
- 52±i SICHEME966 A SYSTEM FOR INTERPRETING SCHEME(U) 1'
P ETSSCHUSETTS INST OF TECH CANIRIDGE ARTIFICIAL
INTELLIGENCE LAS R BERLIN ET AL. APR 55 AI-H-1S45

7 UN IRMjFIED --5514-S6-K-01SS F/O 12/S M

II1.

'40.

1.8.

-64

op

UNCL.ASS IF IED

REPOT DCUMETATON PGE EFORE COMPLETING FORM
I REPRT Nueem2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4 T T LE (nd Sbel t*) . TYPE OF REPORT 6 PERIOD COVERED

Scheme86: A System for Interpreting Scheme memorandum

a. PERFORMING ORG. REPORT NDMER

?. AU TPNOR1(-r CONTRACT Olt GotAN, NUMSER(ej

Andrew Berlin and Henry Wu NQOO14-86-KO0180

. OPERFOR ING OROANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK
() Artificial Inteligence Laboratory AREA IS WORK UNIT NUMGERS

0) 545 Technology Square .

Cambridge, HA 02139

11 I. CONTROLLING0 OFFICE NAME AND ADDRESS 12. REPORT OATE

0) Advanced Research Projects Agency April 1988
1400 WisnBv.IS. NUMBER% OF PAGES

S Arlington, VA 22209 23______________

14f MONITORING AGENCY NAME A AOORESS(Of Eliforati frow Contro5Ifu,* 0111 eo) IS. SECURITY CLASS. (of Goyto mloW)

Office of Naval Research
__ Information Systems
U Arlington, VA 22217 fee. DEC ASICTN/ONRIG

SC KULE

IS. OISTRIUUTION STATEMENT (of ttse Report)

Distribution is unlimited.

1.OISTRIBUTION STATEMENT (of We abstract onlffoda 8in loo It 4110roa "a Nepal)

IS. SUPPLEMENTARY NOTES
JL2 1

NoneD

19. KEY WORDS fconUhwe an oere. idesI of.ew foosmu W" m~ Idni bylock "Umber)

Scheme
Lisp
computer architecture
interpretive techniques

20. ASTRACT (Cofesion o aid.f 100R6080MY 4010 IftUt~ir by AloeS iNin

- Scheme86 is a computer system designed to interpret programs written in the
Scheme dialect of Lisp. A specialized architecture, coupled with new
techniques for optimizing register management in the interpreter, allow
Scheme86 to execute interpreted Scheme at a speed comparable to that of
compiled Lisp on conventional workstations.

DD 1jN51473 E0DITIOMO 01NOV 49ISOUSOLE.TE UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE rftn oe atesie

Scheme86
A System for Interpreting Scheme

Andrew A. Berlin and Henry M. Wu

Artificial Intelligence Laboratory
and

Department of Electrical Engineering and Computer Science

Massachusetts Institute of Technology

A.I. Memo No. 1040 April, 1988

Abstract

5,

Scheme86 is a computer system designed to interpret pro-
grams written in the Scheme dialect of Lisp. A specialized ar-
chitecture, coupled with new techniques for optimizing register
management in the interpreter, allow Scheme86 to execute inter-
preted Scheme at a speed comparable to that of compiled Lisp on

A, conventional workstations.
Co~py

This report describes research done at the Artificial Intelligence Labo-
V ratory of the Massachusetts Institute of Technology. Support for the Labo-

ratory's artificial intelligence research is provided in part by the Advanced
Research Projects Agency of the Department of Defense under Office of Naval .. .
Research contract N00014-86-K-0180.

D ; ~... ..

Introduction

Scheme86 is a computer system designed to interpret programs written in
the Scheme dialect of Lisp. Moderm high-performance Lisp systems compile
programs into the low-level instruction sets required by conventional pro-

cessors. The semantics of these low-level machine languages correspond to
motions of data within the computer, rather than to the high-level semantics
of Lisp. This dichotomy between semantics tends to complicate compilers, DN

and makes compiled code difficult to debug. Scheme86 directly executes a
high-level representation language in which the semantics of Scheme are pre-
served. A specialized architecture, coupled with new techniques for register
management in the interpreter, allow Scheme86 to interpret this high-level
representation of Scheme at a speed comparable to that of compiled Lisp on
conventional workstations. '

The high-level representation language used in Scheme86 is known as "
S-code. The semantics of S-code correspond to those of Scheme; Scheme
special forms correspond to S-code expression types. Tags annotate S-code
with information that specifies the type of each expression. This improves
performance by eliminating the need for the interpreter to pase list structure
representations of Scheme programs. The annotated information allows the%
interpreter to utilize routines which are tailored to each class of expression.

S The Scheme86 design is based on the observation that sequences of chrono-
logically dependent memory references are often the factor limiting the execu- t
tion speed of Lisp programs. To attack the dependent reference problem, the :
architecture is optimized to reduce the latency of memory-processor-memory
operations. Parallel execution units allow multiple operations to occur during -
each machine cycle, making effective use of a low-latency memory system.

We present an architectural description, an overview of the optimized
interpreter, details of the new register management techniques, and results
from both architectural and digital circuit level simulations.

2I

I-AAA

.
.

Architectural Design Goals

The memory system is often the bottleneck in the performance of modem
computer systems. Computations are composed of both processor opera-
tions and memory transactions. Inputs to a computation must be read from
memory, while computed results must be written back to the memory sys-
tem. For many computations, the processor operations may be performed
in parallel, causing the memory system to become the factor limiting perfor-
mance. These computations may then be viewed as a sequence of memory
transactions. To improve performance, we must reduce the time required to
complete these transactions.

To achieve high-performance execution of memory intensive Lisp pro- -

grams, a high-speed memory system is indispensable. In order to effectively
utilize such a high-speed memory system, the processor must be sufficiently
powerful to complete the operations required to support each memory trans-
action before the memory system becomes idle, waiting for requests from the
processor.

The performance of a high-speed memory system is specified not only by
its throughput, but also by its latency of operation. A low-latency memory
system will be effective for sequences of chronologically dependent references,
while a high-throughput memory system will be effective on sequences of
independent memory references. The processor design must account for both
the memory system latency and throughput.

In symbolic languages such as Lisp, both user data structures and in-
terpreter control structures rely heavily upon sequences of chronologically
dependent memory references. In user programs, dependent references fre-
quently take the form of CAR-CDR chaining, including tree walks and table
lookup. In the Scheme interpreter, they include following environment par-
ent pointers during lexical variable lookup, and walking the tree-structured
S-code instructions. In chronologically dependent reference chains, generat-
ing a memory request requires that the processo' first receive the result of
the previous request. Thus, dependent reference chains cannot benefit from
a pipelined memory system. To combat this problem, Srherne86 utilizes a
low-latency memory. Consequently, the Scheme86 architecture is designed

p

3,4

'.4

to minimize the latency of memory-processor-memory operations.

In order to execute a high-performance Scheme interpreter, Scheme86
must make effective use of its low-latency memory system. The Scheme in-
terpreter must often perform multiple computations to support each memory
transaction. These include address generation, bounds checking, type-code
checking, result generation, and conditional branching. A very powerful pro-
cessor is required to perform all of these operations while still keeping the
memory system busy. This processor power may be achieved by using an ex-
tremely fast processing unit multiple times per memory cycle. Alternatively,
the processor may contain multiple processing units which operate in par-
allel. Scheme86 takes the latter approach, incorporating multiple execution
units into the processor.

Architecture

The Scheme86 architecture is influenced by the implementation technology
available in the mid 1980's. Machine words are 32 bits wide, divided into
8 bits of tag and 24 bits of datum. Addresses are 24 bits wide, with each
address corresponding to a full 32-bit word. This provides a total address
space of 64 megabytes.

Scheme86 contains three execution units, as shown in Figure 1. The

first execution unit is capable of performing 24-bit wide pointer and integer
arithmetic, as well as type-code generation and modification. The second
execution unit has similar capabilities, but also contains a barrel-shifter. A
third execution unit contains both a 32-bit wide equality comparator and a
register transfer path. The execution units are connected through a register
bank that contains three write-ports and eight read-ports. Two of the read-
ports feed a type-code unit that performs two simultaneous tag comparisons.
The results of the tag comparisons may be combined to generate exceptions
and branch conditions.

The operation of the memory system is concurrent with that of the pro-

cessor. To support low-latency memory-processor-memory operations, the
system timing is arranged so that memory-read requests are issued at the

4

)1r

i- , .-

32 Tis

60x32-bit 9 RvdI2 Write Register Bank with Memoary Input Register

EU I
E 3

E ll 2 -I f

Legend:

\7~Z7 External Mires: Registers:7Mam Date Roed Fo Mlemoy Mamy-Input: Input From meory-
N.eaut: Data Wrtten Toanery r~moato : Mmm Y Wite Data 0

"Ad ieuk~ To Mmary rflatI m~ : h Ywite Data 1I.
Status: Condition Codes NhM~dO : Mammry Ade 0

Tns:Type Code Constants PNAI1 : Ph= Ydieu I

Figure 1: Parallel Datai Paths: The execution and type-code units are fed by
an eight-port register bank Three results are written back into the register
bank during every cycle.

completion of the ALU operations of each cycle. The data returned from
memory is then available for use in the ALU operations of the next cycle.
While the memory operation is in progress, the processor performs register
operations, instruction fetches, and dispatching. Overlapping the instruction
dispatch with the operation of the memory system dramatically reduces the
overhead of interpreting Scheme.

The Scheme86 microcode engine contains a writable microcode memory. 4

The control structure allows branching and dispatching to take place concur-
rently with other processor operations during any instruction cycle without
time penalty. This transfer of control may take the form of either a two-
way conditional branch, or a 256-way dispatch into either of two dispatch

5

Li.

tables. The zero-cost branching feature proved to greatly improve software
performance and ease of micro-instruction placement. A block diagram of
the micro-controller is shown in Figure 2.

From Data Paths and External-Host

Next-StatDispat -Bt

22 2

Miarcoe Memor AaddressiAd

T NeXp yex-Sta ta Contr I-Bits

Type Ucp : Tyexa- Eptl Adis Rgist

tional dispatch may occur on any instruction cycle without time penalty.

The memory system is tightly integrated with the processor, so that
memory operations can be initiated during every machine cycle. Memory
addresses may come from either of two memory-address registers. Data for
memory-write operations may come from either of two memory-output reg- -

isters. The results of memory-read operations are placed into the memory,-
input register. This register is mapped into the general register address space,
where it is accessible by any of the execution units.

6

-

Implementation Details

An implementation of the Scheme86 architecture has been completely de-
signed. The design primarily uses Advanced Schottky TTL technology.
Based upon detailed timing simulations at the logic level, we determined
that the worst-case cycle time is 165 nanoseconds.

'..

Using 1986 technology, building an eight read-port, three write-port reg-
ister bank required the use of four smaller register files. Each register file
has two read-ports, and two write-ports. During register-write operations,
identical copies of the data are simultaneously written into all of the register
files. During register-read operations, the register files operate independently,
thereby providing a total of eight read-ports.

The Scheme86 register bank supports three register-write operations per
cycle. The register bank is implemented using register fies containing only
two write-ports, one of which is used twice per cycle. The first register-write
overlaps with the operation of the ALU's. The other two occur in parallel *]
with the operation of memory, and with the fetch of the next instruction, as -

illustrated in Figure 3.
163 nanosaceds

Cycle One-
II-FET4 jRvg~edjR*gWhte1 R~gie

Cycle Two
I -M0TOI RegRead Reg~itul Regjte2 1

r ,%

I-FETCH: Instruction Fetch I
Reg Read: Register Read__________
ALUs: Parallel Arithmetic Operations I-CETCH RaeedT
RegWritel: Register Write Phase I
RegWrite2: Register Write Phase 2

Tim

Figure 3: Scheme86 T'rL Implementation Timing Diagram: The operation
of the processor overlaps with the operation of the memory system. Memory I
references are separated only by the operation of the ALU's.

7

% %

The Interpreter

The Scheme86 interpreter executes a high-level representation of Scheme pr:o-
grams known as S-code. S-code is a tree- structured, typed-pointer instruc-
tion set. The structure and class of each Scheme expression is encoded in
the type field of its S-code representation. The S-code used in Scheme86

has been extended to make very fine distinctions between different categories
of expressions. The interpreter uses the type field as a dispatch address to
select a routine which is specifically tailored to the type of the expression be-
ing evaluated. The Scheme86 interpreter and primitives were hand-coded to
take full advantage of the multiple execution units and low memory latency
of the architecture. In most cases, we were able to avoid idle memory cycles,
and the computation was entirely memory-bound.

Scheme programs are translated into S-code by a process known as sy/n-
taxing. The syntaxer categorizes Scheme expressions based on their structure
and computational requirements, annotating this information in the tag of

the S-code form it produces. The analysis performed by the syntaxer is a
simple and straightforward categorization that does not require complex data
flow analysis or block compilation techniques. A typical expression category
detected by the syntaxer is the case in which the operator of a procedure
application (also known as a combination) is known to be a primitive pro-
cedure. The tag of the S-code representation informs the interpreter that
the application involves a primitive operation. This allows the interpreter to
pass the arguments to the primitive directly in processor registers, avoiding
the creation of an environment frame in memory for the application.

The microcoded evaluator executes an S-code form by dispatching on
its 8-bit tag field, which encodes information about the class of the Scheme
expression it represents. A 24-bit datum field points to the components
of the expression, which themselves are encoded in S-code. The evaluator
retrieves the components of the expression and invokes itself recursively, until
it reaches a primitive application, a variable, or a self-evaluating object.

The state of the computation is maintained by a small number of registers.
For example, the ENV register maintains the current lexical environment,
while the EXP register maintains the current S-code expression, and the

84"

.'. '. '1 ', '' . .' .''.'.',' ., .*€...".. .
".

.' - # - -- -w 9% -- J - 4- '- %--- ' '." ''.'" ' .' ,"" ".. , "" . " ., ,

CONT register maintains the continuation. When the evaluator recursively,"
executes subexpressions, these registers are saved and later restored from a

stack allocated region of memory.-'

Variable References

Variable lookups, which contribute a large amount to the execution time of
Scheme programs, must be efficiently handled in a high-performance system.
The S-code representation of a variable is a pointer to a structure which
contains the name of the variable. This structure also contains slots for
keeping the lexical depth and frame offset relative to the current environ-
ment, where the value of the variable can be found. By storing the lexical
address in these slots, the value of the variable can be accessed without
searching through nested environment frames. Because Scheme is staticallyPA
scoped, lexical addresses for bound variables can be determined at syntax-
time. However, lexical addresses for free variables must be determined by
the interpreter when they are first encountered. In the Scheme86 system,
all lexical address calculations are performed by the interpreter, in order to
simplify the syntaxer.

Two variable lookup optimizations are performed in the Scheme86 system.
Variables bound in the local environment frame are encoded using a special
S-code form. The datum part of this form contains the offset into the current
frame in which the variable value is kept. Thi, saves space and avoids two
extra memory references to fetch the lexical address. The syntaxer can also
be instructed to assume that all free references refer to global variables,
which are stored in value cells associated with the variable symbols. The
S-code instruction can then directly point to the value cell, again eliminating
the fetch of the lexica address. Since most parameters are local, and most
procedures are globally bound, these two optimizations account for a sizable
speed up when executing Scheme programs.

9|

5-

9 ".'.-'. :

a.

'

a.)

.. ' ,.-,. ,' executes, subexpressions.;.':., % ,. these, registers are saved .and, later '. restored .from a ., %'

- 7

;; Scheme ASSQ primitive. Register Argi contains the
;;; key to match for, and Arg2 contains the association
;;; lilst (a-list). The result is returned in the VAL
;;; register.

(define-dispatch-handler (primitive assq)
(define-register (reg key) (reg argi))
(define-register (reg a-list) (reg arg2))
(state
;; Compute address and start fetching the first pair
(eul (memory-fetch (offset (reg a-list) CAR)))

;; Setup answer for case where a-list is empty
(eu2 (assign (reg val) (fetch (reg nil))))
;; Simultaneously test to see if the list is empty
(if (tcu (type-? (rag memory-input) (type null)))

Cgoto ASSQ-RETURI-VITH-AISVER)))
(state ASSQ-LOOP

Fetch the key field in the association pair,
which is just being returned from memory

(eul (memory-fetch (offset (reg memory-input) CAR)))
;; Put this pair in VAL assuming it's the answer
(eu2 (assign (reg val) (fetch (reg memory-input)))))

(state

;; Prefetch the rest of the a-list
(eul (memory-fetch (offset (reg a-list) CDR)))

;; Simultaneously test to see if current pair
;; matches key. If so, return with answer in VAL
(it (eu3 (eq? (reg memory-input) (reg key)))

(goto ASSQ-RETURI-VN -ANSVER)))
(state
;; Re-enter ASSQ. This is essentially the same as

the first instruction, only here the current
a-list is returning from memory.

(eul (memory-fetch (offset (reg memory-input) CAR)))

;; Prepare for answer being NIL
(eu2 (assign (reg val) (fetch (reg nil))))
;; Make memory input the current a-list
(eu3 (assign (reg a-list) (fetch (reg memory-input))))

;; Test for a-list being NIL. If so, terminate
(if (tcu (not (types? (reg memory-input) (type null))))

(goto ASSQ-LOOP)))
(state ASSQ-RETURJ-VITI-AESER

;; Return to interpreter by dispatching through address
; in the continuation register.
(dispatch return-addresses (eu3 (fetch (reg cent))))))

Figure 4: Microcode for the primitive procedure ASSQ. Each state describes
operations happening in one machine cycle. In typical applications, two
or more execution units are utilized in more than 64% of the cycles, with
memory transactions taking place 80% of the time.

A 10

*d~4%a:

Primitive Procedures

Scheme86 supports a large number of microcoded primitive procedures. These
procedures are hand-coded to take full advantage of the parallel features of
the architecture. For example, the code for ASSQ, as shown in Figure 4, makes
effective use of the multiple execution sites and low-latency memory system.

.4

Garbage Collection

Scheme86 uses a microcoded two-space stop-and-copy style garbage
collector.[3] A straightforward implementation of this relatively simple al-
gorithm provides high speed storage reclamation, obviating the need for
schemes which reduce the frequency of garbage collection. The Scheme86
dispatch mechanism proved to be well suited to the needs of the garbage
collector. By using the parallel features of the architecture, the garbage
collector was able to utilize the high-speed memory system effectivel3r.

I.

,',:,,:

ii .,. .,

Register Management Techniques

Programs frequently use processor registers for data storage. When a subrou-
tine call occurs, the newly invoked routine may reuse some of the processor
registers, overwriting data stored by the caller. A register management dis-
cipline must be employed to ensure that the contents of these registers are
restored to the appropriate values at the completion of the subroutine call.
Typically, this involves saving, and later restoring the contents of the regis-
ters from a stack allocated region of memory. Register management tends to
introduce inefficiency by unnecessarily saving and restoring register contents.
The Scheme86 interpreter uses a new register management technique which
reduces the unnecessary saving and restoring of the environment (ENV)
register.

Background

Register management mechanisms typically establish a calling convention
between the caller and callee. Either the callee or the caller will preserve
the register contents by saving, and later restoring the contents from a stack.
The caller-saves convention is inefficient; the caller must preserve all registers
which it needs, even though the callee may not overwrite their contents.
Similarly, the callee-saves convention is inefficient; the callee must preserve
the contents of any register which it overwrites, even though the caller may
not need the contents.

A hardware optimization known as a rack[8] was used in the Scheme-81
chips to implement a more efficient register management mechanism. A rack
is a combination of a register and a stack. When executing programs which
use the caller-saves convention, the rack hardware does not actually save the
contents of any register until the callee attempts to assign a new value to the
register. If the callee never attempts to use the register, then it will not be
saved.

The Scheme interpreter is recursive. During each invocation, processor
registers may be changed. The interpreter must employ a calling convention
to ensure that the contents of registers such as CONT and ENV are pre-

12

I

served. This requires memory operations, which frequently fall in the critical
path of the computation. The Scheme interpreter must be tail-recursive,
meaning that when a procedure has no more work remaining, it must relin-
quish all storage associated with it. Using the callee-saves convention, the
callee saves the contents of the registers, even if the caller no longer needs
these values. This unnecessary saving of values violates tail-recursion, pro-
hibiting the use of the callee-saves convention in a Scheme interpreter.

Although the caller-saves convention satisfies the requirements of tail-
recursion, it introduces serious inefficiencies, which are particularly harmful
in the case of the environment register. The interpreter must save ENV
before calling itself recursively to evaluate a subexpression, so that the envi-
ronment will be available when evaluating remaining subexpressions. How-
ever, evaluation of this subexpression often results in further recursive calls,
to evaluate its own subexpressions. These subsequent recursive calls must
also save the ENV register. Thus ENV is written onto the stack multiple
times, even though once would have sufficed. Indeed, the recursive invoca-
tions might never clobber ENV, in which case all of the saves of ENV were
unnecessary. Use of the caller-saves convention for the environment register
frequently results in repetitive saves, sometimes followed by register usage,
followed by repetitive restores.

To optimize the repetitive save and restore operations associated with
the environment register, Steele and Sussman[8] suggest a variation on the
rack idea which we refer to as a push-counter rack. In this scheme, a counter
is associated with each register. Each time a caller requests a register-save,
the counter is incremented. If a save has been requested, i.e. the counter is
non-zero, and a callee attempts to reuse the register, then both the register
contents and the value of the counter are saved on a stack. Push-counter racks
reduce the overhead of managing the environment register by optimizing long
sequences of save and restore operations.

A New Technique: Save-If-Requested

A new register management mechanism, save-if-requested, has been devel-
oped. Similar in effect to a push-counter rack, this mechanism may be im-

13

'}

plemented in either hardware or software. The Scheme86 interpreter uses
this new technique to reduce unnecessary saving and restoring of the ENV
register.

The save-if-requested mechanism associates two flags with each register.
The contents-needed flag informs the callee as to whether the caller needs
the contents of the register preserved. The restore-is-needed flag is set by the
callee, indicating that the caller's data has in fact been saved on the stack.
The caller explicitly preserves the restore-is-needed flag before invoking the
callee.

When the callee wants to reuse a register whose contents-needed flag is
set, it saves the contents of the register on the stack, sets the restore-is-needed
flag, and clears the contents-needed flag. When control is finally returned
to the caller, the register contents will be restored from the stack only if the
restore-is-needed flag is set.

In summary, the requirements of the Save-If-Requested calling convention
are as follows:

e When performing a subroutine call, the caller must perform two tasks:

- It must set the contents-needed flag on all registers whose contents
will be needed later.

- It must save the value of the restore-is-needed flag.

* When the callee reuses a register whose contents-needed flag is set,
the callee

- Saves the contents of the register on the stack.

- Clears the contents-needed flag.

- Sets the restore-is-needed flag.

9 When control returns to the caller:

- If the restore-is-needed flag is set, the register contents are restored
from the stack.

- The original value of the restore-is-needed flag is restored.

14

.4

Implementing Save-If-Requested

The save-if-requested calling convention does not require explicit hardware
to support the contents-needed and restore-is-needed flags. The trick is to
maintain two logical copies of the interpreter.[7] One copy is for situations
in which the caller requires that the contents of the ENV register be pre-
served, whereas the other copy is for situations in which the caller no longer
needs the contents of ENV. This duplication of code represents the contents-
needed flag implicitly in the program counter. The copy of the interpreter
which corresponds to the contents-needed flag being lowered simply over-
writes ENV without saving it, whereas the other copy arranges to save ENV
before reusing it, and sets the restore-is-needed flag.

The restore-is-needed flag may be represented implicitly as part of the
continuation. When the callee saves the ENV register, it can simply mod- %

ify the continuation (for example, by subtracting one) to return to a point
which will restore the ENV register from the stack, and then proceed nor-
mally. Merging the restore-is-needed flag with the continuation automatically
preserves the flag during recursive calls, since the continuation is preserved. is

It is interesting to note that while the save-if-requested optimization re-
quires maintaining two logical copies of the interpreter, in practice much code
can be shared between the two copies. This code sharing is further supported
by the zero-cost branching feature of the Scheme86 architecture.

Register Shadowing

During recursive invocations, the interpreter state can be saved in private,
quickly accessible shadow registers, provided that no region of the interpreter
that uses the same shadow registers is entered. The Scheme86 interpreter
uses this technique, allocating shadow registers from the general purpose

register bank.
We sept- te expressions into two types. Simple expressions are those

that can be evaluated without recursively invoking the interpreter. These in-
clude self-evaluating objects, variables, and lambda-expressions. Compound
expressions are those that require recursive invocations of the interpreter.

15.

• !!

II.

Examples include combinations and conditionals. The syntaxer classifies the
components of each compound expression as either simple or compound.
Compound expressions containing only simple expressions as components
may be evaluated using shadow registers.

By using multiple sets of shadow registers, we can extend this idea to cover
compound expressions containing compound components. In Scheme86,
primitive applications whose components are all simple expressions axe dis-
tinguished as safe primitive-combinations. The interpreter uses one set of
shadow registers to evaluate safe primitive-combinations. Another set of reg-
isters are used to evaluate less-safe primitive-combinations, which may con-
tain both simple expressions and safe primitive-combinations. Yet another
set of shadow registers are used in evaluating safe procedure-combinations,
whose subexpressions may in turn be simple expressions, safe primitive-
combinations, or less-safe primitive-combinations.

The introduction of safe combinations into the S-code language, coupled
with'the use of shadow registers, reduced the saving and restoring of the
contents of the EXP, CONT, argument, and function registers. The mi-
crocode required to process the new S-code forms required the addition of
only 45 microinstructions, out of a total of over 700 microinstructions. This
optimization, which does not require specialized hardware, is effective on
conventional processor architectures as well.

16

Performance Analysis

A series of tests were conducted to determine the performance of the
Scheme86 system, as well as the effectiveness of the optimizations incor-
porated into the S-code interpreter. The tests used a set of benchmarks,
including the doubly recursive version of the Fibonacci function, the TAK
and BOYER programs from Gabriel[4], and the simple query language from
Abelson and Sussman[1]. These tests were chosen based on their intensive
use of the arithmetic, list processing, and procedure call mechanisms of the
interpreter; for their resemblance to the general class of large, well-written
Scheme programs this system was designed to execute; and for their wide
acceptance as standards for measuring Lisp systems.

Program Raw Save- Global Safe
(seconds) Time If-Requested Variables Combinations
(fib 20) 0.26 0.24 (11%) 0.23 (1.6%) 0.19 (19%)
Tak 0.82 0.70 (15%) 0.69 (1.6%) 0.58 (16%)
Boyer 14.5 14.3 (1.3%) 12.4 (14%) - -
Query 0.052 0.040 (24%) 0.034 (15%)

Figure 5: Scheme86 Execution Times. The numbers in parentheses indicate
the percentage of incremental speed-up as each additional optimization is
enabled. The average overall speed-up is around 30%. 'i'

The execution time figures were computed based upon the worst-case
cycle time of 165 nanoseconds derived from the simulated TTL design of
Scheme86. Figure 5 shows the execution time and the incremental improve-
ments' for the four benchmarks as each additional optimization was enabled.
As shown, the save-if-needed environment register optimization sped up in-
terpretation by a maximum of 15%. When free variables were assumed to
be globally bound, a further improvement of as much as 24% was attained.
When the system used safe combinationf, L further improvement of up to
19% was realized. On average, the combination of all of these optimizations

'The terms "savings", "speed up", and "improvements" are defined to be (slowtime -
fasttime)/slouwtime.

It
17

X

f~Nj

provided an improvement of 30% over an interpreter implemented without
them.

Program Orbit Orbit Scheme86
(seconds) HP9000s320 HP9000s350
(fib 20) 0.156 0.067 0.188
Tak 0.470 0.204 0.580
Boyer 52.18 23.4 12.4
Query 0.0966 0.0418 0.0337

Figure 6: Orbit/Scheme86 Benchmark Results. Scheme86 did extremely well
in large programs where compiler optimizations are less effective.

-n As a comparison, the execution times of these four programs on conven-
tional hardware was measured. The programs were compiled and run in the
most recent version of the Orbit[5] Scheme system, with open-coding of in-
teger arithmetic and list primitives enabled. The timing measurements were
performed on two Hewlett-Packard workstations. The HP9000 Model 320
computer is a 68020 based workstation released in 1985. It has a clock speed
of 16 Mhz and 7.5 Mbyte of storage. The HP9000 Model 350 workstation,
which uses a 25 Mhz 68020 processor, contains 32 Mbyte of RAM. This model
was first shipped in mid-1987, well after the hardware design and simulation
of the TTL Scheme86 processor was done.

Sufficient heap space was allocated initially so that garbage collection
did not occur during any of the tests. Figure 6 shows the execution times
using Orbit, along with those attained by Scheme86, with all optimizations
enabled in both cases. As is evident from this comparison, the performance of
Scheme86 is competitive with that of compiled Scheme running on modern
workstations, particularly in large programs where compiler optimizations
are less effective.

Scheme86 made effective use of its hardware resources. While running
our set of benchmarks, it kept two or more execution units busy more than
64% of the time. Memory transactions took place in 80% of the cycles.
Dispatching took place about once every three cycles. The flow of control
was conditionally determined in 60% of the cycles. These results indicate that

18

the Scheme86 system was able to effectively exploit parallelism in achieving
high performance.

These simulation results prove that the performance of Scheme86 is highly
competitive with that of current Lisp systems. This performance level is re-
alized without the use of complex compilation techniques or exotic hardware
technology.

Related Work in Performance Analysis

Scheme86 used multiple execution units to improve the performance of the
processor. An alternative approach is to reuse a single execution unit multiple
times. These two approaches were compared in a separate study[11]. The
comparison showed that as the latency of the memory system decreases,
the cycle time of a single execution unit architecture becomes smaller than
can be implemented using modem TTL or other comparable technology,
whereas the parallel execution unit architecture was able to make up for

its slower basic clock rate by performing multiple operations in each cycle.
Although the single execution site architecture could be implemented using
exotic technology, one can easily imagine an implementation of the parallel
execution unit architecture which uses the same exotic technology, thereby
producing an even faster processor.

191

A5,,

V.

,3 '

19.:

IL '. " .'' --" - - -' - %'- -- % ' ' ,r ,r . -_ .. " '. .' ." " . . " , - ," ." • . .. r-., ,- . .- .- r . p

I

Relation To Previous Work

The idea of building a machine which directly interprets an S-code represen-

tation of Scheme programs originated in the Scheme-79 chips. The Scheme-
79 chips rivaled the performance of the compiled Lisp systems of the time,
specifically MacLisp on the PDP-10. The S-code used in Scheme86 is more

specialized than Scheme-79 S-code, supporting the multiI e optimizations
employed in the Scheme86 system.

These ideas were further pursued in the Scheme-81 chips, which were
designed by automatically compiling the S-code interpreter into hardware.
The data paths included special-purpose features which directly supported
the requirements of the microcoded interpreter. For example, specialized
processing units were associated with some of the registers. The Scheme-
81 chips used racks to improve general register management, while a push-
counter rack was used to optimize the saving and restoring of the environment
register. Scheme-81 was designed to be part of a collection of chips, each
specialized to perform a particular task such as ASSQ.

The architecture of Scheme86 differs from that of Scheme-81. Scheme86 is
a hand-designed general purpose register machine with parallelism provided
by multiple execution units. Scheme-81 specialized the private processing el-
ements of some registers according to their function in the S-code interpreter.
The general purpose nature of Scheme86 allows the primitive operations of
Scheme to be microcoded, thereby using the same hardware which supports
interpretation to implement high performance primitive operations. Imple-
menting the Scheme86 processor using multiple integrated circuits, rather
than on a single VLSI chip, allowed increased connectivity between the mul-
tiple execution units and the memory, thereby exploiting the benefits of a
low-latency memory system.

20

-~~~~~~ %~-VV./. p \. %, v

Conclusions

Scheme86 is a high-performance implementation of a Scheme interpreter. A
specialized architecture exploits the parallelism inherent in the interpreter,
incorporating multiple execution units to effectively utilize a low-latency
memory system. New register management optimizations, which are ap-
plicable to conventional architectures, provide significant performance im-
provements.

Historically, efficient execution of Lisp on conventional architectures has
required the use of a fairly complicated compiler. We have shown that it is
possible to design an architecture for executing interpreted code that per-
forms competitively with compiled Lisp on conventional machines, but with-
out the complexity associated with compiler technology. Interpreters have
the further advantage that they can be easily changed, thus making Scheme86
a good vehicle for experimenting with language design and implementation.

Scheme86 executes a high-level representation of Scheme, whereas most -"

modern Lisp systems execute low-level languages that describe data move-
ment within the computer. The results from the Scheme86 project lead us
to believe that it may be profitable to target future architecture efforts at
executing an intermediate language which lies somewhere between high-level
representation languages and low-level machine code.

Acknowledgments

We thank Gerald Sussman, Chris Hanson, and Bill Rozas for helping with the
design of the Scheme86 architecture and interpreter. Yekta Gursel, David Es-
pinosa, Oded Feingold, Mark Miller, and Steve Codell contributed significant
time to the project. Special thanks is due to Thomas Simon, who wrote the
final version of the Scheme interpreter, implemented most of the optimiza-
tions, and assisted in the performance analysis. We extend our gratitude to
Hal Abelson and Jacob Katzenelson for reviewing drafts of this document.

21

References

[1] Abelson, Harold., Gerald Jay Sussman, with Julie Sussman, Struc-
ture and Interpretation of Computer Programs, MIT Press, Cambridge,
Mass., 1985.

(2] John Batali, Edmund Goodhue, Chris Hanson, Howie Shrobe, Richard
M. Stallman, and Gerald Jay Sussman. "The SCHEME-81 Architecture

- System and Chip". In Proceedings of the MIT Conference on Advanced
Research in VLSI, edited by Paul Penfield, Jr. (Dedham, Mass.: Artech
House).

[3] R. Fenichel, and J. Yochelson. A Lisp garbage collector for virtual mem-
ory computer systems. Communications of the ACM 12(11):611-612.
1969.

[4] Richard P. Gabriel. Performance and Evaluation of Lisp Systems. MIT
Press, Cambridge, Mass., 1985

[5] David Kranz, Richard Kelsey, Jonathan Rees, Paul Hudak, James
Philbin, and Norman Adams. "Orbit: An optimizing compiler for

Scheme". In Proceedings of the SIGPLAN '86 Symposium on Compiler
Construction, pages 219-233. ACM, June 1986. Proceedings published
as SIGPLAN Notices 21(7), July 1986.

[6] J. Rees, and W. Clinger (editors), "Revised (3) Report on the Algo-
rithmic Language Scheme", MIT AI Memo 848a, Cambridge, Mass.,
September, 1986.

[7] Thomas D. Simon. "An Alternative to Racks". Personal Communica-
tion, 1987.

[8] Guy Lewis Steele, Jr. and Gerald Jay Sussman. "The Dream of a Life-
time: A Lazy Scoping Mechanism", MIT AI Memo 527, Cambridge,

Mass., November 1979.

[9] Gerald Jay Sussman, Jack Holloway, Guy Lewis Steele, Jr., and Alan
Bell, "Scheme-79 - LISP on a Chip". In Computer, Vol. 14, No. 7, July

1981

22

f 101 Henry M. Wu, "Scheme86 - An Architecture for Microcoding a Scheme
Interpreter". S.B. thesis, Department of Electrical Engineering and
Computer Science, MIT. May 1986.

[11] Henry M. Wu, "Performance Evaluation of the Scheme86 and HP Pre-
cision Architectures". S.M. thesis, Department of Electrical Engineering
and Computer Science, MIT. May 1987. Ole

7.~

23'

a% %

Ar

ID"

100-

I f % % 4
d%%d4-4 rP 0"If '

