI)6V 3

-A 2 10(6 1 + 62 + 240')S(02 + C1) [(02 + 40')S.1 + V3]a

+A2Sa3i1P'4kS(02 + Ci)

+A2S361V~ [(62 + 4'') [C(0 2 + CI)qO - 11S(02 + Ci)]

-A 2 0k(61 + 62 + 2410')bG(0 2 + (1)(62 + 40b')V3

+A2 VAbVt [q.PC(0 2 + (i) 11 lS(02 + (1)]2

+A2 V3bOj 04OC(02 + CI)

-A 2 VabiO( 2 + 40') [qOS(0 2 + Ci) + 11C(02 + C()01

+6l0WMLre [AS(, + 2A4,0']

-PMpL S(02 + C1)(62 + k

2( + ilt' + 620')eI& cASC2 + (aX - ibc] MpL

+,p/Are!:MpLAr [Ce 2AS(02 + (2) + S0 2C(0 2 + (1)(62 + be')] "%

-OWbMpLS(Ol + C()(2 + 4091112

+il1'MpLC(02 + (02 + 41P')(1290k - blie)
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+01 ,bMpLS(0 2  (1i)(1240 - bl)%%

+01?'MpLer! [ASo 2 + AGOA 2

-0vbMpLell [S(0 2 + (1 + (2) + C(0 2 + (I + (2)02 + 4,b' + ')

+tkMpL(01 + 02 + 2qP')e&AS(9j + Cl + (2)

-PMpL(01 + 02 + 240')12S(02 + C1)02 + 40

+tIbMpL(0 1 + 62 + 2@k0')eMpL(aA - 1)C(0 2 + Cl + C2)(62 + 40' + be')

+beCk'eMpL 61.S(2 + (ctX - 1)be'3

+beckeMpL [&,\S(0 2 + (1 + C2) + (Ga - 1)C(0 2 + (I + (2)02 + v e)

-Arnomp, [ArihS82 + Arl2 Ce2 02 + e&AIj

+&,AloPe 2 MpL [kr(aA\ - 1)C02 - Ar(aA. - 1)S02 2 -&\

+0'e 2MpL &A\S(, + (aA - 1)be'~

-t,fi'b'el2rMpL [A&S0 2 + AC0202

-crA1keMpL [&A'C(0 2 + (1 + (2) - (CVA + 1)S(0 2 + (I + (2)(02 + Ci + C2)]

+24"'oerMpL [1AS~l(a,\ + 1) + A40Y(ckA + 1)/2 + AS(, 6],\

+iltk'erllMpL [ASC,(aA\ + 1) + A4,'(crA + 1) + AS~liaA]

-AA 1 qVs + A2 61b11S(02 + (l)tVV

-S 3A2 01 0 1 + 02 + 4,b')S(02 + (1)' - 1101/

-S 3AA0(il + i2 + q4')qOkC(02 + (1)'0"

+A 2b(il + 02 + 'P')4'OC(02 + (00% 'VN

+A 2 40(01 +i2 + 40k')S(0 2 + (1)0k'S3

-A 2bil(61 + 02 + 4')C(02 + Cl)V3[0' - 10
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+A2 b0 1B + 02 + 11')Vsq'PS(02 + (1)10'

-2 1'eAril MpL

.0

-(01 + 02 + q10k)OMpL [C(0 2 + Cl)1k'(12qok - Jibe) -S(0 2 + (0112]

-(
6 1 + 02 + 4'0')61 MpL [S(0 2 + (0)120k - elliC(02 + (I + (2)1kV]

+10'4t06l+62 + 4k')12MLS(2(i + (2)

-bEOieA -1)MLOC(0 2  + Ci(2)1k'

-&qA'ke(OIA + 1)S(0 2 + (I + (2)1k'MpL

-9ik'll1'eAr(aA + 1)MpL

+qV 6

+gMpL [12C131k' - eS(3 + (21k'

IwA
1  ~A nd finally + m 1 C 3 k/

iB61 C6 ,

AAe 11 (O2 + 40')S(02 + (1)' V3

2C2j

-2A 2Ar 2 SO~b V1

-iMpLlIS(0 2 + (0) 0 2 + 41P')



CF;L[Aso2  AC2e12

-4lPCS(02 + (i)(02 + 4'')MpL

+ArE MpL [262C(282)12Ar + s(202 )12 ArP + S020 2e]

+cMpL(61 + 02 + 40')e [&,\S( 2 + (aA - 1)E']

+(01 + 02 + 4ik')MpLC'el2 V6,sC2 -ifI

-(61 + 02 + qtVb)MpLc'el 2 [xrS02 + Arc02 62]

+e'OieliMpL [ckAS(02 + 6~ + (2) - C(0 2 + Cl + 2)( 2 + if' + 40)

42 et'MpL

+4celkeMpL [arAS(0 2 + Ci + G2) + C(0 2 + Ci + C2)(02 + iC'+q'j

+A 20iqtk5(02 + CI)Vs

-A 2 01 (01 + 02 + 41Pt) [qPC(0 2 + (i) - 115(02 + (1)) V3  %

1Ai2
2 [S0 2C82 C + eS02ctAS(02 + (2)C'] MpL

-(01 + 02 + 4tk')2 12c'e(aA - 1)MpL 5

-(0k + i2 + &')Ar 2 eMl2Se2C( 2 + C2)C'MpL %p"

+601 + 02 + Wt)1I [S(02 + CI)e + eC(02 + Ci + C2)e'j MpL

-4(61 + i2 + qp")e(aA\ - 1)C(0 2 + (1 + C2)C'MpL

-if(6 1 + 02 + 4,')e(ctA - 1)C'MpL

-6 2A re [eAI'c(02 + Ci)(aA - 1)502 + G02(otA + 1)5(02 + 2)] I2MpL

-(01 + 02 + V)iceee(aA - 1)12ML

-ic'i0,E'e(aA - 1)1,C(0 2 + Ci + C2)MpL '

-OlctAe(aA + 1)I15(02 + Ci + C2)CMpL V.

112



-oqetpe~aA - C'-02 + (I1 +r (2pL

-&4A1eCC'(aA + 1)S(02 + (1 + (2)MpL

+bV7 - gMpLeS(3 + (2)f'r

Some of the variables appearing in these equations ,such as S1, S 2 ... and V1, V2,

have not been previously defined, and therefore will be listed below:

S2= f 12P%12dy

122
S3 = f Pi 2dV2

S 4 = JP"pY2

S5 =ir1(h1)fO' Al(Y2)dy2

S6 = fo" GJ(y)r 1 (y)r(y,)dy1  '

s,3 = r 2(11)112

W9 '.I
S9 P,'Iy2)A~y2Aj~y)dy 44

V3 =ro~e I(yjdY2. 0,

V = O2pyE~(yj)dy S3
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VS p= fl yl2)dy

V6  fSE~i y

V 1 2
V-fEI(Y 2 )(e"dV,

.6

%-

... .d
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